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Abstract

The availability of free, quality online education has increased globally; however, learner re-
tention and dropout rates remain concerning in Massive Open Online Courses (MOOCs). Suc-
cessful learners often exhibit self-structured and controlled learning, demonstrated by their
more frequent review of course material as part of Self-Regulated Learning (SRL) strategies.
Despite its importance, learners do not generally revisit course material frequently. As video
lectures have been an important learning resource for Technology-Enhanced Learning (TEL),
how users interact with the videos has been of interest. The viewing behaviours have been
shown to correlate with student performance, dropout rates and perceived difficulty. How-
ever, research has mainly considered only a few educational topics, often related to Computer
Science (CS), leaving questions regarding the general applicability in-video viewing behaviour
unanswered. The narrow topic focus has largely been the case for learning resource Recom-
mendation Systems (RSs) as well, where considering contextualised, sequential student beha-
viour is left unexplored.

Therefore a Sequence Aware Recommendation System (SARS) which considers both in-video
viewing behaviour and learning resource topics is proposed for improving online lecture re-
commendation quality across educational domains. Furthermore, an analysis of lecture-re-
consumption across diverse topics is conducted. In particular, the predictive power of in-video
viewing behaviour for predicting lecture revisits is explored. Lastly, to which degree Recom-
mendation Systems are aligned with users’ re-consumption behaviour is examined to quantify
to which extent recommendations may influence reviewing behaviour. These experiments es-
tablish a statically significant improvement in lecture recommendation accuracy using in-video
viewing behaviour and related lecture topics. Furthermore, the analysis of revisiting behaviour
indicates the importance of considering lectures’ intrinsic properties for viewing behaviour,
where the results highlight differences in in-video viewing and revisiting behaviour across
educational topics. However, re-consumption prediction using in-video viewing features shows
promise. Lastly, the novel re-consumption alignment analysis illustrates sequence-aware mod-
els’ ability to distinguish individual re-consumption behaviour, providing a more personalised
and calibrated learning experience.
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Sammendrag

Tilgangen til gratis, nettbasert utdanning av høy kvalitet har økt globalt, men i MOOCs er
det fortsatt bekymringsfullt at mange elever faller fra undervies. Studenter som lykkes, lærer
ofte på en selvstrukturert og kontrollert måte, noe som kommer til uttrykk ved at de of-
tere går gjennom læringsmaterialet som en del av sine Selv-Regulerte Læringsstrategier. Til
tross for at repitisjon er viktig, er det ikke vanlig at studentene repeterer læringsressursene
så ofte. Ettersom video forelesninger har vært en viktig læringsressurs for teknologi-basert
læring (Technology-Enhanced Learning (TEL)), har det vært av interesse hvordan brukerne
interagerer med videoene. Deres video-interaksjonsmønstre har vist seg å korrelere med stu-
dentenes prestasjoner, frafall og opplevd vanskelighetsgrad. Forskningen har imidlertid i hov-
edsak bare tatt for seg noen få emner, ofte relatert til datateknologi, noe som åpner for spørsmål
angående video-interaksjonsmønstres generelle anvendelighet. Det smale emnefokuset har i
stor grad også vært tilfelle for anbefalingssystmer (RS) for læringsressurser, der kontekstual-
isert, sekvensiell studentatferd ikke er blitt utforsket.

Derfor foreslår denne oppgaven et anbebalingssystem modellert på sekvensiell data (Sequence
Aware Recommendation System (SARS)) og som tar hensyn til både video-interaksjonsmønstre
og temaene diskutert i video forelesninger, for å forbedre kvaliteten på nettbaserte forelesnings-
anbefalingessystemer på tvers av forskjellige emner. I tillegg ble repitisjon av video forelesning
analysert på tversav på tvers av ulike emner. Konkret undersøkes video-interaksonsmønstre sin
evne til å predikere hvorvidt en videoforelesning vil bli sett på nytt eller ikke. Til slutt under-
søkes til hvilken grad anbefalingssystemer stemmer overens med brukernes repitisjonsmøn-
stre, for å kvantifisere i hvilken grad anbefalinger kan påvirke repitisjonsatferd. Eksperimentene
viser en statistisk signifikant forbedring i nøyaktigheten av forelesningsanbefalingene ved hjelp
av video-interaksjonsdata og relaterte forelesningstemaer. Videre viser analysen av repitsjon-
satfer at det er viktig å ta hensyn til forelesningers iboende egenskaper når det gjelder video-
interaksjonsatferd, og resultatene fremhever forskjeller i seer- og gjenbesøksatferd på tvers av
temaer. Prediksjon av repitisjon basert på vidoe-interaksjonsmønstre er imidlertid lovende. Til
slutt illustrerer den innovative analysen av anbefalingssystemers kalibreringsevne for repitisjons-
preferanser at sekvens-baserte modeller kan skille mellom studentenes individuelle repitis-
jonsmønstre, noe som gir en mer personlig tilpasset og kalibrert læringsopplevelse.
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Chapter 1

Introduction

This chapter firstly presents the general background for the research, as well as the motivation
in Section 1.1, before presenting the resulting main research goal and the related research
questions in Section 1.2. Following it, the thesis’ research approach is described in Section
1.3, before the main contributions are highlighted in Section 1.4. Concluding the chapter, an
outline of the thesis is presented in Section 1.5.

1.1 Background and Motivation

As the internet became increasingly available, so did information and the possibilities for di-
gital education. The idea of democratised and openly available education was quickly formed
in the early 2000s, and later formalised as MOOCs in 2008 [2]. Despite the intention of en-
abling quality education to more people, some barriers to adoption of MOOCs have been lan-
guage, accessibility and cost. Consequently, most MOOC users are existing students of higher
education in developed countries [2–4]. Moreover, MOOCs have had low completion rates [5],
also compared to other e-learning options [6]. The exact retention rates differ but are reported
to be below 10% [6, 7]. Some of the reported reasons for course dropout have been related
to the lack of available instructions on how to use MOOCs [4] in addition that the learning
environment is not personalised to the individual learner [6]. Furthermore, users have re-
portedly widely different intentions when enrolling in a MOOC, from exploring the field to
taking a certification [5, 6]. These diverse user intentions require a more personalised learn-
ing environment, as they will have different platform usage patterns. A potential solution for
overcoming the lack of instructions and offering a more personalised learning experience is to
use a Recommendation System (RS) for learning resource recommendations. As educational
videos and lectures are important sources of information in e-learning environments [8–10],
recommending relevant lectures to the users can improve navigational efficiency and overall
learning experience.

To better understand user preferences, lecture interactions and general learning behaviour,
in-lecture viewing interactions have been of interest for over two decades [11]. Moreover, dif-
ferent types of viewing behaviour such as the number of rewinds or the total time spent on
the video, have been useful for measuring student engagement [12, 13], predicting student
performance [14–16], measuring perceived difficulty [17, 18] and cognitive load [19], as well
as both course and in-lecture dropout [20, 21]. Although they have been used to some de-
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Chapter 1: Introduction 2

gree in RSs for recommending learning resources such as exercises or lectures [22], the wide
range of viewing behaviours and their relations in that regard. Furthermore, modelling users’
sequential nature of interactions with learning resources has been promising for RS [23], but
granular user behavioural features have not been taken into account. Moreover a general issue
in previous learning resource Recommendation Systems and lecture viewing behaviour; they
have only been evaluated on a narrow set of homogeneous domains, most often computer
science related [24] or a small set of users and learning resources. Additionally, some studies
have illustrated users’ behavioural viewing preferences [25, 26] and relation to physical lecture
properties [17, 27], but their relation to the intrinsic lecture topics and domain properties have
largely been left unexplored. Moreover, backward seeks in lectures have intuitively been asso-
ciated with in-video replay and revision, but it has also been shown to relate to more concrete
frame seeking behaviour [18], which illustrates a different user intention. Therefore a more
nuanced viewing behaviour measurement of in-video re-consumption is needed to improve
the understanding of user intentions.

Within MOOCs, Self-Regulated Learning (SRL) strategies have been found to be crucial for stu-
dent performance, retention and personal goal attainment [28, 29]. Furthermore, poor SRLs
skills have been identified through surveys as a hindrance for MOOC adoption [4, 29]. Rev-
isting learning resources is deemed important on an educational psychology level for know-
ledge retention and long-term learning [30]. Additionally, revision is a common manifest-
ation of SRL strategies [28], where in particular, lecture re-consumption is positively cor-
related with most identified SRL strategies [9, 28] as well as course completion [31]. Even
though re-consumption is arguably important in learning, it has been shown to be infrequent
in some Technology-Enhanced Learning (TEL) scenarios [26]. So the relation between SRL
and revisiting behaviour emphasises the importance of understanding the underlying factors
in Technology-Enhanced Learning (TEL) for improving the learning experience and increasing
MOOC retention. Despite that revisitation has been studied in multiple domains [32], it has
only been considered for RSs in more recent years. One key insight of these re-consumption-
aware RSs studies, is that re-consumption behaviour and its importance for recommendation
accuracy is highly domain dependent [32–34]. Moreover, despite that lecture viewing beha-
viours have been shown to be informative for indicating re-consumption [18], they have not
been studied for re-consumption prediction to the author’s knowledge. Moreover, viewing be-
haviour’s relation to re-consumption is neither evaluated across a diverse set of educational
topics nor corrected for the user and lecture behavioural biases when studied [18].

Lastly, for Recommendation Systems to be useful for users in TEL environments, it should
also be able to adapt to their individual learning style. One aspect of learning styles is re-
consumption behaviour, but little has been researched regarding RSs ability to align to indi-
vidual users’ re-consumption preferences. Some proposed learning resources RSs have mod-
elled explicit re-consumption behaviour in their systems [22, 35], but little work has been done
to measure the alignment of them, or of other re-consumption-aware RSs. This is of interest
for recommending more relevant items regarding users’ preferences, in addition to providing
potential corrective recommendations for improving SRL behaviours.

1.2 Research Goals and Questions

Following the discovered gaps in knowledge, the main research goal of this thesis is first of
fall to improve recommendation accuracy in topic-diverse, large-scale educational contexts
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to provide a better learning experience for users. Secondly, the research aims to better un-
derstand how and why users re-consume educational videos or not. Thirdly, to accommodate
for individual users’ re-consumption behaviours, the work aims to understand the degree to
which various RSs are affected by such behaviour. Moreover, a goal is to accurately measure
how well RSs align with users’ re-consumption behaviour to understand their potential impact
on improving SRL behaviour.

To achieve the mentioned, overarching research goals, three sets of research questions are
proposed below.

RQ1 How is general recommendation accuracy affected by different recommendation tech-
niques and the inclusion of side information?

RQ1a How do both conventional RS and SARS recommendation accuracy differ on
large-scale educational datasets?

RQ1b How is the recommendation accuracy of a SARS affected by the inclusion of
in-video viewing patterns on educational datasets?

RQ1c How do user bias adjustment of behavioural features improve SARS’ recom-
mendation accuracy on educational datasets?

RQ2 What factors influence re-consumption behaviour in Technology-Enhanced Learning
environments?

RQ2a Which aspects of users’ interaction history, lecture topic diversity and in-lecture
interaction behaviours are related to re-consumption behaviour?

RQ2b To what extent are viewing patterns predictive for re-consumption behaviour?

RQ3 How do recommendation systems handle re-consumption behaviour and adapt to user
preferences?

RQ3a To what degree do different RSs recommend already interacted with items, and
does side-information affect it?

RQ3b How do RSs adapt to individual users’ re-consumption behaviour without expli-
cit re-consumption preference modelling?

1.3 Research Approach

To properly address the research questions, the proposed approach is to answer them through
three sets of experiments, each for the respective set of research questions. The following
sections describe the general research and experiment approaches on a high level.

Experiment 1 - Next-Lecture Prediction

Of the identified relevant in-video viewing features and corresponding datasets, preprocessing
steps are necessary for feature extraction and data cleaning. Furthermore, as the experiment
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Figure 1.1: Proposed research approach for the thesis.

evaluates recommendation accuracy, the relevant evaluation methodologies and metrics must
be decided.

The intention of the first partial experiment, Experiment 1.1, is to evaluate various conven-
tional and Sequence Aware Recommendation System on the identified datasets excluding any
side information, to properly address RQ1a. The motivation is to first explore how different
modelling assumptions impact recommendation accuracy. The recommendation accuracy of
the models is in addition compared using statistical significance testing to quantify any mean-
ingful results [36, p.268-272].

Experiment 1.2 addresses RQ1b, by evaluating the sequence-aware models from Experiment
1.1 including side information. The individual model variants are then compared to the res-
ults from Experiment 1.1 and quantified using statistical significance testing to establish if
side information provides an improvement or degradation in recommendation accuracy [36,
p.268-272]. The best-performing model is used to search for an optimal feature subset, includ-
ing both categorical and continuous features. This model’s recommendation results are then
compared to the equivalent models with all features and without any respectively.

The last partial experiment, Experiment 1.3, addresses RQ1c. Instead of using the raw view-
ing patterns in Experiment 1.2 as side-information, Experiment 1.3 includes in-video viewing
behaviour features adjusted by users’ learning styles, in addition to the categorical, lecture-
related features, using the same sequential models as in Experiment 1.2. The recommenda-
tion results are then compared to the equivalent models in Experiment 1.2 using statistical
significance testing, to address RQ1c [36, p.268-272]. Additionally, the results are compared
to the equivalent models in Experiment 1.1 to further contextualise potential improvements
or declines.

Experiment 2 - Re-consumption Behaviour

Experiment 2 - Re-consumption Behaviour (Exp.2) intends to explore in-video viewing beha-
viours’ relations to re-consumption behaviour and to predict revisits of lectures using viewing
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behaviour.

Three sub-questions are proposed to collectively address RQ2a. The first question (Q1) is: Is
re-consumption a substantial fraction of a user’s interaction history across topics? The second
question (Q2) is: Are there re-consumption frequency differences between topics? The last
question (Q3) is: Are In-lecture interaction behaviours statistically different between first-time
views and re-consumption views? The sub-questions are to be addressed using various signi-
ficance testing methods and visualisations to provide quantifiable arguments for addressing
RQ2a [36, p.268-272].

The other aspect of the relationship between in-video viewing and re-consumption behaviour is
if the viewing features can be used to predict re-consumption whether or not a user will revisit
the lecture. To tackle the related research question RQ2b, one must first provide a balanced
dataset of user-lecture interactions, labelled according to the definition of a re-consumption.
Then various classical and state-of-the-art classification models can be fitted and evaluated on
the dataset.

Experiment 3 - Alignment

The last set of experiments is structured to answer various Recommendation Systems’ recom-
mendation accuracy and alignment related to individual users’ re-consumption behaviour.

Based on the various models’ recommendations made in Experiment 1 - Next-Lecture Predic-
tion (Exp.1), the partial Experiment 3.1 rather evaluates how inclined the individual models
are to recommend lectures the user has already viewed. The motivation is to provide a baseline
of models to which degree they are inclined to recommend already viewed lectures versus
novel, unseen lectures. Therefore, the individual users’ viewing history is considered as the
relevant item set, to address RQ3a. The recommendation accuracy of users’ interaction his-
tory is evaluated using traditional ranking metrics and compared using statistical significance
testing to establish significant differences [36, p.268-272].

Building upon the results in the previous experiment, to address RQ3b, users with existing re-
consumption behaviour are more closely examined. The motivation is that if a user indicates
a preference towards re-consuming a lecture, the algorithms should be able to adapt to that
user’s re-consumption preference. This alignment problem relates to the issue of calibrated
recommendations, either through re-ranking efforts [37] or explicit re-consumption paramet-
ers or objectives [22, 35]. By evaluating the recommendations made to users with existing
re-consumption behaviours, one can measure the native calibration of the proposed meth-
ods without re-ranking. Further on, the effect of side information on calibration is evaluated.
Therefore this experiment utilises a subset of the recommendations made in Exp.1 and applies
calibration-related evaluation methods to them, with statistical significance testing of the res-
ults [36, p.268-272].

1.4 Contributions

This research project makes contributions to multiple aspects of TEL, including Learning Ana-
lytics (LA), learning resource recommendation and re-consumption behaviour in education.
The contributions are mainly derived from the proposed experiment groups. Briefly summar-
ising the main contributions, a new sequence-aware model which incorporates both user in-
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video behavioural features and item features are proposed in the first experimental group,
Exp.1. Moreover, a time-aware behaviour bias correction approach is proposed for correcting
users’ in-video viewing behaviour. Further on, Exp.2 contributes to the understanding of re-
consumption behaviour across different educational topics, and the utility of in-video viewing
behaviour for predicting lecture re-consumption.

Additionally, Experiment 3 - Alignment (Exp.3) contributes to the understanding of how RSs’
recommendations are affected by re-consumption behaviour in educational datasets and their
degree of alignment to individual re-consumption behaviours. In that regard, a novel approach
for mapping re-consumption alignment to the problem of calibration is proposed, as well as
an alternative, explainable re-consumption alignment metric. Moreover, another measurement
for in-video replaying behaviour is proposed to better reflect the users’ in-video behavioural
intentions.

1.5 Thesis outline

Chapter 1 - Introduction The chapter provides the initial motivation and back-
ground, the resulting research goals and questions,
as well as the research approach and main contribu-
tions.

Chapter 2 - Background Theory The chapter introduces topics regarding digital edu-
cation, educational psychology, Recommendation Sys-
tems, calibration and evaluation methods.

Chapter 3 - Related Works An introduction to the related works of side-information
inclusion in SARS, as well as studies regarding LA
and in-video viewing behaviour, in addition to re-
search on learning resource RSs and re-consumption
prediction, recommendation and calibration.

Chapter 4 - Datasets Publicly available learning resource datasets, as well
as the reasoning for the chosen datasets, are provided
in this chapter. The globally applied preprocessing
steps are then described, including data cleaning, fea-
ture extraction and visualisation.

Chapter 5 - Method and Experiments This chapter provides the specific methodology for
each of the proposed sets of experiments, as well as
their results.

Chapter 6.1 - Discussion The research questions are in this chapter addressed
through a discussion of the experimental results and
their limitations, including limitations of the general
methodology and chosen datasets.

Chapter 6 - Conclusion Finally, the conclusion summarises the main results
and contributions of the thesis, in addition to propos-
ing areas of future work.



Chapter 2

Background

This chapter gives an introduction to the relevant topics touched by this project. Section 2.1 de-
scribes the Technology-Enhanced Learning (TEL) as well Massive Open Online Course (MOOC)
and Self-Regulated Learning (SRL). In the following Section 2.2, relevant machine learning
models related to classification and sequence modelling are presented, before describing Re-
commendation System (RS) in more detail in Section 2.3. Lastly, various evaluation methods
for traditional classification and ranking problems, as well some relevant statistical tests in
Section 2.4.

2.1 Technology-Enhanced Learning

A commonly used term regarding technology-related learning is e-learning, but it can be defined
in many different ways, on multiple different axes [38]. A more specific term under the larger
e-learning umbrella is TEL which describes technologies used to improve the utility of learning
and teaching [39]. In a formal, physical educational setting like traditional classrooms, one
example of TEL is the use of lecture capture tools to give students the opportunity to review edu-
cational material [40], which generally is a type of blended learning where parts of the course
are provided both online and offline, e.g. the lectures are held for both present and online
students [41]. Online flipped classrooms is a specific case of blended learning [41], where the
lecture is substituted with in-class discussions. To prepare for these discussions, the students
are expected to view online lectures or perhaps answer a short, related quiz [42]. Considering
TEL through online-only courses, there are examples such as Khan Academy 1, but also more
formal learning environments like Massive Open Online Course (MOOC)s which are created
and offered in co-operation with physical universities [43]. As an alternative to MOOCs and
to improve the retention rates, Small Private Online Coursess (SPOCs) are sometimes offered
by universities as an addition or a part of a physical education [44].

2.1.1 Massive Open Online Course

Although the idea of publicly available, online, democratised education was present in the
early 2000s, the shape and form of today’s MOOC platforms was first introduced by Stanford
as xMOOC in 2011. Among other factors, xMOOC influenced the creation of the still active

1https://www.khanacademy.org

7
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MOOC platform (MIT) EdX2 in 2012 and platforms like Udacity3 and Coursera4 further down
the road. Some of the core ideas of MOOCs is that a larger set of people can have access to
free, quality education. [2] Generally, a MOOC is a free, online course offered by a university
with all of the learning resources needed to pass an exam to receive a certification. As there
is generally no limitation for the number of enrolments, a close tutor-student relationship is
infeasible. Therefore scaleable, peer-based learning through the MOOC-platform’s forums are
encouraged [45]. Despite the adaption and offerings of MOOCs have grown, where over 1000
universities offer more than 14,000 MOOCs, they have low retention rates [5, 6, 44]. Moreover,
statistics show that the users of MOOCs often are more highly educated [2] and coming from
more developed countries [3], where factors such as cultural, accessibility, lack of instructions
and usefulness are identified as barriers for adaption for some demographics [29].

2.1.2 Self-Regulated Learning

Within educational psychology, Self-Regulated Learning (SRL) theory can be defined as strategies
and processes exhibited by students to regulate and control their learning. In physical learning
environments, such skills are not as critical as one follows a fixed time schedule with lecture
time slots and deadlines for assignments. For online learning and MOOCs in particular, no
such structure is enforced on the student, in addition to higher expectations of independent
and autonomous learning. Therefore the ability to self-regulate becomes increasingly import-
ant to obtain learning goals in online environments. Some of the self-reported manifestations
of defined SRL strategies which are positively correlated with the presence of SRL behaviour
are various reviewing strategies, like revisiting assignments after completing a lecture or after
passing an assignment [28].

2.2 Supervised Machine Learning Methods

Within traditional machine learning, the general idea is to train a proposed model on histor-
ical data, i.e. fitting it, with the assumption that the model can extract generalised parameters
which can be applied to predict unseen data. One can coarsely partition the types of machine
learning problems into four categories: unsupervised, semi-supervised, supervised and reinforce-
ment, where the problem differs in terms of to which degree the ground truth is available. In
particular for supervised learning, the ground truth, i.e. a numeric value for regression prob-
lems or one or multiple labels for classification problems. A more formal formulation of the
problem; Given observed pairs (x, y), where an underlying function f (x) = y describes their
relationship perfectly. The objective is therefore to learn a function f̂ such that f̂ (x;θ ) = ŷ≈ y
based on an observed paired dataset (X,Y), where θ is the model parameters learned from the
historical data.

2.2.1 Classification models

A simple supervised model is a linear regression model predicting ŷ , i.e. a scalar value for an
unseen sample x such that y ≈ ŷ = αx+β , where y is the ground truth and α and β are model

2https://www.edx.org
3https://www.udacity.com
4https://www.coursera.org

https://www.edx.org
https://www.udacity.com
https://www.coursera.org
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parameters which are fitted to the historical data X . To measure the error of the model, one
can calculate the sum of the average squared distance for every prediction ŷi given xi .

As in the name of the model, it can only fit linear relationships between the input x and the
target output y . A generalisation of such linear models is an logistic regression model, where
it in a classification problem can be defined as using the maximum likelihood estimation on
the probability of given x, what is the likelihood that it is labelled y? More formally, it learns
the model parameters, i.e. fits the historical training by optimising Pr(Y = y|x;θ ) which es-
sentially creates linear decision boundaries between the target labels. [46, p. 119] Though this
can be an effective model, it might be biased in terms of its inability to describe all types of
relations between inputs and outputs. Moreover, some classification problems may have an
infinite number of decision boundaries which perfectly separates the target labels from each
other. This is the motivation for finding the optimal decision boundary, or hyperplane in multi-
dimensional problems in which optimally separates the labels. [46, p. 129] Support Vector
Machines (SVMs) are models with the objective of maximising the distance between the de-
cision boundary and the identified support vectors - the observations closest to the hyperplane.
When the target labels, or classes overlap, a linear SVM cannot find a hyperplane which per-
fectly separates the data. This motivates two extensions, the first is the idea of soft-margin
SVM [47], where the model allows some observations to be wrongly classified if it provides a
better generalisation. [48, p. 417] The other approach is to use the kernels, which essentially
maps the input from a linearly non-separable input space, to a non-linear separable space [49].
Different kernels exist, depending on the input and output relations. [48, p. 423]

2.2.2 Recurrence Modelling

Another modelling approach is to consider multiple weaker supervised models which individu-
ally are not great predictors, weak learners, but as a collective provide a weighted, improved
target prediction, either in terms of classification or regression. There are multiple approaches
to create such a collective, or committee, where gradient boosting method uses numerical ap-
proximation techniques like Stochastic Gradient Descent (SGD), to iteratively add a model
with the parameters providing the minimum calculated loss across the training set until a
sufficient until convergence or some other stopping-criteria [50].

For some problems, a more sequentially dependent model of data is needed, such as in Natural
Language Processing (NLP) where the placement, meaning and choice of words are related
to the words coming before and after it. Such sequential problems have motivated the idea
of using recurrent cells to predict sequentially dependent inputs. A single Recurrent Neural
Network (RNN)-cell consists of a hidden state ht which is calculated based on the previous
cell’s hidden state ht−1, the readout rt and the input token x t of an input sequence of length
n. By sequentially calculating the hidden states hτ, for 1 ≤ τ <= n+ 1, any token xτ−1 can
be encoded. The readout rτ of a cell is tradionally tanh ht+1. [51] As for longer sequences, the
vanishing gradients and exploding gradients problems occur, complicating modelling import-
ant dependencies across longer sequences. To tackle these issues, variations of the recurrent
cells such as Long Short-Term Memorys (LSTMs) [51] and Gated Recurrent Units (GRUs)-cells
have been proposed. In particular GRU-cells use a gating-mechanism to selectively choose what
memory should be updated for each individual cell.
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2.2.3 Attention and Transformers

Although the attention mechanism was used with RNNs, to provide nuances in the import-
ance of individual tokens in an input, several issues related to recurrent modelling remain.
For instance, they are not easily trained in a parallel matter and there are vanishing gradients
related to longer sentences [51]. This motivated to only use self-attention to model the se-
quential dependencies between the tokens of the input, reducing model complexity, handling
longer sequences better and the training is more parallel compared to RNNs [52]. These types
of attention-based models are often referred to as transformers.

For learning the semantically meaningful embedding of inputs, pre-training, the traditional,
self-supervised learning approach only considers the previous inputs in the sequence for pre-
dicting the next, so-called Causal Language Modelling (CLM). To take advantage of both the
left and right context of a token in a bi-directional manner, another problem definition was
proposed, as the next-input prediction problem becomes trivial with access to the future. The
alternative approach is then to mask parts of the input sequence and use this masks as the
prediction targets of the model instead. This approach is called Masked Language Modelling
(MLM) and was popularised by the introduction of BERT [53], which showed how it could
be used to pre-train language models to learn the embedding representations of words, such
that down-stream tasks like classification, can be done by simply fine-tuning a single hidden
layer to the specific task and related training samples, instead of re-learning all of the semantic
word representations. [53] BERT’s results on a large set of NLP tasks have inspired countless
transformers like, RoBERTa [54] and XLNet [55]

2.3 Recommendation Systems

The main purpose of Recommendation Systems is to use historical interactions between users
and items to infer their preferences and provide relevant recommendations given those pref-
erences or explicitly created user requirements. The quality of an item interaction can be
provided as explicit feedback, e.g. a rating from one to five, or implicit feedback such as whether
or not the video was viewed or how long it was viewed for. In practical scenarios, explicit user
feedback is hard to obtain. Moreover, ratings, either explicit or implicit, in general often follow
long-tailed distributions, where a few items are given plenty of feedback, whereas most items
do not contain much feedback. [56]. Generally, the recommendation problem can be viewed
as predicting the rating of a given user-item interaction or as providing a list of “top-k‘ relevant
items for the user. Regardless, it results in an item prediction problem, as the rating predictions
would be used to rank the provided k items. [56, 57].

To provide these recommendations, several different types of RSs exist and corresponding
classifications. Some commonly used groups of recommendation methods are content-based,
Collaborative Filtering (CF), and knowledge-based methods, as well as hybrid methods, com-
bining any of the methods [58]. Content-based methods utilise the users’ preferences towards
specific features of items, e.g. movie genres or actors. Collaborative Filtering on the other hand
solely uses the ratings of users to recommend items. [58]. More specifically, item-based Collab-
orative Filtering (CF) predicts the rating of an item v for a given user u, using a set of similarly
rated items by that given user. An user-based CF on the other hand, uses the ratings provided
by similar users to predict the rating of item i for the user u.

Collaborative Filtering methods can either be implemented directly as neighbourhood-based
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methods as proposed above, also called memory-based, which are generalisations of the K-
Nearest Neighbours (KNN) algorithm. [56] For large, sparse user-item rating matrices, the
computation of the neighbourhood-based ratings is inefficient. Creating a model of the user
preferences can therefore be an alternative approach, where many classification models can
be adapted to the CF case [56, p. 86]. An example of a model-based CF method is to apply
dimensionality reduction techniques to the rating matrix, representing them as latent factors,
which reduces the sparsity and therefore improves the efficiency. Moreover, by representing
both user rows and item columns by low-dimensional latent factors, one can approximate
the original rating matrix due to the correlations between rows and columns in the rating
matrix, but with lower memory usage and higher efficiency without using any neighbourhood
methods. [56, p. 47, 91] More formally, the rating matrix approximation by Latent Factor
Models can be summarised as

R≈ UV ⊺, (2.1)

where R is of size m×n. U and V are the low-rank latent representations of the users and items
of size m× k and n× k respectively. [56, p. 93] Moreover, RSs can be seen as a generalisation
of classification or regression problems, e.g. ratings as labels or continuous values. [56, p. 93]

Although there are various methods for obtaining these low-rank, latent representations through
dimensionality reduction, most can be defined as Matrix Factorisation (MF) methods, such as
Non-negative MF and Singular Value Decomposition (SVD), where they mostly differ in the
chosen objective functions and the imposed constraints on U and V [56, p. 96]. When consid-
ering implicit feedback, some additional constraints are implied. With explicit feedback, both
positive and negative ratings are present, but with implicit feedback, only positive feedback is
available. For instance, if a user does not view a video does not necessarily indicate that the
user dislikes the video. Furthermore, the quantity or numerical value of implicit feedback, e.g.
the number of times a video is viewed, indicates confidence rather than their preference which
is exhibited through explicit feedback. Moreover, as the user’s true preferences or intentions
are never explicitly given, implicit feedback is inherently noisy as it can only provide indicators
for them. [59]

On another note, the knowledge-based methods use explicit user requirements or infer user
preferences through domain knowledge, instead of learning their preferences as with content-
based and CF [56, 60]. While the other two mentioned methods perform poorly with sparse
data, the cold-start problem, knowledge-based methods avoid it by using the users’ stated pref-
erences. [60]

2.3.1 Sequence-Aware Recommendation Systems

As data collection has become easier, contextual methods have been proposed to improve the
quality of the recommendations when user ratings are sparse [56]. Examples of types of con-
text can be the user’s location, the time of day of or the device used for the interaction. [57]
A subset of context-aware Recommendation Systems, is the models which only include tem-
poral context, time-aware RS [57]. In comparison, Sequence Aware Recommendation System
(SARS) mainly do not focus on the specific timestamps of interactions, but the relative ordering
of them [61]. Most often, the objective SARSs is formalised as the top-k recommendation prob-
lem, providing a prioritised list of relevant items. More specific for sequence-aware models is
that the recommendations can either be alternatives, e.g. dinner suggestions, or recommenda-
tions to be consumed in the given order, like a series of educational videos. Moreover, the input
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Figure 2.1: An example sequence of viewed videos of user u for a next-item prediction task,
where each video is viewed at time step tτ, where 0 ≤ τ ≤ N − 1 and tN is the next-item
predicted for a given user.

to the recommendation system is no longer a user-item rating matrix, but rather ordered sets
of interactions, sequences, for each user which may contain additional properties such as the
type of the interaction or timestamp. [61]

Sequence-aware Evaluation

As Sequence Aware Recommendation Systems impose order constraints on the interactions,
traditional data splitting and evaluation strategies might not be applicable, depending on the
strength of the constraints. For instance, in the time-unaware evaluation, one can randomly
sample the dataset into a train and test set, e.g. by user or item or both, whereas the train-
ing set can be evaluated using randomised cross-validation strategies. For SARS on the other
hand, the interactions, i.e. implicit ratings are ordered by definition and a time-aware split-
ting strategy must be employed, e.g. by a hold-out strategy. For instance, one can retain either
a fixed or relative set of each user’s most recent interactions as the unseen, test set as the
defined targets for SARS is the future interactions of the user. This is often referred to as the
next-item prediction task, given the N user actions before it. Figure 2.1 illustrates a single video
recommendation example of the next-item prediction task. As a consequence of having only
one train-test split, the evaluation may lead to biased results. As an alternative to random
cross-validation techniques, one can alleviate the bias by splitting the data into equally sized,
potentially overlapping “sliding windows” generate several test sets, or repeatedly sample a
subset of users and consider their most recent actions as the test set for larger datasets. [61]

2.3.2 Recommendation systems as Technology-Enhanced Learning (TEL)

As the availability and usage of TEL have grown, in particular large-scale solutions like MOOCs,
the amount available student data has also increased, and the cost of collecting it has decreased
This data is helpful to understand the students learning behaviour and processes, but it must
be processed through well defined LA techniques. [62] In addition, it can provide insights into
which methods to provide, and how to apply them for creating a personalised learning experi-
ence. Consequently, RSs have been proposed to help personalise different aspects of TEL [63],
such as MOOC platform recommendation, course recommendation, learning resource recom-
mendation and learning path recommendation[24]. Some examples of learning resources are
relevant exercises, articles or videos, where a learning path consists of a sequence of proposed
learning materials and the order to consume them [64]. Therefore the learning resource RSs is
a specific case of learning path recommendation, where the length of the recommended learn-
ing path is one. The main argument for personalising the learning environment is to increase
the efficiency and effectiveness of learning processes, as well as the quality. [62]
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2.3.3 Calibration

Besides evaluating recommendation accuracy of recommendation systems, other research has
focused on aspects regarding diversity, coverage, adaptivity, novelty and fairness to name a few
[36, 65]. Another aspect which was formalised in [65] is the calibration of a Recommendation
System. The intention is that the users’ historic interactions across a set of classes C should
be proportionally reflected in the provided recommendations of each individual user. So for
example in the space of movie recommendations, if one movie genre, e.g. comedy, dominates
the user’s past interactions, it should proportionally dominate the recommendations for that
user. In difference to diversity, it does not attempt to. To measure to which the degree the RS
is calibrated, [65] proposed to use Kullback-Leibler (KL) divergence [66] between the users’
historic class distribution and the recommendations. More formally, the definitions of [66] is
adapted to the user-instance scenario, where the user u’s distribution over the classes c, p(c|u)
is defined as

p(c|u) =

∑

i∈H wu,i · p(c|i)
∑

i∈H wu,i
, (2.2)

where H is the set of items which the user has interacted with and wu,i is the weight of that
item. p(c|i) is the assumed known distribution of each class c [65]. The distribution of the
made recommendations q(c|u) is defined as

q(c|u) =

∑

i∈R wr(i) · p(c|i)
∑

i∈R wr(i)
, (2.3)

where R is the set of recommended items and wr(i) is the weight of that item, e.g. based on
its rank [65]. The KL divergence between the two is then defined as

CK L(p, q) = K L(p||q̃) =
∑

c

p(c|u) log2
p(c|u)
q̃(c|u)

, (2.4)

where q̃(c|u) is the smoothed distribution q̃(c|u) = (1−α) ·q(c|u)+α · p(c|u) with α= 0.01 to
avoid divergence for q(c|u) = 0 and p(c|u)> 0. CK L is small if the recommendation distribution
p(c|u) is similar to the target distribution q(c|u). Some of the relevant properties of the metric
are that it is zero for identically evaluated distributions, sensitive to small differences when
p(c|u) is small and it prefers more uniform distributions. [65]. To evaluate an entire dataset,
CK L is defined as

CK L =

∑

u∈U CK L(p, q)
|U |

, (2.5)

where U is the set of all users.

2.4 Evaluation

In the following sections, several traditional classification evaluation metrics are defined, as
well as ranking metrics. Further on, some non-parametric statistical significance tests are de-
scribed.

2.4.1 Classification Metrics

In the realm of binary classification, there are four outcomes of the predictions. If the true label
was positive, it can be either categorised as positive, i.e. True Positive (TP), or negative, False
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Negative (FN). If the label instead was negative, it could then also be labelled as positive and
result in a False Positive (FP), or correctly labelled as negative, i.e. True Negative (TN). [67].
Their relations are often presented in a confusion matrix, which is illustrated in Figure 2.2.

Figure 2.2: Example confusion matrix for binary classification

Based on these four possible classification outcomes for each considered instance, one can
define the accuracy, precision, recall for binary classification as

Accurac y =
#T P +#T N

#T P +#T N +#F P +#FN
(2.6)

Precision=
#T P

#T P +#F P
(2.7)

Recal l =
#T P

#T P +#FN
(2.8)

(2.9)

where # indicates the number of observations which fall into the respective square of the
confusion matrix [67].

Moreover, as a classification algorithm would prefer both high accuracy and high recall, Fscore
measures a trade-off between the two, calculating the weighted, harmonic mean. Formally, it
is defined as

Fβ = (1+ β
2)

Precision
Recal l + β2 · Precision

=
(1+ β2)#T P

(1+ β2)#T P +#FN +#F P
, (2.10)

where β is a hyperparameter for weighing the importance of either precision or recall [67].
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2.4.2 Ranking metrics

For Recommendation Systems the ranking of the recommended items are of interest as the
end-user will often be recommended a list of items, prioritised by the RS. For implicit feedback
data, the exact predicted scores of items might not be meaningful to the user, but the ranking of
them can be [36]. Using the definitions of [68], one can assume a recommendation algorithm
A which provides the predicted ranks R(A, u) ⊆ {1, . . . , n} of the relevant items for a user u,
from a total of n items. A ranking metric M then maps these rankings to a scalar which is then
averaged across all users considered and presented, i.e.

1
|U |

∑

u∈U
M(R(A(u)). (2.11)

where U is the set of all users in this specific case [68].

By these definitions, the following metrics recall and Average Precision (AP) and NDCG with
cut-off at position, i.e. rank, k is defined as

Recal l(R)k =
|r ∈ R : r ≤ k|
|R|

(2.12)

AP(R)k =
1

min (|R|, k)

k
∑

i=1

δ(i ∈ R)Prec(R)i (2.13)

N DCG(R)k =
1

∑min (|R|,k)
i=1

1
log2(i+1)

k
∑

i=1

δ(i ∈ R)
1

log2(i + 1)
(2.14)

respectively, where precision at rank k is defined as Prec(R)k =
|r∈R:r≤k|

k and the respective
algorithm A and u is omitted for sake of simplicity [68]. Although each of the mentioned
ranking metrics is reported as an average across all users, Mean Average Precision (MAP) is
an alternative name to AP when measured in this way.

2.4.3 Statistical significance

Statistical tests, i.e. hypothesis testing, are desired to establish any statistical significance of
the evaluation metrics when comparing different RSs. In general terms, a null hypothesis h0
and aalternative hypothesis ha must first be defined. Then a relevant test statistic T where
its distribution is then derived, e.g. a student T-distribution for the Student T test. Given a
probability threshold α, h0 is rejected if the probability of the observed, calculated statistic tobs
of the set of observations, i.e. sample, is at least as extreme as the given threshold. The choice of
α will decide the likelihood of a false positive, i.e. rejecting h0 when it is valid. The calculated
likelihood of observed tobs is often referred to as the p-value. [69] Moreover, hypothesis tests
can be categorised as parametric or non-parametric, where the non-parametric tests do not
make assumptions regarding the underlying distributions of the samples, while parametric
tests do. Moreover, when there is some relation between the observations to apply hypothesis
testing on, e.g. they are from the same test subject, paired hypothesis tests should be used. [36,
p. 268] Paired Student’s t-test is an often used paired test, but it is a parametric test where
one of the assumptions is that the observations are normally distributed for smaller sample
sizes[36, 70, p. 268]. When such assumptions are invalid or there are only a few observations,
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the non-parametric Wilcoxon signed rank test[71] is a good alternative which uses the ranks of
the pairwise differences in its test statistic calculation [72]. The test statistic is defined as

z =
T − n(n+ 1)/4
p

n(n+ 1)(2n+ 1)/24
(2.15)

where T = min (R+, R−). Moreover, R+ is the sum of the ranks of the differences between
paired observations and R− is the sum of the negative paired differences, defined as

R+ =
∑

di>0

rank(di) +
1
2

∑

di=0

rank(di) (2.16)

R− =
∑

di<0

rank(di) +
1
2

∑

di=0

rank(di), (2.17)

where rank(di) is the given rank of the paired difference of the i-th out n paired observations.
[72],

Another set of statistical tests has also been proposed to verify the normality of a distribu-
tion. An adoption of the one-sample Kolmogorov normality test is the Kolmogorov-Smirnov
test [73], which have a two-sample definition to examine whether or not two, continuous
distributions are identical. More formally, its test statistic is defined as

Dm,n = sup
x
|Fm(x)− Gn(x)|, (2.18)

where Fm is the empirical distribution, estimating the underlying cumulative distribution, of
the first sample of size m and Gn of the second sample of size m. Furthermore, sup denotes
the supremum function.

In the case of multiple hypotheses testing. i.e. multiple null and corresponding alternative
hypotheses, the likelihood of incorrectly rejecting a true h0 increases. Moreover, the likelihood
of having at least one false positive is referred to as the Family Wise Error Rate (FWER) [69].
A commonly used correction method to maintain the FWER is the Bonferroni-correction where
one compares the p-value to α

m , where m is the number of null-hypotheses to test [74]. A
correction method which is uniformly better is the Holm-Bonferroni correction as the resulting
FWER is always smaller or equal compared to the Bonferroni-correction method [74].
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Related Works

As the thesis covers multiple areas of interest, this chapter first introduces related works of
side information inclusion in SARS in Section 3.1,. Following it is a study of related learning
resource RSs in Section 3.2, considering hybrid methods, learning behaviour related and SARS
for learning resources. Furthermore, related work regarding in-video viewing behaviour in
blended learning and MOOCs are presented in Section 3.3. Lastly, some work related to re-
consumption and calibration for RSs is described in section 3.4. As these topics are not disjoint,
the deemed most relevant or informative part of each specific approach is used to determine
their respective subsection.

3.1 Side information fusion in Sequence-Aware Recommendation
Systems

As the field of RS usually handles data scenarios with high sparsity [75], enriching user-item
interactions with side information like user features, item features and contextual features like
time and device can improve recommendations [75]. The inclusion of such rich information
has consequently been a topic in SARS to further improve them. One work studied how to
include multi-modal features such as images and text in a parallel RNN for session-based re-
commendations. They evaluated multiple different views of incorporating the item features
but using separate GRUs for each item feature, with element-wise multiplication of the res-
ulting hidden states which are individually projected to a shared output. [76]. The proposed
model Behaviour Sequence Transformer (BST) [77] utilised both contextual features as well
as user and item features in the output context of their transformer network for Click-Through
Rate (CTR) prediction. Moreover, some heuristically deemed important item features, like
item category, were embedded and concatenated with the item embedding as the input into
the transformer layers. Side information like context, user, other item features and various
cross-features were concatenated together with the output context vector of the transformer
layer and fed into a Feed-Forward Network (FFN). An offline evaluation of the model showed
improvements over a Wide-&-Deep model with incorporated sequential features.

Another context enriched SARS proposed in [78] for video recommendation for YouTube stud-
ied the effect of various fusion methods of contextual features. The first insight is that first-
order FFNs, e.g. single hidden layer FFNs are inefficient in finding low-rank relations of concat-

17
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enated features. Using the recency of the interaction and client device information as context
for a LSTM, they showed that element-wise multiplication, i.e. crossed-features, is more effect-
ive than concatenation either before or after the LSTMs layers. The results of [79], though less
extensive, contradict the above findings, indicating that concatenation of features is superior
to element-wise multiplication using GRU-cells. The latter conclusion is further supported by
the findings in [80]. Using an XLNet [55] model as the core of a RS, they showed that fea-
ture concatenation before the transformer blocks gave a better recommendation accuracy than
element-wise multiplication. Moreover, the generalised element-wise multiplication requires
the same embedding size, adding potentially more complexity to the model. Their results indic-
ated that both Soft One-Hot Encoding (SOHE) [81] and feature-wise layer normalisation was
necessary for the side information enriched models to outperform the non-enriched versions
[80]. Other self-attention-based approaches, like [82] simply concatenated the embeddings
of the side-information with the item embedding, and contextual features were concatenated
and put as the first token in a given item sequence. As their item space was heterogeneous,
they padded missing or irrelevant features related to a given item type with zeros. In a cross-
attention, context and attribute-aware approach [83], the authors showed a statistically sig-
nificant outperformance with the proposed model compared to multiple SARS, both with and
without user and item attributes, and context. Their context and attributed adopted version
of SASRec [84] was also drastically improved compared to the base version.

3.2 Learning Resource Recommendation Systems

Various surveys of recommendation systems for learning have highlighted several commonly
applied methods for learning resource recommendations. [63] highlights that ontology rep-
resentation of the domain with attributes and respective relationships is the most common
approach. Furthermore, CF and rule-based approaches are the most common, but graph and
knowledge-based approaches were becoming increasingly popular to address sparsity and un-
structured data. A more recent survey of RSs for MOOCs specifically, shows that learning re-
source recommendation is the second most researched topic after course recommendations.
Moreover, the authors point out an increase in the use of neural methods and Sequence Pattern
Mining (SPM) techniques of the more recently studied works, where earlier work mainly relied
on content-based and hybrid methods. The following sections detail some of the approaches
including hybrid, user behaviour and graph-based approaches.

3.2.1 Knowledge-Based Hybrid Methods

Due to the domain’s hierarchical and relation-rich nature, modelling resource recommenda-
tions as graph problems or utilising ontology and knowledge graphs in RSs has been common
[24, 63, 85, 86]. With a dataset of explicit ratings of learning resources in different computer
science topics, [87] proposed a hybrid RS using an ontology for learner behaviour and learning
resources. The learner ontology included the learners’ knowledge level as well as their learning
style based on the Felder-Silverman Learning Style model [88], retrieved through a knowledge
orientation test and an online survey respectively. The learning resource ontology contained
the type of resource and the format, e.g. text or video for 240 unique resources. Utilising item-
based CF incorporating both ratings and ontological similarities between learning resources.
The provided top N recommendations are then re-ranked using SPM (GSP algorithm) based
historical sequential resource patterns, outperforming each of the model components alone
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(regular item-based CF and ontology adjusted item-based CF). Moreover, a larger portion of
the 50 test subjects displayed a satisfaction of RS.

Another ontology-based approach [89], proposed the use of an ontology of the course content
to recommend learning paths of Knowledge Unit (KU) which takes topic or knowledge mastery
into account. By considering educational videos and their difficulty as well as self-reported
knowledge mastery, the RS will adapt its model of the users’ topic mastery and change its
recommendations accordingly. The implementation of the RS also included learning path and
knowledge mastery visualisations. Based on online testing with 34 test subjects, more than
80% found the RS to be useful.

Rather than confining the recommendation space to only resources, one can instead consider
the recommendation of knowledge concepts when they are related to learning resources as in
[90]. This allows for a wider definition of relevance and a potentially more accurate model for
offline evaluation. By looking at heterogeneous relations, including teacher-courses relations,
video-concept relations and user-video relations, they defined four meta-paths to consider from
the modelled Heterogeneous Information Network (HIN) of the dataset. A Graph Convolu-
tional Network (GCN) is applied to the assumed relevant meta-paths and the attention mech-
anism is applied to the learned meta-path representations. Using knowledge concepts’ number
of clicks, they utilise extended MF including concept representations, to predict knowledge
concept ratings. The ablation study of the importance of each individual meta-path showed
that two users viewing the same video was more significant than relations through the same
course, same knowledge concept or the same teacher. Comparing the model to both conven-
tional and Sequence Aware Recommendation Systems, which illustrated an outperformance
on all metrics.

Another approach which accounts for educational video recommendation across courses and
topics was proposed in [91]. With a goal of reducing the cognitive overload of users, the
authors propose a RS utilising both the relations between educational videos across courses
through related KUs, and extracted learning preferences and video viewing patterns. Based on
user-based CF of learning preferences and viewing patterns, a candidate video set is generated.
Each video in the video set is then extended using the cross-curriculum video-knowledge map
to a video subgraph with related videos, ordered by relevance. The results indicate a higher
recommendation accuracy and more relevant videos based on knowledge relevance than in-
dividual viewing pattern-based CF methods, where duration is sliced or manually normal-
ised. Although a relevant method and exploring a relatively large dataset, the three examined
courses are highly related and do not illustrate how they would perform in a more diverse
course domain setting.

A similar cross-curriculum method MOOCex was proposed in [92] with the goals of improv-
ing decision-making, contextualising learning paths and knowledge concepts, and increasing
diversity and learner flexibility. By collecting more than 4100 videos from over 40 MOOCs,
mainly Computer Science (CS), they could employ SPM techniques on the extracted topics
from the video transcripts. The proposed model uses a hybrid approach, first providing a can-
didate video set using a content-based approach with a tf-idf [93] weighted transcript sim-
ilarity calculation. The retrieved videos are then re-ranked according to topic similarity and
the mined topic transition patterns from the various syllabi. To better inform the user of its
choices, the recommended videos and the similarity distances are visualised in a user interface
where the current path is highlighted. In addition, each video is colour coded according to the
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course it is a part of, as well as the related topic for explanation purposes, as well the next-in-
syllabus videos if relevant enough. The evaluation shows that the proposed model compared
to a content-based approach is better at recommending non-trivial videos, i.e. videos in the
same syllabus section and therefore enriching the user experience. Additionally, the proposed
model has a higher course diversity in its recommendation, which may provide a more flexible
and diverse learner scenario. Both metrics show significant improvement over the baseline
content-based method.

Though the mentioned approaches do illustrate improved recommendation accuracy over reg-
ular CF or content-based methods, they also require deep insight into individual course struc-
tures and corresponding KU across courses. The upfront cost costs of knowledge graphs can
be a hindrance to the adaption of the proposed methods. Moreover, there lacks a discussion of
which in-video viewing patterns [91] are chosen and how they should be utilised.

3.2.2 Learning Behaviour-Based Recommendations

Other work has focused more on using domain-specific theory to model users’ learning beha-
viour and preferences. One paper studied higher-level learner behaviour and utilised it for the
recommendation of a diverse set of learning resources [94]. The RS is a hybrid approach where
the users are first clustered according to their learning style, modelled by eight dimensions.
Based on these clusters, SPMs techniques are applied to calculate similarities between learn-
ing resources for each learner cluster. Using the calculated similarities, the relevant learning
resources can be recommended to each user for each cluster. The list can then be re-ranked
/ filtered according to how likely the user is to click on a given learning resource. Consider-
ing over 20 courses, roughly 20,000 users and 20 different learning resources, The proposed
model outperforms the individual components of the hybrid model (traditional item-based CF
and clustering + item-based CF) but underperforms on recall due to the tendency filtering.

[95] also looked into users’ learning ability for learning resource recommendation, but only
based on high-level learning behaviour. The proposed approach firstly uses a user-user CF
approach by generating a similarity matrix based on gender and profession, where the user
characteristics are selected through correlation analysis. This similarity matrix is then adjusted
by using a learner ability calculation based on previous test performance. The ability measure is
calculated such that high-performing students are less similar to poorly performing students,
and low-performing students are more similar to high-performing students. The intuition is
that the higher-performance students’ behaviour can have a positive effect on low-performing
students. The evaluation was done in an online fashion for a single CS course with 126 stu-
dents, and it showed improved recommendation accuracy compared to a traditional user-based
CF. Moreover, students spent more time with the videos recommended by the proposed model
compared to the baseline, potentially indicating a higher relevance of videos.

For a more granular, sequence-aware learning behaviour approach, [35] proposed a RS for ex-
ercise recommendation using reinforcement learning. They designed three learner behaviour-
based goals related to learners’ long-term learning performance. More specifically, the first
goal was related to users’ exploit-explore-preference. The second is regarding the smoothness
of exercise difficulty, meaning that the transition from one exercise to another exercise is not
a step-change in difficulty. The last goal was associated with the engagement of the user, i.e.
that the user is recommended tasks which are within the user’s expected range of difficulty,
neither too easy nor too difficult. The three rewards are then linearly combined with adjustable
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parameters according to real-world needs. By embedding both the content and the concepts
of each exercise, they propose a new exercise recommendation framework, one variation us-
ing the Markov property, and the other using recurrence through GRU cells. Visualisations of
two exercise datasets illustrate that users’ concept coverage increases with the session lengths,
measured by the number of exercises. Moreover, shorter study sessions have more dramatic
changes in exercise difficulty than longer ones. The last insight is that longer study sessions
have a mix of both harder and easier exercises. In offline evaluation, the proposed method
drastically outperforms the proposed methods, both conventional and reinforcement learn-
ing based RSs. Additionally, the recurrent variant is generally better than the one using the
Markov property. Simulating student performance, the online evaluation illustrates that the
exploit-explore reward is effective in terms of concept coverage and that the smoothness of
exercise difficulty and engagement rewards are generally effective as well for providing a more
gradual learning curve and individually adapted difficulty levels.

In [22], the authors also explored learning behaviour for recommending, in this case, lectures.
They based their user-based model on more formal educational psychology theory, namely
Zone of Proximal Development (ZPD). In short, it describes the optimal learning zone where
students are given resources which are not too easy, nor too difficult, but it is slightly bey-
ond their current ability. [22] Firstly they explored differences in learning ability per student
based on the completion proportion of viewed lectures and the related quiz performance and
clustered the users into three groups based on ability (active, potential and inactive students).
Secondly, they created a RS based on LinUCB, a context-bandit algorithm shown to balance
users’ exploit-explore preferences well [22]. The difficulty degree of a video using in-video
viewing patterns such as the average completion rate and number of rewinds, and the num-
ber of users who answered the video quiz correctly. Along with the number of videos studied
and the student’s ability, a personalised exploration coefficient was calculated and utilised in
the improved LinUCB model. In addition to evaluating the model’s recommendation accuracy,
they also evaluated the adaptivity of the model to learners’ ability, i.e. the difference between
the recommended videos’ difficulty and the ones which were viewed. Additionally, they evalu-
ated the diversity of the recommended videos with respect to the average difference between
the pairwise compared recommendation lists of users. Considering only the active students-
cluster, the results showed that the proposed model outperforms both item-based and user-
based CF. Moreover, comparing performance across the different user clusters, the model had
the highest precision for the active students, who had both high learning abilities and had
viewed the most lectures. The inactive students, with the lowest ability and who had viewed
the least amount of lectures, had the lowest precision. Regarding the non-utility metrics, they
evaluate the exploit-explore trade-off by manually adjusting the personalised exploration coef-
ficient, they show that the personalised coefficient improves diversity more than globally set
exploration coefficients.

As the authors of [22] utilised a subset of the dataset in [14, 15, 25], there is not much topic
diversity to make the approach generally applicable to all educational domains. Although they
had access to multiple granular in-video viewing features, they only included the completion
rate and rewind frequency. Some of the reasoning was based on educational psychology theory,
but some were less argumentative and moreover lacked quantifiable arguments. Furthermore,
the used accuracy metrics are not standard as the precision metric only considered positive
items as both viewed and correct quiz answers.
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3.2.3 Sequence-Aware Recommendation Systems for Learning Resources

Some work has also studied the use of other SARS besides SPM [96], and other conven-
tional, adapted RSs for resource recommendation with the inclusion of some context or side-
information as contextual information is deemed valuable for learning resource recommend-
ation and RSs for TEL in general [63]. Moreover, some graph methods can be considered as
sequence-aware methods [61], but they are not considered in this study.

Most notably, [97] explored the usage of an LSTM with various methods of including the time
spent on each resource to recommend the next learning resource by its URL. The time spent is
calculated by the difference in timestamps between consecutive navigation events. By model-
ling time as categorical or continuous, as well as fusing the time feature with the embedding
through concatenation, or as bucketed output, similar to contextual post-filtering. Compared
to a next-in-syllabus model, n-gram model and a MostPop baseline, the non-time augmen-
ted LSTM was superior with respect to their measured accuracy. Moreover the four different
time augmented LSTMs showed improvement over the base version, where the discretized,
categorical time feature fusion without the bucketed output had the highest accuracy.

Improving their previous work, they expanded the research to 13 different courses in [23] in
several different domains, to evaluate the general applicability of the approach. By charac-
terising each course by the number of navigational logs, students, resources (course pages)
and measured navigational entropy, they trained a regular LSTM, as well as a time augmented
LSTM as in their previous work [97] on each of the courses. In ten out of 13 courses, the time
augmented LSTM model performed the best according to accuracy. Moreover, a linear regres-
sion of the course features with a target of the relative improvement of the time augmented
LSTM over the next-in-syllabus method illustrated that the raw number of navigational events
as well as a high navigational entropy had a positive contribution to the relative outperform-
ance.

3.3 In-video viewing behaviour

In a lecture capture setting, [40] studied both quantitative and qualitative efforts related to the
effects of providing lecture captures. Another work [19] studied the effect of intrinsic video
characteristics and the relation to cognitive load. Further on, it explored how different in-video
viewing patterns are related to the video characteristics, showing that some viewing patterns
could have a mitigating effect on high, non-positive cognitive load, though self-reported.

At a lower level, studying in-video viewing behaviour and patterns has been of interest for a
long time. A study from 1999 [11], illustrated early on the highly skewed distribution of some
viewing patterns, e.g. pausing, and seeking by using Kolmogorv-Smirnov tests [98, p. 595].
Moreover, the data showed that the average time spent viewing a video was about 6 minutes,
though with a standard deviation of close to 9 minutes. On average, a user viewed 2 videos per
study session, where a session lasted approximately 20 minutes on average. By using Markov
chains, the authors attempted to predict the mean duration of some in-video viewing beha-
viours with some success. The various in-video viewing patterns explored in the related works
are highlighted in Table 3.1. The following sections describe related works in in-video viewing
behaviour analysis in blended learning and MOOCs respectively, as lectures blended learning
may be only supplementary sources, while for MOOCs they are primary sources of knowledge.
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Blended Learning in-Video Viewing Behaviour

A preliminary study in [99] in another flipped computer science course explored whether learn-
ing behaviour could be predictive of course performance. They clustered users by their online
lecture completion proportion into five clusters, analysing the individual users’ test scores of
the related video quizzes. Using an Analysis of Variance (ANOVA) [98, p. 865] parametric test,
they found statistically significant differences in the means quiz performances of each cluster,
though they did not discuss the validity of the assumptions made required by an ANOVA [70].

In the authors follow-up study [42], they studied two semesters of the same programming-
course offering and clustered users in a given study cycle based on their viewing punctuality,
average lecture completion proportion and the normalised number of lectures viewed in the
cycle, resulting in two clusters with a relatively balanced split. The further analysis described
the clusters as “low video engagement”, consisting of users with initial low engagement and de-
creasing as the semester progressed. The other cluster illustrated users with generally high lec-
ture engagement, with a high initial viewing rate and maintaining it throughout the semester.
One insight they provide is that users with prior experience with programming were negatively
correlated with the lecture engagement level. Furthermore, there was a statistically significant
difference in course performance between the two groups by the Chi-square test [98, p. 257],
though small, favouring high video engagement. Some of the limitations noted by the authors
are not accounting for the learning activities practised outside of the analysed platform.

Another flipped classroom study also explored punctuality, in addition to revisiting behaviour
[26]. Through analysing three semesters of the same course offering, the initial insight is that
there can be stark differences in engagement and behaviour between each course offering.
On the other hand, a Kruskal-Wallis test [98, p. 981] did not indicate any difference in course
grade distributions across the three semesters. Furthermore, the number of visits per video
is related to the temporal distance to relevant assignments, i.e. older videos are more likely
to be reviewed. Regarding revisiting behaviour, the data showed it was relatively infrequent
and clearly biased by individual users. In addition to punctuality, they studied lecture compet-
ition proportion, global video coverage and the average number of visits per video, and the
Spearman rank correlation [100] to the course grade. The video completion rate was shown
to be statistically significant and positively correlated with course performance for one-course
offering, where the number of visits per video was both positively and negatively correlated
depending on the course offering. Moreover, the study suggests a need to control or adjust dif-
ferences in viewing behaviour. Lastly, they did not quantify the effect of differences in course
offerings on learning behaviour. Proposed as future work, they suggest analysing more fine-
grained features and the nature of revisiting behaviour.

Another flipped classroom paper [101], studied the use of a single lecture, where the different
in-video viewing patterns were examined, and how they related to different topics within the
lecture. Some of the insights were that there are frame seeking behaviour when there is a
related assignment to a segment of a video. Moreover, pausing and seeking behaviour was
related to the information provided in the lecture, as well as the perceived importance of it.
Additionally, the revisiting behaviour was deemed different from the initial viewing behaviour
because of the intrinsic nature of the lecture. Furthermore, the data showed a non-normal
distribution of pause duration.

Another study of video analytics [10], included for each lecture a corresponding quiz to relate
navigational efforts to student performance. During a time-limited experiment, users displayed
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a more interactive behaviour to seek out the relevant information in the lectures. The results
indicated that rewind behaviour was most correlated to the relevant segments in the lectures.
In a larger experiment, they studied eleven students and their points of interest in the lectures.
The findings are similar to [101], as segments which are most viewed are also deemed relevant
for any assignments and required higher-order cognitive skills, i.e. information rich.

Some of the main limitations of the above studies in blended learning is that they consider
only small datasets with low topic diversity and only high-level revisiting behaviour.

Table 3.1: Summarised in-video features explored in the LA-related studies mentioned. The
abbrevation definitions are: RW: Rewind, FW: Forward, F: Frequency, D: Duration, SK: Skip,
RP: Replay, T: Total, P: Played, C: Completion, σ: Change, µ: Average

Paper Seek Pausing Time spent Playback rate Objective

[17] RW-F, FW-F F, D RP, SK, A, σ LA
[18] RW-F, FW-F F, D RP, SK F, σ LA
[14] RW-F F, D - σ KT
[25] RW-F, FW-F F, D T, P, C A, σ PLA
[15] RW-F, FW-F F, D RP, SK σ KT
[16] RW-F, FW-F F T, C - KT
[22] RW-F - C - RS
[102] RW-F, FW-F F T*, C - RS
[42, 99], - - C - LA

[20] RW-F, FW-F F RP, SK σ
KT, PLA &
dropout

[101] RW-F, FW-F F - σ LA
[11] D F, D Played - PLA
[103] F F - σ LA
[91] F F T - RS

*Counts the number of times the video is played, not the actual duration of it

MOOC in-Video Viewing Behaviour

In the more specific case of in-video learning analytics for MOOCs, multiple studies have been
shown to be relevant. A platform-oriented study [103] focused on efforts to visualise various
relevant aspects of a MOOC offering, like demographic data and temporal popularity of the
course lectures. For in-video viewing behaviour, their findings based on two courses illustrated
that one, the viewing patterns depends on the type of the video, e.g. lectures, assignment or
lab/experiment videos. Moreover, most peaks in interaction behaviour were related to trans-
itions, e.g. slide transitions, but also video intrinsic properties like in-video questions can cause
abnormalities. The second insight is that seeking behaviour may be different despite it being
triggered by the same actions, like an in-video question. The third finding regards initial views
and revisits, as initial views generally have more pausing behaviour, while revisits exhibit more
frequent seeking behaviour. Another insight, the popularity of the video is also related to the
temporal distance to the exam, i.e. inversely related to recency. Lastly, the results show clear
demographic dependencies for in-video viewing behaviour. More specifically, users from the
US had a statistically different distribution of navigational events than users from China.
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Another paper [16], studied the effects of video playback rate on student performance, as well
as other viewing patterns, using a time-budged-based model. Exploring a dataset of over 350
lectures from six different courses with varying video lengths and domains, before and after
an online study. Regarding the playback rate, roughly one in five students altered the speed at
least once, whereas only a few students decreased the playback rate. The experiment studied
two groups of students, where one group’s initial playback rate was set to 1.0x, while the
other was initially set to 1.25x for each lecture they viewed, but they could still actively alter
it. The general insights were that playback rate manipulation can improve student importance,
controlled for both course and student heterogeneity. As pointed out in the work, some of the
grade improvement is because the users will attempt or explore more of the course content. On
the other hand, users were less likely to exhibit self-regulatory study behaviours like pausing
when viewing at an increased playback rate but slightly more inclined to rewind the lecture.

In courses which are highly dependent on lectures as learning resources, the users perceived
difficulty of videos can provide valuable information for instructors as well as Knowledge Tra-
cing (KT). A preliminary study on the correlation between various viewing patterns and per-
ceived video difficulty was done in [18]. By aggregating viewing patterns on a per-lecture level
and grouping them by interactive and non-interactive behaviours, they provided some valu-
able insights considering two courses. Regarding playback rates, videos with initially higher
than default playback rates on average had a lower perceived video difficulty. Secondly, more
frequent decreases in playback rate correlate with a higher perceived difficulty. Moreover, the
amount of playback rate decrease is negatively correlated with the perceived difficulty, while
neither frequency nor amount of increase of playback rate is significantly correlated with per-
ceived difficulty.

Regarding pausing behaviour, the results indicate a statistically significant, non-linear cor-
relation between perceived difficulty and pausing frequency and duration. A higher pausing
frequency and duration are positively correlated with perceived difficulty, where the pausing
frequency is more significant, while the perceived video difficulty does not increase on average
for a median pause duration longer than one minute. For skipping behaviour, the frequency
of forward skipping has a linearly, negative correlation on difficulty, relating highly frequent
forward seeking to “skimming”-behaviour. The length of the skipped segments is non-linearly
positively correlated, not in line with expectations as the assumption that the user would find
the lecture easy or not relevant. [18].

The rewinding behaviour tells a similar story, where the main finding suggests that a higher av-
erage replayed length per rewind event indicates a higher perceived video difficulty. Moreover,
viewing sessions with many rewind events most often occurred within a short time span, indic-
ating a “frame-seeking” behaviour instead of a reviewing/re-watching behaviour [18]. Lastly,
the results also showed that pausing and seeking behaviour both were highly skewed as in
[11].

Since the study only focused on the occurrence or non-occurrence of a given viewing pattern,
a follow-up study looked into more nuanced in-video viewing behaviours [17]. By clustering
the video viewing sessions by eight different viewing patterns into nine explainable clusters,
where sessions with few interaction patterns account for 65% of the sessions. Out of these
clusters, both the Replay-cluster and FrequentPause-cluster are associated with higher perceived
difficulty, while the SpeedUp-cluster has significantly lower video difficulty, but not the High-
Speed-cluster. The difference is the users who actively increase the playback rate versus those
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who have an initial higher playback rate. Moreover, viewing sessions with significantly longer
pauses do not indicate a significant increase in perceived video difficulty, compared to sessions
with few to non-viewing patterns.

Furthermore, they studied which of the viewing patterns associated with the clusters can be
associated with revisiting behaviour. More specifically, 60-70% of sessions with in-video dro-
pout, i.e. not completing the video, were later revisited, whereas only 20-24% of completed
videos were. Furthermore, viewing sessions in the Replay and FrequentPause clusters were sig-
nificantly more likely to revisit the lecture, while SpeedUp and Passive-clusters were significant.
Additionally, a decrease in playback rate, large skips and long pauses were not significantly re-
lated to revisiting behaviour. They did also identify course differences, where a viewing session
apart of the Inactive-cluster was significantly more likely to revisit the lecture for one course
but significantly less likely to revisit the video in the other course. [17]

Lastly, relating in-video viewing patterns to student performance, by dividing the users into
strong and weak students by their performance and assignment completion rate. A Chi-square
test [98, p. 257] showed that higher-performing students exhibited fewer viewing patterns,
while weaker students tended to show different types of skipping behaviour as well as more
frequent and longer pauses. Moreover, despite that replay patterns were shown to be related to
perceived difficulty, there were not any significant differences between the two users partitions.
Delving into the pausing patterns of the weaker students, contextualising the pausing events
with the content of the lecture, showed that information-rich parts in the video, i.e. presenting
example code, were the most common reason for the pauses, but there was not a significant
difference between the examined types of lecture segments. [17]

Though both of these studies provide some valuable insight across a large set of users, the
results are only related to computer science topics. In addition, the perceived difficulty is
measured by self-reporting through a post-video survey, and not an objective measurement
like a post-video quiz. Though they analysed a specific content-based scenario for one viewing
pattern, they did not generally account for the differences intrinsic nature of the videos, nor
the temporal tendencies of lecture viewing as a course progresses.

Another set of studies also explored various aspects of in-video viewing patterns, with many
overlapping measures as the two previous studies. Utilising a dataset considering two courses,
the authors’ initial study researched the correlation of the different patterns, as well as utilising
them to predict student performance [14]. They considered nine different viewing patterns for
each video watched with a corresponding post-video question. The statistical analysis showed
that a user who in total, including pauses, spent more time on a video performed significantly
better on the post-video quiz. On the other hand, the completion rate was not shown to be
significantly correlated to quiz performance in general. Excluding pause duration, the time
spent playing the video was also statistically significant, indicating an increase in time spent
playing the lecture improves score performance, regardless of pauses.

For pausing behaviour, the study showed that frequent pausing indicated a significantly higher
test score, where the ratio of total pause duration to video length was not statistically indicative
of either an increase or decrease in test score. The playback rate on the other hand was roughly
identical for users answering incorrectly and those answering correctly, but still significantly
different, with a slightly higher playback rate for correct answers. Moreover, the results showed
that most users do not change the playback rate, but those who answered correctly had a
statistically significant tendency to change it more often. [14]
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Lastly, the difference in frequency of rewinds was statistically significant between the two
groups, where users answered correctly rewinding more frequently. The frequency of skips
where not significantly different. In general seeking and pausing frequency distributions were
both highly positively skewed, as reported in [11, 18]. Their KT models were shown superior to
MF and user-based CF baselines in predicting video quiz performances, across different types
of users partitioned by their course completion rate.

In another work considering the same datasets, the authors mined the raw clickstreams of
in-video viewing patterns with SPM motivated techniques to predict the score on the post-
video quiz [15]. By aggregating each click event on a video into a sequence, which was then
statistically analysed before frequent patterns were identified using a probabilistic mixture
model. Some general insights were that there are highly significant course differences in the
duration of different viewing patterns and correlated to the intrinsic nature of the courses.
Furthermore, users have a statistically significant tendency to skip more content than they
review. More generally, the durations where the user plays the video are statistically longer
than the paused durations.

After motif, i.e. sequence extraction, grouping the most significant ones into four categories
and relating the characteristics of each category to the average related video quiz performance.
In the Reviewing category where users saw a part of the video before reviewing parts of it,
half of the motifs were significantly positively correlated with test performance. In addition,
half of the motifs in the Skimming category are significantly negatively correlated with test
performance, in contrast to the initial findings in [14] which only considered the frequency of
forward skips. The Speeding category is more nuanced, where some motifs which have a higher
playback rate are significantly associated with higher test performance for one course. Other
motifs have an "increase-then-slow-down"-playback rate pattern, which can be both positively
and negatively associated with score performance dependent on the motif and course. [15]

A final study of this feature-rich dataset explored the field of Predictive Learning Analytics
(PLA) studied behavioural biases related to users and lectures. When visualising some of the
same nine behavioural patterns as in [14], there are significant lecture-specific variations.
Considering a subset of the more active users with respect to video coverage, the visualisation
also displays large deviance from the mean behaviour, illustrating the user biases. Applying
multivariate linear regression to some of the users shows some interesting relations between
the viewing patterns. Specifically, the regression indicates that seeking, playback rate, both
changes and magnitude and pausing behaviour come at the cost of a reduced video completion
rate. On the other hand, the time spent playing the video is positively affected by the number
of pauses and rewinds, potentially indicating the users were reviewing some content. [25]

Some of the main limitations of the in-video viewing behaviour analysis in the mentioned
works is that they mainly consider CS courses. Moreover, even though some findings of inter-
esting viewing behaviours are correlated across studies, others are contradictory, complicating
generalisations of causes and effects for a given viewing behaviour across domains. In addi-
tion, the relations between various in-video viewing behaviours may be linear or non-linear,
whereas some distributions are highly skewed.
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3.4 Re-consumption and Calibration in Recommendation Systems

Historically most work on RSs have studied to recommend relevant novel items to users, but
long-term behaviour is generally a mix of re-consumption and seeking novelty [32]. More gen-
erally, the trade-off between these two behaviours is often referred to as exploitation (repeti-
tion) and exploration (novelty). However, in some domains such as education, re-consumption
of items can be deemed more of an interest and importance for KT and modelling user beha-
viour. As knowledge gained will be forgotten as time goes by, revision can improve both the
retention and understanding of the given topics [30]. Although forgetting behaviour has been
an important topic in KT [104, 105], it has not been explored as much for re-consumption
of learning resources in Recommendation Systems. As several terms for re-consumption are
used in previous research, re-consumption, revisit, review repetition and exploit is used inter-
changeably in this work.

For predicting repetition behaviour, there are mainly two aspects of repetition-related recom-
mendation and prediction: At a given time step, predict whether or not the user will repeat a
previous interaction or given that the user will re-consume an item, which previously interacted
items will it re-consume? For the former problem, [33] analysed the binary problem of predict-
ing whether or not the next interaction is a repetition or not, proposing two models utilising
domain-independent features. Their focus is on short-term behaviour and therefore only a slid-
ing window of the most recent interactions is kept. The paper utilises two item features: their
popularity by the number of interactions, and their re-consumption ratio. For a sliding win-
dow, the average of both features was found to be positively correlated with re-consumption
probability. In addition, a static, user re-consumption ratio feature was used based on their in-
teraction sequences. A last feature measured the proportion of re-consumptions in a given time
window, where the re-consumption probability was found to be approximately linearly correl-
ated with the window re-consumption proportion. Based on their proposed linear and quad-
ratic methods, a SVM, discriminant analysis and two proposed methods, linear and quadratic,
respectively. Moreover, experiments with varying window lengths illustrate domain-specific
re-consumption behaviours, where two out of four datasets had negatively correlated predic-
tion accuracy with window size. Furthermore, feature importance analysis showed that their
importance is not conclusive and varies between both models and datasets.

Their follow-up study [34] explores which item in the given time window will be re-consumed,
given that a re-consumption is likely. The proposed personalised pairwise method utilised
a dynamic item recency and familiarity feature, in addition to the previously used item re-
consumption rate and item popularity. In addition, the sliding window is an adjustable para-
meter for not considering the mostΩ recent interactions. The proposed model consistently out-
performs the baselines, including state-of-the-art models. Based on the results, time-sensitive
features are found to be useful for predicting the item to be re-consumed. Moreover, the feature
importance analysis indicates that the item re-consumption rate is the most significant feature.
An issue is not clear if it is calculated in a time-aware method or not, which potentially biases
the inference. The same issues apply to the proposed features in their initial study. A combin-
ation of the proposed linear model in the initial study for re-consumption prediction and the
current paper’s model shows promising results in predicting both if and what to re-consume.

RepeatNet [106] is a session-based method, combining recommendations for explore and exploit
behaviours, by having separate prediction heads for each and linearly combining the probabilit-
ies. The approach uses a GRU to encode the sessions, which is then fed to a self-attention layer
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to predict whether or not the next-item interaction is a re-consumption. These probabilities
are multiplied with the output of two separate attention-based decoders fed the output of the
GRU encoded session. The exploit decoder considers only items which are already interacted
with, while the exploitation encoder considers only novel items. In addition to outperforming
the other SARSs using only the exploitation mode, the results showed further improvement in
recommendation accuracy with the fusion of both modes.

In learning resource recommendation, no previous work has been done on explicit re-consumption
repetition to the author’s knowledge but explicit modelling of exploit-explore preferences
has been explored. [22] calculated a personalised exploit-explore coefficient with regard to
lecture recommendation based on the learners’ ability. [35] on the other hand used an ad-
justable exploit-explore objective as their multi-objective reinforcement model for exercise
recommendation, also based on ability related to exercise performance for a given topic.

Research regarding calibration of RS is still relatively new, where the problem of the calibration
was more formally defined in [65]. The study illustrates the similarities between the problem
of calibration to other “beyond-accuracy“-metrics such as fairness, diversity and serendipity
[36], but it also highlights the main differences. Moreover, it shows how KL-divergence is a
more appropriate metric for measuring calibration compared to other metrics in related works.
Lastly, it introduces a greedy algorithm with an adaptable calibration coefficient, illustrating
the method’s effectiveness in re-ranking the recommendations to align with the users’ class
proportionality. A more recent study proposed to model the calibration problem as a minimum-
cost flow problem [37]. The proposed re-ranking method illustrates an improved calibration-
accuracy trade-off regardless of the degree of calibration over the baselines, including the
previously proposed greedy method [65]. Moreover, it outperforms the greedy approach across
the evaluated ranking metrics regardless of recommendation list length.
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Datasets

This chapter first describes publicly available learning resource datasets in Section 4.1, in-
cluding the reasoning and further description of the two chosen datasets. Thereafter, the pre-
liminary, global preprocessing steps are described in detail in Section 4.2, including session
generation and outlier removal. The feature extraction methods and considered features, both
viewing features and lecture features, are described in Section 4.2.2, as well as the resulting
dataset statistics. As similar methods applied to the same datasets, were used in the prelimin-
ary work [1], some of the sections may have some resemblance.

4.1 Learning Resource Datasets

Previous work on RS in the education domain has primarily relied on closed, unavailable
datasets and more publicly available, large-scale datasets have been sought after. [24] Of the
publicly available learning resource datasets, there are multiple exercise datasets such as the
ASSISTments datasets [107, 108], JUNIY [109] and KDDCup datasets [110] [111] which have
been predominately used for KT research [104], but they do not contain other types of learning
resources as well. A dataset that does is OULAD [112]which consists of many types of learning
resources related to different courses, enrolments and demographics, though they only con-
tain the number of resource visit interactions aggregated to a daily level. The VLEngagement
[113] dataset, on the other hand, does contain more granular interaction data of a large set of
scientific videos, including explicit and implicit ratings and many video-specific features like
those discussed concepts and speaker rate. Due to privacy and technical limitations, the only
in-video behavioural feature they provide is the watch time. [113].

Another large-scale, learning resource dataset is EdNet [114] where different levels of user
interactions granularity are available in different versions of the dataset. The levels of granu-
larity range from the navigation level between learning resources to in-resource interactions
such as play and pause events when watching a lecture or when selecting or erasing an option
for a multiple-choice exercise. [114]. Based on data from the MOOC platform XuetangX1, the
general purpose dataset MOOCCube was published [115], containing a large set of courses,
lectures and related concepts, as well as in-video viewing behaviours. Some of the limitations
of MOOCCube is the coarse granularity and the lack of data types, motivating the authors

1https://www.xuetangx.com
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to re-collect the data and apply new preprocessing techniques for generating a richer, larger
and more diverse dataset MOOCCubeX [116]. Lastly a more recent educational, large-scale
video dataset is PEEK [117], which contains interactions logs at a video fragment level, with
related concepts, allowing for more granular knowledge tracing, video recommendation and
per-video engagement analysis. Despite the per-fragment interaction level logs, only the nor-
malised watch time per fragment is logged, where it is further discretised as a binary label for
student engagement.

To answer the proposed research questions, the main criteria for an eligible educational dataset
is that it must contain in-video interaction logs, such as pause, skip and play events. Moreover,
it should be large-scale, containing logs from numerous students and videos, as well as across
multiple topics, preferably from different domains. Considering the mentioned, commonly
used learning resource datasets, only a few of them meet these criteria. More concretely only
EdNet [114], MOOCCube [115] and MOOCCubeX [116] contain granular, in-video interaction
logs. MOOCCube has become less relevant as MOOCCubeX is an improved, larger and contex-
tualised version of the same data source [116]. Therefore EdNet and MOOCCubeX were used
for the experiments outlined in Section 1.3, although MOOCCubeX is the only platform with
videos from multiple educational domains.

4.1.1 EdNet

A large-scale, dataset EdNet[114] was published in 2020, with a large variety of user interac-
tions from the South-Korean English learning platform Santa Santa2. The data was collected
over a three-year period, containing data of over 784,000 users with an average of over 441
interactions per user, totalling more than 130 million interactions in total. Regarding the learn-
ing resources, it has over 13,000 exercises and more than 1000 lectures where each resource
has an encoded tag or skill related to one of the 293 topics on the platform. In addition to learn-
ing resource interactions, it also has other user interaction logs related to purchases, reading
explanations, as well as resource meta-data video lengths and first time made available and
interaction context such as client device used. The dataset is structured hierarchically, where
each hierarchy level is increasingly granular and created with different tasks in mind, e.g. KT
or dropout prediction. The most granular level KT4 is used in this project as it is the only
level which contains interaction logs within a lecture viewing, i.e. when the user enters and
quits the video. Moreover, the logs contain play and pause events, with corresponding in-video
timestamps. [114]

4.1.2 MOOCCubeX

As mentioned MOOCCubeX [116] is an improved version of the originally large-scale data-
set MOOCCube [115] collected from the Chinese MOOC-platform XuetangX3. In difference to
EdNet, MOOCCubeX contains user interactions across over 70 expert-identified educational
fields with over 4200 courses distributed across the fields. The courses consist of lectures and
exercises partitioned into sections of each syllabus, totalling to 230,000 lectures and more
than 350,000 exercises. Most of these resources have potentially multiple related concepts and
each concept is related to one of the fields, totalling more than 630,000 unique concepts.
Moreover, the dataset contains more than 3.3 million enrolled users with corresponding user

2https://www.aitutorsanta.com/
3https://www.xuetangx.com/

https://www.aitutorsanta.com/
https://www.xuetangx.com/
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demographic-related profiles, which have in total accumulated more than 296 million inter-
action records. For a user viewing a lecture, the authors have aggregated the click events to
viewing segments, indicating which parts of the user viewed at what time and at what playback
rate. In addition, MOOCCubeX consists of other entities and meta-data as well such as teacher
relations to courses, university relations, learning resource discussion logs and prerequisite
knowledge. To date, it is one of the largest, public educational datasets created with no spe-
cific analysis task in mind to accommodate the stated needs of standardised datasets in TEL
research. [116]

4.2 Preprocessing

Although preliminary preprocessing steps have been taken by the dataset authors of EdNet and
MOOCCubeX, several challenges arise related to how the user-lecture interactions are logged.
Three main preprocessing steps were applied to both datasets: Generation of user interaction
sessions, removal of outlier users and extracting the in-video viewing patterns. In particular,
(in-video) viewing features and behaviour are used interchangeably in this work, referring to
how users interact with videos in terms of usage, pausing, skipping etc. Moreover, this work
does not distinguish between online lectures and videos, where every video is considered a
lecture and the opposite as the datasets do not distinguish these terms.

4.2.1 Session generation

Before extracting the in-video viewing patterns, the start and end of a given user-lecture in-
teraction must be defined, as neither of the datasets has it stored explicitly and correctly. All
of the in-video viewing interactions are grouped together for a given user lecture interaction
to a user lecture session, further simply referred to as a session. Moreover, the raw logs of the
datasets must be mapped to watching segments to be able to extract the viewing patterns.

Ednet

Since Ednet’s KT4 partition contains all types of resources and interactions, only the actions
regarding lectures are kept, where exact duplicate records are discarded. In addition to the in-
teraction logs, the dataset contains some metadata on the lectures, such as deployment date,
lecture length and a single numerically encoded tag. Each record contains the type of action,
the local timestamp of the action, which lecture the action is applied to and at which mil-
lisecond in the video the action happened. The duration, speed or. There are four types of
actions, namely enter, quit, play and pause.

Because of irregularities in the logs, one cannot correctly use the enter and quit actions to
specify the start and end of a user lecture session. This is because a large number of the user-
lecture interactions do not contain both, or any, of the defining actions, and other inconsist-
encies where one or more related video action records are logged after a "quit" action of the
given video.

Therefore, the definition of the start and end of a user lecture interaction was determined by
the duration of the pause until the next chronological action. To best infer the duration of the
pause until the next action was taken, assuming that the user did in fact take a break. Due
to some outliers of the play actions, a new user lecture session was also generated if a play
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event lasted longer than roughly twice the lecture length. So the preprocessing steps were
the following: sort all action records by their local timestamp. For each user, group together
consecutive action records regarding the same lecture. If the pause between two consecutive
action records is larger than some threshold }, create a new user lecture session. The implication
is that the pause duration is so large that it is rather a “break” than a pause.

A perfect duration threshold is difficult to define, as it could depend on multiple factors such
as the users’ preferences and physical context when they are using the platform. For instance,
[17] excludes pauses larger than 10 minutes as they interpret them as “breaks” instead of
pauses for in-video viewing behaviour measures. Other work defined the length of a study
session using outlier detection of the time between interactions, inter-activity period and the
maximum allowed passive time, i.e. watching a video. Based on the analysis, where the third
quartile was 16 minutes, they chose 30 minutes as the maximum pause duration. The datasets
considered in this project have more granular event tracking, but no consistent known lecture
lengths. Furthermore, the proposed session definition only considers a single lecture interac-
tion, not multiple. Therefore, 20 minutes was chosen as the session threshold to allow for some
flexibility and maintain a relative trade-off between the number of in-video interactions per
user lecture session and the number of consecutive user lecture sessions,

This resulted in some user lecture sessions containing only one action recorded and could
therefore not be used for any in-video pattern extraction as the start or end of the given action
was undefined. Therefore, in cases where a consecutive user lecture interaction, if it contains
more than 1 user lecture session, remove the sessions containing only a single action record,
excluding 3917 sessions. The argument to keep the interaction is that one assumes the inter-
action did in fact happen, and it is meaningful for the user interaction sequence to keep it
intact to better replicate the user’s actual interaction sequence and meaningful lecture rela-
tions. Then within each user lecture session, the action records are transformed into viewing
segments, with start and end-points in the given lecture. As the logs do not contain data on the
playback rate used, the assumption is that is constant at 1 based on the infrequent use of it in
[16], although the learning platform does support variation in playback rate.

MOOCCubeX

The creators of MOOCCubeX have already done the latter preprocessing step of creating view-
ing segments, so a given record contains the server timestamp, the playback rate and the start
and end point of the given watching segment the user has viewed. Using this information,
the assumed end server timestamp is inferred. The user lecture session generation is, there-
fore, more accurate compared to for EdNet, as one can use the pause duration between the
end timestamp and the following start timestamp. A pause duration threshold of 20 minutes
is used here as well. The effect on sequence length distributions is minimal as shown in the
empirical cumulative distribution functions in Figure 4.1.

Removing outliers

During data exploration, it was apparent that there are some user behaviour outliers. More
specifically, for MOOCCubeX there were multiple users who had viewed a single or multiple
lecture(s) thousands of times. As this seemed like unlikely user behaviour, user which had seen
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Figure 4.1: The effect of session generation on user history length distributions, on a logar-
ithmic scale. The dashed lines indicate the sequence lengths when considering sessions and the
solid line considers only the consecutively viewed lectures

at least one video more than 50 times were excluded. For MOOCCubeX, there are two resource
identifiers, one unique within a given course offering (videoid) and one which is globally
unique (ccid). The repetition count was based on the ccid, though empirically showed little
difference. Although the threshold is relatively arbitrary, it was set as a threshold between
likely user behaviour and the total dataset retention. In total, this meant that 5100 users were
excluded from MOOCCubeX. For EdNet, this behaviour was only identified for two users.

Table 4.1: Effects of preprocessing steps for EdNet and MOOCCubeX specifically.

EdNet MOOCCubeX
# Interactions* |U | |I| # Interactions* |U | |I|

Raw (unique)
records

5,009,098 42,828 971 25,748,664 310,360 193,624

Session Generation* 539,331 42,828 971 21,304,672 310,360 193,624
Outlier removal 538,649 42,826 971 2,221,362 305,260 186,865
Feature extraction 538,649 42,826 971 2,213,674 304,807 186,670

*The definition of interactions changes from the number of recorded in-video events,
to the number of sessions after the session generation.

4.2.2 Feature Extraction

As the research in related works illustrated that various viewing behaviour is related to differ-
ent aspects of learning behaviour and success, the most commonly studied viewing behaviours
as studied in [14–16, 18, 22, 25, 101, 102] are explored further. Due to dataset differences in
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data availability, some of the definitions and resulting features are adapted. In the following
sections, the specific feature definitions and extraction methods are explained in further detail,
including the usage and preprocessing of topics related to the individual lectures.

In-video viewing behaviour

Some of the previous studies of in-video viewing behaviour overlap in the behaviours meas-
ured, feature definitions and datasets explored [14, 15, 25], whereas some use the raw dur-
ation features [17, 18] and others may normalise them due to large differences in lecture
duration [14, 25]. Based on related analysis work on in-video viewing patterns summarised
in Table 3.1, the following features are selected to be explored further:

• Skip f rac: The total duration of (forward) skipped lecture segments, i.e. intervals, as a
fraction of the lecture length. Multiple skips of the same video segment is only counted
once, so it is bounded by 1. When we compute the proportion of skipped video content, we
only consider the proportion that is skipped by forward seeks.
• Replay f rac: The total duration of overlapping viewed lecture segments as a fraction of

the lecture length. The same overlapping segment can be included multiple times, so it
is not bounded by 1.
• Play f rac: The total duration of played lecture segments as a fraction of the lecture length,

including repeated segments. It is therefore not bounded by one.
• Spent f rac: The total time spent on the lecture, including pauses, as a fraction of the

lecture length and therefore not bounded by 1.
• Completed f rac: The proportion of the lecture content the user has viewed, which makes

it bounded by 1.
• Pausenum: Number of pauses, where 2 s < pause duration < 20 minutes .
• Pausemedian: The median pause duration, where 2 s < pause duration < 20 minutes.
• Rewindnum: The number of backward seeks. A backward seek is counted if the following

(play) action or interval has an earlier lecture timestamp than the action or interval in
question.
• Forwardnum: The number of forward seeks. A forward seek is counted if the following

(play) action or interval has a higher lecture timestamp than the assumed end of the
action or interval in question.
• SegReplaynum, t : The number of overlapping, viewed lecture segments, where the over-

lap is of at least t seconds.
• PBRµ: The duration-weighted average playback rate. Only applicable to MOOCCubeX.
• PBRσ: The standard deviation σ of the playback rate. Only applicable to MOOCCubeX.
• PBRe f f : The “effective” playback rate, defined as PBRµ − PBRini t , where PBRini t is the

initial playback rate when the user starts the lecture which by default is 1.

They are all features shown to be interesting for describing user interaction behaviour in terms
of user engagement [13], perceived video difficulty [18] [17] and KT [105]. As more complex,
non-linear relations between multiple of features indicate that they collectively are more in-
formative [105], they are all explored further. Specifically for the definition of pauses, follow-
ing [17, 18], pauses shorter than 2 seconds are not considered for pause-related features in
MOOCCUbeX, but they are considered in Pausemedian for EdNet. Due to the large variance in
recorded video lengths in both EdNet and MOOCCubeX, the duration-based features, features
with subscript f rac , are normalised by the highest recorded in-video timestamp per video. As
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the normalisation is done using data from a training set, to avoid bias in the inference, the
normalised features are not guaranteed to be upper bounded by 1.

In addition to the previously researched features, this work introduces SegReplaynum, t with
the intent to better differentiate between actual replaying behaviour and frame seeking. An
example of a segment replay is if a user views a lecture segment [0 s,34 s), then rewinds and
watches [29 s,52 s). This overlapping view segment would count as a segment replay for τ <=
5 s. With an increasing τ, one could assume that it is more likely that the user intended to
replay some part of the video. The characteristic is a mix of the number of seeks and the
replay fraction of the video, where all combinations of viewed video segments are compared
for SegReplaynum, t . As SegReplaynum, t correlates with Rewindnum for t → 0 and naturally
becomes more sparse as t → ∞. Therefore SegReplaynum, 60 is used as the given overlap
threshold provides a trade-off between sparsity and actual in-video repetition

To present some of the feature characteristics related to specific lectures as the intrinsic prop-
erties of lectures have shown to affect how users interact with the lecture [10, 12, 19, 25], a
subset of both datasets are used to visualise the variance in behaviours. To evaluate the vari-
ance in viewing behaviour related to individual lectures, 100 lectures are randomly selected,
and each of them has been viewed by at least 100 different unique users. The average of the
representative continuous and discrete features Played f rac and Pausenum respectively for each
lecture is presented in Figure 4.2. As visible in both illustrations, some lectures are viewed
for longer amounts of time than others, whereas others cause differences in pause frequency
relative to the global average. The visualisations show similar trends in lecture variation as in
[25].
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(a) The average time spent playing a video as a
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each selected lecture in MOOCCubeX.

Figure 4.2: The intrinsic lecture bias related to Played f rac and Pausenum in EdNet and MOOC-
CubeX respectively. The average of all sessions is represented by the horizontal line, and the
global uncertainty given by one standard deviation, is visualised as the highlighted background,
where it is limited to highlight positive values.

To visualise individual users viewing behaviour preference bias as shown in [25], users with a
minimum level of diverse, viewing activity in terms of different lectures viewed, are selected
to alleviate any outlier behaviour caused by a single session. In particular, 100 users who
have seen at least 50 different lectures are randomly sampled and averaged per user. Another
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pair of features Completed f rac and PBRµ averaged for each user is presented in Figure 4.3b.
Examining the user averages of Completed f rac in Figure 4.3a, clearly some users tend to watch
only a small fraction of lectures, while others view on average mostly the entire lectures. Figure
4.3b on the hand illustrates that most users do not alter the video speed, as reported in [16],
but some students do on average watch lectures at very high speeds.
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(a) The average completion rate Completed f rac for
each selected user in EdNet.
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Figure 4.3: The individual user viewing behaviour bias related to FEAT1 and FEAT2 in EdNet
and MOOCCubeX respectively. The average of all sessions is represented by the horizontal line,
and the global uncertainty given by one standard deviation, is visualised as the highlighted
background, where it is limited to highlight positive values.

Bias adjusted features

In [25], they highlighted the longitudinal nature of a course’s impact on in-video viewing beha-
viour. This can affect the inference of similarity between users’ learning styles through viewing
behaviour. As an example, given a user ua which normally has a high SegReplaynum, t for its

viewing sessions, for a session l(ua)
t , ua ’s measured SegReplaynum, t = 0. However, another user

ub has on average low SegReplaynum, t and does not replay any segments of the same lecture

in its session l(ub)
t . Given it is the same lecture, the discrepancy for ua may indicate a need

for a different type of learning behaviour for the given lecture, but not for ub. Based on their
previously exhibited preferences, one could argue that they should not be related positively,
i.e. have high similarity for any behaviour-similarity based Recommendation Systems. The ex-
ample generalises to any abnormally measured behaviour by any of the viewing features, com-
pared to previously exhibited viewing behaviour. This motivates an additional preprocessing
step to generate another dataset where the in-video viewing patterns are adjusted for users’
individual, expanding bias for each feature. Formally, for a given viewing feature γ, user u,
lecture l, at time step t of a user lecture session l(u)t , the bias-adjusted version of the feature γ̂
is defined as

γ̂l(u)t
= γl(u)t

−µγ,u, t−1, (4.1)

where µγ,u, t−1 is the user’s average of viewing pattern γ up til the given user lecture session
at time step t.
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Categorical feature extraction

To relate in-video viewing behaviour to intrinsic lecture properties on a large scale, the related
topics discussed in the lectures can be used. More concretely for EdNet, lecture topics are
available as pre-encoded, expert-annotated “tags”, one for each lecture. MOOCCubeX’s lecture
topics on the other hand consist of a concept and a related field by a many-to-one relation,
where each lecture can have multiple related topics. The concepts are more fine-grained topics
extracted from the lecture transcripts and each MOOC was labelled a given field by three
experts [116].

After the preprocessing steps in Section 4.2, EdNet contains 259 unique tags. To analyse the
concepts and fields individually, each unique concept-field mapping representation is split into
separate concept and field features. Consequently, MOOCCubeX contains 171,993 unique con-
cepts with a many-to-one mapping to 74 different fields. Notably, the concepts are in several
languages, including English and Chinese, whereas the fields are only in Chinese. Moreover,
several of the concepts are not semantically meaningful, i.e. random numbers or symbols.
However, not every lecture have a tag or concept-field relations, where the overall dataset
characteristics regarding the frequency of topics are presented in Table 4.2.

Table 4.2: The distribution of lecture topics in EdNet and MOOCCubeX, tags and fields respect-
ively. Annotated lecture proportion describes the fraction of lectures which has at least one
related topic. Topic sparsity is the proportion of user lecture sessions which does not contain
any lecture topics

Annotated Lecture Proportion Topic Sparsity Median #Topics

EdNet 0.5953 0.2802 1
MOOCCubeX 0.3617 0.5279 10
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Figure 4.4: The average number of sessions of the 20 most viewed fields of MOOCCubeX

The number of sessions per field in MOOCCubeX is positively skewed as visible in 4.4, where
the most frequent field per lecture is used, complicating a fair comparison across all fields.
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Figure 4.5: The average number of sessions and unique users per field, for each category

Therefore, each field is manually categorised into the larger domain categories. As there is no
common, global standard of domain categorisation, the classification is done according to the
categories defined in the first EdX summary study [43]: CS, Science, Technology, Engineering
& Math (STEM), Government, Health & Social Science (GHSS) and Humanities, History, Re-
ligion, Design & Education (HHRDE). The classification mapping between each field and the
corresponding domain category is accessible in the code repository4. As the number of fields
per category is not equally distributed, the average number of sessions and users per field in
each of the categories is displayed in Figure 4.5 on a logarithmic scale.

To take advantage of the semantic meaning of both concepts and fields in MOOC, they are
separately embedded using the pre-trained embeddings for Chinese offered by the library fast-
Text [118], which do support out-of-vocabulary embeddings in the case of the English and
symbols-only concepts. As some of the concepts and fields are sentences, the sentence embed-
ding-feature is used, where the original embeddings of dimension 300 are reduced to 64 using
the library’s embedding-reduction tool which is based on Principal Component Analysis (PCA)
[118].

4https://github.com/erlendoeien/enhancing-lecture-rs

https://github.com/erlendoeien/enhancing-lecture-rs
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Experiments

In this chapter, the details of each experiment proposed in 1.3 are presented. For each of the
experiments, the problem statement is first presented, followed by additional, specific prepro-
cessing steps to those applied in 4.2. Then the experiment-specific setup such as chosen al-
gorithms, hyperparameter search configurations, data splitting strategies and evaluation met-
rics are described. Given the setup, the results of the experiment are presented, following a
discussion of the results and how they address the corresponding research questions, as well
as any limitations of the experiment.

All of the experiments are run on NTNU’s IDUN compute cluster [119], which results in a vary-
ing degree of performance, dependent on the GPU of the experiment. Therefore, the specific-
ally used GPU for each experiment evaluation is presented in Appendix A. The hyperparameter
search spaces and corresponding parameters for each of the experiments are available in the
code repository1.

1https://github.com/erlendoeien/enhancing-lecture-rs
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5.1 Experiment 1 - Next-Lecture Prediction

In this section, the necessary prerequisites to execute the set of experiments in Experiment 1
are outlined, including experiment-specific preprocessing, RSs used and the evaluation meth-
odology.

5.1.1 Transformers4Rec architecture

Transformers4Rec [80] is an open-source framework which enables a complete pipeline from
data modelling to inference, specifically created for modelling and including side information
in SARS. Using the framework’s modular approach, the proposed architecture includes both
optionally pre-trained item embeddings and additional embedding fusion computation. The
general architecture is illustrated in Figure 5.1, As Figure 5.1 shows, the overall model flow
illustrates the interaction sequence of a single user. The input features, including the lecture
identifier, topic features and video interaction features are illustrated and going through sep-
arate embedding processes.

Embedding

Aggregation

Sequence Masking

Weight Tying

Softmax

Sequential Layer

Sequential Layer

Sequential Layer

LectureIDs
Viewing

Fetures

Lecture

Topics

Figure 5.1: Proposed main model architecture for SARS, inspired by [80]

The framework distinguishes categorical, e.g. user, item or contextual features, and continuous
features, e.g. the extracted viewing patterns. As MOOCCubeX has semantically meaningful
topics, using pre-trained embeddings is an option. The categorical features are individually
embedded, whereas in the case of multi-label features, like concepts or fields, the average
of the concept and field embeddings are used for each session. The continuous features on
the other hand can either be projected using a FFNcontinuous, SOHE or both. The continuous
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and categorical features can then be merged by either concatenation or element-wise, which
requires identical embedding sizes. The resulting tensor can then optionally be projected using
another FFNag g . [80]

The motivation to add additional computation to the continuous features and the merged
tensor is to learn and extract non-linear interactions between the various features. As in-video
viewing patterns have been shown to have both linear [25] and non-linear relations [18], a
FFNcontinuous with non-linear activation function may improve utilisation of informative pat-
terns and reduce the importance of less informative viewing patterns. The motivation for ap-
plying a FFNag g to the merged tensor is to emphasise potential non-linear relations between
the various lecture topics and the associated viewing patterns. In detail, the continuous feature
FFNcontinuous, has a single hidden layer which is four times the size of the input feature vector,
i.e. either the number of continuous features or the combined embedding size of the SOHE.
The merged tensor projection has also a single hidden layer FFNag g with a width four times
the sequential model embedding size or in this case input size. If a FFNag g is not applied, and
the merged tensor dimensions are not aligned with the sequential model size, it is either way
projected to the expected model size using a linear transformation.

5.1.2 Problem definition

Adapting the problem statement of a sequence-aware next-item prediction problem stated in
[120], by considering a set of users {u1, u2, . . . , u|U |}= U and a set of lecturesL= {l1, l2, . . . , l|L|}.
Further, denote a list of user lecture sessions for a given user u as Su = [l

(u)
1 , . . . , l(u)t , . . . , l(u)nu

]

which represents the temporally ordered sequence where l(u)t is the lectured viewed by user u
at the relatively indexed time step t. nu denotes the total user lecture session sequence length
for user u. In this context, the next-lecture prediction task can be formalised as predicting
the lecture viewed at time step nu + 1 for user u given the user lecture session history Su by
modelling the probability of viewing each possible lecture l stated as:

Pr(l(u)nu+1 = l|Su), (5.1)

where Pr denotes the probability. [120]

5.1.3 Experiment setup

The specific experiment-specific preprocessing, algorithms, model configurations and hyper-
parameter tuning, as well as the evaluation metrics, are described in the following sections.

Preprocessing

As the main focus of the evaluation is to use interaction histories for next-item prediction, cold
users are excluded. Following general practice, the users with less than five interactions are
excluded [121]. The effect is an 8.15% reduction in the number of user lecture sessions for
EdNet and a 17.1% reduction for MOOCCubeX. Further on, the sequential models require a
fixed length sequence input [80]. As the sequence length is a trade-off between information
and model complexity, the 30 first interactions are kept for each user, as a middle ground of the
differences in sequence length distributions between EdNet and MOOCCubeX. As platform be-
haviour can depend on the users’ experience with the platform [29], the 30 first, rather than the
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most recent interactions are chosen to avoid platform experience bias. In addition, it reduces
model complexity and limits the effect of crawling, bot-like behaviours which were identified
[23]. Consequently, 61.6% of EdNet’s interactions are retained, while 79.6% of MOOCCubeX’s
interactions. The resulting dataset characteristics are presented in Table 5.1. Despite relatively
short sequence lengths, they are similar to commonly used benchmarks for sequence-aware
evaluation [121]. In addition, sequences with less than 30 interactions are padded accordingly
[80].

Table 5.1: Dataset statistics after preprocessing. The number of items is excluding the padding
token

#Users #Items #Interactions sparsity mean_length median_length

EdNet 18,194 951 304,754 0.9823 16.7502 14
MOOCCubeX 116,661 158,358 1,461,684 0.9999 12.5293 9

Furthermore, the in-video viewing features are scaled to approximate a Gaussian distribution.
Due to most features’ highly non-normal distribution, they are approximately standard scaled
using the non-linear Yeo-Johnson method [122] from Scikit-Learn2 [123], which attempts to
maximise the goodness of fit of the individual features by raising them to the power of a λ for
each feature. Due to most features’ long tails, an interquartile-range-based scaling method was
attempted, but the preliminary results did not indicate a drastically more Gaussian-like distri-
bution and were therefore not used. For the bias-adjusted evaluations, the in-video features
were individually adjusted using Equation 4.1, before too scaling them using Yeo-Johnson.3

Missing features, both categorical and continuous, were replaced with zeros. As the SARS re-
quired a fixed length side-information input as well, only the 10 first related concepts and
fields were kept for MOOCCubeX as it is the median length as shown in Table 4.2. Interac-
tions with lectures which have less than 10 related concept-field mappings are padded with
zeros as well [80]. Lastly, for the sequential models, each user’s interaction history with the
corresponding side information is aggregated into a list for each feature, ordered by the global
timestamp. For the conventional models, the implicit user-lecture matrix is created for each of
the data splits, where the entries are binary indicating whether or not the user has interacted
with the given lecture or not.

The Figures 5.2a and 5.2billustrate the effect of the scaling and bias adjustments on repres-
entative in-video viewing features using EdNet as an example. Due to the long tails of the
distributions, which are highlighted in Figure 5.3, outliers are not included to make the visu-
alisations informative in Figure 5.2.

As illustrated in these figures, the scaling in some cases improves the variance, as the non-
scaled feature visualisations falsely have dense interquartile ranges due to the long tails, as
visible in Figure 5.3. However, the tails are still long despite the scaling effort and the fea-
tures are less explainable and intuitive for further analysis. Lastly, there is no visual difference
between bias-adjusted and scaled features versus the not-bias-adjusted, scaled ones.

2https://scikit-learn.org/
3To avoid any model bias, the scaling estimators for the raw and bias-adjusted datasets respectively were fitted on

the training data.

https://scikit-learn.org/
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Figure 5.2: Box plots illustrating the distributional effects on discrete and continuous in-video
viewing features respectively.

Algorithms

The following algorithms which were used in the evaluation, are all implemented in Python
[124]. The CF methods are implemented using the implicit library4, while the SARSs are im-
plemented using the Transformers4Rec framework5 [80].

Random: Naïve baseline, emphasises the differences in prediction space size and establishes
the minimum performance to expect. Implemented using PyTorch [125]

MostPop[126]: Also a naive, non-personalised baseline recommending lectures ranked by
their total number of interactions. It illustrates a simple, easily implemented method, in ad-
dition to how skewed the given dataset is towards popularity. Implemented using PyTorch6

[125]

Syllabus [23]: Based on the last user lecture session, recommend the next consecutive lec-
tures in the current course’s syllabus. The method is only applicable to MOOCCubeX as EdNet
does not contain multiple courses. Further on, the syllabus information in MOOCCubeX is very
sparse. Based on the preprocessed dataset, only 10.4% of the lectures have a known syllabus
mapping. Those lectures make up 6.66% of the total user lecture sessions. Therefore, miss-
ing syllabus entries or incomplete syllabi are replaced with the MostPop recommendations.
Though the syllabus entries have “chapters”, the naming of them is not consistent. Therefore
the order of the recommended syllabus resources in the dataset is not altered and is utilised
as is. Implemented using PyTorch [125].

implicit Alternating Least Squares (iALS)[59]: It is a conventional MF method proposed
to address the challenges of implicit feedback datasets. The learned latent user and lecture
embeddings are updated by an iterative approach using the implicit Alternating Least Squares
lossIn addition to being a common model-based CF baseline, recent work has shown that it
is still a relevant recommendation method outperforming several recent and more complex

4https://benfred.github.io/implicit
5https://nvidia-merlin.github.io/Transformers4Rec/main
6https://pytorch.org

https://benfred.github.io/implicit
https://nvidia-merlin.github.io/Transformers4Rec/main
https://pytorch.org


Chapter 5: Experiments 45

0 20 40 60 80 100
Rewindnum

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
op

or
tio

n

Variant
Raw
Scaled
Bias-Adj

(a) A histogram of the effect of scaling, and bias
adjustments and scaling on Rewind f rac

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Completedfrac

0

1

2

3

4

5

6

7

8

De
ns

ity

Variant
Raw
Scaled
Bias-Adj

(b) An Estimated kernel density visualisation of
the effect of scaling, and bias adjustments and scal-
ing on Complete f rac

Figure 5.3: Histogram and Kernel density estimations are visualised for a representative dis-
crete and continuous viewing feature respectively

models if configured correctly [127].

Bayesian Personalised Ranking (BPR)[128]: In difference to iALS, BPR is a MF method op-
timised for ranking explicitly, rather than implicitly through the rating prediction problem.
This is achieved by using a pair-wise loss, where the training samples are triples (u, l(u)pos, l(u)neg),
where , l(u)pos is a positive item, i.e. lecture viewed by user u, and l(u)neg is a negative item, i.e. not
viewed by user u. Using these triples, the objective is to provide the user with a personalised
total ranking by creating a total order > u of all of the lectures by reconstructing it through
the pairwise preference comparisons between the lectures. BPR is one of the most commonly
used baselines and has illustrated reproducible outperformance of several other MF methods,
both conventional and neural [121].

Logistic Matrix Factorisation (LMF)[129]: A probabilistic MF method for implicit feedback,
calculating the probability of interacting with an item given the logistic relations. It was first
evaluated in the space of artist recommendation, where listening behaviour is highly skewed.
The method has been shown to be effective and is included due to its applicability to domains
where re-consumption behaviour is relatively common. The intention is therefore that it will
give another perspective than the other MF methods for learning resource recommendation
where re-consumptions are interesting.

K-Nearest Neighbours: A conventional memory/neighbourhood item-based CF model, as de-
scribed in Section 2.3, utilising the k most similar lectures by each user’s ratings to predict
recommend relevant lectures. In this implementation, the implicit feedback is binary, i.e. if
the user has interacted with the item or not. To calculate similarity, three similarity metrics
were considered: cosine, TF-IDF [93] and BM25 [130] due to their shown effectiveness from
information retrieval to balance informative and less informative interactions, as well as to
handle varying sequence lengths, i.e. document length in information retrieval.

The following models are SARS and are implemented as a part of the model architecture
described in Section 5.1.1 and thereby support the inclusion of side information. Therefore
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they are used for experiments Experiment 1.2 and 1.3. The model names indicate what type
of sequential layer is used in the RS architecture.

GRUT4R[80]: The model is inspired by GRU4Rec and its extension GRU4Rec+ [131], which have
been state-of-the art in session-based recommendation. [80] illustrated that GRUT4r performs
comparatively to both GRU4Rec and transformer-based RSs, dependent on the dataset and
metric. Though contextualised RNNs have been explored in other domains [76], the effect of
self-supervised training on contextualised GRUs-based models were not displayed in [80]. Due
to the restrictions of GRU’s architecture, CLM was used.

BERTT4R[80]: The BERTT4R used in [80] is similar to the original [120]. It is included as it is
currently assumed to be state-of-the-art for sequence-aware recommendation modelling. The
main difference to the self-supervised training approach in [120], is that no last-item-only test
samples are included in the training of the model to better align with the evaluation task, as
it is trained with MLM.

XLNetT4R[80]: As proposed by [80] to use XLNet [55] as the sequence model, it was shown to
generally be the best transformer module to use, both with and without side-information. As
in [80], the model is trained using a MLM approach, in contrast to the original, autoregress-
ive formulation of the pretraining objective used in natural language processing tasks [55].
Regarding the sequence model XLNet, some of the differences to BERT [53], besides the ori-
ginal pretraining approach, is that it is an encoder-decoder model which is not limited to fixed
length sequences which BERT is.

Data splitting and model configuration

Following recent sequence-aware evaluation methods [84, 120, 132, 133], a temporal Leave-
One-Out (LOO) strategy was used for data splitting. More concretely, the sessions until time
step nu−2 for each user u were used as the training set, where the l(u)nu−1 session,i.e. the second
most recent user lecture session for each user, was used for validation and hyperparameter
tuning. The most recent session l(u)nu

was held out for each user, creating the test set to evaluate
the model’s recommendation accuracy.

To find the optimal hyperparameters for each non-naive model, several hyperparameters are
jointly explored and tuned on both datasets individually. For the conventional models, the
number of training epochs is included as a hyperparameter, while the SARSs are trained for
10 epochs as in [80], with an early stopping criteria with patience of 5 and a stopping threshold
of 1 × 10−3. Individual searches are done for each model variant. Following [80, 132, 133],
NDCG is used as the optimisation metric, with a cut off at 10. Due to the larger search spaces, a
Tree-Structured Parzen Estimator (TPE) sampler is used for a directed hyperparameter search
[134], where each model’s hyperparameter search includes 150 trials. In addition to the model-
specific hyperparameter studies, a search for the optimal subset of viewing features is done
using the optimal hyperparameters for the XLNet-model not-biased adjusted, enriched variant
XLNet f eat . The hyperparameter search is implemented using the Optuna7 library [135]. The
training and validation sets are used for the hyperparameter tuning.

As part of the embedding layer in Figure 5.1, each of the individual viewing features was
layer normalised as suggested by [80], as well as SOHE as it was deemed crucial to improve

7https://optuna.org/

https://optuna.org/
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the recommendation accuracy. Furthermore, the output was projected to the input item space
using weight tying as in [80] as a regularisation and parameter reduction technique. For each
of the models, a label smoothed cross-entropy loss was used, where zero smoothing is equal
to regular cross-entropy [80]. Other model configurations such as which optimiser to use,
besides the hyperparameters searched, were left to their default values. In addition, any further
reference to the sequence-aware models is used without the subscript T4R.

Evaluation

To account for the randomness provided in the weight initialisation for both MF and neural
models, each of the model-based RSs is evaluated on the same ten different, randomly selected
seeds. Using the found hyperparameters, the conventional models are trained for the optimised
number of epochs. The SARSs’ optimal number of epochs is decided through training the model
variant with the found hyperparameters, on the training set with the same early stopping and
model selection criteria as in the general hyperparameter tuning. The sequence-aware model
is then fitted on the validation set for the given number of epochs and is evaluated on the
test set, for each of the different seeds. It has been common in recent and recognised works
to use “sampled metrics” [83, 120, 136] for evaluation due to the cost of evaluating. In the
case of LOO means that for each relevant lecture, m negative, not-interacted with, lectures
are sampled and ranked together, intended to give a performance boost as large item spaces
can be expensive to evaluate. Recent studies have shown that the sampled versions of metric
not only mislead the magnitude of models’ recommendation accuracy, but the comparative
performance between models might also be invalid [68, 133, 137]. Therefore each relevant
lecture is ranked against the entire lecture set for both datasets, using the full-version of the
metric. To evaluate the recommendation accuracy, the ranking metrics NDCG, MAP and Recall
are used with cut-offs at 5 and 10 since this work is mostly interested in top-ranked lectures.
While recall will measure the models’ ability to generally retrieve the relevant lecture, NDCG
measure the models’ ability to rank it correctly. Lastly, MAP more strictly penalises incorrect
ranking than NDCG [68], so it is included to further emphasise the models’ ranking ability.

To quantify any statistical improvements or declines in recommendation accuracy, the Wil-
coxon signed rank test [71] is used for each metric, with a level of significance of α= 0.05. The
paired testing is due to the relatedness of the results by evaluating them with identical seeds.
As only ten evaluations are available for each model, an assumption of normality is less likely,
as well as the independence of the results as they are evaluated on the same datasets, which
violates the assumptions of a two-sample, paired Student’s T-test [138]. As multiple metrics are
tested and thus multiple hypotheses, the FWER is controlled by applying the Holm-Bonferroni
correction [74]. Within the baseline experiments, experiment 1.1, the best-performing model
and the second-best model per metric are tested. Furthermore, for each of the SARS, the fully
enriched models are compared to their respective base variants, whereas the bias-adjusted
variants are compared to both the enriched and the base variants to establish any potential
benefit of the two enriching methods. Lastly, XLNet f eat is not included in the significance test-
ing. The used tests are implemented in SciPy [139] and the Holm-Bonferroni-correction in
statsmodels8 [140].

8https://www.statsmodels.org/

https://www.statsmodels.org/
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5.1.4 Results

EdNet

The recommendation accuracy results of EdNet are presented in Table 5.2, where it is clear
that the conventional CF methods, either neighbourhood (KNN) or MF, perform similarly to
a non-personalised MostPop baseline. One exception is for R@10 where the CF methods per-
form drastically better. The baseline results excluding the SARS are presented in Figure 5.4a.
For the SARS models without side information, the table shows clearly that they outperform
the non-sequence-aware methods by a large margin. More specifically, the XLNet consistently
outperforms the others, though not by a statistically significant margin. Another note is that
the BERT-based model performs drastically worse than both the XLNet and GRU models.
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(a) EdNet baselines’ comparison
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Figure 5.4: Baselines comparison on various ranking metrics

For the models which incorporate side information, all three perform statistically signific-
antly better than their non-enriched counterparts except for GRU on R@10. Moreover, the
enriched XLNet-variant consistently outperforms the enriched GRU on all metrics, whereas
BERT strongly underperforms the other two. The average relative change across the metrics
for BERT compared to the base variant is 1.4% - 5.5%, while it is 1.2% - 5.5% and -0.2% -
3.9% for XLNet and GRU respectively. Furthermore the optimally found feature subset by the
feature selection method described in Section 5.1.3 for XLNet, denoted as XLNet f eat does not
perform better than using all of the features.

Lastly, the results of the model variants incorporating user behavioural bias-adjusted features
are more nuanced. Generally, all three models perform statistically significantly better than
their base variants, except for XLNet on R@10. Compared to the enriched, not adjusted vari-
ants, the bias-adjusted models perform similarly, or worse. BERT is the only model that has
statistically significant, consistent improvements over its biased counterpart. Both XLNet and
GRU show a statistically significant decline across all metrics compared to the bias variants,
except for GRU on R@5. Specifically, GRU’s average relative difference over the full version is
-1.6% - 0.8%, compared to XLNet and BERT which has improvements of -2.8% - -0.8% and
2.4% - 3.6% respectively.

The box plots in Figure 5.5 better illustrates the ranges of NDCG@10 and R@10 for the SARS
variants. From the diagram, it is clear that BERT benefits from the side information. For XLNet
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Figure 5.5: Box plot of EdNet’s recall and NDCG variance by SARS

and GRU, the benefit is less obvious. Moreover, the standard deviation of bias-adjusted variants
is not consistently lower than their comparative base variants, or their biased counterparts.

MOOCCubeX

For the non-enriched models, the syllabus-based method performs drastically better than Most-
Pop, and even better than the MF methods on MAP and NDCG@5 as visible in both Table 5.3
and 5.4b. In contrast to EdNet, the CF methods perform drastically better relative to MostPop,
while KNN results’ are 2-4 times higher than the results of the MF methods on some metrics.
Out of the MF methods, LMF performs much worse than iALS and BPR on recall and NDCG,
particularly with a cut-off at 10. KNN’s out-performance is illustrated in Figure 5.4b compared
to the other sequence unaware models. Regarding the SARS without side-information, GRU
out-performs XLNet by a statistically significant, large margin, except for on R@10. As with
EdNet, BERT consistently underperforms the other sequence-aware models.

Examining the enriched model variants, the GRU based model performs drastically better than
enriched BERT and XLNet in contrast to with EdNet. Moreover, the feature subset optimised
XLNet f eat performs relatively better than the full XLNet variant, though only slightly. As with
the base variants and in EdNet, BERT performs drastically worse than the other two SARS.
Comparing the enriched models to their base variants, they all perform statistically significantly
better than their baseline counterparts, except for XLNet on R@10. Moreover, the average
relative improvement of the enriched BERT compared to the base variant is 2.7% - 5.1%,
while it is 0.1% - 1.8% and 0.9% - 1.4% for XLNet and GRU respectively.

The relative performance between the bias-adjusted models is more nuanced, where GRU
performs relatively better than BERT and XLNet, except for on R@10. Again, BERT drastically
underperforms. More interestingly, GRU has statistically significant improvements over the base
variants, but statistically significant decline compared to the not-biased adjusted version. BERT
on the other hand has statistically significant improvements to the respective base and non-bias
adjusted counterparts. XLNet’s results are more mixed, where the only statistically significant
difference is for R@10. Specifically, it performs slightly worse than its fully, enriched variant,
and slightly better than its base variant. Put in numbers, the bias-adjusted XLNet’s average
relative change over the not-bias-adjusted variant is -1.0% - 1.1%, while it is 3.4% - 5.8% for
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Table 5.2: Results of RQ1, RQ2a and RQ2b for EdNet, where the Baselines section contains
the models without side-information, the Full for methods with side-information and Bias-Adj
section for the models with user bias adjusted side-information. * indicates not statistically sig-
nificant difference second best-performing baseline in the given metric. † indicates not statistic-
ally significant compared to the base version of the model.‡ indicates not statistically significant
compared to the full version of the model, evaluated with a significance level of α= 0.05 using
a Holm-Bonferroni corrected Wilcoxon signed rank test. The best result for each metric per
section is highlighted in bold, while the second best result is underlined.

NDCG@5 NDCG@10 R@5 R@10 MAP@5 MAP@10

B
as

el
in

es

Random 0.0038 0.0054 0.0062 0.0112 0.0031 0.0037
MostPop 0.0354 0.0444 0.0550 0.0827 0.0290 0.0328
iALS 0.0362 0.0582 0.0645 0.1333 0.0270 0.0360
LMF 0.0340 0.0506 0.0587 0.1104 0.0260 0.0327
BPR 0.0457 0.0684 0.0785 0.1491 0.0352 0.0444
KNN 0.0396 0.0686 0.0727 0.1634 0.0266 0.0383
GRU 0.2163 0.2399 0.2714 0.3445 0.1982 0.2079
BERT 0.1378 0.1603 0.1827 0.2528 0.1231 0.1323
XLNet 0.2173* 0.2427* 0.2746* 0.3534* 0.1985* 0.2089*

Fu
ll

GRU 0.2232 0.2455 0.2747 0.3439† 0.2062 0.2153
BERT 0.1447 0.1663 0.1889 0.2564 0.1302 0.1390
XLNet 0.2278 0.2522 0.2819 0.3578 0.2100 0.2200
XLNet f eat 0.2221 0.2461 0.2765 0.3512 0.2041 0.2139

B
ia

s-
A

dj GRU 0.2206 0.2439 0.2744‡ 0.3468 0.2029 0.2124
BERT 0.1495 0.1717 0.1935 0.2627 0.1351 0.1441
XLNet 0.2226 0.2471 0.2791 0.3550† 0.2040 0.2140

BERT and -2.8% - -0.8% for GRU.

The ranges of performance for the SARSs is illustrated in Figure 5.7, where it is clear that
XLNet’s performance is less stable, while GRU’s performance is. Moreover, it highlights the
improvements of the bias-adjusted variants over the base and not-adjusted variants for BERT
and XLNet, but less for GRU, even a negative effect in terms of recall. As with EdNet, the box
plots demonstrates that the bias-adjusted models do not generally reduce the variance in the
measured metrics compared to their respective variant counterparts.

Lastly, to evaluate the hyperparameter-tuned number of epochs and the different seeds’ effect
on model training, the evaluation and test loss are visualised for the variants of BERT in Figure
5.6 for both datasets. From the plots, the models generally overfit from early on, without a
general degradation of the test loss, but slightly improving. Moreover, the models use less than
half of the given training budget. Another note is that the enriched variants converge more
quickly than the others, which is particularly evident on MOOCCubeX. Lastly, the uncertainty
provided by the 95% interval is little and only strictly visible for the test loss of bias-adjusted
BERT on EdNet. The other models’ loss plots are available in Appendix B.1, where the same
trends are present, except that the enriched GRU converges more slowly than the other vari-
ants. To summarise the overall results, the number of improvements or declines comparing
the various variants for both datasets are presented in Table 5.4.
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Figure 5.6: The mean and 95% confidence interval of validation and test losses across each
seed evaluation for the variants of BERT.

GRU BERT XLNet

0.50

0.55

0.60

0.65

0.70

ND
CG

@
10

Variant
Base
Full
Bias-Adj
Features

(a) NDCG@10 variance by model variant

GRU BERT XLNet

0.50

0.55

0.60

0.65

0.70

R@
10

Variant
Base
Full
Bias-Adj
Features

(b) Recall@10 variance by model variant

Figure 5.7: Box plot of MOOCCubeX’s recall and NDCG variance by SARS

5.1.5 Discussion

The results related to the individual research questions RQ1a-c and how they are addressed
are discussed below, as well as the limitations of the experiment.

Research Question 1a: Baseline recommendation accuracy

Firstly considering RQ1a, the dominance of SARS in other fields [80, 120, 133] is also present
in large-scale, learning resource datasets. This further indicates that there are relevant, sequen-
tial patterns when interacting with educational videos which are not captured by time-unaware
models like conventional CF methods. More interestingly, despite EdNet having much lower
sparsity, fewer unique lectures and in general longer user interaction sequences, the general
recommendation accuracy is much lower, especially regarding the sequence-aware models as
for instance XLNet has an average NDCG@10 of 0.5786 on MOOCCubeX, it has only 0.2173
on EdNet. One difference which might be a factor is that MOOCCubeX has additional playback
rate features, which are not available for EdNet, further enriching in-video viewing behaviour.
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Table 5.3: MOOCCubeX results for RQ1, RQ2a and RQ2b. * indicates not statistically signific-
ant over the second best-performing baseline in the given metric. † indicates not statistically
significant compared to the base version of the model.‡ indicates not statistically significant
compared to the full version of the model. The test was evaluated using a significance level of
α = 0.05 with Holm-Bonferroni corrected Wilcoxon signed rank test. The best result for each
metric per section is highlighted in bold, while the second best result is underlined.

NDCG@5 NDCG@10 R@5 R@10 MAP@5 MAP@10

B
as

el
in

es

Random 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000
MostPop 0.0089 0.0274 0.0177 0.0743 0.0061 0.0139
Syllabus 0.0580 0.0777 0.0718 0.1322 0.0535 0.0618
iALS 0.0394 0.0920 0.0757 0.2394 0.0278 0.0494
LMF 0.0320 0.0542 0.0569 0.1264 0.0239 0.0330
BPR 0.0559 0.0996 0.1013 0.2371 0.0413 0.0593
KNN 0.1046 0.1754 0.2035 0.4235 0.0698 0.0986
GRU 0.5989 0.6134 0.6738 0.7182 0.5739 0.5799
BERT 0.4486 0.4704 0.5425 0.6095 0.4174 0.4265
XLNet 0.5588 0.5786 0.6577 0.7186* 0.5258 0.5341

Fu
ll

GRU 0.6047 0.6204 0.6801 0.7285 0.5795 0.5861
BERT 0.4705 0.4915 0.5623 0.6266 0.4400 0.4487
XLNet 0.5672 0.5855 0.6627 0.7190† 0.5353 0.5429
XLNet f eat 0.5705 0.5887 0.6644 0.7202 0.5391 0.5467

B
ia

s-
A

dj GRU 0.5981 0.6115 0.6678 0.7090 0.5748 0.5804
BERT 0.4965 0.5174 0.5840 0.6484 0.4673 0.4760
XLNet 0.5629†‡ 0.5842†‡ 0.6617†‡ 0.7268 0.5300†‡ 0.5389†‡

Another possible factor is a difference in the path variety between the two datasets because
of their differences in lecture accessibility. While each user has access to every video in the
video corpus for EdNet, users in MOOCCubeX only have access to the lectures of courses they
are enrolled in. Because of the higher availability, combined with higher general lecture cov-
erage, EdNet’s users might have a larger variety in the different interaction paths than for
MOOCCubeX and therefore the sequence-aware models have more difficulty extracting relev-
ant sequence patterns. Though this must be verified, through for instance measuring the path
entropy [23]. Furthermore, it does not explain the discrepancy for the CF methods applied to
the datasets.

Moreover GRU, a less complex model than XLNet, achieves similar performance and drastically
better performance on MOOCCubeX. Due to relatively short sequences, the benefit of using
transformers with regard to maintaining long-term memory and avoiding vanishing gradients
[131] is reduced, which could be part of the explanation. Furthermore, the GRU-based model is
consistently worse than XLNet for EdNet, which is in line with this hypothesis as the sequences
are generally longer.

An interesting note on the Syllabus-based method for MOOCCubeX is that despite the sparsely
populated syllabus information, it vastly outperforms the MostPop baseline, with 2-10 times
improved ranking accuracy. As it is likely that a user will return at some point to the lectures in
the syllabus, higher cut-off metrics like 10 is less indicative of a linear syllabus-based learning
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Table 5.4: The total number of improvements or declines comparing the side-information en-
riched to the base SARS (Full2Base), the bias-adjusted to the enriched (Bias2Full) and the
bias-adjusted compared to the base versions (Bias2Base) across GRU, BERT and XLNet and all
metrics. The number in parentheses denotes the number of statistically significant results for a
significance level of α= 0.05, measured by a Holm-Bonferroni corrected Wilcoxon signed rank
test.

Variant Comparison
EdNet MOOCCubeX

# Improvements #Declines # Improvements #Declines

Full2Base 17 (17) 1 (0) 18 (17) 0
Bias2Full 7 (7) 11(10) 7 (7) 11 (6)
Bias2Base 18 (17) 0 14 (9) 4 (4)

approach. On the other hand, it partially contradicts the findings of [116] which indicated
that students do not follow the syllabus. The fact that Recall@10 is not ≈1 for the Syllabus-
method, indicates that users to some degree do interact with different courses intermittently,
emphasising the importance of considering user behaviour on a platform basis, rather than a
per-course basis. Notably, to which degree the context-switching between lectures occur is not
accurately quantified, though one factor is that the recommendation accuracy of Syllabus is
naturally low when recommending unavailable MostPop lectures and only 7.15% of the target
lectures in the evaluation are included in a syllabus.

Lastly, the general underperformance of BERT relative to the other on both datasets is inter-
esting as previous work did not experience significant differences [80] [133]. Though it has
been illustrated that BERT have often been under-fitted when evaluated and used as a baseline
[133], this is not the case as was illustrated in 5.6 where the over-fitting is clear. Notably, the
loss functions indicate that it is the variance of the data which is not properly explained by the
model which could be improved by stronger regularisation. This is supported by that the found
hyperparameters generally had no or very low dropout rates, of both inputs and within the
sequential layers. This further highlights issues with joint, sampled hyperparameter search as
dropout was not deemed relevant by the sampling strategy. Other factors for the unexplained
variance, might be a less heterogeneous lecture selection for new platform users and that most
sequences are relatively short, as well as the misaligned between the training objective of MLM
and next-lecture prediction [132]. Moreover, the effect of only using a single evaluation for
determining the optimal number of epochs per model variant is minuscule as the .95% con-
fidence interval is barely visible in the visualisations. On another note, as BERT was given the
same training budget as XLNet, and GRU, its worse overall performance indicates that BERT
is generally less efficient to train as explored in [132, 133], and motivates further exploration
of other attention-based models and transformers in particular for recommendation as they
evolve.

Research Question 1b: Side Information Recommendation Accuracy

Regarding RQ1b, the results show that there is a general, statistically significant improvement
of the recommendation accuracy of side-information enriched Sequence Aware Recommend-
ation System. Notable, the improvements are relatively small with a maximum average im-
provement of 5.5%. The improvement comes at the cost of increased model complexity as
more features are included. Moreover, the data collection and processing pipelines for a de-
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ployed RS are increased, as well as concerns regarding the privacy of users making it less
applicable to real-life scenarios. Furthermore, using additional computing for finding inter-
actions between the side-information, both continuous and aggregated nor using pre-trained
embedding was not found to be consistently better in the hyperparameter search. This could
partially be explained by [78], illustrating how inefficient first order FFNs are for extracting
low-rank interactions. Of the evaluated sequence-aware models, BERT illustrated the largest
relative improvements over the respective base variants. The reasons for this are unknown,
but as the evaluation and test loss in Figure 5.6 illustrates, it converges at approximately the
same rate as the base variant in both cases, but the relative learning ability and generalisation
ability differ between the datasets and the respective variants.

Some of the limitations of the side-information inclusion experiments are that the impact of
pre-trained embeddings and additional computation is not further quantified. Neither is the
general impact of including knowledge-related topics combined with in-video behaviour of
lectures for inferring user’s navigational behaviours, i.e. how it relates to the lectures they
choose to watch. Moreover, even though feature selection exploration was done, a more thor-
ough ablation study could be explored to better quantify the effect of individual features and
their potential relation to lecture topics.

Research Question 1c: Bias-Adjusted Recommendation Accuracy

The improvements in adjusting users’ behaviour according to their time-aware calculated bias
are less clear. While bias adjustments of the in-video features for EdNet are consistently bet-
ter than the base variant, that is not the case for MOOCCubeX, where the bias-adjusted GRU
overall has a statistically significant decline in performance. Moreover, the BERT and XLNet’s
improvements are less statistically significant, in terms of frequency, than the not-bias-adjusted
versions compared to their base variants. When comparing the accuracy of the bias-adjusted
variants to the enriched ones, the only model which has overall improved recommendation
accuracy is BERT for both datasets, where the results of the other models are mostly statistic-
ally significant declines, though less than a relative decline of -2.8%. This indicates that there
is no additional gain by adjusting for the user bias regarding to improving the quality of re-
commendations. On the contrary, the improvement of BERT compared to the not-bias-adjusted
versions can indicate improvements in the convergence rate for BERT, although the scaling ef-
fects illustrated in Figure 5.2 and 5.2b illustrate long tails and not necessarily a Gaussian-like
distribution of every feature, making the training more. Another explanation for the relative
declines of GRU and XLNet, is that in the case of users with consistent, active, interaction beha-
viour, the bias-adjusted features will become more sparse than the not-bias-adjusted features.
As a consequence, the information provided by these features might therefore be lost and the
behaviour becomes indistinguishable from passive, user behaviour.

Therefore a limitation is that which features to adjust for users’ bias and the impact on recom-
mendation accuracy of bias adjusting individual features have not been thoroughly explored.
As presented in Section 4.2.2, some features exhibit a larger degree of user bias than others
and consequently adjusting them could be more informative when comparing abnormal beha-
viour by these features. On the other hand, not adjusting for user bias altogether excludes an
additional preprocessing step when the results indicate that not adjusting for bias is better for
sequence-aware models. Furthermore, an analysis of the recommendation quality partitioned
by users, lectures or topics was not studied. For instance, clustering the users by in-video inter-
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action behaviour, could provide further insights and quantify to which degree different types
of behaviours affect the recommendation accuracy.

Limitations of Exp.1

In addition to the limitations mentioned in the previous sections, the experiment has some
more general limitations. Firstly, the relevancy of a lecture is only decided by a single target
lecture which is the most recently viewed one in the users’ history when evaluating the recom-
mendation accuracy. For instance, it does not consider how long the user viewed the target
lecture for measuring its relevancy. If a user briefly viewed a lecture before moving on to the
next, it could indicate a less relevant lecture than a lecture viewed all the way til the end.
Furthermore, even though the user only viewed the targeted lecture, it does not necessarily
mean that the other lectures are not relevant to some extent. A more continuous and nuanced
relevancy measure could be needed, perhaps based on lecture similarity or by lectures viewed
in the near future, which could have a degree of relevancy at the time of recommendation as
they viewed it later.

For the preprocessing and evaluation methodology, a limitation is that the hyperparameter
tuning is done jointly, in a very large search space where some parts of it have major model
impacts, such as the number of sequential layers, e.g. BERT-layers, or to include additional
continuous feature projections. Though time-consuming, an iterative hyperparameter tuning,
with smaller search spaces could be beneficial to provide more confidence that the optimal
hyperparameters were found [127]. Moreover, as some work on fixed history lengths SARS,
uses the N most recent actions [61, 80], which might indicate a lower lecture viewing diversity
as users often have the same starting points and then migrate to other topics or courses [43].
Moreover, limiting the sequences to only the 30 first actions do exclude almost 25% of the
user lecture sessions of EdNet, which could be avoided by including longer sequences. The
implications of using longer sequences on recommendation accuracy for these datasets are
uncertain, as larger parts of the sequences would be padded. Moreover, neither model com-
plexity nor runtime is considered in the evaluation in detail, which in real-life applications
would have often favour the conventional models CF. [61]. Moreover, although the models
are evaluated across ten different seeds, there is only one test set which is evaluated which
can bias the results. Although this has been a common leave-on-out evaluation technique for
SARSs, a user-based re-sampling method to generate multiple test sets as proposed in [61]
could provide more confidence in the results, likely without too large of a loss in training data
as the datasets are relatively large.
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5.2 Experiment 2 - Re-consumption Behaviour

In this section, the necessary prerequisites to execute the set of experiments in The spe-
cific details of Experiment 2 are described in this section, related to the problem definition,
experiment-specific preprocessing and evaluation methods. The section is concluded with the
results of the experiments, with a corresponding discussion of how they address RQ2 and the
limitations of the experiment.

5.2.1 Problem definition

For the problem of predicting whether or not a lecture will be re-consumed by a user, the
formal definition of a lecture re-consumption is stated. Given a user u with a historic user
lecture session sequence Su, a lecture l is re-consumed if it occurs at least twice in Su. For
each lecture l and user u, the first visit of a lecture is kept and labelled as re-consumed if it
occurs later in the sequence or labelled as not re-consumed if its the only view of the given
lecture. Considering a target label y and an observed in-video viewing behaviour represented
as x = [x0, x1, . . . , x f ], consisting of f different viewing features, the prediction problem can
be formalised as estimating the conditional probability

Pr(Y = y|X= x;θ ), (5.2)

where θ is the model specific parameters.

5.2.2 Experiment setup

Firstly the additional, experiment preprocessing steps are specified for each of the specific
subquestions proposed for RQ2a and for creating a re-consumption prediction dataset. Then
the selected algorithms to use for the prediction problem are described, as well as the data
splitting methods and model configurations and lastly the evaluation methods for both the
individual subquestions and the prediction problem.

Preprocessing

To answer the proposed research questions RQ2a and RQ2b regarding lecture re-consumption
analysis and prediction, further preprocessing steps were taken to accurately compare be-
haviours. More concretely, only the 30 first sessions of users with at least five sessions are
examined as in Exp.1. Specifically, EdNet contains 274,396 novel sessions, i.e. where the lec-
ture is not re-consumed by a user and 30,358 re-consumption sessions. MOOCCubeX contains
1,284,845 novel sessions and 176,839 re-consumption sessions. The resulting set of datasets
is further referred to as Drep

For the last question related to RQ2a regarding viewing behaviours’ relation to re-consumption,
a subset of the sessions are considered due to individual users revisiting preference [26].
Firstly, to compare viewing behaviour differences, only the first visit and the following re-
consumption is compared, in contrast to in [17], as the behaviour might change with the
number of re-consumptions. For instance, a user will likely skip larger parts of a lecture the
fourth time it views it versus the second as the viewing intentions are likely different, e.g.
general revision versus seeking out specific segments. Moreover, due to previously reported
user and lecture-specific viewing behaviour [25] and as shown in Section 4.2.2, these should
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Figure 5.8: Frequencies of items and topics in EdNet and MOOCCubeX, before and after item
correction

be corrected. Therefore, for each user, a single, random first and second-time lecture viewing
pair is sampled to account for any one user’s bias9. Considering these viewing pairs, Figure
5.8a illustrates the high lecture popularity bias of the sampled viewing pairs. Therefore, for
each of the present lectures in the viewing pairs, only ten per lecture is considered, disregard-
ing lectures less frequently occurring and downsampling lectures which are more frequently
occurring. Though ten is relatively arbitrarily chosen, it provides an estimation of behaviour
related to intrinsic lecture properties. The effects of the respective user and item correction is
presented in Table 5.5, where Uσrevisi t , I

σ
revisi t and Topicσrevisi t denotes the standard deviation

of the number of revisits per user, lecture and topic respectively, i.e. per tag in EdNet and per
field in MOOCCubeX. As presented in the table as well as in 5.8b, the number of topics is not
adjusted for. The set of datasets are further reffered to as Dpred, ad j

Table 5.5: Results of downsampling for both datasets for re-consumption comparison of view-
ing features.

Firstnum Revisitnum Uσrevisi t Iσrevisi t Topicσrevisi t

Ed
N

et imbalanced 274,396 30,358 2.62 64.15 133.38
User Adj 10,379 10,379 0 24.14 48.69
Item Adj 2440 2440 0 0 10.19

M
O

O
C imbalanced 1,284,845 176,839 4.34 61.80 4112.59

User Adj 55,084 55,084 0 27.79 1444.25
Item Adj 3070 3070 0 0 111.44

To create the re-consumption prediction dataset, the first-time view of a lecture, i.e. a novel lec-
ture, for each user, is labelled as either re-consumed or not, dependent on the existence of the
given lecture later in the user’s historical sequence. For EdNet, there are 248,977 novel lecture
sessions which are not re-consumed and 25,419 sessions which are, i.e. 9.26% of the novel lec-

9Multiple pairs could have been considered, at the cost of a less diverse set of user behaviours
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ture sessions. MOOCCubeX’s consists of 9.30% re-consumptions, in particular 119,472 novel
lecture sessions which are re-consumed and 1,165,373 which are not. To provide a balanced
dataset, the labelled novel sessions are downsampled such that for each user, the number of
lectures viewed once or re-consumed is equal for each user, where the resulting set of datasets
are referred to as Dpred . Consequently, EdNet contains 49,714 samples equally split between
not-re-consumed and re-consumed novel lecture sessions across 10,355 users and 221,944
sessions across 54,068 for MOOCCubex. All of the available viewing features for each data-
set were scaled using the non-linear Yeo-Johnson transformation method [122], fitting the
estimator on the training data and used in the evaluation.

Algorithms

To evaluate to which degree viewing behaviour is predictive of re-consumption, a four different
classification models are chosen. No neural models are utilised, as it has been shown that
gradient boosted tree methods are generally superior for tabular data of datasets of around
10,000 - 50,000 samples [141]. Therefore a logistic classification model, a SVM, a XGBoost
classification model as well as a Random baseline was used in the experiments. Despite its
simplicity, it is a common, linear classification model as it does not have to make assumptions
of the underlying data which similarly complex models like Linear Discrimant Analysis do [46,
p. 127] Another traditional classifier is the SVM which attempts to find an optimal hyperplane
which best separates the target labels. Using regularisation techniques and allowing for slack,
one achieves a soft-margin SVM, allowing some misclassifications with the benefit of better
generalisation when classes overlap. [48] In this experiment, only a linear kernel is considered
for the SVM. The SVM and logistic classifier are implemented as a stochastic-gradient optimised
model for efficiency, where the Scikit-Learn [123] implementation was used.

Lastly, XGBoost is included as a one of the state-of-the-art classification models for tabular data
[141]. It is gradient boosting method, i.e an ensemble of decision trees as weak learners. The
output label of the ensemble is the weighted prediction across all of the individual trees’ leaf
weights, which together provides a more accurate prediction. For creating the ensemble, each
iteration greedily adds a decision tree which improves the prediction the most, according to a
regularised objection function. [142]

Data splitting and model configuration

For re-consumption prediction, an additional experiment setup was needed. To split the binary
re-consumption dataset Dpred into respective training and test splits, a 90/10 stratified strategy
by user was used to make sure both that the splits are balanced, as well as that individual user’s
behaviour should not bias any one split. The various hyperparameters of the models were tuned
using 10-fold cross-validation on the training split, with user-based stratified splitting to keep
the splits balanced. Each model was given 250 trials for the respective hyperparameter search.
For each trial, the evaluated hyperparameters were sampled using a Tree-Structured Parzen
Estimator sampler [134], implemented in Optuna [135]. The test split was used to evaluate
the models in a balanced label scenario.

As the original class distribution is almost 1:10, another, unseen test set was created using the
sessions which was not excluded in the per-user downsampling process described in Section
5.2.2 as most users did not have an equal number of novel lecture sessions viewed once or
re-consumed. Excluding the sessions included in the training split, the resulting imbalanced
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test sets were further randomly downsampled to match the original, imbalanced class-ratio of
the prediction dataset Dpred . The resulting downsampled datasets contained 30,423 and 3106
for not-revisited and revisited novel lecture sessions respectively for EdNet, and 191,985 and
19,682 respectively for MOOCCubeX.

Evaluation

To address the sub-questions posed as a part of experiment 2.1, the general re-consumption
behaviour and for specific topics are evaluated using statistical measures and visualisations.
For the last sub-question comparing viewing features differences between the first and second
view of a lecture, statistical hypothesis testing was applied. In particular, inspired by [11],
the two-sample Kolmogorov–Smirnov test [73] was used to test if the general distributions of
the individual features were different, measuring it across different users as in. Additionally,
the Wilcoxon signed rank test [71] was used, comparing the difference between each viewing
pair of first and second-time sessions for each viewing feature. Both tests are non-parametric
due to most features’ highly skewed distributions and possible dependence. The feature differ-
ences were symmetrical, so no symmetric adjustments were needed for the Wilcoxon signed-
rank test. Furthermore, the p-values were corrected using the Holm-Bonferroni method [74].
Lastly, both tests used were from the SciPy library [139]. To have an interpretative analysis
and comparison of the viewing features, they were not scaled like in related works [18, 25].

For evaluating the re-consumption classification, the classification accuracy on the balanced
dataset is reported by their Accuracy, F1 and Precision, while the imbalanced test set was
evaluated on F1, Precision and Recall, all with macro weighting. Moreover, the resulting fea-
ture importance calculated by the XGBoost model is evaluated to compare with the individual
viewing feature analysis.

5.2.3 Results

Q1: Are re-consumption a substantial fraction of a user’s interaction history across top-
ics?

Figure 5.9a presents the empirical cumulative distribution of users’ re-consumption fraction,
i.e. how many of their interactions are revisits of previous lectures. As illustrated, MOOCCubeX
has relatively fewer users who do not re-consume lectures, approximately 47%, whereas 57%
of EdNet’s users do to some degree. Based on the preprocessing steps in Section 5.2.2, EdNet
consists of 9.96% revisits in total, while MOOCCubeX consists of 12.10%. Moreover, 83.49% of
EdNet’s lectures have been re-consumed, while only 21.03% of MOOCCubeX. Despite this, the
raw re-consumption frequency of each user is relatively similar for the two datasets, though
MOOCCubeX users in general re-consume more relative to the number of novel lectures they
see than EdNet users. Moreover, examining the correlation between sequence lengths in 5.9b,
there is a slight positive correlation for both datasets, but relatively large uncertainty.

Furthermore, the expected probability of a lecture to be re-consumed based on the re-consumption
frequencies is 8.81% for EdNet and 6.00% for MOOCCubeX. In comparison, the two courses
studied in [18] [17] consist of 44% and 50.1% revisits respectively. Moreover, the expected
probability of a video to be revisited was 20.1% and 23.5% for the respective courses.
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Figure 5.9: The frequency of re-consumption in users’ historic interactions sequences and its
association to the total number of viewed lectures

Q2: Are there re-consumption frequency differences between topics?

As both datasets have relatively large sets of topics related to each lecture, the differences
in re-consumption frequencies for each topic are examined. To alleviate individual users’ re-
consumption biases the re-consumption proportions of each known topic based on the down-
sampled version of each dataset, without item bias correction, is presented in Figure 5.10. The
first insight is that there are large variances in re-consumption frequencies for tags and fields
respectively. In particular for MOOCCubeX, despite the skew of fields per category, there are
several topics which are far from the average re-consumption fraction. This is further illus-
trated in 5.11, where HHRDE has a higher median re-consumption frequency and STEM have
the largest variance.

Looking into the 10% fields with the highest and lowest re-consumption proportions, Table
5.6 shows their machine translations and related domain category.
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Figure 5.10: Frequencies of re-consumption per field. The dashed line denotes the global av-
erage across topics.
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Figure 5.11: The distribution of fields average re-consumption fraction
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Table 5.6: 10% Most and least re-consumed fields of MOOCCubeX

Most Re-consumed Least Re-consumed
Class Field Revisit Class Field Revisit

STEM
Light engineering
and engineering

0.2432 STEM
Instrument science
and technology

0.0286

HHRDE Law 0.2300 HHRDE
History of science
and technology

0.0326

STEM
Oil and
gas engineering

0.2265 GHSS Applied economics 0.0349

STEM
Geological resources
and engineering

0.2131 STEM Chemical 0.0378

STEM Architectural science 0.1975 STEM Crop science 0.0391

GHSS Clinical medicine 0.1728 CS
Information and
archives management

0.0436
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Q3: Are In-lecture interaction behaviours statistically different between first-time views
and re-consumption views?

As it has been shown that some in-lecture interaction behaviours are statistically significant
between first-time visits and revisits within a single educational domain [17]. To build further
on this work, the hypothesis is that some in-lecture interaction behaviours are inherent to a
first-time visit or re-consumption, regardless of the educational topic. As the analysis in the
previous sections have shown that users and lecture exhibit biases in in-lecture interaction
behaviour, as well as lecture re-consumption, the downsampled, item bias corrected dataset
was utilised.

To visualise the main differences, the discrete and continuous interaction features are presen-
ted in Figure 5.12 and 5.13 for EdNet and MOOCCubeX respectively. As the features are gen-
erally positively skewed and long-tailed, the outliers are excluded in the visualisation, with the
same argumentation for Pausemedian. Examining EdNet’s continuous features, the completion
fraction (Completed f rac) and time spent on the video, both including (Spent f rac) and exclud-
ing pause duration (Played f rac), are generally lower for the second time a user views a video
compared to the first. For the discrete features, there are fewer visible differences, except for
the number of pauses which is generally lower when re-consuming the video.
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(b) Continuous features comparison

Figure 5.12: Comparing feature ranges for first-time and second-time viewing, i.e. the first
repetition of EdNet, excluding Pausemedian.

For MOOCCubeX’s in-lecture feature distributions in Figure 5.13, there are no visible differ-
ences in the distribution between the first time and the second lecture visit in Figure 5.13a.
The continuous features are slightly more nuanced. The largest visible difference is in aver-
age playback rate (PBRµ), which has more extreme values for re-consumption sessions, but
identical median to the first visit sessions. Regarding completion rates, it is slightly higher for
re-consumption sessions. The time spent playing is slightly lower for re-consumption sessions,
while the total time spent is identical. Moreover, the skipped fraction of the lecture (Skip f rac
is also slightly higher for re-consumption sessions.

Simply studying some of the distributions according to field categories in Figure 5.14, larger
visible differences in terms of per category and with respect to re-consumption behaviour.

To statistically quantify the in-lecture interaction behaviour differences between first-time vis-
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Figure 5.13: Comparing feature ranges for first-time and second-time viewing, i.e. the first
repetition of MOOCCubeX, excluding Pausemedian.
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Figure 5.14: Comparing features across field categories for first and second view respectively

its and re-consumption, the downsampled, item bias corrected dataset means and standard
deviations for each dataset are presented in Table 5.7.

To start with, most features of EdNet have statistically significant differences of distributions
and means, of the first and second lecture interactions, as measured by the Kolmogorov–Smirnov
test [73] and Wilcoxon signed-rank test [71] respectively. Only the number of forward seeks
(Forwardnum), pauses (Pausenum), and replay proportion (Replay f rac) are not. Specifically for
the number of rewinds (Rewindnum), the difference of distributions is statistically significant,
but not the means measured by the first-time and re-consumption pair for each user. A drastic
feature difference is the median pause duration (Pausemedian), where the average for first-time
visits are 43 s and 14 s for second-time visits. The same difference is not found in MOOCCubeX,
where the average is 43 s and 45 s for first and second-time visits respectively, showing a slight
increase for re-consumption interactions.

Compared to EdNet, only one of the considered in-lecture interaction features has a statistically
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Table 5.7: Feature means and uncertainty given by 1 standard deviation, ** Indicates K-S dis-
tribution test with α= 0.005, * α= 0.05, ‡ indicates Wilcoxon significance test with α= 0.005,
† for α= 0.05

Feature
EdNet MOOCCubeX

First-time Second-time First-time Second-time

Spent f rac 0.117 ± 0.13 0.1021 ± 0.13**‡ 0.1164 ± 0.15 0.1182 ± 0.16
Forwardnum 1.8439 ± 3.9 1.9045 ± 3.7 1.9622 ± 3.85 2.0515 ± 4.13
Rewindnum 0.8066 ± 2.26 0.784 ± 1.94** 0.0844 ± 0.3 0.1098 ± 0.59
Pausenum 1.4324 ± 2.61 1.3844 ± 2.71 1.9564 ± 3.75 2.0977 ± 4.16

Pausemedian
4320.10
± 9795

1357.50
± 4120**‡

43.0497
± 107.23

45.0157
± 114.36

Completed f rac 0.4839 ± 0.4 0.4314 ± 0.4**‡ 0.1888 ± 0.25 0.1958 ± 0.26
Played f rac 0.2039 ± 0.17 0.1816 ± 0.17**‡ 0.143 ± 0.19 0.1495 ± 0.2
Replay f rac 0.0162 ± 0.07 0.0158 ± 0.08 0.0125 ± 0.08 0.0246 ± 0.61
Skip f rac 0.0106 ± 0.06 0.0358 ± 0.14**‡ 0.1239 ± 0.23 0.1276 ± 0.22
SegReplaynum, 60 0.0393 ± 0.37 0.0311 ± 0.28 0.0098 ± 0.14 0.0088 ± 0.12
PBRσ - - 0.0146 ± 0.07 0.0142 ± 0.08
PBRµ - - 1.2166 ± 0.36 1.244 ± 0.37†

PBRe f f - - 0.0096 ± 0.09 0.0105 ± 0.1

significant difference between the first and second-time views. Though the mean and standard
deviation of average playback rate (PBRµ) is similar between the two, the sample means are
pairwise statistically significantly different, measured by the (paired) Wilcoxon signed-rank
test [71]. The difference is better highlighted in Figure 5.13b.

Despite no other statistically significant differences, some of the features’ means and standard
deviations are quite different from EdNet. While EdNet’s average completion rate
(Completed f rac) is 43% - 48 %, MOOCCubeX’s are below 20% for both session types. Notably,
the standard deviations are high too; 0.4 for EdNet and ≈0.25 for MOOCCubeX regardless of
the session type. The same trend for the average proportion measured features are found in
the time spent playing (Played f rac), but not for the total time spent (Spent f rac) where both the
averages and standard deviations are similar for both datasets, regardless of the session type.
Moreover, the average number of rewinds (Rewindnum) is 0.8 for EdNet’s first-time sessions,
while only 0.08 for MOOCCubeX’s first-time sessions. Furthermore, both the average and
standard deviation is higher for second-time visits, while they are both lower for EdNet.

Regarding the number of pauses (Pausenum), the results show that MOOCCubeX’s average is
1.96, but EdNet’s is 1.43, where the standard deviation is also lower. Moreover, MOOCCubeX’s
re-consumption sessions have slightly more pauses on average, while EdNet has slightly fewer,
compared to the first-time sessions. Generally, the replay-related features are low for both
datasets, indicating relatively linear watching behaviour and little in-video replaying. Spe-
cifically, the Replay f rac is just 1-2%, regardless of dataset and session type, but MOOCCubeX’s
re-consumption standard deviation is much higher, at 0.61, compared to the first-time view
standard deviation of 0.08, and EdNet’s standard deviation of 0.07-0.08.
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Table 5.8: EdNet re-consumption prediction results, where the best result for each metric is
highlighted in bold, while the second best result is underlined.

Model
Balanced Imbalanced

Accuracy F1 Precision F1 Precision Recall

Random 0.5018 0.5018 0.5018 0.4012 0.4988 0.4964
Logistic 0.6022 0.6010 0.6035 0.4851 0.5320 0.5896
SVM 0.6040 0.5975 0.6111 0.5162 0.5377 0.5940
XGBoost 0.6443 0.6432 0.6460 0.5310 0.5537 0.6399

Prediction classification

The prediction results of first and second-time views of lectures are presented in Table 5.8 and
5.9 for EdNet and MOOCCubeX respectively. Firstly considering the balanced, downsampled
test results, the classification results are relatively comparable for both datasets, where XG-
Boost illustrates the best classification performance across all metrics and datasets. In par-
ticular, XGBoost has 6.67% higher accuracy than SVM on EdNet and 4.03% higher accuracy
than the logistic classifier on MOOCCubeX. Moreover, the SVM and logistic classifier perform
more similarly, where the SVM has slightly higher accuracy and precision for EdNet, while the
logistic classifier performs slightly better for all three metrics on MOOCCubeX.

Table 5.9: MOOCCubeX re-consumption prediction results, where the best result for each met-
ric is highlighted in bold, while the second best result is underlined.

Model
Balanced Imbalanced

Accuracy F1 Precision F1 Precision Recall

Random 0.4987 0.4987 0.4987 0.3987 0.4988 0.4965
Logistic 0.6180 0.6180 0.6181 0.5287 0.5561 0.6497
SVM 0.6167 0.6165 0.6169 0.5189 0.5550 0.6517
XGBoost 0.6433 0.6432 0.6433 0.5388 0.5626 0.6658

Considering the prediction results on the larger, imbalanced datasets, there is a decline as ex-
pected in overall classification accuracy, though XGBoost still outperforms the other baselines
with a F1 decline of 17.6% on EdNet and 16.2% on MOOCCubeX from the balanced test case.
Comparing the baselines to Random’s macro F1, better-than-random classification accuracy is
clear for all three non-naïve classifiers. Moreover, the relative difference between XGBoost and
the second-best-performing model for the respective metric is slightly smaller than for the bal-
anced dataset, but it is generally larger for EdNet than for MOOCCubeX across the metrics. In
contrast to the balanced dataset, SVM is consistently better than the logistic model for EdNet,
while it is only better than the logistic model for recall on MOOCCUbeX. Due to the large
imbalance of the first-time and re-consumption labels, examining the confusion matrices in
Figure 5.15 of XGBoost is of interest. In particular, it classifies a larger proportion of the revis-
its correctly on MOOCCube than on EdNet, which is the major contributor to the differences in
recall for the two datasets. The recall for the first-time visits is similar for both datasets, where
the difference is less than 100 basis points.

Lastly, considering the importance of the different features as defined by the fitted XGBoost
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Figure 5.15: Confusion matrices for the classification results of XGBoost on the imbalanced
datasets for the respective datasets. The matrices are normalised row-wise, i.e. by their true
label.

models, there is no significant correlation between the two datasets, though the most import-
ant feature is Played f rac and Spent f rac for EdNet and MOOCCubeX respectively. Moreover
Pausemedian is the second most important feature for EdNet, while one of the least important
features for MOOCCubeX. For MOOCCubeX in particular, the playback rate-related features
are given less importance, as well as SegReplaynum 60 and Replay f rac .

5.2.4 Discussion

The results and how they may address RQ2a and RQ2b are described below, including the
limitations of the experiment.

RQ2a: in-video behavioural features and relation to lecture re-consumption

Re-consumption occurrence in the examined datasets is overall infrequent as reported in some
papers [26], but much lower compared to other studies [17, 18]. Despite the relatively sim-
ilar proportion of user lecture sessions being re-consumptions of the two datasets, 10 per-
centage points more of EdNet’s users have re-consumed at least one lecture. This indicates
that a minority of the users in MOOCCubeX re-consume drastically more than the remainder
user base. Furthermore, the large difference in the proportion of which lectures have been re-
consumed between the datasets can indicate that users of MOOCCubeX tend to re-consume the
same lectures rather than to re-consume a larger range of different lectures. The larger lecture
space and lower lecture accessibility for MOOCCubeX are likely factors for the discrepancy
as well. Lastly, the individual re-consumption fraction illustrated in Figure 5.9a illustrates the
above points, showing that re-consumption frequency differs on a platform-to-platform basis
as well. Interestingly, there is a slight correlation between individual users’ history length and
re-consumption fraction as illustrated in Figure 5.9b, despite a relatively large uncertainty for
both datasets. This may indicate that as the users do use the platform more, a need for some
revision occurs, though the correlation with any possible assignments is not provided in the
datasets which has been shown to be a motivating factor for revisiting [26]. In addition, it
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Figure 5.16: Feature importance determined by XGBoost

could be interesting with a more iterative evaluation, considering various users and whether
or not they would re-consume at a given relative time step t, to explore the temporal distances
between re-consumptions.

Regarding re-consumption frequencies of topics, there are definitive variances in both datasets.
As EdNet consists of lectures from a single domain, more specifically for learning languages,
it is also interesting that there are such large variances within the domain. This can indicate
that more granular topics within a domain have intrinsic properties which demand more re-
viewing. Looking into MOOCCubeX, there is similarly a large variance between the average
re-consumption fraction of fields. Moreover, though slight, there are differences between the
field categories as well, where STEM has the largest variance. A contributing factor is the poten-
tial mislabelling of fields as it is also the largest category by the number of fields in the dataset.
Moreover, as seen in Figure 5.10b, the number of fields per domain category is not balanced,
providing a potentially biased representation of the domain category’s re-consumption char-
acteristics. Moreover, as STEM fields are the most re-consumed fields among the top 10% of
fields, indicates that lectures in these fields might have more difficulty comprehending topics.
On the other hand, some STEM fields are also among the least re-consumed fields, illustrating
the variance within the broader categories. However, a limitation of the results is that they are
not based on equal sets of sessions per topic, though they are corrected for the user’s individual
bias. Therefore, lectures’ topics and their intrinsic properties may skew the comparison of re-
consumption behaviour, as well as other lecture properties not considered, like production
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style [12].

Finally, considering the in-video behavioural features, adjusted for both user and lecture bias,
they are not statistically significant across both datasets. Regardless of statistical significance,
most differences between the first and second visit are not drastic, with the exception of
Completed f rac and Pausemedian for EdNet. The difference in Pausemedian might be contributed
to noise or external contextual factors, while Completed f rac correspond with the intuition that
users likely view a smaller portion of the lecture the second time, as they might be reviewing
specific parts of the lectures. However, this argument does not hold when considering MOOC-
CubeX’s behavioural features. For EdNet, the Kolmogorov-Smirnov and Wilcoxon signed rank
test mostly agree, indicating that the user and lecture bias corrections were effective, as the
Wilcoxon test compares first and second-time views per user, per lecture, while Kolmogorov-
Smirnov considers the distributions as a whole. The exception is Rewindnum which is not statist-
ically significant by the Wilcoxon test, which can indicate an influence of other factors besides
the user and lecture biases. Furthermore, the large deviations between the datasets on some
of the features like Completed f rac and Rewindnum further shows that there are inconsistencies
across learning platforms, making it more difficult to provide general, domain, demographic
and context-independent conclusions of in-video behaviour indicative of re-consumption.

Some of the limitations of the study are that though it considers behaviours across users,
lectures and topics, the user and lecture bias corrections heavily reduced the dataset, so the
comparison is not across a large set of users and lectures. This is due to the low overall re-
consumption rate as discussed previously, providing a less diverse and smaller comparative
dataset compared to [17, 18]. Moreover, the frequency of different topics in the datasets is not
adjusted for as seen in Figure 5.8b, potentially leading to biased results due to topic-related
behaviours. This argument is supported by the visual comparison of the domain categories of
MOOCCubeX, which showed larger visual differences per domain category than when examin-
ing the features across domains. However, these differences are not statistically tested due to
relatively few and unbalanced first and second-time paired views per domain category. Lastly,
as most in-video viewing features are sparse and positively skewed, reporting the mean and
standard deviation might be less appropriate compared to e.g. the median and interquartile
ranges. Moreover, using a statistical test like Anderson-darling [143], as a two-sample test
[144] which is more sensitive to the tails of distributions could more accurately determine the
differences.

So in summary, some users do re-consume consistently more than others and across a more di-
verse set of lectures. Additionally, there are some in-video viewing features which significantly
differ between the first visits and the following revisit, but the differences are not consistent
across datasets, nor are the differences large on average. Moreover, there are indications of
domain-influenced in-video viewing behaviour related to re-consumption, but the extent of it
is not quantified.

RQ2b: Re-consumption prediction

Firstly, evaluating the performance of XGBoost as one of the state-of-the-art methods for tab-
ular data, the superiority over less complex models like SVM and logistic regression is not
drastic. Moreover, in the real-life setting evaluation on the unbalanced dataset, the outper-
formance is relatively smaller compared to the balanced evaluation. This might be due to a
less complex feature selection and engineering process, e.g. no cross-features are used. Con-
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sidering the different unbalanced classification outcomes, the difference in accurately recalling
re-consumptions, i.e. TPs of the datasets can partially be attributed to the slightly less imbal-
anced MOOCCubeX. Overall, roughly four out of ten user lecture sessions are wrongly assumed
to not be re-consumed, which decreases the ability of the model to intervene in an appropriate
way. Considering the consistent FPs across the datasets despite the class imbalance differences,
the real-life applied consequences might be an annoyance for the end user as lectures which
are not re-consumed are anticipated to be re-consumed.

On the other hand, this could be a TEL tool for promoting reviewing behaviour, and more gen-
erally enforcing SRL strategies. By this reasoning, it enables choosing a model with a relatively
high FPs for increased recall of to-be re-consumed lectures. Considering the calculated feature
importance, despite relatively noisy features like Pausemedian, it is, perhaps falsely, an import-
ant feature as assessed by XGBoost for EdNet. Though some of the traits of the more important
features are their low sparsity, it is not consistent for all of the features, nor across the data-
sets. In contrast to the viewing and re-consumption analysis discussed in the previous section,
the balanced dataset used to train the classifiers is not down-sampled to correct for user or
lecture bias, and implicitly topic bias. The imbalanced test set is also randomly downsampled
to match the original class distribution, which consequently may add further user and lecture
bias as the users and lectures which are part of more sessions will have a higher likelihood to
be kept, reducing the diversity of the test evaluation. However, further analysis is needed to
quantify the potential impact of the dataset composition.

Limitations of Exp.2

In addition to the specific limitations discussed for the in-video feature analysis and re-consumption
prediction, some more general limitations are that as the user historical views are limited to
their 30 first sessions, students who view a lot of lectures in a relatively short time won’t ne-
cessarily have the need to review previous lectures until later, e.g. after the cut-off. Though
to which degree this occurs is not quantified. Moreover, re-consumption distances are not
considered in this analysis, so continuing the lecture a user started earlier in the evening, is
treated equally as an introductory lecture reviewed before a final assignment, though the user
intentions of the considered revisit are different. This leads to the problem of defining a re-
consumption of a lecture. Although [28] defines a lecture revisited only if it had been watched
in its entirety in the past, a such definition would deem few lectures as re-consumed by the
reported completion rates of the datasets in 5.2.3. However, [17] found that in-video dropout
is highly correlated with revisiting the lecture and therefore a partial viewing of a lecture is
more reasonable to consider. Notably, [17] did exclude in-video dropout sessions in their re-
consumption analysis, though they did not consider the temporal distances of revisits. On a
conceptual level, one can consider a continuation of a lecture in a separate session as exhibit-
ing “explore”-behaviour by watching new, though related, content. Moreover, SegReplaynum t
should then be an indication of in-video repetition in the video revisit, but generally, there
was no large difference between the first visit and re-consumption in Table 5.7. On the other
hand, considering re-consumption at a topic level, a continuation of the lecture on a different
occasion can be considered as an exploit behaviour due to the likely similarity of topics within
a lecture. These aspects further highlight the difficulty of defining a re-consumption purely
based on viewing logs.
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5.3 Experiment 3 - Alignment

In the last experiment, the inclination towards recommending already viewed lectures, i.e.
suggesting to re-consume, and the effect of re-consumption behaviour in users’ history on RSs’
recommendations are explored. Two different evaluation approaches were applied, where the
first approach assembles a relative baseline to which extent various models are inclined to
recommend lectures from users’ interaction history. The second evaluation method studies
how well-aligned out-of-the-box models are with respect to individual users’ re-consumption
behaviour.

5.3.1 Problem definition

The two evaluation scenarios have separate problem definitions. The first is stated as a next-
item prediction problem as in Section 5.1.2 for Exp.1, but the set of relevant lectures, i.e. target
labels for a sequence Su, is redefined. In Exp.1, it consisted of a single item, lecture at time step
nu + 1 for a user u. However, for the scenario of recommending previously viewed lectures,
the set of unique lectures in each user’s history Hu = {l(u) : l(u)t ∈ Su} is used as the relevant
item set to indicate to what extent the models recommend to re-consume viewed lectures.

The second scenario of re-consumption alignment is an adaption of the problem of calibration
as defined in Section 2.3.3, where the classes C to measure the calibration of, is defined by the
exploit-explore behaviour and corresponding recommendations in the following sections.

5.3.2 Experiment Setup

The specific preprocessing steps and evaluation methods related to Exp.3 are described below.

Preprocessing

The evaluation considers the recommendations made by RSs evaluated and Exp.1, so to evalu-
ate their inclination towards recommending re-consumption of already viewed lectures, every
user is considered and no further preprocessing is needed. In the second case, only users’ who
have shown re-consumption behaviour in their interaction history are evaluated, as the main
focus is to study if the models are able to adapt to individual users re-consumption prefer-
ences and to which degree. Moreover, users who have only shown repeating behaviour are
excluded in the evaluation as well to avoid outliers, which is 0.37% of repeating users in Ed-
Net and 2.85% of repeating users in MOOCCubeX.10 In sum, 9336 repeating users for EdNet
and 46,484 repeating users for MOOCCubeX are evaluated in the second scenario. Lastly, the
model configurations and data splitting strategies are the same as in Exp.1.

Evaluation

For the former scenario, the task is to evaluate the recommendation accuracy and is con-
sequently evaluated using the same ranking metrics as in Exp.1: NDCG, MAP and Recall, by
the same argumentation as in Section 5.1.3. Because the individual interaction history lengths
varies to a large degree per dataset and between the datasets, the cut-off is based on each

10These users are included in the fitting the model, as the recommendations are based on the fitted models in
Exp.1.
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dataset’s median interaction history length of the training splits to make the results more com-
parable. The reasoning is that a large deviance between the cut-off and the interaction history
lengths, can introduce a bias in the evaluation metrics because they are directly impacted of
each users’ history. The median length of the training splits for EdNet is 12 and 7 for MOOC-
CubeX.

For evaluating the alignment of the recommendations of the proposed models with regard to
users exploit-explore preferences, the problem is mapped to a calibration problem, evaluated
using KL-Divergence following [37, 65], adapting the definition in Equation 2.4, with some
minor changes. As in [37], the un-smoothed q(c|u) is used rather than q̃(c|u). In addition, each
item is weighted equally in both distributions p(c|u) and q(c|u), i.e. wi,u = 1 and wr(i) = 1
for all lectures and users [37, 65],. Moreover, in contrast to [65] and [37], the considered
classes are user-item interaction dependent, rather than static, item-dependent classes like
movie genres. This leads to some challenges as for the definition of the class set C for labelling
the dynamic exploit-explore preferences. Firstly, although a user’s history can mainly consist
of a few lectures viewed multiple times, the provided recommendations can only recommend
any lecture once, i.e. a recommendation list consists of unique lectures. Consequently, a com-
parison of the raw distribution of historical re-consumptions and the recommended lecture
distributions would be biased. Therefore, only the re-consumption status of unique lectures
are considered. More formally, the user’s history H can be divided into two, disjoint sets Hn
and Hr ep, where they consist of lectures viewed once and lectures viewed at least twice re-
spectively.

Secondly, in this proposed binary setting, Hn can be interpreted as representing the users’ ex-
plore-preference, and Hr ep as their exploit-preference. Following this definition, the provided
recommendations then have three classes; recommended lectures already seen once, lectures
already viewed multiple times and lectures which the user has not viewed before. In the
case of utilising three classes for measuring the exploit-explore preferences, the evaluated
KL-divergence of any set of recommendations will diverge as the “unseen lecture”-class will
always be zero. For formally q(c = unseen|u) = 0 ∀u ∈ U . On the other hand, an interpretation
of recommending already seen lectures, regardless of how many times it has been viewed, is
a suggestion to re-consume and therefore an indication of an exploit preference. In addition,
recommending unseen items can also be interpreted as an indication of a explore preference.
By these two interpretations, K Lnovel is proposed which considers two classes, which have
asymmetric definitions for p(c|u) and q(c|u).

K Lnovel has mainly two limitations as it has asymmetrical definitions for the classes and it
does not differentiate between recommended lectures seen once or multiple times. To over-
come these drawbacks, K Lrep is proposed. In contrast to K Lnovel , the recommended lectures
already viewed once are labelled explore-class and recommended lectures already viewed mul-
tiple times are labelled as exploit. This provides a better nuance of Recommendation Systems
ability to distinguish outlier re-consumption behaviour and general, consistent re-consumption
behaviour among users. Recommended, novel, i.e. not-viewed, lectures are not considered.

A comparison of the differences between the two definitions for the recommendations classes
is illustrated in Table 5.10 for different sequence lengths and sequence behaviours. The ex-
ample recommendations are from a naive RS which recommends each of the lectures in the
user history. The table illustrates that Recommendation Systems which are strongly inclined
to recommend viewed lectures, will be highly calibrated according to K Lrep. However, a more
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likely scenario where re-consumptions are less frequent as in the third row such naive RSs
won’t recommend any novel lectures to the user which did not align with their exhibited pref-
erence of exploring, despite a perfect calibration measured by K Lrep. Moreover, the equivalent
scenario in row six for a user with a shorter sequence history than the used cut-off, is no longer
an issue, highlighting the impact of history lengths.

Table 5.10: An adaption for re-consumption of the calibration scenarios discussed in [65],
where the number of recommended lectures is N = 10. pnovel and prep denotes the frequency
of each of the exploit-explore classifications of the recommendations list

Su |Hrep| : |Hn| R10 pnovel prep

A A A A A A A A A B 1:1 A, B, . . . 2:8 1:1
A A A A B B B B C D 2:2 A, B, C, D . . . 4:6 4:1

A A B C D E F G H I 1:6
A, B, C, D, E,
F, G, H, I, J

10:0 1:6

A A A A B 1:1 A, B, . . . 2:8 1:1
A A B B C 2:1 A, B, C, . . . 3:7 2:1
A A B C D 1:3 A, B, C, D, . . . 4:6 1:3

Explainable re-consumption calibration

Although KL-divergence has a lower bound, the metric is not directly interpretative. For
instance, it only provides a scalar value of the difference between the distributions. In the
exploit-explore alignment setting, and more generally for binary-class problems, it does not
indicate the direction of the miscalibration. More specifically it does not answer whether or
not the RS or re-ranking algorithm overemphasise or undervalue exhibited re-consumption
behaviour. Moreover, the magnitude of differences of CK L when comparing models does not
have a clear interpretation. Therefore, a more interpretative and directional evaluation “met-
ric” Recommendation-to-repetition, i.e. R2R is proposed, comparing the unique lecture re-
consumption ratio of the user’s history and the recommended re-consumption ratio at cut-off
k. More formally, the re-consumption ratio of a provided set of recommended lectures Ru, R
for user u is defined as

Ru, R =
|Ru ∩Hu, rep|
|Ru|

, (5.3)

where Hu, rep is the unique, historically re-consumed lectures of user u and Ru is the set of
uniquely recommended lectures for user u 11. When Ru, R = 1, the entire recommendation list
consists of previously re-consumed lectures, where as when Ru, R = 0, the recommendation
list does not contain any re-consumed lectures, however it may contain lectures viewed once,
i.e lectures within Hn. Moreover, the historic re-consumption ratio Ru,H of an user u is defined
as

Ru,H =
|Hu, rep|
|Hu|

, (5.4)

11Note that this differs from the definition used for ranking metrics in Section 2.4.2 as Ru is the set of actual items
recommended, while R consists of the rankings of the recommended relevant items.
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where Hu is the unique set of all, previously viewed lectures of user u. . By combining Equation
5.3 and 5.4 the definition of R2Ru for an user u is

R2Ru =
Ru, R

Ru,H
=

|Ru∩Hu, rep|
|Ru|
|Hu, rep|
|Hu|

, (5.5)

where Hu, rep is the unique set of re-consumed lectures for user u. For an entire set of users
u ∈ Ur ep who have exhibited re-consumption behaviour, R2R is defined as

R2R=
1

Urep

∑

u∈Urep

R∈Ru. (5.6)

In general, Ru,H ∈ [0, 1] making R2Ru undefined for Ru,H = 0, but when constraining it to
|Hu, rep| ≥ 1 as in this scenario, it is well-defined. In particular, for a ‘perfectly’ calibrated RS
R2R = 1, while R2R > 1 indicates that the recommendation list of a RS on average contain
more re-consumptions than what the user has previously exhibited. When R2R< 1, the RS on
average recommends fewer re-consumed lectures than what the user has previously viewed.
More generally, it focuses on the magnitude of the exploit-class considered for K Lrep, where
the magnitude refers to the number of uniquely re-consumed lectures, not the frequency of
each.

By the same argument as for the re-consumption ranking evaluation, the cut-off for K Lnovel ,
K Lrep and R2R are chosen by the individual training splits of the datasets’ medians, 12 and 7
for EdNet and MOOCCubeX respectively. Furthermore, To quantify any significant differences
in re-consumption ranking and calibration, between baseline models, and between the differ-
ent variants the same statistical testing procedure as in Exp.1 is used, where XLNet f eat is not
statistically tested.

5.3.3 Results

Repetition Ranking metrics

The raw repetition ranking evaluation metrics of the different models are presented in Table
5.11. Of the naive baselines, MostPop is similar to most CF baselines. The CF methods have
generally higher metrics than SARS, indicating a higher inclination towards. Moreover KNN
has a statistically significant higher re-consumption recommendation, indicating it is more
inclined to recommend lectures from the users’ history, as well as ranking them higher than
novel items. Moreover, it is the most affected model of all the variants explored. The reported
results of the SARSs are between half and a tenth of the re-consumption recommendation
accuracy of KNN for the respective metrics. BERT has higher metrics than the other two, while
GRU has the lowest.

Regarding the side-information enriched models, the performance is similar to the base vari-
ants, where BERT is the most inclined to recommend already viewed lectures. Moreover, most
of the results are not statistically significantly different from the base variants, though all three
models mostly have slightly lower recommendation accuracy. The bias-adjusted variants are
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also similar to the enriched versions, though BERT shows a statistically significant decline in
all metrics. GRU’s results, however, are statistically significantly higher than the not-corrected
variant, while XLNet has consecutively lower than their enriched counterpart but mostly not
statistically significant.

Table 5.11: Repetition ranking results. * indicates not statistically significant over the second
best-performing baseline in the given metric with α= 0.05. † indicates not statistically signific-
ant result compared to the base variant of the model with α= 0.05. ‡ indicates not statistically
significant compared to the full variant of the model, with α = 0.05, with Holm-Boneferroni
corrected Wilcoxon signed rank test. The best result for each metric in each variant section is
highlighted in bold, while as the second best result is underlined.

Model
EdNet MOOCCubeX

NDCG@12 R@12 MAP@12 NDCG@7 R@7 MAP@7

B
as

el
in

es

Random 0.0663 0.1436 0.0389 0.0002 0.0004 0.0001
MostPop 0.3979 0.5146 0.2454 0.1608 0.1363 0.1459
Syllabus - - - 0.1660 0.1425 0.1501
iALS 0.3748 0.5752 0.2048 0.4438 0.4353 0.3049
LMF 0.3648 0.5273 0.2219 0.3469 0.3432 0.2107
BPR 0.4029 0.5994 0.2399 0.5552 0.5550 0.3785
KNN 0.5018 0.6513 0.3238 0.6856 0.6400 0.5020
GRU 0.1708 0.1057 0.0393 0.0236 0.0146 0.0159
BERT 0.2227 0.1379 0.0562 0.0322 0.0217 0.0228
XLNet 0.1979 0.1224 0.0462 0.0247 0.0157 0.0162

Fu
ll

GRU 0.1716† 0.1053† 0.0384 0.0237† 0.0148† 0.0162†

BERT 0.2185 0.1382† 0.0538 0.0346 0.0240 0.0244
XLNet 0.1966† 0.1245 0.0457† 0.0256† 0.0164† 0.0164†

XLNet f eat 0.2014 0.1272 0.0469 0.0253 0.0160 0.0163

B
ia

s-
A

dj GRU 0.1729 0.1068† 0.0389† 0.0285 0.0210 0.0184
BERT 0.2065 0.1347 0.0511 0.0272 0.0172 0.0177
XLNet 0.1960†‡ 0.1230†‡ 0.0452‡ 0.0249†‡ 0.0161†‡ 0.0164†‡

Examining the repetition ranking results of MOOCCubeX, MostPop show comparative results
to the syllabus-based method. Moreover, the Random-baseline reports much lower results than
for EdNet. Excluding the naïve-baseline differences, the other baseline results are similar to
EdNet, where KNN performs statistically significantly better than all other models and variants
as well. Generally, LMF reports lower results for both datasets, but the relative difference to the
other CF methods is higher in MOOCCubeX. Interestingly, the SARS are not largely inclined
to recommend re-consumptions as their ranking results are a magnitude lower compared to
the conventional CF methods. Moreover, the large discrepancy between NDCG and precision
is not present in contrast to with EdNet, though precision is slightly lower compared to NDCG
for all three models.

As with EdNet, the enriched variants are performing similarly to the base versions. Moreover
BERT is the only model with statistically significant results, and they all show an increase
in re-consumption recommendation inclination in contrast to with EdNet. The results of the
biased corrected version on the other hand are more significant, though similar to the base
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and enriched variants. Firstly, GRU reports the highest repetition recommendation accuracy,
while XLNet reports the lowest. Moreover GRU’s results are statistically significantly higher
than both of its counterparts, while BERT’s results are statistically significantly lower. None of
XLNet’s reported declines are statistically significant.

Repetition model alignment

With the general effect of re-consumption behaviour on the various models’ recommendations,
a comparison of the models’ degree of calibration to the individual users’ re-consumption pref-
erences is presented in Table 5.12. One thing to note is that most results were not statistically
significant. Therefore, only the ones which were statistically significant are highlighted.

Examining the calibration of the models according to KLnovel , the relative miscalibration between
models differs. Firstly, the differences between the baseline models in EdNet are relatively
smaller than when measuring KLrep. Furthermore, KNN reports the highest miscalibration of all
models and variants, across both datasets. On the other hand, the sequence-aware models are
in both datasets among the most aligned models, in addition to Random whose calibration level
is statistically significant compared to XLNet in MOOCCubeX. Examining the side-information
enriched models for EdNet, all of them are statistically significantly more aligned, although
the increase is small. In contrast, none of the enriched models in MOOCCubeX shows statistic-
ally significant results, but the enriched BERT and XLNet are slightly more aligned than their
base variants. For the bias-adjusted variants, GRU and BERT both have statistically significant
increases in alignment compared to the base variants for EdNet, but only BERT is statistically
significantly more aligned than its enriched counterpart. For XLNet, there is no difference on
average to the enriched variant. Examining the bias-adjusted variants on MOOCCubeX, both
GRU and BERT have statistically significant increases in alignment to both of their counter-
parts, whereas XLNet is slightly more misaligned, though not significantly.

Regarding KLrep, Random reports the overall highest miscalibration measured of all models and
variants in both datasets, corresponding to its low ranking results in Table 5.11. In contrast,
KNN is the most calibrated by KLrep by a statistically significant margin in both datasets as
well, in line with its repetition ranking performance. Furthermore LMF is less calibrated than
the other CF methods in either dataset, but the miscalibration difference to the other methods
is twice as high in MOOCCubeX than in EdNet. The SARS without side-information are less
aligned according to KLrep than the conventional methods, only out-performed by Random in
both datasets.

For the side-information enriched models, none of the KLrep results is statistically significant for
EdNet, while only GRU’s slightly improved calibration is statistically significant. Notably BERT
is the most calibrated in both datasets. The measured KLrep for the bias-adjusted variants are
more varied. Considering EdNet, both BERT and GRU report statistically significant increases
in miscalibration; GRU compared to its base variant and BERT compared to both of its other
variants. For MOOCCubeX, GRU is statistically significantly more calibrated than both of its
counterparts, while BERT is statistically significantly less calibrated as measured by KLrep.

Continuing to the proposed re-consumption calibration metric R2R, the results provide a dif-
ferent angle to the alignment challenge. Firstly, all of the conventional CF methods overem-
phasise previously re-consumed lectures, recommending them drastically more frequently in
both datasets. In contrast, the SARS are highly aligned in EdNet, but as much in MOOCCUbeX,
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Table 5.12: Repetition alignment results. * indicates statistically significant over the second
best-performing baseline in the given metric with α = 0.05. † indicates statistically significant
result compared to the base variant of the model with α= 0.05. ‡ indicates statistically signific-
ant compared to the full variant of the model, with α= 0.05 using Holm-Bonferroni corrected
Wilcoxon signed rank test. The best result for each metric in each variant section is highlighted
in bold, while the second best result is underlined.

Model
EdNet MOOCCubeX

KLnovel@12 KLrep@12 R2R@12 KLnovel@7 KLrep@7 R2R@7

B
as

el
in

es

Random 0.2708 0.5627 0.2085 0.4321* 0.4468 0.0006
MostPop 0.2758 0.3743 1.8287 0.6889 0.3710 1.4317
Syllabus - - - 0.6853 0.3726 1.4440
iALS 0.2813 0.3498 2.2139 0.6984 0.2703 3.2920
LMF 0.2863 0.3762 2.0036 0.5901 0.3313 2.5457
BPR 0.2854 0.3489 2.2777 0.6757 0.2772 3.5502
KNN 0.3917 0.2990* 2.9564 0.8407 0.2342* 4.1415
GRU 0.2745 0.4774 0.8727 0.4760 0.4350 0.2999
BERT 0.2706 0.4547 1.0695 0.4874 0.4320 0.3730
XLNet 0.2672* 0.4700 0.9616* 0.4738 0.4354 0.3033

Fu
ll

GRU 0.2714† 0.4780 0.8635† 0.4763 0.4343† 0.2994
BERT 0.2691† 0.4537 1.0592 0.4865 0.4320 0.3819†

XLNet 0.2656† 0.4686 0.9544 0.4729 0.4354 0.3078
XLNet f eat 0.2668 0.4622 0.9874 0.4729 0.4361 0.3057

B
ia

s-
A

dj GRU 0.2711† 0.4792 0.8713‡ 0.4737†‡ 0.4338†‡ 0.3289†‡

BERT 0.2670†‡ 0.4628†‡ 0.9872†‡ 0.4753†‡ 0.4354†‡ 0.3236†‡

XLNet 0.2656 0.4683 0.9531 0.4742 0.4356 0.3054

generally recommending fewer of the re-consumed lectures, which correlates with their rank-
ing results in Table 5.11. For EdNet, XLNet is the most aligned model by a statistically signific-
ant margin, while out of the sequence-aware models, BERT is the most aligned in MOOCCubeX.
For the side-information enriched model variants in EdNet, they show consecutively slight de-
clines in alignment, but only GRU’s is statistically significant. Interestingly, the feature selected
XLnet is the most calibrated model tested on EdNet as measured by R2R. BERT has a slight,
statistically significant increase in alignment in MOOCCubeX, while GRU and XLnet’s slight
decreases are not. Lastly, for the bias-adjusted variants, BERT is significantly less calibrated
in both datasets, with a sharp relative decline from the enriched variants. On the other hand,
GRU is statistically significantly more aligned than its base variant in EdNet and to both of its
counterparts in MOOCCubeX. XLNet’s decreases in calibration are not statistically significant
in either dataset.

As presented in Table 5.12, the results of KLnovel and R2R are highly positively correlated,
while KLrep and R2R are negatively correlated. A further comparison of the metrics for EdNet
and MOOCCubeX are presented in Figure 5.17 and 5.18 respectively. The relatively small dif-
ferences between the variants are highlighted in their clustering in all the diagrams. Moreover,
both datasets exhibit close to perfect, negative linear correlation for KLrep, while there are some
outliers for KLnovel like KNN.



Chapter 5: Experiments 78

0.30 0.35 0.40 0.45 0.50 0.55
KLrep@12

0.5

1.0

1.5

2.0

2.5

3.0

R2
R@

12

Model
Random
MostPop
iALS
LMF
BPR
KNN
GRU

BERT
XLNet
Variant
Base
Full
Features
Bias Adj

(a) The average R2R@12 to KLrep@12 for each
model and variant

0.26 0.28 0.30 0.32 0.34 0.36 0.38
KLnovel@12

0.5

1.0

1.5

2.0

2.5

3.0

R2
R@

12

(b) The average R2R@12 to KLnovel@12 for each
model and variant

Figure 5.17: EdNet alignment measures’ correlation
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Figure 5.18: MOOCCubeX alignment measures’ correlation

5.3.4 Discussion

RQ3a: Ranking Accuracy of Already Viewed Lectures

Examining the ranking results of already viewed lectures for the different models provides
some interesting insights. The overall trend is that the SARS methods generally recommend
less frequently and rank previously seen lectures less than the conventional CF methods for
both datasets. While the CF methods perform similarly on both datasets, the relative differ-
ence for SARS on MOOCCubeX is much larger than for EdNet, across all metrics. A potential
explanation is due to the longer interaction histories of EdNet, making it more likely to re-
commend a previously seen lecture by pure chance. On the other hand, this should likely have
been the case for the CF methods as well, but it is not consistently higher across the models
and metrics compared to MOOCCubex. Moreover, the large discrepancy between MAP and
NDCG for EdNet, as well as the lower recall for each of the SARS, indicates that they generally
rank previously seen lectures higher than novel ones, but they are infrequently recommended.
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Why this discrepancy is not present for MOOCCubeX is uncertain, though the large difference
of re-consumption lecture diversity presented in 5.2.4 may be a factor. Moreover, of the SARS,
BERT is the most inclined to recommend previously seen items.

Considering the side-information enriched and the bias-adjusted variants, the results are mostly
not statistically significantly different from the respective base and enriched compared vari-
ants. In particular for MOOCCUbeX, only BERT has statistically significant results out of the
enriched variants. Moreover, none of the results is either large increases or declines, indicat-
ing that the effect of including side-information to recommend either more or fewer viewed
lectures is minimal regarding ranking, a fraction of the recommendation list, precision, and
regarding out of. For the bias-adjusted versions, all of the GRU and BERT’s results are statically
significantly different compared to the enriched versions for both datasets. The difference is
that GRU’s results are increased, while BERT’s are decreased. Moreover, none of the results of
bias-adjusted XLNet is statistically significant, making the conclusion regarding the effect of
side-information inconclusive for SARS’ inclination towards recommending previously viewed
lectures. In general SARS are shown to prefer recommending novel items over already seen
items to a larger degree than conventional CF methods. Whether or not this is a positive for
lecture recommendation using sequence-aware methods might depend on the use case. For
instance, in a corrective, review-encouraging TEL environment, this might be less optimal.

RQ3b: Re-consumption Alignment

Continuing, with the results of the measured re-consumption alignment of the various models,
the three metrics provide different aspects of the re-consumption behaviour. Firstly, consider-
ing R2R, the CF methods are highly inclined towards recommending re-consumed lectures
based on R2R, despite that the utility matrix which they are trained does not consider re-
consumption, only binary labels. Furthermore, the SARS are the most aligned for EdNet and
MOOCCubeX (except for MostPop and Syllabus), despite lower inclination towards recom-
mending, general previously seen lectures discussed in the previous section. An interpretation
of these findings is that the SARS more accurately distinguish the re-consumed items and re-
commends, making them generally a better model for re-consumption recommendation. This
is further highlighted by the low K Lnovel for both datasets, which illustrates that the recom-
mendations are not dominated by lectures previously only viewed once. K Lrep results are as
shown negatively correlated with R2R, where the CF methods are the deemed more calibrated
than the SARS. This may be due to that re-consumption is in-frequent, and as these methods
are more inclined to recommend already viewed lectures as discussed, the likelihood of pro-
portional user history distributions and recommendation distributions are generally higher. As
SARS generally recommend fewer already viewed lectures, they will have less proportional
distributions.

Regarding the inclusion of side information, the relative differences to the base versions are
small as in the previous evaluations and more specifically, there are few statistically signific-
ant differences for MOOCCubeX. Though small, the enriched variants for EdNet are slightly
more calibrated, where all of the K Lnovel improvements are statistically significant, despite
a slightly less inclination to recommend already-seen lectures as discussed in, indicating an
improved ability to distinguish the re-consumed lectures 5.3.4. The same correlation is not
present for MOOCCubeX, weakening the argument. Moreover, the SARS have generally much
lower alignment measured by R2R, compared to EdNet. This might be partially due to the
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sparsity and generally less frequent re-consumption behaviour than in EdNet. Moreover for
the bias-adjusted features, interestingly, XLNet is not affected by either not-bias-adjusted or
bias-adjusted features, though the recommendations made were generally more accurate ac-
cording to Exp.1. A user-level analysis of the recommendations might provide insight on why
that is. For the other models, despite statistically significant results, the general direction is
inconclusive. Therefore general conclusions regarding the effect of accounting for individual
user bias’ does not necessarily improve the alignment of the models.

Limitations of Exp.3

Some of the more general limitations of Exp.3 are that As the results are based on the prepro-
cessing, model selection and training of Exp.1 as well as the generated recommendations, the
same limitations regarding those aspects are applicable to some extent for the results of Exp.1.
In addition, the limitations of the definition of a re-consumption discussed in Section 5.2.4
are applicable to the result of Exp.3 as well. Furthermore, the CF methods do not account for
re-consumed lectures as the labels are binary. Therefore they are at a disadvantage compared
to the SARSs for detecting and varying the weighing of re-consumed lectures. For the evalu-
ation, extreme cases are not considered, i.e. users with no re-consumption behaviour and those
who’ve only re-consumed lectures. The former would likely have more of an impact as around
half of the users have not shown re-consumption behaviour, while only 0.37% and 2.85% have
only re-consumed lectures for EdNet and MOOCCubeX respectively. For the calibration met-
rics, only the variety of the re-consumed lectures is accounted for, i.e. the number of uniquely
re-consumed lectures, not their magnitude. As in the examples provided in Table 5.10, largely
different re-consumption behaviours may not be differentiated as by these evaluation metrics.
Some issues of the metrics are reflected in R2R, where MOOCCubeX’s results indicate that
MostPop and Syllabus are the most aligned models. Furthermore, the temporal aspects are not
considered either for the metrics, though the timing of re-consumption recommendation is
important [61]. Other factors of re-consumption recommendation not considered are which
re-consumed lectures were recommended and the relation to the re-consumption frequency of
that lecture. Some questions in that regard are for instance at what re-consumption frequency
should a lecture be deemed less or more relevant to recommend? Additionally, what is the
concrete relation between the recency of viewing a lecture and re-consuming it?
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Conclusion

Considering the overall results of the three sets of experiments and discussion related to vari-
ous aspects of educational lecture recommendation and viewing behaviour, an overarching
discussion of the limitations of the study is presented in section 6.1. In the following Sec-
tion 6.2, the main contributions of the research are described in further detail. Finally, several
aspects which were not investigated in the experiments, as well as possible further research
within the field of resource recommendation, in-video viewing behaviours and re-consumption
are mentioned in Section 6.3.

6.1 General Discussion

In addition to the limitations discussed for the individual experiments, the choice of data-
sets, preprocessing and evaluation techniques impose other types of limitations. Regarding the
datasets, as EdNet is only a single domain dataset, the tags of lectures are likely more related
than fields of MOOCCubeX which represents different domains. As the tags were encoded ini-
tially, the exact semantic similarity cannot be determined. Furthermore, the categorisation of
fields into the domain categories was done only based on the name of the machine-translated
fields, by the author which imposes some uncertainty regarding the validity of some of the
fields category labels. Lastly, both datasets are of platforms for Asiatic countries, namely South
Korea and China. Moreover, as XuetangX consists of 98% Chinese users, the applicability of
the findings to other demographics is reduced as both in-video and general learning behaviour
is related to demographics and cultural context [28, 31, 103].

Some of the limitations of the preprocessing steps regarding the use of scaling techniques for
transforming the data into normally distributed. Firstly, the different features have various de-
grees of sparsity and skewness, which could indicate that scaling techniques should be used
on a per-feature basis. Moreover, a non-linear feature transformation was used, Yeo-Johnson
[122], potentially destroying some of the linear relations between the viewing features. On
the other hand, for Exp.1 (and consequently Exp.2), the individual features are later layer
normalised as one of the pre-embedding steps of the SARS architecture which was shown to
be crucial in previous work [80] indicating that it positively affected the feature distributions.
Notably, additional standardisation steps were not applied for the re-consumption prediction
in Experiment 2 - Re-consumption Behaviour. Moreover, due to the differences in how in-video
interactions are logged, the correlation between the features will differ, as well as the accur-
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acy of the measurement of each feature. For instance, as EdNet does not contain playback rate
information, the inference of the time spent on a lecture is not necessarily accurate, as the frac-
tion of users who do change the playback rate is unknown. However, the data of MOOCCubeX
and previous work [16], that most do not change it. Furthermore, experiments for MOOC-
CubeX contain playback rate features, providing additional side information regarding user
behaviour which are not available for the EdNet experiments.

For the evaluation techniques, a limitation of the statistical significance testing is that the num-
ber of test evaluations per model is few for Exp.1 and Exp.3, only 10, and related as only the
seed is changed. Moreover, in [36, p .271], the authors mention how the Bonferroni, and by re-
lation Holm-Bonferroni correction can be too restrictive when comparing multiple, correlated
metrics of two algorithms. Consequently, the comparisons of the different variants of SARS
might have provided more statistically significant results if one chose a less restrictive correc-
tion method. On the other hand, the actual improvement or decline of the respective metrics
would still remain the same, which was slight in most comparisons. Moreover, different factors
such as users’ prerequisite knowledge is not considered, though the users will have different
starting points determining to which degree lectures are relevant, at both a per segment and
per video level. Other contextual or demographic factors of users’ or lecture features are not
considered, mainly due lack of availability for both datasets, which would skew the compar-
ison of the datasets further. Moreover, in-video dropout and its relation to in-video viewing
behaviour or re-consumption behaviour is not taken into account, though it is shown to be
frequent [27] and correlated with re-consumption [17].

6.2 Contributions

The main contributions made by this paper are with regard to the posed research questions and
goals threefold. Firstly, a solid baseline has been created for the recommendation accuracy on
large-scale learning resource datasets through evaluating the performance of various conven-
tional and Sequence Aware Recommendation System. In particular, sequence-aware modelling
provided drastically more relevant recommendations than the conventional ones, establishing
their dominance within learning resource recommendation. However, less complex RNN-based
models can provide similar or better recommendations than transformer-based RS, illustrat-
ing that they are still relevant for some recommendation applications. Furthermore, highly
granular in-video viewing behaviour fused with lecture intrinsic properties, do provide stat-
istically significantly better recommendations than SARS only considering the lecture embed-
dings. However, the relative improvement is generally small, with an increased complexity cost
for data collection, processing and the model itself. In addition, despite users being biased in
their in-video viewing behaviour, adjusting for it does not generally improve recommendation
quality.

Secondly, a novel analysis of in-video viewing behaviours across domains and topics has been
executed to strictly analyse differences in viewing behaviour when watching a lecture for the
first time and when viewing it for the second time. The findings illustrate that statistically sig-
nificant differences between re-consumption and first-time viewing behaviour across diverse
fields of study is not currently present, emphasising the importance of accounting for the do-
mains when analysing or implementing Technology-Enhanced Learning tools. Moreover, the
differences were in general slight, even for statistically significant differences within the same
educational domain. On the other hand, when accounting for the domain categories, prelim-
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inary results indicate that there are differences firstly between domains, but also highlighting
the first time and revisiting differences within them. However, as the analysis was done on a
smaller and restricted subset due to users’ and lecture intrinsic behaviours, an analysis across
a more diverse set of users and lectures would provide more confidence in the results. On
another note, a novel approach for re-consumption classification utilising in-video viewing
behaviour was executed, indicating that in-video viewing behaviour can be used for learning
intervention or proactive recommendations for re-consumptions. Despite the infrequency of re-
consumptions, a side-effect of the higher misclassifications of non-re-consumed lectures can
provide corrective measures for improving reviewing behaviour as it is been deemed important
for learning success as a manifestation of Self-Regulated Learning strategies.

Thirdly, to further evaluate how the re-consumption of lectures affects RSs and their inclina-
tion towards recommending repetition of lectures, the recommendation accuracy of previously
viewed lectures was evaluated. The results indicate that conventional CF methods are most
inclined to recommend users to revisit lectures, compared to SARS. This can be applicable for
TEL where either exploring or exploiting behaviour, in general, is recommended. Contextual-
ising the SARS with in-video viewing behaviour and lecture topics did not drastically change
the results overall nor in one specific direction. Taking the RSs’ measured inclination into ac-
count, a novel evaluation of re-consumption calibration of RSs was carried out, adapting pre-
viously used calibration metrics to re-consumption as well as proposing an additional, more
explainable task-specific metric. The evaluation highlights SARS ability to align with users’
re-consumption preferences and distinguish the re-consumed lectures from the ones which
are not. Furthermore, there are slight increases in alignment by including in-video behaviour,
but it is not consistent for learning resources across diverse educational domains. Lastly, the
re-consumption calibration evaluation and adaption of calibration metrics is also applicable to
other domains where re-consumption is an important factor of user behaviour.

6.3 Further work

As this project covers multiple areas of research, the following paragraphs describe poten-
tial future works with regard to general preprocessing steps, lecture recommendation, re-
consumption analysis, prediction and alignment, as well as evaluation techniques for SARS
and next-item prediction tasks.

Firstly, a more in-depth study of the drawbacks of the SARS lecture recommendation accuracy
would be interesting, i.e. clustering the users by in-video viewing behaviour or more generally
by activity level or by lecture diversity. Moreover, a thorough ablation study of the effect of
additional feature projection and in-video watching features’ association with lecture topics
could provide insights regarding how such relations may be extracted. Furthermore, including
other learning resources in the sequence-aware models could better represent users’ complete
study workflow, and improve recommendation accuracy as experienced in e-commerce [82].
This is also interesting for re-consumption analysis as for instance completing assignments
is associated with reviewing [28]. There are also multiple interesting analysis aspects of a
syllabus approach and usage to further understand how the proposed course order is in fact
utilised, raising questions such as to what degree is the syllabi used sequentially. Moreover for
large-scale diverse MOOC platforms, to what extent do users context switch between topics
across fields on large-scale platforms? Regarding feature inclusion in RSs, including user demo-
graphics with in-video viewing behaviour, as well temporal features such as recency could be
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interesting in general as well as improved feature reduction and engineering methods as a
part of the model instead of a simple, inefficient FFNs [78]. Moreover, as reinforcement learn-
ing has been shown to be effective for exercise recommendation [35], applying it to lecture
recommendation with in-video viewing behaviours is also of interest.

Within the scope of re-consumption analysis, a more advanced feature selection and engineer-
ing methodology could be interesting to explore. Though Exp.1 did not see drastic improve-
ments considering random feature subsets, the classifiers in Exp.2 could have a positive effect
on more appropriately engineered behavioural features, as well as the inclusion of categor-
ical lecture features. Moreover, quantifying the effect of in-video behavioural bias related to
users and lectures could enable a less restricted dataset for comparison, as well providing more
confidence in the analysis. Moreover, the temporal aspects of re-consumption are still mainly
unexplored on a large-scale, diverse dataset, e.g. the temporal distances between the first ses-
sion and a re-consumption of a lecture. This is also of interest for re-consumption prediction.
Furthermore, a more nuanced definition of a lecture re-consumption and its consequences for
re-consumption analysis is another area of interest. A possibility is to look at re-consumption
at a topic level, rather than at per video level, or study it at a more granular per video segment
level which is enabled by the release of the PEEK dataset [117].

For further study of re-consumption prediction, a natural extension would be to make the CF
models re-consumption aware, applying information retrieval weighting techniques to adjust
the confidence values of user-lecture interaction. Moreover, using sequence-aware models as
in [106] to measure any re-consumption classification improvement when considering users’
historic behaviour, as well as its relation to forgetting behaviour and Knowledge Tracing is
enticing. Moreover, online evaluation of the consequences of re-consumption aware RSs or re-
consumption-based interventions and their impact on student performance and SRL behaviour
could further illustrate the importance of revision for learning. This could also require model-
ling of the timing aspect of re-consumption recommendations, such as spaced repetition [145],
as it is deemed an important part of re-consumption recommendations. [61] Lastly, due to the
large imbalance of first visits and re-consumptions, more specific anomaly detection techniques
would be of interest.

Finally, regarding re-consumption alignment, an alignment metric which considers both the
magnitude of revisits of individual lectures, as well as the diversity of the re-consumption
would be of high priority. Moreover, evaluating the calibration using weighting schemes of
both user history and recommendations would enable the inclusion of temporal aspects, such
as recency. In general, exploring more nuanced evaluation techniques and their considera-
tion of relevancy instead of a binary next-item target, could in turn provide more nuanced
recommendation accuracy results and perhaps better simulate online evaluation.
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Appendix A

GPUs used during Experiment 1

GPUs used in Exp.1 for evaluating the RSs

Model EdNet MOOCCubeX

B
as

el
in

es

iALS P100 16GB P100 16GB
BPR P100 16GB P100 16GB
GRU 2x P100 16GB A100 80GB
BERT 2x P100 16GB A100 40GB
XLNet 2x P100 16GB A100 40GB

Fu
ll

GRU 2x P100 16GB A100 80GB
BERT 2x P100 16GB A100 40GB & V100 32GB
XLNet 2x P100 16GB A100 40GB
XLNet f eat 2x P100 16GB A100 40GB

B
ia

s
ad

j GRU 2x P100 16GB A100 80GB
BERT 2x P100 16GB A100 40GB
XLNet 2x V100 32GB A100 40GB
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Appendix B

Visualisations

Some visualisations are added in addition to the representative visualisations presented in the
main matter. In particular, the additional validation and test losses for GRU and XLNet are
presented in Section B.1 as supplementary to Figure 5.6.

B.1 Validation and test loss
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GRU validation and test loss on MOOCCubeX

The mean and 95% confidence interval of the validation and test loss for the variants of GRU
explored in Exp.1 in Section 1.3
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Chapter B: Visualisations 101
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XLNet Validation and test loss on EdNet
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XLNet Validation and test loss on MOOCCubeX

The mean and 95% confidence interval of the validation and test loss for the variants of XLNet
explored in Exp.1 in Section 1.3
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