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Abstract

With the reported amount of daily users of social media and online forums being in the
billions, these online platforms are host to all kinds of people. Allowing for free speech and
relative anonymity, the users have, in some cases, the liberty to express themselves in any
way they desire without being moderated or censored. Investigations after school shooting
incidents have shown that a large number of attackers leave behind written texts in the
form of online posts or handwritten documents. In most cases, these texts are produced
before and leading up to the attack. Furthermore, previous work on text classification and
sentiment analysis has shown that significant information about a person can be retrieved
from their writings. This raises the possibility that extracting indicators from the texts of
previous school shooters could aid in identifying warning signs of a potential future school
shooting before it takes place.

For the purposes of this study, a collection of 3028 texts written by 26 distinct school
shooters leading up to their attacks has been collected and annotated. Analysis of this
dataset reveals similar psycholinguistic and statistical traits between the texts of school
shooters, separating them from texts written by non-shooters. This analysis, in addition
to related work found in a preliminary literature review, led to the application of Linguistic
Inquiry and Word Count (LIWC) and Term Frequency-Inverse Document Frequency (TF-
IDF) features for classification, albeit yielding limited results. A further investigation into
the more subtle linguistic cues of a school shooter was performed by utilizing globally
pretrained word embeddings, with Global Vectors for Word Representation (GloVe), Fast
Text Encoding using a pre-trained Character-level Model (FastText), and Bidirectional
Encoder Representations from Transformers (BERT) as feature inputs to both classical
and deep learning models. A host of large language models were additionally employed to
test their predictive power on the school shooter dataset. Ultimately, a voting classifier
based on the best performing models from each experiment was constructed. Although
tested on a small number of perpetrators, the results of the application of our final voting
based classifier are promising, beating previous similar studies’ performance when screen-
ing for school shooter texts and achieving an F2-score of 0.9656.
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Sammendrag

Sosiale medier og nettbaserte forum anslås å bli brukt av milliarder hver dag, som platt-
former for åpen dialog og i noen tilfeller helt umoderert diskusjon. I tillegg, viser utred-
ninger i etterkant av skoleskytinger at mange skoleskytere etterlater seg tekst i form av
enten nettbaserte poster eller håndskrevne dokumenter. I de fleste tilfeller er disse tek-
stene skrevet i forkant av et angrep. Samtidig, viser forskning på tekstklassifisering og
sentimentanalyse at informasjon om forfatteren bak en tekst kan bli uthentet, enten i
form av gjenkjennelige tegn eller mer subtile hint. Ved å forsøke å identifisere varseltegn
fra tekster skrevet av skoleskytere i forkant av et tidligere angrep, kan man potensielt ta
i bruk denne kunnskapen for å forhindre nye tilfeller før de finner sted.

En samling av 3028 unike tekster skrevet av 26 tidligere skoleskytere har blitt samlet inn
i denne masterstudien. Analyser av tekstene viser at det kan finnes psykolingvistiske og
statistiske trekk som skiller tekster skrevet av skoleskytere fra tekster skrevet av ikke-
skoleskytere. Med utgangspunkt i tidligere studier og denne innledende granskningen, ble
karakteristiske trekk ved tekstene uthentet ved hjelp av rammeverkene Linguistic Inquiry
and Word Count (LIWC) og Term Frequency-Inverse Document Frequency (TF-IDF),
med begrenset grad av suksess. For å trekke ut potensiell informasjon skjult i mer subtile
forskjeller i tekster skrevet av skoleskytere kontra ikke-skoleskytere, ble det tatt i bruk
opptrente ordvektorer (word embeddings) som data til trening av maskinlæringsmodeller.
Både klassiske modeller og nevrale nettverk ble trent og testet på ordvektorer generert
av modellene Global Vectors for Word Representation (GloVe), Fast Text Encoding using
a pre-trained Character-level Model (FastText) og Bidirectional Encoder Representations
from Transformers (BERT). Et utvalg språkmodeller ble så anvendt for å teste deres
treffsikkerhet på klassifiseringsproblemet. Avslutningsvis ble de beste modellene fra hvert
eksperiment trukket ut og samlet i en ensemble-modell hvor de underliggende modellene
stemmer på klassetilhørligheten til tekstene de blir presentert. Til tross for et forholds-
vis lite utvalg tekster, på grunn av tilgjengeligheten på slik data, er resultatene fra vår
ensemble-løsning lovende. Den endelige modellen overgår tidligere studier på deteksjon av
tekster skrevet av skoleskytere, og oppnår en endelig F2-score på 0.9656.
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Preface

This master’s thesis represents the final step towards obtaining a Master of Science degree
in Computer Science from the Norwegian University of Science and Technology (NTNU)
in Trondheim, Norway. It expands on a specialization project undertaken in the Fall of
2022, with research conducted from January to June 2023. The thesis was supervised by
Björn Gambäck and carried out within the Data and Artificial Intelligence Group at the
Department of Computer Science.

The motivation for this thesis arose from a desire to explore the fields of Natural Lan-
guage Processing (NLP) and Machine Learning (ML), specifically within the topics of hate
speech and threat detection. Following a preliminary literature review performed in the
specialization project, we wanted to delve deeper into methodologies used for detecting
school shooters based on textual information. Our attention was centered on exploring the
application of new and combined feature sets while also leveraging the latest developments
in state-of-the-art machine learning models. The objective was to develop a majority vote
solution, combining effective methods from existing research with other techniques, to
improve the detection of potential school shooters through linguistic cues.

The reader is expected to have a fundamental knowledge of machine learning and the eval-
uation metrics used for supervised learning tasks. Additionally, familiarity with natural
language processing will be beneficial, particularly in how text is processed, represented,
and features are extracted for computational processing. However, the relevant theory will
be elaborated upon in detail to ensure a solid understanding of the methodologies used in
this thesis. Finally, a basic knowledge of linear algebra, calculus, probability, and statistics
could be advantageous to fully understand the applied methods; however, it is possible to
understand the theory without fully understanding the underlying mathematics.
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1. Introduction

School shootings have become an increasingly alarming concern worldwide. The loss of
innocent lives to such heinous acts of violence is a painful reminder of the urgent need to
address this problem. With the rise of social media and online platforms, many potential
perpetrators express their intentions, ideologies, or emotional distress through their online
posts prior to committing an attack. Recognizing the potential of this digital footprint
to serve as an early warning system, this thesis focuses on uncovering potential school
shooters by analyzing their written posts published online. The goal is to delve deeper
into methodologies for identifying threat cues, with the objective of facilitating timely
intervention before a possible school shooting takes place.

This introductory chapter lays a foundation for the thesis, starting with exploring the
background and motivation behind the study. Following this theoretical grounding, the
next section aims to define the research goal and poses the specific research questions
to be tackled. Then, the research method will be presented, covering the strategies and
techniques that will be employed, before the contributions of this study will be listed.
Finally, the forthcoming chapters will be outlined, offering a glimpse into the structure
and progression of the thesis.

1.1 Background and Motivation

Over the past five decades, there has been a significant surge in attacks committed by
lone wolf perpetrators — individuals unaffiliated with any organized group. The Global
Terrorism Index reports that the proportion of such attackers has had a rapid increase from
5% in 1970 to over 70% between 2014 and 2018 (Vision of Humanity, 2019). This shift has
spurred numerous analyses of online behavior exhibited by lone actor terrorists. One such
study, commissioned by the U.S. Department of Justice, identifies a common sequence
of features associated with these actors’ pathways, which include personal and political
grievances, affinity with online sympathizers, identification of an enabler, broadcast of
intent, and a triggering event (Hamm & Spaaij, 2015). A clear understanding of this
process is crucial for detecting and preventing lone wolf attacks, particularly if the signs
are discernible.

In this master’s thesis, the focus is narrowed down to what could be considered to be a
subset of lone wolf perpetrators, specifically school shooters. The last decade has witnessed
a drastic rise in school shooting incidents, with the Violence Project’s K-12 School Shooting
Database (Riedman, 2023) reporting an alarming increase from 20 incidents in 2012, being
right around the yearly average from 1970− 2012, to 304 shootings on school grounds in
2022 in the U.S. alone.
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The emergence of the internet and social networking platforms has enabled the performers
of these acts to engage with virtual communities of like-minded individuals, facilitating
mutual radicalization and instruction on planning and executing attacks. Given the ex-
ponential growth of social media and the internet, it would be reasonable to assume that
potential school shooters are among the increasingly large amount of users of these plat-
forms. Possibly exhibiting early warning signs years in advance of an attack. Building
upon this, it’s important to note that potential threats may not always be explicitly spelled
out in written posts. Instead, linguistic cues pointing towards an individual’s propensity
for violent behavior may be more subtle, embedded in their use of language.

With the number of school shootings steadily increasing, considerable effort has been
invested in studying the psychological aspects of a school shooter. These studies mainly
concern pedagogic approaches to prevent someone from ever becoming a school shooter.
However, there are times when a person has already gone over the edge, and intervention
is needed. Although over ten years old, previous studies revealed that every prominent
school shooter between 2005 and 2010 had a presence on social media, with some leaving
clues hinting to a potential future attack (Semenov et al., 2010). Studies on personality
prediction and text classification have shown that a significant amount of information
about a person can be learned from texts they have written (Park et al., 2014). With this
in mind, it could be possible to leverage the information gained from analyzing texts to
help in the fight against the increasingly large problem of school shootings. Traditionally
this is done manually or through tips from students, and little work has been done to
attempt to leverage machine learning to combat school shootings and lone wolf attacks
(Neuman et al., 2020). As social media continue to grow, the data needed to be screened
is increasing quickly, thus making automatic detection methods more relevant than ever
before.

1.2 Goal and Research Questions

In light of the background and motivation outlined in the previous section, the following
goal was formulated for this master’s thesis:

Goal Automatic detection of possible school shooters based on linguistic cues extracted
from their written work.

This thesis aims to use a quantitative method to make data-driven implementation choices
to develop a solution to detect school shooters. Exploring multiple forms of features and
machine learning techniques, the goal is to provide a solution for best encapsulating the
context and linguistic cues deciding whether someone could be a potential school shooter.
Three research questions to support this goal are described in detail below.

Research Question 1 Which, if any, linguistic traits do school shooters have in com-
mon?

This research question explores the traits and indicators connected to written posts by a
school shooter compared to posts from non-shooters. The aim is to utilize the methods and
finds from a preliminary study on lone wolf perpetrators, creating a base for comparison
of the same techniques applied to posts by school shooters specifically.

Research Question 2 How indicative are written records of an individual’s potential to
become a school shooter?
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This research question aims to investigate the feasibility of employing written records to
assess an individual’s propensity to commit a school shooting. By building upon the use of
basic features, further incorporating word embeddings and state-of-the-art large language
models, the goal is to ascertain the degree to which linguistic cues alone can predict the
potential of an individual being a school shooter.

Research Question 3 How suitable are machine learning methods for predicting the
potential of someone performing a school shooting?

The third and final research question invites an important dialogue concerning the ethical
implications and practical applicability of employing machine learning models to identify
potential school shooters. Given that the use of such models can directly affect humans, it
is important to take into account the ethics tied to their application, in addition to assess-
ing these models’ scalability, reliability, and accuracy in real-world scenarios. Moreover,
attention must be paid to the nature of the data used for training and prediction, address-
ing issues such as data availability, quality, and bias.

1.3 Research Method

To address the research questions and achieve the objectives of the thesis, multiple stages
of research were undertaken. A literature review served as a vital precursor to the ex-
perimental work, ensuring the necessary knowledge about the prevailing strategies in the
field. This process consisted of a structured literature review (Kofod-Petersen, 2018) com-
plemented by a thorough exploration of references and citations from key publications
using the snowballing approach (Wohlin, 2014), ensuring the discovery of the most per-
tinent works. Building upon the findings from this review, a quantitative approach was
followed, taking what was considered to be promising solutions and experimenting with
unique additions and adjustments.

The first step in this experimental approach was performed with Research Question 1
in mind. As both TF-IDF and LIWC features were found to yield promising results in
previous studies, the same techniques were tested as part of the first experiment. To an-
swer Research Question 2, the best solutions were determined by further experimentation,
testing different combinations of features and algorithms, and ranking them based on the
F2-score as the primary metric. In addition, a facet of the qualitative research method has
been applied, as our interpretation of the final model’s performance on a smaller sample
size is used to substantiate the answer to the question. The results of the experiments
lay the foundation for answering Research Question 3, as well as the final discussion and
conclusion in Chapter 7 and Chapter 8.

1.4 Contributions

• A labeled dataset containing 3028 unique texts written by 26 different school shooters
from around the world.

• A voting classifier proficient at differentiating between texts written by school shoot-
ers and texts not written by school shooters.

• A discussion of the ethics and applicability of machine learning based approaches to
screening of school shooters.
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1.5 Outline

The remaining chapters of this thesis are organized as follows:

Chapter 2 presents the relevant background theory needed to understand the technolo-
gies used in this thesis and related work. The chapter details the methods, models, and
metrics used in machine learning and natural language processing, in addition to a brief
introduction to relevant social networking platforms.

Chapter 3 presents the findings of the conducted preliminary literature review, covering
related work relevant to this thesis.

Chapter 4 will describe the data used, with examples and statistics for each dataset, in
addition to a presentation of the preprocessing steps performed.

Chapter 5 presents the architecture of the thesis, from extracting features to training
and testing the different types of machine learning models.

Chapter 6 describes the conducted experiments, including the experimental plan, setup,
and results.

Chapter 7 evaluates the thesis research process and discusses the experimental results in
light of the proposed research questions and goals. Furthermore, the discussion elaborates
on the ethical considerations and usability of the resulting solution.

Chapter 8 provides a conclusion on the thesis and propositions for future work.
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2. Background Theory

This chapter provides a comprehensive review of the relevant theory that underpins the
research conducted in this thesis. First, the chapter begins with an introduction to the
social media platforms associated with the datasets being used. It then delves into the key
facets of Natural Language Processing (NLP), complemented by a section that explores
Machine Learning (ML) models and techniques pertinent to classification and regression
tasks on text-based inputs. Moreover, a presentation of the various evaluation metrics
relevant to classification and regression follows. The chapter concludes with a display of
the several technical tools that have been used in the performed research. Notably, a
significant portion of this chapter was initially composed for a preliminary study and has
been repurposed with necessary rewrites and adjustments where required.

2.1 Social Media Platforms

The widespread adoption of social media platforms has brought billions of people together,
transforming how we connect as they enable instant communication and foster connections
across geographical divides. At the same time, they’ve shaped our personal identities,
influenced our behaviors, and opened new avenues for self-expression, learning, and social
activism. These platforms have become a fundamental part of modern society and a rich
user data and information source. This section will outline the platforms that hold the
most relevance to the datasets used in the project.

2.1.1 Facebook

Facebook was launched in 2004 and has since become the most popular social media
platform by users (Statista, 2023), with a reported number of daily active users slightly
exceeding 2 billion in March 2023 (Meta, 2023). Each user creates their own profile,
including information such as occupation, education, demographic information, hobbies,
interests, and possibly a biography. On the main page, the user is met with a timeline
of posts with the ability to react, comment, and share it either directly with their own
list of friends or on their own user page. The posts can include a wide range of content,
from plain or formatted text, images, videos, hashtags, and user mentions. In addition to
interacting with friends through the feed, the social networking service lets the user create
groups, events, and private messaging threads, further facilitating communication with
both friends and strangers. As the platform has become increasingly popular over time,
news outlets and organizations have taken to the platform, resulting in their published
content populating each follower’s feed as they “follow” them. Finally, the service employs
targeted advertisement, utilizing massive amounts of collected data with the purpose of
more efficient and personalized marketing.
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2.1.2 Twitter

The microblogging platform Twitter joins the list of the largest social networks, with its
reported monthly active users in January of 2023 hitting 556 million (Statista, 2023).
Content-wise, the user is presented with a feed of posts, or “tweets”, related to followed
accounts, along with a thread dedicated to discussing or commenting on the post’s content.
Each post is strictly limited to 280 characters, which increased from 140 characters in 2017,
and can include a variety of content such as plain text, media, hyperlinks, user mentions,
and hashtags. The content on the platform can be viewed by anyone, even without creating
an account. However, only registered users can post, comment, like, or reshare posts.

2.2 Natural Language Processing

Natural language processing is a field combining linguistics, computer science, and artificial
intelligence, where the goal is to be able to process and interpret natural language. With
an often ambiguous, unstructured, creative, and redundant nature, it differs from logical
and structured languages such as those used in mathematics and programming. To be
able to use the vast amounts of data that are collected every day, this ambiguous language
needs to be translated into something that a computer can understand and utilize. This is
where text processing, text representation, and feature selection come in. In this section,
some of the most relevant techniques related to the processing of text within a document,
and the representation of a collection of documents, often referred to as a corpus, will be
described before elaborating on the feature selection task.

2.2.1 Fundamentals of Text Processing

Preprocessing of textual data is the act of structuring and sanitizing textual data prior
to use in downstream tasks. Depending on the task at hand, the steps for preprocessing
vary. Common preprocessing steps for most NLP tasks are:

• Segmentation: Extracting sentences from the document.

• Tokenization: Dividing the sentences into meaningful semantic units, often words or
sub-words, called tokens.

• Normalization: The act of converting terms into a common canonical representation.
In its simplest form, the process can include replacing non-alphabetical units such
as numbers with the textual alternative, or transforming the casing to, for instance,
lowercase.

• Stemming: Another form of text normalization involving the removal of word affixes,
leaving only the word stem. This method needs careful application since certain
words like “work”, that function both as a noun and a verb, will be reduced to the
same stem.

• Lemmatization: A more complex type of normalization, trying to group together the
inflected forms of a word. Using the word’s lemma or dictionary form, lemmatization
enables each word, despite its inflection, to be analyzed as a single item. This is
especially useful for cases where words have different stems in singular and plural
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form, e.g., “foot” and “feet”, where stemming will take an unsatisfactory decision of
not combining these into the same unit.

• Stop word elimination: Removal of frequently used words such as “a”, “for” and
“the”. These words tend not to contribute to the overall semantics of the text and
can therefore be removed. However, this should be performed with caution, as stop
words are domain-specific, and some words often being listed as a stop word, such
as “not”, can change the entire meaning of the sentence if removed.

• Noise removal: In certain domains, the use of elongated words, hyperlinks, user
mentions, hashtags, misspellings, emojis, and other unconventional characters can
be classified as noise. Because of the highly domain-specific nature of these instances,
there might be some cases where removing these is seen as beneficial, but one should
be aware of the possible loss of semantics.

2.2.2 Text Representations

One of the fundamental problems in text mining, information retrieval and natural lan-
guage processing, is how to numerically represent the unstructured content in documents
to make them mathematically computable. These representations can further be fed into
machine learning algorithms as features. Some of the commonly used textual representa-
tions will be presented in this section.

TF-IDF

The Term Frequency-Inverse Document Frequency (Spärck Jones, 2004) is a numerical
measure of a term’s importance within a corpus. Consisting of two parts, the first com-
ponent, Term Frequency (TF), measures the number of occurrences of a term within a
single document. Multiple versions of the weight exist, but the most commonly used is
either the count alone (raw frequency) or the log normalized version 1+ log(tfd,t). The lat-
ter tends to be preferred because it makes them directly comparable to the IDF. Given the
fact that an infrequent term is more distinguishing than frequent terms, it can be beneficial
to highly rank the rarest terms, that is, those occurring in the least amount of documents.
This can be achieved by taking the inverse of the Document Frequency, representing the
number of documents in which a term occurs. This yields the second component of TF-
IDF, being the Inverse Document Frequency (IDF). With the IDF commonly represented
as log( N

dft ), the components can be combined into the equation below:

TF-IDF = (1 + log(tfd,t)) ∗ log( N

dft
)

Bag of Words

If the order or relationship between words is insignificant, the Bag of Words (Harris, 1954)
representation can be a decent choice. The method keeps track of the words that appear
in a document and expresses them as a vector with the same size as the vocabulary.
Using either one-hot encoding or the term frequency, the Bag of Words (BOW) approach
performs effectively in fields where simply the presence of words represents the content of
a document.
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N-Grams

N-grams are a way of representing text as an n-length sequence of words. By iterating
word by word and combining n words together, the n-grams preserve the textual order to
some degree for values higher than 1. Commonly applied representations are unigrams of
one word, bigrams of two, or trigrams of three words.

Linguistic Inquiry and Word Count (LIWC)

The LIWC library, short for Linguistic Inquiry and Word Count, is a language analysis tool
for analyzing text and counting the frequency of words that fall into pre-defined categories.
These categories are based on the research and theory of Pennebaker et al. (2001), who
identified words and language patterns indicative of various psychological and linguistic
processes. The library includes a dictionary of words coded into various categories. For
example, the category “affect” is based on the presence of words associated with positive
or negative emotions, such as “happy” or “sad”. Furthermore, the social processes category
includes words related to social behavior, such as “friend” or “share”. By feeding texts
or documents into the LIWC software, the program calculates the percentage of words in
each category before utilizing the distribution to derive semantic meaning. The output is
a set of scores that indicate the relative prevalence of different categories of words in the
text. This can further be used for classification and detection, as an attempt at personality
modeling can be made based on the distribution of each category.

The licensed 2022 version of the software accommodates four dictionaries, encompassing
the original 2001 version, along with subsequent updates released in 2007, 2015, and 2022.
Each new version includes additional word categories that help to provide more nuanced
insights into the content of the text. For example, the 2007 version extends the categories
related to cognitive processes and social behavior with the scores for “insight”, “friends”,
“social”, and “humans”. Other additions are categories covering the author’s use of swear
words, emoticons, and time-related verb forms. Furthermore, the 2015 version added
new categories related to informational features, affective processes, and moral concerns.
Some examples are the categories “clout”, “authentic”, “tone”, “compare”, “risk” and “big
words”. Finally, the 2022 version further expands the dictionary with categories related
to health-related processes (“mental”, “wellness”, “fatigue”, and “cognition”), motiva-
tion/drive (“need”, “want”, “allure”, and “curiosity”) and social/interpersonal behavior
(“conflict”, “moral”, “politic”, and “comm”). For explanations on the mentioned categor-
ies, refer to Appendix E. By incorporating these additional word categories, each new
version of the software provides researchers with more powerful tools for understanding a
text’s emotional, cognitive, and linguistic content, allowing more fine-grained analyses of
language use across different contexts and time periods.

Word Embeddings

Another technique for representing text is word embeddings, which aim to group together
vocabulary words with semantic similarity. Moreover, embeddings address the problems
associated with simpler methods’ sparse vectors, inability to handle unidentified words,
and lack of contextuality. Several implementations exist, such as Word2Vec (Mikolov et
al., 2013), GloVe (Pennington et al., 2014), FastText (Bojanowski et al., 2016), and BERT
(Devlin et al., 2019).
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The first of these, Word2Vec, transforms words into a vector representation using either
Continous Bag of Words (CBOW) or Skip-Grams. The CBOW method learns word em-
beddings by using surrounding words (context) to predict the current word as it slides
a window across the sentences. Conversely, Skip-Gram learns to anticipate the context
words given a specific word as input. In other words, these are opposite approaches to
performing the same task. Global Vectors for Word Representation (GloVe), on the other
hand, is an unsupervised approach that builds a co-occurrence term frequency matrix
across the corpus to capture the global context. It then uses this matrix to calculate the
similarity between words and represent them as vectors in a high-dimensional space. The
resulting word vectors capture the semantic relationships between words based on their
co-occurrence patterns in the text. The Fast Text Encoding using a pre-trained Character-
level Model (FastText) implementation differs from the former by using subwords of length
n or single characters (n = 1) as a base. As the subword might have been observed even
though the full word was not present in the training data, the model might be able to
predict rare or unseen words correctly. Finally, Bidirectional Encoder Representations
from Transformers (BERT) uses a transformer-based architecture to generate embeddings
considering a word’s left and right context in a sentence. BERT is pretrained using a
masked language modeling objective and a next sentence prediction objective on a large
corpus of text, which allows it to capture a wide range of contextual information. The
language model generates a fixed-length embedding for each token in a sentence, and its
ability to capture contextual information and semantic relationships between words has
made it one of the most potent pretrained language models available today.

Whether using general pretrained word embeddings or domain-specifically trained ones,
their size is determined by the vector space’s dimensions. Simply put, a larger vector
space can hold more data. However, the performance is not necessarily proportionate
to the size of the word embeddings, and a larger vector space does not always result in
better performance. Hence, the challenge at hand should be considered when choosing the
architecture, training method, and size of the word embeddings.

2.3 Machine Learning

Machine learning is a field within Artificial Intelligence (AI), which gives systems the
ability to automatically learn and improve based on experience that has not been explicitly
programmed. To train and adapt models for the generalization of data, which is the main
essence of machine learning, one must first have a set of observations to explore potential
underlying patterns. What is done next to find these patterns depends on the type of
problem and data available, hence which subcategory of machine learning one is dealing
with. It is common to divide machine learning into three categories: supervised learning,
unsupervised learning, and reinforcement learning.

Supervised learning aims to construct a model that predicts the correct label on unseen
data. To achieve this, a function (model) is trained using prelabeled training instances,
which is used to learn the relationship between the inputs (features) and the output (target
label). This learned relationship enables the model to predict the labels of unseen data.
Common examples of supervised learning are classification, where the model maps the
input to a discrete set of predefined classes, and regression, where the input is mapped to
continuous numerical values (Goodfellow et al., 2016, p. 100–101).
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Unsupervised learning represents an exploratory approach to machine learning where the
models work with unlabeled data instances. Without a target class, the objective shifts to
discovering the underlying structures or associations in the data. Models in this category
typically group data based on certain features, making it a frequent choice for cluster
analysis with large volumes of data. Unsupervised learning can also be utilized in anomaly
detection or to reduce data dimensionality through techniques like principal component
analysis (PCA).

Reinforcement learning involves an agent that learns to perform the correct actions in
a given environment or action space through a process of trial and error. The agent is
typically rewarded for correct actions and penalized for incorrect ones. The goal of the
agent is to learn a policy, a strategy that dictates the optimal action to take in each state
in order to maximize its cumulative reward over time. This process gradually guides the
agent toward its ultimate objective.

Given that the objective is clear — to identify a specific target class — and there’s labeled
data available to aid this process, this situation is an example of a supervised learning
problem. The following discussion will cover the most prevalent techniques and method-
ologies within the domain of supervised machine learning.

2.3.1 Linear Regression

Linear regression is a supervised machine learning algorithm with the aim of fitting a line
to a set of data points. Hence, a linear regression model is given by the equation of a
straight line:

y = ax + b

Depending on the nature of the data, linear regression can be adapted to suit various
types of problems, typically achieved by selecting an appropriate cost function. The most
frequently used cost function, Mean Square Error (MSE), calculates the squared difference
between the predicted value (ŷ) and the actual data point (y), essentially summing up these
squared errors. By minimizing this function during training, the model can more closely
align each data point to the optimal value. For datasets with noise or limited size, a too-
complex linear regression model may overfit the data, leading to increased variance when
the model is applied to new data. Extensions of linear regression, such as ridge regression
and LASSO, address this issue. Ridge regression introduces a small amount of bias into the
model by adding a penalty term to the cost function that shrinks the coefficients, thereby
reducing variance. LASSO, on the other hand, not only shrinks coefficients but can also
drive some of them to zero, effectively performing feature selection. These adaptations
can lead to more generalized models compared to overfitted linear regression models.

2.3.2 Logistic Regression

Logistic regression establishes a relationship between input features and a binary outcome
by fitting a logistic curve to the data, which makes it ideal for binary classification tasks.
An example could be predicting whether a piece of writing is written by a native speaker
or not only based on the presence of grammatical errors. Given a count of grammatical
errors as input, the model then outputs a probability representing the likelihood of the
text being written by a non-native speaker. This relationship would be learned through
training on a labeled dataset, where each text sample is associated with its author being
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a native or non-native speaker, enabling the model to understand patterns and make
accurate predictions for new, unseen samples. If the x-axis in Figure 2.1 represents the
number of grammatical errors in a text, the curve can be interpreted as the probability
from 0− 1 on the y-axis of the text being written by a non-native speaker. The blue dots
on the graph represent the data points used to fit the logistic regression curve.

Figure 2.1: Logistic regression

2.3.3 Naïve Bayes

Naïve Bayes is a probabilistic machine learning classifier, acting as a simple implementation
of Bayes’ theorem to statistical data. The two most commonly used forms of Naïve Bayes
are the Gaussian Naïve Bayes (GNB) and the Multinomial Naïve Bayes (MNB). The
selection between these two depends on the nature of the data under study. For categorical
data, the multinomial variant is the preferred choice, while Gaussian is more suitable
for continuous data. In the field of Natural Language Processing, MNB is commonly
employed to categorize terms or chunks of text utilizing a Bag of Words approach. This
classifier determines the likelihood of the given data being part of each class defined in
the classification task. However, in cases where the data is continuous, GNB ascertains
the mean and variance for the samples within a given class. The likelihood of a specific
feature value within a class is subsequently computed utilizing the Gaussian probability
density function based on the previously determined mean and variance.

Regardless of which implementation you use, the probability of a feature A belonging to
class B is given by Bayes’ theorem:

P (B|A) = P (A|B) ∗ P (B)
P (A) ,

where P (B|A) represents the “posterior” probability, or the probability of class B given
feature A. The numerator, P (A|B) ∗ P (B), is the product of the likelihood of observing
feature A given class B and the “prior” probability of class B. Meanwhile, P (A) is the
total probability of feature A across all classes. This term serves as a normalization
factor, ensuring that the sum of the probabilities of all classes given feature A is 1, which
is important to make the calculated probabilities represent a valid probability distribution.

Finally, it’s important to note that in probabilistic machine learning classifiers like Naïve
Bayes, the “naïve” assumption of feature independence is made. This significantly simpli-
fies the calculation of P (A|B), as it becomes the product of individual feature probabilities
given the class. This could be considered a limitation, as this independence assumption is
often violated in real-world data, where features may be correlated or dependent. However,
despite its assumption of independence, Naïve Bayes is still considered a decent classifier,
even with strong dependencies between features (Zhang, 2004).

11



2 Background Theory

2.3.4 Support Vector Machine

The method of Support Vector Machine (Cortes & Vapnik, 1995; Hearst et al., 1998)
builds on basic maximal margin classifiers. A maximal margin classifier is a classifier that
tries to fit a hyperplane in such a way that the data points on either side and closest to
the hyperplane have the largest possible distance to the hyperplane (Figure 2.2).

Figure 2.2: Support Vector Machine1

However, this classifier falls short when encountering outlier data. Imagine a case in one
dimension where class 1 usually resides around the values 0− 2 and data points belonging
to class 2 reside around the values 6 − 8. At this point, a maximal margin classifier will
function well since the classes are well separated. The problems start if we introduce data
points belonging to class 1 that are much closer in value to the data points of class 2
than 1 (Figure 2.3). This outlier will force the maximal margin classifier into creating a
separating threshold much closer to the values of class 2 than 1, leading to newly sampled
points closer to class 2, possibly being classified as 1 instead!

Figure 2.3: Maximal margin model weakness

The Support Vector Machine architecture tries to alleviate this problem by introducing
two new approaches. These are support vectors and kernels. Support vectors allow for
misclassification to benefit the larger amount of classifications (soft margin). Kernels
transform data points to higher dimensions to allow for the classification of data not
clearly split into two separate parts. Support vectors are vectors that run along the
extreme data points closest to the maximal margin vector in parallel. The actual maximal
margin vector is now seen as more of a soft margin since support vectors allow for some
misclassifications to benefit the larger classification problem as a whole. The final vector
is found by solving an optimization problem.

1Illustration from Wikimedia Commons, distributed under a CC BY-SA 4.0 license. Retrieved 20th
May 2023, from: https://commons.wikimedia.org/w/index.php?curid=73710028
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2.3.5 Decision Trees

Decision trees are a common type of machine learning algorithm. Some of their main
advantages are the simplicity of calculation and the ease of interpretation, in addition to
the applicability for both classification and regression problems. A decision tree consists
of a set of nodes. Each node can be an end node, a branch node, a leaf, or a splitting
node. At each splitting node, a comparison is done that splits the data further. The
splitting variable or value is determined by what yields the highest information gain.
This information gain is calculated by comparing the current node’s Gini impurity to the
potential total impurity of the nodes resulting from an eventual split.

The Gini impurity is given as:

Gini =
J∑

i=1
p(i) ∗ (1− p(i)),

where p(i) is the likelihood of picking a data point from a class in the given node. Now,
let U be the total information gain of a split, G be the Gini impurity score at a node, N
be the total amount of data points, and n be a subset of the total data points. We can
then express the information gain of a split as:

U = Gstart − (Gleft ∗ (nleft
N

))− (Gright ∗ (nright
N

))

This splitting continues down the tree until a set stop condition is met. Common stop
conditions are either when splitting no longer achieves satisfactory information gain or
when a sufficient degree of certainty in classification has been reached in a given node.

X >10

Y == 42

B CA

<10 >10

!= 42 == 42

Figure 2.4: Decision tree

2.3.6 Ensemble Learning

Ensemble learning is a technique used in machine learning to improve the performance
and accuracy of predictions by combining multiple individual models. This approach
can be compared to making a new meaningful purchase, where usually multiple sources
are consulted for opinions. The final decision can be made by considering the various
evaluations, often through a majority vote. Ensemble learning is a versatile technique that
can be used for various tasks, including classification, regression, and anomaly detection.
Additionally, it can be combined with other machine learning techniques, such as deep
learning and neural networks, to enhance its capabilities further. For example, a neural
network can generate features before feeding these into an ensemble of classifiers to make
more accurate predictions.
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Two popular types of ensemble learning are boosting and bagging. The first of these,
boosting, involves iteratively training a sequence of weak models to form a strong final
model. Boosting algorithms assign more weight to misclassified examples in each iteration,
emphasizing difficult cases. The final prediction is then made by combining the outputs
of all the weak models. The XGBoost algorithm (Chen & Guestrin, 2016) is a popular
example of a boosting algorithm. Another type of ensemble learning is bagging, which
involves training multiple models on different subsets of the training data and then combin-
ing their outputs. This technique reduces the risk of overfitting and improves the overall
accuracy and stability of the final model. Random Forests (Ho, 1995; Breiman, 2001)
is a popular example of a bagging algorithm, being widely used in numerous real-world
applications. Random Forests and XGBoost are examples of ensemble learning algorithms
using decision trees as their base models.

2.3.7 Gaussian Processes

Gaussian processes (Rasmussen & Williams, 2005) is a kernel-based supervised machine
learning algorithm. Adopting a probabilistic approach, it generates a probability distribu-
tion over output values by fitting a kernel function. Determining the similarity between
input values or vectors in the input space, the idea is for the kernel function to output
similar outputs on inputs close in space. Due to its ability to model complex nonlinear
relationships in data and provide uncertainty estimates, the technique is a popular choice
for a multitude of machine learning tasks. In addition, it offers a flexible approach to
model selection, enabling easy integration of domain knowledge and prior beliefs.

One of the main advantages of Gaussian processes is its ability to perform Bayesian in-
ference, which quantifies the uncertainty in predictions. This is particularly useful in
applications where it is important to make decisions based on the reliability of the predic-
tions. Additionally, Gaussian processes can handle missing data in a natural way, as the
model can be trained on the available data and still make predictions on the missing data
points.

However, the computational complexity of Gaussian processes increases with the number
of observations, making them computationally expensive. Nonetheless, several techniques
can reduce the computational cost, such as using sparse approximations or approximating
the covariance function. Despite these challenges, Gaussian processes remain a powerful
tool for modeling complex relationships in data with uncertainty estimates present.

2.3.8 Kernels

Support Vector Machines and Gaussian Processes are examples of linear machine learning
algorithms that utilize a kernel function, also known as the kernel trick, to handle non-
linear problems. A kernel function projects data points into a higher-dimensional space,
allowing linear classifiers to separate non-linear data effectively.

Different kernel functions, such as the linear, sigmoid, dot product, white, and Radial
Basis Function (RBF) kernel, can be applied based on the requirements of the task at
hand. The linear kernel and the dot product kernel, which are quite similar, compute
the dot product of two feature vectors. This process essentially measures the cosine of
the angle between the vectors, capturing their directional similarity. The sigmoid kernel
introduces a non-linearity that mirrors the activation function used in neural networks.
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It applies the formula tanh(γxT y + c0), where γ is the slope, xT and y are the vectors,
and c0 is a constant. This transformation can provide a useful link between linear models
and more complex neural models. On the other hand, the RBF kernel operates somewhat
differently, calculating an “inverse” distance between two vectors. This kernel function
uses the formula exp(−γ||x− y||2), assigning higher similarity to pairs of points that are
closer together. In this equation, γ is a configurable parameter, and ||x − y|| represents
the Euclidean distance between vectors x and y. Lastly, the white kernel plays a crucial
role when the data incorporates noise. It adds a noise component to the diagonal of the
kernel matrix, ensuring its invertibility.

2.3.9 Neural Networks

In recent years, many of the top-performing artificial intelligence systems have resulted
from a technique called deep learning. Though the name deep learning is of newer ex-
istence, the name is, in fact, a new name for an approach called neural networks, which
have been going in and out of fashion for almost 80 years. The first mathematical model
of an artificial neuron, built upon the ideas of Alan Turing, was proposed by McCulloch
and Pitts (1943). However, the McCulloch-Pitts Neuron has some limitations, as it can
only represent non-weighted boolean functions with a hand-coded threshold. Overcoming
these limitations, the first real implementation saw the light of day fifteen years later in
the form of a machine by F. Rosenblatt, the “Mark I Perceptron”. It could be argued
that the whole area of deep learning and neural networks build on the suggested model
by Rosenblatt (1958), called the Perceptron model.
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Figure 2.5: The perceptron model

Rosenblatt’s perceptron model is illustrated in Figure 2.5. Provided with n input variables,
here noted as x1, x2, and xn, each entry is multiplied with a weight. This yields the main
improvement, the introduction of a measure of importance, seeing as some of the inputs
may weigh more than others on the decision of the desired outcome. The node then
aggregates all the inputs and their belonging weights, taking the weighted sum before
adding the bias. Instead of coding a threshold for the final step function, Rosenblatt adds
a new weight with the same intention of shifting the activation function, but rather as an
adjustable (and learnable) value.
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The function in Figure 2.5 can be denoted as:

f(x) =
n∑

i=1
xiwi + b =

n∑
i=0

xiwi,

where the bias is included as an additional weight w0, attached to a dummy input x0 having
assigned the value of 1. The output of this summation is then passed to a (Heaviside) step
function to decide whether the neuron should fire.

In addition to improving the perceptron model with the addition of weights, a major
achievement of Rosenblatt was to develop a fairly simple yet relatively efficient algorithm,
enabling the perceptron to learn the correct synaptic weights from examples. This lays
the foundation of Feature Learning, also known as Representation Learning, where the
model can learn from a set of examples given as raw data.

Still, as pointed out by Minsky and Papert (1969), one limitation is the impossibility of
computing XOR because it is not linearly separable. The paper argued that the proposed
algorithm would not work as a model would need multiple layers, which the authors deemed
too computationally expensive given the available hardware at the time. Although the
potential is toned down, which is widely believed to have led the way to what is known
as the first AI Winter, the later work on Multi-Layer Perceptrons, combined with the
immense rise in computer power and available data, makes way for what is known as deep
learning today.

Artificial Neural Network (ANN)

Artificial neural networks form the basis for many deep learning implementations. They
can have vastly different structures depending on the problem they’re designed to solve,
but the simplest form is a feedforward neural network with layered nodes and weighted
edges that allow for a unidirectional flow of information from input to output (Mitchell,
1997). A common distinction is made between two architectures based on the layers of
nodes: networks with no hidden layers are known as Single-Layer Perceptrons, while those
with multiple layers are referred to as Multi-Layer Perceptrons. Single-Layer Perceptrons
are limited to linearly separable functions, whereas MLPs can handle high-dimensional
data and overcome SLP limitations.
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Figure 2.6: The simplest form of an Artificial Neural Network, the unidirectional
implementation known as a Feedforward Neural Network
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The neurons, also known as nodes, are in a MLP network layered into three or more
layers, with a single input- and output layer and one or more hidden layers. Each layer
passes its output, typically the product of the propagated information and the weight
of the corresponding edge, as input to the next layer (O’Shea & Nash, 2015). Using an
activation function, it could be determined whether to “activate” the node, thus controlling
the propagation of information. The process of sending the data through the pipeline is
called forward propagation or forward pass.

For learning to occur, that is, the adjustment of weights, a process called backward
propagation or backward pass would need to be performed. This optimization technique
compares the model’s output to the correct output on labeled data, which yields an error
measured as the distance between the correct and predicted value. Going backward, each
weight is adjusted based on the derivative of the error with respect to the weight, also
called the gradient. The process also goes by the name of gradient descent, trying to
decrease the error or loss. The training, being one cycle of the forward and backward
pass, continues on new data until the network converges.

According to the Universal Approximation Theorem, a neural network with just one hid-
den layer can theoretically approximate any function, provided the layer is large enough
(Goodfellow et al., 2016). This means that, given enough nodes, it’s always possible to
find a neural network whose output, g(x), satisfies |g(x) − f(x)| < ϵ for all inputs, x. In
simpler terms, the approximation will be satisfactory for every possible input. However,
although the theorem states that one layer is sufficient, in practice, using multiple layers
is common to learn complex patterns from data effectively. Care must be taken, though,
as adding more layers can lead to overfitting if not properly regularized. The optimal
number of nodes and hidden layers is typically determined through experimentation and
fine-tuning and is heavily dependent on the specific dataset and problem at hand.

Convolutional Neural Network (CNN)
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Figure 2.7: Architecture of a Convolutional Neural Network

Convolutional neural networks (LeCun et al., 1998) are a type of artificial neural network
that have been particularly successful in solving computer vision problems such as image
recognition and classification. They are a regularized version of the aforementioned MLP
structure and are designed to exploit hierarchical patterns in data. As shown in Figure 2.7,
being an illustration inspired by the architecture in the original paper by LeCun et al.
(1998), CNNs are composed of an input layer, followed by a set of hidden layers resulting
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in an output layer. Diverging from the MLP structure, the hidden layers in a CNN
architecture incorporate convolutional and pooling layers before flattening the output into
a vector and sending it through a series of fully connected layers. The convolutional layers
act as filters on the input data, producing maps of activation that detect features such as
edges, shapes, and textures. The pooling layers perform dimensionality reduction on the
data by combining the outputs of neurons in a layer into a single neuron for the consecutive
layer. In addition to dimensionality reduction, the pooling layer performs regularization
to prevent overfitting and enable the layer to capture more local information.

The strength of CNNs is their ability to learn complex features from raw data hierarchic-
ally. By stacking multiple layers of convolutions and pooling, they can learn increasingly
complex features, leading to better performance in tasks such as image classification and
object detection. CNNs have also been successfully applied to Natural Language Pro-
cessing (NLP) tasks, where single words can inherit important semantic meanings. CNNs
are computationally intensive and require large amounts of data for training. However,
the architecture has proven to be highly effective for many machine learning applications.

Recurrent Neural Network (RNN)

The recurrent neural network (Rumelhart et al., 1986) is a subcategory of artificial neural
networks that can handle sequential data by allowing information to flow in cycles. Unlike
feedforward neural networks, recurrent neural networks use each node’s internal state to
store information about previous calculations, allowing them to produce output based on
past and current decisions. By assigning more importance to recent decisions, the network
becomes more sensitive to immediate past events. This characteristic is advantageous when
dealing with sequential data where recent events significantly influence current outcomes,
such as the sentiment in the current sentence of a conversation being strongly influenced
by the sentiment in the preceding sentence. The model architecture has been proven useful
in many applications, such as speech recognition, language translation, and text analysis.

Long Short-Term Memory (LSTM) Network

The Long Short-Term Memory network is a type of recurrent neural network introduced in
a paper by Hochreiter and Schmidhuber (1997). LSTM networks are designed to overcome
the vanishing gradient problem, which occurs during backpropagation when the error
gradients become increasingly small, causing information to be lost over time. In other
words, they aim to overcome a significant limitation of RNNs — their inability to handle
data with long-term dependencies, like long texts, due to limited memory capacity.

Long Short-Term Memory (LSTM) models utilize a memory cell to retain long-term data.
The core structure of the LSTM cell includes three essential gates: the input gate, the
output gate, and the forget gate. These components are visually represented in Figure 2.8,
adapted from the original research paper (Hochreiter & Schmidhuber, 1997). The gates
allow the network to selectively add or remove information from the memory cell based on
the input data and the network’s current state. The input gate determines what inform-
ation from the input should be stored in the memory cell, while the forget gate controls
what information shout be removed from memory. Finally, the output gate determines the
information outputted to the next layer. By selectively storing and removing information,
LSTMs can effectively process long data sequences while maintaining relevant information
for future predictions.
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Figure 2.8: Visualization of an LSTM cell

LSTMs have been widely used in NLP tasks such as language translation and speech
recognition, as well as in video analysis and image captioning. They have also been
extended to include variations such as bidirectional LSTMs and stacked LSTMs, further
improving their performance on various tasks.

The Encoder-Decoder Architecture and Attention Mechanism

The encoder-decoder architecture (Sutskever et al., 2014) is a prevalent concept in machine
learning, particularly in the field of Natural Language Processing (NLP). This architecture
is utilized to tackle problems where variable-length input sequences are transformed into
variable-length outputs, such as machine translation, speech recognition, and time-series
prediction.

The encoder-decoder architecture consists of two main components, as the name implies,
the encoder and the decoder. The encoder processes the input data and converts it into a
fixed-length vector representation, often called a “context vector”. This vector holds the
encoded information of the input, but given that the length of the vector is fixed, it is
challenging to encapsulate long sequences without losing any information. The decoder
uses this fixed-length vector to generate the variable-length output sequence. It aims to
“decode” the information contained in the context vector, but it must interpret all of the
input data from this single vector, regardless of the sequence length, which may lead to
the loss of important details.

To help address these limitations, the attention mechanism was introduced (Bahdanau et
al., 2015). This technique allows the model to focus on different parts of the input sequence
when generating the output sequence rather than relying solely on a single context vector.
In essence, it allows the model to “pay attention” to specific parts of the input that are
more relevant at each step of the output generation. By doing so, it is capable of preserving
a greater amount of the original information, enhancing its ability to manage sequences
of varying lengths more effectively.

In the context of the encoder-decoder architecture, the attention mechanism computes
a weighted sum of all input states, not just the final state, based on learned attention
weights. These weights determine how much “attention” each input state should receive
for each output step, helping to create a more comprehensive representation of the input.
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The Transformer Architecture

Building on the concepts of the encoder-decoder architecture and the attention mechanism,
the transformer model was introduced in a paper by Vaswani et al. (2017). This model
revolutionized the field of Natural Language Processing (NLP) with its ability to handle
long data sequences while maintaining computational efficiency.

The transformer model consists of an encoder and a decoder, but unlike the traditional
encoder-decoder architecture, it relies solely on the attention mechanism (termed “self-
attention” or “scaled dot-product attention”) and entirely does away with sequence-aligned
recurrent or convolutional layers. The transformer encoder reads the entire input sequence
at once and generates a sequence of continuous representations for each word or token
in the input. Each representation is a weighted sum of all input states, with weights
determined by the attention mechanism. The attention mechanism allows each token in
the input sequence to interact with every other token, enabling the model to capture
long-distance dependencies between words. The transformer decoder also employs the
attention mechanism but slightly differently to maintain the auto-regressive property (i.e.,
generating one word at a time). It has an additional “masked” self-attention layer that
prevents positions from attending to subsequent positions, ensuring that the prediction
for a particular position can depend only on known outputs at positions less than it.

A key feature of the transformer architecture is that it allows for parallelization during
training, which leads to speed improvements compared to sequential models like RNNs or
LSTMs. Furthermore, the transformer model includes several layers of these self-attention
mechanisms, allowing it to learn more complex patterns and making it particularly effective
for many NLP tasks.

BERT

Bidirectional Encoder Representations from Transformers (BERT) is a transformer-based
model introduced by Devlin et al. (2019). It revolutionized the field of natural lan-
guage processing by demonstrating the power of unsupervised pretraining followed by
task-specific fine-tuning. This approach led to state-of-the-art results across various NLP
benchmarks, surpassing previous models. The key innovation of BERT lies in its bidirec-
tional context representation. Unlike previous models that focused on either left-to-right or
right-to-left context, BERT processes input text in both directions simultaneously, thereby
capturing context more effectively. This bidirectional understanding allows BERT to un-
derstand the context of a word based on all of its surroundings (left and right of the word),
making it highly effective for a range of NLP tasks.

BERT is pretrained on two unsupervised tasks, namely Masked Language Modeling (MLM)
and Next Sentence Prediction (NSP). The MLM task randomly masks a percentage of the
input tokens from the input sequence to predict, encouraging the understanding of the
sentence context. NSP, on the other hand, trains the model to understand relationships
between sentences, which is particularly useful for tasks like question answering and sum-
marization. Once pretrained, BERT can be fine-tuned for various tasks such as text
classification, named entity recognition, and question-answering by adding a task-specific
head on top of the pretrained model. This allows the model to transfer the general lan-
guage understanding learned from pretraining to specific tasks, often leading to significant
performance improvements with relatively little task-specific training data.
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RoBERTa

Robustly Optimized BERT Pretraining Approach (RoBERTa) is an optimized version of
BERT introduced by Liu et al. (2019). RoBERTa builds upon the success of BERT by fine-
tuning the pretraining process, including changes in hyperparameters, model architecture,
and the training data.

The main differences between the optimized version over the original pretrained trans-
former architecture of BERT are as follows. First, RoBERTa removes the Next Sentence
Prediction (NSP) task from pretraining, focusing solely on Masked Language Modeling
(MLM). Second, it also extends the pretraining with the use of more training data, larger
batch sizes, and more iterations. Finally, the model uses dynamic masking patterns for
the MLM task instead of static masking found in BERT. These optimizations improve
performance across various NLP tasks, surpassing BERT’s already impressive results on
certain applications.

DistilBERT

DistilBERT (Sanh et al., 2020), or the Distilled Version of BERT, is a condensed yet
highly efficient version of BERT, designed to maintain most of BERT’s performance while
minimizing model size and computational demands. The main idea is to use what is
known as knowledge distillation, a technique that involves training a smaller model, the
“student”, to mimic the behavior of a larger, pretrained model, namely the “teacher”. In
the case of DistilBERT, as the name implies, BERT serves as the teacher model. The
key differences between the two models lie primarily in their structure and performance.
DistilBERT typically has half the number of layers compared to its teacher, BERT. In
addition, it does not include token-type embeddings or the pooler layer, which in BERT
is used to summarize the context of the input sequence. These modifications make Distil-
BERT approximately 40% smaller and 60% faster than BERT. Despite these reductions,
DistilBERT remarkably retains around 97% of the performance across a variety of NLP
tasks, according to the paper by Sanh et al. (2020).

ALBERT

A Lite BERT (ALBERT) is another optimized version of BERT, introduced by Lan et al.
(2020). Similar to the Distilled Version of BERT, this variation focuses on reducing the
model size while maintaining similar performance levels.

Two main innovations are being introduced. The first is factorized embedding parameter-
ization, where the model separates the size of the hidden layers from the size of the input
embeddings, allowing for a significant reduction in the number of parameters without
sacrificing performance. Secondly, ALBERT shares parameters across layers in the trans-
former architecture, reducing the overall number of parameters and the memory footprint.
This is called cross-layer parameter sharing. These modifications result in a much smaller
and more memory-efficient model than BERT, without significantly losing performance.
ALBERT has also been pretrained on larger-scale tasks and can be fine-tuned for vari-
ous natural language processing tasks similar to the rest of the aforementioned pretrained
transformer architectures.
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2.4 Evaluation Metrics

To be able to determine whether machine learning models reach their goal of either regres-
sion or classification, one needs to have a measure of performance. This section describes
some of the evaluation metrics pertinent to these tasks. For classification problems, this
includes the metrics of accuracy, precision, recall, and F-Score, while some forms of error
are covered because of the use in regression tasks.

2.4.1 Accuracy

The first performance-related metric, accuracy, is used in a wide variety of machine learn-
ing tasks. By quantifying the number of correctly classified instances, divided by the total
number of instances, a sense of how many correct classifications the model makes could
be gained, thus also knowing the number of misclassifications. The metric is denoted by
the following equation:

Accuracy = TP + TN
TP + FP + TN + FN

Upon examining the equation, it becomes apparent that it comprises four separate values,
namely TP, TN, FP, and FN. True Positive (TP) is the number of correctly classified
positive instances, while True Negative (TN) represents the instances that are correctly
predicted as negative. In contrast, False Positive (FP) refers to the negative instances
incorrectly classified as positive, and False Negative (FN) represents the positive instances
that are misclassified as negative. These four values can be better visualized in a tabular
form, as seen in Table 2.1.

Ground Truth
Positive Negative

Prediction Positive TP FP
Negative FN TN

Table 2.1: Matrix illustrating the four outcomes in binary classification

2.4.2 Precision and Recall

Another performance metric commonly used in classification problems in both information
retrieval and machine learning is precision and recall. Precision, or the positive predictive
value, is the portion of relevant instances among the retrieved instances. To elaborate, the
measure tells us how many of the returned items are relevant. The equation for precision
can therefore be presented as follows:

Precision = TP
TP + FP ,

where the elements True Positive (TP) and False Positive (FP) are the same as presented
in the former subsection. Recall, alternatively termed sensitivity, quantifies the fraction of
relevant instances successfully retrieved. Contrary to precision, which primarily concerns
itself with the correctness of the instances retrieved, recall lays emphasis on the volume of
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relevant instances recovered from the total set of elements or documents. In other words,
it assesses the ability to retrieve as many relevant instances as possible, disregarding the
correctly classified instances within the retrieved subset. The mathematical representation
of recall is expressed as follows:

Recall = TP
TP + FN

2.4.3 F-score

The F-score attempts to be a measure of accuracy, including both precision and recall. In
its simplest form, the F1-score is the harmonic mean of the two given metrics. Furthermore,
the more generic Fβ-score implements an additional weight, β, valuing either precision or
recall more than the other. The output is a score on a scale between 0 and 1, where 1
indicates the ideal precision and recall. The equation for the more general Fβ-score can
be written as:

Fβ = (1 + β2)× Precision× Recall
(β2 × Precision) + Recall

Setting β to 1 yields the harmonic mean between recall and precision. This is the standard
F1-score.

F1 = 2× Precision× Recall
Precision + Recall

Similarly, if β is set to 2, we get the equation for the F2-score, weighing recall heavier than
precision:

F2 = 5× Precision× Recall
(4× Precision) + Recall ,

2.4.4 Binary Cross-Entropy Loss

Binary Cross-Entropy Loss, also known as log loss, is a loss function commonly used in
binary classification tasks with models that output probabilities. Given a model that
predicts probabilities, the binary cross-entropy loss measures the dissimilarity between
the true label (which can be either 0 or 1) and the predicted probability of the instance
belonging to the positive class (usually denoted as 1). The formula for binary cross-entropy
loss for a single instance is:

L = −[y ∗ log(p) + (1− y) ∗ log(1− p)],

where y is the true label (0 or 1), and p is the predicted probability of the instance
being in class 1. A key property of this loss function is penalizing confident and wrong
predictions more heavily than confident, right, or unconfident (i.e., probabilities close
to 0.5) predictions. This property makes it suitable for training models on imbalanced
datasets, where the penalty for misclassifying a minority class instance needs to be higher.
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2.4.5 Error

As mentioned in the introduction, the former metrics are used in classification tasks while
not being an applicable measure for regression problems. Instead, different forms of meas-
uring error can be used to evaluate a regression model’s performance. The three most com-
monly used measures are the Mean Absolute Error (MAE), Mean Square Error (MSE),
and Root Mean Square Error (RMSE). The first of these, Mean Absolute Error, is a
measure of the absolute average distance between the expected value and the value given
by the model. Subsequently, Mean Square Error takes a similar route but measures the
average square distance between the predicted and expected values instead. Finally, the
Root Mean Square Error builds upon MSE by using its square root. This has the effect
of penalizing larger errors more heavily than smaller ones, which is a useful feature.

2.5 Technical Tools

The section briefly describes the main technical tools employed in this thesis. Python, a
high-level and versatile programming language known for its clear syntax and wide-ranging
applications in data analysis and machine learning, is at the heart of the technological
infrastructure. The tools selected for this study, including Pandas, NLTK, PyTorch, Scikit-
learn, Ray Tune, and Hugging Face Transformers, among others, all interface smoothly
with Python, contributing to a cohesive analytical framework.

Pandas (McKinney, 2010) is a Python data manipulation and analysis library. Its primary
data structures, dataframes, and series are extremely flexible and efficient, making Pandas
an essential tool for managing and processing large and complex datasets.

Natural Language Toolkit (NLTK) (Loper & Bird, 2002) is a Python library for
working with human language data. It provides easy-to-use interfaces to over 50 corpora
and lexical resources, allowing for the preprocessing and analysis of textual data.

Scikit-learn (Pedregosa et al., 2018) is a Python module for machine learning built on
top of SciPy. It provides a selection of efficient tools for machine learning and statistical
modeling, including classification, regression, and clustering via a consistent interface. The
inherent simplicity of this tool allows researchers to manage model training, validation,
testing, and evaluation with minimal coding effort.

Ray Tune (Liaw et al., 2018), a component of UC Berkeley’s Ray Project, is an open-
source library designed for hyperparameter tuning. The library uses a universal API
to define search spaces and leverages cutting-edge optimization techniques, supporting
seamless integration with key machine learning frameworks.

PyTorch (Paszke et al., 2019) is a Python library for deep learning. The library offers
a flexible and intuitive interface for constructing and training various machine learning
models. Additionally, its TorchText module furnishes a robust suite of tools for processing,
loading, and handling textual data, easing the pipeline creation for NLP tasks.

Hugging Face Transformers (Wolf et al., 2020) is a state-of-the-art library for Natural
Language Processing (NLP) in Python. It provides thousands of pretrained models to
perform text-based tasks, such as text classification, information extraction, and text
generation. Transformer models have revolutionized the field of NLP, and the Hugging
Face framework provides a flexible, efficient, and scalable way of working with them.
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3. Related Work

In preparation for this thesis, an initial specialization project was carried out to gain
a better understanding of the research areas of school shooter detection and personality
modeling. This endeavor included a comprehensive literature review, the specifics of which
will be detailed in the opening section of this chapter. Additionally, insights gleaned from
this review, including pertinent datasets, models, and steps for preprocessing and feature
extraction, will be repurposed and elaborated on within this chapter.

3.1 Literature Review

In the preliminary specialization project, two literature review methods were utilized, more
specifically, a structured literature review and the snowballing approach. In this section,
the use of both methods will be presented.

3.1.1 Structured Literature Review

The structured literature review was conducted based on a suggested outline by Kofod-
Petersen (2018). This subsection will present the process, detailing the five steps imple-
mented across the three phases of the recommended structure. The first phase, planning,
involves specifying the research questions and developing a review protocol. The second
phase encompasses the actual execution of the review process. This entails the identi-
fication of research, selection of primary studies, evaluation of study quality, extraction
of data, progress monitoring, and synthesis of data. In the third and final phase, the
objective is to communicate the newly acquired knowledge and should therefore involve a
specification of a dissemination strategy, a formulation of a report, and an evaluation of
the completed report. A detailed description of each step, along with the outcomes of the
execution phase, are provided in the forthcoming subsections.

Step 1: Identification of Research

The process of collecting and exploring the literature was facilitated through Google
Scholar1, a widely recognized and extensively used academic search engine. This plat-
form was chosen due to its comprehensive coverage of scholarly literature across various
disciplines and formats. In an effort to identify literature specifically pertinent to the
project’s objective, two carefully designed search queries were crafted.

1https://scholar.google.com
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Q1: (school shooting OR gun violence OR shooting OR violent act) AND (machine
learning OR computational OR ai OR prediction OR classification) AND (social
media OR 4chan OR twitter OR reddit OR facebook OR gab OR weibo)

The first query focuses on literature concerning the automatic prediction of individuals
predisposed to violence who could potentially execute a school shooting.

Q2: (machine learning OR computational OR ai OR prediction OR classification)
AND (social media OR 4chan OR twitter OR reddit OR facebook OR gab OR weibo)
AND (personality OR personality traits OR personality profiling)

The second query tries to extract literature concerned with automatic personality profiling
and prediction using data mined from social media. Both queries were constructed based
on a set of key terms deemed highly relevant to the problem domain. The key terms are
presented in Table 3.1.

Group 1:
Violence

Group 2:
Machine Learning

Group 3:
Social media

forums

Group 4:
Personality
prediction

School shooting Machine learning Social media Personality
Gun violence Computation 4chan Personality traits
Shooting AI Twitter Profiling
Violent act Prediction Reddit

Classification Facebook
Gab
Weibo

Table 3.1: Search terms for the conducting phase described in Kofod-Petersen (2018)

Step 2 + 3: Selection of Primary Studies

To keep the scope of the literature review manageable, the articles retrieved from the
queries were limited to the first 50. However, before these were included, a set of pre-
determined exclusion criteria was applied. The criteria for removal included duplicate
entries and studies published more than 10 years prior to our research period, in this case,
before 2013. As a final step, the studies retrieved from the initial search were subject to
a study quality assessment to ensure only relevant papers were included. The inclusion
criteria and quality assessment criteria used can be found in Appendix A and Appendix B.
Following this examination, a total of 12 papers were deemed suitable for inclusion. The
studies retrieved from the structured literature review are presented in Appendix C.

Step 4 + 5: Data Extraction, Monitoring, and Synthesis

Finally, the data retrieved from the corpus resulting from the Structured Literature Review
(SLR) is summarized in Table 3.2.
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3.1
Literature

Review

Table 3.2: Data synthesized from SLR

Id Title Author(s) Year Algorithm Features Dataset(s) Summary
1 Identifying Warn-

ing Behaviors of
Violent Lone Of-
fenders in Written
Communication

L. Kaati, A.
Shrestha &
T. Sardella

2016 Adaboost
with classi-
fication trees

LIWC Texts from
schoolshooters.info,
publicly available
written comm.
from mass shoot-
ers, posts from the
white supremacist
forum Stormfront,
and other forums

Found differences in psychological
features retrieved from LIWC
for non-violent offenders vs.
violent offenders. The differ-
ences in the categories “anger”
and “psychological process”
were important in separating
offenders and non-offenders.

2 Profiling School
Shooters: Auto-
matic Text-Based
Analysis

Y. Neuman,
D. Assaf, Y.
Cohen & J.
L. Knoll

2015 KNN, Tree
classification
(CHAID), and
binary logistic
regression

Vectorial se-
mantics ap-
proach used
as features

Blogs Author-
ship Corpus and
texts written by
school shooters
gathered from
schoolshooters.info

Using a more statistics-based
approach, the authors constructed
a ranking of texts most likely to
have been written by a school
shooter. Using their method,
the school shooters’ texts were all
contained in the first 210 texts of the
ranking = 3% of their total corpus.

3 A Multi-Label,
Semi-Supervised
Classification Ap-
proach Applied
to Personality
Prediction in
Social Media

A. C. E. S.
Lima & L.
N. Castro

2014 Naïve Bayes,
SVM, and
MLP

LIWC and
MRC Psy-
cholinguistic
Database

Obama-McCain
Debate, Sanders
and SemEval2013

Accomplished an accuracy
of around 83% on Big 5
personality traits.

Continued on next page
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Table 3.2 – continued from previous page
Id Title Author(s) Year Algorithm Features Dataset(s) Summary
4 Personality Pre-

dictions Based
on User Be-
havior on the
Facebook Social
Media Platform

M. M.
Tadesse, H.
Lin, B. Xu
& L. Yang

2018 XGBoost,
SVM, logistic
regression,
and gradient
boosting

LIWC,
SPLICE, and
Social Network
Analysis (SNA)

myPersonality Found that extroverted users tend
to use fewer, but more positive
words. XGBoost outperformed
other models, most notably
on the extroversion feature
(78.6%). The SNA feature set
outperformed traditional linguistic
feature sets such as LIWC.

5 Personality Clas-
sification Based
on Twitter Text
Using Naive
Bayes, KNN
and SVM

B. Y.
Pratama &
R. Sarno

2015 MNB, KNN,
and SVM

Vector space
model

User data and posts
retrieved from
Twitter, myPer-
sonality (translated
to Indonesian)

Used a binary classifier for each
class in the Big 5 Model. After
tokenization, stemming, filtering
of stop-words, and weighting, they
achieved a max accuracy of 60%
with MNB, ultimately failing to
improve on previous work.

6 Recognising Per-
sonality Traits
Using Facebook
Status Updates

G. Farnadi,
S. Zoghbi,
M.-F. Moens
& M. De
Cock

2013 KNN, SVM,
and NB

LIWC, Social
Network Ana-
lysis (SNA)
features (net-
work character-
istics and tem-
poral features),
and other con-
tent metrics

myPersonality
and Facebook
status updates

Used binary classifiers for multi-
class classification of Big 5 Model.
Found that there is no single
kind of feature that give the best
results for all Big 5 personality
traits. They argue ML approaches
to personality recognition are
generalizable across domains.

Continued on next page
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Table 3.2 – continued from previous page
Id Title Author(s) Year Algorithm Features Dataset(s) Summary
7 Predicting Per-

sonality Traits
of Chinese Users
Based on Face-
book Wall Posts

K.-H. Peng,
L.-H. Liou,
C.-S. Chang
& D.-S. Lee

2018 SVM, NB,
and logistic
regression

Used BOW
approach for
features with
TF and TF-
IDF schemes

Facebook user data
and posts, in ad-
dition to a short
online survey cre-
ated by the authors

Used Big 5 with SMOTE to
overcome class imbalances.
Achieves surprisingly high
accuracies, with around 95%+ being
common for all algorithms used.

8 Personality Pre-
diction Sys-
tem from Face-
book Users

T. Tandera,
H. Derwin, S.
Rini, W. Yen
& L. Prasetio

2017 NB, SVM, lo-
gistic regres-
sion, gradi-
ent boosting,
LDA, MLP,
LSTM, GRU,
CNN, and
LSTM + CNN

LIWC2015,
SPLICE, and
SNA features
for traditional
methods, and
deep learn-
ing with open
vocab. (word
embeddings
- GloVe)

myPersonality
+ 150 manually
sampled Face-
book users

The authors compared a deep
learning methodology with an
open vocabulary approach using
GloVe against traditional machine
learning algorithms. Their findings
reveal that, given sufficiently large
datasets, deep learning strategies
have the potential to surpass
the performance of conventional
machine learning techniques.

9 Mining Face-
book Data for
Predictive Per-
sonality Modeling

D. Markovikj,
S. Gievska,
M. Kosinski
& D. Stillwell

2013 SVM, Simple
Minimal Op-
timization
(SMO), Multi-
BoostAB, and
AdaBoostM1

Social Net-
work features
(e.g., friends or
likes), demo-
graphic (e.g.,
age or gender),
LIWC, Part-of-
Speech (POS)
tag, AFINN
and H4Lvd
from General
Inquirer

myPersonality The study confirmed prior results
that there is no universally
optimal set of features for all
classes. However, the selection
of more discriminative features
was found to enhance accuracy.

Continued on next page
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Table 3.2 – continued from previous page
Id Title Author(s) Year Algorithm Features Dataset(s) Summary
10 Automatic Per-

sonality Assess-
ment Through
Social Media
Language

G. Park, H.
A. Schwartz,
J. C. Eich-
staedt, M.
L. Kern, M.
Kosinski, D.
J. Stillwell,
L. H. Ungar
& M. E. P.
Seligman

2014 Ridge re-
gression

Open vocab-
ulary fea-
tures (words,
phrases, and
topics). Di-
mensionality
reduction: Uni-
variate feature
selection and
random PCA

77,556 users of
myPersonality

Used the NEO-PI-R five factor
model. The study applied ridge
regression with the mentioned
features to attain state-of-the-
art performance. Concludes
that open vocabulary captures
more semantic meaning.

11 Personality Traits
on Twitter or
How to Get 1,500
Personality Tests
in a Week

B. Plank &
D. Hovy

2015 logistic regres-
sion classifier

Binary word
n-grams and
metadata (e.g.,
followers, num-
ber of tweets,
statuses)

Tweets from Twit-
ter users combined
with self-assessed
Myers-Briggs Type
Indicators

Study found that linguistic cues
are the strongest indicators
of personality. Meta-features
can help add to accuracy.

12 25 Tweets to
Know You: A
New Model to
Predict Person-
ality with So-
cial Media

P.-H.
Arnoux, A.
Xu, N. Boy-
ette, J. Mah-
mud, R.
Akkiraju &
V. Sinha

2017 Gaussian pro-
cesses

Word embed-
dings (GloVe)

Tweets from 1.3k
Twitter users sur-
veyed via web-app,
IPIP format

Word embeddings and Gaussian
processes approach outperforms
previous state-of-the-art (LIWC
+ ridge regression). Dense
word embeddings improve
performance on short texts.
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3.1.2 Applying the Snowballing Technique

As described in Section 1.3, the snowballing approach was used to find additional relevant
literature. Following the procedure described in Wohlin (2014), an initial start set of three
documents was made using Google Scholar. The first among these was the study by Kaati
et al. (2016), which was identified during the Structured Literature Review (SLR) and
hence, is included in Table 3.2. Furthermore, the work of Neuman et al. (2020) was found
in an author search from one of the initial literature review findings (Neuman et al., 2015).
Finally, the paper by Simons and Meloy (2017) was included for trying to supplement
with documents regarding threat assessment, adding a level of diversity as mentioned by
Wohlin (2014). This particular paper was selected due to being a reference in Neuman
et al. (2020), in addition to being a seemingly popular article and part of a highly rated
book associated with the field. Using this relatively small start set, justified by the fact
that the snowballing approach was intended to be supplementary to the SLR, both the
backward and forward snowballing approaches were followed for each of the articles. The
resulting papers, presented in Appendix D, can serve as additional literature to the work
already presented.

In the following sections, the findings derived from both the conducted Structured Liter-
ature Review and the application of the snowballing method will be presented.

3.2 Datasets

Online platforms and social media provide vast amounts of data that can be leveraged
for various Natural Language Processing (NLP) tasks. This has resulted in a substantial
amount of work dedicated to gathering datasets from social media for personality profiling
purposes. However, there appears to be a scarcity of datasets directly linked to profiling
school shooters. This section will introduce the datasets considered to be relevant for
further work in this area.

3.2.1 Personality Profiling Datasets

The large amount of data gathered from social media allows for an insight into people’s
lives and habits. Several datasets pertaining to personality profiling have been constructed
based on social media activity. The use and creation of these datasets will be covered in
the following subsections.

Facebook Datasets

Facebook is a platform that enables users to join groups, engage in chats, and post mes-
sages on various forums. One of its former applications, myPersonality, offered users a brief
questionnaire that would generate a Big 5 personality score upon completion. The collec-
ted dataset incorporated user posts, their respective personality scores, and user-specific
data (friends, groups, likes, etc.). According to the dataset’s authors, the application had
at least 6 million users complete the questionnaire, with about 40% of them agreeing to
their data being used for research (Stillwell & Kosinski, 2015). The dataset was discon-
tinued in 2012, and scholarly access to the full dataset was removed in April of 2018.
However, the dataset is still perhaps the most used dataset linked to Facebook.
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Tadesse et al. (2018) used a subset of 250 users, including 9917 status updates of the
myPersonality dataset. Their final dataset contained user information, status updates,
Big 5 personality labels, and Social Network Analysis (SNA) features. They attempted to
improve on previous results by feeding SNA data into an XGBoost architecture. Pratama
and Sarno (2015) retrieves a subset of 250 myPersonality users accompanied by 10000
user posts in total. These posts were then translated into Indonesian and appended with
Twitter posts from the corresponding person. The authors assume that not too much
meaning is lost in translation. The study done by Farnadi et al. (2013) opts to use the
same amount of users as both Pratama and Sarno (2015) and Tadesse et al. (2018). A total
of 9917 posts are used in combination with a corpus of essays annotated with personality
traits collected by Mairesse et al. (2007). Their approach attempts to incorporate spatial
data as well as user metadata to predict users’ Big 5 personality scores. Tandera et al.
(2017) compares the efficacy of traditional machine learning algorithms such as SVMs and
modern deep learning architectures. Similar to others, they retrieved 250 users with 10000
status updates for their dataset. However, they further expanded the dataset by manually
collecting data from an additional 150 users through the Facebook API, all of which were
annotated with Big 5 personality scores. The largest study using myPersonality found in
the literature review was by Park et al. (2014), using 71556 users from the dataset. In
this study, ridge regression was applied with external personality tests used as validation.

Twitter Datasets

Twitter is another social media giant with millions of users active every day. As mentioned
in Section 2.1, the social media platform is a microblogging site allowing users to write
posts with at most 280 characters. The platform allows users to write what they want with
little filter, making it easy to express their true feelings, whatever they may be. Several
datasets have been created to take advantage of this quality of Twitter for personality
prediction. Plank and Hovy (2015) uses a novel dataset of over 1.2 million tweets annotated
with the Myers-Briggs Type Indicator (MBTI) personality types and gender to attempt
to predict personality dimensions. The dataset was constructed by the authors and made
available on a public code repository for others to use. It is worth noting that the MBTI
types annotated are taken from the users’ own Twitter account description. Arnoux et
al. (2017) constructs a novel corpus from a self-made application. This dataset contains
tweets from 1323 unique users annotated with their Big 5 personality traits. Lima and
de Castro (2014) proposes a multi-label classifier approach using the Big 5 Model as class
labels. For performance evaluation, they utilize different sentiment analysis datasets. The
Obama-McCain Debate (OMD) dataset contains 3238 tweets from the 2008 presidential
campaign annotated with sentiment scores. The tweets are accompanied by date and user
identification. The SemEval2013 and Sanders Analytics datasets were also used in their
study. The latter seems to be discontinued but has been backed up on GitHub (Sanders
Analytics, 2013). Finally, an effort to combine Twitter data with user profiles found on
Facebook has been done, as mentioned in the former section.

3.2.2 Datasets on School Shooters and Lone Wolf Perpetrators

With such a large amount of users active on social media every day, it is only natural
to assume that also potential lone wolves or school shooters utilize them. As of the
time of writing, there are no publicly available annotated datasets directly linking social
media posts and accounts of acknowledged lone wolf perpetrators known to the authors.
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Work done in this area has relied on the construction of novel datasets, such as the
work of Ekwunife (2022). Ekwunife constructed a dataset consisting of 500 tweets related
to five different mass shooting incidents in the U.S. Neuman et al. (2020) and Kaati
et al. (2016) attempt to overcome this scarcity of social media data by using established
databases of known school shooters. The database used was schoolshooters.info (Langman,
2022). This database contains an overview of registered school shooters in the U.S., along
with documents relevant to each case. The documents used in both studies were written
material produced by the school shooters prior to an incident.

3.3 Preprocessing and Feature Extraction

This section is set to describe the methodologies identified for preprocessing and feature
extraction, specifically used in studies related to personality prediction and the identific-
ation of lone wolf perpetrators.

3.3.1 Preprocessing

Preprocessing is a crucial step of any NLP task; however, the amount and extent of the
preprocessing vary depending on the task at hand. Due to the inherently noisy nature of
social media posts, the preprocessing step usually has to weigh the amount of processing
to be done up against the potential loss of semantic meaning. Park et al. (2014) choose
to perform a minimal amount of preprocessing for this reason. They utilize the emoticon-
aware tokenizer made by Potts (2011), which preserves punctuation. Palomino and Aider
(2022) argue that the removal of punctuation could hurt sentiment analysis due to special
characters or emoticons potentially conveying sentiment. The same paper stresses the
importance of preprocessing and found that a combination of common preprocessing steps
indeed does increase the accuracy of sentiment analysis on social media texts. Due to the
concerns of over-processing listed above, the majority of papers discovered during the lit-
erature review adhere to standard practices, including lowercasing, hyperlink elimination,
special character removal, and punctuation removal. On the other hand, Plank and Hovy
(2015) found that the removal of stop words harmed performance when trying to model
Big 5 personality traits. This emphasizes the importance of tailoring the preprocessing
based on the specific dataset in use and the task at hand.

3.3.2 Feature Extraction

Features utilized for automatic detection and personality prediction typically fall into two
primary categories: linguistic features and user-specific features. This section provides a
brief overview of these features as leveraged in previous related studies.

Linguistic Features

Linguistic features are features that can be extracted from written text. Plank and Hovy
(2015) found that in their study, the strongest indicator of personality was linguistic cues.
Therefore, sufficient work should be done to extract the potential cues to ease the process of
personality prediction. The following subsection presents the linguistic features employed
in the studies identified through the literature review.
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Linguistic Inquiry and Word Count (LIWC) have been widely used for linguistic cue
extraction. LIWC is a large framework with fine-grained features that can contribute to
personality prediction. However, not all features are discriminative enough, leading to
the need for feature selection. Kaati et al. (2016) applied LIWC features to screen for
lone offenders in written text. They found that using the Mahalanobis distance to rank
each LIWC feature and selecting the 11 highest-ranking features resulted in an increase
in accuracy. Important features were articles, prepositions, and negative emotions. From
the work of Tadesse et al. (2018), the correlation between LIWC features and personality
is further analyzed using the Pearson correlation coefficient. An interesting discovery is
that features from the LIWC dictionary appear to be more discriminative or exhibit a
stronger correlation with personality compared to the newer SPLICE dictionary.

Although older, the traditional statistical approach of Bag of Words (BOW) and TF-IDF
weighting is still used as an important tool in personality prediction, often combined with
Naïve Bayes classifiers. In the paper titled “Predicting Personality Traits of Chinese Users
Based on Facebook Wall Posts”, Peng et al. (2015) apply a simple TF-IDF weighting
process to represent each user’s posts as a vector. It is worth noting that the words given
to the BOW model were tokens constructed by the Jieba Chinese text segmentation tool
(Junyi, 2020).

Another method of statistical analysis is the vectorial semantics approach of Neuman and
Cohen (2014). They argue that the attributes commonly utilized in other NLP tasks
for personality profiling, specifically LIWC and n-grams, lack the flexibility to maintain
accuracy across diverse scenarios. For instance, a person might behave and write differently
in a school setting and a private setting. With this in mind, Neuman et al. (2015) propose
vectorial semantics as an alternative to traditional machine learning to detect lone wolf
perpetrators. Vectorial semantics operates under the assumption that a word has a close
relationship with the words frequently co-occurring with it. This assumption paves the
way for representing a word as an n-dimensional vector, with the dimensions being defined
by the count of co-occurring words chosen. The direction and magnitude of the vector are
then determined by the frequency of each co-occurring word’s appearance in tandem with
the word being modeled. The words modeled can be chosen at will from any corpus of
text, making vectorial semantics more flexible than other commonly used alternatives. In
their work, they propose 13 different vectors based on previous research.

The aforementioned vectorial semantics method is an example of an open vocabulary
approach to NLP. Arnoux et al. (2017) use an open-vocab approach utilizing the popular
GloVe framework, introduced in Subsection 2.2.2. The GloVe framework uses the same
steps as the vectorial semantics presented above, requiring a pass over the corpus to be used
to learn word co-occurrences. When employing GloVe vectors as features to a Gaussian
Processes (GP) model, the authors reported an average increase of 33% in accuracy over
previous top-tier results in personality prediction, all while using only one-eighth the
amount of data. They further explained that the GloVe features and GP model equally
contribute to the performance, which means that GloVe embeddings may increase the
performance over other open-vocab approaches when applied to the same ML models.

User Specific Features

User-specific features are characteristics unique to a user profile on a social media plat-
form and might help provide further insight into a user’s lifestyle and personality. The
availability of these features varies depending on the specific platform. For instance, the
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myPersonality dataset provided researchers with data on the user’s number of friends,
posts, and likes. The same type of data can be extracted from Twitter with the number
of followers, amount of likes, and publicly available posts.

Incorporating user-specific features has proven advantageous in enhancing the accuracy of
personality prediction tasks. Plank and Hovy (2015) found that adding user-specific data
such as gender and the number of followers improved accuracy when predicting personality
traits. Further corroborating this, the work of Markovikj et al. (2013) shows that there
exists a significant correlation between user-specific features and personality traits. Among
the Big 5 personality model’s dimensions, extroversion showed the strongest correlation
with user-specific features. In particular, this trait was tightly linked to the number of
friends a user has and the groups they are part of. These findings underscore the value of
user-specific features in predicting personality traits.

3.4 Models Used

The choice of a machine learning model can often determine the success of extracting
latent information from the given features. In previous work, a wide variety of machine
learning models have been utilized. As mentioned in Section 3.2, Tadesse et al. (2018)
used an XGBoost model on labeled samples from the myPersonality dataset, outperform-
ing the baseline models used, specifically being Support Vector Machine (SVM), logistic
regression, and gradient boosting. Using the same dataset, Tandera et al. (2017) sought to
find the best-performing model, comparing various traditional and newer machine learn-
ing models. Traditional models included Naïve Bayes, SVM, logistic regression, gradient
boosting, and Linear Discriminant Analysis (LDA), all of which were tested using a 10-fold
cross-validation approach. On the other hand, the newer models used for comparison were
all types of neural networks, specifically Multi-Layer Perceptron (MLP), Long Short-Term
Memory (LSTM), Gated Recurrent Unit (GRU), and a one-dimensional Convolutional
Neural Network (CNN). Their study concluded that the deep learning networks, partic-
ularly the LSTM linked with the 1D CNN architecture, yielded the best results. Kaati
et al. (2016) used an Adaboost model with classification trees on features from LIWC and
undisclosed topic models. Neuman et al. (2015) opted for statistical models, specifically a
binary logistic regression model, a tree classification with Chi-squared Automatic Interac-
tion Detection (CHAID) and 10-fold cross-validation, and K-Nearest Neighbors with the
same cross-validation setup. This broad array of studies indicates the exploration of both
traditional and modern deep learning techniques in prior research.
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4. Data

To build a model for predicting school shooters based entirely on the posts they publish,
it is essential to have both relevant and sufficient data, although difficult to acquire. This
chapter presents the data used in the thesis and provides some insight into the reasoning
behind the choice of each dataset. The steps taken to preprocess and prepare the data for
the prediction pipeline are also described.

4.1 School Shooter Datasets

During the preliminary project leading up to this thesis, the sparsity of texts written by
school shooters became clear. Although heavily reported on by news outlets due to the
particular saliency of their crimes, the number of school shooters is low compared to other
types of criminals. Coupling this with the fact that only a subset of school shooters leave
behind written documents or social media posts makes creating a dataset of a satisfactory
size difficult. The original intention of this thesis was to collect data from school shooters’
accounts on social media such as Twitter and Facebook and use it to make predictions.
However, as moderation on these platforms is getting increasingly strict and effective,
most, if not all, social media accounts linked to persons suspected of committing school
shootings are quickly taken off their respective social media platforms. Therefore, the
data collected on school shooters is sourced from posts and texts salvaged before the
shooters’ accounts were banned or texts made public. The following subsection will detail
the collection of said data.

4.1.1 “Shooters’ words” by Peter Langman

As the amount of accounts linked to known mass shooters still open for public eyes is
very limited, large portions of the data collection process have relied on the work of Peter
Langman, Ph.D., and his online database of known American school shooters, introduced
in Subsection 3.2.2. Seeing as this database has been used by similar studies (Neuman et
al., 2015; Kaati et al., 2016; Neuman et al., 2020) and is procured by an expert in the field
of school shooter psychology, this was deemed as a reliable source of documents. With
permission from the creator, the documents from the website section called “Shooters’
words” have been collected. This section contains both original texts from the perpetrators
and a collection of social media posts from shooters active on social media. The texts
were either presented as PDF files or images. To avoid any noise from artifacts from PDF
extraction software, these files were manually scraped. Where picture quality allowed it,
each image was transcribed to text documents. Sentences and words that were difficult to
make out were ignored to prevent any contamination of the original documents’ textual
data. The collected dataset consists of 973 texts from 25 school shooters.
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4.1.2 The Twitter Archive of a Mass Shooter

The second source of texts written by school shooters is the archived tweets of the mass
shooter Randy Stair (Internet Archive, 2020). Stair did not commit a school shooting but
instead chose to open fire at his workplace. He is nevertheless considered as exhibiting
similar traits to a school shooter due to his idolization of previous school shooters and
numerous mentions of school shootings in his posts. Below are two excerpts from a journal
kept by Stair before the shooting. We believe that the texts written by Stair leading up
to his attacks are similar enough in nature to the texts collected from the previously
mentioned school shooter dataset to warrant adding them to our dataset.

Little does he know that I’m going to forever ruin “Anymore” for SR by using
it as the center piece of a high school massacre

As each day passes I feel less and less welcome on planet Earth. I wish I could
go out and shoot up a school so bad, like my college campus. There’d be no
way to kill enough people though . . . . I want to kill thousands . . . . . not
just three to twelve..

Stair was particularly active on Twitter, amassing 31545 tweets across his accounts. Many
of these were deemed irrelevant to our dataset and removed. A rough cut was made based
on the date a tweet was posted to prevent being too specific about what tweets to include.
References to violence and other school shooters can be seen to become more prevalent as
the years go on. The date for the split was therefore chosen to be 13.08.2016, as we argue
this is a time when Stair is exhibiting an increased interest in violence and revenge. After
this cut, the final portion of tweets used is 2051 out of the original 31545.

4.2 Non-Shooter Datasets

Three datasets were chosen to represent the majority class, that is, people that are not
school shooters. As the original plan of the thesis was to use techniques within the field
of personality prediction to screen for school shooters, many of the datasets previously
presented in Section 3.2 pertain to this area of research. Although these datasets are
intended for use in personality prediction, they offer a high standard as structured datasets
with exclusively English content from different parts of the web. They were therefore
viewed as suitable for the purposes of this thesis. The school shooter datasets span a range
of different formats, varying from Twitter posts to manifestos. The choice of datasets to
represent the majority class, therefore, weighted characteristics that could match those
of the school shooting datasets. Three datasets were chosen as especially suitable for the
task. These were the UMass Global English on Twitter, myPersonality, and Stream of
Consciousness datasets. Details of each of these three are presented below.

4.2.1 UMass Global English on Twitter

The UMass Global English on Twitter dataset is a dataset randomly sampled from pub-
licly available tweets from over 130 countries. The University of Massachusetts Amherst
collected and made the data available in 2016. The dataset was chosen due to its rep-
resentation of social media English, which can differ drastically from English written in
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academic or public settings. Each post is annotated with one of six labels ranging from
“definitely english” to “definitely not english”. To ensure that only tweets that were writ-
ten in English were used, only tweets labeled as “definitely english” were included in the
final dataset. The final amount of tweets used from the UMass dataset is 5086.

4.2.2 MyPersonality

As mentioned in Subsection 3.2.1, myPersonality was found to be of special interest for
the purposes of this thesis due to its representation of English on social media sites. The
myPersonality dataset was collected by the Facebook app using the same name. Users
of the Facebook app were asked to take a short questionnaire of psychological questions
to give the users a quick overview of their psychological profile. Users could then choose
to share their social media data and posts with the application. In total, 6 million users
took the questionnaire, and 40% of them opted to share their Facebook data. The final
dataset contains anonymized Facebook profiles and their posts labeled with scores for
each of the big five personality traits. MyPersonality has since been discontinued, and its
original creators are no longer distributing the dataset. During a workshop on personality
prediction by Celli et al. (2013)1, a subset of the original dataset was made public. Our
thesis utilizes this version of the myPersonality dataset. In total, this subset contains 9917
of the original posts. We chose to include all these in our final dataset. An example of a
post is shown below to illustrate the type of language used in social media settings.

HOW DID WE MEET???? Everyone play this game! Copy and paste this
phrase on your profile, you will find it amusing to remember how you met and
how you know each of your friends! Before you do that answer for me. Thank
you and I can’t wait to hear from you!!!!!

4.2.3 Stream of Consciousness

Another popular dataset is the Stream of Consciousness dataset by Pennebaker and King
(1999), containing 2467 student essays. The dataset comprises informal essays written by
students participating in a two-week summer school course on health psychology between
1993 and 1996. The students were asked to write an essay each day for at least 20
minutes and write about whatever came to mind when presented with a topic. The given
assignments mainly concerned each individual’s state of mind or significant events in the
students’ lives. Given the similarity in structure between these essays and blog posts
or diary entries, this dataset is arguably a suitable comparison for the texts by school
shooters mentioned in Subsection 4.1.1. The sample below is a cherry-picked text from
the dataset, but it still captures the overall structure of each entry in the dataset.

I wish people would come see me. I get kind of lonely sometimes or maybe it
is that I don’t want to be doing my work right now. I kind of like homework
though because when I am done I get a feeling of accomplishment. That is also
why I like to run. Because when I am done I get a feeling of accomplishment.
I am really nervous about my English paper. I don’t think it is very good. I
am going to rewrite it now since I gave been rambling for twenty minutes. I
need to pray. I wonder if God is always listening. Oh well, I’ll stop now.

1https://www.kaggle.com/competitions/twitter-personality-prediction/overview
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Each essay is written individually and has an average length of 653 words. The dataset
includes binary annotations for each of the Big-5 personality traits, indicating whether
or not the student exhibits a particular personality trait, but these annotations were not
utilized in this thesis.

4.3 Data Preprocessing

For our preprocessing step, all data from the previously mentioned datasets were combined
into a single data frame. This aggregated data was then passed through a preprocessing
pipeline. The specific steps involved in this pipeline are presented below.

4.3.1 Partitioning the Data

To ensure uniformity of input data for each model in this thesis, we tokenized each post,
splitting it into individual tokens separated by spaces. The posts were then split or
truncated based on the token count. Our literature study identified that the most used
sequence lengths for NLP tasks are around 512, though some studies use a shorter length
of 256. It was decided that both approaches should be examined. Hence, posts exceeding
the specified limit (512 or 256) were divided into multiple posts. For instance, a post
with 1200 tokens would be segmented at the 512th and 1024th tokens, and so on, until
fewer than 512 tokens remained. If a post segment resulting from this split contained
fewer tokens than a predetermined minimum, it was discarded, effectively truncating the
trailing tokens. We could not experimentally confirm a best-suited truncation limit and
therefore chose an arbitrary minimum of 20 tokens for a truncated text. This approach
was applied for both a maximum length of 512 and 256 tokens per post.

4.3.2 Text Cleaning and Preprocessing

Each post was then sent through a basic preprocessing pipeline. If a post ended up as
a 0-length string after the preprocessing pipeline, it was removed from the dataset. The
following preprocessing steps were applied to all posts:

1. Removal of XML and HTML artifacts: Some posts were retrieved from docu-
ments containing XML and HTML tags. These were removed by passing each post
through the BeautifulSoup2 library’s get_text() method.

2. Tokenization: Each post was then tokenized with NLTK’s regular expression token-
izer with the RegEx [\w’]+, removing punctuation and splitting on spaces. Later,
a choice to also use NLTK’s word_tokenize() method to preserve punctuation was
made. The tokenizers were used individually and exclusively from one another, res-
ulting in two differently tokenized versions of the datasets. The motivation behind
this was that the word embedding model FastText utilizes a lot of sub-word inform-
ation gathered from punctuation and strings like ’s or ’t.

3. Lowercasing: Transform all tokens to their lowercase form.
2https://pypi.org/project/beautifulsoup4
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4. RegEx cleaning: Lastly, each post was processed by a custom RegEx pipeline.
This pipeline consisted of four steps:

• Remove URLs and hyperlinks.
• Remove Twitter user handles by matching on “@” mentions.
• Remove hashtags, but keep the words in the hashtag.
• Normalize words and punctuation to limit repetition, preventing words like

“yeaaaa” or “okayyy...”. Letters repeating more than two times were truncated
to allow only two consecutive occurrences of the same character. Similarly,
repeated punctuation marks were normalized to a single occurrence.

4.4 Dataset Statistics

4.4.1 Length for Cutoff and Truncation

Determining the maximum length for a specific text sequence requires considering the
dataset being used and the task at hand. Ideally, we want a length that minimizes both
truncation and padding, though a balance often needs to be struck between these two
factors. The decision could be based on the median length or the average length of the
dataset. In this thesis, we opted to use the average length of each post as our cutoff
point. Table 4.1 shows the average and median length of each post, both before and after
preprocessing and splitting.

Split Average Length Median Length
- 556.96 80.0

512 302.15 56.0
256 259.04 70.0

Table 4.1: Average and median length based on split point

Based on the preliminary literature review, a max length of 512 was initially chosen. After
another review of the dataset, a shorter max length of 256 was chosen to reduce padding
further. Looking at the median length of the dataset, one could argue that the max length
parameter could be set even lower. The choice of cutoff threshold will be addressed in
more detail in Chapter 7.

4.4.2 Word and Class Distributions

A word cloud was constructed for both classes to get an overview of the language used by
school shooters compared to non-shooters. These were constructed after preprocessing the
datasets. However, splitting was not performed. After applying the previously described
preprocessing pipeline to each post, lemmatization was applied to normalize the text. The
resulting word clouds are presented in Figure 4.1 and Figure 4.2.
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Figure 4.1: School shooter wordcloud

Figure 4.2: Non-shooter wordcloud
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As anticipated, after preprocessing and splitting the data, there was an increase in the total
number of texts from both school shooters and non-shooters. However, the ratio between
the two classes remained consistent, as illustrated in Figure 4.3. Figure 4.3a depicts the
original distribution, while Figure 4.3b and Figure 4.3c (in the bottom portion) display
the text distributions after applying the two aforementioned maximum length splits. The
final ratios were approximately 0.19, 0.17, and 0.18, respectively.

(a) Text distribution without max length.
The ratio is approximately 0.19

(b) Text distribution with a maximum of
256 words. The ratio is approximately 0.17

(c) Texts distribution with a maximum of
512 words. The ratio is approximately 0.18

Figure 4.3: Class distribution based on max length cutoff point
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5. Architecture

Following the collection of the aforementioned datasets, the next step involves extracting
meaningful features and constructing models to utilize them. This chapter provides an
overall outline of the architecture, including features, models, evaluation, and the final
solution. However, the specifics of these components and their implementation, which
form a substantial part of the experimentation in this thesis, will be discussed in detail in
Chapter 6. The aim of this chapter is to lay the groundwork for understanding the thesis
architecture and overall pipeline, which is depicted in Figure 5.1.

Datasets Feature
extraction

Model
fine-tuning

Individual
evaluation

Majority
vote

Figure 5.1: Diagram of the thesis pipeline flow

5.1 Features and Feature Extraction

A machine learning model’s performance relies on high-quality data to perform well. Intro-
ducing noise in the data or just poor-quality data can drastically impact model perform-
ance during training and inference. Hence, a set of high-quality data is required to attain
the best possible model performance. This section details the set of features selected for
use in the experiments conducted in this thesis.

5.1.1 TF-IDF

Based on the results of previous tasks on text classification (Ramezani et al., 2018), the
Term Frequency-Inverse Document Frequency (TF-IDF) approach to text representation
still holds up surprisingly well on certain NLP tasks. Despite its simple nature, it was
deemed a relevant feature to test. The TF-IDF features were employed in the same manner
as LIWC features to establish a baseline for comparison with the more complex deep neural
networks and Large Language Model (LLM) approaches.

5.1.2 LIWC

As outlined in Table 3.2, a large portion of our selected primary studies have generated
feature sets through the Linguistic Inquiry and Word Count (LIWC) framework. Con-
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sequently, this framework is similarly utilized in this thesis, with the specific use of four
different versions: the 2001, 2007, 2015, and 2022 dictionaries. Feature extraction was
performed by utilizing the licensed LIWC software. LIWC features, defined by important
categories for psychological and linguistic analysis (Pennebaker et al., 2001), have been
widely used in previous works on automatic personality prediction and text analysis. They
often form a baseline predictor for comparison with other experiments, as seen in Kaati
et al. (2016) and Tandera et al. (2017).

5.1.3 Word Embeddings

Numerous studies on personality prediction and text analysis have had great results util-
izing word embeddings as their features. Further, in the specific domain of detecting
school shooters, Neuman et al. (2020) employed a simple word embedding scheme to cre-
ate word vectors from a corpus of school shooter texts. Aside from this basic approach,
more sophisticated word embedding schemes exist, each with unique advantages. For the
purpose of this thesis, we performed our experiments utilizing three different word em-
bedding schemes that have shown good results in previous work: GloVe, FastText, and
BERT embeddings.

In order to rule out data variation as a cause for performance differences, all embedding
schemes were fed the same texts before preprocessing. Additionally, to accommodate for
each word embedding scheme’s strengths, the input data was sent through their respective
preprocessing pipeline before being converted into word embeddings.

GloVe Embeddings

GloVe embeddings were extracted using the PyTorch torchtext.vocab1 package, containing
pretrained word vectors. The word vectors used were the Wikipedia 2014 + Gigaword 5 2

and the Common Crawl 840B2 sets. The first set of embeddings is available in dimensions
of 50, 100, 200, and 300, while the latter set is exclusively presented in the 300-dimensional
form. Two different dimensionalities, 50 and 300 specifically, were chosen to study their
effects on prediction accuracy. The pretrained embeddings were used in place of a ded-
icated embedding layer from an MLP. Since the dataset used in this thesis is relatively
small in comparison to the dataset used to train the pretrained embeddings, it was decided
to keep the embeddings frozen to avoid word embeddings being updated on the basis of
outliers that may occur in such a limited dataset. This also holds true for the additional
embedding schemes used.

FastText Embeddings

FastText embeddings were employed to see if subword information could help improve per-
formance. Extracted using the same package as for GloVe embeddings (torchtext.vocab1),
the specific FastText variant used were the wiki en vec3 English pretrained word embed-
ding model. These embeddings are only available as 300-dimensional word vectors.

1https://pytorch.org/text/stable/vocab.html
2https://nlp.stanford.edu/projects/glove/
3https://fasttext.cc/docs/en/pretrained-vectors.html
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BERT Embeddings

Driven by the motivation of Large Language Models’ (LLMs) impressive performance
on downstream NLP tasks, we wanted to investigate the capability of the embeddings
created by these models. LLM-generated embeddings aim to overcome the limitations
of embedding schemes like GloVe. GloVe embeddings are static in the sense that they
will be the same for a given word, regardless of the context it is placed in. In contrast,
LLM-based embeddings, built on the transformer architecture, factor in the relationships
between each word in a text sequence, making them more context-sensitive. Although
more computationally expensive than GloVe and FastText, the performance gain these
embeddings might yield should not be overlooked.

The LLM-produced embeddings used for this thesis were 768 dimensions long and gen-
erated by the BERT model bert-base-uncased4, downloaded from Hugging Face. In ac-
cordance with standard practice when using these models, no preprocessing was done on
the dataset before passing it onto BERT’s tokenizer. The bert-base-uncased embedding
model uses the WordPiece tokenizer originally proposed in Shuster and Nakajima (2012).
The pipeline to generate BERT embeddings was constructed with the Hugging Face’s
Transformers library, utilizing the following modules:

• AutoTokenizer to download and use the pretrained tokenizer for BERT.

• AutoModel to download and use the pretrained BERT model bert-base-uncased.

• pipeline to create a transformer pipeline. This pipeline takes a text sequence as
input, tokenizes it, and passes it to the bert-base-uncased model. The output is a
sequence of 768-dimensional word embeddings.

Overview of Applied Features

Table 5.1 details the tested combinations of feature sets and models. A selection of classical
models was tested using LIWC and TF-IDF features, while different word embedding
schemes were tested with all models. Moreover, the combined LIWC and word embeddings
feature set was exclusively assessed with deep learning-based classifiers. The models, in
addition to their implementation, are detailed in the following section.

Model TF-IDF LIWC LIWC + Embeddings Word Embeddings
nb x x x
svm x x x
knn x x
xgboost x x
gaussian x x
cnn x x
bilstm x x
bert x
roberta x
distilbert x
albert x

Table 5.1: Overview of which features are tested on which models

4https://huggingface.co/bert-base-uncased
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5.2 Classification Models

The classification models used in this thesis were all chosen based on their performance
presented in previous work on NLP tasks. As the field of NLP has progressed, deep learning
approaches to NLP tasks have become increasingly common. The latest advancement in
text classification is LLMs with state-of-the-art performance on nearly all standard NLP
benchmarks. We have therefore chosen to employ a collection of models from each of these
approaches to evaluate their performance for our specific use case. Traditional machine
learning models like SVM and Naïve Bayes are employed as baseline classifiers. Deep
learning architectures are then tested to see if hidden relationships between words can be
found via word embeddings. Ultimately, various transformer architectures were utilized
to test the performance of Large Language Models (LLMs) on our classification task. A
summary of the model architectures and frameworks used is shown below:

• Naïve Bayes sklearn.naive_bayes.GaussianNB

• SVM sklearn.svm.SVC

• KNN sklearn.neighbors.KNeighborsClassifier

• XGBoost xgboost.XGBClassifier

• GP sklearn.gaussian_process.GaussianProcessClassifier

• CNN torch.nn.Conv1d

• biLSTM torch.nn.LSTM

• BERT transformers.AutoModelForSequenceClassification(“bert-base-uncased”)

• RoBERTa transformers.AutoModelForSequenceClassification(“roberta-base”)

• DistilBERT transformers.AutoModelForSequenceClassification(“distilbert-base-uncased”)

• ALBERT transformers.AutoModelForSequenceClassification(“albert-base-v2”)

In order to optimize performance, a hyperparameter search was conducted for all the
listed models, aiming to identify the most suitable configurations for the given task. The
final architectures and hyperparameters are detailed in their respective experiments in
Chapter 6. As both the scikit-learn models and the pretrained models fetched from the
Transformers library have kept a default architecture besides the hyperparameter tuning,
these will not be described in detail as this is not our work.

Neural Network Architectures

Classical machine learning models are relatively simple to perform a forward pass through.
Deep learning models, however, have several layers and dimensions that can be modified
for different results. A brief description of the architecture and a forward pass for the
CNN and biLSTM models will be presented below.
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CNN Architecture

Executing a forward pass through a Convolutional Neural Network can be visualized as
shown in Algorithm 5.1. Dissecting the algorithm, the neural network is assembled with
several distinct layers. First, it consists of three one-dimensional convolution layers, each
with its own filter sizes and counts, with in-channel sizes tied to the embedding dimen-
sion. Second, the high-dimensional output from these convolutional layers is reshaped or
’flattened’ into a one-dimensional vector. This transformation is necessary to connect the
multi-dimensional outputs from the convolution layers to the subsequent fully connected
layer. The fully connected layer comes into play next, processing the flattened input from
the convolutional layers’ output. This layer’s function is to utilize the high-level features
extracted by the preceding layers for final predictions. Lastly, a single dropout layer with
a modifiable dropout rate is introduced. This layer serves an essential role in mitigating
overfitting by randomly nullifying a fraction of input units during the training process.

Algorithm 5.1 Convolutional Neural Network
Require: Input data x, Convolution list conv_list, Kernel size kernel_sz
Ensure: Output result out

1: x_conv_list← []
2: for each conv_layer in conv_list do
3: conv ← conv_layer(x)
4: conv ← relu(conv)
5: x_conv_list.append(conv)
6: end for
7: x_pool_list← []
8: for each x_conv in x_conv_list do
9: x_pool← max_pool1d(x_conv, kernel_sz)

10: x_pool_list.append(x_pool)
11: end for
12: x_flattened← concat(x_pool_list)
13: out← fully_connected(x_flattened)
14: out← dropout(out)
15: out← sigmoid(out)
16: return out

BiLSTM Architecture

While the biLSTM architecture presented in Algorithm 5.2 may appear substantially dif-
ferent from the preceding CNN architecture, the underlying layer structure remains relat-
ively unchanged. Initially, a variable number of Bidirectional Long Short-Term Memory
(biLSTM) layers are utilized, each with distinct input and hidden sizes. The input size
corresponds to the dimensionality of the tested embedding, while the hidden size can be
modified using a configurable hyperparameter. Following this, the final layers mirror those
of the CNN architecture, encompassing a dropout layer featuring a customizable dropout
threshold, a single fully connected layer that receives input from the final hidden states of
the biLSTM layers, and ultimately, a sigmoid function to generate the output prediction.
Consequently, a forward pass through the network would adhere to the sequential process
depicted in Algorithm 5.2, presented on the next page.

49



5 Architecture

Algorithm 5.2 BiLSTM and Fully Connected Network
Require: Input data x
Ensure: Output result out

1: hidden_states← biLSTM(x)
2: state_forward← get_hidden_state(last_hidden)
3: out_backward← get_hidden_state(first_hidden)
4: out_flat← concat(state_forward, out_backward)
5: out← dropout(out_flat)
6: out← fully_connected(out)
7: out← sigmoid(out)
8: return out

5.3 Evaluation of Model Performance

To ensure a fair comparison for each model, a common method of evaluating performance
had to be set. It’s important to note, however, that the most appropriate metrics for
evaluation will vary based on the task at hand. From Subsection 4.4.1, we saw that the
dataset is heavily skewed towards non-shooters with an approximate 4/1 ratio. Due to the
minority class being so underrepresented, a training step using accuracy as a performance
metric would achieve an 80% score merely by classifying all texts as the majority class,
resulting in no correct classification of school shooters. A more appropriate strategy
would involve shifting focus to metrics that emphasize the correct classification of both
the majority and minority classes, which prompts the use of the F-score. Nevertheless, due
to the profound severity of actions committed by school shooters, it was deemed critical to
detect most, if not all, posts authored by school shooters, even if it leads to misclassifying
some instances of the majority class. After all, the premise of this thesis has been centered
around the inclusion of human controllers at the end of the loop, who possess the capability
to identify and rectify any misclassifications. This supports the use of recall, which does
not assign equal importance to the minority and majority classes but instead prioritizes
accurate classification of the minority class. As a result, the final decision favored the F2-
score, which balances precision and recall, with a slight tilt towards recall. All experiment
results, however, are presented using the metrics F1-score, F2-score, precision, and recall,
to facilitate their comparison. For a more detailed discussion on the choice of evaluation
metric and its limitations, see Subsection 7.1.4.

5.4 Final Majority Vote Solution

The final experiment of this thesis attempts to improve results further by utilizing a
majority vote classifier and marks the final part of the full architecture. This solution aims
to take the best-performing models from all of the experiments. Each model’s classification
vote is weighted according to its performance on the test set. This implies that votes from
lower-performing models will carry less weight than those from higher-performing ones.
This experiment will be further detailed in Subsection 6.1.6.
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The upcoming chapter will delve into the experiments conducted and their outcomes. The
chapter is divided into three sections. Firstly, a plan for each experiment will be presented
along with the research questions they aim to address. Secondly, the experimental setup
will be described, including the technologies used and their implementation. Finally, the
results from the performed experiments will be unveiled. These will then be subject to
further analysis in Chapter 7.

6.1 Experimental Plan

To ensure a structured experimental process, an experimental plan was developed. Con-
sisting of three parts, the experiments aim to answer the first two research questions
presented in Section 1.2. Each part is carried out as a series of experiments and builds
upon each other. The first part describes the exploration of the most meaningful features
or linguistic cues in the search for a potential school shooter. Subsequently, the second
part, including experiments 2–5, aims to investigate the feasibility of utilizing written posts
to evaluate an individual’s likelihood of performing a school shooting, as captured by the
second research question. The third and final part, constituting Experiment 6, involves
implementing a combined majority vote solution to enhance prediction performance.

6.1.1 Experiment 1: Extraction and Examination of LIWC and N-Gram
Features

The first experiment aims to explore which linguistic cue is the most discriminative in
profiling a school shooter, which is strongly connected to answering the first research
question. Two approaches will be explored, the first of which is using the TF-IDF, a
unigram approach, for finding patterns in specific words utilized by school shooters vs.
non-shooters. The second approach is to utilize the framework of Linguistic Inquiry and
Word Count (LIWC), which was found to be useful in most of the related work on lone
wolf perpetrator and school shooter detection. As this thesis also utilizes a part of the
school shooter database by Langman (2022), one could compare the features found most
selective to the features found by others, establishing a baseline for comparison that will
be expanded upon in subsequent discussions.
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6.1.2 Experiment 2: TF-IDF and LIWC Features as Input to Machine
Learning Models

Building on the results of Experiment 1 and related work by Tandera et al. (2017), an
experiment to investigate the predictive power of LIWC features and TF-IDF vectors
was devised. Experiment 2 aims to implement these measures as features for machine
learning models shown to have a good performance on previous NLP tasks like personality
prediction and text classification.

6.1.3 Experiment 3: Using Word Embeddings as Features

Experiment 2 attempts to classify texts based solely on the words used in each text.
However, it does not take into account the context in which each word usually occurs.
Experiment 3 aims to use word embeddings to utilize their inherent contextual information
based on large-scale corpus training. The word embedding schemes BERT, GloVe, and
FastText, with the dimensions presented in Table 6.1, have been chosen based on their
performance on previous NLP tasks. Due to their relatively high dimensionality compared
to unigram and LIWC features, two deep neural network architectures were employed in
addition to the aforementioned classical models. The neural networks used for Experiment
3 are a Convolutional Neural Network (CNN) model and a Bidirectional Long Short-Term
Memory (biLSTM) model. This allows us to test the performance of both classical models
and deep learning models on our task of text classification.

Embedding Model Embedding Dimension
GloVe 50, 300
FastText 300
BERT 768

Table 6.1: Embedding models and their respective embedding dimensions

In this experiment, several aspects warrant further investigation, notably the maximum
length of embeddings and the position of padding. These variables can yield different
outcomes when applied to various models. Initially, we chose a standard max length
of 512, a value commonly used with state-of-the-art language models. However, it was
also considered advantageous to test a length of 256 since it aligns more closely with the
maximum length of social media posts found on platforms like Twitter. Since a portion of
the dataset contains short texts, a max length of 256 would help reduce redundant padding
tokens for these entries. Regarding padding position, three options were examined. The
first option is to pad at the head or the beginning of the text embedding. The second
approach involves evenly distributing the padding on both sides of the text. The third
and final approach is to append padding to the tail or the end of the text. Ultimately, an
examination of these factors should help identify the maximum performance achievable
with the chosen architectures.

6.1.4 Experiment 4: Combining Feature Sets

A common approach to improving model performance is feature combination. In this
experiment, we will combine feature sets from the previous experiments and use them to
train a new CNN and biLSTM classifier to see if this can improve model performance.
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6.1.5 Experiment 5: Large Language Models as Classification Models

Further investigating the possibility of extracting semantic meaning and hidden relation-
ships between linguistic features and school shooters, we wanted to test the performance of
large language models on the same task. For this purpose, we will employ state-of-the-art
models like BERT, ALBERT, RoBERTa, and DistilBERT. This concludes the series of
individual trials exploring feature and model combinations for the purpose of accurately
classifying texts written by school shooters.

6.1.6 Experiment 6: Majority Voting for Increased Prediction Perform-
ance

As a final experiment, we aim to improve upon the previous results by combining the top-
performing models from each step to construct a majority vote solution. The objective
is to form an ensemble of classifiers that collectively may enhance the overall prediction
accuracy. In order to prevent less accurate models from skewing the results, we will assign
a weight to each model’s prediction based on its prior performance. Each classifier will
assign a class label to an entry based on whether it identifies the entry as potentially
authored by a school shooter. Depending on the assigned weight, a cumulative score will
be computed. In the end, this approach could potentially lead to an improvement in the
final classification performance.

6.2 Experimental Setup

This section is intended to facilitate the reproducibility of the conducted experiments. It
will detail the process of feature extraction, outline the models used, and describe the
specific steps undertaken during implementation.

6.2.1 Unigram and Bigram Features

Unigram and bigram features were extracted using scikit-learn’s TfidfVectorizer class. The
vectorizer was initialized with the default parameters set by the library. The extraction of
unigrams and bigrams was done on the preprocessed datasets meant for GloVe embeddings.
The preprocessing steps in this pipeline are described in Section 3.3.

6.2.2 LIWC Features

The extraction of LIWC features was performed with the official LIWC-221 tool provided
by the original creators of the LIWC framework, Pennebaker et al. (2001). Feature ex-
traction was done on both the preprocessed and non-preprocessed versions of the dataset.
LIWC features were constructed for the 2001, 2007, 2015, and 2022 versions of the LIWC
dictionary to allow for testing on all versions.

1https://www.liwc.app/
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6.2.3 Word Embeddings

GloVe and FastText embeddings for this thesis were extracted using PyTorch’s torchtext
package. This package provides pretrained word embeddings for GloVe embeddings of di-
mensions 50 and 300, as well as pretrained embeddings for FastText vectors of dimension
300. The word embeddings were extracted after running the dataset through the prepro-
cessing pipeline described in Section 3.3. LLM-embeddings were extracted as detailed in
the preprocessing section as well.

Each word embedding type was padded in three different ways to test the effect of different
padding positions on prediction accuracy. The padding schemes used in this thesis are:

• Pre-padding: Padding at the front of the text sequence.

• Split padding: Splitting the padding vector at the middle, appending half at the
front of the original text sequence, and a half at the end.

• Post-padding: Padding at the end of the original text sequence.

The padding schemes were applied for both max lengths tested, namely 256 and 512.
After computing the word embeddings, they were stored for use as pre-computed word
embeddings for the experiments to come.

6.2.4 Scikit-Learn Models

For all of the models implemented through scikit-learn, the pipeline was the same. A grid
search was applied to all models, trying every combination of hyperparameters to find the
optimal combination of parameters. The GridSearchCV 2-library was implemented with
the following configurations:

• refit = “f2”: To refit the estimator using the best found parameters for maximizing
the F2-score.

• verbose = 1: To keep track of the training progress, knowing how many fits to
perform. An alternative value used was a verbosity of 3, printing the score and
parameters for each fold.

• scoring = custom scoring dictionary: The dictionary consisted of four scorers from
sklearn.metrics3, specifically the recall, precision, F1 and F2 scorers, for ensuring all
of the scores being outputted by the function.

• cv = StratifiedKFold(n_splits=3): Defines Stratified K-Fold cross-validation with
three splits to be used. This method maintains an equivalent distribution of the
minority and majority classes across each fold. The number of splits was chosen to
balance between achieving reliable model validation results and keeping the compu-
tation time manageable, given the exhaustive grid search performed for hyperpara-
meter tuning.

The result of the grid search, being the final parameter configurations for the scikit-learn
models using LIWC and word embeddings, can be found in Section F.

2https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
3https://scikit-learn.org/stable/modules/model_evaluation.html#scoring
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NB Implementation

For the implementation of a Naïve Bayes classifier, the sklearn.naive_bayes.GaussianNB4

module was used. Scikit-learn offers the ability to implement both versions mentioned
in Subsection 2.3.3, named GaussianNB and MultinomialNB specifically, each capable of
outputting a class as well as the corresponding class probability. The decision on the
Gaussian Naïve Bayes version was made based on the fact that all of the feature sets,
being TF-IDF, LIWC, and word embeddings, are continuous variables. Moreover, since
this model lacks tunable parameters, an empty grid search was conducted. This required
only a single iteration of training and serves as a baseline classifier.

KNN Implementation

The K-Nearest Neighbors (KNN) model was implemented using the classifier variant by
the name of sklearn.neighbors.KNeighborsClassifier5. The grid search was initialized with
the following parameters:

• n_neighbors: range(1, 21)

• metric: [“euclidean”, “manhattan”, “minkowski”]

SVM Implementation

The Support Vector Machine (SVM) model was implemented using sklearn.svm.SVC 6.
For the grid search, the following list of parameters were used:

• C: [0.01, 0.1, 1, 10, 100]

• kernel: [“linear”, “rbf”, “sigmoid”]

• gamma: [“scale”, “auto”]

GP Implementation

The Gaussian Processes (GP) model was put into operation using the class defined as
sklearn.gaussian_process.GaussianProcessClassifier7. For this model, a grid search for
finding the optimal kernel was performed, while all other parameters were set to default.
The tested kernels are presented below, found through experimenting with kernels on a
subset of the data and the framework suggesting the use of a WhiteKernel to account for
noise.

• DotProduct() + WhiteKernel()

• RBF(length_scale=1.0) + WhiteKernel()
4https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
5https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
6https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
7https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessClassifier.html
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XGBoost Implementation

Although in another module, the xgboost library provides an interface that is compat-
ible with scikit-learn, allowing for the same code structure to be applied for training,
testing, and hyperparameter tuning. The XGBoost model was implemented using the xg-
boost.XGBClassifier8 class specifically. The grid search was initialized with the following
parameters:

• n_estimators: [50, 100, 150, 200, 250, 300]

• learning_rate: [0.01, 0.05, 0.1]

6.2.5 Neural Network Hyperparameter Search

The neural network architectures used for Experiment 3 were a CNN9 and a biLSTM10

model from the PyTorch library. Both architectures were trained with a random hyper-
parameter search for each combination of embedding type and max length. Parameters
presented inside brackets are individual values rather than ranges if not stated otherwise.
The hyperparameter spaces used for the random searches were:

CNN

• dropout: [0.3, 0.4, 0.5, 0.6]

• learning_rate: log_uniform [0.0001, 0.1]

• batch_size: [64, 128, 256]

biLSTM

• dropout: [0.3, 0.4, 0.5, 0.6]

• learning_rate: log_uniform [0.0001, 0.1]

• batch_size: [64, 128, 256]

• hidden_size: [64, 128, 256]

• num_layers: [1, 2, 3]

6.2.6 Transformer Model Implementation and Hyperparameter Tuning

All pretrained transformer models from Hugging Face followed an identical pipeline, which
included a comprehensive stage of hyperparameter tuning. This stage sought the op-
timal parameters by examining a wide array of defined hyperparameter combinations.
To streamline and enhance this process, the Ray Tune11 library, specifically designed to
optimize hyperparameter tuning, was utilized.

8https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier
9https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html

10https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
11https://docs.ray.io/en/latest/tune/index.html
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Tuning Setup

The tune.run function from said library was initialized with the following configurations:

• num_samples = 20: The number of combinations to try. For a tradeoff between
time and performance, a number of 20 combinations were selected.

• resources_per_trial={“cpu”: 2, “gpu”: 1}: Number of CPUs and GPUs to utilize
for each trial.

• scheduler = ASHAScheduler(metric=“F2”, mode=“max”, grace_period=3)12: The
scheduler to use. The scheduler bases its decision on the highest achieving model
regarding the F2-score and always runs the model for 3 epochs before applying early
stopping if deemed beneficial.

• progress_reporter = CLIReporter()13: A class for reporting wanted metrics. The
selected metrics were F1, F2, precision, recall, loss, and the values forming the con-
fusion matrix.

Model and Hyperparameter Setup

The tuning was initialized with the same hyperparameters for all models, namely “bert-
base-uncased”, “roberta-base”, “albert-base-v2” and “distilbert-base-uncased” as intro-
duced in Section 5.2. In addition to the hyperparameters, we configured the model with
the parameter num_labels = 2, which allows the download of a model version with a
binary classification head. Additionally, the implementation uses id2label and label2id
dictionaries to assign a “positive” or “negative” label to the respective classes. The given
hyperparameter space to search within was:

• epochs = [5, 7, 10]

• train_batch_size = [32, 64]

• weight_decay = [0.0, 0.01]

• learning_rate = [1e− 3, 1e− 4, 2e− 5, 3e− 5, 5e− 5]

6.2.7 Environmental Resources

The procedures for feature extraction and model optimization were conducted utilizing
IDUN (Själander et al., 2019), a high-performance computing cluster provided by the
Norwegian University of Science and Technology (NTNU). This computing cluster incor-
porates NVIDIA Tesla A100, P100, and V100 GPUs, which significantly enhance compu-
tational efficiency, along with a diversity of CPUs. By leveraging the SLURM workload
manager14, researchers across the university have the capability to enqueue tasks, thereby
cultivating an efficient work process. This functionality proved particularly beneficial dur-
ing the execution of grid searches across all models, with individual runtimes varying
between several hours and multiple days.

12https://docs.ray.io/en/latest/tune/api/schedulers.html#asha-tune-schedulers-ashascheduler
13https://docs.ray.io/en/latest/tune/api/doc/ray.tune.CLIReporter.html
14https://slurm.schedmd.com/documentation.html
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6.3 Experimental Results

This section unveils the results of each conducted experiment, providing the foundation for
the evaluation and ensuing discussion in Chapter 7. Adhering to the framework outlined in
Section 6.1, the following subsections present the results in order, from the first experiment
to the sixth.

6.3.1 Extraction and Examination of LIWC and N-Gram Features

The first experiment was centered on identifying distinctive characteristics in the datasets
that contain posts written by school shooters as opposed to those by non-shooters. Both of
these datasets have been subject to feature extraction using LIWC and n-gram methods.
The outcomes of each technique are presented below.

LIWC

In terms of Linguistic Inquiry and Word Count (LIWC), the primary discovery pertains
to the largest positive and negative percentage disparities between the two datasets. The
variances, listed in Table 6.2, show the categories that are utilized more frequently (positive
differences) or less frequently (negative differences) by school shooters in contrast to non-
shooters. A list of mentioned LIWC categories, along with a short explanation, can be
found in Appendix E.

Positive Differences Negative Differences
Rank Category Difference (%) Category Difference (%)
1 Clout 8.1436 WC −19.2114
2 AllPunc 7.1808 Tone −12.1624
3 Period 6.4156 Authentic −5.0550
4 OtherP 3.4360 Exclam −4.6464
5 Social 3.3532 Analytic −4.4535
6 pronoun 2.7997 Lifestyle −1.9745
7 socrefs 2.3312 tone_pos −1.7535
8 ppron 2.1658 time −1.1915
9 function 1.8928 emo_pos −1.1764
10 you 1.5573 work −1.1592

Table 6.2: Top 10 largest positive and negative percentage differences between shooters
and non-shooters, according to LIWC category distributions

N-Grams

The next feature under consideration is n-grams. Due to the significant presence of posts
from Randy Stair’s various Twitter accounts in the shooter dataset, we have distinguished
between a filtered collection of n-grams and a non-filtered collection for this experiment.
The filtered n-grams have had their “Randy Stair specific” terms removed after extraction.
Nonetheless, both the filtered and non-filtered versions are presented in Table 6.3.
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Unfiltered Filtered
Rank Unigrams Bigrams Unigrams Bigrams
1 rt egs embersghostsquad fucking human race
2 egs human race didn mood music
3 embersghostsquad mood music humans santa barbara
4 fucking rachael shadows kill father house
5 andrew santa barbara columbine fucking hate
6 rachael ghost squad die didn want
7 mackenzie father house guns know hate
8 didn fan art earth better lives
9 kill fucking hate soumaya eric harris
10 die egs wiki video day retribution

Table 6.3: Top 10 most frequent n-grams for shooters sorted in descending order

6.3.2 TF-IDF and LIWC Features as Input to Machine Learning Models

Classical machine learning algorithms were applied on LIWC category scores and TF-IDF-
vectors to establish a performance baseline for subsequent experiments. The impact of
both LIWC and TF-IDF on these shallow learning models are separately delineated in the
following paragraphs.

First, a grid search was conducted on all classical baseline models across all four LIWC
versions, with the setup described in Subsection 6.2.4. The top-performing architecture for
each model and LIWC version, as outlined in Appendix F.1, was subsequently evaluated on
the test dataset. The best results for each LIWC version are detailed in Table 6.4, whereas
the exhaustive list of all results after the grid search can be found in Appendix G.1.

LIWC version Model Max Len. Precision Recall F1 F2
2022 svm 256 0.7020 0.4786 0.5691 0.5111
2015 nb 512 0.2419 0.6357 0.3504 0.4795
2007 knn 256 0.4130 0.5147 0.4583 0.4905
2001 nb 512 0.1896 0.7814 0.3052 0.4811

Table 6.4: Best results for each LIWC dictionary using classical models

Following the results of the LIWC based classifiers, it was believed that the LIWC fea-
tures might not be descriptive or many enough to encapsulate the information in a text
sufficiently. Further experimentation was therefore done with TF-IDF-vectors for NB and
SVM models. The results of this experimentation are provided in Table 6.5.

Model Max Len. Precision Recall F1 F2
svm 256 0.6456 0.7296 0.6850 0.7111
svm 512 0.6382 0.7056 0.6702 0.6910
nb 256 0.2898 0.7856 0.4234 0.5853
nb 512 0.2726 0.7663 0.4021 0.5625

Table 6.5: Results for SVM and NB on TF-IDF features
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6.3.3 Using Word Embeddings as Features

This section presents the results of the third experiment, focusing on the use of word
embeddings as features with both classical algorithms and neural networks. For the com-
prehensive lists of final model architectures and their corresponding test results, refer to
Appendix F and Appendix G, respectively.

Classical Models

Table 6.6 describes the best model, max length, and padding with their respective per-
formance metrics for each embedding type. Notably, all of the best performing models
used a variation of the Gaussian Processes architecture, with either head or tail padding.
All the best performing GP models have the same kernel setup, as shown in Table F.9.

Emb. Type Model Length Pad Precision Recall F1 F2
bert gaussian 256 head 0.7848 0.7246 0.7535 0.7359
fasttext gaussian 512 head 0.6817 0.5327 0.5980 0.5570
glove gaussian 256 tail 0.6863 0.5011 0.5793 0.5297
glove_50 gaussian 256 tail 0.6464 0.3855 0.4830 0.4193

Table 6.6: Best results for each embedding type using classical models

Deep Learning Models

Emb. Type Model Length Pad Precision Recall F1 F2
bert biLSTM 256 head 0.7913 0.9074 0.8454 0.8816
fasttext biLSTM 512 split 0.7036 0.7814 0.7405 0.7645
glove biLSTM 256 split 0.6064 0.8575 0.7104 0.7919
glove_50 biLSTM 256 head 0.4406 0.8733 0.5857 0.7300

Table 6.7: Best results for each embedding type using deep learning models

An identical approach to testing each combination of the models, max lengths, and padding
positions was utilized for the neural networks. The best performing configuration per
embedding type is illustrated in Table 6.7, along with their respective evaluation metrics
on the test dataset. The best performing architectures are listed in Table 6.8.

Configuration BERT FastText GloVe GloVe-50
model biLSTM biLSTM biLSTM biLSTM
max length 256 512 256 256
padding head split split head
dropout 0.6 0.5 0.4 0.4
learning rate 0.0063 0.0079 0.008 0.0008
batch size 256 64 256 256
hidden size 64 64 128 64
num layers 2 3 3 3

Table 6.8: Best architecture for each embedding type using deep learning models
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6.3.4 Combining Feature Sets

For the fourth experiment, the best architectures from Experiment 3 (Subsection 6.3.3)
were tested with the best LIWC feature set found from Experiment 2 (Subsection 6.3.2).
The results of applying these two models on the test dataset can be found in Table 6.9.

Model Precision Recall F1 F2
biLSTM 0.6726 0.9413 0.7846 0.8717
CNN 0.8264 0.9029 0.8630 0.8865

Table 6.9: Results for neural networks combining LIWC 2022
and BERT-embeddings

Figure 6.1 shows the confusion matrices for neural networks using a combined feature set
of embeddings and LIWC. Specifically, Figure 6.1a presents the confusion matrix for the
best performing biLSTM model, while Figure 6.1b does the same for the top-performing
CNN model.

Actual
Positive Negative

Predicted Positive 417 (TP) 203 (FP)
Negative 26 (FN) 2329 (TN)

(a) Confusion matrix for biLSTM

Actual
Positive Negative

Predicted Positive 400 (TP) 84 (FP)
Negative 43 (FN) 2448 (TN)

(b) Confusion matrix for CNN

Figure 6.1: Confusion matrices for biLSTM and CNN combining
LIWC 2022 and BERT-embeddings

6.3.5 Large Language Models as Classification Models

Model Length Precision Recall F1 F2
albert-base-v2 256 0.8884 0.8442 0.8657 0.8527
bert-base-uncased 256 0.8791 0.9029 0.8909 0.8981
distilbert-base-uncased 256 0.8995 0.9097 0.9046 0.9077
roberta-base 256 0.8925 0.9368 0.9141 0.9276

Table 6.10: Model performance metrics for pretrained transformer models

Table 6.10 presents the best models and their respective performance metrics. For the
parameters used to achieve these results, refer to Table 6.11. The full list of grid search
architectures and their test results can be found in Appendix F.4 and Appendix G.4.

Parameter ALBERT BERT DistilBERT RoBERTa
max length 256 256 256 256
epochs 7 7 7 7
batch size 32 32 32 64
learning rate 3e-05 3e-05 3e-05 2e-05
weight decay 0.0 0.1 0.1 0.0

Table 6.11: Best architecture for each pretrained transformer model
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6.3.6 Majority Voting for Increased Prediction Performance

The models scoring the highest in the F2-score metric from each experiment were then
assembled to make a final voting classifier. The models included are: SVM (LIWC), GP
(BERT-embeddings), biLSTM (BERT-embeddings), CNN (BERT-embeddings), ALBERT,
BERT, DistilBERT and RoBERTa. Each model’s vote was weighted according to their
respective F2-score on the test set. The results for the new ensemble voting classifier are
shown in Table 6.12.

Model Precision Recall F1 F2
Voting Classifier 0.9652 0.9391 0.9519 0.9442

Table 6.12: Results of voting classifier using all the best models

Examining the voting classifier, some models did not positively contribute to the final
performance. The SVM (LIWC), GP (BERT-embeddings) and ALBERT models were thus
removed. The removal of these three models from the voting pool yielded an approximate
2 percentile increase in F2-score. All final metrics for this classifier are shown in Table 6.13.

Model Precision Recall F1 F2
Voting Classifier 0.9727 0.9639 0.9683 0.9656

Table 6.13: Results of final voting classifier

As a culmination of the experiments of this chapter, the final majority vote classifier was
compared against the best architectures from each preceding experiment. The resulting
graph is presented in Figure 6.2.

Figure 6.2: Best architectures from all experiments
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7. Evaluation and Discussion

This chapter provides a thorough evaluation and discussion regarding the research carried
out in this thesis. It is structured into two main sections. The first segment is an in-depth
discussion about the decision-making processes that guided and shaped the experiments
undertaken. Following the decisions made, the limitations and ethical dilemmas related to
this thesis will be covered. In the second segment, the results derived from the experiments
will be evaluated against each other as well as contextualized in comparison to past studies
in the field of lone wolf perpetrator and school shooter identification. This section will try
to answer the research questions and goal as described in Section 1.2.

7.1 Discussion of Experimental Setup and Planning

The upcoming section delves into crucial aspects of the research process, shedding light
on the choices made that underpin this thesis. It begins with an examination of the
availability of data and the data selection process before shifting focus to the steps involved
in preprocessing data. Following this, there is an analysis of the feature selection process
and the building and training of machine learning models. The discussion concludes with
a consideration of the ethical dilemmas inherent in the application of machine learning
to tasks in the field of school shooter prediction. This aims to serve as a backdrop for
the forthcoming evaluation, enriching an understanding of the context and methodology
driving the research.

7.1.1 Data Selection and Availability

First and foremost, it is important to note the scarcity of texts written by school shooters
available at the time of writing. This may be the most significant hindrance of them all
when it comes to accurately using automatic prediction as a means of detecting school
shooters. As the dataset used only contains roughly 3000 texts written by school shoot-
ers, most of these being tweets, the dataset is relatively small to train a general model.
Optimally, the dataset used for texts by non-shooters should have been larger as well, but
this could drown out the already small minority class of school shooter texts.

Attempting to increase the size of the dataset to improve the capabilities of the models
to generalize could lead to a large class imbalance. Since the minority class is so small, a
tradeoff between dataset size and balance had to be made. For this thesis, three standard
ways to combat imbalance were initially considered; however, it was decided not to opt for
any of these and rather go for our own solution. Regular techniques such as oversampling
and undersampling may negatively affect a dataset, especially if the dataset is sufficiently
small. Seeing as the minority class in question, in reality, makes up a very small portion of
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texts posted online, it could be beneficial to keep the minority class small in comparison
to the majority class to mirror a real-world scenario. Furthermore, using an oversampling
technique when the minority class is sufficiently small could cause a large portion of the
resulting new minority class to have duplicate entries, making a model trained on this
data perform worse on unseen instances. A suggested approach to avoid this problem is
synthetic oversampling, a technique where new entries are automatically generated based
on already existing data. This could work to create a more balanced distribution of
the classes, although there could be a risk of increasing the noise already inherent in a
dataset containing free-form written posts. Taking a look at some entries in the dataset,
school shooters do not exclusively write about violence or threats in their posts. They
also frequently write more mundane posts concerning what movies they like or what food
they prefer. There are also cases in the dataset used where a post is written by a school
shooter, thus being labeled as a school shooter text, but not containing any “incriminating”
terminology or themes. An example of this is the entry presented below:

Yesssss!!!

This post was written by a school shooter, but there is nothing that could or should be
alarming about this post by itself. Therefore, one would have to take particular care
when choosing what data to base the synthetic oversampling on. If the portion of labeled
shooter posts available to the synthetic oversampling technique is small, there is also a
risk of hurting general performance present due to less general data.

Taking this into account, the techniques commonly used to combat class imbalance were
not utilized. Instead, the approach presented in Section 4.3, involving splitting of texts
into portions based on a set length, was used. This method was viewed as a reasonable
approach to increase the size of our dataset due to two reasons. Previous approaches for
NLP often use 256 and 512 tokens as their max sequence length and justify this by showing
that truncating a text after these first tokens usually do not lead to a significant decrease
in models’ predictive ability. The amount of tokens ultimately has to be viewed as a
tradeoff between splitting texts and padding shorter ones. Some of the datasets obtained
from schoolshooters.info are manifestos several pages long. Naturally, these entries exceed
the max sequence length. Instead of being truncated, these texts were rather split into
sequences of tokens equal in length to the max number of tokens. This would allow us to
retain the information contained in the entire text entry and expand our dataset in the
form of several max-length entries, all while preventing the creation of duplicate entries.
This method could, however, introduce less informative entries due to arbitrary cutoff
points as a result of the cutoff being made whenever the chosen max length is exceeded.
Nevertheless, using continuous sequences of a larger text sequence has been experimented
on before (Mulyar et al., 2019) and has proven to give desirable results. It was therefore
decided that this method of upsampling the minority class could be a feasible approach to
tackle the problem of sparse data. As seen in Figure 4.3, this did increase the amount of
school shooter relevant texts, but also the number of texts written by non-shooters. The
minority class remained approximately equal in proportion to the majority class in the
splitting process but contained a larger amount of samples to train on.

7.1.2 Preprocessing of Data

The choice of preprocessing steps is an important part of every NLP task. Choosing the
right ones for the task can affect model performance drastically. In this thesis, different
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preprocessing pipelines have been tailored to varied use cases. For statistics and graph-
ing, only punctuation removal and lemmatization were performed. This was to help the
readability and interpretability of the results presented in Experiment 1. Preprocessing
applied in the experiments concerning feature exploration was more thorough but still
just a standard preprocessing pipeline containing the removal of stopwords, special words,
and punctuation. The data was also cleaned due to some portions originating from social
media and, therefore, possibly containing hashtags, user handles, and links. It was not
desirable to perform lemmatization or stemming due to the possibility of losing context.
Notably, this preprocessing was not applied to the data sent to the language models. This
was to comply with the guidelines for the usage of these models, which state that import-
ant subword information can be gleaned from punctuation patterns and word contractions.
Therefore, only raw text data was passed to these models and their tokenizers.

Initially, the same preprocessing steps were applied before feeding the text to both GloVe
and FastText. However, FastText also promises the ability to learn subword information
and out-of-vocabulary words. It was therefore seen as beneficial to keep punctuation be-
fore generating pretrained embeddings for each token when using this embedding model.
GloVe also has pretrained word embeddings for punctuation, meaning that it should be
able to handle punctuation as well. FastText, unfortunately, does not have any docu-
mented standard of preprocessing before passing input to the model, which meant that
the preprocessing applied for this model ultimately came down to our own judgment. Ini-
tial trials were carried out on both the preprocessing applied to GloVe and the currently
used preprocessing pipeline for FastText. The results gave inconclusive answers of which
was best, as the difference in performance was only a few percentiles apart. With such a
small difference in performance, this variance could well be the result of randomly initial-
ized weights. Nevertheless, it was decided to keep punctuation for FastText embeddings
due to there being no apparent downsides of keeping it.

7.1.3 Feature Selection

Several studies have looked at automatic personality prediction in order to attempt the
identification of a specific group of people or for text classification. The de-facto person-
ality model to use for such a task seems to be the Big Five personality model, supported
by the multitude of papers found in the preliminary literature review. A report published
by the U.S. Secret Service (National Threat Assessment Center, 2019) states that school
shooters almost always had motives such as a previous grievance with a previous classmate,
a wish for fame, or a desire to kill. It is also stated that most attackers had experienced
psychological or behavioral symptoms. This could manifest as depressive symptoms or
misconduct. A personality prediction based model was therefore seen as a good fit for this
thesis. However, after discovering the lack of data on school shooter texts overall and also
the total lack of such datasets annotated with personality scores, this was decided against.
One could argue that it is possible to extract these personality scores using machine learn-
ing models instead. There is also the possibility of taking the job of annotating personality
scores into our own hands. These two alternatives were ultimately ruled out as well. The
self-annotation scheme was ruled out simply because we do not have the domain expertise
to make such classifications. Automatic personality detection was decided against because
this could be a cause of error that could contaminate the small amount of data available.
Therefore, it was decided not to utilize personality scores as features and rather keep the
problem as a simple binary classification problem. This allowed us to be certain that the
texts presented as written by school shooters actually were.
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Motivated by previous work on the automatic detection of school shooters, two feature sets
were initially examined, namely features extracted from LIWC in addition to word vectors.
LIWC features were seen as especially relevant due to the aforementioned report by the
U.S. Secret Service. Kaati et al. (2016) uses LIWC features to try to identify lone wolf
perpetrators from written communication. This would make the classification process
more dependent on psychological markers found in the written material. Due to this,
LIWC features are often seen used in work on personality prediction, such as Lima and
de Castro (2014) and Tadesse et al. (2018). Kaati et al. (2016) showed promising results
with the use of LIWC features as predictors of a lone wolf perpetrator. The datasets used
include documents from the schoolshooters.info database; however, the texts used in their
study are not exclusively written by school shooters. An important difference between the
data of Kaati et al. (2016) and ours is that their texts seem to be exclusively long-form
texts more geared towards ideologies. From an examination of this thesis’ school shooter
dataset, this is not very common at all. Only a few select texts have any mention of
ideologies, meaning that common terms relating to any ideology are hard to find. This
may explain the difference in results between our implementation of LIWC features as
predictors versus the approach shown in Kaati et al. (2016).

The second set of features investigated in this thesis was word vectors. Motivated by
Neuman et al. (2015), an initial approach was to use TF-IDF word vectors to calculate
unigram representations of the corpus. This technique proved to be more accurate than
LIWC features on our dataset. This could be related to another observation presented in
the paper by the National Threat Assessment Center (2019), which states that there is no
common profile of a school shooter. This could mean that finding common psychological
features of school shooters could prove difficult despite the fact that several have common
grievances and behavior. Another shortcoming of using LIWC features as predictors could
lie in the way the features themselves are calculated. Both feature sets are scaled according
to the size of the documents examined; LIWC is scaled by using percentage metrics, while
TF-IDF is scaled according to the number of words in the document. An important
difference is that each word’s importance in the TF-IDF model is based on how many
documents the word appears in, meaning that a word that occurs in a lot of documents is
viewed as less discriminative and therefore gains a low score. LIWC does not take this into
account, which could result in a worse separation of the shooter and non-shooter texts.

Unfortunately, there may be a risk of these vectorial semantics approaches not performing
well on completely unseen data, such as new words or new ways of writing. This is due to
feature sets generated with vectorial semantics being entirely dependent on the datasets
they are exposed to. Meaning that if, for example, a TF-IDF model is trained on only
the data contained in our datasets, the sample size would be very small compared to what
would be desirable. A way to combat this could be to use pretrained word embeddings.
Word embeddings are also often used to overcome the problem of capturing context in
word vectors. By using pretrained word embeddings such as GloVe or BERT generated
ones, relationships between words learned through billions of examples can be leveraged.
Consequently, word embeddings were adopted as an additional feature set. The motivation
is that the contextualization provided by these embeddings could assist the model in better
detecting subtle differences between texts belonging to the minority and the majority
classes. Transitioning from LIWC features to word embeddings resulted in a considerable
F2 increase, from 0.5111 to 0.7359 for the classical models, further increasing to 0.8816
with deep learning models. It is worth emphasizing that the performance of deep learning
models was not measured on LIWC features alone, making this comparison somewhat
unsubstantiated. Nevertheless, a considerable performance increase is seen when switching
from LIWC to word embeddings using classical models.
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7.1.4 Building and Selecting the Best Performing Models

The choice of models for this thesis was based on architectures identified in the preliminary
literature review to perform well on related tasks. Simple models like Support Vector
Machines and Naïve Bayes have managed to get impressive scores despite their relatively
easy implementation. Although a lot of the work done in this thesis is based on what was
extracted from the preliminary study, not all methods previously identified to perform well
did so for the case of automatic detection of school shooters. A host of different models
were applied to each set of features, all of which can be found in Section 5.2.

To find the best model for the tasks presented in each experiment, a hyperparameter
search was performed for all relevant models. All classical models were tuned using a grid
search with a set of predefined hyperparameter spaces. The larger deep learning models
and LLMs were instead tuned using a random search on hyperparameter spaces. This
random search could, in turn, mean that the absolute best hyperparameter configurations
were not found. However, the performance gain of a grid search compared to a properly
configured random search is often negligible at best (Bergstra & Bengio, 2012).

The choice of evaluation metric to base the hyperparameter search on largely depends
on the task and datasets at hand. Common metrics to optimize for are accuracy and
F1-score. In the case of this thesis, the minority class is so small that a model training
on the dataset and trying to maximize accuracy would achieve very high accuracy by
always guessing the majority class. Another approach would be to optimize towards
always correctly classifying the minority class. This could, however, lead to the opposite
problem of what was just presented, where non-shooter texts are frequently classified as
school shooter texts. Metrics that also emphasize the correct classification of all classes
would therefore be more suited for our classification problem. Consequently, the selection
was narrowed down to a variant of the generalized Fβ-score, which encompasses both
precision and recall. Opting for the F2-score over the F1-score was driven by its slightly
greater emphasis on identifying all potential school shooters. However, a consequence of
optimizing for the F2-score instead of the F1 is that misclassifications of the majority
class are not punished as harshly as misclassifications of the minority class, potentially
leading to more frequent misclassifications of the majority class. Considering the objective
of incorporating human evaluators in the process, the tradeoff of a few misclassifications
is deemed acceptable if it could lead to the discovery of a school shooter. This approach
enables human evaluators to detect and rectify any errors that may occur. Ultimately, in
the context of this thesis, the choice of evaluation metrics will largely depend on whether
the goal is to correctly classify as many school shooter texts as possible or if the goal is to
minimize misclassifications.

With this in mind, it is apparent that the models trained in this thesis all have a bias
towards the minority class. The consequences of which can be seen in one of the posts
classified as a school shooter text below.

We are not who you think we are. We are Golden.

Although a bias towards the minority class is inherent in the models, a surprisingly good
accuracy has been achieved for both classes, probably owing to the fact that the minority
class is so small that its small size might outweigh some of the weighting schemes and
optimizations applied to classify it correctly.
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7.1.5 Ethical Considerations

As stated earlier, there is no consensus on a specific set of features identifying someone
as a school shooter. This presents a problem when trying to automatically detect such
an individual. What should the models look for if there are no known profiles to match
against? What further complicates this matter is the profound effects it could have on
their lives. Machine learning is not an exact science and will likely never be. Although
technological advances continue to produce more and more accurate models, there is always
a risk of error. The question is whether the occasional error is acceptable when handling
a situation as sensitive as labeling someone as a school shooter. An easy solution would
be to ignore this problem altogether. Making such a decision, however, would be very
unwise as the models tested in this thesis are not tested on enough data to be certain
that they are accurate enough to trust. A misclassification due to model error could be
catastrophic if it is taken as fact. Therefore, the predictions made by the models in this
thesis should not be taken as absolute; even our best models misclassify text entries that
have no semblance of a school shooter text at all.

Another consideration to be made is the massive risks of privacy violations that an auto-
matic screening procedure of this nature could impose. For the purposes of this thesis,
only data written by known school shooters were collected and labeled as school shooter
texts. These documents are already publicly available, most of which have been officially
released by the police departments handling each incident. Therefore it was not viewed as
necessary to perform any form of anonymization of the individuals listed as school shooters
for this thesis. However, if a system similar to this is to be deployed in the real world,
serious consideration should be taken before collecting data. A form of consent would have
to be signed by each student at the school the systems were to be deployed, giving access
to their private social media posts and maybe even internet activity. It could be argued
that posts and accounts made publicly available are shared at the discretion and risk of
the user. On the other hand, cases like the Cambridge Analytica scandal (Cadwalladr &
Graham-Harrison, 2018; Wong, 2019) show that this truly is not the case. After granting
consent to the issuer of such a system, a student would have to live with the fact that their
every post is being monitored by a bot looking for warning signs and terms every hour,
every day. The mental strain this could inflict on a person is also an important factor
that needs to be addressed before a monitoring system can be deployed in the real world.
There are already examples of social media monitoring applications that aim to do this
out there. However, reports of their effectiveness make it hard to justify their existence
for now. Administrators using these tools report too many false alarms on texts that ob-
viously present no risk (O’Leary, 2022). The same articles also report instances of school
shootings occurring at schools actively using such monitoring services (Faife, 2022). The
problems faced here shed light on one of the main challenges with an automatic screening
approach. To be able to flag posts, the system would have to see them first. If posts
containing warning signs are posted on a platform the system does not have knowledge
of, or if a user’s profile is private, it naturally cannot be detected. A solution could be to
monitor an increasingly larger portion of the student’s online presence, but this leads us
back to the previous question of privacy.

Ultimately we find that there is no good answer to the question of whether the use of
screening tools, such as the one presented in this thesis, is substantiated. However, one
thing becomes apparent; if a school decides to test such software, it should never be used
without the supervision of a human expert able to ascertain if flagged material indeed
shows any warning signs.
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7.2 Evaluation of Results

This section will present an examination of the results obtained in Chapter 6, connecting
them with the initial goals of the thesis and discussing whether these goals were met.

Research Question 1 Which, if any, linguistic traits do school shooters have in com-
mon?

The purpose of Research Question 1 was to identify any linguistic similarities among school
shooters that could serve as a foundation for further exploration or to pinpoint specific
keywords that could be targeted by potential screening software. Looking at the results
of Experiment 1 (Subsection 6.3.1) show that there may indeed be commonalities in the
texts written by school shooters. Results of the LIWC framework show distinct differences
in the use of, among others, words concerning clout and personal pronouns. Other more
subtle measures, like the use of punctuation and periods, also seem to differ significantly.
On the other side of the spectrum, texts written by school shooters seem to contain fewer
words pertaining to everyday subjects, leading to the LIWC dimensions for lifestyle, work,
and positive emotions scoring lower for school shooters than for non-shooters.

The results of the analysis of n-grams in Experiment 1 seem to support the results shown
from the LIWC analysis. In particular, looking at the filtered bigrams section reveals a
majority of negatively loaded terms, with few, if any, positively loaded ones. Unfortunately,
the size of each document among the texts written by school shooters varies, meaning that
some school shooters may contribute more to the results of this analysis than others. This
was apparent from the start and is also why the n-grams are separated between a filtered
and unfiltered version. This filtering manages to overcome some of the noise created
by certain shooters; however, long diaries, many posts, or manifestos still have a large
influence over the final results. This can be seen in the form of unigrams like “soumaya”
or simply the term “fucking hate”. This is written multiple times by Randy Stair in
the collection of tweets gathered and only twice by Eric Harris. The rest of the dataset
contains no instances of this bigram at all; however, it is still ranked among the top 10
most distinctive for shooters. Thus, an apparent limitation due to the small sample size
used comes to light — the amount of different individuals sampled in the combined school
shooter dataset is so small that an outlier may severely affect the results gained when
examining the dataset. Therefore, insight gained from Subsection 6.3.1 should not be
taken as absolute truth but rather as a hint of what tendencies might be present in texts
written by school shooters. Nevertheless, there seem to be commonalities present between
the texts written by school shooters contained in our dataset that are represented in the
form of distinguishing unigrams and bigrams as well as LIWC dimensions. The question
of whether or not this accurately represents the actual differences between school shooter
texts and non-shooter texts on a larger scale is difficult to say for certain, and we, therefore,
conclude that the findings from Experiment 1 have too little data to substantiate a claim
of whether or not these differences are in fact true to real-world data.

The conclusions reached in the following experiments will all be affected by this premise,
meaning that the results presented in the study should not be taken as fact but rather as
a step on the way to understanding the potential use of linguistic features as predictors of
school shootings.

Research Question 2 How indicative are written records of an individual’s potential to
become a school shooter?

Judging from the conclusion to RQ1, care has to be taken when answering RQ2 as

69



7 Evaluation and Discussion

well, since these are two closely related questions. The results discussed in RQ1 seem
to show that there are linguistic cues contained in written records produced by school
shooters. Following this early experiment, the remaining experiments try to use linguistic
cues extracted from texts to determine whether it was written by a school shooter. A less
humanly tangible feature set, word embeddings, was also extracted to help with this task.
Experiment 2 (Subsection 6.3.2) suggests that using LIWC features alone give poor results
in regard to a balanced performance. The features do not seem to be descriptive enough,
making the classifiers lean heavily toward one type of prediction. Since the majority class
is non-shooters, this takes the form of classifying most texts as non-shooters. Since the
distribution of the dataset is roughly 20% school shooter texts, this approach would yield
an accuracy score of nearly 80%. The poor performance of LIWC features in this thesis
compared to the works of similar studies like Kaati et al. (2016) may be attributed to
the fact that previous studies utilizing LIWC features often incorporate them with SNA-
features. Unfortunately, most, if not all, social media profiles of the school shooters studied
for this thesis were either taken down or non-existent, making this approach infeasible.

TF-IDF features were introduced in an attempt to alleviate the shortcomings of LIWC
features. However, caution should be taken when examining the results of utilizing TF-
IDF, as the problem outlined in RQ1 persists; large text documents can influence the
model performance and artificially boost reported accuracy. This is due to the approach
used to increase the number of entries by school shooters. Splitting large manifestos or
collections of posts into smaller entries may distribute terms specifically used by only one
person across the entire dataset, meaning that the dataset now has a larger portion of
documents containing person-specific terms. If the TF-IDF classifiers are taught through
training that these terms are distinctive features of a school shooter, it will most likely
classify the texts containing these terms as school shooter texts. If new posts written
by non-shooters containing these terms are introduced to the dataset, they may very
likely be wrongfully classified as school shooters. Regardless, the TF-IDF based classifiers
performed reasonably well, with the best SVM configuration having an F2-score of 0.7111.

Referencing Subsection 7.1.3, a performance gain was seen when substituting TF-IDF
vectors with globally trained word embeddings, suggesting that the semantic information
contained in word embedding schemes such as GloVe and FastText may help represent
more attenuated linguistic cues which otherwise are hard to encapsulate in traditional
TF-IDF vectors. The best classical model utilizing BERT-generated word embeddings
saw only a slight increase in F2-score when compared to the best classical model for
TF-IDF based classifiers. Moreover, with BERT-generated word embeddings having a
dimensionality of 768 per word, one text sequence of the minimum max length of 256
would yield a matrix of 196608 values. This dimensionality may be too high for classical
models to properly be able to capture the underlying word embedding information. This
becomes apparent when comparing the results of classical model architectures to those of
deep learning-based models. The biLSTM architecture achieves an F2-score of 0.8816, an
increase of 0.1705 from the best classical approaches. As a final experiment on traditional
text vectorization techniques, the LIWC feature set was combined with the best performing
BERT-generated embeddings. Doing so yielded only a minuscule performance increase
for the best CNN architecture while actually decreasing performance for the previously
superior biLSTM implementation. The small increase in performance for the CNN model
could be attributed to chance due to a different initialization of model weights when
extending the feature set with LIWC features. The same could be said for the decrease in
performance of the biLSTM architecture. This seems to further suggest that, at least for
the texts contained in the presented dataset, LIWC features are not good estimators for
machine learning models when trying to screen for school shooters.
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As the final part of feature and model exploration, Experiment 5 shows promising results
when using raw text data as input to transformer-based language models. This reinforces
the impressive results Large Language Models have shown in NLP tasks, with all but one
of the tested architectures outperforming our word embedding trained neural networks.

Combining the best performing models from each experiment to get a balanced voting
classifier based on different feature sets yields very promising results. The performance
of this voting classifier was obtained using high-dimensional word embeddings and large
language models trained on huge datasets, meaning that the specific cues picked up by
the model are difficult to interpret. Nevertheless, the final voting classifier achieved a very
high F2-score of 0.9656, a 0.04 increase from the best LLM, RoBERTa, highlighting the
strength of such voting classifiers. When fed our testing dataset of 3000 unique texts,
the voting classifier only misclassifies 28 texts, with most of these having predicted values
very close to neutral, meaning that the classifier was conflicted as to what class the text
belonged to. This equates to an accuracy of ≈ 99%, beating previous results on automatic
prediction of school shooters (Neuman et al., 2015; Kaati et al., 2016). Judging from the
performance of the final voting classifier, we would argue that there indeed seem to be
significant linguistic cues present in the school shooter texts that hint at whether they
were written by a school shooter.

Although the solution presented in this thesis achieves an impressive F2-score, there is
another aspect that has to be taken into consideration. Our final voting classifier im-
plements an ensemble of four large language models and three deep learning models.
Additionally, these three deep learning models utilize word embeddings generated by a
large language model. Hence, the whole process of performing one full voting round is not
exactly cheap. The best solution overall would, therefore, entirely depend on a cost-to-
performance tradeoff. As is often the case with machine learning, higher accuracy means
heavier computational costs, which may not be desirable for the purposes of performing
screening on a dataset as large as social media posts. The large computational burden of
this voting classifier also brings the speed of this classifier into question. Will the classifier
even be fast enough to handle all posts being published every second? This is, in turn,
related to the question of suitability linked to the use final solution. As this thesis should
serve as more of a proof of concept and a presentation of the performance that is achiev-
able, metrics such as scalability and computational cost were not deemed relevant for each
model’s success. However, if one wants to deploy the framework presented here, such
considerations have to be made and could indeed mean that a worse-performing model
would be preferred in place of the final, computationally heavy solution.

As a final remark on the performance of the voting classifier, one should be mindful of the
fact that this classifier is constructed from a combination of the specific classifiers proven
to perform the best on the test set. In a sense, this could combat the whole purpose
of the test set itself. By cherry-picking the models performing best on the test set and
then making them collectively vote on the same test set, one could argue that we are
optimizing this voting classifier for the test set, defeating the purpose of a general test
set with completely unseen data. While examining the results of Experiment 6, it was
therefore deemed desirable to do a final test on a separate holdout set consisting of totally
unseen school shooters. After feeding the holdout set to the final voting classifier, the
classifier correctly classifies 7 out of 10 texts correctly. The problem of a small sample size
presents itself here. Some lower quality samples are incorrectly classified as these posts
contain only mundane quotes like “good bye” or “Tired of everything rn”. Judging from
the performance on this test set, it seems like the model does reasonably well on newly
introduced data despite the previously mentioned concerns.
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Research Question 3 How suitable are machine learning methods for predicting the
potential of someone performing a school shooting?

The question of whether machine learning methods are suitable for the task of automatic
prediction of school shooters is a two-sided question. Firstly, the machine learning model
must have the capability of accurately classifying the texts, with little room for error due
to the sensitive nature of the task in question. The second aspect of the problem is whether
it is ethically responsible to release such software out into the wild, no matter how well it
performs.

Based on the results gained through Experiments 2–6, it seems that an approach using
machine learning for the automatic detection of school shooters is indeed possible. Despite
the caveats discussed in Section 7.2, the final solution using a voting classifier achieves high
performance, with only a few misclassifications. Therefore, the question of whether such a
solution is suitable mostly comes down to the ethics of using such methods on real people.
Referring to the discussion from Subsection 7.1.5, we believe that there is no good answer
to this part of the question yet. We choose to err on the side of caution and say that if such
a solution is to be used, it has to go through a thorough testing regime as well as it having
to be used in combination with human professionals that will always have the final say in
what decision to take. With that in mind, the models constructed in this thesis would,
rather than being a fully automatic system automatically flagging school shooters, instead
be a ranking system flagging individual posts for a human operator to examine closer. The
motivation being that such a system could aid a human operator in finding relevant posts,
thus decreasing the workload of the human operator. Hence, machine learning methods
used to automatically predict school shooters should be used carefully in combination with
a human operator. Only then would we consider the methods presented in this thesis as
suitable for real-world use.

Goal Automatic detection of possible school shooters based on linguistic cues extracted
from their written work.

The experiments conducted in this thesis seem to coincide with statements from referenced
literature stating that there is no common profile of a school shooter, meaning that broad
spanning features such as LIWC features may not fare well on their own. The need
for more abstract features was addressed by utilizing word embeddings in combination
with deep learning models to create highly accurate model architectures. As a last step,
the aforementioned voting classifier was created by combining all the best performing
models into one weighted majority vote solution that beats solutions presented in related
work on the automatic detection of school shooters. We argue that the goal of creating
an automatic machine learning model for the prediction of school shooter texts has been
satisfied; however, future work should aim to expand the datasets presented in this thesis to
allow for more general and robust models. In the end, there still have to be made significant
considerations when employing automatic prediction models like the ones presented. RQ3
tries to touch on the ethics and legalities of such implementations; however, we argue that
this is a subject far too extensive to be exhaustively covered in the scope of this master’s
thesis. Thus, investigations into the ethics of automatic screening of school shooters stand
as an important part of the future work needed to be done before any version of such
automatic screening tools should be brought to life.
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The sections that follow intend to summarize the work of this thesis. In the first section,
the findings, together with the contribution of our final solution, will be described as a
conclusion of our work. Moreover, a section will be dedicated to highlighting research
areas potentially serving as future work for others to investigate.

8.1 Conclusion

As online forums continue to grow, the amount of posts to each forum is seeing exponential
growth. The task of finding a threat among all the non-threats becomes a needle in a
haystack problem that is increasing in scope for every day that passes. Consequently, a
manual process to screen for threats in the sea of posts is quickly becoming infeasible. This
thesis aims to address the problem of screening for school shooting threats through the
automatic detection of texts written by potential school shooters. To this end, we attempt
to apply different NLP techniques to extract features from written text to differentiate
between texts that are written by school shooters and those that are not. Analysis of
a collected set of school shooter texts shows linguistic and psycholinguistic differences
between these texts and texts written by non-shooters. Trying to utilize these differences
as distinguishing traits, LIWC, TF-IDF, and word embeddings were all tested as input
for a host of machine learning architectures. The most promising results were found when
using BERT-generated word embeddings as input for both LLMs and deep learning-based
architectures like CNN and biLSTM networks. Ultimately, a voting classifier consisting of
the best-performing models from each individual experiment was constructed to attempt
to weigh up for each model’s individual weaknesses. This final voting classifier outperforms
previous studies on the automatic detection of school shooter texts, attaining an F2-score
of 0.9656. Although a seemingly effective classifier, the ethics regarding the use of such
classifiers are still unclear. For the proposed solution to be effective, it would need access
to private social media and forum profiles. Due to this, in combination with the risk of
misclassifications and the profound effects these could have, it is our belief that such a
model is not yet suitable for use without a human expert monitoring results and flags set
by software utilizing this architecture.

8.2 Future Work

In the research for this thesis, various areas warranting further exploration have been
identified. The next section is committed to thoroughly detailing these areas, exploring
the potential enhancements we believe could contribute to the process of automatic school
shooter detection through written work.
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8.2.1 Leveraging, Expanding and Creating Data Sources

The first and perhaps most self-evident proposal for future work revolves around the
expansion of the data upon which the classification models are built. With regard to
school shooter data specifically, there is a pressing need for the broader availability of
data. While we have made significant use of the continually expanding schoolshooters.info
database, in addition to the Twitter archive of Randy Stair gathered from the Internet
Archive (2020), it is clear that the source of data remains insufficient in size. This suggests
a compelling need for a significantly larger source of documents.

An ideal solution could be for social networking services to provide a portion of data for
research, including data from blocked accounts that are currently unavailable via the tested
APIs. Given the tendency for user accounts to be suspended in the wake of newsworthy
incidents, often very quickly, there’s a valid assumption that the service providers are
aware of the reasons behind such suspensions. By assigning labels to these users indicative
of the reasons for their suspension, like being flagged as potential school shooters, and
subsequently sorting them into a category that approved researchers can access, one could
swiftly extend the available data for the experiments in this field. Alternatively, researchers
could leverage the public availability of the perpetrators’ names, which typically emerge
a few days after such an incident. This enables them to track down the online accounts
associated with these individuals. By compiling lists of usernames and cross-referencing
them with social networks or establishing links using alternative methods, the connection
between the individual and their online persona could be established. This approach
effectively bridges the gap between the user and the real-life person, offering new sources
for data collection. Although understandable that the data should be removed from the
masses based on the disturbing content it might include, this could have a significant
impact if the data were to be made available for research purposes. In addition to the data
being stored by social networking services but not fully utilized, further contributions like
the previously mentioned work of Dr. Langman, which involves the collection, verification,
and potential annotation of texts, could vastly enhance the data pool.

Another possibility of exploration involves harnessing the power of generative machine
learning models to fabricate data that mirrors the behaviors and language patterns of
school shooters. In light of advancements in text generation models that can convincingly
replicate human language, an unexploited opportunity presents itself in the synthetic gen-
eration of new data grounded in previously written text. This method, while innovative,
does come with a caveat — the possibility of overemphasizing characteristics linked to
certain school shooters. This situation arises from the fact that the texts of many school
shooters are not typically collected and publicly accessible. More often than not, these
posts are kept confidential by the networking services used, or in cases where notes were
physically written, they might not have been digitized and made publicly available. This
yields a low amount of subjects to base the characteristics on and will not help in the
case of creating a good-performing generative model. However, this can be mitigated by
expanding the breadth of real, authentic data used in the generation process. The more
diverse and extensive the data fed into these models, the better equipped they become
to produce accurate and representative text samples. Given the potential to enhance
our understanding and even aid in prevention efforts, the exploration of machine learn-
ing models, specifically in the context of synthetic data generation, holds promise. This
novel approach offers a potentially powerful tool in our ongoing efforts to understand and
counteract such societal issues, making it an area deserving of further investigation.

Lastly, data making up the portion of posts written by people belonging to the majority
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class — regular people with no traits akin to those of a school shooter — could be extended
by incorporating data from multiple sources. The Blogs Authorship corpus, previously
used in several studies included in our literature review such as Neuman et al. (2015),
Tschantret (2021), and Neuman et al. (2022), was initially collected for this research but
was later excluded due to the risk of oversaturating the dataset with the majority class.
However, this corpus, along with other widely used data sources such as the Twitter API,
Reddit API, or the Yelp Open dataset, could be utilized to ensure the same ratio if the
minority class were to increase drastically.

8.2.2 Utilizing Annotated Personality Scores

As mentioned in Subsection 7.1.3, our initial literature review led us to consider a per-
sonality prediction model as a potential solution. However, due to insufficient data and
limitations in our capacity to generate robust data, this idea was eventually abandoned.
Nevertheless, multiple studies exploring personality prediction methods grounded in mod-
els such as the Five-Factor Model or Myers-Briggs Type Indicator (MBTI) suggest po-
tential promise in this approach (Markovikj et al., 2013; Lima & de Castro, 2014; Peng
et al., 2015; Tandera et al., 2017), with an ability to quite precisely model personality for
general purposes. This implies that, given an adequate volume of appropriately labeled
data, a personality prediction model might indeed prove valuable when applied to this
specific task of detecting school shooters as well.

Two potential directions for promising future research could be unveiled. The first involves
the contribution of individuals with expertise in personality annotation, who could help
annotate a substantial amount of data related to school shooters. If this data becomes
publicly accessible, at least for research purposes, it could stimulate further investigation
into utilizing these features for the automated classification of school shooters. The second
area where future research is warranted lies in the development of a gold standard model
that could automatically apply personality scores across multiple frameworks on a variety
of text types. As a starting point, the proposed model could be trained using the existing
personality score annotated and validated data, as there exists a considerable amount
already, some of which have been referenced in this thesis. Given the broad array of
classification models that could be applied to this task, it is plausible to hypothesize that
a model capable of predicting personality scores with accuracy comparable to that of
human experts could exist, provided it is trained on sufficiently high-quality data.

As for the selection of frameworks specifically, several options can be considered, including
the aforementioned personality models, as well as specialized threat assessment protocols
such as ERG22+ (Powis et al., 2019), VERA-2R (Pressman & Flockton, 2012; Pressman
et al., 2016), MLG (Cook, 2014), and the TRAP-18 (Meloy & Gill, 2016), among others, as
mentioned in Gill et al. (2020). These protocols have been widely utilized in forensic and
law enforcement contexts to assess the risk posed by terrorists and violent extremists. If the
rankings can be transformed into machine-readable scores, there is a possibility that these
protocols could be applied to predict school shootings as well. An alternative approach
could involve examining the Dark Triad (Paulhus & Williams, 2002), which encompasses
the personality traits of narcissism, Machiavellianism, and psychopathy. By exploring the
potential connection between these dark traits and the personalities of individuals who
have perpetrated mass shootings, it may be possible to establish a correlation (Bushman,
2017; Bushman et al., 2018). Considering the array of instruments already utilized in
related domains, employing the same tools for the challenge of automated school shooter
identification could yield beneficial results in terms of predictive accuracy.
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8.2.3 Further Work on Feature Sets and Combinations of These

In this thesis, the choice of text analysis framework for creating features trying to encap-
sulate personality was the tool of Linguistic Inquiry and Word Count. We opted to utilize
this along with word embeddings, given its use in studies most closely aligned with our re-
search direction. This comparison allowed for a more equitable assessment. However, there
exist other frameworks similar to LIWC that could have been further explored. Two not-
able options found in the literature are Empath and SPLICE. Empath (Fast et al., 2016)
is a text analysis tool that enables users to create and validate new categories on-demand,
boasting a prevalidated set of 200 emotional and topical categories. It appears to rival
LIWC and even compares with it directly in their paper, with additional contenders being
ANew (Bradley & Lang, 1999), SentiWordNet (Esuli & Sebastiani, 2006), and EmoLex
(Mohammad & Turney, 2010). The second candidate, Structured Programming for Lin-
guistic Cue Extraction, used by Tandera et al. (2017) and Tadesse et al. (2018), appears
quite similar to LIWC in functionality. Additionally, a more extensive application of Prin-
cipal Component Analysis to LIWC categories could have been implemented. Although
our emphasis was placed on a deeper exploration of word embeddings, based on the find-
ings in related work and early experimentation, adopting the PCA methodology outlined
by Kaati et al. (2016) could have yielded valuable results, given the impressive perform-
ance on their dataset of lone wolf perpetrators. However, it’s important to note that their
approach involved a smaller subset of school shooter texts, although more extensive texts,
including mass shooter manifestos that range from hundreds to thousands of pages long.
Regardless, this highlights the fact that there are numerous potential frameworks, feature
sets, and combinations of these available for further exploration.

76



Bibliography

Bibliography

Arnoux, P.-H., Xu, A., Boyette, N., Mahmud, J., Akkiraju, R., & Sinha, V. (2017). 25
tweets to know you: A new model to predict personality with social media. https:
//doi.org/10.48550/arXiv.1704.05513

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learn-
ing to align and translate. Proceedings of the International Conference on Learning
Representations (ICLR). https://doi.org/10.48550/arXiv.1409.0473

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. The
Journal of Machine Learning Research, 13, 281–305. https ://doi .org/10.5555/
2188385.2188395

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching word vectors with
subword information. https://doi.org/10.48550/arXiv.1607.04606

Bradley, M. M., & Lang, P. J. (1999). Affective Norms for English Words (ANEW):
Instruction manual and affective ratings. Retrieved 3rd June 2023, from https :
//www.semanticscholar .org/paper/Affective- Norms- for- English- Words- (ANEW)
%5C%3A-Manual-Bradley-Lang/c765eb0a31849361d829b24e173a37bab0919892

Breiman, L. (2001). Random Forests. Machine learning, 45 (1), 5–32. https://doi.org/10.
1023/A:1010933404324

Bushman, B. J. (2017). Narcissism, fame seeking, and mass shootings. American Behavi-
oral Scientist, 62. https://doi.org/10.1177/0002764217739660

Bushman, B. J., Coyne, S. M., Anderson, C. A., Björkqvist, K., Boxer, P., Dodge, K. A.,
Dubow, E. F., Farrington, D. P., Gentile, D. A., Huesmann, L. R., Lansford, J. E.,
Novaco, R. W., Ostrov, J. M., Underwood, M. K., Warburton, W. A., & Ybarra,
M. L. (2018). Risk factors for youth violence: Youth violence commission, Inter-
national Society for Research on Aggression (ISRA). Aggressive Behavior, 44 (4),
331–336. https://doi.org/10.1002/ab.21766

Cadwalladr, C., & Graham-Harrison, E. (2018). Revealed: 50 million Facebook profiles
harvested for Cambridge Analytica in major data breach. The Guardian. Retrieved
2nd June 2023, from https://www.theguardian.com/news/2018/mar/17/cambridge-
analytica-facebook-influence-us-election

Celli, F., Pianesi, F., Stillwell, D., & Kosinski, M. (2013). Workshop on computational
personality recognition: Shared task. Proceedings of the International AAAI Con-
ference on Web and Social Media, 7 (2). https://doi.org/10.1609/icwsm.v7i2.14467

Chen, T., & Guestrin, C. (2016). XGBoost. Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. https://doi.org/
10.1145/2939672.2939785

Cook, A. N. (2014). Risk assessment and management of group-based violence (Doctoral
dissertation). Simon Fraser University. Retrieved 28th May 2023, from https://
core.ac.uk/download/pdf/56378418.pdf

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20 (3), 273–
297. https://doi.org/10.1007/BF00994018

77

https://doi.org/10.48550/arXiv.1704.05513
https://doi.org/10.48550/arXiv.1704.05513
https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.5555/2188385.2188395
https://doi.org/10.5555/2188385.2188395
https://doi.org/10.48550/arXiv.1607.04606
https://www.semanticscholar.org/paper/Affective-Norms-for-English-Words-(ANEW)%5C%3A-Manual-Bradley-Lang/c765eb0a31849361d829b24e173a37bab0919892
https://www.semanticscholar.org/paper/Affective-Norms-for-English-Words-(ANEW)%5C%3A-Manual-Bradley-Lang/c765eb0a31849361d829b24e173a37bab0919892
https://www.semanticscholar.org/paper/Affective-Norms-for-English-Words-(ANEW)%5C%3A-Manual-Bradley-Lang/c765eb0a31849361d829b24e173a37bab0919892
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1177/0002764217739660
https://doi.org/10.1002/ab.21766
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
https://doi.org/10.1609/icwsm.v7i2.14467
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://core.ac.uk/download/pdf/56378418.pdf
https://core.ac.uk/download/pdf/56378418.pdf
https://doi.org/10.1007/BF00994018


Bibliography

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
4171–4186. https://doi.org/10.18653/v1/N19-1423

Ekwunife, N. E. (2022). National security through social media intelligence: Domestic
incident prediction (Doctoral dissertation) [Access was given by Donna Schaeffer,
Ph.D., committee chair]. Marymount University. Retrieved 10th November 2022,
from https://www.proquest.com/openview/47a13c5fc4a34bc47135c2998cd7d94d/

Esuli, A., & Sebastiani, F. (2006). SENTIWORDNET: A publicly available lexical resource
for opinion mining. Proceedings of the Fifth International Conference on Language
Resources and Evaluation (LREC’06). Retrieved 29th May 2030, from http : //
www.lrec-conf.org/proceedings/lrec2006/pdf/384_pdf.pdf

Faife, C. (2022). After Uvalde, social media monitoring apps struggle to justify surveillance.
The Verge. Retrieved 1st June 2023, from https://www.theverge.com/2022/5/31/
23148541/digital-surveillance-school-shootings-social-sentinel-uvalde

Farnadi, G., Zoghbi, S., Moens, M.-F., & De Cock, M. (2013). Recognising personality
traits using Facebook status updates. https://doi.org/10.1609/icwsm.v7i2.14470

Fast, E., Chen, B., & Bernstein, M. S. (2016). Empath: Understanding topic signals in
large-scale text. Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems. https://doi.org/10.1145/2858036.2858535

Gill, P., Marchment, Z., Zolghadriha, S., Salman, N., Rottweiler, B., Clemmow, C., & Vegt,
I. v. d. (2020). Advances in violent extremist risk analysis. In D. M. D. Silva &
M. Deflem (Eds.), Radicalization and counter-radicalization (pp. 55–74). Emerald
Publishing Limited. https://doi.org/10.1108/S1521-613620200000025004

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. Retrieved
5th November 2022, from http://www.deeplearningbook.org

Hamm, M., & Spaaij, R. (2015). Lone wolf terrorism in America: Using knowledge of radic-
alization pathways to forge prevention strategies. Washington, DC: US Department
of Justice. https://doi.org/doi.org/10.3886/ICPSR36107.v1

Harris, Z. S. (1954). Distributional structure. WORD, 10 (2-3), 146–162. https://doi.org/
10.1080/00437956.1954.11659520

Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support
Vector Machines. IEEE Intelligent Systems and their applications, 13 (4), 18–28.
https://doi.org/10.1109/5254.708428

Ho, T. K. (1995). Random decision forests. Proceedings of 3rd International Conference on
Document Analysis and Recognition, 1, 278–282. https://doi.org/10.1109/ICDAR.
1995.598994

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation,
9 (8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Internet Archive. (2020). The complete works of Randy Stair. Retrieved 12th February
2023, from https://archive.org/details/RandyStair

Junyi, S. (2020). Jieba Chinese text segmentation. Retrieved 5th December 2022, from
https://github.com/fxsjy/jieba

Kaati, L., Shrestha, A., & Sardella, T. (2016). Identifying warning behaviors of violent
lone offenders in written communication, 1053–1060. https ://doi .org/10.1109/
ICDMW.2016.0152

Kofod-Petersen, A. (2018). How to do a structured literature review in computer science.
Retrieved 15th September 2022, from https://www.researchgate.net/publication/
265158913_How_to_do_a_Structured_Literature_Review_in_computer_science

78

https://doi.org/10.18653/v1/N19-1423
https://www.proquest.com/openview/47a13c5fc4a34bc47135c2998cd7d94d/
http://www.lrec-conf.org/proceedings/lrec2006/pdf/384_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/384_pdf.pdf
https://www.theverge.com/2022/5/31/23148541/digital-surveillance-school-shootings-social-sentinel-uvalde
https://www.theverge.com/2022/5/31/23148541/digital-surveillance-school-shootings-social-sentinel-uvalde
https://doi.org/10.1609/icwsm.v7i2.14470
https://doi.org/10.1145/2858036.2858535
https://doi.org/10.1108/S1521-613620200000025004
http://www.deeplearningbook.org
https://doi.org/doi.org/10.3886/ICPSR36107.v1
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1109/5254.708428
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1162/neco.1997.9.8.1735
https://archive.org/details/RandyStair
https://github.com/fxsjy/jieba
https://doi.org/10.1109/ICDMW.2016.0152
https://doi.org/10.1109/ICDMW.2016.0152
https://www.researchgate.net/publication/265158913_How_to_do_a_Structured_Literature_Review_in_computer_science
https://www.researchgate.net/publication/265158913_How_to_do_a_Structured_Literature_Review_in_computer_science


Bibliography

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2020). ALBERT:
A lite BERT for self-supervised learning of language representations. https://doi.
org/10.48550/arXiv.1909.11942

Langman, P. (2022). School shooters .info: Resources on school shootings, perpetrators,
and prevention. Retrieved 22nd January 2023, from https://schoolshooters.info

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86 (11), 2278–2324. https://doi.
org/10.1109/5.726791

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J. E., & Stoica, I. (2018). Tune:
A research platform for distributed model selection and training. https://doi.org/
10.48550/arXiv.1807.05118

Lima, A. C. E., & de Castro, L. N. (2014). A multi-label, semi-supervised classification
approach applied to personality prediction in social media. Neural Networks, 58,
122–130. https://doi.org/10.1016/j.neunet.2014.05.020

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer,
L., & Stoyanov, V. (2019). RoBERTa: A robustly optimized bert pretraining ap-
proach. https://doi.org/10.48550/arXiv.1907.11692

Loper, E., & Bird, S. (2002). NLTK: The Natural Language Toolkit. https://doi.org/10.
48550/arXiv.cs/0205028

Mairesse, F., Walker, M., Mehl, M., & Moore, R. (2007). Using linguistic cues for the
automatic recognition of personality in conversation and text. J. Artif. Intell. Res.
(JAIR), 30, 457–500. https://doi.org/10.1613/jair.2349

Markovikj, D., Gievska, S., Kosinski, M., & Stillwell, D. (2013). Mining Facebook data
for predictive personality modeling. https://doi.org/10.1609/icwsm.v7i2.14466

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5 (4), 115–133. https://doi.org/
10.1007/BF02478259

McKinney, W. (2010). Data structures for statistical computing in Python. In S. van der
Walt & J. Millman (Eds.), Proceedings of the 9th Python in science conference:
SciPy 2010 (pp. 56–61). SciPy. https://doi.org/10.25080/Majora-92bf1922-00a

Meloy, J., & Gill, P. (2016). The lone-actor terrorist and the TRAP-18. Journal of Threat
Assessment and Management, 3, 37–52. https://doi.org/10.1037/tam0000061

Meta. (2023). Meta reports first quarter 2023 results. Retrieved 26th May 2023, from
https://s21.q4cdn.com/399680738/files/doc_news/Meta-Reports-First-Quarter-
2023-Results-2023.pdf

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word rep-
resentations in vector space. https://doi.org/10.48550/arXiv.1301.3781

Minsky, M., & Papert, S. (1969). Perceptrons: An introduction to computational geometry.
MIT Press. https://doi.org/10.7551/mitpress/11301.001.0001

Mitchell, T. M. (1997). Machine learning (1st ed.). McGraw-Hill Professional.
Mohammad, S., & Turney, P. (2010). Emotions evoked by common words and phrases:

Using Mechanical Turk to create an emotion lexicon. Proceedings of the NAACL
HLT 2010 Workshop on Computational Approaches to Analysis and Generation of
Emotion in Text, 26–34. https://doi.org/10.5555/1860631.1860635

Mulyar, A., Schumacher, E., Rouhizadeh, M., & Dredze, M. (2019). Phenotyping of clinical
notes with improved document classification models using contextualized neural
language models. https://doi.org/10.48550/arXiv.1910.13664

National Threat Assessment Center. (2019). Protecting America’s schools: A U.S. Secret
Service analysis of targeted school violence. Retrieved 24th May 2023, from https:
//www.secretservice.gov/sites/default/files/2020-04/Protecting_Americas_Schools.
pdf

79

https://doi.org/10.48550/arXiv.1909.11942
https://doi.org/10.48550/arXiv.1909.11942
https://schoolshooters.info
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.48550/arXiv.1807.05118
https://doi.org/10.48550/arXiv.1807.05118
https://doi.org/10.1016/j.neunet.2014.05.020
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.cs/0205028
https://doi.org/10.48550/arXiv.cs/0205028
https://doi.org/10.1613/jair.2349
https://doi.org/10.1609/icwsm.v7i2.14466
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1037/tam0000061
https://s21.q4cdn.com/399680738/files/doc_news/Meta-Reports-First-Quarter-2023-Results-2023.pdf
https://s21.q4cdn.com/399680738/files/doc_news/Meta-Reports-First-Quarter-2023-Results-2023.pdf
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.7551/mitpress/11301.001.0001
https://doi.org/10.5555/1860631.1860635
https://doi.org/10.48550/arXiv.1910.13664
https://www.secretservice.gov/sites/default/files/2020-04/Protecting_Americas_Schools.pdf
https://www.secretservice.gov/sites/default/files/2020-04/Protecting_Americas_Schools.pdf
https://www.secretservice.gov/sites/default/files/2020-04/Protecting_Americas_Schools.pdf


Bibliography

Neuman, Y., Assaf, D., Cohen, Y., & Knoll, J. L. (2015). Profiling school shooters: Auto-
matic text-based analysis. Frontiers in Psychiatry, 86. https://doi.org/10.3389/
fpsyt.2015.00086

Neuman, Y., & Cohen, Y. (2014). A vectorial semantics approach to personality assess-
ment. https://doi.org/10.1038/srep04761

Neuman, Y., Erez, E. S., Tschantret, J., & Weiss, H. (2022). Themes of revenge: Automatic
identification of vengeful content in textual data. https://doi.org/10.48550/arXiv.
2205.01731

Neuman, Y., Lev-Ran, Y., & Erez, E. S. (2020). Screening for potential school shooters
through the Weight of Evidence. Heliyon, 6. https://doi.org/10.1016/j.heliyon.
2020.e05066

O’Leary, L. (2022). Why expensive social media monitoring has failed to protect schools.
Slate. Retrieved 1st June 2023, from https://slate.com/technology/2022/06/social-
media-monitoring-software-schools-safety.html

O’Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. https:
//doi.org/10.48550/arXiv.1511.08458

Palomino, M., & Aider, F. (2022). Evaluating the effectiveness of text pre-processing in sen-
timent analysis. Applied Sciences, 12, 8765. https://doi.org/10.3390/app12178765

Park, G., Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Kosinski, M., Stillwell, D. J.,
Ungar, L. H., & Seligman, M. E. P. (2014). Automatic personality assessment
through social media language. Journal of Personality and Social Psychology. https:
//doi.org/10.1037/pspp0000020

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., . . . Chintala, S.
(2019). Pytorch: An imperative style, high-performance deep learning library. In
Advances in neural information processing systems 32 (pp. 8024–8035). arXiv.
https://doi.org/10.48550/arXiv.1912.01703

Paulhus, D. L., & Williams, K. M. (2002). The Dark Triad of personality: Narcissism,
Machiavellianism, and psychopathy. Journal of Research in Personality, 36 (6),
556–563. https://doi.org/10.1016/S0092-6566(02)00505-6

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., & Duchesnay, E. (2018). Scikit-learn: Machine learn-
ing in Python. https://doi.org/10.48550/arXiv.1201.0490

Peng, K.-H., Liou, L.-H., Chang, C.-S., & Lee, D.-S. (2015). Predicting personality traits
of Chinese users based on Facebook wall posts. https://doi.org/10.1109/WOCC.
2015.7346106

Pennebaker, J. W., & King, L. A. (1999). Linguistic styles: Language use as an individual
difference. Journal of Personality and Social Psychology, 77 (6), 1296–1312. https:
//doi.org/10.1037/0022-3514.77.6.1296

Pennebaker, J. W., Francis, M. E., & Booth, R. J. (2001). Linguistic Inquiry and Word
Count: LIWC 2001. Retrieved 12th March 2023, from https://www.researchgate.
net/publication/239667728_Linguistic_Inquiry_and_Word_Count_LIWC_LIWC2001

Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global Vectors for Word Rep-
resentation. Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 1532–1543. https://doi.org/10.3115/v1/D14-1162

Plank, B., & Hovy, D. (2015). Personality traits on Twitter—or—How to get 1,500 per-
sonality tests in a week, 92–98. https://doi.org/10.18653/v1/W15-2913

Potts, C. (2011). Happyfuntokenizing.py. Retrieved 9th December 2022, from http : / /
sentiment.christopherpotts.net/code-data/happyfuntokenizing.py

80

https://doi.org/10.3389/fpsyt.2015.00086
https://doi.org/10.3389/fpsyt.2015.00086
https://doi.org/10.1038/srep04761
https://doi.org/10.48550/arXiv.2205.01731
https://doi.org/10.48550/arXiv.2205.01731
https://doi.org/10.1016/j.heliyon.2020.e05066
https://doi.org/10.1016/j.heliyon.2020.e05066
https://slate.com/technology/2022/06/social-media-monitoring-software-schools-safety.html
https://slate.com/technology/2022/06/social-media-monitoring-software-schools-safety.html
https://doi.org/10.48550/arXiv.1511.08458
https://doi.org/10.48550/arXiv.1511.08458
https://doi.org/10.3390/app12178765
https://doi.org/10.1037/pspp0000020
https://doi.org/10.1037/pspp0000020
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.1016/S0092-6566(02)00505-6
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1109/WOCC.2015.7346106
https://doi.org/10.1109/WOCC.2015.7346106
https://doi.org/10.1037/0022-3514.77.6.1296
https://doi.org/10.1037/0022-3514.77.6.1296
https://www.researchgate.net/publication/239667728_Linguistic_Inquiry_and_Word_Count_LIWC_LIWC2001
https://www.researchgate.net/publication/239667728_Linguistic_Inquiry_and_Word_Count_LIWC_LIWC2001
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/W15-2913
http://sentiment.christopherpotts.net/code-data/happyfuntokenizing.py
http://sentiment.christopherpotts.net/code-data/happyfuntokenizing.py


Bibliography

Powis, B., Randhawa, K., & Bishopp, D. (2019). An examination of the structural prop-
erties of the Extremism Risk Guidelines (ERG22+): A structured formulation tool
for extremist offenders. 33 (6), 1141–1159. https://doi.org/10.1080/09546553.2019.
1598392

Pratama, B. Y., & Sarno, R. (2015). Personality classification based on Twitter text using
Naive Bayes, KNN and SVM, 170–174. https://doi.org/10.1109/ICODSE.2015.
7436992

Pressman, D. E., & Flockton, J. (2012). Calibrating risk for violent political extremists
and terrorists: The VERA 2 structured assessment. The British Journal of Forensic
Practice, 14 (4), 237–251. https://doi.org/10.1108/14636641211283057

Pressman, D. E., Flockton, J., Rinne, T., & Duits, N. (2016). Violent Extremism Risk
Assessment, version 2-revised (VERA-2R). Retrieved 27th May 2023, from https://
home-affairs.ec.europa.eu/networks/radicalisation-awareness-network-ran/collection-
inspiring - practices / ran - practices / violent - extremism - risk - assessment - version - 2 -
revised-vera-2r-pressman-rinne-duits-flockton-2016_en

Ramezani, M., Feizi-Dekhshi, M.-R., Balafar, M.-A., Asgari-Chenaghlu, M., Feizi-Derakhshi,
A.-R., Nikzad-Khasmakhi, N., Ranjbar-Khadivi, M., Jahanbakhsh-Nagadeh, Z.,
Zafarani-Moattar, E., & Rahkar-Farshi, R. (2018). Automatic personality predic-
tion; an enhanced method using ensemble modeling. https://doi.org/10.48550/
arXiv.2007.04571

Rasmussen, C. E., & Williams, C. K. I. (2005). Gaussian Processes for Machine Learning.
The MIT Press. https://doi.org/10.7551/mitpress/3206.001.0001

Riedman, D. (2023). K-12 school shooting database. Retrieved 20th May 2023, from https:
//k12ssdb.org/all-shootings

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological review, 65 (6), 386. https://doi.org/doi.
org/10.1037/h0042519

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323 (6088), 533–536. https://doi.org/10.1038/
323533a0

Sanders Analytics. (2013). Twitter corpus. Retrieved 8th December 2022, from https :
//github.com/zfz/twitter_corpus

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2020). DistilBERT, a distilled version of
BERT: Smaller, faster, cheaper and lighter. https://doi.org/10.48550/arXiv.1910.
01108

Semenov, A., Veijalainen, J., & Kyppo, J. (2010). Analysing the presence of school-
shooting related communities at social media sites. International Journal of Multi-
media Intelligence and Security, 1 (3). https://doi.org/10.1504/IJMIS.2010.037540

Shuster, M., & Nakajima, K. (2012). Japanese and Korean word search. https://doi.org/
10.1109/ICASSP.2012.6289079

Simons, A., & Meloy, J. R. (2017). Foundations of threat assessment and management,
627–644. https://doi.org/10.1007/978-3-319-61625-4_36

Själander, M., Jahre, M., Tufte, G., & Reissmann, N. (2019). EPIC: An energy-efficient,
high-performance GPGPU computing research infrastructure. https://doi.org/10.
48550/arXiv.1912.05848

Spärck Jones, K. (2004). A statistical interpretation of term specificity in retrieval. Journal
of Documentation, 60, 493–502. https://doi.org/10.1108/00220410410560573

Statista. (2023). Most popular social networks worldwide as of January 2023, ranked by
number of monthly active users. Retrieved 30th May 2023, from https://www.
statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/

81

https://doi.org/10.1080/09546553.2019.1598392
https://doi.org/10.1080/09546553.2019.1598392
https://doi.org/10.1109/ICODSE.2015.7436992
https://doi.org/10.1109/ICODSE.2015.7436992
https://doi.org/10.1108/14636641211283057
https://home-affairs.ec.europa.eu/networks/radicalisation-awareness-network-ran/collection-inspiring-practices/ran-practices/violent-extremism-risk-assessment-version-2-revised-vera-2r-pressman-rinne-duits-flockton-2016_en
https://home-affairs.ec.europa.eu/networks/radicalisation-awareness-network-ran/collection-inspiring-practices/ran-practices/violent-extremism-risk-assessment-version-2-revised-vera-2r-pressman-rinne-duits-flockton-2016_en
https://home-affairs.ec.europa.eu/networks/radicalisation-awareness-network-ran/collection-inspiring-practices/ran-practices/violent-extremism-risk-assessment-version-2-revised-vera-2r-pressman-rinne-duits-flockton-2016_en
https://home-affairs.ec.europa.eu/networks/radicalisation-awareness-network-ran/collection-inspiring-practices/ran-practices/violent-extremism-risk-assessment-version-2-revised-vera-2r-pressman-rinne-duits-flockton-2016_en
https://doi.org/10.48550/arXiv.2007.04571
https://doi.org/10.48550/arXiv.2007.04571
https://doi.org/10.7551/mitpress/3206.001.0001
https://k12ssdb.org/all-shootings
https://k12ssdb.org/all-shootings
https://doi.org/doi.org/10.1037/h0042519
https://doi.org/doi.org/10.1037/h0042519
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://github.com/zfz/twitter_corpus
https://github.com/zfz/twitter_corpus
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.1504/IJMIS.2010.037540
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1007/978-3-319-61625-4_36
https://doi.org/10.48550/arXiv.1912.05848
https://doi.org/10.48550/arXiv.1912.05848
https://doi.org/10.1108/00220410410560573
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/


Bibliography

Stillwell, D., & Kosinski, M. (2015). myPersonality project website. Retrieved 25th May
2023, from https://sites.google.com/michalkosinski.com/mypersonality

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural
networks. https://doi.org/10.48550/arXiv.1409.3215

Tadesse, M. M., Lin, H., Xu, B., & Yang, L. (2018). Personality predictions based on user
behavior on the Facebook social media platform. IEEE Access, 6. https://doi.org/
10.1109/ACCESS.2018.2876502

Tandera, T., Hendro, Suhartono, D., Wongso, R., & Prasetio, Y. L. (2017). Personality
prediction system from Facebook users. Procedia Computer Science, 116, 604–611.
https://doi.org/10.1016/j.procs.2017.10.016

Tschantret, J. (2021). The psychology of right-wing terrorism: A text-based personality
analysis. Psychology of Violence, 11, 113–122. https://doi.org/10.1037/vio0000362

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł., & Polosukhin, I. (2017). Attention is all you need. Proceedings of the 31st
International Conference on Neural Information Processing Systems, 6000–6010.
https://doi.org/10.48550/arXiv.1706.03762

Vision of Humanity. (2019). Global Terrorism Index: The rise of the self-radicalised lone
wolf terrorist. Retrieved 4th December 2022, from https://www.visionofhumanity.
org/increase-in-self-radicalised-lone-wolf-attackers/

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a rep-
lication in software engineering, 1–10. https://doi.org/10.1145/2601248.2601268

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault,
T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C.,
Jernite, Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., . . . Rush, A. M. (2020).
HuggingFace’s Transformers: State-of-the-art natural language processing. https:
//doi.org/10.48550/arXiv.1910.03771

Wong, J. C. (2019). The Cambridge Analytica scandal changed the world – but it didn’t
change Facebook. The Guardian. Retrieved 2nd June 2023, from https://www.
theguardian . com / technology / 2019 / mar / 17 / the - cambridge - analytica - scandal -
changed-the-world-but-it-didnt-change-facebook

Zhang, H. (2004). The optimality of Naive Bayes. Proceedings of the Seventeenth Interna-
tional Florida Artificial Intelligence Research Society Conference, FLAIRS 2004, 2,
562–567. Retrieved 28th May 2023, from https://www.researchgate.net/publication/
221439320_The_Optimality_of_Naive_Bayes

82

https://sites.google.com/michalkosinski.com/mypersonality
https://doi.org/10.48550/arXiv.1409.3215
https://doi.org/10.1109/ACCESS.2018.2876502
https://doi.org/10.1109/ACCESS.2018.2876502
https://doi.org/10.1016/j.procs.2017.10.016
https://doi.org/10.1037/vio0000362
https://doi.org/10.48550/arXiv.1706.03762
https://www.visionofhumanity.org/increase-in-self-radicalised-lone-wolf-attackers/
https://www.visionofhumanity.org/increase-in-self-radicalised-lone-wolf-attackers/
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.48550/arXiv.1910.03771
https://www.theguardian.com/technology/2019/mar/17/the-cambridge-analytica-scandal-changed-the-world-but-it-didnt-change-facebook
https://www.theguardian.com/technology/2019/mar/17/the-cambridge-analytica-scandal-changed-the-world-but-it-didnt-change-facebook
https://www.theguardian.com/technology/2019/mar/17/the-cambridge-analytica-scandal-changed-the-world-but-it-didnt-change-facebook
https://www.researchgate.net/publication/221439320_The_Optimality_of_Naive_Bayes
https://www.researchgate.net/publication/221439320_The_Optimality_of_Naive_Bayes


A Primary and Secondary Inclusion Criteria

Appendices

A Primary and Secondary Inclusion Criteria

Q1:
Primary Inclusion Criteria

• The study’s main concern is predicting/screening people capable of performing a
school shooting.

• The study is a primary study presenting empirical results.

Secondary Inclusion Criteria

• The study focuses on finding people capable of performing a school shooting based
on written social media activity

Q2:
Primary Inclusion Criteria

• The study’s main concern is the prediction of personality.

• The study is a primary study presenting empirical results.

Secondary Inclusion Criteria

• The study focuses on predicting personality traits based on written social media
activity.
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Appendix B

B Quality Assessment Criteria

1. Is there a clear statement of the aim of the research?

2. Is the study put into the context of other studies and research?

3. Are system or algorithmic design decisions justified?

4. Is the test data set reproducible?

5. Is the study algorithm reproducible?

6. Is the experimental procedure thoroughly explained and reproducible?

7. Is it clearly stated in the study which other algorithms the study’s algorithm(s) have
been compared with?

8. Are the performance metrics used in the study explained and justified?

9. Are the test results thoroughly analyzed?

10. Does the test evidence support the findings presented?
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C Primary Studies from the Literature Review

C Primary Studies from the Literature Review

Id Title Author(s)
1 Identifying Warning Behaviors of Violent

Lone Offenders in Written Communication
L. Kaati, A. Shrestha
& T. Sardella

2 Profiling School Shooters: Auto-
matic Text-Based Analysis

Y. Neuman, D. Assaf, Y.
Cohen & J. L. Knoll

3 A Multi-Label, Semi-Supervised Classific-
ation Approach Applied to Personality
Prediction in Social Media

A. C. E. S. Lima &
L. N. Castro

4 Personality Predictions Based on User Behavior
on the Facebook Social Media Platform

M. M. Tadesse, H. Lin,
B. Xu & L. Yang

5 Personality Classification Based on Twitter
Text Using Naive Bayes, KNN and SVM

B. Y. Pratama & R. Sarno

6 Recognising Personality Traits Us-
ing Facebook Status Updates

G. Farnadi, S. Zoghbi, M.-F.
Moens & M. De Cock

7 Predicting Personality Traits of Chinese
Users Based on Facebook Wall Posts

K.-H. Peng, L.-H. Liou,
C.-S. Chang & D.-S. Lee

8 Personality Prediction System
from Facebook Users

T. Tandera, H. Derwin, S.
Rini, W. Yen & L. Prasetio

9 Mining Facebook Data for Predict-
ive Personality Modeling

D. Markovikj, S. Gievska,
M. Kosinski & D. Stillwell

10 Automatic Personality Assessment
Through Social Media Language

G. Park, H. A. Schwartz, J.
C. Eichstaedt, M. L. Kern, M.
Kosinski, D. J. Stillwell, L. H.
Ungar & M. E. P. Seligman

11 Personality Traits on Twitter or How to
Get 1,500 Personality Tests in a Week

B. Plank & D. Hovy

12 25 Tweets to Know You: A New Model to
Predict Personality With Social Media

P.-H. Arnoux, A. Xu, N.
Boyette, J. Mahmud, R.
Akkiraju & V. Sinha

Table C.1: List of studies returned from literature search
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Appendix D

D Supplementary Papers from the Literature Review

Title Author(s) Year
How to (Better) Find a Perpetrator in a Hay-
stack

Y. Neuman, Y. Cohen & Y.
Neuman

2019

Empath: Understanding Topic Signals in
Large-Scale Text

E. Fast, B. Chen & M. S.
Bernstein

2016

Themes of Revenge: Automatic Identifica-
tion of Vengeful Content in Textual Data

Y. Neuman, E. S. Erez, J.
Tschantret & H. Weiss

2022

Visualizing the Relationship Among Indicat-
ors for Lone Actor Terrorist Attacks: Multi-
dimensional Scaling and the TRAP-18

A. Goodwill & J. R. Meloy 2019

TRAP-18 Indicators Validated Through the
Forensic Linguistic Analysis of Targeted Vi-
olence Manifestos.

J. Kupper & J. R. Meloy 2021

Detecting Linguistic Markers of Violent Ex-
tremism in Online Environments

F. Johansson, L. Kaati &
M. Sahlgren

2017

Detecting Linguistic Markers for Radical Vi-
olence in Social Media

K. Cohen, F. Johansson, L.
Kaati & J. C. Mork

2014

Linguistic Analysis of Lone Offender Mani-
festos

L. Kaati, A. Shrestha & K.
Cohen

2016

Assessing Violence Risk in Threatening Com-
munications

K. Glasgow & R. Schouten 2014

The Role of Warning Behaviors in Threat As-
sessment: An Exploration and Suggested Ty-
pology

J. R. Meloy, J. Hoffmann,
A. Guldimann & D. James

2012

A Linguistic Analysis of Mass Shooter Journ-
als, Diaries, Correspondence, and Manifestos

H. Duong 2020

Advances in Violent Extremist Risk Analysis P. Gill, Z. Marchment, S.
Zolghadriha, N. Salman,
B. Rottweiler, C. Clem-
mow & I. V. D. Vegt

2020

Analysis of Weak Signals for Detecting Lone
Wolf Terrorists

J. Brynielsson, A.
Horndahl, F. Johansson,
L. Kaati, C. Mårtenson &
P. Svenson

2012

Assessment of Risk in Written Communica-
tion Introducing the Profile Risk Assessment
Tool (PRAT)

N. Akrami, A. Shrestha,
M. Berggren, L. Kaati &
M. Obaidi

2018

Table D.1: List of 14 supplementary papers after applying the snowballing method
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E LIWC Categories

E LIWC Categories

Category Description
Affiliation Words related to social and familial connections.
Allpunc The count of all punctuation marks in the text.
Allure Words related to attraction, appeal, and charm.
Analytic A measure of the formal, logical, and hierarchical thinking in a text.
Authentic A measure of the authenticity or honesty of the text.
Big Words Words with more than six letters.
Clout A measure of the authoritativeness or confidence of the text.
Cognition Related to cognitive processes, such as thinking and problem-solving.
Communication Words related to interaction, dialogue, and communication.
Compare Words used to make comparisons (e.g., greater, less, as).
Conflict Words related to disagreement, conflict, and struggle.
Curiosity Words related to interest, curiosity, and inquisitiveness.
Emo_pos Words related to positive emotions, such as love, nice, sweet.
Exclam The count of exclamation marks (!) in the text.
Fatigue Words related to tiredness, exhaustion, and fatigue.
Friends Words related to friends and companionship.
Function Function words, which include pronouns, prepositions, auxiliary verbs,

conjunctions, and articles.
Humans Words specifically referring to human beings.
Insight Words related to understanding or revelation (e.g., think, know).
Lifestyle Words related to social, personal, leisure, home, and money matters.
Memory Words related to remembrance, nostalgia, and memory.
Mental Words related to cognitive processes and mental states.
Moral Words related to morality, ethics, and values.
Need Words expressing requirement, necessity, or desire.
Otherp The count of other punctuations (excluding period, comma, colon, semi-

colon, question mark, and exclamation mark) in the text.
Period The count of periods (.) in the text.
Politics Words related to political processes, issues, and ideologies.
Ppron Personal pronouns, including first, second, and third person pronouns.
Pronoun Words that take the place of a noun or noun phrase (e.g., he, she, it).
Reward Words related to rewards, success, and achievements.
Risk Words related to danger, risk, and uncertainty.
Social Words referring to other people and social processes.
Socrefs Social references, usually measured as the use of social words.
Swear Words Profane, vulgar, or offensive language.
Time Words related to time, including past, present, and future tenses.
Tone_pos A measure of the positive emotional tone of the text.
Tone A measure of the emotional tone of the text, with higher values indicat-

ing a more positive tone.
WC (Word Count) The total number of words in a text.
Want Words expressing desire, longing, or wish.
Wellness Words related to health and well-being.
Work Words related to work, job, and career.
You Second person pronouns (you, your, yours, etc.).

Table E.1: Glossary of mentioned LIWC categories
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Appendix F

F Hyperparameter Configurations

F.1 Scikit-Learn Models on LIWC

Naïve Bayes (NB)

LIWC Version Max Length Parameters
2001 256 -
2001 512 -
2007 256 -
2007 512 -
2015 256 -
2015 512 -
2022 256 -
2022 512 -

Table F.1: Final hyperparameters per LIWC version and max length for NB

K-Nearest Neighbors (KNN)

LIWC Version Max Length Metric N_Neighbors
2001 256 euclidean 1
2001 512 euclidean 1
2007 256 manhattan 1
2007 512 manhattan 1
2015 256 manhattan 1
2015 512 manhattan 1
2022 256 manhattan 1
2022 512 manhattan 1

Table F.2: Final hyperparameters per LIWC version and max length for KNN

Support Vector Machine (SVM)

LIWC Version Max Length C Gamma Kernel
2001 256 100 scale rbf
2001 512 100 scale rbf
2007 256 100 scale rbf
2007 512 100 scale rbf
2015 256 100 scale rbf
2015 512 100 scale rbf
2022 256 100 scale rbf
2022 512 100 scale rbf

Table F.3: Final hyperparameters per LIWC version and max length for SVM
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F Hyperparameter Configurations

Gaussian Processes (GP)

LIWC Version Max Length Kernel
2001 256 RBF(length_scale=1) + WhiteKernel(noise_level=1)
2001 512 RBF(length_scale=1) + WhiteKernel(noise_level=1)
2007 256 RBF(length_scale=1) + WhiteKernel(noise_level=1)
2007 512 RBF(length_scale=1) + WhiteKernel(noise_level=1)
2015 256 RBF(length_scale=1) + WhiteKernel(noise_level=1)
2015 512 RBF(length_scale=1) + WhiteKernel(noise_level=1)
2022 256 RBF(length_scale=1) + WhiteKernel(noise_level=1)
2022 512 RBF(length_scale=1) + WhiteKernel(noise_level=1)

Table F.4: Final hyperparameters per LIWC version and max length for GP

Extreme Gradient Boosting (XGBoost)

LIWC Version Max Length Learning Rate N_Estimators
2001 256 0.1 300
2001 512 0.1 300
2007 256 0.1 300
2007 512 0.1 300
2015 256 0.1 300
2015 512 0.1 300
2022 256 0.1 300
2022 512 0.1 300

Table F.5: Final hyperparameters per LIWC version and max length for XGBoost
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Appendix F

F.2 Scikit-Learn Models on Word Embeddings

Naïve Bayes (NB)

Emb. Type Max Length Padding Parameters
bert 256 head -
bert 256 split -
bert 256 tail -
bert 512 head -
bert 512 split -
bert 512 tail -
fasttext 256 head -
fasttext 256 split -
fasttext 256 tail -
fasttext 512 head -
fasttext 512 split -
fasttext 512 tail -
glove 256 head -
glove 256 split -
glove 256 tail -
glove 512 head -
glove 512 split -
glove 512 tail -
glove_50 256 head -
glove_50 256 split -
glove_50 256 tail -
glove_50 512 head -
glove_50 512 split -
glove_50 512 tail -

Table F.6: Final hyperparameters per combination of max length, embedding type, and
padding position for NB on word embeddings
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F Hyperparameter Configurations

K-Nearest Neighbors (KNN)

Emb. Type Max Length Padding Metric N_Neighbors
bert 256 head manhattan 1
bert 256 split manhattan 1
bert 256 tail manhattan 1
bert 512 head manhattan 1
bert 512 split manhattan 1
bert 512 tail manhattan 1
fasttext 256 head manhattan 1
fasttext 256 split manhattan 1
fasttext 256 tail manhattan 1
fasttext 512 head manhattan 1
fasttext 512 split manhattan 1
fasttext 512 tail manhattan 1
glove 256 head euclidean 1
glove 256 split euclidean 1
glove 256 tail euclidean 1
glove 512 head euclidean 1
glove 512 split euclidean 1
glove 512 tail euclidean 1
glove_50 256 head manhattan 1
glove_50 256 split euclidean 1
glove_50 256 tail euclidean 1
glove_50 512 head manhattan 1
glove_50 512 split euclidean 1
glove_50 512 tail euclidean 1

Table F.7: Final hyperparameters per combination of max length, embedding type, and
padding position for KNN on word embeddings
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Appendix F

Support Vector Machine (SVM)

Emb. Type Max Length Padding Kernel C Gamma
bert 256 head sigmoid 100 scale
bert 256 split sigmoid 100 scale
bert 256 tail sigmoid 100 scale
bert 512 head linear 0.1 scale
bert 512 split sigmoid 100 scale
bert 512 tail sigmoid 100 scale
fasttext 256 head sigmoid 100 scale
fasttext 256 split sigmoid 100 scale
fasttext 256 tail sigmoid 100 scale
fasttext 512 head sigmoid 100 scale
fasttext 512 split sigmoid 100 scale
fasttext 512 tail sigmoid 100 scale
glove 256 head sigmoid 100 scale
glove 256 split sigmoid 100 scale
glove 256 tail linear 10 scale
glove 512 head sigmoid 100 scale
glove 512 split sigmoid 100 scale
glove 512 tail linear 10 scale
glove_50 256 head sigmoid 100 scale
glove_50 256 split linear 100 scale
glove_50 256 tail sigmoid 100 scale
glove_50 512 head sigmoid 100 scale
glove_50 512 split linear 0.1 scale
glove_50 512 tail sigmoid 100 scale

Table F.8: Final hyperparameters per combination of max length, embedding type, and
padding position for SVM on word embeddings
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F Hyperparameter Configurations

Gaussian Processes (GP)

Max
Length

Emb.
Type

Pad.
Pos. Kernel

bert 256 head DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
bert 256 split RBF(length_scale=1) + WhiteKernel(noise_level=1)
bert 256 tail DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
bert 512 head DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
bert 512 split RBF(length_scale=1) + WhiteKernel(noise_level=1)
bert 512 tail RBF(length_scale=1) + WhiteKernel(noise_level=1)
fasttext 256 head DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
fasttext 256 split DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
fasttext 256 tail DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
fasttext 512 head DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
fasttext 512 split DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
fasttext 512 tail DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
glove 256 head DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
glove 256 split DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
glove 256 tail DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
glove 512 head DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
glove 512 split DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
glove 512 tail DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
glove_50 256 head DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
glove_50 256 split DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
glove_50 256 tail DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
glove_50 512 head DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
glove_50 512 split DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)
glove_50 512 tail DotProduct(sigma_0=1) + WhiteKernel(noise_level=1)

Table F.9: Final hyperparameters per combination of max length, embedding type, and
padding position for GP on word embeddings
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Appendix F

Extreme Gradient Boosting (XGBoost)

Max
Length

Embedding
Type

Padding
Position

Learning
Rate

Number of
Estimators Gamma

bert 256 head 0.1 250 0
bert 256 split 0.1 250 0
bert 256 tail 0.1 250 0
bert 512 head 0.1 200 0
bert 512 split 0.01 50 0
bert 512 tail 0.1 250 0
fasttext 256 head 0.1 300 0
fasttext 256 split 0.1 300 0
fasttext 256 tail 0.1 300 0
fasttext 512 head 0.1 250 0
fasttext 512 split 0.1 150 0
fasttext 512 tail 0.1 250 0
glove 256 head 0.1 300 0
glove 256 split 0.1 150 0
glove 256 tail 0.1 250 0
glove 512 head 0.1 250 0
glove 512 split 0.1 250 0
glove 512 tail 0.1 300 0
glove_50 256 head 0.1 300 0
glove_50 256 split 0.1 300 0
glove_50 256 tail 0.1 300 0
glove_50 512 head 0.1 300 0
glove_50 512 split 0.1 250 0
glove_50 512 tail 0.1 200 0

Table F.10: Final hyperparameters per combination of max length, embedding type, and
padding position for XGBoost on word embeddings
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F Hyperparameter Configurations

F.3 PyTorch Neural Networks on Word Embeddings

Bidirectional Long Short-Term Memory (biLSTM)

Embedding
Type

Max
Length

Pad.
Pos. Dropout LR Batch

Size
Hidden

Size Layers

bert 256 head 0.6 0.0063 256 64 2
bert 256 split 0.6 0.0054 128 256 2
bert 256 tail 0.5 0.0002 256 256 3
bert 512 head 0.3 0.0011 128 256 1
bert 512 split 0.5 0.0052 256 64 1
bert 512 tail 0.4 0.0009 128 128 2
fasttext 256 head 0.3 0.0003 128 128 3
fasttext 256 split 0.4 0.0005 64 64 1
fasttext 256 tail 0.6 0.0034 128 64 1
fasttext 512 head 0.3 0.0006 64 256 1
fasttext 512 split 0.5 0.0079 64 64 3
fasttext 512 tail 0.4 0.0002 64 256 2
glove 256 head 0.4 0.0026 128 128 2
glove 256 split 0.4 0.0085 256 64 3
glove 256 tail 0.3 0.0334 256 64 1
glove 512 head 0.4 0.0002 128 128 3
glove 512 split 0.3 0.0144 256 64 1
glove 512 tail 0.6 0.0007 64 256 2
glove_50 256 head 0.4 0.0008 256 128 3
glove_50 256 split 0.6 0.0025 256 256 3
glove_50 256 tail 0.5 0.0008 256 64 3
glove_50 512 head 0.5 0.0075 256 64 3
glove_50 512 split 0.6 0.0035 256 256 1
glove_50 512 tail 0.4 0.0004 64 256 2

Table F.11: Final hyperparameters per combination of max length, embedding type, and
padding position for biLSTM on word embeddings
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Appendix F

Convolutional Neural Network (CNN)

Embedding
Type

Max
Length

Padding
Position Dropout LR Batch

Size
bert 256 head 0.6 0.0002 64
bert 256 split 0.3 0.0001 64
bert 256 tail 0.3 0.0003 128
bert 512 head 0.3 0.0011 256
bert 512 split 0.4 0.0002 128
bert 512 tail 0.5 0.0010 256
fasttext 256 head 0.3 0.0049 128
fasttext 256 split 0.3 0.0005 64
fasttext 256 tail 0.4 0.0064 128
fasttext 512 head 0.3 0.0018 256
fasttext 512 split 0.3 0.0010 256
fasttext 512 tail 0.3 0.0003 128
glove 256 head 0.3 0.0005 128
glove 256 split 0.5 0.0010 128
glove 256 tail 0.3 0.0008 64
glove 512 head 0.3 0.0011 256
glove 512 split 0.3 0.0006 128
glove 512 tail 0.3 0.0009 256
glove_50 256 head 0.4 0.0042 256
glove_50 256 split 0.3 0.0009 128
glove_50 256 tail 0.4 0.0019 128
glove_50 512 head 0.3 0.0009 256
glove_50 512 split 0.5 0.0017 128
glove_50 512 tail 0.3 0.0011 128

Table F.12: Final hyperparameters per combination of max length, embedding type, and
padding position for CNN on word embeddings
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F Hyperparameter Configurations

F.4 Hugging Face Transformer Models

Model Max
Length Epochs Batch

Size
Learning

Rate
Weight
Decay

albert-base-v2 256 7 32 3e-05 0.0
albert-base-v2 512 5 32 2e-05 0.1
bert-base-uncased 256 7 32 3e-05 0.1
bert-base-uncased 512 7 32 2e-05 0.1
distilbert-base-uncased 256 7 32 3e-05 0.1
distilbert-base-uncased 512 7 32 3e-05 0.0
roberta-base 256 7 64 2e-05 0.0
roberta-base 512 10 32 2e-05 0.0

Table F.13: Final hyperparameters for Large Language Models
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G Test Results

G.1 Scikit-Learn Models on LIWC

Max Length 256 Max Length 512
Model Precision Recall F1 F2 Precision Recall F1 F2
nb 0.1828 0.7788 0.2961 0.4714 0.1865 0.7965 0.3022 0.4815
knn 0.4141 0.4515 0.4320 0.4435 0.4050 0.4447 0.4240 0.4362
svm 0.7020 0.4786 0.5691 0.5111 0.7095 0.4297 0.5352 0.4664
gaussian 0.7583 0.2054 0.3233 0.2405 0.7596 0.1985 0.3147 0.2329
xgboost 0.8084 0.3905 0.5266 0.4356 0.7209 0.3894 0.5057 0.4289

Table G.1: Performance scores for classical models on LIWC 2022

Max Length 256 Max Length 512
Model Precision Recall F1 F2 Precision Recall F1 F2
nb 0.3041 0.5327 0.3872 0.4631 0.2419 0.6357 0.3504 0.4795
knn 0.4012 0.4537 0.4259 0.4422 0.4106 0.4673 0.4371 0.4548
svm 0.7054 0.4379 0.5404 0.4739 0.7286 0.3643 0.4858 0.4048
gaussian 0.8033 0.2212 0.3469 0.2587 0.8039 0.2060 0.3280 0.2420
xgboost 0.8095 0.4221 0.5549 0.4668 0.7551 0.3719 0.4983 0.4139

Table G.2: Performance scores for classical models on LIWC 2015

Max Length 256 Max Length 512
Model Precision Recall F1 F2 Precision Recall F1 F2
nb 0.2763 0.5576 0.3695 0.4632 0.2355 0.5729 0.3338 0.4453
knn 0.4130 0.5147 0.4583 0.4905 0.3750 0.4523 0.4100 0.4344
svm 0.7312 0.4176 0.5316 0.4568 0.7500 0.3317 0.4599 0.3733
gaussian 0.8013 0.2822 0.4174 0.3242 0.7881 0.2337 0.3605 0.2719
xgboost 0.7544 0.3883 0.5127 0.4300 0.7512 0.3794 0.5042 0.4211

Table G.3: Performance scores for classical models on LIWC 2007

Max Length 256 Max Length 512
Model Precision Recall F1 F2 Precision Recall F1 F2
nb 0.1913 0.7562 0.3054 0.4754 0.1896 0.7814 0.3052 0.4811
knn 0.3742 0.5169 0.4341 0.4803 0.3513 0.4749 0.4039 0.4437
svm 0.7600 0.3860 0.5119 0.4281 0.7762 0.2789 0.4103 0.3199
gaussian 0.8201 0.2573 0.3918 0.2983 0.8137 0.2085 0.3320 0.2450
xgboost 0.7742 0.3792 0.5091 0.4223 0.7097 0.3317 0.4521 0.3712

Table G.4: Performance scores for classical models on LIWC 2001
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G Test Results

G.2 Scikit-Learn Models on Word Embeddings

BERT

Model Max Length Padding Precision Recall F1 F2
nb 256 head 0.1632 0.7540 0.2683 0.4373
nb 256 split 0.1633 0.7540 0.2684 0.4374
nb 256 tail 0.1633 0.7540 0.2684 0.4374
nb 512 head 0.1619 0.8417 0.2716 0.4575
nb 512 split 0.1621 0.8417 0.2719 0.4579
nb 512 tail 0.1622 0.8417 0.2720 0.4580
knn 256 head 0.5000 0.2641 0.3456 0.2916
knn 256 split 0.5112 0.2054 0.2931 0.2333
knn 256 tail 0.6111 0.3228 0.4225 0.3564
knn 512 head 0.5200 0.2940 0.3756 0.3220
knn 512 split 0.5543 0.2563 0.3505 0.2872
knn 512 tail 0.6266 0.3668 0.4628 0.4000
svm 256 head 0.6014 0.6027 0.6020 0.6024
svm 256 split 0.5925 0.6433 0.6169 0.6325
svm 256 tail 0.6277 0.6546 0.6409 0.6491
svm 512 head 0.7169 0.6809 0.6985 0.6878
svm 512 split 0.7064 0.6709 0.6881 0.6777
svm 512 tail 0.7855 0.6809 0.7295 0.6995
gaussian 256 head 0.7848 0.7246 0.7535 0.7359
gaussian 256 split 0.6000 0.0203 0.0393 0.0252
gaussian 256 tail 0.8369 0.7066 0.7662 0.7293
gaussian 512 head 0.7839 0.6834 0.7302 0.7014
gaussian 512 split 0.5000 0.0176 0.0340 0.0218
gaussian 512 tail 0.5000 0.0176 0.0340 0.0218
xgboost 256 head 0.9199 0.5440 0.6837 0.5924
xgboost 256 split 0.9211 0.3950 0.5529 0.4460
xgboost 256 tail 0.9244 0.6072 0.7330 0.6520
xgboost 512 head 0.8828 0.5678 0.6911 0.6115
xgboost 512 split 1.0000 0.0980 0.1785 0.1196
xgboost 512 tail 0.9433 0.5854 0.7225 0.6335

Table G.5: Performance scores for classical models on BERT-embeddings
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Appendix G

FastText

Model Max Length Padding Precision Recall F1 F2
nb 256 head 0.2169 0.0406 0.0684 0.0485
nb 256 split 0.2195 0.0406 0.0686 0.0485
nb 256 tail 0.2048 0.0384 0.0646 0.0458
nb 512 head 0.2609 0.0151 0.0285 0.0186
nb 512 split 0.3044 0.0176 0.0333 0.0217
nb 512 tail 0.2917 0.0176 0.0332 0.0217
knn 256 head 0.2625 0.4018 0.3176 0.3633
knn 256 split 0.2724 0.3296 0.2983 0.3163
knn 256 tail 0.2862 0.3657 0.3211 0.3465
knn 512 head 0.2579 0.4724 0.3336 0.4050
knn 512 split 0.2400 0.3467 0.2837 0.3184
knn 512 tail 0.2783 0.3643 0.3156 0.3431
svm 256 head 0.4862 0.5169 0.5011 0.5105
svm 256 split 0.4989 0.5237 0.5110 0.5186
svm 256 tail 0.4408 0.4537 0.4472 0.4511
svm 512 head 0.4988 0.5377 0.5175 0.5294
svm 512 split 0.5128 0.5528 0.5320 0.5443
svm 512 tail 0.4988 0.5126 0.5056 0.5098
gaussian 256 head 0.6677 0.5124 0.5798 0.5374
gaussian 256 split 0.6422 0.4740 0.5455 0.5002
gaussian 256 tail 0.6626 0.4876 0.5618 0.5148
gaussian 512 head 0.6817 0.5327 0.5980 0.5570
gaussian 512 split 0.6268 0.4472 0.5220 0.4744
gaussian 512 tail 0.6871 0.4799 0.5651 0.5107
xgboost 256 head 0.8462 0.1987 0.3218 0.2345
xgboost 256 split 0.8072 0.1512 0.2548 0.1806
xgboost 256 tail 0.7661 0.2144 0.3351 0.2505
xgboost 512 head 0.8640 0.2714 0.4130 0.3145
xgboost 512 split 0.8182 0.1583 0.2653 0.1887
xgboost 512 tail 0.8947 0.2563 0.3984 0.2989

Table G.6: Performance scores for classical models on FastText-embeddings
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G Test Results

GloVe with Embedding Size 300

Model Max Length Padding Precision Recall F1 F2
nb 256 head 0.2198 0.0454 0.0752 0.0539
nb 256 split 0.2273 0.0454 0.0756 0.0540
nb 256 tail 0.2235 0.0431 0.0722 0.0514
nb 512 head 0.2200 0.0276 0.0491 0.0335
nb 512 split 0.2128 0.0251 0.0449 0.0305
nb 512 tail 0.2381 0.0251 0.0455 0.0306
knn 256 head 0.2314 0.3946 0.2917 0.3458
knn 256 split 0.2215 0.2948 0.2529 0.2765
knn 256 tail 0.2742 0.3787 0.3181 0.3519
knn 512 head 0.2407 0.4070 0.3025 0.3576
knn 512 split 0.2586 0.3593 0.3007 0.3333
knn 512 tail 0.3198 0.4146 0.3611 0.3914
svm 256 head 0.5180 0.4898 0.5035 0.4952
svm 256 split 0.5023 0.4966 0.4994 0.4977
svm 256 tail 0.4208 0.5057 0.4593 0.4861
svm 512 head 0.4801 0.4548 0.4671 0.4596
svm 512 split 0.5013 0.4849 0.4930 0.4881
svm 512 tail 0.4335 0.5075 0.4676 0.4908
gaussian 256 head 0.6742 0.4739 0.5566 0.5039
gaussian 256 split 0.6813 0.4943 0.5729 0.5230
gaussian 256 tail 0.6863 0.5011 0.5793 0.5297
gaussian 512 head 0.6537 0.4648 0.5433 0.4933
gaussian 512 split 0.6312 0.4774 0.5436 0.5018
gaussian 512 tail 0.6912 0.4950 0.5769 0.5248
xgboost 256 head 0.8624 0.2132 0.3418 0.2509
xgboost 256 split 0.8256 0.1610 0.2694 0.1919
xgboost 256 tail 0.8362 0.2200 0.3483 0.2580
xgboost 512 head 0.8818 0.2437 0.3819 0.2850
xgboost 512 split 0.8252 0.2136 0.3393 0.2507
xgboost 512 tail 0.8333 0.2638 0.4008 0.3056

Table G.7: Performance scores for classical models on GloVe-embeddings
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Appendix G

GloVe with Embedding Size 50

Model Max Length Padding Precision Recall F1 F2
nb 256 head 0.2500 0.0454 0.0768 0.0542
nb 256 split 0.2468 0.0431 0.0734 0.0516
nb 256 tail 0.2405 0.0431 0.0731 0.0516
nb 512 head 0.2444 0.0276 0.0497 0.0336
nb 512 split 0.2564 0.0251 0.0458 0.0307
nb 512 tail 0.2703 0.0251 0.0460 0.0307
knn 256 head 0.2841 0.2925 0.2883 0.2908
knn 256 split 0.2987 0.2540 0.2745 0.2618
knn 256 tail 0.3205 0.3197 0.3201 0.3199
knn 512 head 0.3061 0.3668 0.3337 0.3528
knn 512 split 0.3098 0.2864 0.2977 0.2908
knn 512 tail 0.3179 0.3442 0.3305 0.3386
svm 256 head 0.4186 0.3674 0.3913 0.3766
svm 256 split 0.4848 0.3243 0.3886 0.3473
svm 256 tail 0.4359 0.3855 0.4092 0.3946
svm 512 head 0.4174 0.3618 0.3876 0.3717
svm 512 split 0.6158 0.2739 0.3791 0.3081
svm 512 tail 0.4845 0.3141 0.3811 0.3378
gaussian 256 head 0.6388 0.3288 0.4341 0.3641
gaussian 256 split 0.6991 0.3583 0.4738 0.3970
gaussian 256 tail 0.6464 0.3855 0.4830 0.4193
gaussian 512 head 0.6650 0.3292 0.4403 0.3661
gaussian 512 split 0.6359 0.3116 0.4182 0.3469
gaussian 512 tail 0.6435 0.3493 0.4528 0.3844
xgboost 256 head 0.8583 0.2336 0.3672 0.2734
xgboost 256 split 0.8911 0.2041 0.3321 0.2413
xgboost 256 tail 0.7920 0.2245 0.3498 0.2620
xgboost 512 head 0.9000 0.2487 0.3898 0.2908
xgboost 512 split 0.7826 0.1809 0.2939 0.2138
xgboost 512 tail 0.8558 0.2236 0.3546 0.2624

Table G.8: Performance scores for classical models on GloVe-embeddings (dim 50)
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G Test Results

G.3 PyTorch Neural Networks on Word Embeddings

BERT

Model Max Length Padding Precision Recall F1 F2
biLSTM 256 head 0.7913 0.9074 0.8454 0.8816
biLSTM 256 split 0.7016 0.9074 0.7913 0.8571
biLSTM 256 tail 0.7118 0.9142 0.8004 0.8650
biLSTM 512 head 0.8668 0.8015 0.8329 0.8138
biLSTM 512 split 0.6986 0.8794 0.7786 0.8361
biLSTM 512 tail 0.7953 0.8492 0.8214 0.8379
CNN 256 head 0.8359 0.8623 0.8489 0.8569
CNN 256 split 0.8617 0.8578 0.8597 0.8586
CNN 256 tail 0.8571 0.8533 0.8552 0.8540
CNN 512 head 0.8994 0.8090 0.8519 0.8256
CNN 512 split 0.8608 0.8543 0.8575 0.8556
CNN 512 tail 0.8479 0.8543 0.8511 0.8530

Table G.9: Performance scores for neural networks on BERT-embeddings

FastText

Model Max Length Padding Precision Recall F1 F2
biLSTM 256 head 0.5554 0.8281 0.6649 0.7540
biLSTM 256 split 0.4263 0.9095 0.5805 0.7414
biLSTM 256 tail 0.6504 0.7828 0.7105 0.7522
biLSTM 512 head 0.6023 0.7839 0.6812 0.7393
biLSTM 512 split 0.7036 0.7814 0.7405 0.7645
biLSTM 512 tail 0.6031 0.7940 0.6855 0.7467
CNN 256 head 0.5461 0.7511 0.6324 0.6987
CNN 256 split 0.6674 0.6991 0.6829 0.6925
CNN 256 tail 0.5951 0.7149 0.6495 0.6873
CNN 512 head 0.7150 0.7186 0.7168 0.7179
CNN 512 split 0.7261 0.7261 0.7261 0.7261
CNN 512 tail 0.6916 0.7211 0.7060 0.7150

Table G.10: Performance scores for neural networks on FastText-embeddings
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Appendix G

GloVe with Embedding Dimension 300

Model Max Length Padding Precision Recall F1 F2
biLSTM 256 head 0.4395 0.9457 0.6001 0.7687
biLSTM 256 split 0.6064 0.8575 0.7104 0.7919
biLSTM 256 tail 0.5373 0.8145 0.6475 0.7383
biLSTM 512 head 0.5413 0.8392 0.6581 0.7560
biLSTM 512 split 0.6494 0.7864 0.7114 0.7546
biLSTM 512 tail 0.5839 0.8216 0.6827 0.7598
CNN 256 head 0.6098 0.7285 0.6639 0.7012
CNN 256 split 0.5378 0.8054 0.6449 0.7325
CNN 256 tail 0.6288 0.7398 0.6798 0.7146
CNN 512 head 0.6175 0.7261 0.6674 0.7015
CNN 512 split 0.6398 0.7186 0.6769 0.7013
CNN 512 tail 0.6203 0.7387 0.6743 0.7115

Table G.11: Performance scores for neural networks on GloVe-embeddings

GloVe with Embedding Dimension 50

Model Max Length Padding Precision Recall F1 F2
biLSTM 256 head 0.4395 0.9457 0.6001 0.7687
biLSTM 256 split 0.6064 0.8575 0.7104 0.7919
biLSTM 256 tail 0.5373 0.8145 0.6475 0.7383
biLSTM 512 head 0.5413 0.8392 0.6581 0.7560
biLSTM 512 split 0.6494 0.7864 0.7114 0.7546
biLSTM 512 tail 0.5839 0.8216 0.6827 0.7598
CNN 256 head 0.6098 0.7285 0.6639 0.7012
CNN 256 split 0.5378 0.8054 0.6449 0.7325
CNN 256 tail 0.6288 0.7398 0.6798 0.7146
CNN 512 head 0.6175 0.7261 0.6674 0.7015
CNN 512 split 0.6398 0.7186 0.6769 0.7013
CNN 512 tail 0.6203 0.7387 0.6743 0.7115

Table G.12: Performance scores for neural networks on GloVe-embeddings (dim 50)
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G Test Results

G.4 Hugging Face Transformer Models

Model Max Length Precision Recall F1 F2
albert-base-v2 256 0.8884 0.8442 0.8657 0.8527
albert-base-v2 512 0.9207 0.8166 0.8655 0.8355
bert-base-uncased 256 0.8791 0.9029 0.8909 0.8981
bert-base-uncased 512 0.8750 0.8794 0.8772 0.8785
distilbert-base-uncased 256 0.8995 0.9097 0.9046 0.9077
distilbert-base-uncased 512 0.9075 0.8869 0.8971 0.8910
roberta-base 256 0.8925 0.9368 0.9141 0.9276
roberta-base 512 0.9114 0.9045 0.9079 0.9059

Table G.13: Performance scores for Large Language Models
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