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Changing diet in a changing world

Bente Philippsen

Abstract
One of the most fundamental interactions between people and landscape is through food. 
How food is obtained, which kinds of food are eaten, and the way food is prepared are 
important parts of human identity. The transition from foraging to farming (from the 
Mesolithic to the Neolithic in the case of Danish prehistory) can thus be regarded as one of 
the most profound changes in human history.

The problem of change or continuity of diet during the Mesolithic-Neolithic transition 
has been debated vigorously over the past decades, with a focus on the question of 
whether aquatic resources continued to be exploited in the Neolithic. Different methods 
from archaeology and the natural sciences have come to different conclusions, based on 
different data and sample materials, which reflect different aspects and time scales of 
the prehistoric economy.

In this study, I will show how analyses of bones and pottery can add to our 
understanding of the complex dietary situation during the Neolithisation, when hunting, 
fishing and gathering was practised at the same time as dairy husbandry and cereal 
agriculture. I will place the results of the Femern project into their south Scandinavian 
context and discuss how cultural identity may be reflected in the foods produced and 
eaten by different groups at the time around 4000 BCE.

Femern project; diet; food; Neolithisation; pottery

Introduction
One of the most fundamental interactions between people and landscape is through 
food. People depend on the resources that are provided by their environment. At the 
same time, people influence the environment by their actions, through hunting, fishing, 
gathering and of course more fundamentally through agriculture. How food is obtained, 
what kinds of food are eaten, and the way food is prepared are important parts of 
human identity. The transition from foraging to farming can thus be regarded as one of 
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the most profound changes in human history. This is the case for all societies where such 
transitions occur, regardless of when or where in the world this happens. In the case of 
Danish prehistory, the introduction of agriculture is the most important aspect of the 
shift from the Mesolithic to the Neolithic.

The problem of change or continuity of diet at the Mesolithic-Neolithic transition 
in northwest Europe, especially Britain and Denmark, has been debated vigorously 
during the past decades, with a focus on the question of whether aquatic resources con-
tinued to be exploited in the Neolithic (Barberena and Borrero 2004; Blankholm 2008; 
Fischer 2007; Fischer et al. 2007; Hedges 2004; Lubell et al. 1994; Milner et al. 2004; 2006; 
2007; Richards and Schulting  2006; Richards and Hedges  1999; Richards et al. 2003; 
Schulting and Richards 2002; Tauber 1981b; 1981a; 1983; Villotte et al. 2014). Different 
archaeological and bioarchaeological methods have exposed the various aspects of the 
economy, diet and cuisine. Each specialized discipline can only analyse certain datasets 
and can come to different conclusions than other methodologies that focus on different 
sample materials, datasets, geographical areas or timescales. Therefore, the apparently 
contradictory conclusions of different studies actually show the overall variability of 
diet during the Neolithisation.

In this study, I will show how analyses of bones and pottery can add to our 
understanding of the complex dietary situation during the Neolithisation and explore the 
relationship between hunting, fishing and gathering with dairy husbandry and cereal 
agriculture. I will put the results of the Femern project into their south Scandinavian 
context and discuss how cultural identity may be reflected in the foods produced and 
eaten by different groups in the time around 4000 BCE.

This study focuses on two groups of finds. Firstly, I will present stable isotope 
measurements on animal bones and on wood, as they can be regarded as proxies for the 
stable isotope values of the food that was prepared and consumed at these sites. Secondly, 
I will summarize isotopic and biomolecular analyses of ceramic sherds. This includes 
analyses of food crusts on the sherds, which most probably are dominated by the last 
cooking event, as well as analyses of the ceramic matrix, which contains biomolecules 
absorbed during earlier cooking events.

Lipid analysis can pick out individual compounds that are indicative of individual 
ingredients, which might be overlooked by bulk stable isotope analysis. On the other 
hand, bulk stable isotope analysis identifies the ingredients that contributed most to the 
food crust. An additional advantage is that bulk stable isotope analysis uses the same 
sample material as radiocarbon dating, so this method is ideal for predicting reservoir 
effects in food crusts.

Stable isotope analysis (δ13C, δ15N)
Ideally, we would measure isotope ratios of all the ingredients that were available in 
prehistory in order to reconstruct the meals prepared in the analysed pottery. This is 
impossible for several reasons: In the case of plant foods, the only materials available 
for analysis are wood and hazelnut shells – and not the edible parts of the plants. In 
the case of animal food, only the bones are preserved. Therefore, we have to use the 
available material, informed by analyses on modern reference samples, as proxies for 
the Stone Age food resources.
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Modern reference samples are only useful to a limited extent because of anthropogenic 
effects that distort the δ13C and δ15N values, such as the Suess effect (decreasing δ13C values 
due to combustion of fossil fuels) or modern agriculture with intense manuring, either 
with animal manure (increasing δ15N values) or with chemical fertilizers (decreasing δ15N 
values), as well as heated greenhouses (decreasing δ13C values). Modern land-use practices 
can also have altered the environment to such a degree that plants growing “wild” and 
unmanaged today will have different isotope values than their Stone Age counterparts. 
This can also be the case for wild animals, e.g. a wild boar that, although shot in a forest, 
had fed mainly on maize, a C4 plant (Philippsen 2012, 123).

δ13C values of plants and wood samples
The δ13C values of wood (trunk, branches and roots) are consistently more enriched 
than those of the leaves (Li and Zhu 2011), which would have been used e.g. as leaf 
fodder for cattle. Therefore, we cannot use wood δ13C values directly to reconstruct the 
δ13C values of the plant food. In addition, there are no preserved remains of the plant 
food that was actually consumed by people, such as leafy vegetables, fruits, berries, 
nuts, roots and tubers. Mushrooms, although more closely related to animals than to 
plants, can be included here as well: we only have some samples of tinder fungus, but 
no finds of edible mushrooms.

The wood δ13C values, however, can be used to explore the variability one has to expect 
at the base of the food chain (Philippsen et al. 2019). While the absolute values might not 
be directly comparable, the broad ranges found in the wood samples can also be expected 
in other parts of the plants.

δ13C values in dense forests are generally lower than in more open landscapes. 
The CO2  from decaying organic material has δ13C ratios comparable to that of the 
organic material. As about 99% of the organic matter produced in a forest is returned 
to the atmosphere as CO2, the air in a dense forest is enriched by CO2  from decaying 
plants, which has δ13C values close to those of the plants (around -25‰), and thus 
lower than the atmosphere’s -7‰. This so-called canopy effect is most pronounced in 
leaves growing closer to the ground. It can shift δ13C ratios by c. 3‰ to 5‰ (Medina 
and Minchin 1980; Vogel 1978), which means that about 15% of the carbon in leaves 
growing close to the ground is derived from decaying organic matter (Vogel  1978). 
Other physiological causes have been suggested, such as altered fractionation due to 
photosynthesis in low light or nutrient deficiency.

This can also lead to lower δ13C values along the food chain to forest and even aquatic 
fauna (Francey and Farquhar  1982; van der Merwe and Medina  1991), for example in 
the bones of herbivores that mainly browsed in forests. Thus, the canopy effect has been 
suggested as an explanation for the fact that aurochs in Denmark tend to have lower δ13C 
values than contemporaneous domesticated cattle (Noe-Nygård and Hede 2006). However, 
the forests have to be very dense in order to result in a measurable canopy effect (Drucker 
et al. 2008). In the case of  14C concentrations, the canopy effect is less important for 
prehistoric samples, as most of the carbon is recycled shortly after the formation of the 
primary plant matter. However, it can be an issue in modern reference samples, as e.g. 
leaves growing next to a motorway were found to have 14C-concentrations up to 9% lower 
than the atmosphere (Münnich 1961).
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δ13C and δ15N values of animal bones
In addition to the above-mentioned canopy effect, other aspects can influence the δ13C 
values of animal bones. The main factor in Danish Stone Age research is the proportion 
of marine versus terrestrial resources. The difference between C3 and C4 photosynthetic 
pathways is irrelevant, as C4  plants do not occur naturally in relevant numbers and 
domesticates such as millet are only introduced later. Only few edible C4 plants are native 
to northern Europe, such as purslane (Portulaca oleracea). The C3  cycle is particularly 
suited to wet and mesophytic environments (Browman 1981) and C3 plants are preferred 
by herbivores because they are easier to digest.

There is a δ13C fractionation of about 5‰ from plant food to animal bone collagen and 
generally less than 1‰ per subsequent trophic level (Katzenberg et al. 2000; Lanting and 
van der Plicht 1998; Schoeninger and DeNiro 1984). The δ13C values in bone collagen reflect 
the δ13C values of the protein component of the diet, especially in the case of protein-rich 
diets, but depend also on the amount of protein in the diet and on the difference in the δ13C 
values of protein and non-protein fractions (van Strydonck et al. 2009).

δ15N values mainly reflect the animal’s trophic level (Ambrose 2001; Schoeninger and 
DeNiro  1984; Schoeninger et al. 1983) but can also be influenced by physiological and 
environmental factors (Knowles and Blackburn 1993). For example, it has been observed 
that horses from Neolithic contexts had lower δ15N values than other contemporary 
herbivores (Klassen et al. 2023; Stevens et al. 2010). This could be caused by differences in 
habitat/diet (e.g. horses browsing on trees), or physiology (non-ruminant vs. ruminant). 
A similar effect, horses having lower δ15N values than other animals, has already been 
observed for a Middle Pleistocene context (Kuitems et al. 2015, Table 3), so it could be a 
general characteristic of the physiology or diet of Equidae.

Some factors, such as those caused by aridity, are not relevant for Denmark and 
will not be discussed further here. Fertilizing grassland or crops with animal manure 
can result in δ15N increases by about one trophic level, or c. 3.5‰ (Bogaard et al. 
2013; Fraser et al. 2011). This increase will be transferred to increased δ15N values in 
herbivore bone collagen. When under the control of humans, increased δ15N values 
can be caused by a different mechanism. The animals can have more “omnivorous” 
feeding patterns, including e.g. pondweed or human food refuse (Bonsall et al. 1997; 
Schwarcz 1991).

δ13C and δ15N values of food crusts on pottery
There are large differences between the δ13C values of bone collagen and of the other 
edible parts of the animal, with differences of  1.5  to  4‰ between fish flesh and bone 
collagen (Katzenberg et al. 1995; Lanting and van der Plicht 1998), or of more than 7‰ 
between bone collagen and body fat in an ungulate (Browman  1981). Fat is generally 
depleted in δ13C when compared to lean meat (Bonsall et al. 1997; DeNiro and Epstein 1976; 
Parker 1964). Therefore, isotope values between bone collagen and food crusts are not 
directly comparable.

Fully terrestrial samples have isotope ratios of δ13C=-29 to -26‰ and δ15N=2.5 to 6‰.
Fully marine samples have δ13C=-18  to -15‰ and δ15N around  10‰ or higher 

(Philippsen  2012, and references therein). Most food crust samples would be expected 
to lie on a mixing line between fully terrestrial and fully marine. Values outside of the 
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mixing line are most probably caused by mixtures of ingredients with different carbon 
and nitrogen concentrations. For example, a mixture of protein-rich terrestrial food with 
lipid-rich marine food would result in a value below the mixing line.

The effect of heating (such as boiling or roasting) or fermentation on the isotope 
values is small and no systematic fractionation effects have been observed (Abonyi 1993; 
Bonsall et al. 1997; Boudin et al. 2009; DeNiro and Hastorf 1985; Hastorf and DeNiro 1985; 
Katzenberg et al. 2000; Marino and DeNiro 1987; Privat et al. 2005).

Lipid analysis
Lipids absorbed in the ceramic matrix are protected from degradation and contamination 
and are thus regarded as an ideal sample material (Heron et al. 1991). There is a long 
tradition for fatty acid analysis of prehistoric samples (Chapman and Plenderleith 1926; 
Charters et al. 1993; Condamin et al. 1976; Evershed 2008; Evershed et al. 2001; 
Formenti and Condamin  1978; Isaksson  1997; Olsson  2003; Olsson and Isaksson  2008; 
Mathiassen 1935; Mottram et al. 1999; Plant 1879; Rottländer 1985; 1990; Rottländer and 
Blume 1980; Rottländer and Schlichtherle 1980; 1983; Van Diest 1981). Certain fatty acids 
are indicative of heated fish oil (Hansel et al. 2004) and are thus direct evidence for the 
preparation of marine food.

In the early  2000’s, preparative capillary gas chromatography (PCGC) was used to 
isolate individual fatty acids from absorbed lipid residues (Copley et al. 2003; Stott et al. 
2001; 2003). The C16:0 and C18:0 fatty acids are targeted here, as they are the most abundant 
fatty acids (Berstan et al. 2008). In addition to radiocarbon dating, these fatty acids can also 
be used for δ13C analysis. The δ13C values of the C16:0 and C18:0 fatty acids, and especially the 
difference between the two, termed ∆13C, indicate the presence of dairy fat and groups the 
lipid residues into marine, non-ruminant adipose, ruminant adipose and ruminant dairy 
(Copley et al. 2003; Dudd and Evershed 1998; Mukherjee et al. 2005). The above-mentioned 
canopy effect would also lead to lower δ13C values of the fatty acids, but the ∆13C values 
would be unaffected (Mukherjee et al. 2005).

Integrated pottery analysis
The most comprehensive cuisine reconstructions are obtained when the different 
methods are combined. Lipid analysis can pick out individual compounds that are 
indicative of individual ingredients, which might be overlooked by bulk stable isotope 
analysis. On the other hand, bulk stable isotope analysis identifies the ingredients that 
contributed most to the food crust. An additional advantage is that bulk stable isotope 
analysis uses the same sample material as radiocarbon dating, so this method is ideal 
for predicting reservoir effects in food crusts (because the carbon used for radiocarbon 
dating is the same, and thus from the same source(s), as the carbon used for bulk stable 
isotope analysis).

Food crusts are biased towards the final cooking events, while lipids absorbed in 
the clay matrix are only slowly replaced and show no strong signal of the final cooking 
(Miller et al. 2020).
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Study site
An overview of the Femern project and descriptions of the individual sites is provided 
by Måge et al. (this volume). Here, I will summarize the main aspects of the sites 
considered in this study.

Surveys and rescue excavations prior to the construction of the Femern Belt Tunnel 
resulted in the discovery of numerous archaeological sites from the past 10000 years. This 
study focuses on sites discovered in an area of former sea floor, which had been diked after a 
storm surge in 1872. Culturally, these sites can be assigned to the Danish Mesolithic Ertebølle 
Culture (EBC) and the Neolithic Funnel Beaker Culture (TRB). They date to around 4000 BCE, 
a period that has traditionally been termed the Neolithisation of Denmark. The Stone Age 
coastal landscape changed continually, with ephemeral barrier islands forming temporary 
lagoons and shallow fjords. The sediments in the study area reflect the postglacial sea-level 
rise: glacial till with soil formation horizons is overlain by freshwater peat, then marine gyttja 
and finally marine-deposited sand (Bennike et al. 2022; Groß et al. 2018). The sites covered 
in this study comprise depositions and refuse areas in the shallow water, but no dry-land 
settlement remains or burial sites. While the preservation of organic remains is excellent, 
the dynamic coastal environment has caused those sites to be palimpsests of mixed and 
redeposited artefacts and ecofacts. There is no stratigraphical relation between the finds. Due 
to the continuous sea level rise, the same type of layer (e.g. freshwater peat or marine gyttja) 
formed at different times, depending on the site’s elevation and distance from the shore. Only 
a few finds were still in situ, including fish weirs, stakes and artefacts stuck into the sea floor, 
while the sediments around them may have been eroded and re-deposited. It is therefore 
impossible to assign individual artefacts to a specific time period just by measuring their 
geographical position and elevation. A minor proportion of the ceramic sherds can be assigned 
to the EBC or one of the phases of the TRB. Apart from these, only directly dated samples can 
be considered when investigating changes of economy and diet over time. Radiocarbon dates 
of the different artefact groups are provided by Måge et al. (this volume). For example, the 
radiocarbon dates show that domesticated animals had already appeared before 4000 BCE, 
while fish weirs only gained in importance during the Middle Neolithic.

Here, I will present an overview of the isotopic and biomolecular data from the Femern 
project. A full analysis, including comparisons to data from other sites, will be published 
later (Philippsen et al. in prep.).

Materials
I include  130  radiocarbon dates of bones from the entire Femern project. These 
samples were selected because of their archaeological interest, not for palaeodietary 
reconstructions. All bones and bone artefacts had been deposited in the former sea floor. 
Some were food refuse thrown into the shallow water, others were placed deliberately at 
certain locations, such as a concentration of mandibles found within a circular structure 
of wooden stakes (e.g. Sørensen this volume).

As no burials were found, only four stray finds of human bones are available for the 
entire project. None of these dates to the Mesolithic. Therefore, we use stable isotope and 
lipid analyses of food crusts on pottery and ceramic sherds to reconstruct the cuisine 
rather than the long-term diet that would be reflected in the human bones.
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Stable isotope values were obtained from  52  food crusts on pottery sherds from 
the sites of Syltholm II (MLF00906-I, MLF00906-II) and Syltholm XIII (MLF00939-I; cf. 
Måge et al. this volume). Food crusts adhering to two stone slabs thought to have a food 
preparation function (finds: X5486 and X9077) were analysed by GC-MS, as well as the 
food crusts on potsherds and sediment samples from putative cooking pits. Based on 
the results of the GC-MS analysis, six samples were selected for GC-C-IRMS analysis. 
These include one Ertebølle and five Funnel Beaker vessels. These data were published 
in Courel et al. (2020) and Cubas et al. (2020), respectively. In addition, Vasiliki Papakosta 
(Stockholm University) conducted lipid residue analysis on food crusts on nine Ertebølle 
potsherds (Papakosta et al. 2019).

Methods

Radiocarbon dating and stable isotope analysis of animal bones 
and food crusts
Collagen was extracted from bone samples according to the protocol by Longin (1971), 
with modifications by Brown et al. (1988) and Jørkov et al. (2007). All age determinations 
were performed by AMS by measuring the ratio of 14C to 13C atoms at the Aarhus AMS 
Centre, Department of Physics and Astronomy, Aarhus University. The ages are stated 
in conventional radiocarbon years BP and corrected for isotope fractionation by 
normalising to δ13C=-25‰ VPDB (Stuiver and Polach  1977). The radiocarbon ages are 
calibrated to calendar years before present (cal BP) using the IntCal20  calibration 
curve (Reimer et al. 2020). Marine samples are subject to a reservoir age, which can be 
estimated to be around 250 14C years for the study area and period (Philippsen 2018). 
This value is similar to the reservoir age of  273 ± 18 14C years reported for southern 
Kattegat in the Neolithisation period (Fischer and Olsen 2021). However, the reservoir 
age may have varied somewhat over the Holocene, and the ages of marine material are 
therefore more uncertain than the ages of terrestrial material (Olsen et al. 2009).

The δ13C and δ15N values of the bones were measured by isotope radio mass 
spectrometry (IRMS) at the Aarhus AMS Centre. The reported measurement uncertainties 
are 0.05 to 0.71‰ for δ13C and 0.1 to 0.36‰ for δ15N. δ13C and δ15N values of food crusts 
were measured at the University of Bradford and the University of York.

Lipid analysis (GC-MS and GC-C-IRMS)
Food crusts and dried sediment samples were ground and extracted with a 
dichloromethane/methanol mixture (2:1  v/v). A measured amount of an internal 
standard was added to each sample before analysis to allow quantification and the 
samples were derivatised before analysis. Gas chromatography (GC) was used to check 
the lipid preservation and presence of contaminants. Based on the GC results, samples 
were selected for gas chromatography – mass spectrometry (GC-MS) analysis. GC-MS 
analysis was carried out on an Agilent  7890A series GC attached to an Agilent  5975C 
Inert XL mass selective detector. Based on the GC-MS results, samples were selected 
for isotopic analysis (GC-C-IRMS) of the C16:0 and C18:0 fatty acids (gas chromatography – 
combustion – isotope ratio mass spectrometry).
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Results and discussion

Radiocarbon dating and stable isotope analysis of animal bones 
and bone artefacts
In total, 130 radiocarbon dated bone samples were analysed in this study. Not all dated 
samples were large enough to allow for stable isotope (especially δ15N) measurements. 
For 129 of these samples, δ13C values are available. 115 samples yielded δ15N values. Error 
bars are excluded from the graphs for clarity and because in many cases the size of the 
symbol exceeds the size of the error bars. Due to space limitations, all radiocarbon dates 
and stable isotope measurements are available as supplementary material.

The stable isotope results (δ13C, δ15N) of human and animal bones from the Femern 
project are shown in fig. 1. This figure includes data from all archaeological periods 
examined in this project. Most samples belong to herbivores and have corresponding 
isotope ratios; δ13C between -24 and -21‰, δ15N between 3 and 9‰. Most of the herbivores 
lie in a narrow δ15N range, though: Apart from one wild horse with δ15N=3.2‰, a red 
deer with δ15N=4.1‰ and two sheep/goats with δ15N>8‰, the range is  4.7  to  7.8‰. 
Measurements on terrestrial herbivores are shown in a separate diagram together with 
the δ13C values of wood samples as a proxy for vegetation δ13C values (fig. 2).

The two sheep/goats with δ15N>8‰ are in the same area of the diagram as three 
humans, three wild cats and a dog; their diet can be regarded as terrestrial on a higher 
trophic level and/or a terrestrial diet with the admixture of some marine resources. The 
bone with δ15N=9.9‰ is a humerus from a sheep with a lot of cut marks; the osteological 
report does not mention that it is from a young individual. The bone with δ15N=8.4‰ is 
the left shoulder blade of a sheep, also with cut marks and also not classified as a young 
individual. A nursing effect can thus be excluded and the high δ15N values must be a result 
of the diet. In the case of sheep, marine plants or macroalgae could have supplemented 
the fodder, whether provided by humans or sought out by the animals themselves. Goats, 
dogs and cats could have fed on food remains left by humans.

As described in the introduction, a very dense forest can cause a depletion in the 
δ13C values of the vegetation, and in the δ13C values measured throughout the food 
web based on this vegetation. There are only a few specimens where a canopy effect is 
probable: The only terrestrial herbivores that have δ13C values below -23‰ are sheep/
goat, roe deer and red deer (fig. 2). The sheep/goat (the species could not be determined) 
with δ13C=-24.2‰ is the oldest domesticated animal from the site (fig. 3; 5313 ± 32 BP, 
4310–4304 (0.7%) and 4249–4046 (94.8%) cal BC, calibrated with IntCal20). It could have 
been browsing in the forest or have been fed leaf fodder. The red deer and roe deer 
bones span the whole range of c. 24  to  21‰, while the cattle/aurochs only have δ13C 
values between c. 22.5‰ and 21‰.

The two sheep bones with the highest δ15N values have been discussed above. Apart 
from these, there is also a group of five cattle bones with δ15N>7‰, while all other 
herbivores have δ15N values below 7‰. Further studies will show whether there really 
are two isotopically distinct groups of cattle. Interestingly, some of the cattle and sheep/
goat have higher δ15N values than all of the pig samples, although pigs are omnivores and 
sheep/goat and cattle are herbivores. The pigs were thus most probably not fed with food 
refuse, as this would have caused a higher trophic level and more marine δ13C values. 
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Such an effect has been observed with wild boar from an Ertebølle kitchen midden site in 
Jutland (Maring and Riede 2019).

The horse bone has the lowest δ15N value (3.2‰) of the dataset, which agrees with 
previous studies of prehistoric horse bones (Klassen et al. 2023; Kuitems et al. 2015; 
Stevens et al. 2010). This specimen of Equus ferus is dated to 2812 ± 29 BP (1051–897 (94.7%) 
and 867–857 (0.8%) cal BC, calibrated with IntCal20) and is thus too young to be relevant 
for a discussion of the Neolithisation process.

There are some apparent trends in fig. 2. For example, there seems to be a linear 
relation between the δ15N and δ13C values of Bos taurus with a correlation coefficient of 
R2=0.61. However, generally the sample numbers are too small to allow for meaningful 
statistical analyses.

Figure 3 displays the δ13C values of the aforementioned taxa over time. It is difficult 
to discern any trends, as many animal species are only found from within short time 
periods. For example, the group of animals with the highest δ13C values includes two 
harbour porpoises (Phocoena phocoena), two Eurasian otters (Lutra lutra) and two dogs 
(Canis lupus fam.) from a very narrow timespan. While the δ13C values of around -10‰ 
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are not unusual for porpoises, they are an interesting case for the dogs – these clearly 
had a largely marine diet, unlike the slightly later humans from this site. The marine diet 
of the otters indicates that they had lived at the coast and consumed marine fish, which 
is not unusual for the Eurasian otter (Kruuk 2006), and that they had not been caught in 
an inland lake or stream. However, the otter needs regular access to freshwater to clean 
its fur (Ozkazanc et al. 2019). Therefore, its presence indicates that there must have been 
access to a lake or stream nearby. The extended use of the sites by humans would, of 
course, not have been possible without access to freshwater either. However, for human 
use, a small freshwater spring would have sufficed.

Some trends can be observed in the δ13C values over time. The Ovis δ13C values 
increase with time (R2=0.72), while there is also a slight increase in Cervus elaphus 
δ13C values (R2=0.35). This might indicate that the forest was being cleared and the 
sheep/goats were grazing in a more open landscape. Furthermore, they could consume 
larger amounts of seaweed and/or human refuse. This is supported by the increase in 
δ15N values by 4500 cal BP (supplementary material). The δ13C increase in red deer is 
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proxy for plant δ13C values. The values in the diagram are in the same order as the species 
names in the legend.
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not accompanied by an increase in δ15N. Therefore, their increasing δ13C values can 
best be explained by a change in landscape, which became more open. In contrast, 
there is a decrease in Sus δ13C values (R2=0.76). This would indicate that the pigs had a 
slightly more marine diet during the Ertebølle period and a more terrestrial diet later. 
However, there is no trend in the δ15N values that could support this interpretation 
(supplementary material).

The four human bones, which unfortunately were all stray finds, show no trend 
over time. δ15N values are only available for three of the human bones. They decrease 
from 9.6‰ in 4875 cal BP to 7.7 ‰ in 3738 cal BP – a decrease of less than one trophic level.

Food crust stable isotopes (δ13C, δ15N)
The stable isotope values of food crusts from the Femern project have been and will be 
published elsewhere (see introduction for details and references). A synthesis paper of 
all results including data tables is under preparation. Therefore, this section will only 
summarize the main results in figures (all data is available in the supplementary material).
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Figure 3. δ13C values compared to the radiocarbon age of bones from the Femern project. 
This plot includes more data points than fig. 1, as not all samples were large enough to allow 
for a δ15N measurement.
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The variability of the stable isotope values has been tested by analysing nine interior 
and two exterior samples from sherds of the same vessel, “Pot  22”, from MLF00939-I. 
Although the results span a range of about 1‰ for δ13C and 1 to 1.5‰ for δ15N, depending 
on whether the exterior crusts are included, all values would indicate the same 
interpretation of terrestrial, low to middle trophic level food. I thus suggest regarding 
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Figure 4. Stable isotope results (δ13C, δ15N) of food crusts on sherds from one vessel, 
pot 22 from MLF00903-I. Left: full range diagram for comparability with the other isotope 
diagrams in this paper; right: detail.

Figure 5. Stable isotope values of food crusts on Funnel Beaker and Ertebølle sherds as 
well as lamp fragments. δ13C in ‰ VPDB; δ15N in ‰ AIR. The pottery type is indicated by the 
shape of the symbol: funnel beakers for Funnel Beaker pottery, pointed-based vessels for 
Ertebølle pottery, and shallow bowls for lamps. Crusts on the outer surface of the vessels 
are indicated by a lighter symbol.
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measurements on individual sherds as representative of the entire vessel, even though 
experimental studies have shown that some variation has to be expected when cooking 
mixed foods (Philippsen 2012).

The δ13C values of all analysed food crusts are in the interval between -29 and -15‰. 
δ15N values range from c. 2.5  to 10.5‰. Most values follow a mixing line between fully 
terrestrial (δ13C=-29  to -26‰, δ15N=2.5  to 6‰) and fully marine (δ13C=-18  to -15‰, δ15N 
around 10‰, fig. 5).

As shown in fig. 5, Ertebølle and Funnel Beaker pottery have the same range of isotope 
values and both pottery types were used for both terrestrial and marine resources. The 
funnel beaker δ13C values span a larger range than those of the Ertebølle vessels. This 
could be caused by a diversification of food resources during the Funnel Beaker period, or 
could just be an effect of the larger sample size. The minimum and maximum values of all 
analysed food crusts are given in Table 1.

Lipid analysis (GC-MS and GC-C-IRMS)
Based on the GC-MS results, seven samples were selected as being suitable for isotopic 
analysis (GC-C-IRMS) of the C16:0 and C18:0  fatty acids: P145 X57, P251 X3363, P252 X3495, 
P253 X8352, P254 X9243, P256 X10588 and P257 X11841 (P=sample number, X=find ID).

Lipids were extracted both from food crusts and from the ceramic matrix of sherds. 
Fig. 6 displays the δ13C values of the C16:0 and C18:0  fatty acids. The measurements on the 
Funnel Beaker sherds were made on five food crust samples, while the Ertebølle pottery 
includes one food crust sample and nine samples of the ceramic matrix. The funnel beaker 
samples display either purely marine or purely terrestrial (dairy) fats, while the values 
of the Ertebølle sherds vary between ruminant adipose fat, where an admixture of dairy 
cannot be excluded, and marine fat.

EBC interior (n=9) δ13C (‰ VPDB) δ15N (‰ AIR)

Min -26.69 2.99

Max -18.32 9.70

Lamp interior (n=4) δ13C (‰ VPDB) δ15N (‰ AIR)

Min -26.19 5.45

Max -18.27 9.23

Lamp exterior (n=2) δ13C (‰ VPDB) δ15N (‰ AIR)

Min -20.67 3.78

Max -19.16 6.89

TRB interior (n=31) δ13C (‰ VPDB) δ15N (‰ AIR)

Min -28.70 2.76

Max -15.36 10.04

TRB exterior (n=6) δ13C (‰ VPDB) δ15N (‰ AIR)

Min -26.21 6.08

Max -20.88 10.17

Table 1. Minimum and maximum values of all analysed food crusts.
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Comparison stable isotopes – lipids
In six cases, bulk stable isotope and lipid analyses were performed on the same food 
crusts. Five of these were funnel beakers and are shown in fig. 7, one was an Ertebølle 
sherd and is displayed in fig. 8.

Additionally, lipids were extracted from the ceramic matrix of nine Ertebølle sherds. 
Food crusts on five of these sherds were also sampled for stable isotope measurements. 
Three of the isotope values are excluded from the plots because of too low nitrogen or 
carbon contents. However, fig. 8 shows a plot of the stable isotope values of food crusts on 
Ertebølle sherds, which are included for better comparability with the lipid results. Marine 
biomarkers and/or marine lipid δ13C values were found in all five cases, irrespective 
of the bulk stable isotope results. This indicates that both techniques are necessary to 
understand the full range of foodstuffs prepared or stored in the vessels. Food crusts 
are biased towards the final cooking events, while lipids absorbed in the clay matrix are 
only slowly replaced and show no strong signal of the final cooking (Miller et al. 2020). 
For example, we analysed one Ertebølle sherd with terrestrial food crust isotope values 
(δ13C=26.69, δ15N=2.99) and lipids that indicate marine/ruminant ingredients (fig. 8). In this 
case, the pot was probably used once or several times for the preparation of marine food, 
while the last cooking event only contained terrestrial ingredients.
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142 CHANGING IDENTITY IN A CHANGING WORLD

Conclusion
Stable isotope analyses of the animal bones and food crusts and lipid analysis of the 
pottery show that the inhabitants of the Syltholm Fjord area used a broad variety of 
resources. This did not change during the Neolithisation process, although new pottery 
forms were introduced. New agricultural products, such as dairy, were integrated into 
the cuisine, while marine resources continued to be important. Although the stable 
isotope values of human bones indicate a predominantly terrestrial diet throughout the 
Neolithic, pottery food crusts and lipids, as well as finds of fishing fences, underline 
the importance of marine resources. This indicates that the Neolithisation process in 
this part of Denmark was not a simple replacement of a hunter-gatherer lifestyle by 
agriculture, or a persistence of a Mesolithic culture surrounded by Neolithic groups, but 
a complex interplay of traditions and innovations.

Supplementary material
Basic data for the figures is available under  10.5281/zenodo.7598004  and  10.5281/
zenodo.7597900. More detailed information on the isotope measurements and 
radiocarbon data are available from the author on request.
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