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Abstract. Forecasting ambulance demand is critical for emergency med-
ical services to allocate their resources as efficiently as possible. This work
uses data from Norway’s Oslo University Hospital (OUH) to forecast
hourly ambulance demand in Oslo and Akershus. To forecast demand,
we developed a neuro-symbolic method, DeANN. DeANN integrates sta-
tistical decomposition and artificial neural network methods. Statistical
decomposition computes trend, seasonal, and residual components from
the ambulance demand time series. Using these components, we apply a
multilayer perceptron and regression to compute an overall ambulance
demand forecast. Based on experimental results, we conclude that our
proposed neuro-symbolic approach for ambulance demand forecasting
outperforms several baseline models. Our best neuro-symbolic model has
a mean squared error of 21.68 and improves on previous results for the
OUH data set.

Keywords: Ambulance demand forecasting · Machine learning · Artifi-
cial neural networks · Statistical decomposition.

1 Introduction

Context. Emergency medical services (EMSs) respond to emergency calls and
provide pre-hospital care and transport. After a medical incident occurs, an EMS
operator is typically notified. The operator assesses the situation and available
resources while also providing instructions to the caller before deciding which
resource, typically an ambulance, to dispatch. When located by the ambulance,
the patient will receive medical care at the scene. If necessary, the ambulance
then transports the patient to a medical facility while care is provided.
Challenges. A fleet of ambulances is generally on duty to minimize EMS re-
sponse times. Discussing fleet management, Soeffker et al. identify three high-
level goals: transportation of goods, transportation of people, and delivery of
services [13]. Emergency vehicles including ambulances generally seek to achieve
two of these three goals, namely transportation of people and delivery of ser-
vices. To achieve these goals, forecasting medical incidents is considered a key
component of a comprehensive EMS system [9]. Due to medical incidents being
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Fig. 1: A medical incident time series for a week in June 2018 is shown in the
leftmost panel. The three remaining panels illustrate the STL decomposition.
The mid-left panel shows the seasonal component. The mid-right panel is the
full trend for our data, with blue and red vertical lines to mark the week of the
other panels. The rightmost panel is the resulting residual.

uncertain, dynamic, and time-critical [12,5,10], forecasting and managing such
incidents is among the most difficult fleet management problems. These difficul-
ties are partly reflected in Figure 1’s leftmost panel, which shows the demand
for ambulance services (y-axis) for an arbitrary week in June 2018 (day of the
week on the x-axis) for Oslo, Norway.

Many authors have compared, for time series forecasting, the performance
of statistical and machine learning (ML) methods [8,7]. These methods have
varying strengths and weaknesses when it comes to time series forecasting. Sta-
tistical decomposition methods (see [2,15,1,16]), such as the seasonal-trend de-
composition procedure based on loess (STL) [2], can capture components in a
time series. Often, these components are interpretable to humans, see Figure 1.
However, the components may only capture coarse temporal patterns in data,
and thus forecasting accuracy may suffer. In contrast, ML methods such as ar-
tificial neural networks (ANNs) may perform well in terms of accuracy metrics
like mean squared error (MSE) or mean absolute error (MAE). However, inter-
pretability may suffer, since ANNs typically are high-dimensional models with
complex topologies and thousands if not millions of numeric parameters.
Contributions. In this paper,1 by combining statistical decomposition and
ANNs for the purpose of time series forecasting, we hope to take the best of both
types of methods while overcoming or at least reducing their weaknesses. Instead
of asking the question “which, among a set of statistical and ML methods, is
best?” we consider the question “how can we best combine such methods?”. Our
answer is DeANN, a multi-scale decomposition method hybridized with ANNs.
For our ambulance demand data set this neuro-symbolic method gives better
accuracy than benchmark methods while also providing an interpretable time
series decomposition. Figure 1 shows an example of STL decomposition.

2 Background and Related Work

Data Set. The OUH emergency medical care department and the Norwegian
National Advisory Unit for Prehospital Emergency Medicine (NAKOS) provided

1 This paper builds upon the MS thesis of Van De Weijer and Owren [14].
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our data set. The data set contains an anonymized set of incidents from the 1st of
January, 2015, to the 11th of February, 2019. Anonymization is achieved by map-
ping each incident to a 1x1km grid cell, acquired from Statistics Norway (SSB),
and assigning the identifier (ID) of the cell to the incident. The anonymization
allows us to maintain a high resolution of the data while still preserving the
anonymity of those involved in the incidents.

The initial processing of the data set consists of three steps: removal of du-
plicate rows, filtering events outside the years 2015-2019, and removal of events
outside the borders of Oslo and Akershus.2 There is a stable increase in incidents
each year, except for 2019 where the data set ends in February. Most incidents
are acute or urgent, making up 80.9% of total incidents in the data set. Similar
to earlier work [5] we use a filtered data set with events until the end of the year
2018 in experiments. This data set is split into training, validation, and test sets.
We use the first 80% of the data for training, the following 10% for validation,
and the final 10% for testing.3

Time Series Decomposition and Forecasting. A nonstationary time series
may be decomposed into a seasonal component, trend component, and residual.
Seasonal-trend decomposition using local regression (STL) has been combined
with deep learning to forecast tourism demand [16]. Basak et al.’s HyperSTL
method [1] uses STL decomposition to preserve extrema in time series smoothing
in soil moisture analysis. The result is a smooth trend component replicating the
time series while also providing forecasts without applying ANNs.

Another decomposition method is singular spectrum analysis (SSA) [15]. SSA
is a non-parametric spectral estimation method that can be used to decompose
a time series into a sum of components. Unlike STL, SSA does not require
the period length to be predetermined. SSA has successfully been applied for
decomposition of rainfall times series [15].
Ambulance Demand Forecasting. Our focus is emergency call volume pre-
diction, or demand forecasting, for a certain geographical area. For such an area,
the MEDIC method used in industry [12] predicts demand for a given hour of
the day h, day of the week d, week w, and year y:

ŷh,d,w,y =

∑4
i=0

∑4
j=1 yh,d,w−j,y−i

20
. (1)

Intuitively, MEDIC’s predicted value ŷh,d,w,y for a given time on a given weekday
is based on the value at the same time of day on the same weekday for the four
previous weeks for the past five years.

Setzler et al. [12] design an ANN to forecast ambulance demand in Mecklen-
burg County, North Carolina, USA, for several combinations of 1-3 hour time
buckets and 2-4 square mile grids. Their results are compared to the MEDIC
method and the proposed model scored slightly better on a 4×4-mile grid. Zhou
et al. [17] propose spatio-temporal kernel density estimation (stKDE) to address

2 The data cannot be made publicly available due to privacy concerns. After prepro-
cessing the data set we get approximately 560 000 medical incidents [14].

3 Details about the spilt are discussed on pages 36–37 in the Master’s thesis [14].
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the challenges of ambulance demand forecasting. The authors model Toronto’s
ambulance demand over a continuous spatial domain and a temporal domain of
one-hour intervals. The resulting model scored highly on forecast accuracy while
requiring low computational power.

Different ML methods for predicting hourly ambulance demand in the Oslo
and Akershus region have been studied [5]. Models for forecasting hourly total
demand (volume models) and hourly demand per 1 × 1 km grid cell (com-
plete models) have both been considered. These forecasting models include both
multi-layer perceptron (MLP) and long short-term memory (LSTM) using dif-
ferent combinations of hidden layers and nodes in each layer. Volume models
include both MLP and LSTM as well as the average demand distribution for
the entire test data. The best-performing model, surpassing the performance of
both MEDIC and Setzler’s model [12], is an MLP using hour, day of the week,
and month as input features [5].

3 Forecasting Medical Incidents: The DeANN Method

We propose DeANN, a neuro-symbolic forecasting method, adapting concepts
from the work of Zhang et al. [16] to a new domain. DeANN performs a multi-
scale time decomposition and hybridizes with ANNs, specifically MLPs. The
MLP approach is inspired by Huang et al. [6], using a genetic algorithm (GA)
for weight initialization.

3.1 Preprocessing and Data Analysis

We aggregate OUH medical incident data for the Oslo area into a single time
series of total hourly demand as part of our preprocessing. Exploratory data
analysis indicated seasonality and trend in the data; this led us to apply the
STL and SSA methods to our data to decompose the time series to extract
temporal patterns

3.2 Symbolic Decomposition Methods

Our goal with decomposition is to extract interpretable information from the
time series before MLP training. We study the STL and SSA decomposition
methods. When comparing these methods and their hyperparameter settings, we
use the same error metrics as we use for comparing models as the decomposition
with the lowest error will also extract the most information from our time series.

STL Decomposition and ANNs. STL extracts seasonality and trend from
our time series so that we can train our MLP on the residual. We use an additive
version of STL, such that the sum of each component returned from the decom-
position results in the original time series. When using STL for decomposition of
a time series y, via STL(y, p, θ), a predefined period p must be set. In Figure 2b
we use STL(y, p, θ) to compute an STL decomposition with period p (measured
in days) of a univariate time series y = (y1, . . . , yt, . . .), where yt represents the
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a DeANN Neuro-Symbolic Method

Input: Time series y, input features x, horizon h
Parameter: STL parameters θs, θt, ANN initial-
ization parameters θANN

Output: Forecast ŷt+h

1: Let (ss, tt, y
′′) = TwiceSTL(y, θs, θt)

2: Let ŝt+h = Extend(ss)
3: Let t̂t+h = Regression(tt)
4: Let N = CreateANN(θANN)
5: N .train(x, y′′)
6: Let ŷ′′

t+h = N .predict(xt+h)
7: Let ŷt+h = ŷ′′

t+h + ŝt+h + t̂t+h

8: return ŷt+h

b TwiceSTL
Input: Time series y
Parameter: STL parameters θs,
θt

Output: Seasonality ss, trend tt,
residual y′′

1: Let (ss, ts, rs) = STL(y, ps,
θs), where ps ∈ θs

2: Let y′ = ts + rs.
3: Let (st, tt, rt) = STL(y′, pt,

θt), where pt ∈ θt

4: Let y′′ = st + rt

5: return (ss, tt, y
′′)

Fig. 2: Pseudo-code for the STL-based (right, in 2b) version of our DeANN neuro-
symbolic method (left, in 2a).

number of incidents at time t.4 Resulting from the STL decomposition with pe-
riod p and parameters θ are s = (s1, . . .), t = (t1, . . .), and r = (r1, . . .), which
respectively are seasonality, trend, and residual time series.

We tested decompositions at different periods, such as daily, weekly, and
yearly. Initially, we used the trend from a single weekly STL decomposition.
However, we later found that doing a 2-step STL decomposition where we attain
the seasonality of period ps days in the first step and trend of period pt days in the
second step gave the most reasonable trend and residual for further forecasting.
This resulted in the STL calls in lines 1 and 3 in Figure 2b for TwiceSTL.

Our overall neuro-symbolic DeANN method is shown in Figure 2. To make
a forecast from a decomposed time series for a time horizon h, DeANN (Figure
2a) approximates the trend component tt by polynomial regression to create a
forecast value t̂t+h. An ANN trained on the residual component y′′ computes
ŷ′′t+h. The final forecast value ŷt+h is the sum of the forecast values t̂t+h and
ŷ′′t+h as well as the extracted seasonal component ŝt+h. To avoid overfitting, we
prefer a lower degree of polynomial regression. (Alternatively, we could keep the
trend component and use the ANN to learn this feature from data.)

SSA Decomposition and ANNs. SSA is another statistical method for
decomposition [15]. Unlike STL, SSA does not require a predetermined period
before decomposition. No assumptions about the length of the optimal period
are needed. Thus, our DeANN method for using SSA is slightly different than
our STL-based DeANN method presented in Figure 2.

Due to limited space we only present the main points of our SSA-based
method here. A key parameter in SSA is the grouping used for reconstruction.

4 To simplify the pseudo-code, we say p ∈ θ to indicate that p is among STL’s input
parameters θ, despite these not being a set but a tuple.
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The grouping decides which components from the deconstructed time series to
be used for reconstruction. We study two grouping methods using either a peri-
odgram or a W-correlation matrix. When grouping using periodgram, one looks
at the contribution provided by each component and includes components where
the contribution to the reconstruction is greater than a specified threshold. The
other option uses hierarchical clustering according to SSA algorithm 2.15 (see
[4]). The W-correlation matrix is used as proximity matrix. Either way, the re-
sulting decomposition consists of two reconstructed series, one containing the
decomposed trend and seasonality, and one for the residual.

To summarize, SSA decomposes our time series y into g and r such that
y = g + r. Here, g is the grouping of components found in SSA-decomposition
(representing seasonalities and trends) while r is the residue (a noise term).
The residue r is what is “left over” after SSA decomposition. SSA forecasting
methods [3] compute forecasts ĝt+h given a time horizon h. We train an MLP
on the residual component r to create predictions r̂t+h. We get our final forecast
ŷt+h by summing these components, such that ŷt+h = ĝt+h + r̂t+h.

3.3 Neural ML Methods

Our design of the ANN N , see lines 4, 5, and 6 in Figure 2a, is inspired by
an existing MLP architecture with state-of-the-art performance on this data [5].
However, we use linear activation functions instead of ReLU (see [5]) in models
that forecast using decomposed data, to have the ability to output negative
values without additional weights on the output layer. Usually, this is not an
issue in demand forecasting. However, after seasonality and trend are extracted
by Figure 2b, the residual will have a mean close to 0, with a deviation allowing
for negative values. This change is only done to the final layer of our model to
keep the architecture as close as possible to the original. Our method differs from
previous work [5], as we incorporate a symbolic decomposition step TwiceSTL
(Figure 2b). We are adjusting the activation functions of our model accordingly.

Feature Selection with MLP We now consider the features input to the
algorithm in Figure 2a, which impact N ’s architecture and performance (see
lines 4, 5, and 6 in Figure 2a). Our data analysis shows that ambulance demand
increased annually, from 118 384 incidents in 2015 to 146 416 incidents in 2018
[14].5 Thus, including the year among the input features x to our ANNs may
improve the previous model [5]. As the trend is almost linear, we experiment
with including the year both as a one-hot encoded vector YO and as a numeric
value YN with 0 ≤ YN ≤ 1, see Table 1. The year comes in addition to one-hot-
encoded features already included: hour of the day (H), day of the week (D),
and month (M).

5 One reason for this increase is Oslo’s increasing population during the time period
studied. A hypothetical decrease in demand should be picked up by STL’s trend
component if the decrease is significant enough.
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Table 1: Alternative represen-
tations for year Y as an ANN
feature: one-hot encoded vec-
tor YO or numeric value YN .

Year YO YN

2015 [1,0,0,0,0] 0
2016 [0,1,0,0,0] 0.25
2017 [0,0,1,0,0] 0.5
2018 [0,0,0,1,0] 0.75
2019 [0,0,0,0,1] 1

Since 2015 is the first year present in our pre-
processed data set, to get YN we first subtract
2015 from the year, thus the year is a value be-
tween 0 and 4. We then divide by 4, such that the
final representation is a number 0 ≤ YN ≤ 1.6

Our experiment compares three different in-
put features in an MLP model with the same ar-
chitecture but different input layers. The differ-
ent features sets x are thus HDM, HDMYO, and
HDMYN .7 The HDMYO and HDMYN feature
sets are new for the OUH data set, representing
an attempt at improving prediction. We use a
5-fold cross-validation with the training data as
input and score the models based on the average loss for the fully trained model
for each fold. We use early stopping with our validation set and patience of 5 to
avoid overfitting during training.

Weight Initialization using Genetic Algorithms For N , we are inspired
by Huang et al.’s Poisson neural network (PNN) architecture and implement
an ANN with a single hidden layer and gradient descent (GD) as the opti-
mizing function [6]. We create the initial weights for the ANN by using a
GA. ANN initialization, specifically line 4 of Figure 2a, is replaced with N
= CreateANNusingGA(x,y,θANN) [6]. Using CreateANNusingGA reduces the
chance of getting stuck in a local optimum, which is often a problem when using
GD. We distinguish between two model architectures that use GA weight ini-
tialization, namely MLPE (exponential activation function) and MLPL (linear
activation function). MLPE is similar to PNN’s use of an exponential activation
function for every layer in the architecture [6]. We also study linear activation
functions, which capture both negative and positive values, for the output layer
in MLPL when processing a decomposition’s residual. We also study Adam as
an optimizer in MLPA [5].

We define chromosomes for CreateANNusingGA as a list containing all the
weights of our ANN model. Models making up the GA’s initial population are
initialized with random weights. In PNN [6], the log maximum likelihood func-
tion of a Poisson distribution is used to calculate the fitness of the chromosomes.
We replace this with MSE as we do not have a Poisson distribution when work-
ing with hourly resolution, as the number of incidents depends on the hour of
the day. Furthermore, the residual after decomposition contains negative values,
which do not correspond to a Poisson dsitribution. To evaluate the fitness, for

6 We normalize the input values to the ANN (see YN column in Table 1) in order to re-
duce or avoid issues such as slow convergence, instability, or poor performance when
training the ANN. If the data set changes, data preprocessing and normalization
before inputting data to the ANN may need to change also.

7 We use the notation HDM for the Basic feature set from previous research [5], where
it was found to be the best-performing feature set for this data set.
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each chromosome we apply the chromosome to an ML model to set weights. We
then use this model to make predictions, and calculate fitness using MSE.

CreateANNusingGA uses a two-point crossover to create offspring. Before
crossover is applied, the parents are weighted by fitness such that the best-scoring
parents have a higher probability of crossover with each other. Mutations are
performed using Gaussian mutation, adding a random value with a mean µ = 0
and standard devation σ = 0.1. We select which chromosomes to keep after
each generation, using elitism. Offspring and parents are evaluated equally, and
we choose to keep only those with the best fitness. After 50 generations, we
set weights using the chromosome with the best fitness in the final evaluation.
We then train our model using the entire training data set, optimizing weights
with GD. Similarly to the other ANNs, we implement early stopping using the
validation set. With DeANN’s inclusion of weight initialization using a GA, we
aim to improve the previous model [16], while also considering a new domain.

4 Experimental Results

This section discusses experimental results. We use the first three experimental
studies—in Section 4.2, Section 4.3, and Section 4.4—to determine the details
of the DeANN method including its parameters. Using those results, the fore-
casting experiments in Section 4.5 demonstrate that the forecasting accuracies
of DeANN are better than the accuracies of baseline methods.

4.1 Computing Platform and Baselines

We use Python including the Keras8 library. All baselines are applied to the
resulting time series after filtering and preprocessing. Each baseline outputs
predictions that can be evaluated using the same metrics used to evaluate our
own proposed models. The following baseline models are studied:

– Simple moving average (SMA) outputs the average of w previous ob-
servations.

– MEDIC is implemented using Equation 1.
– Hermansen and Mengshoel (HM) uses the best-performing ML model

(MLP) and features (HDM) from our earlier research [5].
– Naive forecast (NF) uses an observation h steps in the past.

In studies 1, 2, and 3 below we use the validation-split of our data set to per-
form the model selection. In study 4, in contrast, we evaluate using the test-split
to ensure that a complete DeANN model composed from the best-performing
components of studies 1, 2, and 3 is not overfitted to the validation set.

Given a forecast horizon h, we are predicting a value at a time t+ h, where
t is the final observation in our training data. We vary h based on our test set
and train the model for time steps 0 to t. When we make forecasts that are
evaluated, predictions are made in the interval [t+ 1, t+ n], where n is the size
of the test set. In other words, h ∈ [1, n].

8 https://github.com/fchollet/keras

https://github.com/fchollet/keras
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4.2 Study 1: Feature Selection Results

Goal. We study which features to use for training our models. The x = HDM
features gave the best results earlier [5], now we consider adding year Y (see
Table 1). We want to see if including year, either as a numeric value in x =
HDMYN or via one-hot encoding in x = HDMYO, will improve forecasts.

Table 2: Validation error for
the same ANN architecture,
but with different input pa-
rameters without decomposi-
tion. HDM stands for hour,
day of the week, and month.
MSE is an average.

Features x MSE
HDM 22.63
HDMYN 21.73
HDMYO 24.60

Method and Data. To evaluate the effect of
the features and keep the results consistent, we
use an existing ANN architecture [5] but adjust
for the new features. The architecture consists
of two hidden layers with 16 nodes in each layer,
using the Adam optimizer. This study and Study
3 are performed with random windows of 10% of
our full data set, to maintain a time series, then
evaluated via average scores over five iterations.
This results in a higher variation of scores be-
tween the experiments but counteracts possible
overfitting on the full data set.
Results. From Table 2, we see that including
the year as a numeric value improves our model
performance. We consequently favor the use of
year Y encoded as a numeric value, x = HDMYN , rather than x = HDMYO.

4.3 Study 2: Statistical Decomposition using STL and SSA

Goal. Our main objective with decomposition using STL and SSA is to extract
as many patterns as possible from our time series, leaving less complexity to
handle for ML. Which decomposition method works best for our data?
Method and Data. As we have not found literature supporting the choice
of one decomposition method over others, we test possible combinations and
evaluate them. The following statistical decomposition implementations are used
for the methods discussed in Section 3.2:

– STL: The statsmodels-library for Python [11] performs STL-decomposition.
We create predictions by summing the extended seasonality and predicted
trend obtained from polynomial regression as described for STL in Sec-
tion 3.2.

– SSA: We use RSSA [3], an SSA implementation in R. We use RSSA’s built-
in forecasting methods to compute forecasts from a decomposition: bootstrap,
recurrent forecasting, and vector [3]. The remaining code is in Python, thus
RPy2 9 provides an interface to run embedded R in Python.

We first find the parameters for decomposition best suited for our problem for
SSA. Then, we find the best approximation with polynomial regression based on
the trend from STL.

9 https://rpy2.github.io/doc/latest/html/index.html

https://rpy2.github.io/doc/latest/html/index.html
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Table 3: SSA parameter selection results.
Grouping Forecasting MSE Grouping Forecasting MSE

W-correlation Bootstrap 25.33 Periodgram Bootstrap 25.50
W-correlation Vector 26.30 Periodgram Vector 26.58
W-correlation Recurrent 24.60 Periodgram Recurrent 25.32

Results. The results from Table 3 show that SSA with W-correlation matrix and
recurrent forecasting gave the best results for SSA-decomposition. As for STL,
results from Table 4 suggest that using a weekly period for seasonality generally
scores better than a daily period. The results concur with our data analysis,
suggesting that the ambulance demand pattern varies across days of the week.
Additionally, a second-degree polynomial minimizes error on our validation data.

Table 4: STL and polynomial
regression parameter selection
results: varying degree n ∈
{1, 2, 3, 4, 5} and daily (ps = 1)
or weekly (ps = 7) period for
STL’s seasonal component. The
trend component to approximate
is based on a pt = 365 day period.

n ps MSE n ps MSE
1 1 25.66 1 7 24.17
2 1 25.08 2 7 23.59
3 1 25.24 3 7 23.75
4 1 25.93 4 7 24.44
5 1 25.12 5 7 23.63

By graphing polynomials of varying de-
grees n, we observe a negative gradient for
n = 2 and n = 5 towards the end of our
data, as well as for the trend with an interpo-
lated period. Discussions with OUH and our
analysis suggest, in contrast, that the trend
is increasing annually.10 Thus, we assume the
best-scoring STL-decomposition with an in-
creasing trend towards the end of our time
series will perform well.

The discussion above and Table 4 sug-
gest the following. First, STL is preferred to
SSA. Second, with an MSE of 23.75, we keep
using weekly seasonality ps = 7 and third-
degree polynomial regression (STL3) for pre-
dicting the trend. We also keep the second-
degree polynomial regression model (STL2)
with weekly seasonality ps = 7 for our final
study, as it has the best MSE of 23.59.

4.4 Study 3: Weight Initialization with GA

Goal. The experiment aims to study ANN weight initialization with GAs for
model improvement. Additionally, we want to see how using a linear activation
function for the output layer measures up against exponential activation.

Methods and Data. We evaluate the performance of our MLP neural network
after setting initial weights using CreateANNusingGA, doing no backpropaga-
tion to update weights further, to evaluate the initial performance of our model.

10 This increase reflects the time period covered by the data set, the years 2015–2019.
It was feasible to extract data for this period from the EMS system of OUH, given
the resources available.
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Table 5: Weight initialization with GA results.
Activation Initialization MSE Activation Initialization MSE

Exponential Random 21.98 Linear Random 21.88
Exponential GA 21.23 Linear GA 21.54

Results. The results from this experiment are presented in Table 5. Both models
show improvement when CreateANNusingGA initializes weights before training.
The results indicate that exponential activation for the final layer yields better
forecasts. Based on these results, we will use GAs for weight initialization for
this model. We will continue to use exponential activation when data is not
decomposed. We will refer to the architecture as MLPL when a linear activation
function is used and MLPE when an exponential activation function is used.

4.5 Study 4: Final Forecasting Experiments

Goal. This section discusses our final forecasting results. We present how vari-
ants of the DeANN method compare to each other and to baselines. The study
includes discussions of how decomposition can contribute to forecasting.
Method and Data. To evaluate the final predictions, forecasting performance
metrics MAE and MSE for DeANN variants are compared to those of several
baselines as identified in Section 4.1. After experiments with different values for
ps and pt with STL (see Section 4.3), we use ps = 7 and pt = 365 in the final
forecasting experiments.
Results. Table 6 presents results for different variants of our method. Using
MSE, the DeANN method with the highest forecasting accuracy is M15. This is
the PNN-inspired architecture,MLPL, with a linear activation function, features
x = HDMYN , and STL with a third-degree polynomial regression to approx-
imate the trend. Model M10 with MLPA (the MLP architecture with Adam
optimizer) and using STL decomposition with a second-degree polynomial to
estimate the trend is the model that gave the best predictions using MAE.

Table 7 presents forecasting results of the DeANN variant M15 relative to
baselines from the literature.11 The main point here is that our novel M15 model
outperforms the baselines. While the improvement is relatively small, it can
result in more accurate decision-making in the complex and high-stakes area of
EMS decision-making, which is very valuable. Figure 3 contains forecasts from
our best-performing DeANN variants M10 and M15 in terms of MSE and MAE
on a week from our test set. The models follow each other closely, with the MAE
model generally predicting a lower demand than the MSE model. The actual
demand includes a lot of stochasticity, which is what we attempt to predict with
our residual-predicting ANN. Due to the data’s stochastic and complex nature
[12,5,10], it is impossible to forecast the actual demand perfectly. However, the
overall trend and seasonality of the actual demand are reasonably captured by

11 The statistical decomposition is only used with DeANN, as presented in Figure 2,
not with the baselines. MEDIC, for example, is applied on the raw data. Future
research could integrate decomposition and MEDIC, for example.
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Fig. 3: Forecasts of our best models (see Table 6) using MSE, M15, and MAE,
M10, for a week in September, compared to the actual demand that week.

Table 6: Comparison of different variants of our method, with and without de-
composition (De). The best results are in bold; our M15 method has the best
MSE. State of the art on this data set prior to M15 is M1 [5].
Id De Model MSE MAE Id De Model MSE MAE

M1 None MLPA, HDM 22.95 3.69 M9 None MLPA, HDMYN 21.77 3.62
M2 STL2 MLPA, HDM 22.03 3.63 M10 STL2 MLPA, HDMYN 21.77 3.61
M3 STL3 MLPA, HDM 21.74 3.64 M11 STL3 MLPA, HDMYN 21.73 3.64
M4 SSA MLPA, HDM 21.93 3.65 M12 SSA MLPA, HDMYN 21.92 3.64
M5 None MLPE , HDM 25.39 3.85 M13 None MLPE , HDMYN 21.95 3.66
M6 STL2 MLPL, HDM 21.94 3.63 M14 STL2 MLPL, HDMYN 21.92 3.62
M7 STL3 MLPL, HDM 21.74 3.65 M15 STL3 MLPL, HDMYN 21.68 3.64
M8 SSA MLPL, HDM 21.85 3.64 M16 SSA MLPL, HDMYN 21.98 3.65

our model, along with some hard-to-decompose structure captured by the ANN.
Unfortunately, the high peaks and deep valleys in incident data are extremely
difficult to forecast.

One key takeaway from these results is the importance of capturing the trend
in our time series. We deduce the importance of the trend by examining the only
two models where the x = HDM features were used with no decomposition.
These two models, M1 and M5 in Table 6, gave the worst results.

Comparing results using decomposition and x = HDMYN features with re-
sults using non-decomposed data further underlines the importance of the de-
composition and including year as a feature. The results from decomposition
indicate that using STL improves the forecasts of our MLP-models and outper-
forms decomposition using SSA. SSA improved the accuracy of forecasts from
MLP when year was not included in the input data, but produced similar results
as not using decomposition at all when year was included.
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5 Conclusion and Future Work

We have developed a neuro-symbolic ML approach, DeANN, for ambulance de-
mand forecasting. DeANN integrates statistical decomposition and ANNs. Our
experimental forecasting results suggest that our proposed method outperform
existing baselines. We improve on existing methods by improving input features,
the architecture of the model, and using decomposition to pre-process data be-
fore inputting them to an MLP. We found success in using STL decomposition
when including the year as a numeric value among input features. Our results
indicate that decomposition with STL and SSA can improve model accuracy
while also being understandable. STL has somewhat better results than SSA in
our experiments. Our intuition that extracting seasonal and trend components
of the time series will simplify the problem for the ML model to learn has been
confirmed by these results.

Table 7: Comparison of the best method
M15 in Table 6 (bottom row) and four
baselines (top four rows; M1 in fourth).
The best results, for M15, are in bold.

De Model MSE MAE
- SMA, w = 6 hrs 46.12 5.45
- NF, h = 7 days 42.37 5.02
- MEDIC 26.33 3.91
- MLPA, HDM 22.95 3.69

STL3 MLPL, HDMYN 21.68 3.64

Although we made some im-
provements by using decomposi-
tion and ML, perhaps the approach
could be further studied and ex-
panded: by considering decompo-
sition using more finely tuned pa-
rameters; by using other (including
online) ML methods, both neural
and symbolic;12 and by integrat-
ing with other emergency manage-
ment services including ambulance
allocation [9]. Ultimately, one could
perhaps use improved forecasting
results to better perform (i) ambu-
lance and human resource management and (ii) placement of ambulances if the
spatial dimension is introduced into the forecasts.
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