
Ba
ch

el
or

’s
 th

es
is Secure deployment of applications in

Kubernetes on Google Cloud

June 2020

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Design

Cato Findalen
Jostein Furnes

Bachelor’s thesis
2020

Bachelor’s thesis

Secure deployment of applications in
Kubernetes on Google Cloud

June 2020

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Design

Cato Findalen
Jostein Furnes

Secure deployment of applications using
Kubernetes in Google Cloud

Jostein Furnes
Cato Findalen Røsvik

June 10, 2020

Abstract

Security, efficiency and accessibility do not always go hand in hand, but can they?
Kubernetes as a platform by default might not give the correct answer but by using
a combination of existing functionality and coming ones, it can be easier than ever.
Headit AS is a software development and integration company located in Hamar,
Norway, and our theises employer. They asked if we could look into secure oper-
ations of Multi-tennant solutions within Kubernetes and if we had recommenda-
tions for improving their current Kubernetes system, as well as maping out ways
to improve their current solution both in short and long term in regards to per-
formance, setup and configuration.
In order to do these investigations, Headit provided us with a test environment
within Google Cloud and a demo application running based on their current sys-
tem operation.
In this test environment, we dismantled the security added through Network
Policies by removing them one at a time and monitoring the cluster for Network
traffic between Pods. In addition, we also conducted tests at different stages in
order to validate our findings. Through in depth testing of provided materials and
research into the platform, we can make Kubernetes go from unsecure to secure
and efficient through modern added functionality and other services added to the
Kubernetes environment.
To recommend improvements to Headit, we researched different solutions in or-
der to make operating, setting up and updating a Kubernetes environment.

iii

Sammendrag

Sikkerhet, effektivitet og tilgjengelighet går ikke alltid hånd i hånd, men kan det?
Kubernetes er en usikker platform, og vil kanskje ikke sees som en riktig løsning
for spørsmålet, men gjennom kombinasjoner av eksisterende og funksjoner under
utvikling kan det bli veldig enkelt.
Headit AS er ett utviklingsfirma fra Hamar, Norge, og oppdraggiveren for denne
oppgaven. De ville at vi skulle undersøke hvordan kjøre Multi-tennant løsnigner i
Kubernetes på en sikker måte, og om vi hadde idéer til hvordan forbedre på ders
nåværende Kubernetes system. Samtidig skulle vi kartlegge muligheter til å for-
bedre løsningen på kort og lang sikt med tanke på ytelse, oppsett av programmer
og konfigurasjon.
For å gjøre disse undersøkelsene fikk vi tilgang til ett test miljø i Google Cloud, og
demo applikasjoner basert på nåværende måter å kjøre applikasjoner i systemet.
Undersøkelsene våre baserte seg på å fjerne nettverks policyene en etter en for
deretter å monitorere trafikken mellom Pod-er ved hjelp av Kali. Vi gjennomførte
disse undersøkelsene flere ganger under gjennomføring av oppdaven for å val-
idere dataene.
Gjennom grundige tester av de gitte ressursene og fordypning i platformen kan
man trekke Kubernetes fra en usikker platform fra standardoppsettet til en sikker
og effektiv plaform gjennom eksisterende og kommende funksjoner, med ekstra
tjenester lagt til i Kubernetes miljøet.
I forbindelse med det å anbefale forbedringer til Headit så undersøkte vi forskjel-
lige løsninger som hjelper med bruk, oppsett og oppdattering av ett Kubernetes
miljø.

v

Preface

This Bachelor thesis is the end for the 3 year study "IT-drift og Informasjonssik-
kerhet (BITSEC)" and "Batchelor i ingeniørfag - Data (BIDAT)". It was done in the
spring of 2020 at NTNU Gjøvik. The employer of this assignment is Headit with
Rune Gaade as their representative.

The thesis has been challenging and an eye opening experience for the whole
group. We have built on information and experiences we have gathered through-
out our studies, as well as get new information we never expected to need. This
is something we look forward to bring with us out into our futures.

We would like to thank Headit AS and especially Rune Gaade for all the help
they have provided, answering all questions we have had, and provided relevant
context where we have needed it.
We would also like to thank our supervisor Jia-Chun Lin for pushing us to work
harder, and helping us do as best we can with this thesis, as well as helping out
when we haven’t known fully how to make progression.

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xi
Tables . xiii
Acronyms . xv
Glossary . xvii
1 Introduction . 1

1.1 Background . 1
1.2 Project Goal . 1
1.3 Requirements . 2
1.4 Boundaries . 2
1.5 Project Group . 2
1.6 Thesis Structure . 2

2 Background . 5
2.1 Kubernetes . 5
2.2 Google Cloud . 6
2.3 Network Protocols within Kubernetes 6

3 Kubernetes Security Investigation . 9
3.1 Used Tools . 9

3.1.1 Kali Linux . 9
3.1.2 Wireshark and Tshark . 10
3.1.3 Kubectl . 10
3.1.4 Nmap . 10
3.1.5 Ksniff . 10

3.2 Demo Application Provided by Headit 11
3.2.1 Nginx Ingress Server . 12
3.2.2 Web Server . 13
3.2.3 Java Backend Server . 13
3.2.4 Database . 13
3.2.5 Network Polices . 14

3.3 Method . 15
3.3.1 Setup . 15

ix

xJostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

3.3.2 Kali Linux . 15
3.3.3 Tshark Testing . 19
3.3.4 Ksniff Testing . 24
3.3.5 Nmap . 24

3.4 Results . 26
4 Improvements to Headits current system 29

4.1 Goldpinger [37] . 30
4.2 Kube-applier [40] . 32
4.3 Kubespy [41] . 33
4.4 Kubeval [42] . 34
4.5 Anthos . 34

4.5.1 Anthos GKE on-prem . 34
4.5.2 Binary Authorization . 35

4.6 Our view on ways to improve workflow within using recommended
services . 36

5 Closing Remarks . 39
5.1 Discussion . 39
5.2 Conclusion . 39
5.3 Learning Outcome . 40
5.4 Future work . 40

Bibliography . 41
A Network Polices . 45
B Configuration Files . 51
C Nmap . 53

C.1 Nmap Scan Report - Scanned at Thu May 28 10:28:36 2020 53
C.1.1 Scan Summary . 53
C.1.2 10.68.0.1 / kubernetes.default.svc.cluster.local(online) . . . 53
C.1.3 10.68.2.55 /headit-demoapp-web(online) 55
C.1.4 10.68.2.62 / headit-demoapp-svc-b(online) 57
C.1.5 10.68.7.69 / headit-demoapp-web-b(online) 57
C.1.6 10.68.12.122 / headit-demoapp-svc(online) 57

D Prosjektavtale . 59

Figures

3.1 Illustration of the original demo application provided by Headit. . . 11
3.2 Modified client hosts file . 12
3.3 Illustration of the newly created multi-tenant cluster 16
3.4 Error shown when trying to run tshark for the first time 17
3.5 Another error occurs after we applied the two missing capabilities. 17
3.6 Yaml file for deploying kali with correct capabilities 18
3.7 CrashLoopBackOff error from GKE web interface 18
3.8 Modified yaml file that does not produce the CrashBackLoopOff error 19
3.9 Illustration of the network packets path when the Application Pro-

gramming Interface [1] (API) is triggered, shown going up and
down the green and red lines. 20

3.10 Wireshark instance recording network traffic from the kali con-
tainer for about 5 minutes . 21

3.11 Wireshark output of traffic from kali after running apt-get update . 22
3.12 API request sent internally from headit-demoapp-kali to the in-

ternal cluster ip for headit-demoapp-web: 10.68.2.55, below is the
wireshark result of captured network traffic. 23

3.13 API request internally from headit-demoapp-kali to the internal
cluster ip for headit-demoapp-web-b: 10.68.1.106 24

3.14 API request to customer B’s headit-demoapp-web-b above wire-
shark using ksniff on headit-demoapp-web-b’s network traffic 25

3.15 Wireshark using ksniff on headit-demoapp-web network traffic run-
ning simultaneously as ksniff in Figure 3.14. 26

4.1 Example of Goldpinger added into a small Kubernetes cluster, and a
display of the network connections of Pod in Red with connections
to other pods as red lines. [37] . 30

4.2 Example of Goldpinger added into a Kubernetes cluster, and a dis-
play of the network connections of Pod in Red with every other pod
as a red line [37] . 31

4.3 Example of Kube-applier UI, with successful last run given 30 ap-
plied files[40] . 33

xi

Tables

4.1 Tools/Services that might be able to improve Headit’s current system. 29

xiii

Acronyms

API Application Programming Interface [1]. xi, 2, 6, 7, 15, 19–21, 23, 24

CVE Common Vulnerabilities and Exposures [2]. 2

GCP Google Cloud Platform [3]. 6

GKE Google Kubernetes Engine [4]. 1, 2, 10–14, 17, 18, 26, 27

HTTP Hypertext Transfer Protocol [5]. 12, 13, 19

JSON JavaScript Object Notation [6]. 32, 34

K8s Kubernetes. 5

NMAP Network Mapper [7]. 25

YAML YAML Ain’t Markup Language [8]. 11, 17, 32, 34

xv

Glossary

apt-get Apt-get is a package manager for debian based and related linux distri-
butions. 19, 22

capabilities "Linux capabilities provide a subset of the available root privileges to
a process. This effectively breaks up root privileges into smaller and distinctive
units. Each of these units can then be independently be granted to processes.
This way the full set of privileges is reduced and decreasing the risks of exploit-
ation".[9]. 17

docker-image Docker images are containerized prebuilt applications that run on
the docker and kubernetes platforms, usually they are tailored to perform
only one task.. 13, 15

Java Java is a class-based and object oriented programming language.. 13

Kubectl Kubectl or kube control is a commandline tool used to control the com-
ponents in a kubernetes cluster. 10, 11, 19, 24

Multi-Tenant Multi tenant describes two or more infrastructures running on the
same hardware or cloud, each of the infrastructures belong to different "ten-
ants" or customers. . 1, 40

NET_ADMIN NET_ADMIN or CAP_NET_ADMIN is a capability in linux for out of
ordinary operations on network adapters and similar hardware, the capabil-
ity can be given to binary’s to gain more privileges on the network adapters
. 17

NET_RAW NET_RAW or CAP_NET_RAW is a capability in linux given to binary’s
to use RAW and PACKET sockets, this gives the binary the ability to bind to
any address for transparent proxying. 17

Nginx Nginx is a web server, reverse proxy and load-balancer.. 12

openjdk:12-alpine openjdk:12-alpine is a docker image with the Open Java De-
velopment Kit pre-installed, running on the lightweight alpine linux project..
13

xvii

xviiiJostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

Spring Boot Spring boot is an extension for the spring framework enabling fast
deployment of java applications in new enviroments such as docker images.
The java applications can be build quickly upon container deployment.. 13

Chapter 1

Introduction

This thesis focuses on Kubernetes and the use of Multi-Tenant applications run
within a Kubernetes system. In this chapter, we will introduce Headit (the pro-
vider of this project assignment), project goals, project requirements, boundaries,
project groups, etc.

1.1 Background

Our thesis assignment was provided to us by Headit AS, which is a Norwegian
business specializing in data science, system development and business develop-
ment. Headit AS design and develop backend systems for their customers and
maintain and run those systems in the cloud. Their customers’ systems running
inside containers on the (Google Kubernetes Engine [4] (GKE) is often set up as a
Multi-Tenant configuration. They wanted to know if an attacker can make use of
one customer’s system to attack another customer’s system or not given that these
two systems are deployed in the same Kubernetes cluster.

1.2 Project Goal

This project aims to achieve the following two goals.
Part 1: Security investigation
This part focuses on exploring what part of the Kubernetes environment is exposed
to attacks from external sources. In order for us to work on this project, Headit
provided us with an isolated test environment. The environment is set up with two
simple demo applications, configuration for a REST-controller, intentity provider
(IDP) and a database. Our goal is to investigate if the configuration is secure so
that different customer applications running in the same cluster will not be able
to interfere (or even to attack) each other.

1

2Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

Part 2: Improvements to the system
The second part of the thesis focuses on investigating how the current Kubernetes
implementation can be improved in terms of security, performance, ease of use,
configuration etc. as well as suggestions for Docker images that could be used as a
base OS and host for the different applications to be run within the Cluster. These
different applications consist of, but might not be limited to: webservers, APIs,
databases and identity providers.

1.3 Requirements

Headit haven’t specified any requirements for us. They have asked the group to
work with what we want to gather experience and investigate within the two parts
of the assignment.

1.4 Boundaries

Given the amount of flexibility in this assignment we have found it better to
set some boundaries for what we want to investigate, and we have decided to
take away the things we are unable to control from the investigation. Since GKE
takes care of patching and security mitigation without any user influence, we have
chosen not to test for any Common Vulnerabilities and Exposures [2] (CVE)’s sur-
rounding Kubernetes itself. Any exploits there should already be patched or will
be soon by google anyways, and since Headit most likely wouldn’t be able to take
any action against them anyway there’s no reason to investigate them. We will
only look at how the current implementation is in the demo application provided
to us.

1.5 Project Group

The members of the group are from two different studies at NTNU Gjøvik. Jostein
Furnes studies "Batchelor i ingeniørfag - Data" and Cato F. Røsvik studies "IT-drift
og Informasjonssikkerhet". Before this thesis the group had very little knowledge
about Kubernetes and Google Cloud. We had to do a deep dive into the different
components of the solutions before we could start the full investigation. As well
as go in depth on external solutions for improving Kubernetes for looking at what
to recommend in order to improve the current Solution used by Headit today.

1.6 Thesis Structure

• Chapter 1 Introduction: Introduction to the thesis

Chapter 1: Introduction 3

• Chapter 2 Background: This chapter provides necessary background in-
formation for the thesis.

• Chapter 3 Security Investigation: This chapter introduces how we invest-
igate if Headit’s current Kubernetes configuration is secure or not.

• Chapter 4 Improvements to Headits current system: This chapter sug-
gests a set of services that we found can improve Headit’s current Kuber-
netes service.

• Chapter 5 Closing Remarks: This chapter summarizes the thesis and out-
lines future work.

Chapter 2

Background

In this chapter we will describe background knowledge and terminology needed
to understand Kubernetes and Google cloud.

2.1 Kubernetes

Kubernetes [10] is an open source container orchestration platform. It is also
known as "Kube" and "Kubernetes (K8s)" in communities that works with this
regularly. It automates many of the manual processes involved in deploying, man-
aging, and scaling containerized applications.

Kubernetes clusters are quite adaptable, and can span many different hosts. This
can be used in conjuncture with hosts located on-premise, public, private or hy-
brid clouds. This functionality makes Kubernetes an ideal platform for hosting
cloud-native applications that require rapid scaling. For our thesis this is relevant
for Headit’s hosting of their clients’ applications within cloud environments where
they can easily scale up, and down as use varies.

Within Kubernetes a lot of different terminologies are needed to be understood.
The following are the common elements within Kubernetes that are quite useful
to know about as a baseline.

• Master [11]: The main machine that controls nodes within the Kubernetes
cluster. All task assignment originate from this machine. It is also called
Kubernetes Master.
• Node [12]: Machines performing requested and assigned tasks. They are

controlled by the Kubernetes Master.
• Pod [13]: A group of one or more containers that share the same IP ad-

dress, identity provider, hostname and other resources. This constant in the
configuration allow for easy transfer of containers around clusters.
• Replication controller [14]: A controller within the cluster responsible for

controlling the amount of identical copies of pods running within the cluster.

5

6Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

• Service proxy [15]: The Service Proxy sends traffic from the client to a
backend system. If a user requests something to be done within a Cluster,
the Service proxy is responsible for the request to be sent to the correct
receiver and take the requested information back to the user.
• Kubelet [16]: Service that runs within a node, reads container manifests

and ensures the defined containers are started and running. It also corrects
errors if discovered.
• Kubectl [17]: It is a command line tool for controlling Kubernetes clusters. It

uses configuration files and user commands to control clusters and elements
within it.
• Deployment [18]: Way to update the contents and assignments of clusters.

Desired state is described by the user, and can create new, pause, rollback
and scale up and down the elements of a Cluster.

2.2 Google Cloud

Google Cloud Platform [3] (GCP) is a Google product that offers the same infra-
structure that Google uses internally in their own systems for its end-user products.
In addition it also offers a set of tools in order to manage the services. Some of
Google clouds uses are:

• Data Storage
• Computing
• Data Analytics
• Machine Learning

Within these services over 90 products are listed under the Google Cloud brand-
ing, and within this Kubernetes is one of these products. We will focus on the parts
of Google Cloud that goes under Computing and , as these are the elements of the
service most relevant to the thesis.

2.3 Network Protocols within Kubernetes

Kubernetes pods are by default unsecure, with open access to everything. For these
reasons, configuring network policies is a necessary thing for standard operation.
Network policies are implemented into Kubernetes as a solution to limit com-
munications between pods within a cluster. The network policies are generally
written by the people creating pods, or set as a standardized part of a businesses
operation of the cluster. Network policies are also used to allow communications
with other parts of a network. These parts could be external databases and APIs.
The endpoints are devices connected to specific Local wired, or wireless networks.

Within a Kubernetes cluster, all the pods are by default allowed to communicate
with each other and any other network endpoint. This means that traffic between

Chapter 2: Background 7

pods are visible to other pods. Network policies are used to limit the open traffic,
and apply restrictions where needed.

In order to use a network policy, it is required to use a networking solution that
supports it. This is usually handled by installing a network plugin, and making
a Kubernetes controller [17] implement them. Without the plugin or controller
applying policies, any policies written will have no effect on the system.

A network policy contains the following elements as a minimum:

• apiVersion
• kind
• metadata

apiVersion: It tells the Kubernetes cluster what functions to have access to within
the cluster. The application programming interface (API) within Kubernetes up-
dates frequently, and features are constantly added. These could cause problems,
so limiting the functions available by defining what the API can access is a must
to avoid issues. For most usecases using v1 will be sufficient. v1 is the current
updated API working for Kubernetes, without any extra modules outside the in-
tended functionalities of Kubernetes.

However if there are some future features a user wants to test, like Cluster Roles
or Certificate signing, he/she might want to use different APIs, such as "Cer-
tificates.k8s.io/v1beta1" or "rbac.authorization.k8s.io/v1". Whenever "Alpha" or
"Beta" in their names, they are candidates for new features for future functional-
ity within the Kubernetes service. Alpha and Beta indicates how far the features
has progressed in testing and development. These versions might contain bugs,
and the final added version added to Kubernetes might be changed before the
final stable version is released.

kind: This tells the kubectl [17] (Kubernetes controller) what object the user
wants to create. A few examples of objects: deployment[18] and pod [13].

Metadata: These are labels or things that the user wants to record as inform-
ation within the deployment or other elements within the cluster, like pods or
nodes. Metadata can be quite useful if the user is working with big clusters and
he/she needs to list all pods and deployments with a certain feature logged in the
Metadata.

Chapter 3

Kubernetes Security
Investigation

In this chapter, we will investigate how secure Headit’s configuration of Kuber-
netes at Headit is. Firstly we introduce all tools we used to conduct the investiga-
tion and then describe the demo application provided by headit. After that, we will
show how we conducted the security investigation and discuss the corresponding
result.

3.1 Used Tools

In order to properly study the security of the Kubernetes configuration we have
choosen the following tools:

• Kali Linux Docker image
• Wireshark and Tshark
• Kubectl
• Nmap
• Ksniff

3.1.1 Kali Linux

Kali linux [19] is a flavor of linux designed for security testing and penetration
testing, we chose to use a docker image of kali linux because of it’s good selection
of available penetration testing tools. Due to the popularity of Kali Linux, there
should be less problems with troubleshooting if problems arise. This is the reason
we chose it.

9

10Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

3.1.2 Wireshark and Tshark

Wireshark [20] is open-source network packet analyzer used for network analysis
and troubleshooting. Wireshark uses a graphical user interface to represent the
captured network packets. On the other hand, tshark is the headless version [21]
of wireshark without a graphical user interface, but with all the same functionality
in regards to collecting network packets. We used tshark to collect packets visible
to the kali pod and analysed the results with wireshark on a different computer.

3.1.3 Kubectl

[17] is a command line tool used to controlling kubernetes clusters. We used it
for deploying the infrastructure to GKE and execute commands inside the pods.
The output of those commands were also piped [22] to our local computers.

3.1.4 Nmap

Nmap [7] is a network port mapping tool, used to scan a subnet or network ad-
dress and look for active hosts to see if any ports are open on those hosts. We used
nmap for trying to map the subnet of the cluster and all pods within it.

3.1.5 Ksniff

Ksniff [23] is a plugin for Kubectl that attaches to running pods to sniff their net-
work traffic. Ksniff is launched via kubectl with the pod name you want to attach
it.

Chapter 3: Kubernetes Security Investigation 11

3.2 Demo Application Provided by Headit

Headit provided a demo application with a simple REST API for us to investigate if
there is any security issue with the corresponding configuration. When the API is
called, the application returns a json formatted list of books. The configuration is
defined in a set of .YAML Ain’t Markup Language [8] (YAML) files ready to deploy
within the Google Kubernetes Engine (GKE) with the Kubectl tool.

Figure 3.1: Illustration of the original demo application provided by Headit.

Figure 3.1 illustrates the demo application, which consists of the following ele-
ments:

• Nginx ingress server
• Web server named: headit-demoapp-web
• Java backend server named: headit-demoapp-svc
• Database
• Network policies

12Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

3.2.1 Nginx Ingress Server

Nginx ingress server is a builtin function in GKE providing a remotely accessible
endpoint with a public facing IP address. Nginx Ingress server has the ability to
balance traffic load between pods and act as a reverse proxy. Note that a reverse
proxy is a web server that retrieves resources from one or more other servers, these
servers are usually on the same local network as the reverse proxy[24]. Since this
demo application does not host the same content on more than one server, load-
balancing is not needed.

In this project, the ingress server is set up as a reverse proxy and routes incoming
network traffic to the local web server on port 80. It provides a public IP and
domain name called:

ntnu-demoapp.headit.no

This domain is not registered in any public DNS registers, meaning that it is not
automatically accessible like most other websites. Reverse proxies can host mul-
tiple domains on a single public IP with a technique called Virtual hosting [25].
To accomplish this the reverse proxy looks for the destination domain in the Hy-
pertext Transfer Protocol [5] (HTTP) header sent by the user to distinguish what
local server the traffic was intended for.

Since the domain is not publicly connected to the public IP nginx uses, the client
machine needs to edit its local DNS register to make that connection. Most oper-
ating systems like windows, linux and mac use a hosts file where the user can link
IP addresses to domains like in Figure 3.2 below.

Figure 3.2: Modified client hosts file

As shown on lines 8 and 9 in Figure 3.2, two different domains are linked to the
same public IP address. When the user accesses either one, the domain name is
included in the HTTP headers, and the Nginx server sends the request to the local
web server hosting that domain. Trying to access the IP address directly would
result in Nginx not knowing what local web server the traffic was intended for,

Chapter 3: Kubernetes Security Investigation 13

and instead return a "404 Page Not Found"[26] error.

3.2.2 Web Server

The web server is based on the docker-image "openjdk:12-alpine", with Java already
installed on the docker-image inside the lightweight alpine variant of docker im-
ages. A set of Spring Boot scripts made by Headit configures the web server when
the pod deploys. The docker image exposes its internal port 8080 to port 80 out-
side the pod facing the ingress server and the Java backend server.

The web server uses a Java application to provide a REST API with two defined
API calls:

/getAllBooks
/getBookFromAPI

A HTTP or https request with these API calls to the configured domain name
will return two different lists of books. The demo application is set up to respond
to API requests on these two complete links:

https://ntnu-demoapp.headit.no/getAllBooks
https://ntnu-demoapp.headit.no/getBookFromAPI

"/getAllBooks" will query the Java backend server for a list of books, while "/get-
BookFromAPI" will get a json list of books from:

"http://openlibrary.org/books/OL16370673M.json".

3.2.3 Java Backend Server

Similar to the webserver, the backend server is based on the docker-image "openjdk:12-
alpine" with Spring Boot scripts that is executed upon container deployment. This
container listens on port 80 from the web server. When a /getAllBooks request is
sent, it retrieves the book list from the database and returns it back to the web
server.

3.2.4 Database

The database is also a builtin function of GKE, so we do not have much inform-
ation on it except for a initializing script that create a new database. The script
creates a new database with a predefined account and password and then grants
all necessary privileges to that user. The user credentials and database name are
reflected in the Spring Boot scripts on the Java backend server.

14Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

3.2.5 Network Polices

The most important security implementation in the demo application are network
policies. Headit has followed best practice here in accordance with Google’s re-
commendations [27]. GKE is set up with a labeling system, so network policies
can be defined to apply to any container with a given label, the demo application
uses labels in the recommended way. All the network policies are as follows:

deny_all.yaml[Please see A.1 for details]:
This network rule denies all traffic by default, and this rule applies to all pods in
the cluster. This policy exists to deny all traffic that are not defined in any of the
other rules. This rule is best practice and allows the user control of what traffic
can pass inside the cluster.

allow-mysql-access.yaml[Please see A.2 for details]:
This rule is applies to all pods with the label "allow-mysql-access", the pods with
this label are allowed to speak with the mysql server on the default port on a dif-
ferent subnet.

allow-internet-access-http.yaml [Please see A.3 for details]:
This rule grants access to 0.0.0.0/0 or all subnets, with the exception of 10.0.0.0/8,
which are the local subnet the pods in the cluster uses. This policy applies to pods
with the label "allow-internet-access-http" and grants them access to the internet,
but not pods in the cluster.

allow-ingress-to-web-tier.yaml [Please see A.4 for details]:
This rule allows the ingress server to receive traffic from any pod with the label:
"web". Without this rule, the deny-all.yaml policy would block this kind of traffic.

allow-egress-to-dns.yaml [Please see A.5 for details]:
This rule grants DNS[28] lookup to all pods in the cluster by opening port 53.
This rule enables all pods to resolve domain names to IP addresses.

allow-egress-from-headit-demoapp-web-to-headit-demoapp-svc.yaml [Please
see A.6 for details]:
This rule allows all traffic from demoapp-web(Web Server) to demoapp-svc(Java
Backend Server) listed in section 3.2. Without this rule the deny-all.yaml would
block the traffic.

allow-ingress-to-headit-demoapp-svc-from-headit-demoapp-web.yaml[Please
see A.7 for details]:
This rule is just a reversed version of the previous rule. Without this rule demoapp-
web can talk to demoapp-svc but can not receive an answer from demoapp-svc.

Chapter 3: Kubernetes Security Investigation 15

3.3 Method

In this section we explain how we created a testing infrastructure inside the cluster,
how we configured it, and what tools we used to conduct the investigation. For
each tool we explain how the testing was conducted, what commands were used,
then show the results of the tests.

3.3.1 Setup

As the demo application shown in Figure 3.1, the current infrastructure contains
only one customer. We call it customeer A. The main concern for Headit was if
a potential attacker can gain access to a different customer in the same cluster
or not. In order to simulate a environment, we duplicated the configuration files
of the demo application, made another identical deployment with the same func-
tionality, and called it customer B. Figure 3.3 shows the resulting cluster. Pod
names were changed from headit-demoapp-xxx to headit-demoapp-xxx-b. This
change would be enough to create a new set of pods but not make them function
as intended. Hence the last two network policies mentioned in 3.2.5 needed to be
duplicated as A.10 and A.11 for new and modified policies).
These two new rules enabled both the web and java backend server of the newly
created customer B to talk to each other. The labeling with tier web/allow-mysql-
access/etc remains the same since customer B’s pods runs the same services as cus-
tomer A. Customer B also needs a domain name so the REST API can be reached
over the internet. Therefore a new domain called "ntnu-demoapp-b.headit.no" was
implemented on the Ingress server linked to the new headit-demoapp-web-b pod.

3.3.2 Kali Linux

With two working customer deployments ready in the cluster, we could start to
do some testing. Installing the test programs needed directly on the demo applic-
ation was decided against. This was due to the minimal design of the alpine based
docker images, which are mainly designed for running pre-installed applications
and not security testing.

Instead we decided to implement a worst case scenario, by deploying a standalone
Kali linux container inside the customer A side of the cluster. With this new con-
tainer we wanted to sniff network packets to see if any of customer A or customer
B’s network traffic leaked through anywhere.

We deployed a vanilla "Kali-linux:latest" docker-image with the following network
policy labels:

• allow-internet-access-http
• web

16Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

Figure 3.3: Illustration of the newly created multi-tenant cluster

Since the cluster pods are headless [21] and does not provide a graphical user
interface, we opted to use Tshark as the packet sniffer and later analyse the sniffed
data with Wireshark. We ran into a lot of trouble in this stage, because kubernetes
has several ways of starting and running containers. The simplest way is to use
the run command that takes very limited options, but works great for short term
testing like this.

kubectl run --generator=run-pod/v1 headit-demoapp-kali -i --tty \
--image kalilinux/kali \
--labels="access-to-internet-http=true,app=demoapp-kali,tier=web" \
-- bash

This command deploys the pod straight into a root shell with only basic tools/-
binary’s installed including a package manager. In the root shell we install Tshark
and when we try to run Tshark, we get an error shown as below:

Chapter 3: Kubernetes Security Investigation 17

Figure 3.4: Error shown when trying to run tshark for the first time

After some research into this error, we discover that a binary called dumpcap lacks
some capabilities [29]. Dumpcap[30] is a network traffic dump tool used by tshark
to sniff packets from an ethernet adapter. After identifying what capabilities were
missing, we provide the dumpcap binary the missing capabilities (NET_RAW and
NET_ADMIN) which gives the binary full access to the ethernet adapter the pod
uses. This produces a new error shown in Figure 3.5.

Figure 3.5: Another error occurs after we applied the two missing capabilities.

This error took us a very long time to resolve, and it postpones our progress on
the project by weeks. Eventually we found out that these capabilities were not
available on the GKE host node where the pods are running when the pods are
started with the "run" command. No options for adding the capabilities within the
run command exists either. Therefore when Kali thought it had the capabilities, it
was denied to use them by the host node it was running on and thereby produced
the above error shown in Figure 3.5. There were no logs within GKE or the system
logs that reflected any of this, which made it so much harder to debug and resolve.

Running tshark within GKE is apparently not too popular either since all the online
research we did returned no comparable situations. Looking into how capabilit-
ies interacts with docker and kubernetes, we eventually found out that the run
command was the problem. It has a predefined set of capabilities, and it is not
possible to add more. This meant that we had to launch Kali from a .YAML file
instead, only then could we add the missing capabilities to the pod as Figure 3.6
shows.

18Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

Figure 3.6: Yaml file for deploying kali with correct capabilities

However when applying this valid configuration, the pod crashes in an endless
loop as shown in Figure 3.7.

Figure 3.7: CrashLoopBackOff error from GKE web interface

Just like our problem shown in Figure 3.5, no logs are available to help in resolv-
ing the issue. The kali container produces zero logs since it never gets to start, and
GKE’s event logs show an ever expanding list of CrashLoopBackOff. The solutions
we found on the internet while searching for "CrashLoopBackOff" combined with
multiple other keywords only gave answers to a lot of things that were not related
to our actual problem. We also tried a docker-compose locally with the same setup,
but there was no problem launching the container. Therefore the issue was not
with the docker image or configuration, but probably was a kubernetes quirk of
some kind.

After more time spent trying things that were not relevant at all, we figured out
that since the kali image had no scripts or tasks configured, kubernetes would see
the pod was "idle" and then shut it off before starting it up again and repeating
this cycle. Since containers often are deployed on demand for doing one task and
then shut down again, it was treated as "finished" and shut down. Kubernetes does
not mention this in the logs or anywhere on the wiki, we could find with the only
keyword we had "CrashLoopBackOff".

The problem was then resolved by adding a task in the configuration file that
would never end, shown in Figure 3.8.

Chapter 3: Kubernetes Security Investigation 19

Figure 3.8: Modified yaml file that does not produce the CrashBackLoopOff error

With a working configuration file, we could now adapt it further by opening the
same ports used by the web server and java backend server. Our final kali config-
uration can be viewed in appendix B.1.

With a fully configured and running container we could now install all the needed
tools and start testing. Since the kali docker image contains almost no programs
to begin with, we used apt-get to download what we needed. The corresponding
commands are shown below:

apt update
apt install -y tshark nmap net-tools iproute2 iputils-ping /
curl traceroute

Should non-superusers be able to capture packets?: no
setcap 'CAP_NET_RAW+eip CAP_NET_ADMIN+eip' /usr/bin/dumpcap

3.3.3 Tshark Testing

With Tshark properly installed and working, we used Kubectl to execute the tshark
program on the kali pod and piped[22] the output to a locally running instance
of wireshark with the following command:

kubectl exec headit-demoapp-kali -- bash -c \
"tshark -i eth0 -w - 2>/dev/null" | sudo wireshark -k -i -

This command enables us to see all the traffic that our kali container can view on
its ethernet adapter, represented on a locally running instance of wireshark.
The illustration in Figure 3.9 shows the traffic flow when the API is triggered
from outside the cluster. The API request reaches the ingress server which then
determines the destination domain name based on the HTTP headers mentioned

20Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

in 3.2.1. The ingress server then forwards the API request to the destination, which
is either customer A or B’s web server. The webserver then forwards the request to
the java backend server which then makes a database query to the database. The
traffic then goes all the way in reverse back to the user who made the API request.
The traffic flows down the red and green arrows, when the data is retrieved from
the database it returns in the direction of the hollow colored arrows in Figure 3.9
below.

Figure 3.9: Illustration of the network packets path when the API is triggered,
shown going up and down the green and red lines.

Chapter 3: Kubernetes Security Investigation 21

The screenshot in Figure 3.10 shows wireshark after running for about 5 minutes
with only two ICMPv6 packets collected/sniffed. During the 5 minutes of sniffing,
two API requests were sent to customer both A and B with the following two
commands:

curl https://ntnu-demoapp.headit.no/demoapp/getAllBooks
curl https://ntnu-demoapp.headit-b.no/demoapp/getAllBooks

This was done to make sure packets were flowing as depicted in Figure 3.9, but
the kali pod was not able to sniff them as shown in Figure 3.10 below.

Figure 3.10: Wireshark instance recording network traffic from the kali container
for about 5 minutes

The kali pod could not see any of the traffic destined for either customer A or B. At
this point we had assumed that at least the API request sent to customer A should
have been collected/sniffed. The Kali pod has two network policies opening up
port 80 to and from customer A’s web server shown in kali’s configuration file loc-
ated in B.1.

22Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

To investigate if the network sniffing was working locally inside the kali pod itself,
we did a apt-get update request as depicted in Figure 3.11.

Figure 3.11: Wireshark output of traffic from kali after running apt-get update

This confirms that our networking sniffing does collect local traffic inside kali as
it should, but we could not see any other internal traffic within the cluster.

Chapter 3: Kubernetes Security Investigation 23

Since it was unexpected to not see the API request sent to customer A due to the
network policies in kali’s configuration file , we decided to check if kali could speak
directly to customer A’s web server inside the cluster. A new API request was sent,
only this time from the kali pod to the internal cluster ip of "headit-demoapp-web"
as shown in Figure 3.12 below.

Figure 3.12: API request sent internally from headit-demoapp-kali to the internal
cluster ip for headit-demoapp-web: 10.68.2.55, below is the wireshark result of
captured network traffic.

The internal API request worked as expected shown in Figure 3.12, meaning that
the network policies defined in kali’s configuration file works as expected.

24Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

Now we needed to know if our kali container could talk to the webserver inside
customer B’s environment. To find out we made an identical API request to the
cluster ip belonging to headit-demoapp-web-b. The API request can be seen in
Figure 3.13. The API request to customer B’s web server did not come through
confirming that the network policies are indeed blocking them.

Figure 3.13: API request internally from headit-demoapp-kali to the internal
cluster ip for headit-demoapp-web-b: 10.68.1.106

3.3.4 Ksniff Testing

To confirm the testing done with Tshark on the Kali container, we found a Kubectl
plugin later in the project called ksniff. This is networking sniffing tool as well that
dumps network traffic from any running pod. It attaches itself to the target pod
and uses a binary called tcpdump and then pipes the result to a local wireshark
instance. This functionality is basically the same as our solution but since it works
a little different we felt it was a good opportunity to confirm our findings from
subsection 3.3.3.
Installing Ksniff is done via a plugin manager for Kubectl called krew [31]. First we
install Krew and from there install Ksniff. We started two instances of Ksniff with
one attached to headit-demoapp-web, and the other to headit-demoapp-web-b. To
confirm our previous results, we made an API request to customer B’s web-server
to see if the traffic was visible to customer A this can be seen from Figure 3.14.
Figure 3.14 confirms that customer B’s web-server can see it’s own traffic just like
in our previous testing with Wireshark in Figure 3.11.
Figure 3.14 and Figure 3.15 were taken simultaneously, during that time a API re-
quest was sent to customer B in Figure 3.14 but no traffic leaked over to customer
A’s webserver. This result is identical to the previous testing with tshark in 3.3.3.

3.3.5 Nmap

is a very popular network mapping tool and port scanner, it is a good tool to make
a map of a network infrastructure and the computers hosts residing in that infra-
structure. In this case we did not expect much information from it, we know that
only port 80 is used in the cluster and the infrastructure is very restricted in it’s
configuration compared to a physical workplace lan for example.

Chapter 3: Kubernetes Security Investigation 25

Figure 3.14: API request to customer B’s headit-demoapp-web-b above wireshark
using ksniff on headit-demoapp-web-b’s network traffic

A text file was set up as a list with the cluster IP’s for every pod in the cluster, this
was to limit the scan to both save time and have a much smaller report to attach
to this thesis. We did a full scan of the entire 10.68.0.0/16 subnet but the result
of that scan returned identical results. The list of known IP’s was named "list.txt"
and contained the following:

list.txt
10.68.12.122 ## headit-demoapp-svc
10.68.2.55 ## headit-demoapp-web
10.68.2.62 ## headit-demoapp-svc-b
10.68.7.69 ## headit-demoapp-web-b
10.68.0.1 ## kubernetes.default.svc.cluster.local

The scan was started from the kali pod with this command:

nmap -Pn -A -sT -iL list.txt -oX nmap.xml

The resulting scan can be found in Appendix C.1. The only noteworthy thing
about this scan is the fact that Network Mapper [7] (NMAP) was able to resolve
the hostnames for all the cluster IP’s.

It can look like this should not be possible due to the "deny_all.yaml" A.1 network
policy, but the reason most likely are due to the "allow-egress-to-dns.yaml" A.5
network policy that applies to all pods in the cluster.

26Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

Figure 3.15: Wireshark using ksniff on headit-demoapp-web network traffic run-
ning simultaneously as ksniff in Figure 3.14.

3.4 Results

After all the testing mentioned in 3.3.3, 3.3.4 and 3.3.5 we can conclude that net-
work traffic behaves differently in GKE in comparison to a traditional network.
These differences were noticed throughout the entire project and are important
to understand in conjunction with our results. An overview of how GKE networks
work can be read about here [32]. It is important to note that Headit uses network
policy’s and most likely other configurations that are not default behaviour in GKE.

In a traditional computer network, computers are separated with subnets, vlans,
routes and firewalls via routers or physical switches [33]. Since GKE runs in the
cloud and many pods can share the same hardware, there is a different approach
with virtual switches that do the exact same job but only in software.

In a traditional network it can be pretty easy to spoof/pretend to be a different
computer by just telling the router that you are someone else with a technique
known as ARP spoofing [34]. We made one such attempt but ARP messages are
just not accepted within the configuration of GKE Headit uses. Therefore without
knowledge of a major exploit in GKE or kubernetes itself, using ARP spoofing is
not an option unlike in most traditional network configurations.

Sending a ping [35] to check if a computer is online is also something trivial in a
traditional computer network, but in the GKE configuration Headit uses, pinging

Chapter 3: Kubernetes Security Investigation 27

is not allowed even when the pods are allowed to communicate over different
protocols. Therefore using tools like OpenVAS [36] and other vulnerability scan-
ners are next to impossible in this case since they all rely on ping and ARP for host
detection. We briefly tried OpenVAS but without the ability to ping OpenVAS just
assumed the pods were offline and stopped any further tests.

The way GKE handles network traffic looks to be watertight, Headit uses network
policies as recommended by google and we were not able to see that they were
not configured right or not working as intended. All the testing mentioned in
3.3.3, 3.3.4 and 3.3.5 were done multiple times with variation in what network
policies were active and how many of them to see if traffic would leak. Only re-
moving essentially all policies would open up traffic from customer A to customer
B, therefore we are confident that Headit can feel safe about how they use and
create network polices in GKE as long as their production workloads reflect how
the provided demo application is configured.

Chapter 4

Improvements to Headits current
system

As mentioned earlier, the second part of this project is to investigate how to im-
prove Headit’s current solution for offering better quality products to their cus-
tomers.

In research working with Kubernetes, we have found some tools/services that
we feel can make Kubernetes easier to work with and easier to manage. Table 4.1
lists all the recommended tools/services. This chapter will go in depth on each
of them we find to be useful, especially in line with the wishes Headit have for
continued operation of their Kubernetes systems.

Table 4.1: Tools/Services that might be able to improve Headit’s current system.

Tool name Description

Goldpinger
Connection visualizing tool, with options to create
automated alerts for ocurring errors

Kube-applier
Auto-updater for clusters, connected to a Git-repository
that applies updates at set intervals given
there are updates available.

Kubespy
Real time resource and change monitoring tool for Kubernetes
operating in the terminal.

Kubeval YAML and JSON validator for any Kubernetes version.

Google Anthos
Hybrid cloud software allowing for combining
cloud software with on-premises datacenters.

29

30Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

4.1 Goldpinger [37]

During times where everything is moving to clouds, and off site services debugging
issues with services interacting could be harder than using on-site solutions. This
is where Goldpinger comes into play. It is a Debugging tool for Kubernetes[37],
and originally made and used by Bloomberg, before they put the project out under
Open Source in December of 2018.

The tool allows for testing and displaying connectivity between nodes in a Kuber-
netes cluster. When it is set up within Kubernetes, it will ask for all the pods within
the system, and graph out every single one and its connections into a graphical
user interface for easy visibility of the system at work. This applies to a small
cluster shown in Figure 4.1 and big cluster shown in Figure 4.2.

Figure 4.1: Example of Goldpinger added into a small Kubernetes cluster, and a
display of the network connections of Pod in Red with connections to other pods
as red lines. [37]

Goldpinger scales with any number of pods. If new pods are added or removed
from the Kubernetes cluster, all it needs is a refresh in the browser and the up-

Chapter 4: Improvements to Headits current system 31

Figure 4.2: Example of Goldpinger added into a Kubernetes cluster, and a display
of the network connections of Pod in Red with every other pod as a red line [37]

dated information will show. This can be a useful tool to figure out where issues
are if any were to occur during every day operation. As a debugging tool being
able to see every connetion, and interruption in connection between applications
relying on communications between each other. While this tool is unable to auto-
mate correcting issues, it is a valueable tool for ensuring the lowest amount of
downtime possible.

For Headit we would recommend the use of this especially for larger clusters ad-
ministered for clients. Goldpinger also has some other integrated solutions that
can be used from the same pod, such as Grafana and Prometheus.

Grafana[38] can be used to show different amounts of data related to the Kuber-
netes clusters and individual pods. You can also go into detail of the datasets if
you need to see anomalies or just extra detailed look into current use of system
resources. A lot of this can also be seen through the Google Cloud Kubernetes

32Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

Engine, but to a less organized degree.

Prometheus[39] is a powerful monitoring and alerting system. It gathers data on
what it is set to monitor and can either record the operation, or generate alerts.
It is designed to be a system that you use for quickly diagnosing problems during
an outage. This system is already used by a few of Headits clients, and we would
recommend that it is implemented and used where possible.

4.2 Kube-applier [40]

Managing every deployment or many groups of pods can be time consuming and
might cause confusion over time, especially when the system needs a large system
wide update.

Kube-applier is a service for automatically applying updates to Kubernetes clusters
from Git repositories specified by the administrator[40]. The service is designed
to be run within a cluster with the sole intention to perform the application com-
mand for all JavaScript Object Notation [6] (JSON) and YAML files within the
admin specified repository.

These JSON and YAML files are what specifies how a pod is supposed to be set
up. For managing multiple instances of the same base solution Kube-applier can
be worked on and deployed from outside a cluster. From here the code can be
tested within git, before it is later what will be replacing the old approved config-
urations with new and improved versions. In addition to this Kube-applier allows
for logging things within a git repo, as well as making logs about each attempt at
running the application command.

Kube-applier also has a user interface telling of the status of the most recent run.
The information that can be seen in this User interface is generally

• Run type
• Start and end times
• Latency
• Most recent commit to the dedicated repository
• Whitelisted files
• Blacklisted files
• Errors
• List of successfully applied files

Kube-applier allows for a deeper focus on writing code and improving what
is currently in production over needing to focus on deployment. This aligns with
Headit’s wishes to be able to improve quality and spend less time focusing on de-
bugging and updating.

Chapter 4: Improvements to Headits current system 33

Figure 4.3: Example of Kube-applier UI, with successful last run given 30 applied
files[40]

4.3 Kubespy [41]

Kubespy is a real time resource monitoring tool, When running containers, it is
possible to lose some insight into what is going on inside when making changes or
updating the system in different ways. This is where Kubespy comes in. It is a light
tool running in the command line from a company called Pulumi. The program is
Open Source, with new functionality being worked on over time.

When using Kubespy there are three main commands:

• kubespy status It monitors changes made to the .status field and displays
changes as a syntax-highlited JSON difference.
• kubespy changes It monitors changes made to a user defined field and

displays the changes as a syntax-highlited JSON difference.
• kubespy trace It provides a real-time summary of changes. These changes

are related to more complex cluster level commands such as deployments.

For now these are the commands provided by Kubespy, and there are more com-
mands planned for future releases.

34Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

4.4 Kubeval [42]

The simplest tool we have looked into and want to recommend for use is a YAML
and JSON validator. Early in our assignment we got recommended a website for
viewing network policies [43], and the details of them. While this is great for
working and validating the functionality of the policies written for different pods,
this does not help out if we have a misconfigured pod from the beginning.

In order to test YAML or JSON files in Kubernetes, it is simplest to test a deploy-
ment and correct errors if detected. This is not an efficient way, it also requires
that Headit has a testing environment that they use for test deployments before
updating the services in live production. Testing the files beforehand can be more
efficient than to test into production.

Kubeval operates with schemas generated from a specification for Kubernetes
OpenAPI. Because of this it allows for testing and validation of multiple versions
of Kubernetes. When running the command to test you can select the Kubernetes
version that the configuration file will be deployed in, and it will test using the
schemas for that version.

4.5 Anthos

Anthos is a service within the Google Cloud ecosystem that allows for applications
to be built, deployed and managed from anywhere. This software integrates with
Kubernetes and with the Anthos GKE on-prem solution. This can be run within
Google Cloud like the normal Kubernetes engine, as well as having the option to
use an on-site server.

Anthos is integrated in Kubernetes as a manager for the service. Kubernetes is set
up in two main parts: a control plane, and the node components. Within Google
Cloud, the control plane is hosted within the Cloud service, and the Kubernetes
API service is the only component accessible to customers. GKE manages the node
komponents in the customers project using instances in Compute Engine. With
GKA on-prem, all components are hosted in the customers on-prem virtualization
environment.

With K8s installed and running, the system administrator have access to a com-
mon orchestration layer that manages application deployment, configuration, up-
grades and scaling.

4.5.1 Anthos GKE on-prem

Anthos GKE on-prem (GKE on-prem) is a hybrid cloud software that beings the
GKE to local server solutions owned by the operator. The engine adds the abil-

Chapter 4: Improvements to Headits current system 35

ity to manage, create, and upgrade clusters running within Kubernetes in the
local server environment. It is also able to manage a varied amount of clusters
independently of its host source. It allows for easy conversion of locally hosted
Windows apps to be translated over to a modernized infrastructure system like
Kubernetes, while also allowing to keep a local host within the business offices.

4.5.2 Binary Authorization

When running local servers or data centers, security controls are quite import-
ant, and can generally be used to limit communications between machines in the
same system. System administrators also need ways to secure quality of hosted
machines, and prevent downtime because of a bad push onto the environment.
Anthos has similar functionality available in it, and this is called Binary Authoriz-
ation.

The main uses for Binary Authorization are to do the following:

• Enforce standardized container release practices
• Put proactive security measures in place
• Native GCP integration

The methods that the system uses for handling these things are quite similar to the
services mentioned before. To enforce the standardized container release practices
they use methods like that of Kubeval and Kube-applier, with the same ability to
use repositories as Kube-applier.

When working towards proactive sevurity measures within Anthos, the config-
uration for these are quite similar to what you find when working with network
policies in Kubernetes. The proactive measures can be managed and edited from
repositories, and Anthos allows for a deeper level of configuration than what can
be found within Kubernetes itself.

Through the Google Cloud Kubernetes Engine a system administrator can manage
his/her clusters and pods, Anthos has a similar system expanding in features and
options for hosts a system administrator wants to manage. Through this combin-
ing a Google Cloud environment with a server on site would work and operate
together, with it all managed within the same administrative software solution.
Through the Anthos GKE you get the ability to sync your multiple systems to make
sure it all uses the same configurations and stays up to date with the rapidly up-
dated Kubernetes system. It also allows for seamless transfer of applications and
data between cloud and on-site computing.

36Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

4.6 Our view on ways to improve workflow within using
recommended services

As mentioned earlier the second goal of the thesis is to investigate better ways
to maintain and improve the security for Headits offerings to their clients. At the
same time finding better ways to make working with the system more efficient.

Through the fact that Headit is selling their services to their clients they will want
to edit and change functionality over time in order to maintain their access to
their system while also allowing for monitoring and debugging of possible errors
on Headits side. For this adding Kube-applier to the workflow can be benefitial.

With Kube-applier a system administrator can limit what files are supposed to
deploy with white- and blacklists. This can be combined with hosting multiple
instances of Kube-applier to handle dedicatd files. Alternatively running multiple
clusters with one instance of Kube-applier each would be easier to work with, and
allow for more ability to share management access to clients who want more in-
sight into the hosting of their systems.

In order to make these fixes easier to do adding Goldpinger is one efficient way
of seeing where the issues are arising. Combine Goldpinger with some of the in-
tegrated connections it has to Prometheus for alerting about errors, and the sum
of these could allow for easier localization of where an error arises and why.

In order to reduce the risk of errors ocurring, we would recommend running con-
figurations through Kubeval before pushing changes to the Kubernetes cluster, or
adding it as an automated test within a Git repository. Doing this could make it
less likely for an error to occur with the pod, and instead if any problems were to
arise the issue would be with the application running inside the pod.

In addition, when adding new deployments checking that everything is going
properly is something that will be done no matter what, so running a Kubespy
instance through the terminal in order to see what is going on and if any errors
are happening in real time correct them before other errors occur because of this.
Anthos might be a good way to enhance the offerings to the customers. Using An-
thos, operations could still work like they are today, but with increased levels of
logging and quality assurance on pods and application before entering production.
Properly setup environments could also automate a lot of the debugging that cur-
rently take time and cause annoyances because of faulty configured policies and
pods.

Depending on client workloads Anthos could also save money. On the 6th of June
2020 pricing for worker nodes and cluster management in GKE will get an extra
fee added of $0.10 per hour of time a cluster is powered on. Reducing the amount

Chapter 4: Improvements to Headits current system 37

of background hours and running services needing 24 hour operation out of the
cloud could reduce the amount this new fee will have an effect over time. Given
that only one cluster needs to run 24/7 for a client, per year the hourly fee sums
up to around $873.60. This cost applies to a per-cluster basis. Operating with mul-
tiple clusters for clients could make this more expensive depending on how long
some pods need to be active.

Chapter 5

Closing Remarks

To close off our thesis we will now discuss our results and suggestions for future
work on this topic.

5.1 Discussion

Early in the project we thought the security investigation would be more com-
prehensive with more tools and testing. But upon starting the investigation we
realized that the demo application is limited in its potential attack vectors and
possible scope for testing. Nonetheless we were able to perform enough tests to
conclude that the provided configuration does not leak network packets, and does
not allow for communication between pods that are not specifically allowed in the
network policies. We were hoping to find issues and provide solutions for fixing
them, but instead we confirmed that the network policies works as intended.

5.2 Conclusion

In conclusion to the security investigation we are confident that the network
policies in the provided configuration block unwanted traffic, and also blocks
traffic between customers which was the main concern for Headit. We have only
seen and tested the demo application, but if Headit uses the same logic when
configuring network policies for their customers infrastructure, the same results
should apply.

From our experience with Kubernetes it can get hard to setup a few things, and ex-
pecially when setting up multiple different types of Pods in the same deployment,
and looking for errors that could occur. Thankfully there are a lot of solutions for
this that makes it simpler to operate and debug a cluster. The mentioned solutions
will not be the complete way to work faster and easier in Kubernetes, but it is a
good step in the right direction.

39

40Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

5.3 Learning Outcome

Through our thesis we have learned in depth about cloud environments and work-
ing with Multi-Tenant solutions. We have learned more basics about working with
cloud infrastructure and cloud technologies, as well as gone in depth about work-
ing within Google Cloud and how to operate and deploy services within it. As well
as learned a lot about Kubernetes and the future of the service. Kubernetes is a
widely used solution getting more and more adoption within cloud hosted systems
each day that passes. We also got more experience withing with Docker, a tech-
nology we have been learning about in a limited amount within our studies, and
that we now have gone more in depth in to understand Kubernetes in a better way.

We also got a better insight into software security and important metrics to be
aware of when working with software. Combining this with important Cloud ideas
we have gained quite important experience that will allow for better operation of
infrastructure in possible future work.

5.4 Future work

For future work we would recommend looking more into what can be done if
someone acquires a shell with administrator rights on a pod within the system. Our
investigation was primarily focused on what can be seen between pods inside the
same cluster. We didn’t look at how deep you can get in the system architecture.
Questions like weather or not a malicious user can get information from a database
with a direct connection though a pod. Or if a user could get administrative access
of the cluster in order to cause issues.

Bibliography

[1] W. Contributors, Application programming interface, https://en.wikipedia.
org/wiki/Application_programming_interface, 2020.

[2] W. Contributors, Common vulnerabilities and exposures, https://en.wikipedia.
org/wiki/Common_Vulnerabilities_and_Exposures, 2020.

[3] W. Contributors, Google cloud platform, https://en.wikipedia.org/wiki/
Google_Cloud_Platform, 2020.

[4] G. Cloud, Google kubernetes engine, https://cloud.google.com/kubernetes-
engine#section-2, 2020.

[5] W. Contributors, Hypertext transfer protocol, https://en.wikipedia.org/
wiki/Hypertext_Transfer_Protocol, 2020.

[6] W. Contributors, Json - javascript object notation, https://en.wikipedia.
org/wiki/JSON, 2020.

[7] W. Contributors, Nmap, https://en.wikipedia.org/wiki/Nmap, 2020.

[8] W. Contributors, Yaml, https://en.wikipedia.org/wiki/YAML, 2020.

[9] M. Boelen, What are linux capabilities, https://linux-audit.com/linux-
capabilities-101/#what-are-linux-capabilities, 2020.

[10] T. K. Authors, What is kubernetes?, https://kubernetes.io/docs/concepts/
overview/what-is-kubernetes/, 2020.

[11] T. K. Authors, Kubernetes master, https://kubernetes.io/docs/concepts/
#kubernetes-master/, 2020.

[12] T. K. Authors, Nodes, https://kubernetes.io/docs/concepts/architecture/
nodes/, 2020.

[13] T. K. Authors, Pods, https://kubernetes.io/docs/concepts/workloads/
pods/pod/, 2020.

[14] T. K. Authors, Replicationcontroller, https://kubernetes.io/docs/concepts/
workloads/controllers/replicationcontroller/, 2020.

[15] T. K. Authors, Virtual ips and service proxies, https://kubernetes.io/
docs/concepts/services- networking/service/#virtual- ips- and-
service-proxies, 2020.

41

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://en.wikipedia.org/wiki/Google_Cloud_Platform
https://en.wikipedia.org/wiki/Google_Cloud_Platform
https://cloud.google.com/kubernetes-engine##section-2
https://cloud.google.com/kubernetes-engine##section-2
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Nmap
https://en.wikipedia.org/wiki/YAML
https://linux-audit.com/linux-capabilities-101/##what-are-linux-capabilities
https://linux-audit.com/linux-capabilities-101/##what-are-linux-capabilities
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/##kubernetes-master/
https://kubernetes.io/docs/concepts/##kubernetes-master/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/
https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/
https://kubernetes.io/docs/concepts/services-networking/service/##virtual-ips-and-service-proxies
https://kubernetes.io/docs/concepts/services-networking/service/##virtual-ips-and-service-proxies
https://kubernetes.io/docs/concepts/services-networking/service/##virtual-ips-and-service-proxies

42Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

[16] T. K. Authors, Kubelet, https://kubernetes.io/docs/reference/command-
line-tools-reference/kubelet/, 2020.

[17] K. Team, Overview of kubectl, https://kubernetes.io/docs/reference/
kubectl/overview/, 2020.

[18] T. K. Authors, Deployments, https://kubernetes.io/docs/concepts/
workloads/controllers/deployment/, 2020.

[19] W. Contributors, Kali linux, https://en.wikipedia.org/wiki/Kali_
Linux, 2020.

[20] W. Contributors, Wireshark, https://en.wikipedia.org/wiki/Wireshark,
2020.

[21] W. Contributors, Headless software, https://en.wikipedia.org/wiki/
Headless_software, 2020.

[22] W. Contributors, Pipeline (unix), https : / / en . wikipedia . org / wiki /
Pipeline_(Unix), 2020.

[23] G. eldadru, Ksniff - kubectl plugin, https://github.com/eldadru/ksniff,
2020.

[24] W. Contributors, Reverse proxy, https://en.wikipedia.org/wiki/Reverse_
proxy, 2020.

[25] W. Contributors, Virtual hosting, https : / / en . wikipedia . org / wiki /
Virtual_hosting, 2020.

[26] W. Contributors, Http 404, https://en.wikipedia.org/wiki/HTTP_404,
2020.

[27] Google, Configuring network policies for applications, https://cloud.google.
com/kubernetes-engine/docs/tutorials/network-policy#step_2_
restrict_incoming_traffic_to_pods, 2020.

[28] W. Contributors, Domain name system, https://en.wikipedia.org/wiki/
Domain_Name_System, 2020.

[29] A. L. Team, Capabilities - arch wiki, https://wiki.archlinux.org/index.
php/Capabilities, 2020.

[30] W. Org, Dumpcap - the wireshark network analyzer, https://wireshark.
org/docs/man-pages/dumpcap.html, 2020.

[31] K. Team, Extend kubectl with plugins, https://kubernetes.io/docs/
tasks/extend-kubectl/kubectl-plugins/, 2020.

[32] G. Cloud, Network overview - gke, https://cloud.google.com/kubernetes-
engine/docs/concepts/network-overview#pods, 2020.

[33] W. Contributors, Network segmentation, https://en.wikipedia.org/
wiki/Network_segmentation, 2020.

[34] W. Contributors, Arp spoofing, https://en.wikipedia.org/wiki/ARP_
spoofing, 2020.

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://en.wikipedia.org/wiki/Kali_Linux
https://en.wikipedia.org/wiki/Kali_Linux
https://en.wikipedia.org/wiki/Wireshark
https://en.wikipedia.org/wiki/Headless_software
https://en.wikipedia.org/wiki/Headless_software
https://en.wikipedia.org/wiki/Pipeline_(Unix)
https://en.wikipedia.org/wiki/Pipeline_(Unix)
https://github.com/eldadru/ksniff
https://en.wikipedia.org/wiki/Reverse_proxy
https://en.wikipedia.org/wiki/Reverse_proxy
https://en.wikipedia.org/wiki/Virtual_hosting
https://en.wikipedia.org/wiki/Virtual_hosting
https://en.wikipedia.org/wiki/HTTP_404
https://cloud.google.com/kubernetes-engine/docs/tutorials/network-policy##step_2_restrict_incoming_traffic_to_pods
https://cloud.google.com/kubernetes-engine/docs/tutorials/network-policy##step_2_restrict_incoming_traffic_to_pods
https://cloud.google.com/kubernetes-engine/docs/tutorials/network-policy##step_2_restrict_incoming_traffic_to_pods
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System
https://wiki.archlinux.org/index.php/Capabilities
https://wiki.archlinux.org/index.php/Capabilities
https://wireshark.org/docs/man-pages/dumpcap.html
https://wireshark.org/docs/man-pages/dumpcap.html
https://kubernetes.io/docs/tasks/extend-kubectl/kubectl-plugins/
https://kubernetes.io/docs/tasks/extend-kubectl/kubectl-plugins/
https://cloud.google.com/kubernetes-engine/docs/concepts/network-overview##pods
https://cloud.google.com/kubernetes-engine/docs/concepts/network-overview##pods
https://en.wikipedia.org/wiki/Network_segmentation
https://en.wikipedia.org/wiki/Network_segmentation
https://en.wikipedia.org/wiki/ARP_spoofing
https://en.wikipedia.org/wiki/ARP_spoofing

Bibliography 43

[35] W. Contributors, Ping (networking utility), https://en.wikipedia.org/
wiki/Ping_(networking_utility), 2020.

[36] W. Contributors, Openvas, https://en.wikipedia.org/wiki/OpenVAS,
2020.

[37] B. Github, Goldpinger - debugging tool for kubernetes which tests and displays
connectivity between nodes in the cluster, https://github.com/bloomberg/
goldpinger.

[38] G. Labs, Grafana, https://grafana.com/oss/grafana/, 2020.

[39] P. Authors, What is prometheus?, https://prometheus.io/docs/introduction/
overview/, 2020.

[40] B. Github, Kube-applier enables automated deployment and declarative con-
figuration for your kubernetes cluster, https://github.com/box/kube-
applier.

[41] pulumi Github, Tools for observing kubernetes resources in real time, powered
by pulumi, https://github.com/pulumi/kubespy.

[42] instrumenta Github, Validate your kubernetes configuration files, supports
multiple kubernetes versions, https://github.com/instrumenta/kubeval.

[43] tufin.io, Kubernetes network policies viewer, https://orca.tufin.io/
netpol/, 2020.

https://en.wikipedia.org/wiki/Ping_(networking_utility)
https://en.wikipedia.org/wiki/Ping_(networking_utility)
https://en.wikipedia.org/wiki/OpenVAS
https://github.com/bloomberg/goldpinger
https://github.com/bloomberg/goldpinger
https://grafana.com/oss/grafana/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://github.com/box/kube-applier
https://github.com/box/kube-applier
https://github.com/pulumi/kubespy
https://github.com/instrumenta/kubeval
https://orca.tufin.io/netpol/
https://orca.tufin.io/netpol/

Appendix A

Network Polices

A.1 deny_all.yaml

#
Deny everything
#
ap iVers ion : networking . k8s . io /v1
kind: NetworkPol icy
metadata:

name: deny−a l l
spec:

podSelector is empty , this means it will match all the pods
podSelec tor : {}
pol i cyTypes :
- I ng r e s s
- Egress

A.2 allow-mysql-access.yaml

##
Allow mysql egress access for pods in namespace default with
label 'access -to-mysql=true'
##
kind: NetworkPol icy
ap iVers ion : networking . k8s . io /v1
metadata:

name: allow−mysql−acces s
spec:

po l i cyTypes :
- Egress
podSelec tor :

matchLabels:
access−to−mysql: 'true'

egre s s :
allow access to vpc backend subnets
- to:

- ipB lock :
ntnu -sql
c i d r : 172.24.48.3/32

por t s :
- p ro toco l : TCP

mysql
port : 3306

45

46Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

Chapter A: Network Polices 47

A.3 allow-internet-access-http.yaml

##
Allow internet egress access for pods in namespace default with label:
'access -to-internet -http'
##
kind: NetworkPol icy
ap iVers ion : networking . k8s . io /v1
metadata:

name: allow−i n t e rne t−access−ht tp
spec:

po l i cyTypes :
- Egress
podSelec tor :

matchLabels:
access−to−i n t e rne t−ht tp : 'true'

egre s s :
- to:

- ipB lock :
c i d r : 0 .0 .0 .0/0
except :
all addresses in 10 : k8s
- 10 .0 .0 .0/8

por t s :
- p ro toco l : TCP

port : 443
- p ro toco l : TCP

port : 80

A.4 allow-ingress-to-web-tier.yaml

##
Allow nginx ingress controller to all pods in web tier
##
kind: NetworkPol icy
ap iVers ion : networking . k8s . io /v1
metadata:

name: nginx−i ngres s−web
spec:

po l i cyTypes :
- I ng r e s s
podSelec tor :

matchLabels:
t i e r : web

i n g r e s s :
- from:

- namespaceSelector:
matchLabels:

ingres s−nginx: 'true'

48Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

A.5 allow-egress-to-dns.yaml

##
Allow dns lookup from all pods in default namespace
##
kind: NetworkPol icy
ap iVers ion : networking . k8s . io /v1
metadata:

name: allow−dns
spec:

po l i cyTypes :
- Egress
podSelector is empty , this means it will match all the pods
podSelec tor : {}
egre s s :
- po r t s :

dns lookup
- por t : 53

pro toco l : UDP
- por t : 53

pro toco l : TCP

A.6 allow-egress-fromheadit-demoapp-web-to-headit-demoapp-svc.yaml

kind: NetworkPol icy
ap iVers ion : networking . k8s . io /v1
metadata:

name: allow−egress−from−headit−demoapp−web−to−headit−demoapp−svc
spec:

po l i cyTypes :
- Egress
podSelec tor :

matchLabels:
app: headit−demoapp−web

egres s :
- to:

- podSelec tor :
matchLabels:

app: headit−demoapp−svc

Chapter A: Network Polices 49

A.7 allow-ingress-to-headit-demoapp-svc-from-headit-demoapp-web.yaml
kind: NetworkPol icy
ap iVers ion : networking . k8s . io /v1
metadata:

name: allow−i ngres s−to−headit−demoapp−svc−from−headit−demoapp−web
spec:

po l i cyTypes :
- I ng r e s s
podSelec tor :

matchLabels:
app: headit−demoapp−svc

i n g r e s s :
- from:

- podSelec tor :
matchLabels:

app: headit−demoapp−web

A.8 allow-ingress-to-headit-demoapp-kali-from-headit-demoapp-web.yaml
kind: NetworkPol icy
ap iVers ion : networking . k8s . io /v1
metadata:

name: allow−i ngres s−to−headit−demoapp−ka l i−from−headit−demoapp−web
spec:

po l i cyTypes :
- I ng r e s s
podSelec tor :

matchLabels:
app: headit−demoapp−k a l i

i n g r e s s :
- from:

- podSelec tor :
matchLabels:

app: headit−demoapp−web

A.9 allow-egress-from-headit-demoapp-web-to-headit-demoapp-kali.yaml
kind: NetworkPol icy
ap iVers ion : networking . k8s . io /v1
metadata:

name: allow−egress−from−headit−demoapp−ka l i−to−headit−demoapp−svc
spec:

po l i cyTypes :
- Egress
podSelec tor :

matchLabels:
app: headit−demoapp−k a l i

eg re s s :
- to:

- podSelec tor :
matchLabels:

app: headit−demoapp−svc

A.10 allow-ingress-to-headit-demoapp-svc-b-from-headit-demoapp-web-
b.yaml
kind: NetworkPol icy
ap iVers ion : networking . k8s . io /v1
metadata:

name: allow−i ngres s−to−headit−demoapp−svc−b−from−headit−demoapp−web−b
spec:

po l i cyTypes :

50Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

- I ng r e s s
podSelec tor :

matchLabels:
app: headit−demoapp−svc−b

i n g r e s s :
- from:

- podSelec tor :
matchLabels:

app: headit−demoapp−web−b

A.11 allow-egress-from-headit-demoapp-web-b-to-headit-demoapp-svc-
b.yaml
kind: NetworkPol icy
ap iVers ion : networking . k8s . io /v1
metadata:

name: allow−egress−from−headit−demoapp−web−b−to−headit−demoapp−svc−b
spec:

po l i cyTypes :
- Egress
podSelec tor :

matchLabels:
app: headit−demoapp−web−b

egre s s :
- to:

- podSelec tor :
matchLabels:

app: headit−demoapp−svc−b

Appendix B

Configuration Files

B.1 headit-demoapp-kali.yaml

--- PROJECT: headit−demoapp−k a l i

ap iVer s ion : v1
kind: ConfigMap
metadata:

name: headit−demoapp−ka l i−con f i g
namespace: d e f a u l t

ap iVer s ion : apps/v1
kind: Deployment
metadata:

name: headit−demoapp−k a l i
l a b e l s :

access−to−i n t e rne t−ht tp : "true"
app: k a l i
t i e r : web

spec:
r e p l i c a s : 1
s e l e c t o r :

matchLabels:
app: headit−demoapp−k a l i
access−to−i n t e rne t−ht tp : 'true'
t i e r : web

template:
metadata:

l a b e l s :
app: headit−demoapp−k a l i
access−to−i n t e rne t−ht tp : 'true'
t i e r : web

spec:
con ta ine r s :
- name: k a l i

image: k a l i l i n u x / k a l i : l a t e s t
s e cu r i t yCon tex t :

c a p a b i l i t i e s :
add: ["NET_ADMIN" , "NET_RAW"]

command: ["/bin/bash" , "-c" , "--"]
args : ["while␣true;␣do␣sleep␣30;␣done;"]
por t s :
- con ta ine rPor t : 8080

51

52Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

re sources :
r eques t s :

cpu: "50m"
envFrom:
- configMapRef:

name: headit−demoapp−ka l i−con f i g

ap iVer s ion : v1
kind: Se rv i ce
metadata:

name: headit−demoapp−k a l i
spec:

por t s :
- por t : 80

t a r g e t P o r t : 8080
pro toco l : TCP
name: ht tp

s e l e c t o r :
app: headit−demoapp−k a l i

ap iVer s ion : networking . k8s . io /v1
kind: NetworkPol icy
metadata:

name: allow−egress−from−headit−demoapp−ka l i−to−headit−demoapp−web
spec:

po l i cyTypes :
- Egress
podSelec tor :

matchLabels:
app: headit−demoapp−k a l i

eg re s s :
- to:

- podSelec tor :
matchLabels:

app: headit−demoapp−web

ap iVer s ion : networking . k8s . io /v1
kind: NetworkPol icy
metadata:

name: allow−i ngres s−to−headit−demoapp−web−from−headit−demoapp−k a l i
spec:

po l i cyTypes :
- I ng r e s s
podSelec tor :

matchLabels:
app: headit−demoapp−web

i n g r e s s :
- from:

- podSelec tor :
matchLabels:

app: headit−demoapp−k a l i

Appendix C

Nmap

C.1 Nmap Scan Report - Scanned at Thu May 28 10:28:36
2020

• Scan Summary
• | kubernetes.default.svc.cluster.local (10.68.0.1)
• | headit-demoapp-web.default.svc.cluster.local (10.68.2.55)
• | headit-demoapp-svc-b.default.svc.cluster.local (10.68.2.62)
• | headit-demoapp-web-b.default.svc.cluster.local (10.68.7.69)
• | headit-demoapp-svc.default.svc.cluster.local (10.68.12.122)

C.1.1 Scan Summary
Nmap 7.60 was initiated at Thu May 28 10:28:36 2020 with these arguments:
nmap -Pn -A -sT -iL list.txt -oX nmap.xml

Verbosity: 0; Debug level 0
Nmap done at Thu May 28 10:32:15 2020; 6 IP addresses (6 hosts up) scanned in 224.53 seconds

C.1.2 10.68.0.1 / kubernetes.default.svc.cluster.local(online)

Address
• 10.68.0.1 (ipv4)

Hostnames
• kubernetes.default.svc.cluster.local (PTR)

Ports
The 999 ports scanned but not shown below are in state: filtered

• 999 ports replied with: no-responses

Port
State
Service
Reason
Product
Version
Extra info
443
tcp
open
https
syn-ack

fingerprint-strings

53

54Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

FourOhFourRequest:
HTTP/1.0 403 Forbidden
Audit-Id: b8480a03-a218-41fe-99bf-e32155a153c2
Content-Type: application/json
X-Content-Type-Options: nosniff
Date: Thu, 28 May 2020 10:29:38 GMT
Content-Length: 212
{"kind":"Status","apiVersion":"v1","metadata":{},"status":"Failure","message":"forbidden: User "system:anonymous"
cannot get path "/nice ports,/Trinity.txt.bak"","reason":"Forbidden","details":{},"code":403}

GenericLines, Help, RTSPRequest:
HTTP/1.1 400 Bad Request
Content-Type: text/plain; charset=utf-8
Connection: close
Request

GetRequest:
HTTP/1.0 403 Forbidden
Audit-Id: 6e6a0367-e6e5-40d1-943d-7ae9d6c82d85
Content-Type: application/json
X-Content-Type-Options: nosniff
Date: Thu, 28 May 2020 10:29:37 GMT
Content-Length: 185
{"kind":"Status","apiVersion":"v1","metadata":{},"status":"Failure","message":"forbidden: User "system:anonymous"
cannot get path "/"","reason":"Forbidden","details":{},"code":403}

HTTPOptions:
HTTP/1.0 403 Forbidden
Audit-Id: 2c0e3b16-ce2a-4009-aba4-31679555fb3a
Content-Type: application/json
X-Content-Type-Options: nosniff
Date: Thu, 28 May 2020 10:29:38 GMT
Content-Length: 189
{"kind":"Status","apiVersion":"v1","metadata":{},"status":"Failure","message":"forbidden: User "system:anonymous"
cannot options path "/"","reason":"Forbidden","details":{},"code":403}

http-title

Site doesn't have a title.

ssl-cert

Subject: commonName=35.204.228.51
Subject Alternative Name: DNS:kubernetes, DNS:kubernetes.default, DNS:kubernetes.default.svc,
DNS:kubernetes.default.svc.cluster.local, IP Address:35.204.228.51, IP Address:10.68.0.1
Not valid before: 2020-01-24T09:54:51
Not valid after: 2025-01-22T09:54:51

ssl-date

TLS randomness does not represent time

tls-nextprotoneg

h2
http/1.1

Remote Operating System Detection
• Used port: 443/tcp (open)
• OS match: Crestron XPanel control system (87%)
• OS match: HP P2000 G3 NAS device (85%)

Metric Value

Ping Results user-set

System Uptime 3464783 seconds (last reboot: Sat Apr 18 08:05:52 2020)

TCP Sequence Prediction Difficulty=252 (Good luck!)

IP ID Sequence Generation All zeros

Chapter C: Nmap 55

C.1.3 10.68.2.55 /headit-demoapp-web(online)

Address
• 10.68.2.55 (ipv4)

Hostnames
• headit-demoapp-web.default.svc.cluster.local (PTR)

56Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

Ports
The 999 ports scanned but not shown below are in state: filtered

• 999 ports replied with: no-responses

Port
State
Service
Reason
Product
Version
Extra info
80
tcp
open
http
syn-ack

fingerprint-strings

GetRequest, HTTPOptions:
HTTP/1.1 404
Content-Type: text/html;charset=utf-8
Content-Language: en
Content-Length: 431
Date: Thu, 28 May 2020 10:29:31 GMT
Connection: close
<!doctype html><html lang="en"><head><title>HTTP Status 404
Found</title><style type="text/css">body {font-family:Tahoma,Arial,sans-serif;} h1, h2, h3, b {color:white;background-color:#525D76;}
h1 {font-size:22px;} h2 {font-size:16px;} h3 {font-size:14px;} p {font-size:12px;} a {color:black;} .line
{height:1px;background-color:#525D76;border:none;}</style></head><body><h1>HTTP Status 404
Found</h1></body></html>

RTSPRequest:
HTTP/1.1 505
Content-Type: text/html;charset=utf-8
Content-Language: en
Content-Length: 465
Date: Thu, 28 May 2020 10:29:31 GMT
<!doctype html><html lang="en"><head><title>HTTP Status 505
HTTP Version Not Supported</title><style type="text/css">body {font-family:Tahoma,Arial,sans-serif;}
h1, h2, h3, b {color:white;background-color:#525D76;} h1 {font-size:22px;} h2 {font-size:16px;} h3 {font-size:14px;}
p {font-size:12px;} a {color:black;} .line {height:1px;background-color:#525D76;border:none;}
</style></head><body><h1>HTTP Status 505
HTTP Version Not Supported</h1></body></html>

http-title

HTTP Status 404 \xE2\x80\x93 Not Found

Remote Operating System Detection
• Used port: 80/tcp (open)
• OS match: Crestron XPanel control system (87%)
• OS match: HP P2000 G3 NAS device (85%)

Metric Value

Ping Results user-set

System Uptime 3394820 seconds (last reboot: Sun Apr 19 03:31:55 2020)

TCP Sequence Prediction Difficulty=246 (Good luck!)

IP ID Sequence Generation All zeros

Chapter C: Nmap 57

C.1.4 10.68.2.62 / headit-demoapp-svc-b(online)

Address
• 10.68.2.62 (ipv4)

Hostnames
• headit-demoapp-svc-b.default.svc.cluster.local (PTR)

Ports
The 1000 ports scanned but not shown below are in state: filtered

• 1000 ports replied with: no-responses

Remote Operating System Detection
Unable to identify operating system.

Metric Value

Ping Results user-set

C.1.5 10.68.7.69 / headit-demoapp-web-b(online)

Address
• 10.68.7.69 (ipv4)

Hostnames
• headit-demoapp-web-b.default.svc.cluster.local (PTR)

Ports
The 1000 ports scanned but not shown below are in state: filtered

• 1000 ports replied with: no-responses

Remote Operating System Detection
Unable to identify operating system.

Misc Metrics (click to expand)

Metric Value

Ping Results user-set

C.1.6 10.68.12.122 / headit-demoapp-svc(online)

Address
• 10.68.12.122 (ipv4)

Hostnames
• headit-demoapp-svc.default.svc.cluster.local (PTR)

Ports
The 1000 ports scanned but not shown below are in state: filtered

• 1000 ports replied with: no-responses

javascript:toggle('metrics_10.68.7.69');

58Jostein Furnes Cato Findalen RøsvikSecure deployment of applications using Kubernetes in Google Cloud

Remote Operating System Detection
Unable to identify operating system.

Metric Value

Ping Results user-set

Appendix D

Prosjektavtale

59

