
Chapter 7 
Are We Going Towards “No-Brainer” 
Safety Management? 

Nicola Paltrinieri 

Abstract Industry is stepping into its 4.0 phase by implementing and increasingly 
relying on cyber-technological systems. Wider networks of sensors may allow for 
continuous monitoring of industrial process conditions. Enhanced computational 
power provides the capability of processing the collected “big data”. Early warn-
ings can then be picked and lead to suggestion for proactive safety strategies or 
directly initiate the action of autonomous actuators ensuring the required level of 
system safety. But have we reached these safety 4.0 promises yet, or will we ever 
reach them? A traditional view on safety defines it as the absence of accidents and 
incidents. A forward-looking perspective on safety affirms that it involves ensuring 
that “as many things as possible go right”. However, in both the views there is an 
element of uncertainty associated to the prediction of future risks and, more subtly, 
to the capability of possessing all the necessary information for such prediction. This 
uncertainty does not simply disappear once we apply advanced artificial intelligence 
(AI) techniques to the infinite series of possible accident scenarios, but it can be 
found behind modelling choices and parameters setting. In a nutshell, any model 
claiming superior flexibility usually introduces extra assumptions (“there ain’t no 
such thing as a free lunch”). This contribution will illustrate a series of examples 
where AI techniques are used to continuously update the evaluation of the safety 
level in an industrial system. This will allow us to affirm that we are not even close 
to a “no-brainer” condition in which the responsibility for human and system safety 
is entirely moved to the machine. However, this shows that such advanced tech-
niques are progressively providing a reliable support for critical decision making 
and guiding industry towards more risk-informed and safety-responsible planning. 
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7.1 Introduction 

At the beginning of the 90 s, Prof. Diekmann [7] stated the following. “New analysis 
tools are emerging, which have the potential to allow complex risk analyses to be 
performed simply. These new tools, which are underpinned by decision analysis and, 
lately, expert-systems technology, may lead to powerful, yet simple, approaches to 
the representation of risky problems”. This optimistic prediction on the future of risk 
analysis was accompanied by the suggestion of a possible interdisciplinary direction: 
“Future approaches to risk analysis will certainly rely more on the advances being 
made in Artificial Intelligence (AI) and the cognitive sciences. New computer tools 
and knowledge-representation schemes will unquestionably lead to new techniques, 
insights and opportunities for risk analysis”. 

In the same decade (1997), the Russian chess grandmaster Garry Kimovich 
Kasparov (former World Chess Champion, ranked world No. 1 from 1984 until his 
retirement in 2005) lost a chess game with IBM’s chess playing computer Deep Blue, 
which was an example of Good Old-Fashioned Artificial Intelligence (GOFAI) [16]. 
On that game, [17] later stated the following: “Deep Blue was intelligent the way 
your programmable alarm clock is intelligent. Not that losing to a 10-million-dollar 
alarm clock made me feel any better”. 

Industrial risk analysis and safety management have tried to make use of AI, but 
they have unevenly progressed since the described events. They neither respected 
Diekmann’s prediction (methodological gaps are still present [24]), nor turned into 
“programmable-alarm-clock intelligence” thanks to the progressive refinement of 
machine learning models and the increase in available computing power [12]. 

This contribution aims to outline what AI can bring to risk analysis and safety 
management by illustrating a series of examples (with emphasis on benefits and 
limitations) where AI techniques are used to continuously update the evaluation of 
the safety level in an industrial system. 

7.1.1 Artificial Intelligence and Machine Learning 

AI is intelligence demonstrated by machines, and it is divided into subfields based 
on technical considerations, such as particular goals (e.g., “robotics” or “machine 
learning”), the use of particular tools (“logic” or artificial neural networks) or deep 
philosophical differences. 

This contribution focuses on the subfield of machine learning (ML). ML refers to 
techniques aiming to program computers to learn from experience [32]. Some of its 
models (e.g., deep learning) aim to simulate the learning model of the human brain 
[12]. Such models are composed of multiple processing layers to learn representations 
of data with multiple levels of abstraction. 

A computer may be trained to assess risk for safety-critical industries such as 
Oil and Gas through these learning techniques. This would allow processing a large
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amount of information in the form of indicators from normal operations and past 
unwanted events (from mishaps to major accidents), which would be used for training. 
Due to the subjectivity of the definition of risk [40], a risk level cannot be assigned 
to each event with certainty and expert supervision is needed. Once the model has 
learned risk categorisation, it uses its knowledge to evaluate real-time risk from the 
state of the monitored system. 

7.1.2 Monitoring of Early Deviations and Past Events 

Increasing attention has been dedicated to monitoring safety barrier performance 
through indicators, as a way to assess and control risk. Indicators may report a series 
of factors: physical conditions of a plant (equipment pressure and temperature), 
number of failures of an equipment, maintenance backlog, number of emergency 
preparedness exercises run, amount of overtime worked, etc. A number of indicator 
typologies are theorised and used in the literature [23]. Øien et al. [23] affirm that 
we can refer to risk indicators if: they provide numerical values (such as a number 
or a ratio), they are updated at regular intervals; they only cover some selected 
determinants of overall risk, in order to have a manageable set of them. That being 
said, the latter feature is quickly becoming outdated due to the extensive collection 
carried out in industry and the attempts to process large numbers of them [30]. 

Øien et al. [23], Paltrinieri et al. [25, 26] and Landucci et al. [19] have produced 
several reviews on risk and barrier indicators. They show that the definition and 
collection of risk indicators have become consolidated practices in “high-risk” 
sectors, such as the petroleum and chemical industries. For instance, the Norwe-
gian Petroleum Safety Authority (PSA) requires indicators describing the technical 
performance of safety barriers within the Norwegian Oil and Gas industry since 
1999 [31], while the European directive “Seveso III” [9] on the control of major-
accident hazards involving dangerous substances suggests their use for sites handling 
hazardous substances [10]. Such a trend towards the definition and collection of 
higher numbers of indicators [30] demonstrates the mentioned challenge on big data 
processing for risk level assessment. 

7.2 Examples of AI-Based Prediction 

Three examples of AI-based prediction with safety-related purposes are described 
in the following. The cases depict not only the application of machine learning 
techniques, but also the criticality of input data and implicitly the human efforts in 
preparing the data.
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7.2.1 Consequence Class Associated with a Hazardous 
Material Release 

ML techniques were applied by Paltrinieri et al. [28, 29] to a database of past accidents 
with the purpose of simulating its application on the national databases managed by 
the Seveso competent authorities. The data set used is the Major Hazard Incident 
Database (MHIDAS) [1] launched by the UK Health and Safety Executive in 1986 
and developed by AEA Technology until the mid-1990s. The events included are 
based on public domain information sources, and their characteristics are registered 
using keywords. 

MHIDAS includes about 8972 hazardous events from 1916 to 1992, with the 
attributes listed in Table 7.1. Some attributes use a taxonomy to systematically cate-
gorise the event. While the actual quality of the data could not be fully verified across 
the recorded hazardous events, this database is characterised by a high quality of data 
model, i.e., high semantic quality allowing for clear boundaries and relevant prop-
erties of the problem domain and the requirements of the task. Given that it takes a 
high amount of creativity and vision to design a solution that is robust, usable and 
can stand the test of time [15], the high semantic quality of MHIDAS could only be 
reached by significant knowledge and experience of the field. 

The attributes listed in the upper part of Table 7.1 were used as inputs to the ML 
models to predict the consequences—lower part of Table 7.1. The details of data 
preprocessing are explained elsewhere [34]. The study focused on the number of

Table 7.1 Attributes used to record hazardous events in MHIDAS [1] 

Attribute Description Category from taxonomy 

Date Date of the event 

Location Location of event 

Substance Substances involved in the event X 

Event type Typology of event X 

Origin Area of the plant and type of equipment from which 
the event started 

X 

Section Plant section in which the event occurred X 

Quantity Amount (ton) of released substance 

General causes General causes the led to the event X 

Specific causes Specific causes the led to the event X 

Evacuated Number of people evacuated 

Consequences 

Damage Economic damage to the property or production loss 

Injured Number of people injured by the event 

Killed Number of people killed by the event 

Specific keywords are used to describe some of the attributes 



7 Are We Going Towards “No-Brainer” Safety Management? 69

Table 7.2 Severity 
categories considered by the 
study 

Severity categories 

0 Event with no fatalities 

1–10 Event with a number of fatalities between 1 and 10 

10–100 Event with a number of fatalities between 10 and 100 

people killed and aimed to predict the occurrence of a hazardous event within one 
of the severity categories listed in Table 7.2 based on the considered inputs. Only 
categorical data are used. 

7.2.2 Wellhead Damage Frequency in a Drilling Rig 

To avoid potential damage during drilling operations for a new offshore Oil and 
Gas well, a semisubmersible drilling unit should maintain its position above the 
wellhead. This is particularly critical if the platform is in shallow waters, where 
small changes of position lead to higher riser (pipe connecting the platform to the 
subsea drilling system) angles. Exceeding physical inclination limits may result in 
damages to the wellhead, Blowout Preventer (BOP—sealing the well) or Lower 
Marine Riser Package (LMRP—connecting riser and BOP) [5]. 

Platform position is maintained in an autonomous way (without mooring system) 
by a set of thrusters controlled by the Dynamic Positioning (DP) system. Input for 
the DP system is provided by the position reference system (Differential Global 
Positioning System—DGPS and Hydroacoustic Position Reference—HPR), envi-
ronmental sensors, gyrocompass, radar and inclinometer [5]. A Dynamic Positioning 
Operator (DPO) located in the Marine Control Room (MCR) is responsible for 
constant monitoring of DP panels and screens and carrying out emergency procedures 
if needed [11]. Platform position may be lost due to several reasons. 

In this case study, Paltrinieri et al. [29] assume that the platform thrusters exercise 
propulsion in a wrong direction, leading to a “drive-off” scenario. If the rig moves to 
an offset position, specific alarms turn on and suggest that the DPO stop the drive-off 
scenario by deactivating the thrusters and initiate the manual Emergency Disconnect 
Sequence (EDS) to disconnect the riser from the BOP. If the manual EDS fails, the 
automatic EDS activates at the ultimate position limit allowing for safe disconnection 
[5]. 

A number of works [21, 24, 26] address the details of occurrence and development 
of drive-off scenarios. Relevant indicators are defined to assess the performance of 
safety barriers and related systems. Examples of these indicators are the following.

• thruster control failures in the last three months;
• thruster monitoring sensors failures in the last three months;
• simulator hours carried out by the DPO in the last three months;
• inadequate DPO communication events in the last three months;
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• delays in DPO shifts in the last three months;
• percentage of time in the last three months with more than one operator 

monitoring. 

Collection of a wide variety of indicators may lead to challenges related to data 
integrity. Lack of accurate data may be due to several reasons, such as time and 
financial constraints experienced by database managers responsible for recording 
relevant indicators. As companies are expected to do more with less, developers 
must make decisions about the extent to which they are going to implement and 
evaluate quality considerations [15]. 

Simulations of drive-off indicator trends for a period of 30 years can be found 
in the literature [24]. They are inspired by the typical bathtub curve for technical 
elements [41] and relevant expert judgement for the remaining elements. 

As shown by Bucelli et al. [4], indicator values may be aggregated based on rela-
tive weights and hierarchical barrier models, in order to enable dynamic update of 
barrier failure probabilities. This can be used to update, in turn, occurrence frequen-
cies of potential outcomes. Outcome frequencies are an expression of the scenario 
probability and, in turn, of the risk. If we assume that the other factors are constant, 
this represents a simplified risk model. However, Matteini [21] points out a certain 
complexity within the hierarchical barrier model, which may be due to a tangled struc-
ture and an unclear approach to assign relative weights to single model elements. 
For this reason, a machine learning approach bypassing the construction of such 
hierarchies and aggregation rules is suggested by Paltrinieri et al. [29]. 

7.2.3 Alarm Chattering in an Ammonia Plant 

Alarm data from a section of an ammonia production process [39] are analysed by 
Tamascelli et al. [38]. Due to the large quantity of hazardous substances stored and 
handled during normal activity, the plant has been classified as an “upper tier” Seveso 
III establishment. Extensive use of methane, hydrogen and ammonia (anhydrous 
and aqueous solution) occurs in the plant section. Furthermore, due to the intrinsic 
properties of the processes involved, severe operating conditions (i.e., high pressure 
and high temperature) are often associated with corrosive substances. Additional 
information about ammonia production and the considered site can be found at: 
[2, 42]. 

The alarm database consists of alarm data collected during an observation period 
of more than four months. In this case, both data and data model are of high quality 
as they are acquired from consolidated monitoring systems. Human effort would 
instead reside in the interpretation and the definition of appropriate priorities among 
the provided data. 

Each row of the database represents an alarm event (26,473 observations in total), 
and each column (36 in total) represents a piece of information (i.e., an “attribute”) 
about the alarm. The most meaningful attributes are presented in Table 7.3.
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Table 7.3 Alarm database attributes 

Attribute Meaning 

Time 
stamp 

Date and time (GMT) of the alarm event 

Source Source that triggered the alarm (measuring instrument, PLC function…) 

Jxxx The safety interlock logic associated with the alarm 

Message The message that is shown to the operator contains the following five attributes: (1) 
the source; (2) a concise description of the equipment involved; (3) the safety 
interlock logic (Jxxx); (4) the value and units of measures of the process variable; 
(5) the alarm identifier (e.g., HHH, HTRP, LLL, LTRP, ACK, etc.) 

Active 
time 

Date and time (GMT) of the first alarm occurrence 

Data 
value 

The value of the process variable 

Eng. unit The units of measure of the process variable 

The Alarm Identifier (point 5. of the “Message” attribute) is a code that defines 
the alarm status. Examples of Alarm Identifiers are “HHH” (which means that the 
measured variable has exceeded the “high level” setpoint), “HTRP” (the measured 
variable has exceeded the “very high level” alarm setpoint and automatic block 
intervention procedures might be triggered), “IOP” (which indicates an instrumental 
failure or out-of-range measure), “LLL” and “LTRP” (same as “HHH” and “HTRP” 
but referring to a “low/very low level”). 

According to [18], an alarm event is uniquely identified by three attributes only: 
Time Stamp, Source, and Alarm Identifier (e.g., HHH, HTRP, LLL, LTRP, etc.). The 
combination of a “source” and an “alarm identifier” is called a “unique alarm”. 

More than 96% of the alarms registered in the database occurred within one 
month only, when a considerable number of floods and chattering alarms must have 
occurred. In fact, only ten alarm sources (out of 194 in total) were responsible for 
more than 80% of the alarms recorded. 

Chattering alarms are alarms “that repeatedly transitions between active state and 
inactive state in a short period of time” [3]. Therefore, chattering alarms have the 
potential to produce a large count of alarms and reducing their number is a key step 
to improve the performance of the alarm system during alarm floods. 

Kondaveeti et al. [18] proposed a method for quantifying alarm chatter based on 
run lengths distributions. Although effective, this technique produces static results 
(i.e., chattering is quantified based on historical alarm data, but no conclusion can be 
drawn about the alarm’s future behaviour). This Chattering Index approach is modi-
fied by Tamascelli et al. [38] to predict chattering behaviour by means of standard 
ML models.
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7.3 Method 

ML classification models were used for the three examples in Sect. 7.2. Moreover, 
comparison among different ML models is also beneficial. Results from multiple 
linear regression (MLR) were compared to the relatively more sophisticated deep 
neural network (DNN) models. 

Both MLR and DNN aim at modelling the relationship between two or more 
independent feature variables and a label dependent variable. While the former model 
fits a linear equation to observed data, the structure of the latter model is similar to 
the organisation of neurons in the brain, arguably the most powerful computational 
engine known today [20]. 

An algorithm uses part of the available data to train the ML model to predict 
the specific label variable based on the feature variables and test the result on the 
remaining data. Model performance needs to be evaluated before employing it for 
actual applications. The result might be far from perfect, and this may be due to poor 
data quality or indicate the need to tune the model to the actual application. 

7.3.1 Metrics 

The performance of the classification models used is assessed during the evaluation 
phase. As an example, consider a situation where accidents must be classified into 
two classes A or B. A positive prediction occurs when the model predicts the class A. 
Instead, a negative prediction occurs when the model predicts the class B. Whenever 
the model predicts the class of an object, there are four possible outcomes:

• TP = True Positive—i.e., predicted label = A, true label = A;
• TN = True Negative—i.e., predicted label = B, true label = B;
• FP = False Positive—i.e., predicted label = A, true label = B;
• FN = False Negative—i.e., predicted label = B, true label = A. 

The sum of True Positives and True Negatives represents the number of correct 
predictions, while the sum of False Positives and False Negatives indicates the 
number of wrong predictions. True Positives, True Negatives, False Positives, and 
False Negatives are used to obtain three performance indicators: 

Accuracy = TP + TN 
TP + TN + FP + FN (7.1) 

Precision = TP 

TP + FP (7.2) 

Recall = TP 

TP + FN (7.3)
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Accuracy represents the fraction of objects that have been correctly classified. 
Precision indicates the success rate of a positive prediction. Recall denotes the 
fraction of actual positives that have been correctly identified. 

It is worth mentioning that metrics and indicators depend on the probability 
threshold used by the classification models. For example, if the decision threshold is 
lowered, the model may produce more positive predictions. As a result, the Recall 
might increase, but the Precision might decrease [33]. In fact, actions aimed at 
increasing Recall often lower the Precision, and vice versa [13]. A convenient mean 
of displaying the effect of the decision threshold is the Precision-Recall curve, i.e., a 
plot where each point represents the couple Precision vs. Recall at a specific decision 
threshold [22]. A convenient mean of summarising the information in the Precision– 
Recall curve is the area under the curve (AUC P-R) [22], which takes values between 
0 and 1. Being independent on the decision threshold, the AUC PR is considered a 
more comprehensive indicator of the model performance if compared with Accuracy, 
Precision and Recall. In general, a large AUC P-R value indicates good performance 
[33]. 

7.4 Results and Discussion 

Table 7.4 summarises all the results from the examples described in Sect. 7.2. The  
results from the two approaches used (MLR and DNN) are directly compared to 
identify the best predictive performance. MLR shows a higher number of higher 
values in green cells (9) if compared to DNN (6). 

However, this overall result cannot convey the message that MLR performs better 
than DNN as “there ain’t no such thing as a free lunch”. In fact, in these exam-
ples, DNN was applied with default parameters (e.g., number of layers and nodes

Table 7.4 Summary of results from the representative examples of ML application for safety 
purposes 

Multi Linear Regression Deep Neural Network 

C: None C: 1-10 C: 10-100 WDF AC C: None C: 1-10 C: 10-100 WDF AC 

Accuracy 0.88 0.87 0.99 0.82 0.95 0.77 0.88 0.99 0.83 0.94 

Precision 0.90 0.20 0.00 0.80 0.94 0.89 0.11 0.00 0.84 0.93 

Recall 0.98 0.07 0.00 0.91 0.94 0.85 0.09 0.00 0.86 0.93 

PR AUC 0.95 0.22 0.06 0.92 / 0.87 0.27 0.01 / / 

C stands for consequence class, WDF stands for wellhead damage frequency, AC stands for alarm 
chattering, and PR AUC stands for the area under the precision recall curve. Greed and Red cells 
respectively show higher and lower values when compared with the other approach 
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suggested by Tensorflow tutorials [13]). In addition, DNN is relatively more sensitive 
to poor quality of data [24]. 

Table 7.4 reports all the metrics discussed in Sect. 3.3. If we exclusively focus on 
accuracy, we notice that the highest value (0.99) is obtained for both MLR and DNN 
predictions of the consequence class 10–100 fatalities associated with a hazardous 
substance release. However, accuracy alone is not informative if the problem involves 
the identification of rare classes, i.e., when the dataset is class imbalanced [14]. 

Releases of hazardous substances with 10–100 fatalities are (fortunately) rare 
events as they represent about 1% of the records in the MHIDAS database. In this 
case, the models have learned that the result will be correct 99% of the times if they 
predict that this kind of event never occurs. If the cost of a False Negative is higher 
than the cost of a False Positive (such as the case of a release of hazardous substance 
with 10–100 fatalities), Recall is the most meaningful metric. In this context, a good 
model must produce high Recall, while low precision might be considered acceptable 
and, to a certain extent, conservative. 

The prediction of events with a relatively higher frequency and lower consequence 
(e.g., a release of a hazardous substance with no fatalities, an increase of wellhead 
damage frequency or a chattering alarm) may instead benefit from higher precision 
at the expense of the recall value. 

For this reason, rather than considering Precision and Recall individually, one 
may aggregate them into the so-called F-score [6], especially if the area under the 
precision recall curve indicates the potential of optimising the model by tuning the 
decision threshold probability. Human contribution would again come into play in 
the setting of the algorithm parameters, which would inevitably represent a form of 
subjective calibration. For this reason, the techniques used in the depicted examples 
require a deep understanding of their benefits, limitations and application boundaries. 

This contribution aims to convey the message that AI-based techniques must be 
considered as tools supporting and not substituting decision making. Awareness and 
knowledge of these tools’ properties by the user are essential to effectively exploit 
their results. The role of the human as user of these tools is even more central than 
before. AI should not be intended as a way to replace the human, but only as an 
improved approach assisting the human. This is compatible with the concept of 
trustworthy AI by the European Commission [8] promoting explainable AI (XAI), 
human centrality by means of interpretability, infobesity (overload of information) 
avoidance and transparency. 

Embracing the principles of trustworthy AI and XAI will unlock the vast potential 
of machine learning in safety management, especially considering emerging variants 
of the traditional approaches described in this contribution, such as:

• Transfer learning, aiming at developing methods to exploit the knowledge gained 
in one task (i.e., the source task) to address a new task (i.e., target task).

• Federated learning, machine learning technique that trains an algorithm across 
multiple decentralised servers holding local data samples, without exchanging 
them.
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• Meta-learning, focus on the learning model and its optimisation towards new 
observations, in order to apprehend the emergence of unknown scenarios (e.g., 
unknown risks [35, 36]). 

Machine learning has the potential to be eventually capable of supporting human 
users as [7] states. However, the author must admit the presence of another important 
challenge ahead that is yet to be fully overcome: ensuring appropriate safety culture 
by the user, i.e., foundations and motivations for which such advanced tools would 
be used. Once again, this challenge brings the discussion back to humans. Risk and 
safety analysts and managers would potentially have an advantage in the application 
of digitalised safety management due to their predefined state of mind, but only 
given their willingness to learn the basics and use of such advanced and promising 
techniques. 

7.5 Conclusion 

This contribution has illustrated examples of AI-based prediction used to continu-
ously update the evaluation of the safety level in an industrial system. The examples 
refer to the impact prediction of a hazardous substance release in chemical industry, 
the wellhead damage frequency in offshore oil and gas and chattering alarms in 
ammonia production. The results can and must be read on different levels, carefully 
considering the available metrics based on the scenario addressed. This shows that 
we are not (and will not be in a near future) in a “no-brainer” condition in which the 
responsibility for human and system safety is entirely moved to the machine. At the 
same time, an understanding of digital solutions will be progressively required to 
guarantee their effective application. These advanced techniques have the potential 
to provide reliable support for critical decision making, guiding industry towards 
more risk-informed and safety-responsible planning. 
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