
Online Classification of Alarm Floods Using a
Word2vec Algorithm

Nicola Tamascelli∗‡1, Harikrishna Rao Mohan Rao†1, Valerio Cozzani‡2, Nicola Paltrinieri∗2, Tongwen Chen†2
∗Department of Mechanical and Industrial Engineering,

Norwegian University of Science and Technology, Trondheim, Norway
Email: 1nicola.tamascelli@ntnu.no, 2nicola.paltrinieri@ntnu.no

†Department of Electrical & Computer Engineering,
University of Alberta, Edmonton, Alberta T6G 1H9, Canada

Email: 1mohanrao@ualberta.ca, 2tchen@ualberta.ca
‡Department of Civil, Chemical, Environmental, and Materials Engineering,

University of Bologna, Bologna, Italy
Email: 1nicola.tamascelli2@unibo.it, 2valerio.cozzani@unibo.it

Abstract—Alarm floods are periods of intense alarm activity
that may hinder control room operators’ ability to diagnose and
respond to process abnormalities. In this context, a method to
guide and assist operators during alarm floods would provide
critical support in preventing abnormalities from escalating
into serious accidents. Therefore, this study introduces a novel
approach for the online classification of alarm floods based on
their fault categories. Historical alarm data are used to train
an ensemble of Natural Language Processing models, specifically
word2vec, which learn contextual relationships between alarms
under different fault conditions. As a new alarm flood appears,
the models predict the most probable context alarms by exploiting
the knowledge gained during training. Finally, a scoring system
is proposed to reward the models that make correct predictions
and eventually identify the most probable fault category. The
efficacy of the method has been tested on simulated alarm data
from the Tennessee Eastman Process benchmark. The results are
encouraging, as the models achieved relatively high accuracy in
most fault categories.

Index Terms—Alarm Floods, Online Classification, Word2vec.

I. INTRODUCTION

Alarm systems are integral to modern process plants en-
suring their safe and efficient operation, necessitated by their
increasing complexity and the demanding production require-
ments [1], [2]. The advances in digital technology have intro-
duced complex monitoring and alerting capabilities, making
it convenient to design and configure alarms. However, the
ease of adding alarm points has resulted in numerous alarm
management problems, including alarm floods - the presence
of a large number of alarms beyond what a plant operator can
efficiently handle at a time. The industrial standards, ISA [3]
and EEMUA [4], define an Alarm Flood (AF) as a period
having 10 or more annunciated alarms per 10 minutes per
operator and recommend that an operator shall receive no more
than 6 alarms/hour.

During AFs, operators may be overwhelmed by the numer-
ous alarms distracting them from addressing critical alarms

This work was partially supported by the Natural Sciences and Engineering
Research Council of Canada.

and ongoing abnormalities, resulting in potentially dangerous
situations. AFs have contributed to catastrophic incidents,
including the Three Mile Island (1979), Chernobyl disaster
(1986), Texaco Refinery (1994), among others. In addition to
compromising safety, the presence of AFs can significantly
reduce the efficiency and performance of alarm systems.
Due to the complex connectivity and interactions, the fault
originating at one point can lead to a cascade of alarms.
Furthermore, alarm sequences originating from the same fault
category are expected to be similar, and analyzing AFs based
on the alarms and their sequential order can provide insights
into the root causes of the associated abnormalities. However,
this task is challenging due to the presence of noise and
varying fault conditions, which can lead to mismatches in
alarm sequences. Therefore, advanced techniques are needed
to effectively analyze AFs through accurate pattern matching
and similarity calculation.

Research interest in AF analysis, classification, and pre-
diction has increased over the recent years [5]. Based on
the implementation, these methods can be broadly classified
into offline and online techniques. Offline techniques identify
similar similar AF sequences based on various similarity
metrics to provide decision support for operators. Cheng et
al. modified the Smith-Waterman algorithm to identify similar
AF patterns [6]. The computational complexity of the approach
in [6] was addressed through a local alignment approach based
on the basic local alignment search tool (BLAST) in [7]. The
order-ambiguity of alarms in AF sequences was addressed
using extended term frequency-inverse document frequency
(TF-IDF)-based clustering approaches [8] and a modified Pre-
fixSpan algorithm considering AFs as time-stamped sequences
in [9]. Manca et al. used dynamic causal dependencies of
highly affected process variables for early detection of AFs.

Online alarm flood analysis uses advanced machine learning
techniques to identify and classify ongoing alarm floods, en-
abling early detection of potential root causes of abnormal con-
ditions, and enabling plant operators to take corrective actions
before the situation escalates. Various approaches have been

proposed, such as incremental dynamic programming [10],
a binary series classification using Support Vector Machines
and k-Nearest Neighbors [11], and Exponentially Attenuated
Component Analysis that prioritizes alarms triggering earlier
in the alarm flood [12]. Furthermore, operator assistance
systems were developed using a Natural Language Processing
(NLP) technique, namely, bag-of-words in [13] and real-time
pattern matching and alarm ranking approach in [14]. Finally,
Wang et al. utilized HAZOP analysis to identify abnormal
scenarios and built an online model for process monitoring
using a Bayesian network of process variables in [15].

Despite the advances in the field of data mining and com-
putational technology, online alarm flood classification remain
under-explored in the literature. This can be attributed to
the computational complexity of advanced algorithms, which
limits their implementation in online settings. Recently, the
field of machine learning has made progress in proposing
simple and robust Natural Language Processing (NLP) tech-
niques, which are applied to various tasks such as chatbot
development, language translation, sentiment analysis, text
generation, question answering, and more. For example, the
latest release of the GPT (Generative Pre-trained Transformer)
series by OpenAI [16], GPT-4 brings a new approach to
language models that can provide better results for NLP
tasks. Nevertheless, there are still few studies that utilize
NLP techniques for the online classification of alarm floods.
Motivated by the above problem and the gap in the literature,
we propose a novel and computationally efficient approach
for the online classification of alarm floods using word2vec,
an advanced NLP technique. The main contributions are:

1) The most probable alarms in the ongoing alarm flood
are predicted by capturing the contextual relationships
between the alarms in different fault conditions.

2) To reduce the computational complexity, a scoring sys-
tem is utilized to classify the ongoing alarm floods,
thereby removing the need for an additional classifica-
tion or clustering algorithm.

The rest of the paper is organized as follows. Section II
presents the detailed steps involved in the online classification
of alarm floods. The effectiveness of the proposed method
is demonstrated via a case study in Section III, followed by
concluding remarks in Section IV.

II. METHODOLOGY

Details of the proposed method for the online classification
of AFs using the word2vec algorithm are presented in this
section, where the approach has two main stages, namely,
offline training of the models and online AF predictions.

A framework of the method is provided in Fig. 1, where the
steps in offline training of the models are shown in blue and the
steps in online AF prediction are shown in green. Specifically,
the offline stage involves the preprocessing of alarm data and
training of an ensemble of word2vec models using a cluster
of similar AFs; whereas, in the online stage, the ongoing AF
is analyzed using trained models to predict the most probable

A&E Data

Pre-processing of A&E Data

Ensemble of N
Word2vec Models

Alarm Flood Extraction

Word2vec Model Training

Cluster-1

Clusters of similar AF sequences

Prediction of
Contextual Alarms

Scoring System

Alarm Flood Classification

Ongoing
Alarm Flood

Cluster-2 Cluster-N

Offline Stage

Online Stage

Fig. 1: Framework of the proposed method, consisting of two
main stages, namely, offline training of the model (highlighted
in blue) and online alarm flood classification (highlighted in
green). The algorithm classifies the ongoing alarm flood F as
belonging to a known fault category Λm.

alarm and a scoring system is introduced to classify the AF
into specific fault categories.

A. Offline Stage - I: Data Pre-processing & AF Extraction

In the offline stage, an ensemble of word2vec models is
trained using alarm floods sequences extracted from historical
Alarm & Event (A&E) data, where the calculations are per-
formed in three steps, including the pre-processing of A&E
data, alarm flood extraction, and model training.

1) Pre-processing of A&E Data: To systematically extract
the contextual relationships between alarms, the historical data
is pre-processed to obtain an ensemble of word2vec models.
An A&E log is a chronologically ordered series of alarm
events in textual form, where an alarm event is defined as

E = (a,m, t), (1)
where a ∈ A is the alarm, m = {0, 1} is the status of
the alarm at time t ∈ T . Here, A represents the set of
alarms configured in the plant, and T is the time duration
for which the A&E data was collected. Furthermore, an alarm
a is characterized by an alarm tag and identifier as a = (α, ν),
where α is the alarm tag, which contains the information about
the area and component to which the alarm is configured, and
ν provides the details about the type of alarm. For instance,
the alarm “PI100.LL” is a combination of the alarm tag
PI100 (indicating Pressure Indicator belonging to control loop
number 100) and the identifier “LL” (indicating an analog
alarm LowLow). Thereafter, chattering alarms are identified

and discarded because such alarms are typically a result of
noise or disturbance in the process.

2) Alarm Flood Extraction: An A&E log may contain
sequences of alarms due to multiple process faults and dis-
turbances. As mentioned in Section I, the alarm sequences
are considered to be similar if they originated from the same
fault category. Therefore, labeled clusters of similar alarm
sequences, with pre-identified fault categories are taken as the
input to the offline stage. Define an alarm sequence from the
A&E log as

S = ⟨E1, E2, · · · , E|S|⟩, (2)

where, Ek represents the kth alarm event, k = 1, 2, · · · |S|; the
operator ⟨·⟩ indicates a sequence; and the operator | · | gives
the size of the alarm sequence. If the analysis focuses only on
the alarms triggered (m = 1) and the time of occurrence is
not considered, the alarm sequence can be represented as

S = ⟨a1, a2, · · · , a|S|⟩, (3)
where S is in the form of strings (textual data). Consider the
A&E log consists of alarm sequences from N fault categories,
Λ = {Λ1,Λ2, · · · ,ΛN}, and it is assumed that there exists at
least one alarm sequence in each fault category, Λi. The alarm
sequences associated with Λi can be grouped into a cluster Ci

Ci = {Si,1,Si,2, · · · ,Si,|Ci|}, (4)
where, Si,j represents the jth alarm sequence in the cluster
associated with the Λi. Here, |Ci| ≥ 1 or Ci ̸= ∅. Finally, the
clusters of alarm sequences from the N fault categories are
collected into a set as

C = {C1, C2, · · · , CN}. (5)
Thereafter, AF sequences are extracted from these clusters

following the definition in [3]. An AF starts when the alarm
rate (namely, the number of alarms within a time window
∆t) exceeds an upper threshold τmax and ends when the
alarm rate drops below a lower threshold τmin. Therefore,
a binary indicator σ is defined to differentiate between alarms
that belong (σ=1) and do not belong (σ=0) to a flood. The
indicator σ of an alarm event Ek can be defined as

σ(Ek) =


1, if Γ ≥ τmax,

1, if Γ ≥ τmin and σ(Ek−1) = 1,

0, if Γ < τmin,

(6)

where Γ denotes the alarm count within tk+∆t. The indicator
σ is used to extract AFs from each alarm sequence. As a result,
clusters of alarm sequences in (5) are converted into clusters
of alarm floods as

Fi,j = {Fi,j,1,Fi,j,2, · · · ,Fi,j,|Fi,j |}, (7)
where, Fi,j,k represents the kth flood extracted from Si,j . It
is worth noting that an alarm sequence S may contain more
than one AF depending on process dynamics. Afterward, the
AF sequences are represented in the form of a list of strings as
in (3), by removing the time stamps associated with the alarms
to be compatible with the requirements of the word2vec model.

B. Offline Stage - II: Preliminaries & Model Training

Some preliminaries of the word2vec algorithm and the
detailed steps for training the model are provided.

0
0

1

0

0

a1

a2

a3

ai

aK

p(a1| ai)

p(a2| ai)

p(a3| ai)

p(aK| ai)hi,ω

hi,2

hi,1

Input

(1×K)

Embedding (hhii)

(K × V) (V × K)

(1×V) (1×K)

Output

× × Θ

Fig. 2: The framework of Skipgram model, where the input
layer is a K dimensional one-hot encoded representation of
ai, the embedding layer hi is the vector representation of ai,
and the output layer is the conditional probability p(ak|ai),
k = 1, 2, · · · ,K. Win and Wout are the internal weights of
the model. Θ is the softmax transformation function.

1) Word2vec Algorithm: The proposed work utilizes a
widely used NLP model “word2vec”, that transforms words
in a text into fixed-length vectors (word embeddings) cap-
turing their semantic and syntactic relationships in a high-
dimensional vector space [17]. In semantic analysis, this model
is used to predict contextual words in textual data, where
the context of a word in a sentence is described by the
words preceding and succeeding it. In this study, we consider
that a cluster of similar AFs is analogous to a collection
of topic-specific texts, where alarms are analogous to the
words composing sentences. Therefore, the word2vec model
is adapted to suit alarm flood applications to predict context
alarms, where the context of an alarm in an alarm sequence
is defined by the abnormal situation that triggered the alarm
(namely, the fault category). Specifically, the context of an
alarm ai in an alarm sequence S is featured by the alarms
occurring within a short temporal vicinity of ai or in other
words, the alarms preceding and succeeding ai. This study
uses the Skipgram architecture of the model to predict context
alarms based on an input set of alarms, defined as target
alarms [17]. Fig. 2 provides the framework of the Skipgram
architecture, where the input to the model is a one-hot encoded
representation of an alarm ai, and the model is a single-
layer Neural Network that converts the target alarm ai into
a vector hi of cardinality V and generates the output layer
of conditional probabilities p(ak|ai), k = 1, 2, · · · ,K. Here,
K = |A|, the number of unique alarms configured in the
system. Thereafter, the model is trained to be used for online
alarm flood classification.

2) Model Training: Each cluster of AFs is utilized to
train a word2vec model as in [17], such that each model
learns contextual similarities between alarms based on the fault
category associated with the AF. The model is trained using
the cluster of AFs to obtain two matrices Win,Wout ∈ RK×V,
representing internal weights. Here, K is the number of unique
alarms configured and V is a user-defined parameter represent-
ing the cardinality of the word embedding. Each row of Win

contains word embedding of a specific alarm, whereas rows
of Wout represent contextual information between alarms.

Context
 Alarms

Context
 Alarms

Target
 Alarm

Context
 Alarms

Context
 Alarms

Target
 Alarm

……

Fig. 3: An example of target and context alarms in a flood.
Here, ai represents the ith alarm, Fi,j,k represents the incom-
ing alarm flood, and ω is the user-defined parameter (window
size) to determine the number of context alarms.

Thereafter, Win and Wout are tuned to learn the contextual
relationship between alarms.

One model is trained on each AF cluster, where it iterates
over the alarms in each flood sequence. The concept of
“context alarm” and “target alarm” is better explained using
Fig. 3, where an example of an alarm sequence of an ongoing
AF is analyzed. As the model iterates over each alarm in the
flood, the alarm currently being analyzed (ai) is referred to as
the “target alarm” and the alarms in the vicinity of ai, namely,
ai−2, ai−1, ai+1, and ai+2, are referred to as the “context
alarms”. The user-specified parameter ω ∈ N+ (window size)
determines the number of “context alarms”. The conditional
probability of an alarm ak being a context alarm for the target
alarm ai is obtained from the output yp as the softmax function
transformation Θ(·) of hi · WT

out given by [18],

yp = Θ
(
hi · WT

out

)
=


p(a1 | ai)
p(a2 | ai)

· · ·
p(aK | ai)

 , (8)

where, yp is a vector of dimension K, and satisfies that∑K
k=1 p(ak|ai) = 1. Afterward, the weights θ = [Win,Wout]

of the model are tuned to minimize the prediction error
(yp−ytrue). Here, ytrue is a one-hot encoded vector, with the
conditional probability of the true context alarm, p(ak | ai) =
1, and of the rest alarms is 0. The internal parameters of the
model are tuned to maximize the probability of predicting all
the correct context alarms based on

θ̂ = argmin
θ

(
−log

∏
c

p(ac | ai)

)
, (9)

where θ̂ represents the updated model weights, and c indicates
true context alarms. One word2vec model is trained for each
cluster Ci of similar AF, where the model embeds the contex-
tual relationships between alarms in a specific fault, resulting
in an ensemble of N models, Φ = {Φ1,Φ2, · · · ,ΦN}.
Therefore, it can be seen that a cluster Ci would be associated
with a fault Λi and a word2vec model Φi.

C. Online Stage: AF Prediction and Classification

In the online stage, the alarms in an ongoing AF are fed
to the ensemble of word2vec models obtained in the offline
stage. Each of the alarms is considered a target alarm and the
most probable context alarm is determined as the alarm with

Algorithm 1: Online AF Prediction and Classification
Input: F , Λ, Φ, ωt, n
Output: Λout

1 S = {s1 = 0, s2 = 0, · · · , s|Φ| = 0} ▷ Initialize scores

2 for ai in F do
3 Obtain the index i of ai in F
4 for Φj in Φ do
5 Find the index j of Φj in Φ
6 Calculate yp for ai from Φj by (8)
7 Obtain yp,i the top n predictions by (12)
8 Obtain the corresponding alarms µi by (13)
9 end

10 for apast in F [i− ωt : i] do
11 if apast ∈ µi then
12 sj = sj + 1 ▷ Increase the score
13 end

14 Calculate yp for apast from Φj by (8)
15 Obtain yp,past for apast by (12)
16 Obtain µpast by (13)
17 if ai in µpast then
18 sj = sj + 1 ▷ Increase the score
19 end
20 end
21 end
22 Find the index k of the highest score in S
23 The fault category Λout of F is the kth element of Λ
24 return Λout

the highest conditional probability in yp. Consider the ongoing
AF F ,

F = {a1, a2, ..., a|F|}, (10)

where, ai represents the ith alarm in F , i = 1, 2, · · · , |F|. The
N ensemble models predict the most probable context alarms
based on contextual relationships captured in the offline stage.
As the AF proceeds, the predictions are updated as

Yp = [yp,1, yp,2, · · · , yp,|F|], (11)
where, Yp is the matrix of predictions, obtained by the
concatenation of rank-ordered predictions yp,i, and i =
1, 2, · · · , |F|. Specifically, elements in yp,i are rearranged
(sorted) in descending order before concatenation. Thus, each
model returns a matrix of predictions Yp ∈ RK×|F|, where
each column represents the predictions corresponding to alarm
ai ∈ F . The top n predictions are selected from Yp as

Yp,n = [yp,1, yp,2, · · · , yp,|F|] = [π1, π2, · · · , πn]
T , (12)

where, yp,i is the ith column of Yp,n, and π1 (πn) is the first
(nth) row in Yp, and it satisfies that π1,i ≥ π2,i ≥ · · · ≥ πK,i,
where πi,j represents the (i, j)th value of Yp. Thereafter, the
alarms corresponding to each prediction are obtained in the
form of a matrix as

M = [µ1, µ2, · · · , µ|F|] = {ai,j |ai,j ≻ πi,j , a ∈ A}, (13)
where M is the matrix of alarms, µi is the ith column
of M, and the operator ≻ indicates that the alarm ai,j is
corresponding to the prediction value πi,j . Thus, the output of

the model can be interpreted as a list of alarms rank-ordered
based on their likelihood of occurrence as a context alarm. In
other words, the first column of Yp,n represents the n most
probable context alarms of a1 ∈ F .

Furthermore, an incremental scoring system is introduced
to reward models for generating correct predictions. At the
beginning of the predictions, the scores are initialized to 0
and are incremented by one unit for each correct prediction.
The algorithm requires two user-specified parameters, namely,
ωt and n. Here, ωt ∈ N+ determines the number of context
alarms to be considered in the ongoing AF sequence. It has to
be noted that ωt has the same purpose as that of ω utilized in
the model training, as described in Section II-B, and it is not
necessary that ωt = ω. The parameter n ∈ N+ determines the
number of top predictions to be selected in (12) to identify
the most similar AF sequence.

If an AF is triggered due to a fault Λi, the model Φi ∈ Φ
trained on the cluster Ci corresponding to Λi would give the
most accurate predictions and hence would result in the highest
number of similar context alarms. This principle is utilized to
classify the ongoing AF, i.e., the AF is classified into the fault
category of the model with the highest score. Algorithm 1
summarizes the online AF Prediction and Classification.

III. CASE STUDY

The applicability and effectiveness of the proposed method
are demonstrated through a case study using simulated alarm
data from the benchmark Tennessee Eastman Process (TEP).

A. Description of the Simulated Data

The closed-loop simulator of the benchmark Tennessee
Eastman Process, developed by Bathelt et al. [19] was utilized
in this study. The alarm data was prepared following the proce-
dure in [12]. Specifically, seven faults Λ = {Λ1,Λ2, · · · ,Λ7}
were simulated by introducing disturbances as step inputs or
valve stiction. Four types of alarms were configured on 52 pro-
cess variables (PV), namely, “PV.HH” (High-High), “PV.H”
(High), “PV.L” (Low), and “PV.LL” (Low-Low), resulting
in 208 unique alarms. For each fault category, a set of 40
independent simulations were performed, where the duration
of each simulation was 10h and the faults were introduced
after 2h of steady-state operation. The chattering alarms were
identified and discarded. Alarm floods were extracted using
(6), and 7 clusters with 40 AF sequences each were obtained.
Here, the alarm sequences generated by a specific fault were
regarded as a cluster of similar alarm sequences. The number
of AF sequences in each fault category is as follows: |C1| = 41,
|C2| = 71, |C3| = 25, |C4| = 1, |C5| = 42, |C6| = 66,
and |C7| = 40. Due to insufficient AF sequences, cluster C4
associated with fault Λ4 was excluded from the analysis.

Thereafter, an ensemble of 6 word2vec models was trained
using a Leave-one-out cross-validation approach. Specifically,
the first 20 flood sequences of each fault category were
selected to evaluate the performance of the models. Therefore,
20 independent simulations have been performed such that in
each simulation, models were trained on all the AF sequences

0 100 200 300 400

Time [min]

Λ1

Λ2

Λ3

Λ4

Λ5

Λ6

Λ7

F
au

lt
ca

te
go

ry

Correct

Wrong

a) True category → Λ1

0 50 100 150

Time [min]

Λ1

Λ2

Λ3

Λ4

Λ5

Λ6

Λ7

F
au

lt
ca

te
go

ry

Correct

Wrong

b) True category → Λ2

Fig. 4: Online classification of two floods that originated from
fault category (a) Λ1 and (b) Λ2. The vertical lines represent
the result of the classification, where the correct (incorrect)
predictions are shown in green (blue).

except one (test sequence) and the last AF sequence was used
to evaluate the model performance and tuning. Subsequently,
the online alarm flood classification is performed using this
ensemble of word2vec models.

B. Results and Discussion

The models were trained using the open-source Python
library Gensim [20] v4.2.0 running on Python v3.9.12. For
the offline stage, the parameters used were ω = 5, V = 15,
and the number of epochs = 100, 000, which indicates the
number of iterations made by the model over the dataset. For
the online predictions and classification, the parameters used
were ωt = 3 and n = 10. Fig. 4 provides an example of the
output from the online prediction and classification stage. The
vertical lines represent the result of the classification, where
the correct (incorrect) predictions are shown in green (blue).
Fig. 4(a) shows the accurate prediction and classification of
the AF sequence to be associated with fault Λ1, without any
significant delay. However, the AF sequence in Fig. 4(b) was
classified into fault Λ2 after about 70 minutes.

To provide a comprehensive overview of the model per-
formance, the class-wise accuracy has been calculated by
considering all predictions obtained for each fault category.
In addition, to evaluate if the model was able to accurately
classify the AF sequence using the complete AF sequence, the
class-wise accuracy was determined by considering only the
last prediction (i.e., the last alarm of a flood sequence). These
performance metrics of the model using class-wise accuracy
are summarized in Table I. It can be seen that the models
achieve prediction accuracy above 0.85 (all predictions) and
0.90 (last predictions), respectively, in the identification of
fault categories Λ1, Λ3, and Λ5. The model performance is
satisfactory for category Λ6, which shows an accuracy of 0.77
considering all the predictions. However, the identification of
fault category Λ2 is particularly challenging (accuracy = 0.37).

Furthermore, the results indicate that the model performance
increases as the flood proceeds because the accuracy based
on the last prediction is always greater than the accuracy
based on all predictions. This behavior is especially evident
for categories Λ2 and Λ3 and it may indicate that most errors
are made during the early stages of AFs (see Fig. 4.b). This

TABLE I: Class-wise accuracy

Accuracy Type
Fault Categories Mean

AccuracyΛ1 Λ2 Λ3 Λ5 Λ6 Λ7

All predictions 0.98 0.37 0.89 1.0 0.77 0.001 0.67

Last prediction 1.0 0.55 0.9 1.0 0.85 0.00 0.72

could be explained by the lack of sufficient information at the
beginning of the AF. Finally, it is to be noted that the models
could not classify the sequences associated with the fault
Λ7 (accuracy=0.01), and those sequences (belonging to Λ7)
were always incorrectly classified into the fault Λ2. Further
investigation using process knowledge is recommended to
identify the reason for such a performance with fault Λ7.

In summary, the performance of the models is satisfactory,
which indicates that the proposed method can support the
operator in the real-time monitoring of AFs. The challenges
with lower accuracy values for two fault categories could be
attributed to the fact that model hyper-parameters were chosen
based on the best practices and were not tuned for this specific
process or application. The model performance is expected
to improve from an exhaustive hyper-parameter tuning using
a grid-search algorithm. Further research is recommended to
improve the detection performance during the early stage
of the AF, employing different NLP algorithms, such as
BERT [21] and XLNET [22].

IV. CONCLUSIONS

This study presents a novel approach for online alarm flood
classification using the word2vec algorithm and historical
A&E data. The method articulates in two phases, namely,
offline training and online predictions. In the offline stage, the
contextual relationships between alarms are captured to train
an ensemble of word2vec models using clusters of labeled
AF sequences. In the online stage, the most probable context
alarms are predicted using the trained ensemble of models,
and the AF is classified into appropriate fault categories using
a scoring system. Unlike other methods in AF classification,
this study utilizes the NLP algorithms not only to learn hidden
relationships between alarms but also to perform the classifi-
cation of ongoing AFs without any classifiers or clustering
algorithms, thereby reducing the computational complexity.
The approach has been tested on simulated alarm data obtained
from the benchmark TEP. The models achieved accuracy in the
range of 0.77 to 1.0 in four out of six categories. Additionally,
the results indicate that the model performance improves as
the AF proceeds, leading to more accurate predictions as more
information is available.

Further research is recommended to optimize the model
parameters and improve the accuracy during the early stage
of AFs. Additional investigation using process knowledge is
required in the two fault categories resulting in poor predic-
tion accuracy. Notwithstanding these limitations, the approach
shows the potential of NLP algorithms in alarm flood analysis
and makes a significant contribution to the novel line of
research using NLP models for online AF classification.

REFERENCES

[1] G. Manca and A. Fay, “Detection of historical alarm subsequences using
alarm events and a coactivation constraint,” IEEE Access, vol. 9, pp.
46 851–46 873, 2021.

[2] J. Wang, F. Yang, T. Chen, and S. L. Shah, “An overview of industrial
alarm systems: Main causes for alarm overloading, research status,
and open problems,” IEEE Transactions on Automation Science and
Engineering, vol. 13, no. 2, pp. 1045–1061, 2016.

[3] ANSI/ISA-18.2: Management of Alarm Systems for the Process Indus-
tries, ISA (International Society of Automation), Durham, NC USA,
2016.

[4] Alarm Systems: A Guide to Design, Management and Procurement,
EEMUA (Engineering Equipment and Materials Users’ Association),
London, 2013.

[5] G. Dorgo, F. Tandari, T. Szabó, A. Palazoglu, and J. Abonyi, “Quality
vs. quantity of alarm messages-how to measure the performance of an
alarm system,” Chemical Engineering Research and Design, vol. 173,
pp. 63–80, 2021.

[6] Y. Cheng, I. Izadi, and T. Chen, “Pattern matching of alarm flood
sequences by a modified Smith–Waterman algorithm,” Chemical En-
gineering Research and Design, vol. 91, no. 6, pp. 1085–1094, 2013.

[7] W. Hu, J. Wang, and T. Chen, “A local alignment approach to similarity
analysis of industrial alarm flood sequences,” Control Engineering
Practice, vol. 55, pp. 13–25, 2016.

[8] G. Manca, M. Dix, and A. Fay, “Clustering of similar historical alarm
subsequences in industrial control systems using alarm series and
characteristic coactivations,” IEEE Access, vol. 9, pp. 154 965–154 974,
2021.

[9] Q.-X. Zhu, C. Jin, Y.-L. He, and Y. Xu, “Pattern mining of alarm
flood sequences using an improved prefixspan algorithm with tolerance
to short-term order ambiguity,” Industrial & Engineering Chemistry
Research, vol. 60, no. 11, pp. 4375–4384, 2021.

[10] S. Lai, F. Yang, and T. Chen, “Online pattern matching and prediction of
incoming alarm floods,” Journal of Process Control, vol. 56, pp. 69–78,
2017.

[11] M. Lucke, M. Chioua, C. Grimholt, M. Hollender, and N. F. Thornhill,
“Advances in alarm data analysis with a practical application to online
alarm flood classification,” Journal of Process Control, vol. 79, pp. 56–
71, 2019.

[12] J. Shang and T. Chen, “Early classification of alarm floods via exponen-
tially attenuated component analysis,” IEEE Transactions on Industrial
Electronics, vol. 67, no. 10, pp. 8702–8712, 2019.

[13] H. S. Alinezhad, J. Shang, and T. Chen, “Early classification of industrial
alarm floods based on semisupervised learning,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 3, pp. 1845–1853, 2021.

[14] M. R. Parvez, W. Hu, and T. Chen, “Real-time pattern matching
and ranking for early prediction of industrial alarm floods,” Control
Engineering Practice, vol. 120, p. 105004, 2022.

[15] H. Wang, F. Khan, and S. Ahmed, “Design of scenario-based early warn-
ing system for process operations,” Industrial & Engineering Chemistry
Research, vol. 54, no. 33, pp. 8255–8265, 2015.

[16] OpenAI, “Gpt-4 technical report,” 2023.
[17] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of

word representations in vector space,” in 1st International Conference
on Learning Representations - Workshop Track Proceedings, 2013.

[18] J. Bridle, “Training stochastic model recognition algorithms as networks
can lead to maximum mutual information estimation of parameters,”
Advances in Neural Information Processing Systems, vol. 2, 1989.

[19] A. Bathelt, N. L. Ricker, and M. Jelali, “Revision of the Tennessee
Eastman Process model,” IFAC-PapersOnLine, vol. 48, no. 8, pp. 309–
314, 2015.

[20] R. Řehůřek and P. Sojka, “Software framework for topic modelling
with large corpora,” Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pp. 45–50, 2010.

[21] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in 2019
Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies - Proceedings of
the Conference, 2019, pp. 4171 – 4186.

[22] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
Q. V. Le, “XLNet: Generalized autoregressive pretraining for language
understanding,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

