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Abstract
The growth of social networks has provided a platform for individuals with prejudiced views, allowing them to spread hate
speech and target others based on their gender, ethnicity, religion, or sexual orientation. While positive interactions within
diverse communities can considerably enhance confidence, it is critical to recognize that negative comments can hurt people’s
reputations and well-being. This emergence emphasizes the need for more diligent monitoring and robust policies on these
platforms to protect individuals from such discriminatory and harmful behavior. Hate speech is often characterized as an
intentional act of aggression directed at a specific group, typically meant to harm or marginalize them based on certain aspects
of their identity. Most of the research related to hate speech has been conducted in resource-aware languages like English,
Spanish, and French. However, low-resource European languages, such as Irish, Norwegian, Portuguese, Polish, Slovak, and
many South Asian, present challenges due to limited linguistic resources, making information extraction labor-intensive. In
this study, we present deep neural networks with FastText word embeddings using regularization methods for multi-class hate
speech detection in the Norwegian language, along with the implementation of multilingual transformer-based models with
hyperparameter tuning and generative configuration. FastText outperformed other deep learning models when stacked with
Bidirectional LSTM and GRU, resulting in the FAST-RNN model. In the concluding phase, we compare our results with the
state-of-the-art and perform interpretability modeling using Local Interpretable Model-Agnostic Explanations to achieve a
more comprehensive understanding of the model’s decision-making mechanisms.

Keywords Hate speech ·Norwegian language ·Natural language processing ·Deep Learning · Transformers · Interpretability
modeling

Introduction

The complexity and challenges of hate speech in the
digital era

As digital technology advances, the era of social computing
has significantly enhanced theway individuals interact, espe-
cially noticeable in the use of social media platforms and chat
forums [30]. The concept of Hate Speech (HS), often veiled
in complexity, holds diverse interpretations across regions
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and cultures, presenting significant hurdles in its detection
and control, particularly in our digital age. HS appears in
several forms [12], including cyberbullying [71], flaming
[47], profanity [25], abusive language [50], toxicity [58], and
discrimination [72]. While there is no universally accepted
definition of HS, Nobata et al. [48] presented themost widely
accepted: "any form of communication that denigrates a spe-
cific group of individuals based on attributes such as race,
color, ethnicity, gender, sexual orientation, nationality, reli-
gion, or other distinguishing characteristics". Several studies
align on a similar depiction of HS; [16, 34, 63, 65], charac-
terizing it as an intentional act of hostility towards a specific
group, influenced by real or perceived characteristics that
constitute the group’s identity. The huge increase in disparag-
ing remarks onTwitter and other cyber platforms is leading to
physical violence in the real world. As a result, the research
community considers the automated detection of hate-related
content on Twitter as a significant challenge [76]. Online HS
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is at the junction of various societal disputes [26]. It demon-
strates the revolutionary impact of technology by bringing
both opportunities and difficulties. It is difficult to attain a
balance between fundamental rights [27], such as freedom
of expression [11], and the defense of human dignity.

Regulatory measures and the global response to
online hate speech

Maintaining a safe and pleasant online environment may be
extremely difficult because of how amplified such behav-
ior can become when there is anonymity and disconnection
from consequences in the real world [51]. Effective and accu-
rate methods to identify and resolve these problems require
immediate and keen attention because of their rapid growth
and the nature of evolution. As the custodian of freedom of
expression, UNESCO actively promotes mutual understand-
ing through all forms of mass communication, including the
Internet and social media [23, 40]. On the 31st of May 2016,
a voluntary code to stop illegal HS online was introduced as
a result of cooperation between the European Commission
and Information Communications Technology (ICT) com-
panies. This program mandates the removal of all content
that aligns with the definition of HS as set forth by the Euro-
pean Union (E-U) [4]. With the outbreak of the COVID-19
pandemic, there has been a worldwide increase in HS and
discrimination, prompting governments at all levels, from
local to national, to emphasize the significance of community
resilience. Furthermore, the impact of hatred and misinfor-
mation during the pandemic has been seen all around the
world [19, 33]. The EU has established measures to con-
trol how external firms interact and combat the spread of
hatred and its code of conduct has shown significant improve-
ment in recent years. 1 These guidelines explicitly state that
it is unlawful to participate in any activity that encourages or
incites violence against a group or an individual, identifiable
by characteristics, such as race, skin color, religion, ances-
try, or cultural association [28]. The following figures; 1, 2
depict hate crime incidents in the US. From 2007 to 2020, an
increased tendencywas seen; however, stabilitywas recorded
from 2020 to 2021, indicating potential advances in handling
hate.

This paper seeks to detect the HS for the Norwegian
dataset by incorporating Deep Learning (DL) and multilin-
gual transformer-based models with hyperparameter tuning.
Next, the contributions of this researchwork are summarized,
followed by how the rest of the paper is organized.

1 https://european-union.europa.eu/principles-countries-history/
principles-and-values/aims-and-values_en

Fig. 1 Hate crime (2007–2020)

Fig. 2 Hate crime (2020–2021)

Work contributions

The contributions of this paper are as follows.

1. In this paper, our primary contribution is the refinement
and application of established HS detection methodolo-
gies through the use of regularization methods, hyper-
parameter tuning, and generative configurations. This
approach has been meticulously applied to a baseline
dataset in the Norwegian dialect, which includes class
categories like neutral, provocative, offensive, moder-
ately hateful, and hateful. The aim is to significantly
enhance HS detection capabilities specifically for the
Norwegian language andwithin these distinct categories.

2. In addressing our classification problem, we strategically
employed supervised FastText embeddings, offering dis-
tinct advantages over unsupervised FastText and other
word embeddings. The supervised FastText embeddings
are fine-tuned to the nuances of Norwegian HS data,
capturing domain-specific context and enhancing the per-
formance of sequential DL-based models, which include
Long Short-Term Memory (LSTM), Gated Recurrent
Unit (GRU), and Convolutional Neural Network (CNN).
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3. We performed state-of-the-art multilingual transformer-
basedmodels, such asMultilingualBidirectionalEncoder
Representations from Transformers (mBERT), ELEC-
TRA, and FLAN-T5, along with Norwegian Language
Models (LMs) like Nor-T5, Nor-BERT, Scandi-BERT,
and nb-BERT. Notably, these Norwegian LMs, previ-
ously unexplored in the context of HS detection, were
utilized with the implementation of hyperparameter tun-
ing to optimize their performance for our task.

4. This work involves the implementation of prompt-based
fine-tuning using two different techniques, including
few-shot and full fine-tuning with generative configura-
tion. This approach allows us to harness the power of
transformer-based models and adapt them to our specific
task.

5. Based on the best performance of Bidirectional LSTM
and GRU (BiLSTM-GRU), we compared our results
with the baseline study and performed the interpretabil-
ity modeling with Local Interpretable Model-Agnostic
Explanations (LIME) to achieve a more comprehensive
understanding of the model’s decision-making mecha-
nisms.

Structure of the paper

The rest of the paper is structured as follows: Sect. 2 discusses
the existing research work on HS. Section 3 explains the
proposedworkmethodology. Section 4 focuses on the results
and discussions. Section 5 is based on the comparison of the
results with the baseline methods. Section 6 is related to the
interpretability modeling with LIME. Section 7 presents the
conclusion and future work.

Related work

Recent advancements in Artificial Intelligence (AI) and
Natural Language Processing (NLP) have heightened the
prominence of HS detection, leading to the development of
various innovative methods in this field [43]. These tech-
niques enhance the understanding of HS and its implications,
including monitoring social media and analyzing public dis-
course.Moreover, the primary focus of these studies has been
on well-resourced languages such as English. This emphasis
on languages with abundant resources has created a disparity
in hate speech research, especially for languages with fewer
resources, such as Irish, Portuguese, Norwegian, and various
South Asian languages [5].

Machine learning-basedmethods

H. Elzayady et al. [18] introduced a method for detect-
ing HS in Arabic dialects using a combination of classical

machine learning (ML) and DL-based approaches in two
phases, incorporating personality traits. In the first phase, the
AraPersonality datasetwas used, applying correlation valida-
tion between personality traits and HS. In the second phase,
the Term Frequency-Inverse Document Frequency (TF-IDF)
was used for feature extraction. These features were then
input into ML models, including Decision Tree (DT) [15],
RandomForest (RF),LogisticRegression (LR), SupportVec-
tor Machine, and Extreme Gradient Boosting (XGBoost),
alongside DL models, such as CNN, LSTM, BiLSTM, and
GRU. In their research,Mittal et al. [45] focused onHSdetec-
tion in the English language using an ML-based approach.
They employed the XGBoost model with a Count Vectorizer
(CV) for feature extraction. Additionally, they integrated the
LIMEmodel to interpret the predictionsmade by themachine
learning algorithm. Their methodology achieved an F1-score
of 0.94, demonstrating its effectiveness.

William et al. [75] addressed a tertiary classification
problem in HS detection using ML-based methods. They
employed both TF-IDF Word2Vec for feature extraction,
finding that TF-IDF yielded better results compared to
Word2Vec embeddings. The study implemented various
models, including SVM, RF, AdaBoost, and KNN. Among
these, SVM was found to outperform the other models in
terms of accuracy. In their study, Akuma et al. [1] analyzed
a dataset of HS and offensive language from kaggle2 using
four ML-based algorithms: KNN, DT, LR, and NB, along
with two distinct word embeddings, BoW and TF-IDF. Their
work showed that DTwhen integrated with TF-IDF achieved
the best accuracy score of 0.92 when compared to the other
models in their research.A.Khanday et al. [32] conductedHS
detection on Twitter using COVID-19-related tweets, apply-
ing ML and ensemble learning techniques with TF-IDF and
BoW. They collected 30,000 tweets during the pandemic,
of which 11,000 were annotated as containing hate-related
content. The Stochastic Gradient Boosting (SGB) classifier
emerged as the most effective, achieving an accuracy and
F1-score of 0.98.

Deep learning and transformer-basedmethods

Saleh et al. [61] conducted binary classification for HS detec-
tion using BiLSTM and the transformer-based model BERT.
Their research included three publicly available datasets: [16,
73, 74]. They employed three different types of embeddings:
domain-specific, Word2Vec, and Global Vectors for Word
Representation (GloVe)Word embeddings.TheBERTmodel
achieved a 96% F1-score on a combined balanced dataset,
outperforming other DL-based methods. S. Nagar et al. [46]
introduced a novel approach for HS, utilizing two pub-

2 https://www.kaggle.com/datasets/mrmorj/hate-speech-and-
offensive-language-dataset
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licly available datasets [21] and [22]. Their proposed model,
named the Variational Graph Auto-Encoder (VGAC), lever-
ages multi-modal data by combining two distinct features:
the textual content of tweets and the social network structure
of the users who posted them. Initially, the text from a tweet
is encoded using a chosen text encoder, and then, it under-
goes further processingwith aFullyForwardNeuralNetwork
(FFNN). Concurrently, the user’s features, which include the
social network structure, language usage, and metadata, are
encoded using a social network encoder. By integrating the
encoded text and user features, their framework aims to com-
prehensively understand the context of a tweet. Khan et al.
[31] presented a deep neural network architecture for sen-
timent categorization in code-mixed texts. CNN layers are
utilized for feature selection, and LSTM layers are applied
to capture long-term dependencies in textual input. They also
used several word embedding techniques, such asWord2Vec
Continuous Bag of Words (CBoW), GLOVE, and FastText.
A similar approach was used by Nagra et al. [46] where they
conductedSAat the sentence level forRUusingFasterRecur-
rent CNN (FR-CNN) on the RUSA-19 dataset.

Awal et al. [5] proposed a multilingual Model-Agnostic
Meta-Learning (MAML) [52] method for detecting HS,
employing different publicly available datasets. The base
models used in their study were mBERT and XLM-R, along-
side datasets from Founta et al. [21], i Orts, [49], Mandl et al.
[39], andBosco et al. [10]. In this study, their proposedmodel,
HATE-MAML, outperformed the baseline models by over
3% in accuracy. In their study, Mazari et al. [41] performed
multi-label HS detection using ensemble learning methods.
They employed twodifferentword embeddings, FastText and
GloVe, and also trained a BERT model combined with BiL-
STM and BiGRU, utilizing a dataset from the Kaggle.3 The
multi-labels in their study included categories, such as ’iden-
tity hate’, ’threat’, ’insult’, ’obscene’, ’toxic’, and ’severe
toxic’. Ali et al. [2] performed a tertiary classification of HS
detection on Twitter for the Urdu language. This classifica-
tion was divided into three categories: hate speech, offensive,
and neutral. They utilized deep learning-based models, such
as LSTM and GRU, stacked with FastText embeddings, and
also implemented a transformer-based BERT model using
the Hugging Face tokenizer. Among these models, BERT
emerged as the most accurate, achieving a notable accuracy
score of 0.73. A similar approach was undertaken by Mehta
et al. [42], where they applied traditional ML algorithms,
SVM, MNB, RF, LR, and DL-based model LSTM and
the transformer-based BERT model. Among these, LSTM
emerged as the most effective, achieving an impressive accu-
racy score of 0.98. After reviewing the existing literature, we
conclude that many studies addressed HS using traditional

3 https://www.kaggle.com/competitions/jigsaw-toxic-comment-
classification-challenge/data

Fig. 3 Proposed work methodology

ML and DL-based methods for online data. We will do this
analysis usingDL, andmultilingual transformerswith hyper-
parameter tuning methods, instruction fine-tuning, and with
generative configurations in a different way that will provide
us with a deep understanding of these approaches.

Table 1 represents the comparative analysis of the cur-
rent SOTA studies. The prevailing existing methods in HS
detection have shown a tendency to underutilize multilingual
transformers and language-specific transformers, particu-
larly those that leverage the increasingly popular prompt-
based fine-tuning technique in generative AI. Additionally,
these methods have primarily focused on word embedding
techniques, often giving less attention to the crucial aspects
of regularization and hyperparameter tuning that are essential
for ensuring the robust performance of algorithms. In con-
trast, ourworknot only integrates these advanced transformer
models and emphasizes the importance of regularization but
also pioneers in applying prompt-based fine-tuningwith gen-
erative configuration and explainable AI for multi-class HS
detection in low-resource Norwegian language.

Table 2 highlights the prior research conducted on low-
resource European languages.

Methodology

The proposed research methodology involves a systematic
approach to achieving promising results, as shown in Fig. 3.
Each of the steps from our research methodology is further
elaborated in detail below.

Dataset

In our study,we addressed themulti-class classification prob-
lem using the same dataset as the one used in the baseline
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Table 1 Comparative analysis of state-of-the-art methods

References Dataset Feature Set Method Results

Elzayady et al.
[18]

AraPersonality,
SemEval 2020
Arabic offensive

TF-IDF DT, XGBoost,
SVM, LR, RF,
LSTM, BiLSTM,
CNN, GRU

Accuracy: 0.82

Saleh et al. [61] Davidson et al.
[16], Waseem,
[73], Waseem
and Hovy, [74]

Word2Vec,
GloVe

BiLSTM, BERT F1-score: 0.96

Mazari et al. [41] Wikipedia Com-
ments

FastText, GloVe BERT, BiLSTM,
BiGRU

F1-score: 0.99

Mittal and Singh.
[45]

Online Tweets Count Vectorizer XGBoost, LIME,
SHAP

F1-score: 0.94

Awal et al. [5] Founta et al.
[21], i Orts, [49],
Mandl et al. [39],
Founta et al. [22]

Contextual
Embeddings

mBERT, XLM-
R, MAML

ROC-AUC: 0.79

William et al. [75] Online Tweets Word2Vec, TF-
IDF

AdaBoost, RF,
LR, SVM

Accuracy: 0.79

Ali et al. [2] Online Tweets FastText LSTM, GRU,
BERT

F1-score: 0.73

Nagar et al. [46] Founta et al. [21],
Founta et al. [22]

Contextual
Embeddings

VGAC Accuracy: 0.85

Mehta and Passi,
[42]

Online Tweets TF-IDF LR, RF, SVM,
MNB, LSTM,
BERT

Accuracy: 0.98

Akuma et al. [1] Online Tweets TF-IDF, BoW LR, DT, KNN,
NB

Accuracy: 0.92

Khanday et al.
[32]

Online Tweets TF-IDF, BoW LR, MNB, SVM,
DT, Bagging,
AdaBoost, RF,
SGB

Accuracy: 0.98

Khan et al. [31] RUSA-19, RUSA N-gram CNN, RNN Accuracy: 0.92

Rizwan et al [59] RUSA-19 ELMO, FastText,
LASER

LSTM, BERT,
BiLSTM, CNN,
XLM-R

F1-Score: 0.89

Proposed Work
Model Dataset Feature Set Method Results

FAST-RNN,
Prompt-Based
Fine-Tuning

Andreassen
Svanes and
Seim Gunstad,
[3](Resset, Twit-
ter, Facebook)

Supervised
FastText, Reg-
ularization,
Hyperparam-
eter Tuning,
Generative Con-
figurations

LSTM, GRU,
CNN-LSTM,
BiLSTM-GRU,
mBERT, ELEC-
TRA, FLAN-T5,
scandi-BERT,
Nor-T5, Nor-
BERT, nb-BERT,
LIME

Precision: 0.98, Recall:0.98, F1-
score: 0.98, Accuracy: 0.98

study [3]. This dataset is categorized into five distinct classes:
’1’ for neutral, ’2’ for provocative, ’3’ for offensive, ’4’
for moderately hateful, and ’5’ for hateful. It was compiled
from three social media platforms: Facebook (FB), Twit-
ter, and Resset.4 Furthermore, the baseline study provides

4 https://inyheter.no/

a comprehensive explanation of each class label’s definition,
ensuring clarity in the categorization of the data. The dataset
exhibits a significant imbalance,with a predominance of neu-
tral instances totaling 34,085,while hateful instances number
only 250. This stark disparity highlights the need for an effec-
tive approach to accurately identify the relatively rare hateful
instances. In Table 3, there are some examples of Norwegian
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Table 2 Comparative analysis of HS detection in low-resource dialects

References Dataset Hateful Non Hateful Evaluation

Bigoulaeva et al. [9] German (GermEval-2018) 39.5% 60.5% F1-Score: 0.98

Pereira-Kohatsu et al. [53] HaterNet 58.5% 42.5% Acc: 0.83

Ayo et al. [6] Davidson et al. [16] 20% 80% AUC: 0.96

García-Díaz et al. [24] Spanish MisoCorpus 2020 58% 42% Acc: 0.85

Fersini et al. [20] Italian and English (AMI 2018) 41% 59% Acc: 0.83

del Valle-Cano et al. [69] Italian 58.5% 42.5% F1-Score: 0.998

Batarfi et al. [7] HateEval 2019 41% 59% F1-Score: 0.998

Ptaszynski et al. [55] Polish (PolEval-2019) 89.71% 20.24% Acc: 0.90

Trajano et al. [67] Brazilian Portuguese 31.5% 68.5% F1-Score: 0.78

Table 3 Examples of Norwegian HS text with English translation

Category Original text English translation

Neutral Alle har det bedre under/med Trump (bortsett fra hans
mediamotstandere)

Everyone is better off under/with Trump (except his
media opponents)

Provocative Jeg visste ikke at @USER likte orgier og holdt til i
Florida

I didn’t know @USER liked orgies and lived in Florida

Offensive Søt tenåring elsker å ri på en stor pikk Cute teen loves to ride a big dick

Moderately Hateful Innen 2050 er vi nok bde islamisert og kolonisert By 2050 we will probably be both Islamized and
colonized

Hateful Men har dm ikkje anna og gjera Send dm langt inni
dalstroka innafor og la dei beite der

But if they have nothing else to do Send them far inland
and let them graze there

Table 4 Dataset distribution
with class labels

Category Counto f comments

Neutral 34, 085

Provocative 4737

Offensive 1563

Moderately hateful 510

Hateful 250

Fig. 4 Dataset distribution

HS instances along English translation. Table 4 and Fig. 4
illustrate the distribution of the dataset in terms of class labels
and their count.

Data preprocessing

Data preprocessing is crucial in many ML and DL-based
models for eliminating irrelevant text from the dataset, ensur-
ing that the data are presented in a concise and appropriate
format. In our study, we focused on twomain columns: "text"
containing all the comments, and "category" representing the
five distinct classes. The preprocessing of "text" involved
several key steps. First, we converted all uppercase letters to
lowercase and removed non-essential characters, including
ASCII symbols. The process also included tokenizing words
and sentences and removing stop words.5 To further refine
our data, we used Python’s RegEx library to filter and process
elements like numbers, punctuation, and specific patterns,
including email addresses, URLs, and phone numbers.

In the context of transformer-based models, our prepro-
cessing approach was more specific, we conducted a limited
set of preprocessing steps, deliberately excluding the removal
of stop words, as it is not recommended under any cir-
cumstances. Another reason for limiting preprocessing for
transformer-based models is to address the issue of syntactic
ambiguity [64],which has been a significant drawback in pre-
vious DL-based techniques and models. Syntactic ambiguity
occurs when words within a sentence might have several

5 https://github.com/stopwords-iso/stopwords-no
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interpretations depending on the context, making it a diffi-
cult problem to interpret.

Word embedding

Word embeddings offer numerical representations for tex-
tual inputs. FastText6 embeddings provide several benefits
compared to traditional word embeddings due to their abil-
ity to capture subword details and manage words not in the
vocabulary more effectively. This feature makes FastText
particularly advantageous for languages with complex mor-
phology and diverse variations.

Equation 2 shows the mathematical formula to compute
FastText word embeddings [44]

uw + 1

|N |
∑

n∈N
xn, (1)

where

uw: represents the vector for w in the embedding space.

1

|N | : is the fraction representing the average.

∑
: is used to sum over a set of vectors.

n ∈ N : specifies that we are summing over the set N.

xn : represents the vector for the context words in the set.

FastText, a word representation tool developed by Face-
book’s research division, offers both unsupervised and super-
vised modes and features a comprehensive database of 2
million words from Common Crawl, each represented by
300 dimensions. Altogether, this library contains an impres-
sive total of 600 billion word vectors. This word embedding
method stands out with its distinctive methodology, which
includes the use of manually crafted n-grams as features in
addition to individual words [56].

FastText embeddings use morphological features, which
enhances their effectiveness in vector representation and gen-
eralizability in a range of applications [68]. In this work,
supervised FastText was used to focus on a categorical clas-
sification problem. It uses labeled training data to learn the
associations between texts and labels, allowing for more
accurate predictions on unseen data. This approach is advan-
tageous in scenarios where the objective is to categorize text
into predefined classes, as it provides context-based learning
guided by the labeled examples. In contrast, unsupervised
FastText focuses on learning word representations from a
large corpus of unlabelled text,which is only useful for under-
standing word associations, and does not directly address

6 https://fasttext.cc/

Fig. 5 FastText word embedding architecture

the particular requirements of classification tasks. Moreover,
unsupervised FastText cannot effectively identify the subtle
and specific distinctions between different categories that are
essential for accurate classification. In our experimentation,
we trained the FastText model over 50 epochs, employing
learning rates of 0.01.

Modeling approaches

This sectionwill detail theDL and transformer-basedmodels
utilized in this paper. It will provide an in-depth examination
of each model’s architecture and its application within our
research framework.

DL-basedmodels

In this paper, we implemented LSTM and its variant BiL-
STM, alongwithGRU. These RNN-basedmodels are known
for their effectiveness in processing sequential data, with
LSTM units being particularly adept at capturing long-term
dependencies. BiLSTM enhances this capability by process-
ing data in both forward and backward directions. GRU,
similar to LSTM, efficiently manages sequence dependen-
cies but with a simpler architectural design. Additionally, we
explored a hybrid model, BiLSTM-GRU which is our pro-
posed FAST-RNN, combining the strengths of both LSTM
and GRU architectures with FastText embeddings. Further-
more, we performed CNN with the stacking of LSTM,
leveraging CNN’s ability to extract spatial features and
LSTM’s sequential data handling, offering a comprehensive
approach to model complex patterns in data.

1. FAST-RNN architecture: The FAST-RNN architecture
described in Fig. 6 is a sophisticated neural network
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model proposed for categorical HS classification tasks.
At its core, the model commences with an embedding
layer that transforms text data into a dense sequence
matrix of maximum sequence length ’m’. This matrix
feeds into a BiLSTM segment comprising two model
layers with 80 and 60 LSTM units, which processes the
data bidirectionally to capture long-range dependencies
in both forward and backward directions. Subsequently,
the sequence is passed through a GRU segment with 60
GRU units, harnessing the model’s ability to focus on the
most salient features of the input for classification while
reducing computational complexity.

2. Regularization: Regularization is a technique in the
learning algorithms that prevents overfitting, which
occurs when a model performs well on training data but
poorly on unseen test data [60]. The robust performance
of the FAST-RNN model is considerably enhanced by
the implementation of kernel L2 regularization, set at a
lambda value of 0.01 for both the BiLSTM and GRU
layers. L2 regularization is crucial for reducing the mag-
nitude of the weights, which encourages the model to
favor smaller weight values [35]. This approach serves
a dual purpose: it reduces the likelihood of overfitting
and strengthens the model’s ability to generalize, ensur-
ing dependable performance on new, unseen datasets.
The choice to utilize L2 instead of L1 regularization was
intentional. L1 regularization tends to promote sparsity
by driving some weights to zero [38], which, in our sce-
nario, could lead to underfitting a limitation that became
apparent during initial testing. Equations (2) and (3) are
the mathematical formulas to calculate L1 and L2 regu-
larization.

3. Hyperparameter tuning: In our thorough hyperparam-
eter tuning process, we carefully fine-tuned the model’s
parameters through a series of deliberate experiments.
We trained the model for 10 epochs, a length of time
chosen to ensure the model learned effectively with-
out overfitting. This was finalized as the model’s loss
stabilized over time. For the task ofmulti-class classifica-
tion, we adopted the cross − entropy loss function due
to its well-established effectiveness. This loss function
assesses the alignment between predicted probabilities
and the actual class distribution, a critical metric for clas-
sification tasks of this nature. To optimize our model’s
performance,we employed the Adam optimizer , known
for its ability to dynamically adjust the learning rate.
This adaptive learning rate mechanism enhances the
model’s efficiency in exploring and converging toward
optimal parameter values.

The name ’FAST-RNN’ highlights the model’s fast
training and processing speed, along with its strong per-
formance compared to other DL-based models in our

study. We also tried training for 5 epochs and using L1
regularization, but the results were not as good. Five
epochs did not give the model enough time to learn
properly, and L1 regularization, which can reduce some
weights to zero, was too obvious. Therefore, training for
10 epochs with L2 regularization was the best choice. It
allowed the model to learn fully while still being able
to perform well on new, unseen data, leading to the
improved performance of the FAST-RNN. Table 5 illus-
trates the hyperparameters and configuration details of
each DL-based model

L1(w) = λ

n∑

i=1

|wi |, (2)

where

w: is the weight vector of the model

λ: is the regularization coefficient

n: is the number of weights in the vector

wi : is the i th weight in the weight vector.

L1 regularization adds the absolute value of the mag-
nitude of the coefficients as a penalty term to the loss
function. The absolute valuemakes this penalty termnon-
linear in the weights, and thus, L1 regularization can lead
to sparse solutions, with many coefficients being exactly
zero

L2(w) = λ

n∑

i=1

w2
i ; (3)

L2 regularization adds the squared magnitude of the
coefficients as a penalty term to the loss function. The
squaring makes the penalty smoother and differentiable
atwi = 0. Unlike L1 regularization, L2 does not result in
sparse models, as it typically does not force coefficients
to be exactly zero (though they may be small).

Transformer-based models

The Transformer, introduced in 2017 by Vaswani et al. [70],
is an NLP framework built for sequence-to-sequence tasks.
It operates on the self-attention mechanism that efficiently
handles long-range dependencies and consists of twoprimary
components: an encoder and a decoder. The mechanism of
self-attention within the Transformer can be mathematically
formulated as follows:

Attention(Q, K , V ) = softmax

(
QK�

i√
dk

)
Vi , (4)
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Fig. 6 Proposed FAST-RNN
architecture

Table 5 Configuration details for DL models

Model Model layer Dense layer Dropout layer Pooling layer Regularization Epochs Function Loss

LSTM 3 2 2 – L2 10 Softmax Categorical entropy

GRU 3 2 2 – L2 10 Softmax Categorical entropy

CNN-LSTM 3 2 2 2 L2 10 Relu Categorical entropy

BiLSTM-GRU 3 2 2 – L2 10 Relu Categorical entropy

where

Q: is the loss to minimize

K : is the key matrix

V : is the value matrix

dk : is the dimension of the key vectors

N : is the length of the input sequence

i : is the index of the query vector.

This paper utilizes multilingual transformers, with a focus
on optimizing their hyperparameters. Unlike previous lan-
guage models such as RNNs, which faced limitations in
computational and memory capacities for generative tasks,
transformers represent a substantial improvement. In our
study, we used the Norwegian HS text dataset for which
multilingual text classification transformers like mBERT,
ELECTRA, FLAN-T5, along with Norwegian LMs Nor-
BERT, ScandiBERT, nbBERT, and Nor-T5, were utilized.

Multilingual transformers

mBERT

BERT, a transformer model, underwent self-training on an
extensive, multilingual dataset. This implies it was trained
solely using raw text, without any human-labeled data, lever-
aging publicly accessible data and an automated method

for generating inputs and labels from the text. In contrast,
mBERT, a specialized version of BERT, was pre-trained
specifically on the largest Wikipedia articles across 104 lan-
guages. It employed a Masked Language Modeling (MLM)
approach for its training [17].

ELECTRA

In BERT’s MLM pretraining, input tokens are replaced with
a [MASK] placeholder, and the model learns to predict the
original tokens. Electra, however, introduces a more efficient
method called replaced token detection. Unlike BERT, Elec-
tra replaces some tokens with plausible alternatives from a
smaller generator network, and a discriminative model is
trained to identify whether each token in the input has been
replaced or not. The generator part in Electra assigns proba-
bilities to the generation of specific tokens xt using a softmax
layer [14].

FLAN-T5

FLAN-T5,7 an extension of the Text-to-Text Transfer Trans-
former (T5)model [57], represents a significant advancement
in NLP. Developed for instruction fine-tuning, FLAN-T5 is
trained across various tasks, enhancing its adaptability and
efficiency in text-to-text operations [13]. Its proficiency in
summarizing dialogs and classifying text makes it invalu-
able for any real-world applications. Additionally, FLAN-T5

7 https://huggingface.co/docs/transformers/model_doc/flan-t5
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Table 6 Configuration details for transformer-based models

Model Class Batches Lr Epoch

mBERT BertTokenizer 32 2e–5 5

ELECTRA ElectraTokenizer 32 2e–3 5

FLAN-T5 AutoTokenizer 32 2e–5 5

Table 7 Configuration details for Norwegian transformer-based mod-
els

Model Class Batch Lr Epoch

nb-BERT SequenceClassification 32 2e–5 5

Nor-BERT SequenceClassification 32 2e–6 5

Nor-T5 Seq2SeqLM 32 2e–3 5

scandi-BERT SequenceClassification 32 2e–5 5

excels in text classification. It automates the categorization
of text into predefined classes, such as Sentiment Analysis
(SA), spam detection, or topic modeling. Table 6 presents
the configuration and hyperparameters of the multilingual
transformer-based models utilized in this study.

Norwegian LMs

Recently, significant advancements have been made in Nor-
wegian LMs. A. Kutuzov et al. [37] introduced NorBERT,
available in various sizes and trained on the Norwegian Aca-
demic Corpus (NAK) andNorwegianWikipedia. NorBERT2

uses data from the Norwegian section of mC4 and the NCC’s
public part. P.E. Kummervold et al. [36] developed NB-
BERT models: NB-BERTbase, which builds upon mBERT,
and NB-BERTlarge, independently trained on the complete
NCC corpus. Additionally, Scandinavian BERT (Scandi-
BERT), covering Danish, Norwegian, Icelandic, Faroese,
and Swedish texts, has over 60% Norwegian content from
NCC. Recently, two novel Norwegian LMs, Nor-T58 and
North-T5,9 were proposed by Samuel et al. [62]. Nor-T5,
and North-T5 transformer models are designed for Norwe-
gian and Scandinavian sequence-to-sequence tasks. These
models were evaluated against multilingual T5 models and a
series of specialized North-T5 models, which are essentially
mT5 models further fine-tuned specifically on Norwegian
data. This comparison aims to assess their effectiveness
in handling Norwegian language tasks. Table 7 presents
the configuration and hyperparameters of the Norwegian
transformer-based models utilized in this study.

8 https://huggingface.co/ltg/nort5-large
9 https://huggingface.co/north/t5_base_NCC

Generative configuration

In the process of refining the proposed multilingual trans-
formers and Norwegian LMs, we implemented substantial
modifications to the hyperparameters, which resulted in
noticeable improvements in our outcomes. These adjust-
ments encompassed the exploration of diverse batch sizes,
learning rates, and epochs. Additionally, we also employed
generative configuration parameters, which are additional
parameters that the model utilizes during training. These
parameters are invoked during the inference phase, provid-
ing us with control over factors such as the maximum token
count in the generated output and the level of creativity in
the text. These techniques include random samplingmethods
like top-k and top-p, which impose constraints on random-
ness and increase the likelihood of producing creative and
diverse outputs [54]

Top-k sampling involves choosing the kmost likely words
from the model’s probability distribution for the next word.
The process is defined by the following formula:

P(w) =
⎧
⎨

⎩

e(P(w)
∑

w′ e(P(w′) if w is in the top-k

0 otherwise,
(5)

where

w: is the word being sampled,

P(w): is the probability of word,

V : is the vocabulary of possible words.

Top-p sampling selects the minimum number of words
needed to have a cumulative probability exceeding a prede-
fined threshold p. Following is the mathematical expression
to calculate the top-p sampling [29]:

P(w) = 1∑
w′∈V :P(w′)≥p P(w′)

(6)

where

∑

w′∈V :P(w′)≥p

P(w′): sum of probabilities.

Furthermore, we integrated an additional set of configu-
ration parameters in our method, specifically the "tempera-
ture" parameter. This parameter significantly influences the
model’s calculated probability distribution used in predict-
ing the subsequent token. Essentially, the temperature value
serves as a scaling factor within the softmax layer of the
transformer models. A higher temperature setting increases
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Table 8 Generative configuration details for transformer-based models

Model Top-k Top-p Temperature

FLAN-T5small 5 0.5 0.3

FLAN-T5base 5 0.2 0.3

Nor-T5small 7 0.5 0.3

the randomness in the generated output, while a lower tem-
perature value reduces the range of possible words in the
generated text [54]. Following is the mathematical expres-
sion for random sampling with temperature [29]:

P(w) = exp(P(w)/τ)

∑
w′ exp(P(w′)/τ)

(7)

where

τ : parameter controlling distribution diversity
∑

w′
exp(P(w′)/τ): normalization factor.

Table 8 provides an overview of the generative con-
figuration employed during the fine-tuning of our models,
including details on class type and the tokenizer used.

Transformer-based models vary in their capabilities with
generative configurations, as exemplified by mBERT and
ELECTRA,which have beendesigned for classification tasks
rather than text generation. This specialization accounts for
their inability to work with generative parameters. In com-
parison, FLAN-T5 and Nor-T5, both are variants of the
T5 transformer and can be used for text generation, sum-
marization, and translation tasks. This functionality is also
influenced by their class type; both Nor-T5 and FLAN-T5
belong to the "Seq2SeqLM" class, a category not applicable
to other transformer-based models like BERT and ELEC-
TRA.

Prompt based fine-tuning

In traditional ML, models are trained on a large dataset
to learn a task. However, in prompt-based learning, the
transformer-based models are given a natural language
prompt or a set of instructions that guides them to perform
a specific task without extensive training. This approach uti-
lizes the pre-trained knowledge of these transformers and
adapts it to new tasks through carefully crafted prompts. In
our study, we employed two different types of prompt-based
fine-tuning: few-shot and full fine-tuning.

Few-shot fine-tuning

Few-shot fine-tuning is a process that entails training amodel
on a small (few examples), task-specific dataset, in contrast
to traditional fine-tuning which typically requires a larger
dataset. In this method, the model is given a limited number
of examples with natural language prompt along with the
desired outcome. These examples aid the model in adjusting
its responses to better suit the particular task’s requirements.
Few-shot fine-tuning proves highly beneficial when we have
limited resources with restricted task-specific data and aim to
ensure the model generalizes effectively from these limited
examples.

Full fine-tuning

Full fine-tuning involves training the model on a substantial
dataset. This dataset is usually specific to the task or domain
the model is intended to perform in. Full fine-tuning is more
resource-intensive compared to few-shot fine-tuning and it
requires more computational power and time, as the model
needs to be trained over a larger set of data. This approach
offers the advantage of highly specializing the model for the
fine-tuned task.

• Natural language prompt: In our study, we chose to
use FLAN-T5 and Nor-T5 architectures for prompt-
based learning, becausemodels likemBERT,ELECTRA,
NB-BERT, and several others are not well suited for
this specific approach. The primary reason is that these
models are typically designed for contextual language
understanding, where they predict the next word or token
in a sentence based on the surrounding context. They
do not inherently support prompt-based learning, which
requires the ability to generate responses or perform
actions based on explicit instructions or prompts pro-
vided by the user. FLAN-T5 and Nor-T5, on the other
hand, have been specifically designed and fine-tuned
for natural language prompt-based tasks, making them
more suitable choices for this research. Our transformer-
basedmethodology centered around the natural language
prompt: ’Please classify the following sentence into just
one of the mentioned categories: neutral, provocative,
offensive, moderately hateful or hateful.’ This prompt
was a key element in our exploration of different fine-
tuning approaches, namely few-shot and full fine-tuning.

The provided Algorithm 1 defines a function that prepares
data for fine-tuning a language model. It generates prompts
for classification tasks by combining a fixed starting prompt
with text samples from a dataset and an ending prompt. These
prompts are tokenized using a tokenizer, and the resulting
input_ids are stored in dataset_dict[’input_ids’]. Addition-
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Algorithm 1 Preparing prompt for fine-tuning
1: procedure function(dataset_dict)
2: prompt ← "natural language" + "tweet"
3: end_prompt ← dataset_dict[′label ′]
4: input_ids ← tokeni ze: prompt
5: labels ← tokeni ze: end_prompt
6: dataset_dict[′input_ids′] ← input_ids
7: dataset_dict[′labels′] ← labels
8: return dataset_dict
9: end procedure

Table 9 Training arguments for prompt-based fine-tuning

Parameters Language model

Learning rate 1e–8

Num_train_epochs 5

Evaluation_strategy ’epoch’

Weight_decay 0.01

Per_device_train_batch_size 16

Logging_steps 1

Optim ’adamw_torch’

ally, the labels in dataset_dict[’labels’] are tokenized and
stored in dataset_dict[’labels’]. All these conversions have
been conducted using PyTorch tensors. The label variable
consists of one of the class categories in our HS dataset. The
tokenizer utilized in this algorithm is the identical tokenizer
that was employed during the model’s pretraining phase.
The final object dataset_dict is then passed to the learning
algorithm for the training, asmentioned inTable 9,which rep-
resents the configuration and hyperparameter details for the
few-shot and full-instruction fine-tuning training processes.

In the training of the transformer-based model, a set of
carefully chosen hyperparameters was utilized to fine-tune
the learning process. A learning rate of 1e–8 was selected,
maintaining a balance between convergence speed and sta-
bility. The model was subjected to training over 5 epochs,
ensuring adequate exposure to the data while avoiding over-
fitting. The evaluation was conducted at the end of each
epoch, allowing for consistent monitoring of themodel’s per-
formance. To prevent the model’s weights from growing too
large and overfitting, a weight_decay of 0.01 was applied.
The batch_si zewas set to 16 per device to optimizememory
usage and computational efficiency. Logging_steps were
set to 1 to ensure that the training process was transparent
and that the progress could be closely tracked. Finally, the
’adamw_torch’ optimizer was chosen for its ability to auto-
matically adjust the learning rate and for being well suited
for transformer-based models.

Table 10 Results of DL-based models

Model P R Acc F Auc_Roc

LSTM 0.97 0.97 0.97 0.97 0.99

GRU 0.97 0.97 0.97 0.97 0.99

CNN-LSTM 0.96 0.96 0.96 0.96 0.99

BiLSTM-GRU 0.98 0.98 0.98 0.98 0.99

Results and discussion

For the evaluation of the results, standardmetrics of accuracy,
precision, recall, f1-score, and auc_roc were employed to
quantify the model’s classification performance. The dataset
was divided into a training and testing split of 80% and 20%,
respectively

Accuracy = TP + TN
TP + TN + FP + FN

(8)

Precision = TP
TP + FP

(9)

Recall = TP
TP + FN

(10)

F1-Score = 2 · Precision · Recall
Precision + Recall

. (11)

DL-basedmodels

The evaluation scores for DL-basedmodels, employing Fast-
Text embeddings, are displayed in Table 10.

By analyzing 10, we can see that the FAST-RNN model
exhibits a precision and recall of 0.98. Precision is a critical
measure when the consequences of false positives are signif-
icant. A precision of 0.98 means that when the FAST-RNN
model predicts an instance as positive, it is correct 98% of the
time. This high precision indicates that the model is highly
reliable in its positive predictions, making very few mistakes
in this regard. With a recall of 0.98, the FAST-RNN model
can correctly identify 98% of all actual positive instances.
This suggests that it is particularly effective at capturing the
relevant signals from the data without missing many actual
positives. Moreover, the high accuracy score of 0.98 reflects
the overall rate at which the model makes correct predic-
tions for both positive and negative classes. This balanced
performance is mirrored in the weighted F1-score, which is
the harmonic mean of precision and recall, indicating that
the model maintains a strong balance between precision and
recall across all classes. Finally, an AUC-ROC score of 0.99
indicates an excellent ability of the model to discriminate
between the positive and negative classes. A score close to
1.0 means that the model has a high true-positive rate and a
low false-positive rate across different thresholds.
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Table 11 Classificatioin report for FAST-RNN

Category P R F Support

Neutral 0.99 0.98 0.99 6813

Provocative 0.89 0.93 0.91 951

Offensive 0.92 0.99 0.95 301

Moderately hateful 0.98 0.88 0.93 109

Hateful 0.96 0.98 0.97 54

In comparison to the FAST-RNN model, the other DL-
based models like LSTM, GRU, and CNN-LSTM also show
robust performance with all metrics ranging from 0.96 to
0.97. Both LSTM and GRU models match the FAST-RNN’s
precision, recall, and accuracy, indicating their strong predic-
tive capabilities, while the CNN-LSTM lags slightly behind
but still demonstrates high scores of 0.96. Each model shows
remarkable ability in sequence processing tasks, with the
FAST-RNN slightly outperforming the rest, likely due to its
hybrid architecture that leverages the strengths of bothLSTM
and GRU layers. The ROC-AUC score of 0.99 for all mod-
els, including FAST-RNN, LSTM, GRU, and CNN-LSTM,
indicates a high degree of predictive accuracy, reflecting their
strong ability to rank predictions correctly.

Table 11 presents the classification report of the proposed
FAST-RNNmodel which shows the best performance in pre-
dicting each class within the test data. This is particularly
notable in its prediction of hateful instances, which are a
minority in the dataset. Despite this, our model achieved
an impressive 97% F1-score in accurately identifying these
instances. The model shows remarkable precision and recall
in the ’Neutral’ category, with scores of 0.99 and 0.98
respectively, suggesting a decent performance in identify-
ing non-inflammatory content, which is often the bulk of
data and sets the baseline for model performance. In more
nuanced categories, such as ’Provocative’ and ’Offensive,’
the model exhibits precision scores of 0.89 and 0.92, with
recall scores of 0.93 and0.99, indicating its effective differen-
tiation between subtly differing sentiments. The ’Moderately
Hateful’ category, despite having fewer instances, also sees
a high F1-score of 0.93, underlining the model’s capabil-
ity to discern complex emotional nuances in a text. These
results collectively highlight the robustness of the FAST-
RNN model in handling both clear-cut and borderline cases,
ensuring that it performs reliably across a diverse range of
textual sentiments.

Figures 7 and 8 indicate a stable convergence, with the val-
idation metrics closely tracking the training metrics across
epochs. The graphs demonstrate a stable convergence and
indicate that the validation scores are close to the training
scores throughout the training epochs. The close alignment
between training and validation accuracy, alongside a consis-

Fig. 7 Training and validation loss curve—FAST-RNN

Fig. 8 Training and validation accuracy curve—FAST-RNN

tent decrease in loss for both training and validation, suggests
that the model is learning generalizable patterns rather than
overfitting the training data. This balance between learn-
ing and generalization, especially given the limited number
of hateful instances, underscores the model’s performance
and generalizability. Figure 9 illustrates the confusionmatrix
multi-class classification HS detection using FAST-RNN.

Transformer-basedmodels

Table 12 presents the results achieved from the multilingual
transformers as well as the Norwegian transformer-based
models.

ELECTRAbase and ELECTRAlarge show uniform perfor-
mance across four metrics, each with a precision of 0.69,
recall of 0.83, accuracy of 0.83, and a f1-score of 0.75. This
indicates that scaling up the ELECTRA size from base to
large does not impact the performance for these specific
tasks. mBERT, with a precision of 0.78, is noteworthy for
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Fig. 9 Confusion matrix—FAST-RNN

Table 12 Analysis of the results: transformer-based models

model P R Acc F Auc_Roc

mBERT 0.78 0.82 0.82 0.79 0.81

ELECTRAbase 0.69 0.83 0.83 0.75 0.80

ELECTRAlarge 0.69 0.83 0.83 0.75 0.80

scandi-BERT 0.79 0.81 0.81 0.80 0.81

nb-BERTbase 0.79 0.81 0.81 0.80 0.81

nb-BERTlarge 0.81 0.81 0.81 0.81 0.82

Nor-BERTsmall 0.77 0.83 0.82 0.79 0.82

Nor-BERTbase 0.78 0.83 0.83 0.80 0.85

Nor-BERTlarge 0.80 0.82 0.83 0.81 0.85

its relatively high ability to produce relevant results over
the total number of results it provides (precision), while its
recall of 0.82 shows that it is quite competent at identifying
relevant instances from the dataset. Its accuracy is at 0.82
and f1-score at 0.79 which is more than both ELECTRA
variants and similar to Nor-BERTsmall, suggesting a well-
rounded performance. Scandi-BERT and nb-BERTbase, both
with precision at 0.79 and recall at 0.81, demonstrate a similar
capability in correctly classifying instances, and both main-
tain an accuracy of 0.81. The f1-score for thesemodels stands
at 0.80, indicating a robust balance between precision and
recall. A performance improvement is noted when compar-
ing nb-BERTbase to nb-BERTlarge, with the latter achieving a
precision of 0.81, which is the highest precision score among
all the models listed, matching its recall, accuracy, and f1-
score.

Table 13 Analysis of the results with few-shot fine-tuning and gener-
ative configuration

model P R Acc F

FLAN-T5small 0.69 0.80 0.80 0.74

FLAN-T5base 0.78 0.80 0.80 0.79

Nor-T5small 0.77 0.77 0.77 0.77

Nor-BERT variants show a progression in performance
with size increment. Nor-BERTsmall, with a precision of 0.77
and recall of 0.83, provides a good improvement with 0.82
accuracy and f1-score of 0.79. The Nor-BERTbase model
shows a slight improvement in precision to 0.78 while main-
taining a similar recall. The highest f1-scores are observed
with Nor-BERTlarge and nb-BERTlarge. These models excel
at not only identifying relevant instances but also at minimiz-
ing the number of irrelevant instances that are incorrectly
identified as relevant. The performance enhancement from
base to larger models is predominantly a result of the dif-
ferences in their sizes (number of parameters). Generally,
models with a high number of parameters can demonstrate
better performance over those with a smaller parameter
count. The analysis of results in transformer-based models
suggests that the performance of transformersmight not be as
impressive relative to RNNmodels for specialized tasks such
as multi-class HS detection. This could be due to the trans-
formers’ design,which is optimized to identify broadpatterns
in large datasets rather than the more nuanced patterns that
specialized tasks might require. The AUC-ROC scores tell
how well each model differentiates between the positive and
negative classes: Nor-BERT_large, with an AUC-ROC of
0.85, is most effective, suggesting it has a greater likelihood
of correctly identifying true positives and true negatives.
mBERT’s score of 0.81 and ELECTRA_base’s score of 0.80,
while lower, still represent a strong predictive ability, with
only a marginal difference in classification confidence when
compared to Nor-BERT_large.

Table 13 highlights the evaluation scores of models sub-
jected to few-shot fine-tuningwith a generative configuration
mentioned in Table 8. Here, FLAN-T5small and FLAN-
T5base demonstrate similar performance in terms of recall
and accuracy, while the base model exhibits slightly better
performance with precision and f1-scores of 0.78 and 0.79,
respectively, which is a noticeable increase from the small
variant, meaning it is more precise in its predictions. Nor-
T5small maintains comparable recall, precision, accuracy, and
f1-scores of 0.77, indicating a balanced performance to pre-
dict positive instances correctly and to identify the most
positive instances.

Transitioning to full fine-tuning in Table 14, all models
exhibit enhanced f1-scores, indicative of improved predic-
tive relevance and balanced precision-recall, as compared to
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Table 14 Analysis of the results with full fine-tuning and generative
configuration

model P R Acc F

FLAN-T5small 0.76 0.80 0.80 0.77

FLAN-T5base 0.82 0.82 0.83 0.80

Nor-T5small 0.77 0.78 0.77 0.78

the performance of these models in Table 13. FLAN-T5base
records the highest precision increase to 0.82, an accuracy
score of 0.83, and an f1-score of 0.80, indicating a bal-
ance between precision and recall and also suggesting that
full fine-tuning significantly refines the model’s predictive
accuracy and overall performance. FLAN-T5small also shows
marginal gains in precision and f1-score, underscoring the
benefits of a more extensive fine-tuning process. In the case
of Nor-T5small, it exhibits a slight improvement as compared
to few-shot fine-tuning.

Comparing the results of both these tables, it is evident
that full fine-tuning combinedwith generative configurations
yields improved model performance. Additionally, models
that have a greater number of parameters tend to surpass the
performance of those with fewer parameters.

Comparison of the results with the state-of-
the-art

In this section, we compare our results with the baseline
method [3]. The baseline study employed an unsupervised
FastText model, which generally is less suited for categorical
classification tasks. In comparison, our supervised FAST-
RNN model when implemented with optimal regularization
and hyperparameter tuning outperformed the baseline in
terms of both accuracy and macro F1-score. The FAST-RNN
model achieves a Macro F1-Score of 0.97 for the ’Hate-
ful’ category, far surpassing the baseline models’ scores of
0.08 for BiLSTM and 0.06 for CNN-LSTM. Similarly, in the
’Offensive’ category, our model attained a score of 0.95, sig-
nificantly higher than the baseline scores of 0.27 and 0.35,
respectively. Even in the ’Provocative’ category, which often
contains more subtle and nuanced language, our FAST-RNN
model reached a score of 0.91, outperforming the baseline’s
0.61 and 0.59. The employment of explainable AI through
LIME has provided additional validation by elucidating the
model’s decision-making process, thereby granting further
credibility to our findings, particularly in the challenging area
of HS detection in low-resource language scenarios. Table 15
presents a comparison of the macro F1-scores between the
baseline and our proposed model FAST-RNN, specifically
focusing on non-neutral categories provocative, offensive,
moderately hateful, and hateful.

Interpretability modeling with LIME

Local Interpretable Model-Agnostic Explanations (LIME)
is a technique designed for local understanding and eval-
uating the predictions made by any learning algorithm. It
provides insights into how a model’s predictions align with
the specific requirements of the given task. This method is
particularly valuable in contexts where understanding the
decision-making process of a model is as important as the
accuracy of its predictions [8]. The equation for LIME aims
to find an interpretable model The equation for LIME aims
to find an interpretable model ĝ from a class of models G
that minimizes the loss L between the predictions of g and
the complex model f , considering the locality kernel πx ,
and�(g) is the complexity of the interpretable model g with
lower complexity preferred for better interpretability, while
also maintaining simplicity

ĝ = argmin
g∈G L( f , g, πx ) + �(g). (12)

In this study, we examine the rationale behind the predic-
tions made by our proposed FAST-RNN model by utilizing
LIME. The utterances deemed most hateful were divided
into two groups: moderately hateful and hateful. This clas-
sification was based on whether the statements provoked
actions of violence or discrimination. The categorization into
moderately hateful and hateful was influenced by definitions
established in studies by Sanguinetti et al. [63] and Sharma et
al. [66]. According to these definitions, utterances explicitly
encouraging violence or discriminatory actions were clas-
sified as severely hateful. The degree of severity remained
unchanged whether the authors merely justified such actions,
expressed a desire for their occurrence, or showed a willing-
ness to partake in them. Consequently, any utterances that in
any manner incited such actions were included in this most
severe category. Following are the definitions of all categories
in our dataset.

1. Hateful:Hateful utterances are utterances that are partly
or wholly motivated by hate or negative attitudes towards
groups or individuals based on ethnicity, religion, sex-
uality, gender, age, political views, social status, or
disabilities and which encourage violent actions based
on this.

2. Moderately Hateful:Moderately hateful utterances are
utterances that are partly or fully motivated by hate or
negative attitudes towards groups or individuals based on
ethnicity, religion, sexuality, gender, age, political views,
social status, or disabilities. The utterances do not call to
action but still violate the integrity and disparage a group
or individual’s dignity.
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Table 15 Comparative macro
F1-scores of baseline with
proposed FAST-RNN and
transformers

Baseline Models
Model Provocative Offensive Moderately Hateful Hateful

BiLSTM 0.61 0.27 0.11 0.08

CNN-LSTM 0.59 0.35 0.05 0.06

Proposed FAST-RNN Model
Model Provocative Offensive Moderately Hateful Hateful

FAST-RNN 0.91 0.95 0.93 0.97

3. Offensive: An utterance is defined as offensive if it con-
tains hurtful, derogatory, or obscene comments, either
directed towards an individual or a group.

4. Provocative: A provocative utterance contains aggres-
sive language to express an opinion or can be perceived
as inappropriate. This includes the use of profane words,
patronizing language, or the use of irony and sarcasm to
lower the credibility of an opponent.

5. Neutral: An utterance which contains neutral language
and is a factual contribution to the debate.

For a clearer understanding, we have implemented LIME
on two examples from each class, as detailed in Table 16. In
the provided LIME visualization in Fig. 10, the model’s deci-
sion to categorize the text as ’hateful’ is strongly influenced
by specific terms that resonate with the defined character-
istics of HS. Words like "bomber" (bomber) and "kutter"
(cut) are particularly weighted, suggesting a violent disposi-
tion towards the mentioned group, in this case, individuals of
Pakistani ethnicity. The term "sendt," translating to "send,"
further contributes to this categorization as it implies an
actionable directive, which is a crucial aspect of the classifi-
cation criteria for HS within the dataset. This term indicates
not just a negative sentiment but an incitement to take nega-
tive action based on ethnicity, aligning with our definition of
hate speech. Themodel’s identification of these terms reflects
its capability to recognize and classify language that pro-
motes hate-motivated actions against specific groups, thus
validating the effectiveness of the algorithm in detecting hate
speech as defined by our criteria.

Similarly, in Fig. 11, the LIME analysis elucidates the
model’s inference process, which strongly suggests the text
as hateful with an 87% probability. Central to this classifica-
tion is the verb "sende", which implies an action, and in the
given context, an action against the "somaliere" (Somalis)
community. The sequence of highlighted words constructs
a narrative supporting the removal of this group from the
country, which is a clear indication of HS according to the
definition. The model’s high weighting on these specific
terms indicates its capability to parse and understand the
intent behind the words, recognizing the call to action that
constitutes HS within our dataset parameters. The model’s
interpretation aligns with the dataset’s criteria, demonstrat-

ing its nuanced ability to detect incitements to discriminatory
actions based on ethnicity.

In Fig. 12, the LIME visualization isolates significant
terms that collectively contribute to the text being classi-
fied as "moderately hateful." Terms like "klankultur" (clan
culture), "avskyelig" (disgusting), and "press" (pressure) are
weighted heavily, indicating a perception of societal bur-
den. In this case, the language implies a negative opinion
about the influence of Pakistani individuals on public ser-
vices and society. Though the statement does not directly
encourage harmful actions, it crosses the line of respectful
conversation by disrespecting a particular ethnic group. This
portrayal of an entire community as a stressor on educational
and health services,marked by terms that imply revulsion and
financial burden, aligns with the class category "4" classifi-
cation definition in the dataset. This nuanced detection by the
model highlights its ability to discern between outright calls
to action characteristic of more severe HS and the insidious
nature of moderately hateful language that erodes respect for
communal harmony and individual dignity.

Similarly, in 13, the highlighted word "Islamisert" and
"kolonisert" dominate the narrative of the model’s inter-
pretation with high probability scores, implying societal
transformation or takeover, which is interpreted as negative.
The text projects a future scenario where the influence of
the Muslim community is portrayed in terms of colonization
and Islamization, terms that carry a heavy historical and neg-
ative connotation. Despite the absence of a call to action, the
language used disparages the community’s dignity and inte-
grates notions of cultural subversion, which are characteristic
of ’moderately hateful’ content as defined in the dataset.

For the first visualization 14, the model strongly identifies
the term top term "feita" (ugly/fat) with the highest weight
as offensive which is directed at individuals like ’bergens’
and ’solberg’. This word, particularly when used to describe
a person, carries a negative connotation that is both hurtful
and derogatory. The term "slengt" (thrown) can also imply a
dismissive or contemptuous attitude, further supporting the
offensive classification.

For the second visualization 15, themodel has highlighted
explicit terms such as "pikk" (dick/cock), "elsker" (loves),
"ri" (tear/rip), and the phrase "stor pikk" (big dick/cock),
which are sexually explicit and considered obscene. The
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Fig. 10 Example 1: hateful
instance visualization with
LIME

Fig. 11 Example 2: hateful
instance visualization with
LIME

Fig. 12 Example 1: moderately
hateful instance visualization
with LIME

use of these terms in the context provided is inappropriate,
derogatory, and clearly intended to be offensive, especially
when directed at an individual or group. This kind of lan-
guage falls under the offensive category, because it is hurtful
and violates social norms of decency.

In Fig. 16, the LIME visualization highlights the use of
the terms "sannheter" (truths), "nyanser" (nuances), "ufeil-
barlige" (infallible), and "fremstillinger" (representations),
which together create a narrative that can be perceived as
dismissive and patronizing. These terms, particularly in the
context provided, suggest an ironic or sarcastic critique of
media or societal understanding, which may be provocative
to thosewho hold opposing views. The use of these terms in a

way that challenges the subject’s credibility or oversimplifies
complex issues fits the definition of provocative content in
the dataset. The model’s detection of these nuanced uses of
languagehighlights its sensitivity to the subtleties of provoca-
tive speech, which is not overtly aggressive but can still incite
strong reactions from an opponent’s standpoint.

In Fig. 17, the highlighted word "orgier" (orgies), with
its significant weight, stands out as a term that tradition-
ally relates to excessive, unrestrained, or scandalous sexual
activity. When mentioned in conjunction with "Florida", a
place known for its vibrant nightlife and cultural diversity, it
might suggest a provocative statement about certain behav-
iors or events in that location. The model’s 100% confidence

Fig. 13 Example 2: moderately
hateful instance visualization
with LIME
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Fig. 14 Example 1: offensive
instance visualization with
LIME

Fig. 15 Example 2: offensice
instance visualization with
LIME

in classifying this utterance as "provocative" indicates that
the language used here is likely meant to shock or provoke a
response from the audience. It fits the definition of provoca-
tive content that includes aggressive language or statements
that can be perceived as inappropriate, such as the use of pro-
fane words or the depiction of scandalous behavior. While
the statement does not contain outright offensive or hateful
language, the implication of the terms used is sufficient to
provoke or challenge societal norms, thereby justifying its
classification within the dataset.

Figures 18 and 19 highlight the examples of the neu-
tral class from our dataset. In Fig. 18, none of the words
are assigned any significant probability distribution, and
Example 1 from Table 16 also conveys a neutral sentiment.
Consequently, our learning algorithm has accurately pre-
dicted this as neutral, confirming the absence of hate-related
content.

Figure19 presents a more complex set of terms where
"forbanna" (angry) could typically connote a negative sen-
timent. However, in the broader context of the discussion
about cultural values, this expression of emotion does not
translate into offensive or aggressive speech. The model’s
interpretation of these terms, while acknowledging the pres-
ence of strong emotion, appropriately recognizes the absence
of targeted negativity or incitement, thus validating the neu-
tral categorization.

After analyzing figure 20, the LIME visualization indi-
cates an incorrect neutral classification by the model. The
actual sentiment of the text implies a hateful intent, espe-
cially with the use of "send" in a context suggesting exile
or banishment. This wrong prediction made by the learning

algorithm shows the need to improve its ability to recog-
nize context elements. For the second misclassified example
21, the model again incorrectly classifies the text as neutral,
with a 100% probability. The text includes a term that refers
to conflict with "Islam," and when combined with "ytrings-
friheten" (freedom of speech) being the "det frste ofrest" (the
first victim), it implies a negative sentiment towards the reli-
gion that could be perceived as ’moderately hateful.’ This
suggests animosity without an explicit call to action, which
should have been flagged as such, rather than neutral. This
misclassification highlights a potential area for improvement
in the algorithm’s ability to detect and accurately categorize
subtle forms of HS.

Conclusion and future work

This research advances the field of multi-class HS detec-
tion by introducing an effective model for the Norwegian
language, employing a BiLSTM-GRU architecture, known
as FAST-RNN. Through rigorous regularization and hyper-
parameter tuning, the FAST-RNN model has demonstrated
superior performance over the baseline across all evaluation
metrics. The application of supervised FastText embedding
has proven especially beneficial for categorical classification
tasks. Additionally, this work has explored the capabilities of
language-specific and multilingual transformer-based mod-
els enhancedbygenerative configuration andhyperparameter
tuning. Moreover, prompt-based fine-tuning, including both
few-shot and full fine-tuning, revealed that the latter substan-
tially improved model outcomes due to the ability to provide
more examples and the selection of an optimal generative
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Fig. 16 Example 1: provocative
instance visualization with
LIME

Fig. 17 Example 2: provocative
instance visualization with
LIME

Fig. 18 Example 1: neutral
instance visualization with
LIME

Fig. 19 Example 2: neutral
instance visualization with
LIME

Fig. 20 Example 1: wrong
prediction visualization with
LIME
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Fig. 21 Example 2: wrong
prediction visualization with
LIME

Table 16 Multi-class Norwegian HS examples for LIME

Category Original Text English Translation

Neutral frykter at finnmark blir uten meieri fear that finnmark will be left without a dairy

Neutral blir forbanna over at listhaug sier at spagetti er en norsk verdi
eller noe sånt

getting pissed off that listhaug says that spaghetti is a
norwegian value or something like that

Provocative oi så flink du er til å forenkle fremstillinger er det derfor
du ellers ser samfunnet svart/hvitt media skriver om noe løgn
gjevjongteigan etc skriver noe ufeilbarlige sannheter mester i
nyanser og dyptenkning er du vel ikke

oh you are so good at simplifying representations that
is why you otherwise see society black/white the media
writes about something a lie gjevjongteigan etc writes
something infallible truths you are probably not a master
of nuances and deep thinking

Provocative jeg visste ikke at user likte orgier og holdt til i florida i did not know user liked orgies and lived in florida

Offensive ja for bergens feita hoyre sosialisten solberg gjorde ikke noe for
å få ham slengt ut er hun mascokist han erklarte jo på nrk at han
skulle drepe henne noe galt er det med feita

yes, because bergens fat rightwing socialist solberg did
not do anything to get him thrown out she is a masochist
he explained on the phone that he was going to kill her is
there something wrong with fat

Offensive søt tenåring elsker å ri på en sto cute teen loves to ride a big dick

Moderately Hateful Ja de flytter hit og vi får verre liv klankultur misogyni høye
økte offentlige utgifter press på skole og helsevesen gjengprob-
lematikk resrelatert vold og aller verst en retardert avskyelig
religion bruker vi din logikk bør vel alle pakistanere få komme
inn og bli

yes they move here and we get a worse life clan culture
misogyny high increased public expenditure pressure on
schools and health care gang problems race related vio-
lence and worst of all a retarded disgusting religion if we
use your logic i guess all pakistanis should be allowed to
come in and stay

Moderately Hateful innen 2050 er vi nok bde islamisert og kolonisert by 2050wewill probably be both Islamized and colonized

Hateful når du trenes opp i bomber kutter strupen på barn og kvinner da
er du et hjernevasket sharia dyr og du er etnisk pakistansk bør
du bli sendt til pakisan med ett lite bidrag de klarer av slikt send
hennes influensere dit også

when you are trained in bombs cut the throats of children
and women then you are a brainwashed sharia animal and
you are ethnically pakistani you should be sent to pakisan
with a small contribution they can manage from this send
her influencers there too

Hateful sende somaliere ut av dette landet send somalis out of this country

configuration. The implementation of LIME for explainable
AI has further strengthened our approach, providing clarity
and understanding of the model’s decision-making process.
Transformer-based models did not exhibit the expected level
of performance enhancement. This can be attributed to their
reliance on large and complex datasets, which are often
not available for less-resourced languages like Norwegian.
Additionally, we observed that generally models with fewer
parameters did not yield optimal results. In the future, we
are determined to leverage advanced multilingual transform-
ers such as mT5 and GPT models having a high number of
parameters to cover more contextual information for multi-
label and multi-class classification tasks in multilingual
HS-related contexts, particularly for low-resource languages.

Our approach will be to strategically navigate issues such as
data sparsity and model adaptability to different languages,
with a commitment to enhancing the performance of HS
detection systems for various other low-resourced languages.
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50. Papcunová J, Martončik M, Fedáková D et al (2023) Hate speech
operationalization: a preliminary examination of hate speech indi-
cators and their structure. Complex Intell Syst 9(3):2827–2842

51. Parker S, Ruths D (2023) Is hate speech detection the solution the
world wants? Proc Natl Acad Sci 120(10):e2209384120

52. Peng H (2020) A comprehensive overview and survey of recent
advances in meta-learning. arXiv preprint arXiv:2004.11149

53. Pereira-Kohatsu JC, Quijano-Sánchez L, Liberatore F et al
(2019) Detecting and monitoring hate speech in twitter. Sensors
19(21):4654

54. Platt M, Platt D (2023) Effectiveness of generative artificial
intelligence for scientific content analysis. In: 17th International
Conference on Application of Information and Communication
Technologies, IEEE

55. Ptaszynski M, Pieciukiewicz A, Dybała P (2019) Results of the
poleval 2019 shared task 6: First dataset and open shared task for
automatic cyberbullying detection in polish twitter

56. Qiao C, Huang B, Niu G, et al (2018) A new method of region
embedding for text classification. In: ICLR (Poster)

57. Raffel C, Shazeer N, Roberts A et al (2020) Exploring the limits
of transfer learning with a unified text-to-text transformer. J Mach
Learn Res 21(1):5485–5551

58. Risch J (2023) Toxicity. 86272(12):219–230

59. RizwanH,ShakeelMH,KarimA(2020)Hate-speech andoffensive
language detection in roman urdu. In: Proceedings of the 2020
conference on empirical methods in natural language processing
(EMNLP), pp 2512–2522

60. Sabiri B, El Asri B, Rhanoui M (2022) Mechanism of overfitting
avoidance techniques for training deep neural networks. In: ICEIS
(1), pp 418–427

61. Saleh H, Alhothali A, Moria K (2023) Detection of hate speech
using bert and hate speech word embedding with deepmodel. Appl
Artif Intell 37(1):2166719

62. Samuel D, Kutuzov A, Touileb S, et al (2023) Norbench–
a benchmark for norwegian language models. arXiv preprint
arXiv:2305.03880

63. Sanguinetti M, Poletto F, Bosco C, et al (2018) An italian twit-
ter corpus of hate speech against immigrants. In: Proceedings of
the eleventh international conference on language resources and
evaluation (LREC 2018)

64. Satpute RS, Agrawal A (2023) A critical study of pragmatic ambi-
guity detection in natural language requirements. Int J Intell Syst
Appl Eng 11(3s):249–259

65. Schmidt A, Wiegand M (2017) A survey on hate speech detec-
tion using natural language processing. In: Proceedings of the fifth
international workshop on natural language processing for social
media, pp 1–10

66. Sharma S, Agrawal S, Shrivastava M (2018) Degree based clas-
sification of harmful speech using twitter data. arXiv preprint
arXiv:1806.04197

67. Trajano D, Bordini RH, Vieira R (2023) Olid-br: offensive lan-
guage identification dataset for brazilian portuguese. Lang Resour
Evaluat:1–27

68. Umer M, Imtiaz Z, Ahmad M et al (2023) Impact of convolutional
neural network and fasttext embedding on text classification. Mul-
timed Tools Appl 82(4):5569–5585

69. del Valle-Cano G, Quijano-Sánchez L, Liberatore F et al (2023)
Socialhaterbert: a dichotomous approach for automatically detect-
ing hate speech on twitter through textual analysis and user profiles.
Expert Syste Appl 216:119446

70. Vaswani A, Shazeer N, Parmar N, et al (2023) Attention is all you
need. arXiv:1706.03762

71. Vismara M, Girone N, Conti D et al (2022) The current status of
cyberbullying research: a short review of the literature. Curr Opin
Behav Sci 46:101152
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