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Abstract

The reliable reconstruction of digital events is imperative for solving criminal
cases. Computers, servers, mobile and IoT devices, vehicles, and EV charging
infrastructure all use either local or remote storage (cloud). The storage needs to
use a file system in order to store and retrieve files. Currently, digital forensic tools
implement support for the most popular file systems, either fully or partially. In
order to determine what has taken place, investigators today are dependent on tools
that automate much of the investigation. Unfortunately, these tools use techniques
that are not necessarily published, tested or peer-reviewed, which increases the
uncertainty of their results. Furthermore, investigators normally use well known
artifacts from the Operating System (OS) when trying to determine what occurred,
however, file system interpretation is often automated by the tools and trusted as
reliable and complete by the investigators. In many cases the OS is not available,
for instance, when an external storage device is seized. This means the investigator
only has the file system and the file content available for investigation. We found
metadata structures that may connect an external device to the computers used to
create files on the device, which order these files have been created, and when the
computers were booted. These findings will help investigators to identify which
computers are relevant for the investigation, create timelines, and detect timestamp
manipulation, but also identify which files users have created, opened, or saved.
It is not unusual that external devices are damaged or reformatted with new file
systems. In this context it is important to be able to recover files from the dam-
aged file system. We were able to invent a novel and generic method to carve and
identify metadata for files using equality or approximate equality to identify time-
stamps that are co-located, a pattern typical for file metadata structures in most
file systems. Our prototype tool outperforms the other tools we tested in recovery
from damaged file systems. Investigators often use timestamps to create timelines
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or to limit their investigation to a particular time frame. We found that both tools
and different file system drivers are implemented differently, not necessarily fol-
lowing the file system specifications. Even normal usage of an external USB disk
on multiple operating systems may change timestamps to invalid settings, and it
is imperative that investigators are able to identify such usage. This thesis will
focus on interpreting the file system metadata to identify and understand the ac-
curate meaning of structures that the digital forensic tools currently do not support
or only partly support, identifying new knowledge that will increase the quality of
digital investigations.



Preface

This dissertation is submitted in partial fulfillment of the requirements for the de-
gree of Philosophiae Doctor (PhD) at the Norwegian University of Science and
Technology (NTNU).

The presented work was carried out at the Faculty of Information Technology and
Electrical Engineering, Department of Information Security and Communication
Technology (IIK) at NTNU from 2018 until 2023, and comments from the PhD
committee were amended in February 2024. The work was supervised by Prof.
Dr. Stefan Axelsson, Dr. Fergus Toolan, and Associate Prof. Dr. Geir Olav
Dyrkolbotn.

This research received funding from the Research Council of Norway programme
IKTPLUSS, under the R&D project “Ars Forensic”, grant agreement 248094/O70.

iii



iv



Acknowledgements

I would first like to sincerely thank my employer, the Norwegian Police University
College (PHS), for allowing me to use time to complete this PhD study. I would
like to thank my main supervisor Prof. Dr. Stefan Axelsson for his continues
support and all the good talks, reviews, advises and contributions. I would also
like to thank Dr. Fergus Toolan for his good reviews and contributions, and for
being a very good colleague at PHS and a friend. In addition, I would also like to
thank my supervisors, and Dr. Radina Stoykova, Dr. Kyle Porter, and Prof. Dr.
Katrin Franke for the good cooperation and discussions in the process of creating
and publishing scientific papers. I must mention Dr. Georgina Louise Humphries,
especially for being a very good colleague at PHS and a friend. She has helped me
significantly with reviews and fixed language issues of both scientific papers and
for this PhD thesis.

Last, but not least I would like to thank the love of my life Veronica Tøvik for her
continues support during this PhD study. She has always been there for me, no
matter how busy I have been.

v



vi



Publications

This thesis is based on the following publications
Paper A Using the object ID index as an investigative approach for NTFS file sys-
tems, Rune Nordvik, Fergus Toolan and Stefan Axelsson. In: Digital Investigation
Volume 28, Supplement. April 2019, Pages S30-S39. DFRWS 2019 Europe —
Proceedings of the 19th Annual DFRWS Conference. DOI: https://doi.org/
10.1016/j.diin.2019.01.013

Paper B Generic Metadata Time Carving, Rune Nordvik, Kyle Porter, Fergus
Toolan and Stefan Axelsson and Katrin Franke. In: Forensic Science Interna-
tional: Digital Investigation Volume 33, Supplement. July 2020, Pages 301005.
DFRWS 2020 USA — Proceedings of the Twentieth Annual DFRWS USA. DOI:
https://doi.org/10.1016/j.fsidi.2020.301005

Note: Awarded the Best Paper Award at DFRWS USA 2020 (DFRWS 2020).

Paper C Timestamp prefix carving for filesystem metadata extraction, Kyle Porter,
Rune Nordvik, Fergus Toolan and Stefan Axelsson. In: Forensic Science Inter-
national: Digital Investigation Volume 38. September 2021, Pages 301266. DOI:
https://doi.org/10.1016/j.fsidi.2021.301266

Paper D It is about time—Do exFAT implementations handle timestamps cor-
rectly?, Rune Nordvik and Stefan Axelsson. In: Forensic Science International:
Digital Investigation Volumes 42/43. October-December 2022, Pages 301476.
DOI: https://doi.org/10.1016/j.fsidi.2022.301476

Note: The version included in this thesis is a corrected version, including the
corrigendum of the original paper (Nordvik and Axelsson 2023).

vii

https://doi.org/10.1016/j.diin.2019.01.013
https://doi.org/10.1016/j.diin.2019.01.013
https://doi.org/10.1016/j.fsidi.2020.301005
https://doi.org/10.1016/j.fsidi.2021.301266
https://doi.org/10.1016/j.fsidi.2022.301476


viii

In addition the the author has also published the following that
is not part of this thesis
Reverse engineering of ReFS, Rune Nordvik, Henry Georges, Fergus Toolan and
Stefan Axelsson. In: Digital Investigation Volume 30, Supplement. September
2019, Pages 127-147. DOI: https://doi.org/10.1016/j.diin.2019.07.
004

Reliability validation for file system interpretation, Rune Nordvik, Radina Stoykova,
Katrin Franke, Stefan Axelsson and Fergus Toolan. In: Forensic Science In-
ternational: Digital Investigation Volume 37. June 2021, Pages 301174. DOI:
https://doi.org/10.1016/j.fsidi.2021.301174

Law enforcement educational challenges for mobile forensics, Georgina Humphries,
Rune Nordvik, Harry Manifavas, Phil Cobley and Matthew Sorell. In: Forensic
Science International: Digital Investigation Volume 38. October 2021, Pages
301129. DOI: https://doi.org/10.1016/j.fsidi.2021.301129

Legal and technical questions of file system reverse engineering, Radina Stoykova,
Rune Nordvik, Munnazzar Ahmed, Katrin Franke, Stefan Axelsson and Fergus
Toolan. In: Computer Law & Security Review: The International Journal of
Technology Law and Practice Volume 46. September 2022, Pages 105725. DOI:
https://doi.org/10.1016/j.clsr.2022.105725

APFS, Rune Nordvik. In: Hummert, C., Pawlaszczyk, D. (eds) Mobile Forensics
– The File Format Handbook. Springer, Cham.. May 2022, Pages 3-39. DOI:
https://doi.org/10.1007/978-3-030-98467-0_1

Ext4, Rune Nordvik. In: Hummert, C., Pawlaszczyk, D. (eds) Mobile Forensics
– The File Format Handbook. Springer, Cham.. May 2022, Pages 41-68. DOI:
https://doi.org/10.1007/978-3-030-98467-0_2

https://doi.org/10.1016/j.diin.2019.07.004
https://doi.org/10.1016/j.diin.2019.07.004
https://doi.org/10.1016/j.fsidi.2021.301174
https://doi.org/10.1016/j.fsidi.2021.301129
https://doi.org/10.1016/j.clsr.2022.105725
https://doi.org/10.1007/978-3-030-98467-0_1
https://doi.org/10.1007/978-3-030-98467-0_2


Contents

List of Tables xxii

List of Figures xxvii

List of Symbols xxxiii

1 Introduction 1

1.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Digital forensics . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Common file system basics . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Partition systems . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 Volume Boot Records . . . . . . . . . . . . . . . . . . . 6

2.2.4 Blocks or clusters . . . . . . . . . . . . . . . . . . . . . . 7

2.2.5 Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.6 Multi byte fields . . . . . . . . . . . . . . . . . . . . . . 7

ix



x CONTENTS

2.2.7 Endianess . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.8 Timestamps . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.9 Atomic write and timestamps . . . . . . . . . . . . . . . 10

2.2.10 Timezone . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.11 Additional sources for File Systems . . . . . . . . . . . . 13

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Related Research 15

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Validation and verification . . . . . . . . . . . . . . . . . . . . . 15

3.3 Daubert Standard (criteria) . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.2 Peer-review . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.3 General acceptance . . . . . . . . . . . . . . . . . . . . . 17

3.3.4 Error rates . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Method validation in Digital Forensics . . . . . . . . . . . . . . . 20

3.5 Dual tool verification . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Reliability Validation Enabling Framework . . . . . . . . . . . . 21

3.6.1 Technology . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 FRED - Framework for Reliable Experiment Design . . . . . . . 23

3.7.1 Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7.2 Implement . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7.3 Evaluate . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7.4 Repeat . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7.5 Analyse . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



CONTENTS xi

3.7.6 Confirm . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.8 File Carving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.9 Metadata carving . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.10 Timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Contribution and publication summaries 33

4.1 Publication A - Using the object ID index as an investigative ap-
proach for NTFS file systems . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.2 Research contributions . . . . . . . . . . . . . . . . . . . 34

4.1.3 Technical contributions . . . . . . . . . . . . . . . . . . . 35

4.1.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Publication B - Generic Metadata Time Carving . . . . . . . . . . 37

4.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Research contributions . . . . . . . . . . . . . . . . . . . 37

4.2.3 Technical contributions . . . . . . . . . . . . . . . . . . . 38

4.2.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Publication C - Timestamp prefix carving for filesystem metadata
extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.2 Research contributions . . . . . . . . . . . . . . . . . . . 40

4.3.3 Technical contributions . . . . . . . . . . . . . . . . . . . 40

4.3.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 40



xii CONTENTS

4.4 Publication D - Its about time—Do exFAT implementations handle
timestamps correctly? . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.2 Research contributions . . . . . . . . . . . . . . . . . . . 41

4.4.3 Technical contributions . . . . . . . . . . . . . . . . . . . 43

4.4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Discussion 45

5.1 General weaknesses with methodology . . . . . . . . . . . . . . . 45

5.2 General strengths with methodology . . . . . . . . . . . . . . . . 46

5.3 R1: Identifying user activity using FS metadata . . . . . . . . . . 46

5.3.1 Publication A: Using the object ID index as an investigat-
ive approach for NTFS file systems. . . . . . . . . . . . . 47

5.3.2 Publication D: Its about time—Do exFAT implementations
handle timestamps correctly? . . . . . . . . . . . . . . . . 48

5.4 R2: Connecting storage devices to computers using FS metadata . 48

5.4.1 Publication A: Using the object ID index as an investigat-
ive approach for NTFS file systems. . . . . . . . . . . . . 49

5.4.2 Publication D: Its about time—Do exFAT implementations
handle timestamps correctly? . . . . . . . . . . . . . . . . 49

5.5 R3: Using FS metadata to identify deleted files . . . . . . . . . . 50

5.5.1 Publication B: Generic Metadata Time Carving and Pub-
lication, C: Timestamp prefix carving for filesystem meta-
data extraction . . . . . . . . . . . . . . . . . . . . . . . 50

5.5.2 Publication D: Its about time—Do exFAT implementations
handle timestamps correctly? . . . . . . . . . . . . . . . . 51

5.6 R4: FS tool reliability and validation . . . . . . . . . . . . . . . . 53



CONTENTS xiii

5.6.1 Publication A: Using the object ID index as an investigat-
ive approach for NTFS file systems . . . . . . . . . . . . 54

5.6.2 Publication B: Generic Metadata Time Carving . . . . . . 55

5.6.3 Publication C: Timestamp prefix carving for filesystem meta-
data extraction . . . . . . . . . . . . . . . . . . . . . . . 57

5.6.4 Publication D: Its about time—Do exFAT implementations
handle timestamps correctly? . . . . . . . . . . . . . . . . 58

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Conclusion and further work 61

6.1 To what degree can user activity be documented from non-OS
volumes (external storage devices) using only FS metadata from
the file system? . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 To what degree can an external storage device be used to identify
the computers it has been attached to by only assessing metadata
from the file system? . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 To what extent can FS metadata reliably identify deleted files? . . 62

6.4 To what extent can the reliability and accuracy of file system pars-
ing performed by current DF tools be assessed? . . . . . . . . . . 63

6.5 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A Publication A: Using the object ID index as an investigative approach
for NTFS file systems 75

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.2 Related work and contributions . . . . . . . . . . . . . . . . . . . 79

A.2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . 79

A.2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 81

A.3 Research goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.3.1 Research questions . . . . . . . . . . . . . . . . . . . . . 82

A.3.2 Automation . . . . . . . . . . . . . . . . . . . . . . . . . 82



xiv CONTENTS

A.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.4.1 Object ID creation . . . . . . . . . . . . . . . . . . . . . 83

A.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.5.1 File creation . . . . . . . . . . . . . . . . . . . . . . . . 89

A.5.2 Opening a file . . . . . . . . . . . . . . . . . . . . . . . . 89

A.5.3 Copying a file (same volume) . . . . . . . . . . . . . . . 90

A.5.4 Copying a file (other volume) . . . . . . . . . . . . . . . 91

A.5.5 Moving a file (same volume) . . . . . . . . . . . . . . . . 91

A.5.6 Moving a file (other volume) . . . . . . . . . . . . . . . . 91

A.5.7 Deleting a file . . . . . . . . . . . . . . . . . . . . . . . . 92

A.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.6.1 Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.6.2 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.8 Conclusions and future work . . . . . . . . . . . . . . . . . . . . 95

B Publication B: Generic Metadata Time Carving 99

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 101

B.1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.1.3 Novelty of the new approach . . . . . . . . . . . . . . . . 102

B.1.4 Importance for Digital Forensics . . . . . . . . . . . . . . 103

B.1.5 Organization of this paper . . . . . . . . . . . . . . . . . 103

B.2 Related work and contributions . . . . . . . . . . . . . . . . . . . 103

B.2.1 Metadata carving . . . . . . . . . . . . . . . . . . . . . . 104

B.2.2 Evaluating recovered files . . . . . . . . . . . . . . . . . 105

B.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



CONTENTS xv

B.3.1 General Potential Timestamp Algorithm Description . . . 106

B.3.2 Practical Potential Timestamp Program Details . . . . . . 108

B.3.3 Semantic parsers . . . . . . . . . . . . . . . . . . . . . . 108

B.3.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . 111

B.3.5 Experiment - NTFS reformatted with exFAT . . . . . . . 111

B.3.6 Experiment - Previous Ext4 reformatted with NTFS . . . 112

B.3.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 113

B.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B.4.1 NTFS metadata carving . . . . . . . . . . . . . . . . . . 114

B.4.2 Ext4 metadata carving . . . . . . . . . . . . . . . . . . . 115

B.4.3 Commercial tools . . . . . . . . . . . . . . . . . . . . . . 117

B.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.5.1 Discussion related to NTFS . . . . . . . . . . . . . . . . 119

B.5.2 Discussion related to Ext4 . . . . . . . . . . . . . . . . . 120

B.5.3 Addressing Our Statistics and Current Challenges . . . . . 120

B.6 Conclusion and further work . . . . . . . . . . . . . . . . . . . . 121

C Publication C: Timestamp prefix carving for filesystem metadata ex-
traction 127

C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

C.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

C.2.1 Metadata Carving . . . . . . . . . . . . . . . . . . . . . . 131

C.2.2 Related Methods of Data Retrieval . . . . . . . . . . . . . 133

C.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

C.3.1 Prefix-Based Potential Timestamp Carving Algorithm . . 133

C.3.2 Generic Metadata Time Carving and the Filesystem Spe-
cific Parsers . . . . . . . . . . . . . . . . . . . . . . . . . 136

C.3.3 Experimental Methodology . . . . . . . . . . . . . . . . 138



xvi CONTENTS

C.3.4 Precision-Recall Location-Based Data Recovery Evaluation 139

C.3.5 Specifics of NTFS Experiments . . . . . . . . . . . . . . 141

C.3.6 Specifics of Ext4 Experiments . . . . . . . . . . . . . . . 142

C.3.7 Computer Specifications . . . . . . . . . . . . . . . . . . 142

C.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

C.4.1 Small NTFS Image . . . . . . . . . . . . . . . . . . . . . 143

C.4.2 Ext4 Samsung S8 Image . . . . . . . . . . . . . . . . . . 143

C.4.3 Large NTFS Image . . . . . . . . . . . . . . . . . . . . . 145

C.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

C.5.1 Analysis: Small NTFS Image . . . . . . . . . . . . . . . 148

C.5.2 Analysis: Ext4 Samsung S8 Image . . . . . . . . . . . . . 149

C.5.3 Analysis: Large NTFS Image . . . . . . . . . . . . . . . 149

C.5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 150

C.5.5 Revisiting Research Questions . . . . . . . . . . . . . . . 154

C.6 Conclusion and Further Work . . . . . . . . . . . . . . . . . . . . 157

C.7 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . 158

C.8 Prefix-Based Potential Timestamp Carving Algorithm . . . . . . . 159

D Publication D: It is about time—Do exFAT implementations handle
timestamps correctly? 165

D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

D.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 168

D.1.2 Research problem . . . . . . . . . . . . . . . . . . . . . . 170

D.1.3 Organisation of this paper . . . . . . . . . . . . . . . . . 172

D.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

D.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

D.3.1 Experiment A - Base . . . . . . . . . . . . . . . . . . . . 174



CONTENTS xvii

D.3.2 Experiment B - mounting and unmounting only . . . . . . 176

D.3.3 Experiment C - accessing selected files . . . . . . . . . . 176

D.3.4 Experiment D - changing the content of all files . . . . . . 177

D.3.5 Experiment E - changing the content of selected files . . . 177

D.3.6 Tool Testing . . . . . . . . . . . . . . . . . . . . . . . . . 178

D.3.7 Limitations and assumptions . . . . . . . . . . . . . . . . 178

D.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

D.4.1 Experiment A - Creating files on an exFAT storage . . . . 179

D.4.2 Experiment B - Mounting exFAT storage . . . . . . . . . 181

D.4.3 Experiment C - Opening files . . . . . . . . . . . . . . . 181

D.4.4 Experiment D and E: Changing exFAT files on multiple OSes184

D.4.5 10msIncrement fields . . . . . . . . . . . . . . . . . . . . 185

D.4.6 Tool testing . . . . . . . . . . . . . . . . . . . . . . . . . 185

D.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

D.5.1 Rules for updating timestamps . . . . . . . . . . . . . . . 191

D.5.2 10ms granularity . . . . . . . . . . . . . . . . . . . . . . 192

D.5.3 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

D.5.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 193

D.5.5 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

D.6 Conclusion and Further Work . . . . . . . . . . . . . . . . . . . . 195



xviii CONTENTS



List of Tables

2.1 Most file systems use a volume boot record . . . . . . . . . . . . 7

2.2 Endianess in a 4 byte field . . . . . . . . . . . . . . . . . . . . . 8

2.3 Epochs used by different file systems . . . . . . . . . . . . . . . . 8

2.4 Different Ext timestamps found in inodes, listed in the order they
are found in the structure . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Timestamps found in two different MFT attributes, listed in the
order they are found in each attribute. . . . . . . . . . . . . . . . 10

2.6 Timestamps found in File Directory Entries in exFAT, listed in the
order they are stored. . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Reliability Validation Enabling Framework . . . . . . . . . . . . 22

3.2 Action sequences for the simple file system. All other combina-
tions are impossible without manipulation. The list is filtered down
from Willassen (2009) original list. . . . . . . . . . . . . . . . . 30

3.3 Action sequences for a simple file system with the update on ac-
cess disabled, meaning the action Read has no impact. All other
combinations are impossible without manipulation . . . . . . . . 30

4.1 Summary for experiments creating files - All tested file system
drivers limiting to one particular timezone. . . . . . . . . . . . . . 42

xix



xx LIST OF TABLES

5.1 File directory entry (The fields are mandatory) . . . . . . . . . . . 52

A.1 Offet table index entry, based on Carrier (2005, pp. 386-387). . . . 86

A.2 Experiment 1 - Test 1: File Creation. . . . . . . . . . . . . . . . . 89

A.3 Experiment 1 - Test 2: Opening a file. . . . . . . . . . . . . . . . 90

A.4 Experiment 1 - Test 3: Copying file to the same volume. . . . . . 90

A.5 Experiment 1 - Test 4: Copying file to another volume. . . . . . . 91

A.6 Experiment 1 - Test 5: Moving file to the same volume. . . . . . . 91

A.7 Experiment 1 - Test 6: Moving file to another volume. . . . . . . . 92

A.8 Experiment 1 - Test 7: Deleting a file. . . . . . . . . . . . . . . . 93

B.1 File Systems with timestamps co-located within metadata structures 102

B.2 Precision and Recall for finding MFT records in ntfsexfat.dd . . . 114

B.3 Precision and Recall for finding and attributing iNode numbers for
known files in expExt4Attr.dd . . . . . . . . . . . . . . . . . . . 116

B.4 Precision of iNode classification for non-reformatted image. . . . 116

B.5 Precision and Files Found for finding and attributing iNode num-
bers for known files in Ext4AttrNowNTFS.dd . . . . . . . . . . . 116

B.6 Precision of inode classification for reformatted image. . . . . . . 117

B.7 Tool testing - Carve for metadata from previous file system when
reformatted with another file system. . . . . . . . . . . . . . . . . 117

C.1 Precision and recall for carving MFT records from the $MFT from
the 1 GB NTFS image’s partition beginning at sector 128 with
p = 1, 2, . . . , 8. The $MFT had 239 Condition Positives. . . . . . 144

C.2 Test Positive count over entire partition from the 1 GB NTFS im-
age, where p = 1, 2, . . . , 8. . . . . . . . . . . . . . . . . . . . . . 144

C.3 Generic Metadata Time Carving performance for the entire 1 GB
NTFS image with p = 1, 2, . . . , 8. PTS stands for “Potential Time-
stamp”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



LIST OF TABLES xxi

C.4 Precision and recall for carving inodes from the inode table from
the SYSTEM partition in the 59.5 GB Ext4 Samsung S8 image
with p = 1, 2, 3, 4. The inode table had 7436 Condition Positives. 145

C.5 Test Positive count over entire SYSTEM partition from the Ext4
Samsung S8 image, where p = 1, 2, 3, 4. . . . . . . . . . . . . . 146

C.6 Generic Metadata Time Carving performance for the entire 59.5
GB Samsung S8 image with p = 1, 2, 3, 4. PTS stands for “Poten-
tial Timestamp”, m for minutes, and s for seconds. Note, the Ext4
parser skips the first approximately 210 MB. . . . . . . . . . . . . 146

C.7 Precision and recall for carving MFT records from the $MFT of
the Basic Data Partition from the 476 GB LoneWolf NTFS image
with p = 1, 2, . . . , 8. The $MFT had 142960 Condition Positives. 147

C.8 Precision and recall for carving MFT records from the $LogFile of
the Basic Data Partition from the 476 GB LoneWolf NTFS image
with p = 1, 2, . . . , 8. The $LogFile had 2604 Condition Positives. 147

C.9 Test Positive count over entire Basic Data Partition from the large
LoneWolf NTFS image, where p = 1, 2, . . . , 8. . . . . . . . . . . 148

C.10 Files containing the remaining Test Positives not found in the $MFT
or $LogFile of the Basic Data Partition, where p = 1. The num-
ber associated to each file indicates how many MFT records were
found in that particular file. . . . . . . . . . . . . . . . . . . . . . 148

C.11 Generic Metadata Time Carving performance for the entire 476
GB NTFS image with p = 1, 2, . . . , 8. PTS stands for “Potential
Timestamp”, hr for hours, m for minutes, and s for seconds. . . . 149

D.1 File directory entry (all fields are mandatory) . . . . . . . . . . . 171

D.2 Experiment A Results - MacOS. We can see that stored timestamps
use a timezone offset with switched signs compared to the com-
puter the experiments were executed on . . . . . . . . . . . . . . 179

D.3 Experiment A Results - Win10. We can see that all types of time-
stamps are stored using the local UTC offset of the computer the
experiments were executed on, and that real time is the same as
stored time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



xxii LIST OF TABLES

D.4 Experiment A Results - Linux Ubuntu 20.04 using exFAT fuse v.1.3.
We can see that the timestamps are stored using the local time of
the computer the experiments were executed on, and that real time
is the same as stored time. However, the UTCOffset fields are not
in use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

D.5 Experiment A Results - Linux Ubuntu 20.04 using exFAT native
driver. We can see that the timestamps are stored using UTC+0,
not the local time of the computer the experiments were executed
on. The UTCOffset fields are used (set to 0x80). . . . . . . . . . . 180

D.6 Experiment B Results - MacOS. Impact of mounting and unmounting181

D.7 Experiment C Results. Impact of opening files . . . . . . . . . . . 181

D.8 Experiment D and E Results - Changes in Timestamps, 10msIncre-
ment and UTCOffset fields in the exFAT file directory entry when
changing the files on Windows, MacOS or Linux. The C* means
a special case where an invalid UTCOffset for the Created is in-
terpreted incorrectly and then the Created timestamps is converted
using the switching feature of MacOS. . . . . . . . . . . . . . . . 185

D.9 Experiment Results - Usage of the 10ms granularity fields in the
exFAT file directory entrywhen using Windows, MacOS or Linux. 186

D.10 Experiment Results - MacOS and Autopsy v. 4.19.3 . . . . . . . . 186

D.11 Experiment Results - MacOS and FTK Imager v. 4.5.0.3 . . . . . 187

D.12 Experiment Results - MacOS and X-Ways Forensics v. 20.04 SR-4 187

D.13 Experiment Results - MacOS and EnCase Forensic v. 22.1 . . . . 187

D.14 Rules for updating timestamps - compliance . . . . . . . . . . . . 191



List of Figures

2.1 First 32 bytes of an Ext4 inode, including timestamps. . . . . . . . 9

2.2 Atomic Write as implemented by an App using glibc in Linux. . . 11

2.3 ExFat timestamps on a file created in MacOS Big Sur v. 11.6.,
where the timezone is Central European Standard Time (UTC+1). 13

2.4 ExFat timestamps on a file created in Windows 10 pro v. 2004.,
where the timezone is Central European Standard Time (UTC+1),
we selected (UTC+1) Amsterdam, Berlin, Bern, Rome, Stock-
holm, Vienna as the timezone. . . . . . . . . . . . . . . . . . . . 13

3.1 Investigation Stages (Sunde and Horsman 2021) . . . . . . . . . . 17

3.2 Validation Framework, based on The United Kingdom Forensic
Science Regulator (2020) . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Structure of an Object ID UUID version 1. . . . . . . . . . . . . . 34

4.2 Connecting ObjID index record with NTFS MTF record. . . . . . 36

4.3 Connecting inodes with directory entries. . . . . . . . . . . . . . 39

5.1 Unallocated directory set after rename. . . . . . . . . . . . . . . . 53

5.2 Allocated directory set after rename. . . . . . . . . . . . . . . . . 53

5.3 ObjID index entry. . . . . . . . . . . . . . . . . . . . . . . . . . 55

xxiii



xxiv LIST OF FIGURES

5.4 Hex dump with highlights to illustrate the timestamp prefix match-
ing search procedure. The byte sequence underlined in green rep-
resents the current candidate timestamp, and those underlined with
blue are test sequences. The brackets represent the candidate time-
stamp’s search window (k = 24). The red boxes represent the
little-endian prefixes (p = 4) that are being compared for equi-
valency. The first two examples show matches, despite the fact
the candidate timestamp does not equal the subsequent ones. If
three matching timestamps are required (h = 3), the third example
shows the advancement of the search by k bytes, and begins to re-
peat the entire procedure. . . . . . . . . . . . . . . . . . . . . . 57

A.1 Structure of an Object ID UUID version 1. . . . . . . . . . . . . . 78

A.2 Exporting the MFT table, and MFT record number 25. . . . . . . 84

A.3 Hex dump of the Index Allocation Attribute. . . . . . . . . . . . . 84

A.4 Exporting the Object ID Index Allocation non resident data, and
show one Object ID Index Entry. . . . . . . . . . . . . . . . . . . 85

A.5 Hex dump of an Object Index Entry. . . . . . . . . . . . . . . . . 85

A.6 C structure of an Object ID index entry. . . . . . . . . . . . . . . 86

A.7 NTFSObjIDParser output. Results are split between (a) and (b). . 88

B.1 Visual representation of the search procedure where three match-
ing time stamps are searched for. The underlined byte sequence
represents the current byte sequence being tested as a possible
timestamp. The subsequent bytes in brackets represent the search
threshold for checking matches. The bytes in grey boxes represent
checks for matching byte sequences. In the second row, after a
second match is found, we advance the search procedure ahead by
k bytes, where the process is repeated. . . . . . . . . . . . . . . . 107

B.2 Diagram for system deployment, used in our experiments. . . . . 108



LIST OF FIGURES xxv

C.1 An abstraction of a simple disk image, partitions, and filesystems.
The large encompassing rectangle is the entire disk image, the fur-
thest left rectangle with internal lines is the partition table that
points to the partitions, and the other rectangles with rounded corners
are partitions. Each partition has a filesystem, where the green
rectangles represent filesystem critical data structures such as the
$MFT record (and its mirror), superblock, or group descriptor table.
These help keep track of the filesystem records (for example, in-
odes or MFT records), which are represented by the red rectangles.
Generic Metadata Time Carving (Nordvik et al. 2020a), and our
work, attempts to find the red blocks without help from the green
blocks. For a more complete picture of the general filesystem
structure, see the work by Carrier (Carrier 2005). . . . . . . . . . 131

C.2 For 8 byte timestamps, the candidate timestamp is highlighted
with green, and the test sequences are highlighted in blue. The
search window is indicated by the brackets. The timestamp equi-
valency test simply checks how many times the candidate time-
stamp matches the test sequences. If the number of matches is
greater than or equal to the threshold h− 1, where h is the number
of required matching timestamps within a metadata record set by
the user, the candidate timestamp is deemed a potential timestamp. 134

C.3 Hex dump with highlights to illustrate the timestamp prefix match-
ing search procedure. The byte sequence underlined in green rep-
resents the current candidate timestamp, and those underlined with
blue are test sequences. The brackets represent the candidate time-
stamp’s search window. The red boxes represent the little-endian
prefixes that are being compared for equivalency. The first two
examples show matches, despite the fact the candidate timestamp
does not equal the subsequent ones. If three matching timestamps
are required (h = 3), the third example shows the advancement of
the search by k bytes, and begins to repeat the entire procedure. . 135

C.4 Histogram comparing the number of Condition Positives we ac-
count for on the Basic Data Partition of the 476 GB Lone Wolf im-
age and the number of potential timestamp (PTS) locations identi-
fied after carving for all possible prefix lengths. . . . . . . . . . . 152



xxvi LIST OF FIGURES

C.5 Histogram comparing the number of Condition Positives we ac-
count for on the SYSTEM partition of the 59.5 GB Samsung S8
image and the number of potential timestamp (PTS) locations iden-
tified after carving for all possible prefix lengths. . . . . . . . . . 153

D.1 ExFat set of directory entries. . . . . . . . . . . . . . . . . . . . . 169

D.2 ExFat allocation of directory entries. . . . . . . . . . . . . . . . . 169

D.3 ExFat timeszone field, from hex byte to UTC offset. . . . . . . . . 170

D.4 Overview of all experiments, and all of them have a forensic image
associated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

D.5 Changes in timestamps and UTCOffset fields when opening a file
using Gedit in Linux Ubuntu 20.04 exFAT fuse driver. The LastAc-
cessedTimestamp is changed using local time (LT), which was UTC-
5, however the LastAccessedUtcOffset is not changed. In this case
the last accessed is inaccurate. . . . . . . . . . . . . . . . . . . . 182

D.6 Changes in timestamps and UTCOffset fields when opening a file
using Gedit in Linux Ubuntu 20.04 exFAT native driver. The LastAc-
cessedTimestamp is stored as UTC+0, however the CreateUtcOff-
set and LastModifiedUtcOffset are also changed to UTC+0, but
not the timestamps. In this case the create and last modified time-
stamps are inaccurate. . . . . . . . . . . . . . . . . . . . . . . . . 182

D.7 Changes in timestamps and UTCOffset fields when opening a file
using TextEdit in MacOS Monterey/Mojave. The LastAccessed-
Timestamp is stored as UTC+5, even though the real timezone was
UTC-5. The CreateUtcOffset is not changed, but the LastMod-
ifiedUtcOffset is changed to UTC+5, trying to convert LT from
UTC-5 to UTC+5. In this case the last modified timestamp is in-
accurate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

D.8 Changes in timestamps and UTCOffset fields when opening a file
using Notepad in Windows 10. Nothing was changed. In this case
the LastAccessedTimestamp is inaccurate. . . . . . . . . . . . . . 183

D.9 ExFat timezones using stored UTC-1 offset for Experiment3 on
MacOS and the X-Ways directory listing . . . . . . . . . . . . . . 188

D.10 ExFat timeszones using stored UTC-1 offset for Experiment3 and
the X-Ways for D2022-02-24T01-53-54-tz-3-file1.txt . . . . . . . 188



LIST OF FIGURES xxvii

D.11 ExFat timeszones using stored UTC+3 offset for Experiment0 from
the Linux Base exFAT fuse image and the EnCase . . . . . . . . . 189

D.12 ExFat timeszones using Europe/Oslo timezone (UTC+1) for Experiment-
3 and the Windows 10 computer. . . . . . . . . . . . . . . . . . . 191



xxviii LIST OF FIGURES



List of Abbreviations

ACPO Association of Chief Police Officers

APFS Apple File System

API Application Programming Interface

ASCII American Standard Code for Information Interchange

AV I Audio Video Interleave, a container for multimedia

BE Big Endian

BV OID Birth Volume Object ID

CAB Windows Cabinet files, compressed containers often used by installation
programs

CFTT Computer Forensic Tool Testing

CMD Command

COW Copy-On-Write

cPTS Tool written in c, which finds potential Timestamps

CPU Central Processing Unit

DF Digital Forensic

DFRWS Digital Forensic Research Workshop

DLL Dynamic Link Library

xxix



xxx LIST OF ABBREVIATIONS

DOC Document files

Epoch Start number of a timestamp from a specific year 0

exFAT extensible File Allocation Table, or the exFAT file system

Ext2 Second extended file system. Normally used on Linux distributions

Ext3 Third extended file system. Normally used on Linux distributions

Ext4 Fourth extended file system. Normally used on Linux distributions

FAT File Allocation Table

FNA File Name Attribute, contains the file name and additional set of time-
stamps in NTFS

FRED Framework for reliable experimental design

FS File System

fte file time extractor

FTK Forensic Toolkit

GDPR General Data Protection Regulation

GiB GibiByte, or 230 or 10243

glibc GNU library for C

GMT Greenwhich Mean Time

GMTC Generic Metadata Time Carver

GPT GUID partition table system

GUID Global Unique Identifier

IMRAD Introduction, Method, Results and Discussion

Inodes File or directory metadata records

IoT Internet of Things

JPEG Joint Photographic Experts Group

LE Law Enforcement



LIST OF ABBREVIATIONS xxxi

LE Little Endian

LEA Law Enforcement Agency

MAC Media Access Control

MBR Master Boot Record, usually the first sector of the disk

Metadata Data describing other data

MFT Master File Table. All files and records have at least one record in the MFT
in NTFS

MMS Multimedia Messaging Service

MSB Most Significant Byte

MSOLE Microsoft Object Linking and Embedding

NIC Network Interface Controller

NTFS New Technology File System

OID Object ID

OOXML Microsoft Open Office XML File Format

OS Operating System

OUI Organisation Unique Identifier, the first 3 bytes of an MAC address

OUI Organizationally Unique Identifier

PID Process Identifier

PNG Portable Network Graphics

PST Personal Storage, often used as containers for outlook e-mail (POP ac-
counts)

QT Graphical application programming interface for C++

RAM Random Access Memory (primary memory)

RV EF Reliable Validation Enabling Framework

SIA Standard Information Attribute, contains metadata such as the main set of
timestamps for a file in NTFS



xxxii LIST OF ABBREVIATIONS

SVM Support Vector Machine

TXT Text

USB Universal Serial Bus

UTC Coordinated Universal Time

UUID Universal Unique Identifier

V BR Volume boot sector is a sector describing metadata about the file system
and booting features.

ZIP ZIP archive, where ZIP means move at high speed



List of Symbols

√

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Square Root∑

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sum

e

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Average of error

S2
e

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Error Variance

Se

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Error Standard Deviation

xxxiii



xxxiv LIST OF ABBREVIATIONS



Chapter 1

Introduction

Law Enforcement (LE) has become tool dependent when investigating criminal
cases that involve digital storage and this dependency is justified due to the large
backlog (Lillis and Scanlon 2016, Scanlon 2016). Even though previous research
has found errors when assessing digital forensic tool results (failure to detect anti-
forensic techniques (Bhat et al. 2020), 88% of practitioners have experienced er-
rors using forensic tools (Horsman 2019), tool developers do not guarantee error-
free tools (Horsman 2018b)), the focus on the file system interpretation performed
by tools are more or less missing.

Digital forensic experts need to read the files and directories from a file system
(FS) when investigating data storage devices, and one approach is reading it using
the driver provided by the file system developer. However, the driver may change
the file system data based on the usage of the file system during the investigation,
and is therefore not considered forensically sound. Using the original driver does
not give access to deleted files or other content in the unallocated areas of the file
system. Therefore, it is considered good practice to make a forensic image of the
storage device, and use digital forensic tools to parse the file systems in a read
only mode. Hash algorithms are utilised to preserve the integrity of the data. As
long as the hash verifies, the data integrity is intact. This good practice is based on
the first principle from the Association of Chief Police Officers’s (ACPO) Good
Practice Guides for Digital Evidence, which requires that the data relied upon in
court should not be changed (Williams 2012). Unfortunately, it is more difficult to
assure data integrity during the acquisition process from a live device, for instance
a mobile phone, since the device is changing parts of the data as long as it is alive.
Horsman (2020) requires that all reasonable steps are taken to ensure the data is
unchanged in his new fifth principle, preserving the data integrity as far as it is
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2 Introduction

practical. This principle opens for not preserving the integrity when this is very
resource demanding or impossible.

This thesis depends on already acquired data including one or more complete file
system where the content is already hashed, and where it is possible to preserve
the integrity of the data. Horsman (2020) describes in his third principle that the
investigators need to identify any and all relevant potential evidence, taking into
account proportionality and necessity. Unfortunately, it is not possible to decide
what is relevant, proportional, and necessary without actually viewing, assessing,
and classifying the content either manually or automatically by using tools. Clas-
sification without viewing the content must be based on assumptions. Without the
complete file system, it is often not possible to find relevant deleted content or
relevant metadata describing file content or user activity. Therefore, the sugges-
ted granular approach should be applied after this classification is performed by
filtering out non-relevant data.

We focus on the importance of file system metadata in an investigation context.
Metadata is data describing other data (Carrier 2005), and metadata describ-
ing files is imperative for any investigation. These metadata structures (inodes)
normally contain information about timestamps, location of content, owner, priv-
ileges, name, parent directory, and are all properties of a particular file or direct-
ory (Carrier 2005).

Large digital forensic suites automate the parsing of popular file systems, and the
accuracy and reliability are trusted by most digital forensic practitioners. This as-
sumption is based on trust, not on rigorous scientific principles. Scanlon (2016)
describes that practitioners depend on tools because of the large backlog, which
means they trust the tools. Neale et al. (2022) describe trust in criminal investiga-
tion and warn about the negative impact trusting tools may have on the investiga-
tion. Can we trust that digital forensic tools parsing different file systems produce
accurate and reliable results, and will they show all relevant data? This leads us to
the following questions.

1.1 Research questions
1. To what degree can user activity be documented from non-OS volumes (ex-

ternal storage devices) using only FS metadata from the file system?

2. To what degree can an external storage device be used to identify the com-
puters it has been attached to by only assessing metadata from the file sys-
tem?

3. To what extent can FS metadata reliably identify deleted files?
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4. To what extent can the reliability and accuracy of file system parsing per-
formed by current DF tools be assessed?

We have mainly focused on three main file systems; NTFS (used on Windows
OS), Ext4 (used on Linux or Android OSes), and exFAT (often used on multiple
OSes).

The New Technology File System (NTFS) is a commonly encountered closed
source file system from Microsoft. NTFS was implemented in 1993 in Windows
NT 3.1 (Baloja 2017, Fandom 1993), and it is still used as the standard file sys-
tem in Windows 10 (Karresand et al. 2020b) and 11. There has been a significant
amount of research in this area, and Carrier (2005) has written chapters about
the structures in NTFS that are important for digital investigation and analysis.
However, still there are some unknown structures that may be relevant in criminal
investigations. We have especially focused on the investigative value of object ids
(Nordvik et al. 2019b) and carving for metadata for file recovery purposes based
on co-located timestamps within the Standard Information Attribute (SIA) and the
File Name Attribute (FNA) (Nordvik et al. 2020b).

Ext4 is an open source file system that builds on the previous Ext2 and Ext3 ver-
sions. Even if this is an open source file system with well known structures, from
an investigation perspective, it is interesting to see if we can increase the accuracy
and reliability of recovered files. Traditional techniques focus on carving for un-
allocated files, excluding the metadata. However, more recently other techniques
have been proposed for metadata carving (Dewald and Seufert 2017a). We pro-
pose a more generic approach by carving inodes or MFT records based on their
co-located timestamps. These timestamps are identified by their equality proper-
ties (Nordvik et al. 2020b) or by prefix equality (Porter et al. 2021). The latter
approach means testing the equality of the x number of the most significant bytes
in the timestamps. The two approaches are equal when x equals the number of
bytes in the timestamp. These approaches identify file metadata structures, allow-
ing more accurate recovery of files.

In our latest contribution, Nordvik and Axelsson (2022), we have performed ex-
periments on the exFAT file system. The experiments were used to validate tools
and to assess how different operating systems and exFAT file system drivers have
implemented the exFAT specifications. Furthermore, we assessed if the timezone
offset of the computer used could be found within the exFAT metadata. We can-
not assume that different file system drivers implement the same specification
identically. We observed that using a storage device on different operating sys-
tems, with different file system drivers, impact the accountability of the metadata
stored (Nordvik and Axelsson 2022).



4 Introduction

1.2 Summary
In this chapter an introduction to metadata of file systems, investigation tool de-
pendency, evidence relevance, proportionality, and necessity, and the thesis re-
search questions were given. In order to increase the reader target group, a basic
background on file systems is introduced in chapter 2. Chapter 3 focuses on re-
lated work. Then a presentation of the thesis results are presented in chapter 4, and
further discussed how the results are relevant to the overall research questions in
the chapter 5. Finally, the thesis concludes in chapter 6. The remaining chapters
include the papers this thesis is comprised of.



Chapter 2

Background

In this section we will introduce the reader to file system basics, because the ba-
sics are important to know in order to understand our research. We will include
common file system features and others specific to selected file systems.

2.1 Digital forensics
At the earliest stage of digital forensics, about 50 years ago (Garfinkel 2010), the
main focus was recovery of deleted files, which required file system knowledge or
tools that utilised this knowledge. There were several research publications about
file systems, and it is legitimate to ask if there could be more unanswered ques-
tions about the most common file systems. Without the knowledge of the metadata
structures in file systems, we can only carve for files based on signatures or other
known semantics (patterns). In order to analyse file systems, knowledge of file sys-
tem metadata is essential. We depend on file system forensics in order to perform
digital forensics (Marshall and Paige 2018). In the golden age of digital forensics
(1999-2007) investigators with little training could use automated tools to recover
deleted files and the main focus was on the Windows file systems (Garfinkel 2010).

Currently, investigators are tool dependent because of large backlogs (Scanlon
2016), and the accuracy of tools are often based on trust, not science (Neale et al.
2022). The security of devices is increased, making it harder to access file systems
due to encryption (Caviglione et al. 2017). New file systems have been introduced
that tools do not fully support. New file systems and operating systems are intro-
duced for mobile phones, drones, IoT devices, cloud solutions, etc. As such, law
enforcement practitioners must understand file system metadata structure in order
to verify findings and increase the quality of the investigation.

5
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2.2 Common file system basics
In this section we discuss concepts that are currently used by most file systems. We
will not go into detail about each metadata structure for each of the selected file
systems. The details about particular file systems are described in the publications
of this thesis. For more information about file systems, we suggest the File System
Forensic Analysis book by Carrier (2005) as a good reference.

2.2.1 Volumes

All file systems use the concept of volumes, for instance a file system volume. A
volume can be defined as:

"A volume is a collection of addressable sectors that an Operating System (OS) or
application can use for data storage." (Carrier 2005)

A volume is a logical set of contiguous sectors, but these sectors do not need to
be physically contiguous. Therefore, all sectors of a complete storage device is
a volume (disk volume), a partition is a volume, and the set of sectors used for a
file system is a volume. A file system volume may just as well merge different
partitions from different physical devices into one volume. Even a file system
volume may divide the volume into further volumes. For instance, the Apple File
System (APFS) uses the concept of a container volume which is located on a
partition volume, and the container will divide this container volume into sub-
volumes (Hansen and Toolan 2017).

2.2.2 Partition systems

The two most popular partition systems used for storage devices are the legacy
master boot record (MBR) and the Global Unique Identifier (GUID) Partition
Table (GPT ). APFS has, in addition to the used GPT system, their own internal
volume system, managed by the Container volume (Hansen and Toolan 2017).

Partition systems define a number of partition volumes, their locations on the disk,
and sometimes identifies the type of volume that should be present. The MBR can
support 4 partitions if extended partition tables are not in use, and the GPT supports
128 partitions as standard (Carrier 2005). An APFS container can add their own
additional volumes within the assigned partition volume, where allocation status
and content blocks may be shared between internal APFS volumes (Hansen and
Toolan 2017).

2.2.3 Volume Boot Records

A FS will normally be located within a partition. Within the FS there is a volume
boot record (called superblock in Ext), often located near the start of the FS volume.
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Figure 2.1 shows that different file systems use multiple names for the same volume
boot record (V BR) concept. This record contains metadata about the file system it
self and is necessary for the FS driver to locate the different parts of the file system,
e.g. location of inodes, location of allocation table, location of data blocks, etc.

Table 2.1: Most file systems use a volume boot record

Boot records FS

Superblock Ext2,3,4
Container Superblock APFS

Volume Header HFS+
VBR NTFS, FAT, exFAT, ReFS

2.2.4 Blocks or clusters

The concept of blocks and clusters is the same, and it describes a set of sectors as
an addressable unit. A block or a cluster is the smallest unit that can be assigned to
a file Carrier (2005). No matter how small a file is, it will at a minimum contain one
block or cluster if it uses non-resident data. Some file systems allow small files to
be stored resident within the file metadata entry (Ext4 (and Ext2/Ext3) Wiki 2019,
Carrier 2005), using the blocks assigned to the metadata table.

2.2.5 Sector

A sector is the smallest unit the OS can write to or read from (Carrier 2005).
Traditionally, a sector was 512 bytes. However, a sector may just as well be 2x

bytes, for instance 1024, 2048, 4096, etc. bytes. We have not observed smaller
sector sizes than 512 bytes. We have observed 4096 bytes sectors on iOS and
Android devices.

2.2.6 Multi byte fields

In a hex dump we may have some bytes that belong together, for instance a time-
stamp that uses 8 bytes. This is considered a multi byte field, and the endianess
needs to be taken into consideration.

2.2.7 Endianess

There are two types of endianess; Little Endian (LE) and Big Endian (BE). In
Little Endian the first bytes to the left have least weight, and therefore we need to
read the bytes from the right to the left. In Big Endian the first bytes to the left
have most weight, meaning we need to read them from left to right. Endianess is
only important for multi byte fields (Arora 2012). Endianess will not impact the
reading of an array of single byte fields. Table 2.2 shows an example of little- and
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big-endian interpretation.

Table 2.2: Endianess in a 4 byte field

Raw Value Little Endian Big Endian

0x01020304 0x04030201 0x01020304

The CPU decides the endianess used, and some processors may have support for
both types, which is called Bi-endianess (Arora 2012). The operating system is
compiled with the endianess that should be used, and this endianess must be sup-
ported by the CPU. Digital forensic experts should be aware that some computer
architectures will use a specific endianess, and adjust their tools accordingly.

When transferring data through the network, big endian is used (Arora 2012).
Therefore, if necessary, there will be a conversion between the endianess of the
network data and the host data.

2.2.8 Timestamps

Timestamps are often represented as a number since a particular date in time. This
date is called the epoch. The number for the Unix epoch is representing seconds
since 1970, and for NTFS and ReFS it represents the number of 100 nanoseonds
intervals since 1601 (Carrier 2005, Nordvik et al. 2020b; 2019a). Different file
systems may use different epochs, as shown in Table 2.3.

Table 2.3: Epochs used by different file systems

FS Epoch Granularity From

Ext2,3,4 Unix Epoch Seconds 1.1.1970 (Carrier 2005)
NTFS FILETIME 100 nano second intervals 1.1.1601 (Carrier 2005)
REFS FILETIME 100 nano second intervals 1.1.1601 (Nordvik et al. 2019a)
APFS Unix Epoch Nanoseconds 1.1.1970 (Apple 2018)

Figure 2.1 demontrates a standard 256 byte Ext4 inode, and from relative offset
0x8 we find four 32 bit timestamps where each timestamp represents the number
of seconds since 1970 (Unix epoch). Using a time converter, we can find that
all timestamps in the hex dump with a value of 0x5A685FA8 LE1 representing
2018-01-24 10:27:52 GMT . The entry from relative offset 0x14 is the 32 bit time
of deletion, here it is 0x0 (unused). From relative offset 0x90 we find the 32 bit
timestamp that represents the creation time. This timestamp also has the value
0x5A685FA8 LE (2018-01-24 10:27:52 GMT). Since three of the timestamps are

1LE means interpreted or read as little endian.
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Figure 2.1: First 32 bytes of an Ext4 inode, including timestamps.

near co-located, they can be identified by our Generic Metadata Time Carving
(GMTC) approach.

Previous versions of Ext will not have the creation time, and any tool that supports
only Ext2 or Ext3 will miss the creation timestamp and will not take into consid-
eration the new sub-second precision for all the timestamps. This is because Ext4
has additional time related metadata fields starting from offset 132 in each inode,
while the Ext2 and Ext3 as standard only used 128 bytes for inodes (Dewald and
Seufert 2017a).

The different timestamps in a metadata structure describing a file or directory differ
between file systems.

Table 2.4: Different Ext timestamps found in inodes, listed in the order they are found in
the structure

File System Content Access Metadata change Content modification Deleted Creation

Ext2 or Ext3 a-time c-time m-time d-time N/A
Ext4 a-time c-time m-time d-time cr-time

As shown in Table 2.4 we can see that timestamps in Ext2 and Ext3 are almost
equal to Ext4, except from the additional creation timestamp which is not co-
located with the other timestamps.

In NTFS the timestamps are found in more than one attribute in each MFT record,
in the Standard Information Attribute and in each File Name Attribute, and their
order deviates from the order used in Ext2, 3 and 4 (Carrier 2005) as seen in
Table 2.5.

In exFAT only three timestamps are in use, and these are also near co-located. The
order of the timestamps are shown in Table 2.6.
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Table 2.5: Timestamps found in two different MFT attributes, listed in the order they are
found in each attribute.

File System Creation Modified MFT Modified Accessed

NTFS cr-time m-time c-time a-time

Table 2.6: Timestamps found in File Directory Entries in exFAT, listed in the order they
are stored.

File System Creation Modified Accessed

exFAT cr-time m-time a-time

2.2.9 Atomic write and timestamps

Atomic write is a storage method that requires that a file, often consisting of mul-
tiple blocks/clusters, is stored completely, or not at all (Okun and Barak 2004).
The method can be implemented as part of a file system, database, library, or ap-
plication. Some file systems implement a similar approach called Copy-On-Write
(COW) where the original data block is read, changed in memory, and written to
another block (Chen et al. 2014). We do not consider COW as an atomic write
of a file, since COW only manages each block as an atomic write operation, and
as described by Chen et al. (2014) may result in recursive new COW writes of
parent blocks. Applications may use their own atomic write method for files. One
method of implementing atomic write for files is to create a temporary file, write
the content to this temporary file. If previous write was successful, rename the file
to the target file name (Richard Maw 2016). If the target file was an existing file,
it must be unallocated before the renaming can take place.

Developers often use libraries for storing files, therefore, they may not even know
how using atomic write functions may impact existing metadata. Using atomic
write functions to change an existing file, may end up with a new file with a new
set of timestamps from the new temporary file. In Figure 2.2 we can see a sim-
plified example of how atomic write is implemented by an application using glibc
libraries. It first reads the metadata of the file Plans.txt and loads the content from
the data block pointers. The user adds some text and presses File Save. The App
creates a new temporary file, which gets the current timestamps for the file cre-
ation (new timestamps are generated by the file system). Then the file content is
written to a new location allocated to the new temporary file. If the write fails,
the temporary file is unallocated and the process is exited. If the write succeeds,
the original Plans.txt is unallocated. Then the temporary file is renamed using the
same name as the original file (here Plans.txt) as target, which preserves the time-
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Figure 2.2: Atomic Write as implemented by an App using glibc in Linux.
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stamps and other metadata from the temporary file, however, the original metadata
is often overwritten and lost. This means if Plans.txt was original created in 2015,
changing it by using an application that uses atomic write in 2023 will impact the
creation date and other timestamps, setting them to 2023.

The researcher tested this by creating a small application that implements a stor-
age function2 from the glibc libraries that uses atomic storage of files (Gnome
Developer 2014). The researcher observed that changing an existing file resulted
in a new file with the same name and a new set of timestamps in exFAT or Ext4,
including the created timestamp. In Windows this behaviour is mitigated by File
System tunneling, a feature that sets the same created timestamp of the previous
file if the previous file is unallocated and another file is allocated with the same file
name within 15 seconds as standard (Carvey 2018).

2.2.10 Timezone

Several file systems store their timestamps using UTC+0, however FAT uses local
time, meaning the FS stores the time based on the local timezone of the computer
or the phone it was located. This means there is no point in changing the timezone
using a DF tool when analysing a FAT file system, since it does not know the
original local time. Most DF tools will not allow adjusting the local time for a
FAT file system even if we try to select another timezone.

ExFAT on the other hand should be storing the timestamp as local time, but also
include UTC offset information for the timezone and/or daylight time used by the
local computer (Microsoft 2021). Unfortunately, our experiments show that this is
not always implemented correctly by the file system exFAT drivers. Knowing the
UTC offset makes it easy to convert the timestamp back to any timezone wanted,
however, it may not be supported by the digital forensic tools if they do not take
the timezone offset byte into consideration, or if the stored UTC offset value is
invalid. The 8 bits used for each UTC offset value use the most significant bit as
the enable/disable bit, followed by a 7 bits two’s compliment number.

In Figure 2.4 we observed the UTC offset had the value UTC+1, the same as the
local time we had on our Windows 10 computer. We also included the time within
the filename as the time we had in CET at the moment we created the file. In
Figure 2.3 we can see that the UTC-1 offset is used for storing the timestamp on
the MacOS computer, even though the local timezone of the computer was UTC+1.

The standard describes that exFAT uses local time, however, we have already
shown that this may not be the actual local time of the computer.

2We used the g_file_set_contents function.
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Figure 2.3: ExFat timestamps on a file created in MacOS Big Sur v. 11.6., where the
timezone is Central European Standard Time (UTC+1).

Figure 2.4: ExFat timestamps on a file created in Windows 10 pro v. 2004., where the
timezone is Central European Standard Time (UTC+1), we selected (UTC+1) Amsterdam,
Berlin, Bern, Rome, Stockholm, Vienna as the timezone.

2.2.11 Additional sources for File Systems

In this chapter only a brief introduction to file systems was given, but for addi-
tional reading we recommend the book “File System Forensic Analysis” by Car-
rier (2005), or the book “Forensic Examination of Windows Supported File Sys-
tems” by Elrick (2015). More information about Ext4 can be found in the paper
“An analysis of Ext4 for digital forensics” by Fairbanks (2012).

2.3 Summary
In this chapter the basic background on file systems was introduced, focusing on
similarities. All file systems use some sort of volumes, most FSs are managed by
a partition system. Currently, most FSs use a volume boot record, and files store
non-resident data in clusters or blocks. All file systems use endianess on multi-
byte fields. Timestamps are used in metadata describing files, and timestamps use
an epoch and they are often presented using a timezone. In addition, atomic write
may effect the accuracy of timestamps connected to a file.

The next chapter expands on the works discussed in this chapter and provides
an introduction to the related research focusing on legal guidance for scientific
research, how to perform reliable experiments, an introduction to validation and
verification, and previous research on file carving versus metadata carving.
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Chapter 3

Related Research

3.1 Introduction
While the main focus for this research is about metadata in file systems, the find-
ings impact research domains such as validation and verification of digital forensic
tools or processes, carving, reverse engineering, investigation of criminal cases,
and legal challenges. The selected domains and related work are not exhaustive.
Instead, those selected and discussed below, give an overview of related work not
previously discussed in sections of the publications included in this thesis.

3.2 Validation and verification
In order to understand tool or process testing, we must consider and understand
the definitions of validation and verification.

"Validation is confirmation that the user requirements for a specific purpose (in-
tended use) have been fulfilled, and the validation is carried out on processes (e.g.,
demonstrating the suitability of a selected algorithm for a specific process)" (ISO/IEC
2015).

The validation results are assessed by users of the tool (or process), and they decide
if the tool is suitable for its intended purpose. This also means that one Law
Enforcement Agency (LEA) may validate the process (or tool) for one purpose,
but the same LEA may not validate the process (or tool) for another purpose. What
is validated or not may even deviate between different LEAs depending on the
requirements the LEA set.

"Verification is confirmation that a product conforms to specified requirements,
and these requirements are related to the product specifications (e.g., showing that

15
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the algorithm is implemented correctly)" (ISO/IEC 2015).

Verification is related to assessing if a product fulfills the specifications. The spe-
cifications for tools are normally in the form of the developer specifications. This
type of verification is performed by the developer organisation during the develop-
ment.

A product could also be the results from a tool. Verification of results are more
related to how accurate the results are based on the available specifications for an
artifact. This normally requires manual verification by the investigator who can
access the raw data and interpret the structures based on available specifications.
Very often accurate and reliable results are requirements LEAs use in order to
validate a tool, because as Bhat et al. (2020) describe: “A digital forensic invest-
igation may be rendered inconclusive if doubt creeps into the credibility of the
forensic tool used”.

3.3 Daubert Standard (criteria)
In the case Daubert v. Merrell Dow Pharmaceuticals (United States Supreme Court
1999) the Daubert standard was defined. It requires the forensic theory or tech-
nique to be: (1) tested, (2) peer-reviewed, (3) generally accepted in the scientific
community, (4) account for error rates, and (5) within the examiner’s expertise.

3.3.1 Testing

The criteria for how the testing should be performed is not described. Very often
the technique or method is implemented by using tools. NIST (2023a) has a
computer forensic tool testing program (CFTT ) that focuses on the accuracy of
disk imaging tools, mobile device tools, hardware write blocker tools, forensic
string search tools, and forensic media preparation tools.

When it comes to testing of mobile acquisition tools, we can see that some of
the results are not as expected (NIST 2023a), meaning they have failed to show
an artefact that is present on the device and that should be supported by the tool.
For instance the Magnet Axiom v6.8.0.33717 showed results as not accepted on
multiple devices (NIST 2023b):

• contacts and calendar (missing)

• notes/memos (missing)

• MMS attachments (missing)

• Call logs (missing).
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Figure 3.1: Investigation Stages (Sunde and Horsman 2021)

• Social media (missing or partial)

The tool in the example above is tested, and therefore complies with the first re-
quirement of the Daubert standard. Meaning, everything the tool supports and
finds as expected could be used as a potential evidence. However, it does not mean
the tool will find everything. The investigator using only this tool may not find the
information that may support the innocence or guilt of the suspect.

3.3.2 Peer-review

It is not described which competence the peer-reviewer should have, neither the
type of peer review necessary, or the frequency of reviews. Sunde and Hors-
man (2021) propose the Phase-oriented Advice and Review Structure (PARS) for
Digital Forensic investigations. During the early phases of the investigation an
advisor is used to supervise and guide the investigation, as shown in Figure 3.1.
Each of the phases of the investigation are treated as checkpoints where a review is
performed by one advisor and advice is given after each checkpoint review to as-
sure the quality of the investigation. Finally, the end report is reviewed by another
independent reviewer at the end of the investigation. It is important that the final
reviewer is not the same as the advisor to avoid bias.

3.3.3 General acceptance

While a procedure or technique may be accepted in the DF community, it does
not mean that procedure or tool is reliable or currently valid1. In digital forensics
things change quickly, and a valid procedure may become invalid because of im-
proved security of hardware or software, or limited by legal constraints. This ac-
ceptance requirement is also a barrier for new research and new techniques. The
number of users of a tool is not a valid quality measurement of the procedures or
techniques implemented by the tool (Carrier 2002).

1A procedure may be valid when tested, but future changes in tools or in the file system used
may impact the validity of the procedure.
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3.3.4 Error rates

How to compute error rates are not described, and very often not performed or
shared by the vendors. It was suggested by Carrier (2002) that there is a need
for creating a standard for calculating error rates for tools or procedures. This is
something, to date, that is not standardized in the DF community. Lyle (2010) dis-
cuss challenges with error rates but does not aim to give a solution. He states there
are two types of errors; false positives (detecting something that is not there) and
false negatives (not detecting something that is there). A true positive is therefore
detecting something that is really there, and a true negative is not detecting some-
thing that is not really there. Lyle (2010) also discusses other variables that could
be causing the errors other than the DF tool or procedure, for instance the operat-
ing system or the BIOS (number of cylinders and sectors are miscalculated), could
be causing the error of an acquisition tool. In his examples he uses the equation:

k/n

where k is the number of incorrectly acquired bits, and n is the number of bits
acquired. This is the same as

False Positives
True Positives + False Positives

Erbacher (2010) discusses the need of validation and error in order to assess the
admissibility of evidence. He defines an error as the likelihood that the result is
wrong. He further describes that users normally trust the output of a software tool
to be correct, even though there could be implementation errors. Errors related to
software implementation are not well defined and need to be researched. Erbacher
(2010) suggests that legally trusted (admissible) algorithms or equations used in
software tools must have a formal proof and verification that includes formal meth-
ods, testing (internal), peer and external evaluation. In addition, there could be hu-
man error interpreting the results in the analysis phase of the investigation. When
it comes to computing error he suggests using mean error and standard deviations
in order to assess if an error is significant or not. He gives an example of an error
rate of 0.75%, which may not seem significant. However, if the mean error rate
is 0.1% and the standard deviation is 0.05, then a measured error rate of 0.75% is
significant.

In order to compute error rates the following formulae might be used to compute
the error rates mentioned by Erbacher (2010). During an experiment i all observed
false negatives and false positives should be interpreted as the observed errors ei.
In the formula below we compute the mean error e of all experiments n.
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e =
1

n

n∑
i=1

ei

Each observed error rate may deviate from the mean error rate. Therefore, we must
compute the empirical error variance.

Variance = S2
e =

1

n− 1

n∑
i=1

(ei − e)2

Then we can compute the standard error deviation.

Standard deviation = Se =
√
S2
e

Nordvik et al. (2020b), Porter et al. (2021) computed error rates using precision
and recall where:

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives

Precision is important in an investigative context to measure the percentage of
real true positive hits. The recall is important in an investigation to measure the
percentage that all true positives were found (Porter et al. 2021). The precision
and recall correlate, high precision often means low recall and vice versa. Too
many false negatives mean the investigator may not find all potential exculpatory
or inculpatory evidence.

Precision and recall are simple to compute, but require that the relevant base truth
is known for the dataset, or areas of it, in order to be computed accurately. For
instance, the NTFS file system may have MFT records in the MFT table, in the
MFT mirror, in the journal, in the page file, in swap file, in shadow volume copies,
etc. We need to know exactly each of these in order to accurately classify a hit
as true positive or true negative in order to test a tool that carves for MFT record
metadata structures.
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3.4 Method validation in Digital Forensics
The described definition of validation in section 3.2 is also supported by The
United Kingdom Forensic Science Regulator (2020) (Method Validation in Di-
gital Forensics) which describes validation as a fitness for purpose demonstration.
Therefore, it is necessary to define the end-user requirements that must be met in
order to validate a method or tool. A method includes a sequence of operations
(procedures) for a defined task. The datasets used for validation should be repres-
entative of real life use. The United Kingdom Forensic Science Regulator (2020)
also describe that a validation study creates all or part of the evidence meeting the
requirements, but can collate evidence from scientific literature or other studies.
“There are no standard methods in digital forensic science”, but methods are as-
sumed adopted (fully or partly) and are usually not novel (The United Kingdom
Forensic Science Regulator 2020). Figure 3.2 illustrates the validation process
based on the validation framework described in The United Kingdom Forensic Sci-
ence Regulator (2020). The United Kingdom Forensic Science Regulator (2020)
describes that it is irrelevant to validate functions/features that will not be used.

The end-user is not only the forensic unit, public sector body, service providers,
or independent consultants providing forensic science services to law enforcement
agencies, but also legal stakeholders that depend on the results (prosecution, de-
fence, and the court). For the court these requirements are important for evidence
applicability (The United Kingdom Forensic Science Regulator 2020):

• Data quality on which the expert opinion is based, and the validity of the
methods used to obtain the data.

• How safe/unsafe are inferences from findings.

• The degree of method precision or margin of uncertainty, accuracy, or re-
liability of methods that expert opinion relies upon (Daubert Testing and
Error-rate criteria).

• To which extent the expert opinion is based on methods that are peer-reviewed
by others with relevant expertise (Daubert Peer-Review criteria).

• To which extent the expert opinion is outside of the expert’s expertise.

• The completeness of information available to the expert, and if all relevant
information was taken into consideration in the expert opinion.

• If there is a range of expert opinions, has the expert properly explained (jus-
tified) his/her opinion?



3.5. Dual tool verification 21

Figure 3.2: Validation Framework, based on The United Kingdom Forensic Science
Regulator (2020)

• Justification for expert deviation from established practice (Daubert General
acceptance criteria).

3.5 Dual tool verification
Knight and Leveson (1986) describe that it is erroneous to assume that program-
mers do not make the same errors if they were to implement the same specification.
Therefore, it is not the best approach to use dual tools to verify the first tool (Nord-
vik et al. 2021). It is not unlikely that two similar functions can include similar
errors, even when developed by different persons. Different tools may make use of
the same library, and may therefore contain the same error (Nordvik et al. 2021).

For instance, assume that two similar tools give exactly the same results. How do
we know if both tools are correct, or if they have shown the same erroneous result?

3.6 Reliability Validation Enabling Framework
Nordvik et al. (2021) proposed a minimum set of requirements necessary to as-
sess the validation in digital forensics related to file system reverse engineering.
Later Stoykova and Franke (2023) proposed the Reliability Validation Enabling
Framework for Digital Forensics in general. If not all these requirements are avail-
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able, it will be difficult to assess if a process or tool can be validated. It is how
these requirements are implemented that must be assessed in order to classify if
the process, method, or tool may be validated or not.

Table 3.1: Reliability Validation Enabling Framework

Level 5WH Example requirements

Technology What Technical information about tool or process
Methodology How How the process is performed
Application Who and why Justify the examiner, and why a particular setting is used

As shown in Table 3.1, the Reliability Validation Enabling Framework consists of
three levels. The framework was suggested by the second author Radina Stoykova,
and we collaborated on adapting it to reverse engineering of file systems (Nordvik
et al. 2021).

3.6.1 Technology

The technological level consists of documenting the tools (name, version, feature,
function, algorithm, reference to previous validation/verification of tools, reference
to previous error reports, identify if tool produce errors in output, etc.

3.6.2 Methodology

The methodology level describes how the tool / process has been developed. For
instance, if the tool / process was peer reviewed during development then inform-
ation about this peer review should be included. This might include how the peer
review was performed and to what depth the peer review assessed the tool / pro-
cess. This level includes a detailed description of how the tool was developed,
including a description and justification for any assumptions made during the de-
velopment process and also any limitations of said process. The methodology
level also describes the means of testing / evaluation used in ensuring the correct-
ness of the tool. This not only includes details of the tests performed but also of
the datasets used during evaluation, again noting any assumptions of limitations of
the employed evaluation methods. Process / tool implementation compliance with
accepted digital forensics research should be documented and any deviations from
such should be justified and published.

3.6.3 Application

The application level consists of who is using the tool, process, and why it is used
in a particular way. Does the examiner have the right competence / experience to
use the process correctly? Can the method, algorithm, parameters, and features
selected be justified? Is precision and recall computed for the dataset it is used on?
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Does the examiner have the right competence to interpret the tool results?

3.7 FRED - Framework for Reliable Experiment Design
Horsman (2018a) proposed a new Framework for Reliable Experimental Design
(FRED) by using research methodology as methods and technologies in digital
forensics enabling a more standardised methodology for designing and performing
experiments.

FRED utilises six steps, which support the planning, implementation and analysis.
These steps are:

1. Plan: Consists of defining goals, research questions, review of existing docu-
mentation or research, preliminary findings, valid assumptions, defining hy-
potheses, defining the test environment (accurate, repeatable, applicable) 2.

2. Implement: The experiment is conducted by performing defined user ac-
tions, and the set of actions are considered as ”datasets”, avoiding contam-
ination (results should be a result of the actions in our experiment).

3. Evaluate: Identifies the effect of the experiment, which files, logs, metadata,
databases are changed.

4. Repeat: The result is repeatable when the same actions are executed on the
same data.

5. Analyse: Interprets the consistency of the results.

6. Confirm: Confirms that when investigating artifact X, user action Y results
in outcome Z.

Horsman (2018a) claims using this framework will give factual accurate results,
ensuring forensically sound testing.

If we compare FRED with the Reliable Validation Enabling Framework (RV EF ),
we can see that FRED is an element in the RVEF methodology phase (how are the
experiments and datasets justified?).

3.7.1 Plan

The focus on the testing environment is crucial according to Horsman (2018a), and
he suggests three options: flat analysis (forensic image analysis), reverse image

2If the environment is Windows 10, how to generate dataset (test results), it may not be applicable
to generalise the results for Windows 11.
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(restoring the image to another disk, which is used to start the device and perform
experiments), and virtualisation of image. Which option to select must be based
on the goal of the experiment.

3.7.2 Implement

This part is about running the experiment, defined as user actions in the plan.
Horsman (2018a) emphasises that the results should be a result of the experiment,
and not contaminated by other sources.

In the researcher’s opinion, it could be challenging to control all variables when
using a reverse image as we do not know all variables that may effect the result.
Since the experiment is supposed to be valid for the data storage under investiga-
tion, the researcher of this work agrees that this is a good approach.

3.7.3 Evaluate

Horsman (2018a) suggests that assessing the modification timestamp of files can
be used to identify which files are impacted by the experiment. In addition, process
monitoring could help show which files, registry values, and processes are affected
by the experiment by filtering to the process ID (pid) of the application used.

The results should aim to test the initial hypotheses. Is the result as expected
and according to existing research? If not, does the researcher need to replan the
design or rerun the tests? Are the use cases sufficient to generate the expected
output within the dataset? Could the results have been encrypted? Are the changes
stored in the cloud or in main memory only? Is the reason a user error?

If yes, can the results (dataset) be consistently reproduced?

3.7.4 Repeat

Experiments need to be repeatable, and get the same results. If this is not possible,
then there is the need for re-designing within the planning stage. How many times
the experiment has to be repeated is not easy to answer, but it should be repeated
“beyond a negligible number of times” (Horsman 2018a), and it is when consistent
results are first achieved that the analysis can start.

3.7.5 Analyse

The analysis is the interpretation of the results collected in the previous stages.
The analysis should be able to explain how an artifact or application functions,
and what the results of a user action are.
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3.7.6 Confirm

This is a confirmation phase, that affirms that when focusing on one artefact, a
specific user action results in a specific result. At this stage the testing procedures
and methodology can be documented for peer review.

3.8 File Carving
This section describes previous research on file carving. File carving is a concept
of recovering files from unallocated space, without the use of file system meta-
data (Garfinkel 2007). Typically, this is performed by searching for file signatures,
or unique file patterns.

Karresand et al. (2019b) use file system allocation algorithms to create a probab-
ility map of where relevant user data should be located on the disk, and they use
NTFS as a proof-of-concept. Instead of searching everywhere on the disk, it is
better to search where the user data is most likely found. Karresand (2023) also
describes that a high number of layers correspond to high file activity (Karresand
2023, p. 37), meaning these areas could be investigated to find previous remnants
of files. Karresand (2023) extracts the initial $bitmap file and extract the $bitmap
file after each file action in the experiment to create 128 areas where by, partitions
are divided in 128 equal size areas (Karresand 2023, p. 60), mapping the allocated
clusters.

Karresand et al. (2019b) observed a static location for the $MFT table at 3 GiB
into the NTFS volume at relative sector 786 432 on the disks that were a part
of the experiments, yielding the starting sector for recovery of the metadata $MFT
system file. Similar findings were documented in 2020 by Karresand et al. (2020b)
with the additional observation that the last part of the volume has a low allocation
frequency. Even if a large file can fit contiguous in the last part of the volume, files
will often be fragmented in the middle part.

The first 10-20 GiB of data has a low frequency of allocation, and typically relates
to the files of the operating system. After this the allocation frequency increases
rapidly, followed by a slow decrease towards the end of the NTFS volume (Kar-
resand et al. 2019a).

Further research by Karresand et al. (2020a) also found that block storing de-
creases the fragmentation of files, while stream storing increases it from previously
a low frequency. They describe that a file can be stored as a large known data block
(block storing), or it can be stored as smaller blocks during downloading of a file
with an unknown size (stream storing). This information can be used to increase
the focus on searching for fragmented files in these areas when performing file
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carving.

Garfinkel (2007) describes file carving as file reconstruction based on their con-
tent, not using the metadata that points to the content. He also claims that no file
carvers can automatically reassemble fragmented files. Existing file carvers fo-
cus on contiguous files, but do not validate that the files are accurately recovered.
Garfinkel (2007) used 300 active file systems from hard disks purchased on the
secondary market from 1998 to 2006 (Garfinkel’s Corpus)3. He also claims that
interesting files in investigations are more likely to be fragmented, especially large
log files and PST (email containers), AV I , DOC, and JPEG files. Garfinkel
(2007) found that most bifragmented (two fragments) files had a gap of 8 blocks.
Highly fragmented files were typically DLL and CAB files. They also found
that the frequency of file fragmentation appears to decrease when the drive size
increases. Garfinkel (2007) used JPEG decompression as object validation for
JPEG fragments to build a JPEG carving tool with no false positives, which also
used a bifragment gap carving algorithm to identify the splits. He also suggested
a semantic validator, using the language to automatically validate data objects, but
was not able to automate this approach. They did develop MSOLE and ZIP
validators in addition to the JPEG validator. These validators were implemented
in their file carver, which supports block carving or character based carving (sup-
ports objects embedded in containers) both for contiguous and fragmented files.
Garfinkel (2007) describes that he was able to recover all Microsoft Word and
Excel files in the DFRWS 2006 challenge that were split into two fragments.
However, he also experienced false positives, such as recovered files that did not
contain all the correct file fragments.

The research of Garfinkel (2007) is very interesting, and it shows it may be pos-
sible to recover fragmented unallocated files which depend on in-depth knowledge
of each file format and implementation of suitable fragment validators. However,
the precision, accuracy or reliability of these validators are not computed, nor is
the error rate. Furthermore, the bifragment gap carving algorithm is not suited for
finding files with more than two fragments (Hilgert et al. 2019).

Garfinkel and McCarrin (2015) suggest a hash-based carving method which use a
hashset database (hashes of 4 KiB blocks) to assist with fragment assembly as a
new approach for file carving of fragmented files. They found that many 4 KiB
blocks happen to be present in many different files, which is a challenge for hash-
based carving. Finding that a block hash exists in multiple files cannot be taken
as evidence that all these files have been present on the hard drive. They propose

3This dataset meets the requirement of real life dataset (The United Kingdom Forensic Science
Regulator 2020), but does not comply with the current GDPR regulation (The European Parliament
and of The Council 2018).
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a matching algorithm (HASH_RUNS) for hash-based carving that gives a specific
range of contiguous sectors that can be mapped to a specific target file. The method
is good for identifying known target files, even though there are false positives and
the error rates were not computed.

Gladyshev and James (2017) suggest to use file carving for specific file types where
relevant data most likely can be found, and this is suggested as a triage solution
because of time and resource constraints. They call the approach for decision-
theoretic (or best effort) file carving, where speed is more important than com-
pleteness. The decision-theoretic approach classifies the data as relevant (contain-
ing JPEG data) or non-relevant (does not contain JPEG data). The approach relies
on being able to reliably detect JPEG blocks, not only the start or end blocks, but
also those in between. As a proof of concept they developed a decision-theoretic
JPEG file carver for large JPEG files. They used a trained SVM classifier that had
99 % true positive rate (recall), but had 33% false positive rate (hits that are in-
correctly identified as JPEG blocks). The SVM classifier did not distinguish JPEG
data from other data with high entropy. When a hit is found using sampling, the
implemented carver jumps back and performs bounded sequential carving for the
JPEG header and footer. If the header is not found within a specific limit, the carver
switches to sampling mode again. If JPEG header and footer is found, it contin-
ues in bounded sequential mode assuming there could be more JPEG files. The
approach does not solve the fragmentation problem, since their proof of concept
requires non-fragmented JPEG files. The approach finds normally less files than
traditional file carvers, and the speed is dependent on speed of disk, the number of
target JPEG files, and the distance skip size for the sampling (larger skip size, less
accuracy). However, for triage purposes it is more practical to see if there could
exist unallocated interesting JPEG files on the disk as fast as possible.

Hilgert et al. (2019) suggest to use syntactical file carving (by taking advantage of
the file format). The internal file format structure can be used to identify the start
and end of PNG files, and the chunks that the PNG consists of have their own
length fields. They use the chunk’s length field to identify the complete chunk,
and the assumed start of the next chunk, then they compute the chunks CRC value
and compares it to the chunk CRC field. This is repeated until a chunk error
is found or the end chunk is found for contiguous files. In the latter case the
complete file is recovered. For fragmented files they utilise that most files are
bifragmented, similar to Garfinkel (2007). For files fragmented in more than 2
fragments, they use a sliding window approach from the start fragment to the end
fragments (or backwards). Then they can use the area between to identify the order
of fragments and compare CRC values. They also suggest tracking of already
validated chunks, and not assessing blocks that already are found to belong to
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another file. This latter approach will increase file carving efficiency in many file
systems, but will impact file carving on systems like APFS negatively since this
file system may reuse blocks (deduplication) between multiple files (Hansen and
Toolan 2017). Hilgert et al. (2019) compared their methods with other file carvers
including Scalpel (Richard III and Roussev 2005), Foremost (United States Air
Force Office of Special Investigations and The Center for Information Systems
Security Studies and Research 2007), and PhotoREC (Grenier 2019). These latter
tools were not able to recover fragmented files, while their syntactical approach
was able to carve all files from 20 of 26 fragmentation scenarios. The syntactical
approach can only be utilised for file formats that have enough internal structures
that include fields that can validate their file fragments.

Ali et al. (2022) describe recovering OOXML documents from RAM using ma-
chine learning techniques (K mean, Hierarchical clustering, Mean shift clustering).
They used the components present in OOXML word files as feature selection,
where only the first five were static. Decompressing the components and using
XML tags in order to identify and extract textual content. In order to use machine
learning techniques they needed to pre-process the raw text. They tokenize all
words, meaning every word is a single entity (removing stop words such as ”are”
or ”is”). They use the frequency of words as features, and every word is converted
to a vector. Their technique depends on the amount of data present in RAM, and
they found that hierarchical clustering performed better than K mean clustering for
both recall and precision. They used five datasets, where dataset S1 only included
eight objects, which resulted in 90.625 percent recovery. Dataset S5 had 534 ob-
jects, which resulted in 92.134 percent recovery. The recovery rate increased if the
files were open and edited compared to when the files were closed.

An et al. (2023) describe recovery of files from NTFS on Windows servers (from
version 2016 or above) that use deduplication of files. In such systems, deleting a
file does not necessarily mean the deduplication chunks will be unallocated, since
they need to stay allocated if another file uses the same blocks. NTFS uses variable
sized block units called chunks for deduplication. In Windows Server 2012 the de-
duplication used resident attributes, while Windows Server 2016 or above use non-
resident attributes (deduplication block units external to the MFT table). When the
deduplication process starts, the file gets unallocated (DATA attribute dataruns are
zeroed and the bitmap representing the file clusters are zeroed). This mean the
original file content will be part of the unallocated area, and traditional file carving
techniques can be used as long as the clusters are not overwritten. However, the
MFT record will be updated with a REPARSE_POINT attribute which will have
the dataruns to the structures (FeRp, RbRp, DdRp) containing the information ne-
cessary to reassemble the file. All MFT records with a REPARSE_POINT will



3.9. Metadata carving 29

also be recorded in the $Reparse file in the $R index (found in the INDEX ROOT
and INDEX ALLOCATION attributes) which contains a MFT record number for
each entry, allowing a more efficient way of identifying deduplicated MFT records.
When deleting a file, the Delete.log which is part of the allocated area under Sys-
tem Volume Information, Dedup, Chunkstore, Chunkstor UUID directories, can
be used to identify the deleted file, and the file can be recovered as long as the
MFT record is not overwritten by using its REPARSE_POINT attribute to find the
runlist to the necessary structures. This is not file carving, but ordinary parsing of
deduplicated files. If the file is not found in the Delete.log file, then there is a need
for file carving for the original file or for run lists structures (FeRp, RbRp, DdRp)
pointed to from previous overwritten MFT records. This is similar to metadata
carving, discussed in the next section.

3.9 Metadata carving
As described in the previous section, the file carving method tries to recover files
based on signatures (header and/or footer) and not metadata. The process is rather
easy for contiguous files that have signatures, but it is challenging to recover frag-
mented files (Garfinkel 2007). A better approach is to carve for metadata first, and
use these to recover files (contiguous or fragmented). Ali et al. (2022) describe
that the information needed to recover file content is located in the file metadata.

The approach is not new, using the ”FILE” ASCII signature, which all NTFS
MFT records start with to find MFT records is a well known method (Carrier 2005,
p. 327). However, not all file systems have a universal static signature that can be
used as signature.

Dewald and Seufert (2017a) were the first to propose a heuristic search pattern
to identify inodes in the Ext4 file system (carving for inodes), without using the
information from the superblock or group descriptor table. This technique is able
to deal with the fragmentation problem, which is a challenge for traditional file
carving (except for a few approaches for a few file types). Since there is no static
signature for an inode, they use more complex patterns to identify the inodes.
The identified inodes are used for file recovery. They developed a plugin mod-
ule in Sleuthkit to implement their approach. The authors suggest two modes for
their approach; content mode (only the block size must be provided) and metadata
mode. For their inode carving they use the type field (4 most significant bits of
the first 2 bytes) focusing on regular files and directories, evaluated timestamps,
and the extent signature 0xf30a. In order to connect file names with inodes in
metadata mode, they use additional information about the group descriptor table,
size of flex groups, number of inodes per group, etc in order to find the start and
end offsets of the inode table. Dewald and Seufert (2017a) claim that the content
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mode cannot map physical addresses to inode numbers, and they use the inode
address as file names instead.

3.10 Timestamps
Willassen (2009) describes how timestamps rely on the clock, which could be more
or less inaccurate (drifting, fail, adjusted, etc). Timestamps should not be used
as evidence without justification. Different file actions (creation, modification,
access) may impact and set timestamps on files (within metadata structures) in
any file system, and a file can have a number of different timestamps. The author
describes that the file action created will update created, modified, and accessed
timestamps in a file system that uses three timestamps for a file. The file action
Write will update modified and accessed. Reading a file will only update accessed.
Willassen (2009) describes the possible action sequences for a file system with
three timestamps per file as shown in Table 3.2.

Table 3.2: Action sequences for the simple file system. All other combinations are im-
possible without manipulation. The list is filtered down from Willassen (2009) original
list.

Number Timestamp order Action Sequence

1 (tc < tm < ta) (Create, Write, Read)
7 (tc = tm < ta) (Create, Read)

10 (tc < tm = ta) (Create, Write)
13 (tc = tm = ta) (Create)

This led the researcher to the idea of using equality as a search mechanism to
find timestamps, since many files are only created or written to, not read. File
systems like NTFS (which uses four co-located timestamps) will not always update
access, meaning only the actions create and write will impact created, modified and
accessed timestamps as shown in Table 3.3.

Table 3.3: Action sequences for a simple file system with the update on access disabled,
meaning the action Read has no impact. All other combinations are impossible without
manipulation

Number Timestamp order Action Sequence

10 (tc < tm = ta) (Create, Write)
13 (tc = tm = ta) (Create)

The only set of actions that can result in only unequal timestamps are if the user at
different times creates, then writes, and later reads the file, as shown in number 1
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in Figure 3.2. If updating the last access is disabled4, then there will typically be
equality between some of the timestamps. Which actions update timestamps are
important for digital forensic investigators, and are part of file metadata analysis.

3.11 Summary
This section has provided an overview of some relevant research to the legal stand-
ard for digital forensics (Daubert), methodology and experiments (FRED), valid-
ation and verification, peer-review, file carving, metadata carving, and the issues
with fragmented files.

Legal standards, methodology and experiments, validation, verification, and peer-
review are relevant for file system metadata research because the court needs to
assess the applicability of the applied scientific research. File carving is relevant
because this technique is often used without taking advantage of metadata carving,
resulting in less accuracy for recovering fragmented files.

The next chapter describes the results of the works performed in this study, and
also consists of a summary of the motivation, contributions and limitations related
to each publication included in the thesis.

4Note that last access will always be stored on Create.
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Chapter 4

Contribution and publication
summaries

4.1 Publication A - Using the object ID index as an investigative
approach for NTFS file systems

Rune Nordvik, Fergus Toolan and Stefan Axelsson. “Using the object ID index as
an investigative approach for NTFS file systems” In: Digital Investigation Volume
28, Supplement. April 2019, Pages S30-S39. DFRWS 2019 Europe — Proceed-
ings of the 19th Annual DFRWS Conference. DOI: https://doi.org/10.
1016/j.diin.2019.01.013 (Nordvik et al. 2019b)

4.1.1 Motivation

The link files in Windows may say a lot about user activity (Parsonage 2008), and
these link files also have object ids within them. The attribute OBJECT_ID in
NTFS master file table is used as an alternative way of identified files using the
object id instead of the file name (Carrier 2005, p. 335). Carrier (2005, p. 335)
described that there were no tools that searched for files based on the object id,
and this motivated the main author to see if we can use the $ObjID index as a
starting point to find all MFT records that have an OBJECT_ID attribute, and this
way identify user activity even if the link files were deleted or not available1.

1There are typically no link files on an external storage device.
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Figure 4.1: Structure of an Object ID UUID version 1.

4.1.2 Research contributions

This research shows the meaning of the system file $ObjID in NTFS, and how it
can be used to connect the device to other computers, but also identify files that
are typically created or opened by users, and in which boot session the Object IDs
(OIDs) were created. On system volumes in cases where the suspect has deleted
link files to hide traces, we can use the $ObjID index to identify files that are
related to user activity. For instance if the user double clicks to open files from
File Explorer, all these files will have OIDs in the $ObjID index.

The first 60 bits in Figure 4.1 is a timestamp field using 15th of October 15822

as the epoch using a granularity of 100 nanosecond intervals (Leachi et al. 2005).
The timestamp describes the time of the last boot. The two least significant bytes
of this timestamp when read as little endian is a counter used to define the object
id order. The easiest way to convert this timestamp to a human readable format
is to first subtract 0x146BF33E42C000, the number of 100 nanosecond intervals
between 15th of October 1582 and the 01st of January 1601, from the timestamp
under investigation and then use a FILETIME converter. The next 4 bits describes
the version, and the Object ID is using version 1 described in RFC4122 (Leachi
et al. 2005). The next two bits describe the variant (the type used in RFC4122 is
10b), followed by the 14 bits describing the clock sequence. The clock sequence
will be equal for all OIDs created during the same boot session, and created OIDs
in the same boot session can be ordered by using the object id order.

The last 6 bytes of an OID contain a MAC-address for a selected device on the
computer, see Figure 4.1. This MAC-address could be from a network enabled
device, or a random value if no network device is available. In the latter case bit

2The date of the Gregorian reform.
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0 of the first byte of the node is set. If a valid unicast MAC address is used, this
bit will have the value 0 (Leachi et al. 2005). In this case it is possible to identify
the Organisation Unique Identifier (OUI). Using a database containing vendor
OUIs, the investigator will find the vendor name of the network card used. This
may help identifying the computer, and in some cases an organisation may have an
inventory database that includes this information. In any case the investigator may
use simple commands, such as ipconfig /all to list the network devices including
their MAC address.

Our approach helps in identifying what is relevant to acquire and analyse from a
computer. This is because files with OIDs typically have either been created or
opened by the user. Since the OID also contains the timestamp of the latest boot
session before the OID was created, and the OIDs order, this will help reconstruct
events. The approach may also detect timestamp manipulation, for instance if all
Standard Information Attribute (SIA) timestamps are before the boot time in the
boot session the OID was created. This should not be possible because the record
modified timestamp must be after or equal to the creation of the OBJECT_ID
Attribute.

We also suggest a new method for matching the $ObjID index with their respect-
ive MFT records as shown in Figure 4.2. In the first hex dump at the top the MFT
Record reference field is highlighted in green background. The two most signific-
ant bytes (here 0x0001 LE) is the sequence number of the MFT record when this
object id entry was created, and it must match the sequence number of the MFT
record in order to map the object id with the MFT record. The next six bytes of
the reference is the MFT record number (here 0x27 LE or 39 in decimal). Since
every MFT record is 1024 (0x400) bytes as standard, we can easily find the offset
to the start of any MFT record from the extracted MFT table. In the middle hex
dump in Figure 4.2 the MFT record is highlighted with a blue background, and the
sequence number can be found in the green highlighted area at relative offset 0x10
and is 2 bytes in size. The value of the sequence number is 0x0001, meaning it can
be mapped since it matches the sequence number from the object id entry. The last
hex dump in Figure 4.2 show the OBJECT_ID attribute for this MFT record, and
highlighted in blue we can see the Object ID key. This must match the Object ID
key in the $ObjID index in order to be considered a valid mapping.

4.1.3 Technical contributions

We created a prototype OID parser, which we call the NTFSObjIDParser. It is
written in C++ using the QT graphical libraries. It requires two files from a NTFS
volume, the $ObjID (both the Index Root Attribute, and the Index Allocation At-
tribute) and the $MFT, which the user must extract from the volume. This can be
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Figure 4.2: Connecting ObjID index record with NTFS MTF record.

done by using the icat command from Sleuthkit. The prototype reads each entry
in the ObjectID index, and parses the corresponding entry in the MFT table. This
way we can use the index to find the MFT entry and locate additional metadata,
such as the timestamps assigned to the Standard Information Attribute (SIA) and
any File Name Attribute (FNA). We also show the OBJECT_ID attribute that is
part of the MFT record, and it should if correctly identified be equal to the Object
ID key from the $ObjID index entry.

4.1.4 Limitations

One limitation of this research was that the researchers did not perform experi-
ments on Servers or Workstations that were part of a domain, and therefore ob-
served only zeros for the Domain Object ID.

4.1.5 Summary

In this publication we identified a new investigation method for identifying user
activity, using the $ObjID index to identify the files the user has accessed, in which
order, and in which boot session. We also showed how an external storage device
can be linked to a particular computer by utilising the MAC address found in the
node field of the Object ID.

Our observations show that:

• OIDs were always created when using File Explorer or LibreOffice to open



4.2. Publication B - Generic Metadata Time Carving 37

files that did not already have OIDs assigned, but not all tested tools (com-
mand prompt, Veracrypt, Notepad) generated OIDs on user activity.

• MAC addresses were stored in the last 6 bytes of the Object ID index, which
can be used to connect the external device to the computer used. However,
on computers without network cards a random value may be used (Parson-
age 2008).

• Deleting files also deletes any connected object id entry in the $ObjId index,
but may leave the Object ID attribute in the unallocated MFT record.

• Tested commercial tools showed information about OIDs, but not all the in-
formation that is relevant for an investigation. The CrossVolumeMoveFlag,
and the Object ID order was missing from both EnCase and X-ways. Auto-
psy did not support OIDs.

4.2 Publication B - Generic Metadata Time Carving
Rune Nordvik, Kyle Porter, Fergus Toolan, Stefan Axelsson and Katrin Franke.
“Generic Metadata Time Carving” In: Forensic Science International: Digital In-
vestigation Volume 33, Supplement. July 2020, Pages 301005. DFRWS 2020
USA — Proceedings of the Twentieth Annual DFRWS USA. DOI: https://
doi.org/10.1016/j.fsidi.2020.301005 (Nordvik et al. 2020b)

4.2.1 Motivation

The main author and the second author discussed how research on search al-
gorithms can help law enforcement. The main author described that it could
be very useful if the search algorithms identified timestamps, since all metadata
entries related to files contain a set of co-located timestamps. Identifying the file
metadata would help recover files using the metadata found, and will solve the file
carving challenges with fragmented files (assuming the fragments are not overwrit-
ten), or where a file system volume is reformatted with another file system. The
researchers also hypothesised that in NTFS the set of timestamps belonging to a
file often has multiple equal timestamps, which is stated by the simplified general
file system with three timestamps in the research of Willassen (2009).

4.2.2 Research contributions

The Generic Metadata Time Carving (GMTC) approach enables the recovery of
inodes or attributes related to time, either in the inode table, the MFT table or the
journal. This is important in order to identify and recover previous file systems,
individual deleted files, including fragmented deleted files. This approach should

https://doi.org/10.1016/j.fsidi.2020.301005
https://doi.org/10.1016/j.fsidi.2020.301005
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be tried before attempting file carving if an Ext4 or NTFS file system has been
reformatted with another file system.

For an Ext4 or NTFS file system that is not reformatted, the GMTC approach
may be used to show metadata for all inodes or MFT records (allocated or de-
allocated) and it is possible to filter the results based on inode/MFT record numbers
to identify multiple versions of the same inodes/MFT records. Using this approach
it should be possible to detect inodes/MFT records that are unallocated and find the
allocated version of the inode/MFT record in the journal. This is possible because
the GMTC approach searches everywhere on the storage media, not only in the
inode table.

4.2.3 Technical contributions

The researchers developed a potential time carver using the C programming lan-
guage, and additional files system validation tools using Python scripting. The
cPTS tool uses a search algorithm to compare data based on a pre decided granu-
larity (4 or 8 bytes), which compares an element with the next set of elements of the
same size. The cPTS tool gives a list of the position of where equal elements, po-
tential timestamps, may be found. Then we used file system validators developed
in Python to verify if each element identified is a valid metadata structure for a file
or directory. This increased the precision of the end results.

4.2.4 Limitations

The suggested method depends on equality between the timestamps, using the
granularity of the timestamp used. This mean that if all timestamps in an inode
or MFT record differ, then this inode/record will not be found. Fortunately, the
File Name Attribute in Windows very often has more than one equal timestamp,
and therefore the record will be found. This is not true for Ext4, which means a
decreased recall.

We had some issues in connecting the directory entries to the Ext4 inodes, because
we did not want to consider the group descriptor where all the bitmaps and the
inode pointers are stored. We assumed that when we found a directory inode and
opened its content, we could look at the current directory entry (.) and its inode
number. Then we can say that the next inode following this directory inode would
increase its inode number with 1. Then we could match the directory entry list with
each filename and inode number found within the directory entries, as illustrated
in Figure 4.3. This is valid if the inode tables are contiguous following each other,
but if the inode tables are fragmented, then this may fail. Although, when parsing
the next directory inode the inode number counter will be updated again.
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Figure 4.3: Connecting inodes with directory entries.

The GMTC approach is currently not good if the previous file system was re-
formatted with the same file system, especially since inode or MFT tables are
overwritten by the same new file system.

4.2.5 Summary

In this publication the researchers have used equality as a search mechanism for
timestamps, and using the features of timestamps as a signature to identify meta-
data for files. Since equality is first used to identify possible metadata for files,
we experienced also many hits that were not metadata related to files. Therefore,
we filter out all these false positives using semantic validators tailored for the file
system under investigation (currently supported validators are NTFS and Ext4).
Using the metadata, we can easily recover the data content if it is not overwritten,
even if the file is fragmented.

4.3 Publication C - Timestamp prefix carving for filesystem meta-
data extraction

Kyle Porter, Rune Nordvik, Fergus Toolan and Stefan Axelsson. “Timestamp
prefix carving for filesystem metadata extraction” In: Forensic Science Interna-
tional: Digital Investigation Volume 38. September 2021, Pages 301266. DOI:
https://doi.org/10.1016/j.fsidi.2021.301266 (Porter et al. 2021)

https://doi.org/10.1016/j.fsidi.2021.301266
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4.3.1 Motivation

The authors found a weakness in publication C, the GMTC approach, which re-
quires timestamps to have equal values in order to get a hit for a potential time-
stamp. Therefore, we focus in this paper on approximate equality. A timestamp
may just deviate partly from another timestamp, and timestamps are usually presen-
ted as a number since a specific epoch. The most significant bytes (MSB) in a set
of co-located timestamps (the prefix) is usually equal if the timestamps do not
deviate too much.

4.3.2 Research contributions

The new approach of comparing the equality of a number of the MSB will increase
the recall of potential timestamps, and decrease the number of false negatives. This
allows for more accurate and reliable results than the previous GMTC method by
increasing the recall.

4.3.3 Technical contributions

Improvements were made to the cPTS to allow for prefix comparison. If the
granularity of the timestamps searched for is 4, for instance timestamps in Ext4,
the tool is able to compare the selected X MSB for each of these, and when X=4,
the method is the same as the GMTC approach. X may not be higher than the
granularity of the timestamp and it must be higher than 0. If X is lower than the
granularity, the recall increases, and precision decreases. However, the Python
file system validators test each hit from the cPTS and increase the precision by
excluding false positives.

4.3.4 Limitations

We still have issues with the accuracy of connecting the directory entries with the
inodes if the inode tables are fragmented.

4.3.5 Summary

This paper improves the GMTC approach by introducing approximate equality.
The X most significant bytes of the potential timestamps are compared for equal-
ity which increase the recall but keep the precision due to very strict file system
validators. We still use tailored file system validators to filter out false positives,
which increases the precision. High recall makes sure we include more true posit-
ives, potentially including metadata for additional files with evidential value.



4.4. Publication D - Its about time—Do exFAT implementations handle timestamps correctly?
41

4.4 Publication D - Its about time—Do exFAT implementations
handle timestamps correctly?

Rune Nordvik and Stefan Axelsson. “Its about time—Do exFAT implementations
handle timestamps correctly?” In: Forensic Science International: Digital Invest-
igation Volumes 42-43. October-December 2022, Pages 301476. DOI: https:
//doi.org/10.1016/j.fsidi.2022.301476 (Nordvik and Axelsson 2022)

4.4.1 Motivation

When investigating exFAT file systems the main author has observed a difference
in storing UTC offsets between Windows and MacOS. In Windows the main author
observed the UTC offset was stored as local time including any daylight savings,
however, in MacOS it stored the UTC offset and the timestamps differently. In
addition we were not sure how the exFAT implementations in Linux stored time-
stamps.

4.4.2 Research contributions

This research shows that while exFAT specifications are available (Microsoft 2021),
there is no guarantee for accurate and reliable file system implementations. In addi-
tion, we found that commonly used digital forensic tools contain bugs that impact
the timestamp interpretations when interpreting the exFAT file system. Especially,
digital forensic tools often fail if invalid UTC offsets are stored, like the Linux
exFAT fuse driver does. Each timestamp has a UTC offset field. When the UTC
offset field value’s most significant bit is set to zero, then the field is not in use (not
valid). The specification describes this bit as the OffsetValid field, and the other
7 bits as the OffsetFromUtc field (Microsoft 2021). This is the first publication
about exFAT where file system implementations are observed on different oper-
ating systems. We found differences in how the file system drivers implemented
the exFAT specification resulting in inaccurate metadata when users use multiple
operating systems for the same external storage device, and we found differences
in how digital forensic tools interpreted the exFAT file system. In Table 4.1 we
have summarised the experiments for all file system drivers included in the exper-
iments, only using one time zone as an example. The table field Stored TZ is the
hex value found in the Create UTC offset field on the raw disk and in parenthesis
the value is converted to the UTC offset if valid. The table field Real TZ show the
real timezone the computer used during the experiment.

The results in Table 4.1 show that if we know the stored timezone hex value we
can identify the timezone used only if MacOS or Windows was used, and only if
we know which of these OSes were used. If a user uses the Linux fuse driver to

https://doi.org/10.1016/j.fsidi.2022.301476
https://doi.org/10.1016/j.fsidi.2022.301476
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Driver Base TZ Action Stored TZ Real TZ Observations

MacOS Europe/Oslo Created 0xFC (UTC-1) UTC+1 100
Linux Native Europe/Oslo Created 0x80 (UTC+0) UTC+1 100
Linux Fuse Europe/Oslo Created 0x00 (Not valid) UTC+1 100
Windows Europe/Oslo Created 0x84 (UTC+1) UTC+1 100

Table 4.1: Summary for experiments creating files - All tested file system drivers limiting
to one particular timezone.

create a file, this resulted in a not valid UTC offset. If a user then uses MacOS and
TextEdit to change the same file, the invalid UTC offset value was assumed by the
file system driver to be equal to the timezone of MacOS and was converted to a
“valid” value based on this possible wrong assumption. However, using Linux to
change the original file resulted in a new file because of the atomic storage feature,
effectively losing the original UTC offset fields as soon as the original unallocated
file is overwritten. The UTC offset field for the new file was set to either 0x80 for
the Linux native exFAT driver or 0x00 for the Linux fuse exFAT driver.

We found that Autopsy v. 4.19.3 used the initial timezone used when attaching
the storage device as if this timezone was the stored raw value, not interpreting
the UTC offset fields at all. Changing the timezone in Autopsy later resulted in
converting the timestamps assuming the initial value was the true timezone and
not using the UTC offset fields.

FTK Imager v. 4.5.0.3 and 4.7.1.2 were able to interpret all timestamps with a valid
UTC offset, and did not show timestamps with an invalid UTC offset. Timestamps
with valid UTC offsets were converted correctly to UTC+0. However, these FTK
versions did not show all directory entries.

We found that EnCase Forensics v. 22.1 was able to show timestamps for all valid
UTC offset, but misinterpreted the invalid UTC offsets by assuming they mean
UTC+0.

X-Ways v. 20.04 SR-4 was able to show timestamps with an invalid UTC offset
using LT (Local Time) as the timezone indicator, and showed timestamps with a
valid UTC offset correctly. However, it misinterpreted if there were a mix between
valid and invalid UTC offsets for the same file. In this use case it tried to convert
the timestamp with an invalid UTC offset value to the selected timezone by making
assumptions about the invalid UTC offset.
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4.4.3 Technical contributions

The results of the works in this study were assessed using three commercial digital
forensic solutions, and one open source digital forensic solution. However, no
additional tools were created.

4.4.4 Limitations

The atomic storage was not initially considered, where the application or a library
store files temporarily on change, and on success de-allocates the original file, and
then renames the temporary file using the original filename as target.

The authors assumed that simple text editors like Notepad, TextEdit, and Gedit
would not implement atomic storage since these editors are not typically used for
writing large documents. When Maxim Suhanov contacted us and claimed the
Linux results could be wrong due to atomic storage, we performed more experi-
ments and found that he was correct about Gedit and atomic storage.

Having used a mix of MacOS Monterey and MacOS Mojave in the experiments
related to MacOS could impact the results. However, they use the same exFAT
driver extension v 1.4 and do not impact the validity of the experiments.

The authors recommended using FTK Imager or XWays to parse exFAT file sys-
tems if the UTC offset fields were valid. However, since FTK imager does not
show all directory entries, we cannot recommend this tool for exFAT parsing.
We were informed by Maxim Suhanov about this bug in the latest FTK Imager
v. 4.7.1.2. In this thesis the new updated and unpublished version of the paper is
included. A corrigendum to the original version of the paper was published (Nord-
vik and Axelsson 2023), which describes that Gedit uses atomic storage, and it is
therefore not the file system driver’s fault that files that were changed got new cre-
ated dates. The metadata from the original file was unallocated and the temporary
file used during the atomic storage was renamed to the original file name. We also
observed that 98 percent of the changed files lost their unallocated old entry when
changing the files using the Gedit tool. However, Notepad and TextEdit did not
use atomic storage.

4.4.5 Summary

In this paper, the authors evaluated the implementation of exFAT file system on
Linux, MacOS and Windows. We have observed that the different implementa-
tions may deviate from the exFAT specifications, which could impact the accuracy
of timestamps on a device if used on different operating systems or impact the
accuracy of the interpretation performed by digital forensic tools.
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4.5 Summary
This chapter has focused on providing a brief summary of the research motiva-
tion, results (contributions), and limitations of each publication. In chapter 5 a
discussion of the results related to the overall research questions are given.



Chapter 5

Discussion

The focus of this discussion is how the presented research is related to the follow-
ing research questions.

• R1: To what degree can user activity be documented from non-OS volumes
(external storage devices) using only FS metadata from the file system?

• R2: To what degree can an external storage device be used to identify the
computers it has been attached to by only assessing metadata from the file
system?

• R3: To what extent can file system metadata reliably identify deleted files?

• R4: To what extent can the reliability and accuracy of file system parsing
performed by tools be assessed?

5.1 General weaknesses with methodology
The published scientific papers all have methodology weaknesses. Summarised
these weaknesses are:

• Only a few operating systems have been included for each experiment. Win-
dows has many versions as does MacOS and Linux. We selected OS ver-
sions based on popularity and availability.

• Only a few applications or digital forensic tool versions were tested or used
for experiments. Commercial tools are expensive, and we had only a limited
number of licenses available for this research. We selected the latest version
available during the research.

45
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• The data sets are usually small. This is due to the unavailability of large
relevant data sets with documented base truth, and the resource limitations
to create larger data sets.

• Synthetic data sets are used, instead of real data sets, to comply with GDPR
and national legislation. There is no need to use private data to perform
experiments on file system metadata, since the creation of synthetic data
behaves in an identical manner to real data.

• There are page limits for some of the conferences or journals where the
papers were submitted, impacting the prioritisation of results on behalf of a
detailed methodology section.

• Prototypes developed should be considered as proof of concept, and should
not be used in criminal investigations before the LEA has validated the pro-
totype.

In addition to these listed weaknesses, included are subsections describing other
methodology weaknesses when appropriate.

5.2 General strengths with methodology
This research has included:

• The IMRAD method for organising the scientific papers (Wu 2011).

• Previous relevant research.

• A methodology section in each paper describing the methodology used.

• Data sets when appropriate

• The scientific papers as open access publications in a peer-review journal.

5.3 R1: Identifying user activity using FS metadata
Two papers directly address the question of identifying user activity using FS meta-
data. These are:

• Publication A: Using the object ID index as an investigative approach for
NTFS file systems(Nordvik et al. 2019b).

• Publication D: Its about time—Do exFAT implementations handle time-
stamps correctly? Nordvik and Axelsson (2022)
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5.3.1 Publication A: Using the object ID index as an investigative approach
for NTFS file systems.

The strength of the approach documented in Nordvik et al. (2019b) is that an
Object ID entry is created if the file does not have an Object ID already assigned
when using File Explorer, and tools like LibreOffice, and most likely other graph-
ical user interface programs that use the same API to open a file. This is also the
case in Windows 10 when creating a file using File Explorer and Libreoffice.

Very often users use File Explorer to open files, or they may use File Open, File
Save, or File Save As functionality of their application. These actions will result
in new Object ID entries if they do not exist for the particular file. Therefore, the
Object ID index is a good source for documenting user activity related to files.
Developers creating Windows programs often use the Windows API when creat-
ing these dialogs instead of programming all the functionality themselves. These
developers may not be aware of the Object ID feature included in their own pro-
grams.

File activities that do not create Object IDs

When extracting files from a zip archive using File Explorer, no Object ID entry
is created. Copying files using File Explorer (CTRL drag), or copying using the
command line does not leave traces in the Object ID index. Using Notepad in
Windows 10 and the Save As feature does not store a new Object ID. However,
Notepad does create an Object ID in Windows 7 when using Save As.

Moving files and Object IDs

As long as the Birth Volume Object ID (BV OID) is not equal 0, then the Object
ID and the Birth Object ID are preserved, while the least significant bit of the
BVOID is set if moved to another NTFS volume (the CrossVolumeMoveFlag). If
the BVOID is 0, then no Object IDs are preserved and new Object IDs are created.

This means we cannot detect if a previous file that had an Object ID is moved to
another volume as long as the BVOID is zero. We identified why an Object ID
entry can contain a BVOID equal to zero, which is due to a missing Object ID for
the $Volume file.

Special weaknesses of implemented methods

In order for a NTFS volume to get assigned an Object ID for the $Volume system
file, it is necessary to reboot after formatting the volume, and the volume needs
to be attached to the computer or virtual machine during this first reboot. When
using virtual machines in Virtual Box, we experienced that the external volume
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was released to the host, and not attached to the guest virtual machine during the
first experiments. This resulted in a zero value for the Object ID for the $Volume
file, and for all the Birth Volume Object IDs in the Object ID index. Investigators
should not assume manipulation attempts if they detect zeroed out Birth Volume
Object IDs for all entries in the Object ID index, since the reason could just as well
be that the $Volume file was not assigned an Object ID.

5.3.2 Publication D: Its about time—Do exFAT implementations handle time-
stamps correctly?

Nordvik and Axelsson (2022) make several interesting observations. The use
of graphical user interface apps on MacOS leave fork files on the exFAT volume
for each file changed in the same directory as the changed file. Resource fork
streams give more information about files, and are used by macOS in addition to
data forks (Wani et al. 2020, Mahajan et al. 2014). However, the exFAT file sys-
tem does not support resource forks, therefore, the forks are stored as additional
files. These fork files start with ._ and the original file name. The fork files are
created based on normal user activity, and the forks also contain information about
which application was used to change or create the file (Mahajan et al. 2014). Also
mounting and unmounting an exFAT volume will leave traces on Windows, where
the System Volume Information directory is created, and on MacOS where the
.fseventsd and .SpotLight-V100 directories are created. Attaching and mounting
removable USB storage are typical user activities. Further, all the creation, open-
ing, and changing of files are typical user activities, especially when related to
removable external storage.

Special weaknesses of implemented methods

It is difficult to reliably interpret timestamps based on user activity when the ex-
ternal storage has been used on multiple OS. This is because a change using Gedit
in Linux will replace the original file with a new temporary file with all new time-
stamps due to the use of atomic storage. In addition the exFAT fuse driver sets
the UtcOffset fields using invalid values, which the other OSes and DF tools may
interpret incorrectly.

5.4 R2: Connecting storage devices to computers using FS
metadata

Connecting an external device to a specific computer is important in order to seize
relevant computers during an investigation of a criminal case. The scientific papers
listed in this section give answers to this research question.
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• Publication A: Using the object ID index as an investigative approach for
NTFS file systems (Nordvik et al. 2019b).

• Publication D: Its about time—Do exFAT implementations handle time-
stamps correctly? (Nordvik and Axelsson 2022)

5.4.1 Publication A: Using the object ID index as an investigative approach
for NTFS file systems.

The $ObjId system file is located on every NTFS volume, and the Object ID is
using the MAC address of one of the network cards installed in the computer. It
should be feasible to find the computer that first created the object ID for a file, as
long as this computer is available. It could be one of several computers in a sus-
pect’s company, or one of several computers from the suspect’s apartment. Each
MAC address also has an Organizationally Unique Identifier (OUI), which is the
first 24 bits of the MAC address (IEEE 802 2014). The OUI can be used to identify
the company that created the network device. This can also help in identifying the
computer. The least significant bit of the first byte (octet) in the OUI is if set used
for a group (multicast) or if not set used for an individual address (IEEE 802 2014).
However, for the Object ID the bit if set indicates that a random value is used, and
if not set a valid MAC address is used (Leachi et al. 2005). It is only when a valid
MAC address is used that we can connect the external device to the computer used
to create the Object ID.

Special weaknesses of implemented methods

The node part of the Object ID may be a random value, for instance if no network
card was installed. However, this is not usual on current Windows computers. We
may not have access to the computer used when a particular Object ID was created,
but the information can be used for justification for seizing these devices from the
suspect. Another weakness is that MAC addresses may be changed by the user or
the user may have changed the network card.

5.4.2 Publication D: Its about time—Do exFAT implementations handle time-
stamps correctly?

There are patterns that show which OS has been used to store files on an exFAT
volume. When mounting the exFAT volume on Windows we can find the System
Volume Information directory within the root directory. When mounting the stor-
age on MacOS we find the .fseventsd, and the .SpotLight-V100 directories within
the root directory. In addition, fork files will be found if graphical user interface
apps are used to change files on MacOS. When using the exFAT fuse driver files
created use the UTC offset 0x00 (field not valid), and if the native driver is used we
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will identify that UTC offset value 0x80 (UTC+0) is used. If the System Volume
Information, the .fseventd and .Spotlight directories are not present, then the UTC
offset value 0x80 will indicate Linux usage.

Special weaknesses of implemented methods

When a removable device with exFAT has been used on multiple OSes, it requires
manual verification in order to describe which file has been created on which OS.
We do not find any indication of which computer has been used within the FS
metadata, only which OS. The information from the fork files from MacOS will
describe which tools have been used, and this may help identifying which MacOS
computer has been used.

5.5 R3: Using FS metadata to identify deleted files
As long as the block pointers or data runs are available in the file system metadata
it should be simple to recover unallocated deleted files. Therefore, finding previous
metadata structure like the inode table or MFT table would increase the reliability
when recovering files, especially fragmented files, and we would be able to connect
other relevant metadata such as timestamps and file names. The scientific papers
listed below answer this research question.

• Publication B: Generic Metadata Time Carving (Nordvik et al. 2020b).

• Publication C: Timestamp prefix carving for filesystem metadata extraction
(Porter et al. 2021).

• Publication D: Its about time—Do exFAT implementations handle time-
stamps correctly? (Nordvik and Axelsson 2022)

5.5.1 Publication B: Generic Metadata Time Carving and Publication, C:
Timestamp prefix carving for filesystem metadata extraction

The GMTC approach is based on the likelihood of several of the co-located time-
stamps being equal. This may not always be true, meaning we can miss some
potential timestamps related to files.

Another argument is that we just as easily could use the FILE signature in NTFS
to find MFT records. This is true for working records in the MFT, however, some
records may use the signature BAAD indicating corrupt MFT records or an anti
forensic technique to hide data (Lin 2018). Further, the GMTC approach is gen-
eric, meaning it can be used on different file systems that have co-located time-
stamps. We have shown this using Ext4, which does not have a special signature
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for all inodes (Dewald and Seufert 2017b). The GMTC approach is improved in
the publication D, since we allow for approximate equality by comparing a number
of the most significant bytes in each co-located timestamp.

The approach is most suitable for recovering files from a damaged or overwritten
(reformatted) file system.

Weakness of identifying deleted NTFS files

Deleted files that do not have any equal, or approximately equal, timestamps in
the SIA and the FNA, will not be detected. However, currently the FNAs are
not frequently updated, and normally contain at least two equal timestamps. Our
approach will, by finding the FNA, be able to identify the SIA based on the static
distance between attributes and then find the DATA attribute for an ordinary file
based on the length of each previous attribute.

Weakness of identifying deleted Ext4 files

There may be an issue connecting/mapping the inode and the directory entry (file
name) in Ext4, especially in cases where previous directory entries are overwrit-
ten/damaged. Our mapping method depends on finding directories in order to have
a known location for the estimation of inode numbers and to create a dictionary of
filenames and inodes.

5.5.2 Publication D: Its about time—Do exFAT implementations handle time-
stamps correctly?

When we assessed related work, we identified that Vandermeer et al. (2018) had
already found a method of detecting if an unallocated directory entry in exFAT
was deleted, or just moved or renamed. Renaming a file will set the previous set of
directory entries for this file to unallocated, then a new set of directory entries are
created including the new name, however the cluster(s) belonging to the file are not
changed in the allocation bitmap. A similar thing will happen if a file is moved;
the previous set of directory entries are set as unallocated in the source directory;
a new set of allocated directory entries are created within the target directory; and
the cluster bitmaps are not changed in the allocation bitmap.

On file deletion the file’s set of directory entries are set to unallocated by setting
the most significant bit in the directory entry type to zero. Then the allocation
status of the clusters belonging to the deleted file is set to zero in the allocation
bitmap.

There may be use cases where all of a deleted file’s clusters are allocated by a new
file. In this case one may interpret that a move or rename of the file has happened.
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Field Name Offset Size Value example

CreateTimestamp 0x08 0x04 0x54717040
LastModifiedTimestamp 0x0C 0x04 0x54717040
LastAccessedTimestamp 0x10 0x04 0x54717040
Create10msIncrement 0x14 0x01 8B
LastModified10msIncrement 0x15 0x01 8E
CreateUtcOffset 0x16 0x01 0x80
LastModifiedUtcOffset 0x17 0x01 0x80
LastAccessedUtcOffset 0x18 0x01 0x80

Table 5.1: File directory entry (The fields are mandatory)

However, it should be possible to identify this by assessing the timestamps. Van-
dermeer et al. (2018) states that the creation time should be the same, while the
modification timestamp of the new directory entry set is more recent. Unfortu-
nately, this statement is not supported by experiments or references.

The thesis author has after the release of the paper made initial observations on
how the timestamps are updated in Windows if the user renames a file located
on an exFAT file system using File Explorer in Windows 10. The base exFAT
USB storage was from creating files in Linux Ubuntu 20.04 with its native exFAT
driver. The first file name in Figure 5.1 shows the unallocated directory entry
set, initially created on Linux using the native Ubuntu 20.04 exFAT driver, after
renaming the file using Windows 10. Figure 5.2 shows the new allocated directory
entry set. Renaming a file in the same directory, will not result in differences of
any timestamps when comparing the unallocated with the new allocated directory
set, as can be seen in Figure 5.1 and Figure 5.2, where all timestamps have the
value 0x54717040 (LE) both the unallocated directory entry set and the allocated
directory entry set. The highlighted area contains the fields shown in Table 5.1.
However, these equal timestamps are from when the renaming was performed, not
the original timestamps of the file.

Weaknesses of identifying deleted ExFAT files

As observed in the initial testing of renaming files it will be difficult to separate
a deleted file with a renamed file by interpreting the differences in timestamps
between unallocated and allocated directory entry sets. However, one hypothesis is
that if a file has been deleted and another file has reused the clusters, we should be
able to identify that the previous file has been deleted because there are differences
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Figure 5.1: Unallocated directory set after rename.

Figure 5.2: Allocated directory set after rename.

in all timestamps. However, renaming a file will result in unallocated and allocated
directory entry sets with the same timestamps. Testing this hypothesis will require
more experiments, since our initial testing was only performed by renaming using
Windows 10.

5.6 R4: FS tool reliability and validation
In most of this thesis research, testing how the digital forensic tools are interpreting
the file system metadata has been included. This is necessary in order to see if the
tools are reliable and if the tool can be validated by law enforcement.

• Publication A; Using the object ID index as an investigative approach for
NTFS file systems (Nordvik et al. 2019b).

• Publication B; Generic Metadata Time Carving (Nordvik et al. 2020b).

• Publication C; Timestamp prefix carving for filesystem metadata extraction
(Porter et al. 2021).

• Publication D: Its about time—Do exFAT implementations handle time-
stamps correctly? (Nordvik and Axelsson 2022)
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5.6.1 Publication A: Using the object ID index as an investigative approach
for NTFS file systems

Even though NTFS is an old file system, we can still find artefacts that are not
understood by all tools or investigators. The $ObjID index is one of these artefacts.
Carrier (2005, p. 335) described that the OS could assign a unique object identifier
that will identify files even when a file has been changed or moved to another
volume. Carrier (2005, p. 335) also describes that it is possible to refer to the
$ObjId index to find files that have an object id. When we wrote this paper in
2019, there were no tools to our knowledge that used this index to identify files.
We suggested a new method using the $ObjId index to detect files based on user
activity and to connect the external storage media to the OS devices to which it has
been attached.

Strengths of the implemented methods

Based on our experiments we observed how Object Identifiers (OIDs) were created
or updated. We tested file creation, opening a file, copying or moving files to the
same and other NTFS volumes, and file deletion. We exported the MFT table
using the sleuthkit icat command, the $ObjId Index Allocation attribute (named as
$O) and the Index Root attribute. Even though Sleuthkit did not show the Index
Allocation attribute when using the fls command, we could easily export the index
allocation attribute using the icat command with the file record number and the
index allocation attribute number (160).

Based on our interpretation of the results, we created a prototype tool in C++ using
the QT libraries that parses the $ObjId index by using the output of Index Root
Attribute or Index Allocation Attribute, and then we use the MFT record reference
to identify the correct file record in the MFT table. The meaning of OIDs are based
on previous research of link files and the meaning of OIDs (Parsonage 2008).

Our method considers indexes found in the $ObjId Index Root Attribute if the
number of entries are less than 7, or using the Index Allocation Attribute if it is
more. Even though the tested tools are limited, we have detected that the File Time
Extractor (fte) tool (Yamazaki 2015) that is using the $ObjId does not support the
Index Root Attribute and only supports parsing a live NTFS volume.

We also check if the Birth Volume Object ID has the volume moved bit set by
assessing the least significant bit in its first byte when read as it is stored (not read
as little endian). This can be shown in the hex dump of Figure 5.3 where we have
highlighted this byte with blue background. Its value is 0x3E, in binary 0011 1110,
and here we can see that the move bit is not set, the highlighted bit is 0.
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Figure 5.3: ObjID index entry.

Our method can be used for:

• Reconstruction of user activity

• Connect which computer device an external hard drive has been attached by
using the MAC address included in the Object ID.

• Creating timelines, based on Object ID boot session timestamp and its counter

• Detecting manipulation of timestamps by comparing SIA timestamps with
Object ID boot session timestamp.

We compared the interpretation of OIDs in several popular DF tools, including X-
Ways, EnCase, and Autopsy with our manual interpretation. X-Ways only showed
the ObjectID key, Autopsy (Sleuthkit) failed to show information about OIDs. En-
Case showed OIDs, parsed the Object ID timestamp, sequence number, and MAC
address. Both EnCase and X-ways did not show the CrossVolumeMoveFlag and
the Object ID order, which are important for event reconstruction. These findings
show how important it is to validate tools based on the need of Law Enforcement.

Special weaknesses of the research contributions

The MAC address could be a random value if no network enabled device is present,
and the MAC address is not always from the main NIC, it could be from other
cards with a MAC address. We did not experiment with computers connected to
a domain, and therefore the Domain Object ID only contained zeros (not used).
Deleted files will get their entry removed from the $ObjId index, and these files
are not identified by our approach.

Our experiments only included Windows 7 and Windows 10, and we only tested
LibreOffice, File Explorer, Notepad, Veracrypt and the command line (CMD
prompt).

5.6.2 Publication B: Generic Metadata Time Carving

It is important for Law Enforcement techniques to have both high recall (getting
metadata for all files) and high precision (only getting metadata for files) when
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recovering file systems. Investigators need to avoid using resources investigating
false positives, by only focusing on true positives. They also depend on that there
are no false negatives.

Tool testing for validation

We tested commercial tools such as X-ways v 19.8 and EnCase v 8.08 to identify
previous FILE records. The tools did not find any MFT records from the previous
NTFS volume that had been reformatted with exFAT.

We also tested the tool EaseUS Data Recovery Wizard v 11.15, and this tool was
able to recover all the 50 files and their content from this image.

We tested the same tools with the storage device that had a previous Ext4 volume
that had been reformatted with NTFS. EnCase 8̌.08 was not able to recover the
previous Ext4 partition, and only carving was an option. Carving for every sup-
ported file type was stopped after 6 hours of tool searching. We also tested the
Bulk_Extractor tool, and it found all MFT entries, but no inodes from Ext4. We
had 25000 txt files without signatures, so file carving was not feasible on this
storage.

Based on our testing we can see that many popular commercial and open source
tools fail in recovery of files from previous partitions that have been reformatted.
Our GMTC method outperforms many of these tools when a volume with NTFS
or Ext4 has been reformatted with another file system.

Strengths of the research methods

We have computed precision and recall of our results, and the approach identifies
timestamps based on equality, which detects possible file metadata entries (inodes
or MFT records) or other repeated data of a particular granularity. Then we use
a file system semantic parser that increases the precision by evaluating expected
metadata structures, which effectively removes any false positives.

Special weaknesses of the research contributions

This approach depends on timestamp entries for files being co-located, and have
multiple timestamps where at least two are equal to the first. If all timestamps are
unequal, the GMTC approach will not detect it, and we have a false negative.
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5.6.3 Publication C: Timestamp prefix carving for filesystem metadata ex-
traction

Tool testing for validation

We refer to the previous discussion of the GMTC approach when it comes to test-
ing other tools.

Strengths of the research methods

This method fixes two of the weaknesses of the GMTC method. First it considers
the p most significant bytes of each timestamp when checking equality. If p equals
the granularity of the timestamp m, then this method is equal to the GMTC ap-
proach. Secondly, it allows the user to set the threshold h of how many matches
must exist in order to consider it as a potential timestamps. The method is illus-
trated in Figure 5.4.

Figure 5.4: Hex dump with highlights to illustrate the timestamp prefix matching search
procedure. The byte sequence underlined in green represents the current candidate time-
stamp, and those underlined with blue are test sequences. The brackets represent the can-
didate timestamp’s search window (k = 24). The red boxes represent the little-endian
prefixes (p = 4) that are being compared for equivalency. The first two examples show
matches, despite the fact the candidate timestamp does not equal the subsequent ones. If
three matching timestamps are required (h = 3), the third example shows the advancement
of the search by k bytes, and begins to repeat the entire procedure.
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Special weaknesses of the research contributions

The suggested approach of carving for metadata based on timestamp equality re-
quires that the timestamps are co-located, and have multiple timestamps where at
least h ∈ 1 < h < (k/m + 1) (threshold) are equal. The timestamps are of m
bytes. The prefix p ∈ 0 < p <= m is the number of most significant bytes that
are compared for equality. The lower p is, the more true and false positives. The
high number of potential timestamps, the more this increases the time the selected
semantic parser will need to use in order to classify if the potential timestamps is
part of a file metadata structure or not.

We still may experience that the mapping of directory entries and the inode num-
bers in the inode tables may fail due to fragmented inode tables. Even when we
have flex groups, where each group is described in each group descriptor, we may
experience that there are gaps between inode tables. They are not always contigu-
ous following each other. We also depend on finding inodes that are directories,
and to parse them and evaluate the dot entry to find out which inode number that
directory inode has. The assumption that the data following an inode is the next
inode will fail when the inode table is fragmented.

We could of course try to identify the group descriptors, but we want our approach
to be generic and valid for multiple file systems. When reformatting the Ext4 file
system with another file system group descriptors may be overwritten, and part of
the inode tables may also have been overwritten. Our approach will work for Ext4
since it only depends on inodes.

5.6.4 Publication D: Its about time—Do exFAT implementations handle time-
stamps correctly?

When investigating criminal cases, accurate and reliable timestamps are critical.
Misinterpretation of time may impact the decision of guilt or innocence by the
court.

Reliability of FS drivers

Our research shows that using a removable storage with the exFAT file system
on multiple operating systems may impact the reliability of timestamps. This is
because the drivers used have been implemented differently, even when the ex-
FAT specifications have been made publicly available. We have seen different
behaviour between MacOS (uses local UTC offset, but switches sign), Windows
(uses local UTC), Linux Ubuntu exFAT native driver (uses UTC+0), and the Linux
Ubuntu exFAT fuse driver (uses an invalid 0x00 value).
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Tool testing for validation

Digital forensic tools need to be tested and validated, also for interpreting file sys-
tems, since misinterpretation of metadata or not supported file system features may
impact the accuracy of the file system metadata presented to the investigator. In our
experiment we concluded that the tested version of Autopsy cannot be validated
for interpreting the exFAT file system. Autopsy does not take the UtcOffset fields
into consideration, but uses whatever local time selected when adding the forensic
image to the case. Several of the commercial tools tested are having issues when
interpreting invalid UtcOffset values. Whenever an invalid value is found, the tool
should not try to convert it to another timezone. FTK Imager showed invalid time-
stamps as NA (Not Applicable), and converted the valid timestamps to UTC+0. X-
Ways converted valid timestamps to the selected timezone, and showed LT (Local
Time) if only invalid UtcOffset values for a File Directory Entry were found. How-
ever, it had issues if there were a mix of valid and invalid values in the same File
Directory Entry. EnCase tried to convert valid and invalid UtcOffset values to the
selected timezone, interpreting the invalid value 0x00 as UTC+0, which will fail
in most cases. EnCase can only be validated for interpreting timestamps with valid
UtcOffsets.

Strengths of our method

We have made the scripts available making it possible to repeat the experiments.
We performed experiments on creation of files, opening files, and changing files.
In addition we performed experiments with mounting and unmounting only. The
datasets are also made available, allowing other researchers to verify our findings.

Special weaknesses of our contributions

We did not experiment on multiple versions of the same operating system, and res-
ults may deviate based on the version of the OS used. The graphical user interfaces
used to open or change file content is just a few selected standard tools, and our
research would have benefited by performing experiments using more tools.

5.7 Summary
This chapter has focused on how the results of the included papers relate to and
answer the overall research questions. For each paper we discussed strengths and
weaknesses of the selected method or results. We found that Object IDs can be
used to identify user activity, create a timelines, connect files to the computers
used to create them, and detect timestamp manipulation. Further, we found that
the generic time carving approach (including the prefix carving) outperforms com-
mercial tools, especially when testing using a reformatted Ext4 file system. The
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exFAT findings revealed that different file system drivers implement timestamp
metadata differently, and using a portable device on multiple OSes would make
timestamps unreliable. Further, we observed that commercial tools had difficulties
in interpreting UTC offsets that contained a mix of valid and invalid UTC values.
In chapter 6 the thesis concludes and presents further research opportunities.



Chapter 6

Conclusion and further work

In order to conclude it is natural to include the research questions for this thesis.
Therefore, the following sections try to answer each of the questions.

6.1 To what degree can user activity be documented from non-
OS volumes (external storage devices) using only FS meta-
data from the file system?

This research found that the $ObjId system file in NTFS uses a special type of
object identifier that can be used to not only identify which MAC address was
used, but also identify under which boot session it was created, and when the boot
session started. We observed that these Object IDs were created on typical user
activity such as creation of files, opening files, or saving files. Our research also
shows the order of the files created in a specific boot session, which result in the
order the user created the Object IDs. Not all applications create a set of Object IDs
on every user activity, but tools such as File Explorer always do on user activity
open, and typical office applications generate Object IDs based on user activity.
However, Veracrypt and the command line do not create new Object IDs.

Additionally, this research found that fork files stored on exFAT removable devices
using MacOS may include the name of the graphical user interface tool used to
change the files. These fork files indicate user activity.
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6.2 To what degree can an external storage device be used to
identify the computers it has been attached to by only as-
sessing metadata from the file system?

Since the NTFS Object ID yields a MAC address from one of the computer net-
work interfaces for each of the ids created by the user, this can be used to connect
the device to a specific computer, at a specific boot session. However, it would not
be possible to do this connection if the computer does not have a network interface
card, or if the MAC address has been manually changed.

Even though exFAT metadata does not store metadata that uniquely identifies a
computer, the OS automatically stores directories that identify either Windows or
MacOS usage. In addition, it should be possible to connect the local timezone of
the computer if the files are created on either Windows or MacOS, which is not
possible if Linux were used.

6.3 To what extent can FS metadata reliably identify deleted
files?

File system metadata will include detailed information of the blocks used by a file.
Both for NTFS and Ext4 we found records or inodes that enable recovery of files.
To ensure reliability the investigator needs to scrutinise the allocation bitmap, and
visually assess the results. Our research shows that the metadata recovery method
is more reliable than traditional file carving, especially the prefix-based GMTC
method which has a higher recall and a high precision. We have also shown that
we can use co-located timestamps to identify file system metadata for recovery
purposes. The approach is general and should work on all file systems that use
co-located timestamps, as long as file system validators are made available. The
main use case for the approach is when a file system is damaged, since the current
approach does not deviate between allocated or unallocated file records.

Identifying deleted files using exFAT is more difficult because renaming or moving
a file will also leave unallocated entries behind, although no deletion has been
performed. It is possible to test if the bitmaps used are zeroed, which will identify
a deleted file. However, an overwritten file could be more difficult to separate from
a renamed or moved file.
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6.4 To what extent can the reliability and accuracy of file sys-
tem parsing performed by current DF tools be assessed?

The DF tools tested partly show important relevant information about connected
OIDs to files, where X-Ways v.19.8 only showed the Object ID key, missing the
Birth Volume ID (including the CrossVolumeMoveFlag), Birth Object ID and the
Domain ID. EnCase v.8.02 showed all OIDs except from the Domain ID, how-
ever the CrossVolumeMoveFlag in the Birth Volume ID was not interpreted. The
CrossVolumeMoveFlag is important since it yields if the file has been moved from
one NTFS volume to another or if it has been created on the volume under invest-
igation. Both tools did not interpret the object id order, which is important for
showing the order of when the OIDs were created within a boot session.

When it comes to recovery of files from a damaged file system (previous file sys-
tem formatted with another file system), none of the tested tools were able to re-
cover Ext4 text files. Recovering of previous files are important in digital forensics,
and tool developers should take into consideration that users may reformat their file
system with a different file system.

This research shows that file systems such as exFAT have different implementa-
tions on Windows, MacOS, and Linux, where one OS may wrongfully manipu-
late timestamps created on another implementation. The exFAT specifications are
known, but when file system developers do not comply with specifications this
may impact the DF tools parsing of file systems. Especially, digital forensic tools
have difficulties interpreting timestamps where a mixture of valid and invalid UTC
offsets are used.

This research shows that digital forensic tools fail to parse some file system meta-
data structures, not supporting a particular file system, or failing to recover data
from supported file systems. We have also shown that dual tool verification is
a method often relied on, but is based on an incorrect assumption that different
developers do not make the same errors.

6.5 Further work
More file systems could be analysed to see if there are metadata that can connect
an external storage device to a specific computer. Further research on other file
systems and metadata recovery is needed.

Users may use a specific file system on multiple operating systems. Therefore,
it will be necessary to perform file system research to compare and document
deviations between different file system drivers, not assuming that they are equally
implemented in each operating system. File systems are often ported to other
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platforms for interoperability. These interoperability ports may or may not follow
specifications, therefore, future experiments on multiple file system drivers for the
same file system are needed.

It would be beneficial to include experiments using more popular applications to
see if and when they update Object IDs. These experiments should include using
Windows 11. In addition research should be performed using computers that are
part of a domain, to see how and when the Domain Object ID is updated. Further, it
would be interesting to correlate other system files to see if it is possible to identify
exactly which operation was responsible for updating the Object IDs. Reverse
engineering of APIs handling file operations could further yield the functions that
update Object IDs, and these should be documented.

The thesis author did not include the paper about Reverse Engineering of ReFS in
this thesis because the ReFS file system have been further developed. In Windows
Server 2022 ReFS v. 3.7 is used, while in the latest developer release of Windows
11 ReFS v. 3.11 is used. ReFS v. 3.11 allows installing Windows 11 on a ReFS
file system (Shee 2023). The most current version of ReFS should be included in
further work, and if the Object ID feature is implemented it should be compared
to the implementation in NTFS, especially since this feature indicates user activity
and may be used to connect storage devices to computers.

We included semantic file system validators for NTFS and Ext4 for the generic
metadata time carver. Adding support for additional file systems by developing
more semantic validators would contribute to law enforcement. In addition, there
is a need to improve the Ext4 connection between the inodes in the inode table and
file names found in the directory entries without using the group block descriptor.
Accurately identifying files that have been unallocated, would be beneficial for
active file systems.

There is a need to reliably identify if an exFAT file has been deleted, deleted and
overwritten, renamed or moved. These experiments should be performed on mul-
tiple operating systems, because we have already identified that different file sys-
tem drivers have implemented the exFAT specification (Microsoft 2021) differ-
ently.

Performing research on mobile phone file systems is needed, assuming decryption
of file systems will be available in the future. When only files are encrypted, the file
system metadata will be available and the generic time carver may be used if the
file system is Ext4. Still content recovery will depend on decryption techniques.

All prototype tools related to this thesis need to be further improved, especially for
efficiency.
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Even though existing tools have trouble interpreting the file system metadata from
our research, we hope tool developers use the contribution from this research to
increase the quality of their tools. After all, investigators depend on using tools.
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Abstract
When investigating an incident it is important to document user activity, and to
document which storage device was connected to which computer. We present a
new approach to documenting user activity in computer systems using the NTFS
file system by using the $ObjId Index to document user activity, and to correlate
this index with the corresponding records in the MFT table. This may be the only
possible approach when investigating external NTFS storage devices, and is hence
a valuable addition to the storage forensics toolbox.

A.1 Introduction
Users interact with the file system by navigating, creating, moving, renaming,
copying or deleting files, or directories. Digital forensic investigators normally
use digital forensic tools to investigate criminal cases (Garfinkel 2010, Gül and
Kugu 2017). When digital forensic tools parse the NTFS file system they often
show only selected parts of each MFT record. In order to validate the results of the
tools it would be necessary for digital forensic investigators to use hex viewers,
or tools such as mftrcrd (Schicht 2018) to manually interpret the MFT records.
In NTFS, metadata about files is mainly found in the system file $MFT (master
file table) (Carrier 2005, p. 353), but metadata might exist in other system files
including $ObjId, $LogFile, $UsnJrnl, $Secure, etc. Typically, file metadata could
include timestamps, file names, block allocations (data runs or extents), Object
IDs, different indexes, etc (Carrier 2005, chap. 13).

This paper will focus on Object Identifers (OIDs). The Object ID index found in
the $ObjId system file can help the investigator to find all allocated files that have
an Object ID, which will assist in event reconstruction of user activity. OIDs are
created based on typical user activity and are used by Windows in order to track
an object (file, directory or link) even if the object changes location or name (Mi-
crosoft 2016). OIDs will be created when a file is opened by the user in Windows
File Explorer, or when the file is opened or saved by some applications (Parsonage
2008). A user can also use the command line tool fsutil objectid to create, delete
or set OIDs. If a user moves a file to another volume the Object ID might change,
however, the Birth Object ID and the Birth Volume Object ID should be preserved
(Microsoft 2016). A volume is a collection of addressable sectors that can be used
for storage, and a volume can also be a partition (Carrier 2005, p. 70). In the con-
text of this paper, the volume is a partition using the NTFS file system. According
to Microsoft the Windows OS uses OIDs in order to track files (Microsoft 2016).

A digital forensic tool might show OIDs connected to a file, but different digital
forensic tools deviate in how OIDs connected to a file are presented. We performed
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an experiment to determine if forensic tools display OIDs. Thus we tried X-Ways
Forensics and Autopsy on a file which was known to have connected OIDs. The
results were that X-Ways Forensics showed only the Object ID key, and Auto-
psy (Sleuthkit) failed to show any information relating to OIDs. EnCase shows
Object IDs and parses the Object ID timestamp, sequence number and the MAC
address (Habben 2018). If a file, directory or link is assigned OIDs, the following
will be assigned:

• Object ID (used as a key in the index)

• Birth Volume Object ID (special identifier equal to the Object ID of the
$Volume system file from the volume the OIDs were created)

• Birth Object ID (equal to the first Object ID assigned and should not change)

• Domain Object ID (always zeros, reserved)

It is not enough to just display an artifact, the investigators need to understand
what it means. The authors consider OIDs to be important for digital forensics for
the following reasons:

• OIDs will show which boot session a file with OIDs belongs too (Leachi
et al. 2005), which can assist in timeline creation.

• OIDs can show the node (MAC-address) used by the computer that created
the OIDs (Leachi et al. 2005). This means we will be able to determine to
which computers the external storage medium has been attached, as long as
the user has accessed files and created new OIDs.

• OIDs can show in which sequence files have been assigned OIDs within a
boot session. This might assist in detecting manipulation of timestamps and
in building timelines.

• The $ObjId index can be used as a triage tool in order to identify files or
directories the user has accessed.

• The Birth Volume Object ID might be used to identify the file system volume
used when the file was first assigned OIDs.

The Object ID is a unique 16 byte identifier used to identify files on a NTFS
volume (Microsoft 2016). Any file that obtains an Object ID, will also have a
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Figure A.1: Structure of an Object ID UUID version 1.

Birth Volume Object ID, a Birth Object ID and a Domain ID (Microsoft 2016).
The Birth Volume Object ID (16 bytes) is used for identifying the volume the file
was located on when it first obtained an OID (Microsoft 2016). The Birth Object
ID (16 bytes) is the first Object ID assigned to the file. The Object ID may change
if the file is moved, but the Birth Object ID should remain constant (Microsoft
2016). The Domain ID is a 16 byte structure reserved for identifying a domain,
and must be 16 bytes of zeros (Microsoft 2016). Our experiments attempt to ob-
serve and assess if the description of fsutil by Microsoft is still true in Windows
10.

OIDs are 16 bytes in size and contain a 60 bit timestamp, which is the number of
100 nanosecond intervals since 15.10.1582 (Leachi et al. 2005, Parsonage 2008).
This timestamp is found in the first 60 bits of the OID and is related to the start of
the boot session in which the OID was created (Leachi et al. 2005). The two least
significant bytes of this timestamp, when interpreted as Little Endian, are also used
as a counter showing the order of OID creation within the specific boot session
(Parsonage 2008). The counter is the only two bytes that separates Object IDs
assigned in the same boot session. The timestamp can be converted to FILETIME
by subtracting the hex value 0x146BF33E42C000, allowing tools that interpret
FILETIME to convert it. The OIDs have a clock sequence which will be identical
for all OIDs created in a particular boot session. Finally the last 6 bytes of the OID
will normally include the MAC address of the default Network adapter. If no NIC
is available this will contain a random number (Leachi et al. 2005). A graphical
illustration is shown in figure A.1.

The Object ID is used as an index key in the $ObjId$O file and this Object ID is
also located in the Object ID Attribute (type 0x40) in the corresponding MFT re-
cord. We can also find the MFT record number in the $ObjId$O index entry (Car-
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rier 2005, p. 335). This way it is easy to find the correct record in the index,
knowing the Object ID key from the MFT record, but also to find all Master File
Table (MFT) records that have an Object ID by examining the $ObjId$O index
entries. It is the latter approach that is presented in this paper. A prototype tool has
been developed which implements this approach and was used during the course
of these experiments.

The remainder of this paper is organized as follows. Section A.2 describes related
work. Section A.3 illustrates the research goals. Section A.4 describes the meth-
odology and details about our experimental setup. Section C.4 presents the results
of our experiment. Section A.6 presents the evaluation methodology and results of
assessing the feasibility and reliability of the approach. Section A.7 discusses and
interprets the results. Finally, Section A.8 concludes and provides recommenda-
tions for future work.

A.2 Related work and contributions
Previous work on Object IDs has focused on interpreting the meaning of OIDs
found in link files (shortcut files), or OIDs from link files found in the NTFS
journal. In this section we describe this previous related work and finally we de-
scribe our contributions.

A.2.1 Related work

Carrier provided a description of the $OBJECT_ID structure (Carrier 2005, p. 367)
and the index $ObjId structure (Carrier 2005, pp. 386-387). Carrier describes
OIDs as an alternate method of addressing files, which allows for locating the file
even if the name and location have changed (Carrier 2005, p. 335). Carrier does
not describe the format the OIDs are using or their exact meaning.

In Windows, users can create shortcut files that point to other files. The Windows
OS often creates these shortcut files automatically based on user activity. These
shortcut files normally have the extension lnk and are called link files (Parsonage
2008). Parsonage describes which OIDs can be found within link files and com-
pares them to the output of the fsutil command. Within link files the following
OIDs might be stored:

• New VolumeID (corresponds to the Volume Object ID of the $Volume sys-
tem file, but not found in the $ObjId index if this is from another NTFS
volume)

• New File ObjectID (should be identical with the Object ID found in the
$ObjId index)
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• Birth VolumeID (should be identical with the Birth Volume Object ID found
in the $ObjId index entry, but the move bit is not set)

• Birth File ObjectID (should be identical with the Birth Object ID found in
the $ObjId index entry)

Parsonage (2008) describes the importance of Link Files, and mentions that there
exists an index of Object IDs, however, little use is made of this. This research
is based on the description of OIDs from this article, but does not focus on the
binary content of link files. Parsonage claims that the OIDs are not preserved on
removable media. This paper attempts to determine the veracity of this claim. We
will use the $ObjId index as an approach to find all allocated files on a volume
which would indicate user activity. The OID structure, described in Leachi et al.
(2005), Parsonage (2008), can be used to connect the device to one or multiple
computer system(s) using the MAC address included in the OID.

In Windows, jump lists are used for saving recently used items for an application
or for the OS itself. For instance, the list of recently opened documents is made
possible using a jump list. Singh and Singh (2016) describe jump lists, and show
how to interpret these for Windows 10, which is different from Windows 7 and
8. Their work shows that OIDs are used in DestList and LNK streams, which
includes embedded shortcut files. Within these shortcut files / streams both the
new Volume Object ID and the Birth Volume Object ID might be shown, which
is helpful for tracking purposes. However, an investigator may have no access to
the system volume, meaning they would have no access to the jump lists. In these
cases the investigator only has the $ObjId index, the MFT table or other system
files to investigate. In this index we find the Object ID, the Birth Volume Object
ID, the Birth Object ID, the Domain ID (unused) and the reference to the MFT
record (Carrier 2005, pp. 386-387).

McGrath and Gladyshev (2013) describe how to use the NTFS $logfile to find
cleartext files after encryption. The authors use fsutil to determine the Birth
Volume Object ID from the known ciphertext file. They state that the ciphertext
file and the fact that the Birth Volume Object ID was found inside the $logfile and
conclude that the encryption took place on that volume. They also do the same for
the cleartext file found in the $logfile. Even if the file was deleted, the previous
dataruns, used by the cleartext file, might still be present within $logfile. In our
experience not all encryption software creates Object IDs or link files, and not all
cleartext files have OIDs. Some encryption software will create OIDs both for the
cleartext file selected and the ciphertext file created.

Cowen (2018a) has performed a few experiments regarding Object IDs. The results
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of his experiments are not published in a peer-reviewed paper. He is using a python
script parsing every MFT record for the OBJECT_ID attribute. He suggests that
the last 6 bytes of the Object ID is the MAC address, even for the $Volume. His
testing also shows that he does not find valid MAC addresses for the Object ID
connected to the $Volume. Further, his script source code shows he has based his
parsing on the knowledge from Parsonage (Cowen 2018b). Cowen’s testing shows
that there are Object IDs even for some of the files installed on the system, and that
their MAC addresses have been preserved. He concludes that there is less Object
IDs for pre-installed files on Windows 10 compared to Windows 7. Cowen does
not use the system file $ObjId in his experiments, and therefore he only finds the
main Object ID key.

Yamazaki (2015) has published a closed source tool, fte, that should be able to
parse the $MFT, $ObjId system file and other NTFS indexes. When we tested
this tool on Windows 10, it was only able to parse the $ObjId system file when
selecting a live volume, and only if the Index Allocation Attribute existed. The
tool shows correctly the date from the Object ID, but the column describes ctime
which easily could be interpreted incorrectly as change time. The tool detected
correctly if a file has been moved from another NTFS volume. The fte tool does
not parse the Index Root Attribute, when there are just a few files with OIDs on a
volume.

A.2.2 Contributions

None of the above related work address the meaning of the Object IDs saved in
the $ObjId index. As can be seen, no-one has previously identified what kind
of operations update the $ObjId index. Hence, our contributions include novel
investigation methods for:

• Event reconstruction of user activity using the Object ID index correlated
with the $MFT table.

• Documentation of computer devices to which an external hard drive has been
attached.

• Finding the boot times of a computer by investigating the Object ID index
of attached NTFS volumes, which could be correlated with external NTFS
storage devices that have been attached.

• Creating timelines.

• Detection of manipulation of timestamps by analyzing Object IDs.
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A.3 Research goals
This research focuses on the feasibility and reliability of using $ObjId$O index to
document user activity.

• Feasibility: The selected approach should be feasible for use with new ver-
sions of Windows, and therefore we have selected Windows 7 and 10 as our
test systems.

• Reliability: The selected approach should reliably detect user activity.

A.3.1 Research questions

This paper aims to determine if user activity can be documented from non-OS
NTFS volumes using FS metadata from the NTFS file system. It also aims to
determine if it is possible to discover what machine(s) a device was connected to
by using artifacts present on the device.

When the NTFS system volume is unavailable, investigators can no longer rely
upon jump lists, recent link files, registry, event logs and prefetch files in order to
determine user activity. Only the artifacts found in the NTFS file system can be
relied upon, hence, it is the opinion of the authors that this approach may be the
only means of recreating user activity for external NTFS media.

A.3.2 Automation

Forensic tools have basic support for parsing the MFT record attributes, but to
the authors’ knowledge only two tools, mftrcrd (Schicht 2018) and fte (Yamazaki
2015), show all the timestamps from all the File Name attributes (FNAs) within
the MFT record. Furthermore, only the fte tool is able to parse the $ObjId in-
dex to list all OIDs in the system under investigation. As part of this work an
open source tool has been developed that automates the parsing of $ObjId and
correlation with the pertinent attributes in the MFT record. The prototype tool,
NTFSObjIDParser (Nordvik 2019), was developed in C++ using the graphical
QT Libraries. The target users are computer forensic investigators. Users need to
export the $MFT table and the $ObjId$O Index Allocation Attribute (type 0xA0)
or the Index Root Attribute (type 0x90), as shown in Figure A.2 and Figure A.4.
Using these inputs, the prototype tool will correlate each index entry with the cor-
responding MFT record.

In NTFS indexes are used for storing $MFT attributes in a sorted order, and a B-
tree is used (Carrier 2005, p. 290). The root node is always located in the resident
Index Root Attribute (Carrier 2005, p. 294). If all the nodes can not fit resident
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(7 or more entries) in the Index Root attribute, a non-resident Index Allocation
Attribute is used (Carrier 2005, p. 294). The $MFT record of the $ObjId system
file contains these two attributes (Index Root and/or Index Allocation), and the
indexed attribute is in this case the $MFT $OBJECT_ID Attribute(type 0x40).

A.4 Methodology
The NTFSObjIDParser prototype tool was used in our experiments. The output
was verified using the xxd hex viewer and the forensic suite Sleuthkit (Carrier
2017).

A.4.1 Object ID creation

The purpose of this experiment is to determine when an Object ID is created. Mul-
tiple tools were evaluated. These included: the command prompt; File Explorer;
Notepad; VeraCrypt; and LibreOffice. The scenarios tested on the NTFS filesys-
tem were:

• File creation: Using a tool to create a new file.

• Opening a file: Using a tool to open an existing file, with or without an
Object ID, and test if rebooting impacts the result.

• Copying a file (same volume): Using a tool to copy a file, with or without
an Object ID, to the same volume, and test if rebooting impacts the result.

• Copying a file (other volume): Using a tool to copy a file, with or without
an Object ID, to another NTFS volume, and test if rebooting impacts the
result.

• Moving a file (same volume): Using a tool to move a file, with or without
an Object ID, to another directory on the same volume, and test if rebooting
impacts the result.

• Moving a file (other volume): Using a tool to move a file, with or without
an Object ID, to a directory on another volume, and test if rebooting impacts
the result.

• Deleting a file: Using a tool to delete a file.

The reboot means that after the test, the machine is rebooted, and the test repeated.
The reboot was performed to see if the 60 bit timestamps within the OIDs were
updated to the last timestamp for the most recent boot time. This was tested for all
scenarios where files have an existing OID.
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After each test, and after the reboots, the MFT table and the clusters found in the
Index Allocation Attribute data runs were exported. Simple Sleuthkit commands
(Carrier 2017) were used for extraction of the MFT, but during the experiments we
thought it was necessary to use dd to gather the clusters from the Index Allocation
Attribute. Sleuthkit v. 4.4.1 to v. 4.6.2 did not show the Index Allocation Attrib-
ute, only showing the Index Root Attribute. However, it is possible to extract an
existing Index Allocation Attribute using Sleuthkit by combining the MFT record
number and the attribute type. The USB device was unmounted from Windows,
and mounted in MacOS where Sleuthkit was installed.

# L i s t p a r t i t i o n t a b l e
sudo mmls / dev / r d i s k 2
# E x p o r t t h e r e c o r d 0 (MFT Tab le )
# from volume s t a r t i n g on s e c t o r 32
sudo i c a t −o 32 / dev / r d i s k 2 0 > MFT. b i n
# Showing t h e 25 t h MFT r e c o r d
dd i f =MFT. b i n bs =512 s k i p =$ ( ( 25*2 ) ) c o u n t =2 | xxd

Figure A.2: Exporting the MFT table, and MFT record number 25.

The mmls command in Figure A.2 was used to show the partition tables, and to
find the correct volume. Using this information the MFT table was exported. From
the extracted MFT table the $ObjId MFT record (25) was shown in the hex viewer.
It should be noted that the 25th MFT record is not always used for the $ObjId file.

00000150: 0000 0000 0000 0000 a000 0000 5000 0000 . . . . . . . . . . . . P . . .
00000160: 0102 4000 0000 0300 0000 0000 0000 0000 . .@ . . . . . . . . . . . . .
00000170: 0000 0000 0000 0000 4800 0000 0000 0000 . . . . . . . . H . . . . . . .
00000180: 0010 0000 0000 0000 0010 0000 0000 0000 . . . . . . . . . . . . . . . .
00000190: 0010 0000 0000 0000 2400 4 f00 0000 0000 . . . . . . . . $ .O . . . . .

000001 a0 : 1101 23 00 00 c0 f f f f b000 0000 2800 0000 . . # . . . . . . . . . ( . . .

Figure A.3: Hex dump of the Index Allocation Attribute.

Figure A.3 shows the Index Allocation Attribute which commences at offset 0x158
(type 0xA0). Skipping 0x48 bytes, and examining the value at offset 0x1A0, the
bytes 0x110123 are seen. This provides the data run for the attribute in question.
Interpreting this shows that the contents start at cluster 0x23 and occupy a single
cluster. The test disk has 8 sectors per cluster, therefore the data content of the
$ObjId$O index is located at sector 280 relative to the start of the volume. Allow-
ing for the 32 sectors before the volume, sectors 312 - 319 are extracted as shown
in the first command in Figure A.4.

The last command skips the index file header (64 bytes) within this file and shows
an object ID index entry. The result of this is shown in Figure A.5. We observed
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# E xp or t t h e Index A l l o c a t i o n non r e s i d e n t c o n t e n t
sudo dd i f = / dev / r d i s k 2 bs =512 s k i p =312 c o u n t =8 of = Objec t ID . b i n
# A l t e r n a t i v e method : I t i s p o s s i b l e t o e x t r a c t t h e
# Index A l l o c a t i o n A t t r i b u t e u s i n g S l e u t h k i t , however
# i t ’ s c o r r e s p o n d i n g MFT− f i l e i d − a t t r i b u t e i s n o t shown by
# f l s when u s i n g S l e u t h k i t . I f $ObjId i s i n o d e 2 5 :
sudo i c a t −o 32 / dev / r d i s k 2 25 −160 > Objec t ID . b i n
# I f no Index A l l o c a t i o n A t t r i b u t e e x i s t , e x t r a c t t h e
# Index Root A t t r i b u t e
sudo i c a t −o 32 / dev / r d i s k 2 25 −144 > Object ID −IR . b i n

# Show one of t h e i n d e x e n t r i e s
sudo dd i f = Objec t ID . b i n bs =1 s k i p =64 c o u n t =88 | xxd

Figure A.4: Exporting the Object ID Index Allocation non resident data, and show one
Object ID Index Entry.

that when it was less than 7 entries, there was no Index Allocation Attribute, and
all the indexes were, in this case, stored resident in the Index Root Attribute. In
this case it is necessary to extract the Index Allocation Attribute, and to skip the
file header (32 bytes) in order to find the first Object ID index entry.

00000000: 2000 3800 0000 0000 5800 1000 0000 0000 . 8 . . . . . X . . . . . . .
00000010: 2535 8 c37 c7 f3 e611 9 c55 0800 2737 a fb0 % 5 . 7 . . . . . U . . ’ 7 . .

00000020: 2500 0000 0000 0100 0000 0000 0000 0000 % . . . . . . . . . . . . . . .
00000030: 0000 0000 0000 0000 2535 8 c37 c7 f3 e611 . . . . . . . . % 5 . 7 . . . .
00000040: 9 c55 0800 2737 a f b0 0000 0000 0000 0000 .U . . ’ 7 . . . . . . . . . .
00000050: 0000 0000 0000 0000 . . . . . . . .

Figure A.5: Hex dump of an Object Index Entry.

The structure of an Object ID index entry is shown in Figure A.6. The basic
parsing of this index structure is defined by Carrier (2005, p. 387). The 8 bytes
at offset 0x20 provide a reference to the MFT table. The 16 most significant bits
(in this case all multibyte data fields are stored in Little Endian format) are for the
sequence number and the remainder is for the MFT record number (0x25). There
are a total of 4 universally unique identifiers (UUIDs), but the Domain UUID
always has a zero value. The Object ID UUID will also be found in the MFT
record Object ID Attribute, but none of the other UUIDs will be present. Both the
Object ID and the Birth Object ID will have a 60 bit timestamp, as described in
Section A.1. The two least significant bytes represent the Object ID order, in other
words the order in which OIDs were created. In bytes 8 and 9 of the UUID the
clock sequence number is found. Remember to set the two variant bits to 0. Then
we read the two bytes as an array of bytes. This sequence number is equal for all
UUIDs that were created / updated within the same boot session. The last 6 bytes,
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t y p e d e f s t r u c t _INDX_ENTRY
{

q i n t 1 6 O f f s e t D a t a ; / / 0x00
q i n t 1 6 S i z e D a t a ; / / 0x02
q i n t 8 Padding1 [ 4 ] ; / / 0x04 − Unused
q i n t 1 6 S i z e I n d e x E n t r y ; / / 0x08
q i n t 1 6 Size IndexKey ; / / 0x0A S i z e o f t h e O b j e c t ID
q i n t 3 2 F l a g s ; / / 0x0C − DOS f l a g s
q i n t 8 Objec t ID [ 1 6 ] ; / / 0x10 − Used as an i n d e x key
q u i n t 6 4 MFTRecord ; / / 0 x20
q i n t 8 Bir thVolumeID [ 1 6 ] ; / / 0x28 Does n o t f o l l o w t h e s t a n d a r d f o r

↪→ OIDs , a s d e s c r i b e d . Can be c o r r e l a t e d t o t h e $Volume O b j e c t
↪→ A t t r i b u t e . Windows 10 s e t i t t o z e r o f o r e x t e r n a l s t o r a g e
↪→ d e v i c e s !

q i n t 8 B i r t h O b j e c t I D [ 1 6 ] ; / / 0x38 , Should remain t h e same
q i n t 8 DomainID [ 1 6 ] ; / / 0x48 Not used , s e t t o z e r o v a l u e s

} INDX_ENTRY ; / / T o t a l o f 88 b y t e s o r 0x58 b y t e s

Figure A.6: C structure of an Object ID index entry.

when read as an array of bytes rather than a multibyte field, will show the MAC
address of the standard NIC used. If no NIC was used a random number appears
at this location (Parsonage 2008). More details on how to parse an Object ID entry
are shown in Table A.1 and in Figure A.6.

Offset Length Meaning
0x00 0x02 Offset to data
0x02 0x02 Size of data
0x04 0x04 Padding (Unused)
0x08 0x02 Size of Index Entry
0x0A 0x02 Size of Index Key (Object ID)
0x0C 0x04 Flags
0x10 0x10 Object ID UUID (the key)
0x20 0x08 Reference to MFT record
0x28 0x10 Birth Volume Object ID UUID
0x38 0x10 Birth Object ID UUID
0x48 0x10 Domain ID UUID

Table A.1: Offet table index entry, based on Carrier (2005, pp. 386-387).

Manually parsing each Object ID entry is too time consuming when every index
entry must be parsed, and therefore the prototype tool, NTFSObjIDParser, is used
for automation. The prototype correlates Object ID entries with the MFT record
found in the entry reference by parsing the MFT record’s Standard Information At-
tribute (SIA), all File Name Attributes (FNAs) and the Object Identifier Attribute
(OIA). The first column in Figure A.7(a) shows the MFT record reference for each
row. This shows which rows represent the same item. Then the byte offset to the
entry or to the MFT record is shown, and the relative offset from each entry where
the MFT attribute or Object ID type can be found. Knowing the offsets will allow
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verification of results by computer forensic investigators.

Next the MFT Header flags are shown if the entry is an MFT record or the Object
ID entry flags are shown if the entry is an OID. The MFT header flags will show
if the file or directory is allocated or unallocated. It is unlikely that unallocated
files or directories will be found, this is due to the fact that deleted files will be
removed from the index, however it will be present in the MFT table as long as
the record has not been reused. An attempt was made to find patterns describing
what actions created the OID: creation; opening; copying; moving; deleting. This
is not fully implemented in the prototype. In the Name column we show the OIDs
or File Names. The SIA does not have a File Name or an OID, so it is left empty.

For Object ID, Birth Object ID and the MFT OIA attribute the Created timestamps
are shown. It should be noted that the time is the system boot time before creating
the OIDs. For SIA or FNA the Created, Modified, Record Modified and Accessed
timestamps are shown, as can be seen from Figure A.7(b). Note that these time-
stamps are approximately real time, but that the Accessed timestamp does not get
updated all the time. Then the MAC address computed from the last 6 bytes of the
OIDs is shown. In the field Object ID Order the decimal value of the two least sig-
nificant bytes of the 60 bit timestamp in the OIDs is shown. This is not shown for
the Birth Volume Object ID, since this OID does not have a timestamp. The last
column shows the clock sequence, which shows which OID entries were created
within a boot session.

We used Virtual Box v. 5.1 to virtualize Windows 7 Home Premium SP1 (32bit)
and Windows 10 Pro (64bit). The attached SATA USB3 disks were of the type
Lacie Porsche Mobile (1 TiB), each using one volume and formatted as NTFS.
For Windows 7 we needed to install USB3 drivers. Since we were using virtual
machines, the USB disks were automatically released to the host (MacOS High Si-
erra v 10.13) OS when rebooted. This was also why we observed that the $Volume
Object ID was not always set. In the final stages of preparing this paper, we found
that we could add the USB device to the USB device filters in the Settings, Ports,
USB in Virtual Box. This way we could restart the virtual machine while the USB
disk was attached during the reboot. The internal NTFS volumes were created by
adding a vmdk disk device using Virtual Box, and then formatting it in Windows.
We also tested using different USB thumb drives, however rebooting with the USB
thumb drives attached did not assign a $Volume Object ID.

A.5 Results
We observed that for the Index Allocation Attribute (type 0xA0) to be used as an
attribute in the $ObjId MFT record, it is necessary to have more than 6 entries
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(a)

(b)

Figure A.7: NTFSObjIDParser output. Results are split between (a) and (b).

on a newly NTFS formatted volume. This might also depend on the number and
size of the attributes within the $ObjId MFT record. If we have less entries, the
indexes will be found in the Index Root Attribute (type 0x90). In the experiment
a NTFS formatted USB disk was used. Since MFT record 3 ($Volume) did not
get an Object ID attribute, the value used for Birth Volume Object ID UUID was
zero. This result was unexpected, as all documentation consulted described that
the Birth Volume Object ID should be assigned a unique value identifying the
volume (Microsoft 2016, McGrath and Gladyshev 2013, Singh and Singh 2016,
Parsonage 2008). The missing Birth Volume Object ID UUID was also observed
when using Windows 7. In these cases the $Volume Object ID attribute was also
not present in the MFT table. This was observed on recently created volumes on
internal disks, and on removable disks. Whenever the $Volume Object ID attribute
was available in the MFT table, then a non-zero Birth Volume Object ID UUID
was present in the $ObjId index. We were only successful in creating an Object ID
for the $Volume system file if we performed formatting of an internal or external
disk using Windows 7 or 10. We also observed that a reboot might be necessary
after the formatting in order for the $Volume Object ID to be assigned, and that
the disk must be attached during the boot process. When this internal or external
disk was quick reformatted again, the Object ID for the $Volume system file was
normally preserved.
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In the following tables (A.2 - A.8) the tests that were performed are summarized.
The following abbreviations have been used: W7 (Windows 7); W10 (Windows
10); OID (Object ID); BOID (Birth Object ID); and BVOID (Birth Volume Object
ID). The OS column contains the operating system used. Impact contains the dif-
ferent OIDs that the action might impact. Existing OID has the value Yes if the
file had existing OIDs before the operation was performed, Preserved OID con-
tains Yes if previous OIDs from the source file were preserved after the operation.
New OID has the value Yes if the action created a new Object ID. Tool describes
the tool used for the operation.

A.5.1 File creation

Table A.2 shows that creating a file makes an entry in the $ObjId$O index if File
Explorer is used on Windows 10, but not when using Windows 7. If LibreOffice
is used to create a new file a new entry is created in the $ObjId$O index on both
versions of Windows. If the command prompt is used and the output is redirected
to a file, no entry is made in the Object ID index. When using Notepad to create
a file, no entry is made in the Object ID index. If File Explorer is used to extract
a zip container (including a directory and a file), this creates the directory with
an Object ID entry in Windows 10, but not in Windows 7. However, the file that
was extracted did not get any entry in the Object ID index. A 100 MiB container,
created using VeraCrypt, did not result in any OIDs.

OS Impact Reboot Existing OID Preserved OID New OID Tool
W7, W10 OID, BOID, BVOID No No - Yes LibreOffice

W7 OID, BOID, BVOID No No - No File Explorer (File or Directory)
W10 OID, BOID, BVOID No No - Yes File Explorer (File or Directory)
W7 OID, BOID, BVOID No No - No Extract directory from zip (File Explorer)
W10 OID, BOID, BVOID No No - Yes Extract directory from zip (File Explorer)

W7, W10 OID, BOID, BVOID No No - No Extract file from zip (File Explorer)
W7, W10 OID, BOID, BVOID No No - No CMD prompt, Notepad
W7, W10 OID, BOID, BVOID No No - No Veracrypt

Table A.2: Experiment 1 - Test 1: File Creation.

A.5.2 Opening a file

Table A.3 shows that if a file with no Object ID entry was opened by double click-
ing on it in File Explorer, then it received an Object ID entry. Identical UUIDs
for Object ID and Birth Object ID were created. When double clicking a file with
existing OIDs in File Explorer, the OIDs were preserved. This was also the case if
we rebooted the system first. If LibreOffice was used to open a file without OIDs,
a new entry was added to the Object ID Index. Using Libreoffice to open a file
with existing OIDs preserved the OIDs. The same behavior was observed when
rebooting the system first. No deviations were observed between Windows 7 and
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10 when opening files. Both Notepad and the Command Prompt failed to create
an OID after opening a file. They did, however, preserve existing OIDs.

OS Impact Reboot Existing OID Preserved OID New OID Tool
W7, W10 OID, BOID, BVOID No No - Yes File Explorer (double click)
W7, W10 OID, BOID, BVOID No Yes Yes No File Explorer (double click)
W7, W10 OID, BOID, BVOID Yes Yes Yes No File Explorer (double click)
W7, W10 OID, BOID, BVOID No No - Yes LibreOffice (File Open)
W7, W10 OID, BOID, BVOID No Yes Yes No LibreOffice (File Open)
W7, W10 OID, BOID, BVOID Yes Yes Yes No LibreOffice (File Open)
W7, W10 OID, BOID, BVOID No No - No CMD prompt, Notepad (File Open)
W7, W10 OID, BOID, BVOID No Yes Yes No CMD prompt, Notepad (File Open)
W7, W10 OID, BOID, BVOID Yes Yes Yes No CMD prompt, Notepad (File Open)

Table A.3: Experiment 1 - Test 2: Opening a file.

A.5.3 Copying a file (same volume)

In Table A.4 File Explorer is used to drag and drop a file while holding CTRL
(this ensures the file is copied) (Microsoft 2001). The original file did not have
any Object ID before the operation. Both the original and the copy did not get any
entry in the Object ID index after this operation. If the source file had OIDs before,
these are preserved for the source file, but no OIDs were found for the new copy.
Using LibreOffice Save As created new OIDs for the copy. If the copy terminal
command was used to copy a file to the same volume, it did not create new OIDs
for the copy. Notepad was used to create a copy using Save As. In Windows 7
OIDs were created for the copy, but not in Windows 10. Copying a file also is
creation of a file based on an existing file. A new entry will be created in the MFT
table, and therefore this is also a part of the copy operation.

OS Impact Reboot Existing OID Preserved OID New OID Tool
W7, W10 OID, BOID, BVOID No No - No File Explorer (CTRL drag)
W7, W10 OID, BOID, BVOID No Yes No No File Explorer (CTRL drag)
W7, W10 OID, BOID, BVOID Yes Yes No No File Explorer (CTRL drag)
W7, W10 OID, BOID, BVOID No Yes No Yes LibreOffice (Save As)
W7, W10 OID, BOID, BVOID Yes Yes No Yes LibreOffice (Save As)
W7, W10 OID, BOID, BVOID No Yes No No CMD prompt (copy)
W7, W10 OID, BOID, BVOID Yes Yes No No CMD prompt (copy)

W7 OID, BOID, BVOID No Yes No Yes Notepad (Save As)
W7 OID, BOID, BVOID Yes Yes No Yes Notepad (Save As)
W10 OID, BOID, BVOID No Yes No No Notepad (Save As)
W10 OID, BOID, BVOID Yes Yes No No Notepad (Save As)

Table A.4: Experiment 1 - Test 3: Copying file to the same volume.
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A.5.4 Copying a file (other volume)

Table A.5 shows the results of copying a file to another volume using File Ex-
plorer’s drag and drop functionality while holding the CTRL key. The results,
regarding OIDs, were the same as when the file is copied to the same volume. We
also show the result when using LibreOffice’s Save As feature, which created new
OIDs for the target file. When using Notepad’s Save As feature only Windows 7
created new OIDs for the target file. Using the command prompt copy command
did not create OIDs for the target file.

OS Impact Reboot Existing OID Preserved OID New OID Tool
W7, W10 OID, BOID, BVOID No No - No File Explorer (CTRL drag)
W7, W10 OID, BOID, BVOID No Yes No No File Explorer (CTRL drag)
W7, W10 OID, BOID, BVOID Yes Yes No No File Explorer (CTRL drag)
W7, W10 OID, BOID, BVOID No Yes No Yes LibreOffice (Save As)
W7, W10 OID, BOID, BVOID Yes Yes No Yes LibreOffice (Save As)
W7, W10 OID, BOID, BVOID No Yes No No CMD prompt (copy)
W7, W10 OID, BOID, BVOID Yes Yes No No CMD prompt (copy)

W7 OID, BOID, BVOID No Yes No Yes Notepad (Save As)
W7 OID, BOID, BVOID Yes Yes No Yes Notepad (Save As)
W10 OID, BOID, BVOID No Yes No No Notepad (Save As)
W10 OID, BOID, BVOID Yes Yes No No Notepad (Save As)

Table A.5: Experiment 1 - Test 4: Copying file to another volume.

A.5.5 Moving a file (same volume)

In Table A.6 File Explorer’s drag and drop functionality is used while holding the
SHIFT key (to ensure the file was moved) (Microsoft 2001). The file did not get an
entry in the Object ID index after this operation. If the file had existing OIDs, then
these were preserved. The same was observed when using the move command
from the CMD prompt.

OS Impact Reboot Existing OID Preserved OID New OID Tool
W7,W10 OID, BOID, BVOID No No - No File Explorer (SHIFT drag)
W7, W10 OID, BOID, BVOID No Yes Yes No File Explorer (SHIFT drag)
W7, W10 OID, BOID, BVOID Yes Yes Yes No File Explorer (SHIFT drag)
W7, W10 OID, BOID, BVOID No No - No CMD prompt (move)
W7, W10 OID, BOID, BVOID No Yes Yes No CMD prompt (move)
W7, W10 OID, BOID, BVOID Yes Yes Yes No CMD prompt (move)

Table A.6: Experiment 1 - Test 5: Moving file to the same volume.

A.5.6 Moving a file (other volume)

The behaviour when moving a file from one NTFS volume to another depends on
the OS used, and if the volume is an internal volume or an external volume. All
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our observations show that external disks have an Object ID equal to zero for the
$Volume system file when these external disks have not been connected during
reboot. This was observed for both Windows 7 and 10, regardless of the format
method. However, internal disks when formatted normally (not quick) will have an
Object ID for the $Volume file. If the same internal or external drive is reformatted,
then the Object ID for the $Volume system file is preserved.

Table A.7 shows File Explorer’s drag and drop, while holding the SHIFT key,
being used to move a file to a different volume. The file did get an entry in the
Object ID index after this operation. The least significant bit, when reading the
timestamp location as Little Endian, was set in the Birth Volume Object ID (the
move bit). The Object ID and the Birth Object ID were preserved in this new
index entry. We also observed an exception if the volume was an NTFS volume
without an Object ID Attribute in the $Volume system file (external disk). In this
case we observed that the moved file got a new Object ID and Birth Object ID in
Windows 10, but no Object IDs were created in Windows 7. For Windows 10 the
Birth Volume Object ID was also set to 0.

For internal disks with an Object ID in the $Volume system file using the command
prompt and the move command will preserve the Object ID and the Birth Object
ID. The Birth Volume Object ID is also preserved, but the least significant bit is
set to 1. If this bit is already set, then the Birth Volume Object ID is preserved.
If the Object ID of the $Volume of the target volume was zero (external disk),
then the OIDs were not preserved and no new OIDs were created even if the move
command was used.

OS Impact Reboot Existing OID Preserved OID New OID Tool
W7, W10 OID, BOID, BVOID No No - No File Explorer (SHIFT drag)
W7,W10 OID, BOID, BVOID No Yes OID, BOID BVOID LSb=1 File Explorer (SHIFT drag)

W7 OID, BOID, BVOID No Yes No No File Explorer (SHIFT drag). Target BVOID = 0
W10 OID, BOID, BVOID No Yes No Yes + (BVOID=0) File Explorer (SHIFT drag). Target BVOID = 0

W7, W10 OID, BOID, BVOID Yes Yes OID, BOID BVOID LSb=1 File Explorer (SHIFT drag)
W7, W10 OID, BOID, BVOID No No - No CMD prompt (move)
W7, W10 OID, BOID, BVOID No Yes OID, BOID BVOID LSb=1 CMD prompt (move)
W7, W10 OID, BOID, BVOID Yes Yes OID, BOID BVOID LSb=1 CMD prompt (move)
W7, 10 OID, BOID, BVOID No Yes No No CMD Prompt (move). Target BVOID = 0
W7, 10 OID, BOID, BVOID Yes Yes No No CMD Prompt (move). Target BVOID = 0

Table A.7: Experiment 1 - Test 6: Moving file to another volume.

A.5.7 Deleting a file

If a file is deleted that has an entry in the $ObjId index, then the B-tree index will
re-organize, and the result is often that the previous entry will be overwritten. The
same was observed when using the del command in the CMD prompt. This is also
shown in Table A.8.
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OS Impact Reboot Existing OID Preserved OID New OID Tool
W7, W10 No No - No File Explorer (SHIFT delete)
W7, W10 No Yes No No File Explorer (SHIFT delete)
W7, W10 Yes Yes No No File Explorer (SHIFT delete)
W7, W10 No No - No CMD prompt (del)
W7, W10 No Yes No No CMD prompt (del)

Table A.8: Experiment 1 - Test 7: Deleting a file.

A.6 Evaluation
To evaluate the results, we focus on the two research goals described in section
A.3, Feasibility and Reliability.

A.6.1 Feasibility

Is it feasible to use the file $ObjId to document User Activity? Only the operations
that actually create OIDs will be detected. Creating a new file (W10) or opening a
file from File Explorer (W7 and W10), LibreOffice or other applications using the
same API will be detected. We will not detect all user activity on the NTFS File
System by only scrutinizing the Object ID index and the MFT records. However,
it is feasible to assume that files with an entry in the Object ID index are there
because of user activity. In many real cases, when the investigator only has access
to a removable disk, this approach might be the only method of documenting user
activity. It can also be used to map possible hosts to which the removable device
has been attached.

A.6.2 Reliability

To answer the question of the reliability of this approach it is necessary to focus
on what it does not detect. When a file is deleted, the B-tree $ObjId index is re-
organized, and the previous content in the object index is normally overwritten.
However, the Object ID in the MFT record can still be found, as long as the MFT
record is not reused. This is an indication that the file has been opened, created or
saved by the user or a software tool. Using the command line shell will normally
go undetected, except when moving a file to another NTFS volume that has an
Object ID assigned to the $Volume system file. However, if the $Volume Object
ID is zero, moving a file to this volume will go undetected. When copying a file
from one NTFS volume to another, the target file will not get OIDs. Creating an
encrypted container will not generate OIDs when VeraCrypt is used.

It seems that all applications that use the Windows API FileOpen or FileSave dia-
logs will create OIDs. We tested this by creating a very simple tool that used the
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IFileOpenDialog interface, and OIDs were created when we used it to open a file
that did not have OIDs. Normal users tend to use graphical user interfaces when
using Windows, and therefore it is possible to detect a significant portion of user
activity by utilizing the OIDs.

A.7 Discussion
Since OIDs are created based on typical user activities on NTFS volumes, using
the $ObjId index will be a very efficient way to detect which files were accessed
by the user. Not all Object IDs will have a LNK (shortcut) file in its Recent folder
or as a LNK stream in a Jumplist. The user can even create their own LNK files,
which could be stored in a selected directory. We do not claim that the Object ID
index will find all user activity, but users using the File Explorer or other Graphical
User Interface (GUI) tools have little control over index entry creation. Windows
tool developers often use the Windows API instead of creating their own FileOpen
or FileSave dialogs, meaning that Object ID creation will be enabled regardless of
the programmer’s awareness.

As observations show, normal user activity will create entries in the $ObjId index
file. The $ObjId file is not directly accessible by the normal user, as it is a system
file. This makes it more difficult to hide the traces. It is easy to hide traces by
deleting LNK files or eventlog entries or by using a tool to clear UserAssist and
RecentDocs in the Registry. It is possible to delete entries in the $ObjId index by
using the fsutil tool, or by deleting files. The latter will still preserve the Object
ID attribute in the MFT record, as long as the MFT record is not reused. This is
because only a flag in the corresponding MFT record header is changed when de-
leting a file (Carrier 2005). It is currently possible to change the $ObjId index file
from user space by using fsutil in Windows 10 (not in Windows 7) or by utilizing
the correct API when developing new anti-forensic tools. It is not possible to set
new OIDs using fsutil if there exists a set of OIDs for the particular file. In order
to set new OIDs it is necessary to delete the existing OIDs first, then create new
ones. In NTFS there are other system files that will be updated when using fsutil
to change the OIDs, for instance the $UsnJrnl have entries that describe the type
of change (Carrier 2005, p. 394). Manipulation of OIDs can easily be detected if
they do not follow the same format as Windows. If the MFT record SIA created
timestamp is manipulated to a future date within another Object ID session, ana-
lyzing the previously assigned Object ID will normally detect this manipulation.
This because the Object ID identify the boot session it belongs to, and therefore
the MFT SIA created date should not be in the time range of a later Object ID boot
session.

An interesting question is if all OIDs are only created based on User Activity?
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The answer depends on how we define user activity. In this study any process that
behaves on behalf of a user, as a user agent or a chain of user agents, is user activ-
ity (Buchholz and Spafford 2004). For instance a process is normally executed by
a user or the OS. Even though the user started the OS, we do not count automatic
OS activity not initiated by the user as user activity. A malicious program is star-
ted somehow by a user, not necessarily the local user, and we consider this user
activity.

The Object ID index can be used to find all allocated files that have an Object
ID. The Object ID keys found in the $ObjId file can also be compared with the
unallocated entries in the MFT table which contain an OID. This will indicate that
the user did more than just delete the file, and the file should therefore be recovered
for further investigation.

Even if users wipe their system drive, the computer used can be discovered by
analyzing a previously attached removable NTFS volume. This is because the
MAC address is usually contained within the OIDs. If OIDs are created during
multiple sessions on different computers, the removable NTFS volume can also
yield different boot times for the computers to which it has been attached.

We can not depend on the move flag (least significant bit in the timestamp when
read as LE (Parsonage 2008)) of the Birth Volume Object ID when the target Birth
Volume Object ID is 0. In this case other Object ID and Birth Object ID are
created, which makes it look as if the file was not moved. In these cases the file
can only be connected to a computer using the MAC address found in the Object
ID and the Birth Object ID. When a user moves a file from one volume to another,
the move flag will only be set if the target Birth Volume Object ID is not zero.

A.8 Conclusions and future work
Users will use File Explorer or other software tools to create, open, copy, move
and delete files. In the cases in which OIDs are created, it will yield user activity.
Even if the system volume is not available, we know that the OIDs are artifacts
from some form of user activity. On external drives the $ObjId is one of the very
few artifacts found that can yield user activity.

Our experiments using Windows 7 and 10 show that a Birth Volume Object ID is
not always created, even if Birth Object ID and Object ID are created. Previous
research has documented that Birth Volume Object IDs are created or updated
(Parsonage 2008), but our results show Birth Volume Object IDs with only zeros.
This means that we are even more dependent on the MAC address found within
the Birth Object ID to connect the computer used to create the OIDs. If an external
disk with a NTFS volume is attached while rebooting, our experiments show that
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$Volume system file is assigned a new Object ID if the existing one is not set.
However, we have observed exceptions to this when using USB thumb drives.

Analyzing the $ObjId index is important in order to:

• create timelines

• connect NTFS volumes to one or more computers by using the MAC address
found within the Object ID

• select which files to analyze (data reduction or triage)

• detect boot sessions and the order of OIDs creation

• detect MFT created date manipulation

For further work we suggest to determine if correlation with other system files can
be used to validate the interpretation of the $ObjId system file. In this context,
$UsnJrnl system file (Carrier 2005, p. 343) and the $logfile (Carrier 2005, p. 340)
is known to be useful for event reconstruction. However, the $logfile is normally
very small (64 MiB) and the transactions will start overwriting the oldest transac-
tions when necessary (Zareen and Aslam 2014). This means the NTFS $logfile
journal transactions are very volatile and will only document file activity for a
particular time range, with that range dependent on the degree of volume activity.
It would also be interesting to expand this study by correlating the $ObjId index
with other system files in order to see if it is possible to reliably detect what kind
of operation created the Object IDs.

More research could be performed on which APIs implement the use of $ObjId
system file. We have documented that the IFileOpenDialog API will create OIDs.
Even if our work shows similarities between Windows 7 and 10, it also shows
differences. This was expected, since programmers change their software tools
regularly, and they decide which APIs they want to use in each release. The APIs
themselves could also change in the future.

More experiments should be performed to determine what a change of the $Volume
Object ID can have on existing OIDs in the $ObjId index. Further experiments
should be performed in order to see if adding a partitioning scheme on USB thumb
drives will impact the creation of $Volume Object ID.
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Abstract
Recovery of files can be a challenging task in file system investigation, and most
carving techniques are based on file signatures or semantics within the file. How-
ever, these carving techniques often only recover the files, but not the metadata
associated with the file. In this paper, we propose a novel, generic approach for
carving metadata by searching for equal and co-located timestamps. The rationale
is that there are some common metadata for files and directories within each file
system. Our generic time carver provides potential timestamp locations for re-
peated timestamps in each metadata structure, identifying potential metadata for
files. A semantic parser then filters the results with respect to the specific file sys-
tem type. In our experiments, extraction of MFT entries in NTFS and inodes in
Ext4 had near perfect precision for metadata entries with multiple equivalent time-
stamps, and for such metadata structures we obtained perfect recall for NTFS. For
known file systems, we use the information found within identified metadata to
recover files, and by recovering files and their associated metadata we increase the
evidential value of recovered files.

B.1 Introduction
File carving is a technique which identifies and extracts files from unallocated
areas based on signatures found within the file content, and not by using file sys-
tem metadata (Garfinkel 2007). While extremely useful, file carving has a few
challenges. First, investigators need to decide which file type to carve. To de-
crease the file carving time, investigators often select the file types they assume
could be pertinent for the criminal case. For instance, by carving for typical image
files in cases related to sexual abuse of children, the investigator limits the ability
to identify other file types. Furthermore, not all files have a signature, and will not
be found by using file carving. Some carving techniques will carve based on the
assumption that files have contiguous blocks, which will fail when trying to carve
a fragmented file (Garfinkel 2007).

Our novel approach does not use file carving, but rather metadata carving. We
search for repeated co-located timestamps, based on equality, in a small window
to obtain locations of potential timestamps. In this way, timestamps are used as a
kind of dynamic signature. Once verifying the timestamp as likely to be legitimate
for a particular file system, we use the metadata surrounding it to fully or partially
recover the file. Our approach handles both contiguous and fragmented files.

We only recover file or directory metadata from NTFS and Ext4 to demonstrate
the usability of the novel approach, but the approach can be extended to recover
metadata from other file systems. In order to achieve a realistic scenario, we dam-
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age the original file system by reformatting the volume with another file system.
The tools developed in this paper are prototypes, and the main target group are file
system experts with the competence to manually assess file system structures. The
tools and the disk images can be downloaded for review at Nordvik et al. (2020).

To our knowledge, no one has used equality between closely co-located time-
stamps to identify metadata before as a carving technique. Previous attempts suffer
from many shortcomings including the inability to find static signatures for all per-
tinent metadata structures.

Our approach focuses on metadata structures found in MFT entries or inodes carved
from unallocated space. There will always be a risk that the blocks (clusters)
pointed to by the discovered metadata structures may be overwritten by new or
existing allocated files, but this may be identified by examining the allocated file
system bitmap for allocated blocks, and by comparing metadata information with
the content of the recovered file. Most file systems have some sort of bitmap
system which has bits representing each block (cluster), and allocated blocks have
their corresponding bit set (Carrier 2005, p. 311).

Our new approach is suited for recovery of metadata and file content from storage
devices that have been reformatted with another file system, with the same kind
of file system when not assessing the allocated inode/file table, or from generally
damaged file systems. The approach is also useful for finding historical metadata
structures located on disk that are not contained in MFT or inode tables.

Detailed file system structures are described by Carrier (2005). Even though his
book does not include details about Ext4, it contains most of the basic information
from Ext2 and Ext3. Dewald and Seufert (2017) include more details about
Ext4.

B.1.1 Assumptions

Currently, most file systems will include at least 3 contiguous timestamps. Linux
file systems normally use the MAC (Modified, Accessed and Changed) timestamps
(Carrier 2005, p. 297), for instance Ext2 and Ext3 use the contiguous atime
(accessed), ctime (inode changed), mtime (data modified) and dtime (deleted)
(Carrier 2005, p. 298). Ext4 also contains the same contiguous timestamps,
but adds the crtime (creation) in the end of the inode (Ext4 development team
2019). NTFS and ReFS use 4 contiguous timestamps (Creation, Modified, MFT
modified, and Accessed) in multiple attributes (Carrier 2005, Nordvik et al. 2019).
Listing B.1 shows a few file systems with closely co-located timestamps.
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File System Co-located timestamps Granularity
NTFS (Carrier 2005) 4 64 bit - ns intervals since 1.1.1601

ReFS (Nordvik et al. 2019) 4 64 bit - ns intervals since 1.1.1601
APFS (Hansen and Toolan 2017) 4 (5) 64 bits - ns since 1970

HFS+ (Apple 2004) 4 32 bits - s since 1904
BTRFS (Bhat and Wani 2018) 3 (4) 64 bits - s since 1970 + 32 bits (ns)

ExFAT (Hamm 2009) 3 32 bits + UTC offset
FAT (Carrier 2005) 3 16 bits for time (except accessed), 16 bits for day

UFS1 (Carrier 2005) 3 32 bits - s since 1970 + 32 bits (ns)
UFS2 (Carrier 2005) 4 64 bits (ns) since 1970
Ext2/3 (Carrier 2005) 4 32 bits - s since 1970

Ext4 (Dewald and Seufert 2017) 4 34 bits - s since 1970 + 30 bits (ns) (Göbel and Baier 2018)

Table B.1: File Systems with timestamps co-located within metadata structures

B.1.2 Objectives

• Can we reliably use time as a generic identifier to carve for file and directory
metadata structures in different file systems?

• What is the reliability of recovery of files using the discovered metadata in
Ext4 and NTFS?

We aim to identify file or directory metadata structures from different file systems
based on a common identifier. In our case, equal and closely co-located time-
stamps, which will allow for a generic approach for metadata carving. We identify
the potential timestamps by using a simple string matching algorithm, and then we
interpret the semantics1 of the expected file system metadata in order to signific-
antly reduce the number of false positives.

Identifying the metadata is not enough in order to connect file content and the
metadata, because the content may be overwritten by allocated files. We discuss
why it is important to perform a manual assessment of both metadata, content, and
context in order to decide if the metadata and the file content can be connected.

B.1.3 Novelty of the new approach

Existing techniques for metadata carving do not use timestamps as a common iden-
tifier (dynamic signature) for different file systems. Even Dewald and Seufert
(2017) describe that there is no magic signature for inodes in the Ext4 file sys-
tem, and they depend on semantics from Ext4 in order to identify the locations of
the inode metadata structures. However, metadata structures can easily be found
by using string pattern matching based on equality, but unfortunately with a large
number of false positives which have similar properties. Thus, obtaining high re-

1Previous authors used "semantic filtering" to describe this, we have chosen to adopt that termin-
ology
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call and low precision for finding file system metadata entries. We also do not
depend on a start date or an end date to identify the timestamps. This datetime ag-
nostic nature of our approach allows the support of any file system that has closely
co-located timestamps. While we do not depend on other semantics in order to
identify the locations of these potential timestamps, we do utilize semantic parsers
to validate and reduce the number of false positive hits of file system metadata
structures significantly.

B.1.4 Importance for Digital Forensics

By using the novel generic metadata time carving approach, we do not need to
specify which specific file types to carve for. The approach does not consider file
types or file signatures; it only carves for metadata structures that potentially can
be used for recovery of files. By accurately connecting the metadata to the corres-
ponding file content, we also increase the evidential value of the files recovered,
which most existing carving techniques do not accomplish.

B.1.5 Organization of this paper

We have introduced the objectives and the novel generic metadata time carving
approach in the Introduction section. In the Related work and contributions sec-
tion we discuss the current state of the art related to file and metadata carving. In
the Method section we describe the carving algorithms and the methods we used
for the experiments, and in the Results section we describe our results using pre-
cision and recall. Then we discuss our results in the Discussion section, and we
conclude in the Conclusion and further work section.

B.2 Related work and contributions
There has been a significant amount of literature published on file carving, both
using signature based contiguous carving, specific file type semantic carving or
other statistical approaches in order to identify and carve for fragmented files.
We address literature more specifically related to metadata carving, therefore, a
complete list of all file carving literature will be out of scope.

Mueller (2008) introduced the idea of searching for NTFS timestamps as a string
in unallocated space, since each timestamp is 64 bits and represents the number
of nanosecond intervals since 1.1.1601. He also describes that the timestamps are
in groups of 4 contiguous timestamps for each group. He created an EnScript
(plugin for EnCase) that searched for the NTFS timestamps and bookmarked
them. The EnScript uses a grep search for a particular date range, and it
has an option for checking the next 8 bytes in order to only include hits that are
followed by another valid timestamp. Use of the consecutive timestamps search
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ideally reduces the number of false positives, but based on the comments on this
blog post it appears as though the consecutive timestamps search does not work
correctly.

In order to decrease the number of false positives, our idea is to search for a set
of identical timestamps within a small window in order to detect metadata struc-
tures that describes files. Only metadata structures with a specific number of equal
timestamps will be found. Our approach is more generic since we do not need to
know how the timestamp is formatted (other than that they are closely co-located).

Mccash (2010) based his work on the EnScript from Mueller (2008), and adds the
idea of using this information to detect MFT records and their attributes to extract
the data content. He also describes that the script can be used to identify directory
indexes and Registry key nodes.

B.2.1 Metadata carving

Dewald and Seufert (2017) consider the case in which the Ext4 superblock or
group descriptor table is corrupted or overwritten, and they use either metadata
mode or content mode for parsing file systems or metadata carving respectively.
In content mode their solution is to carve for inodes, which potentially provides
the metadata necessary to extract the file content. However, the filename and in-
ode number is not recovered in content mode. Since inodes have no magic bytes
(except for extent headers in Ext4), they describe that they carve for them using
pattern matching and analysis of the metadata. They conclude that their approach
can reconstruct files from Ext4 despite not knowing about the specific structure
of the file system. They do, however, describe that they need multiple Ext4 para-
meters in metadata mode for file system parsing. They describe that these can
either be given by the user, or estimated based on the file system size.

Their work shows that carving for metadata structures is already suggested for file
recovery. Their metadata mode approach explicitly depends on semantics specific
for Ext4 in order to include both metadata and file content, which enables parsing
of the file system (not carving). Their carving approach, content mode, is not able
to recover filename or inode numbers.

Plum and Dewald (2018) describe carving for APFS container superblocks, volume
superblocks, or inode carving. APFS uses multiple container superblocks, and
each of them may contain a reference to the previous container superblock. Within
each container superblock they find volume superblocks, which describe specific
volumes. These can be used to parse a specific volume and recover files from pre-
vious states of the file system. They further describe that inodes do not have a
specific signature, but they can be carved using a combinations of the object type
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and subtype inode fields. These inodes can be used to potentially recover files with
the connected metadata.

Their approach is similar to the work of Dewald and Seufert (2017), but it differs
by depending on specific semantics from APFS. Our generic approach will also
work for the APFS inodes, since each inode has a set of contiguous timestamps.
However, we have not implemented a semantic parser for APFS.

Work by Garfinkel (2013) describes the Bulk_Extractor tool which parses a large
stream of data, using multiple threads, for feature extractions (URLs, e-mail ad-
dresses, Google search terms, Exif data, etc), which utilizes optimistic decompres-
sion before extracting the features. The features are detected based on rules which
consider local context, which improve precision and recall. The features extracted
do not need to be found within file entities. As part of the result, histograms of
extracted features are created.

B.2.2 Evaluating recovered files

Casey et al. (2019) describe forensic processes such as authentication, classifica-
tion and evaluation of recovered files. The problem is that different recovery tools
do not use the same names for the same thing. They suggest to use Potentially
Recovered before the authentication is performed. The authentication process is
necessary in order to decide if the file is Fully Recovered, Partly Recovered, only
Name and Metadata recovered, or Name Recovered. The decision should be based
on confidence level after testing or trying to falsify different scenarios or claims.

B.3 Method
We use a generic automated approach to identify a potential set of timestamps
within a specified threshold. We then record the byte positions in the image file
where the set of timestamps were found. The approach is generic because it will
identify the metadata structures in any file system that uses two or more timestamps
of a user defined size to describe the temporal information of a file or directory.
Since our approach is based on identifying equality between sequences of bytes,
we do not require a start or end time for the timestamps. This approach will in-
crease the false positive rate, but our semantic parsers attempt to exclude false
positives by verifying if each timestamp location has a valid metadata structure for
a specific file system.

As a proof of concept, we have added support for the recovery of metadata based
on the identified timestamps in the Ext4 and NTFS file systems.
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B.3.1 General Potential Timestamp Algorithm Description

We first describe the general potential timestamp algorithm at a high-level over-
view. A motivating factor for this algorithm is that often one or more MAC time-
stamps are identical. Furthermore, for file system entries in NTFS, ReFS, and
ExtX the timestamps are closely co-located together in the metadata structure.
Let m be the length in bytes of the potential timestamp, let T be an array of bytes
of the data being searched. The user will define the length m (ExtX requires
m = 4 and NTFS requires m = 8), as well as the length k of bytes to be searched
after the potential timestamp, which we refer to as the search threshold. The crux
of this search approach is that every non-overlapping m bytes in our binary data
T is considered a search keyword, and we look for repetitions of this size m byte
sequence within the subsequent k byte threshold window following the keyword.
If the given byte pattern occurs one or more times within this threshold window,
then we have identified a potential timestamp.

The mechanics of the search algorithm are based on the sliding window approach
as is often found in malware analysis. The search begins at T [0], in which the
first m bytes are taken to be a potential timestamp, which contains the values
T [0 : m). We then check if this m byte keyword is equivalent to every non-
overlapping m bytes in T [m : (m + k)), and keep count of how many exact
matches have occurred. Given that we are searching for timestamps where at least
two of them per metadata structure are equivalent, if no matches are found, we
would then advance our search position by m bytes to position T [0 + m]. The
advancement of m bytes assumes that timestamps will always fall on a multiple
of m, and we do plan in implementing an exhaustive search functionality which
checks for timestamps on every one or two bytes. Such skip sizes were chosen
to enhance the speed of search substantially, as the current solution for 8 byte
timestamps will process a disk image 8 times faster than an exhaustive search
alternative that checks for potential timestamps on every single byte. If one or
more matches are found we advance our search position by k bytes to position
T [0 + k]. In either, case the entire search procedure is repeated from our new
search position. This process is repeated for the entirety of the data T , except
last k threshold of bytes. The skip size of k was chosen as it is the minimum
size to avoid multiple hits for the same metadata structure. Note, for our current
implementation k must be a multiple of m, otherwise the bytes being searched will
be misaligned with the actual disk image timestamps. Algorithm 1 provides the
pseudocode of the basic potential timestamp carving algorithm.

We provide an illustration for further explanation. In Figure B.1, the underlined
bytes represent the potential timestamp keyword with m = 8, and the brackets
represent the threshold of bytes, k = 24, being searched for matches.
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Figure B.1: Visual representation of the search procedure where three matching time
stamps are searched for. The underlined byte sequence represents the current byte se-
quence being tested as a possible timestamp. The subsequent bytes in brackets represent
the search threshold for checking matches. The bytes in grey boxes represent checks for
matching byte sequences. In the second row, after a second match is found, we advance
the search procedure ahead by k bytes, where the process is repeated.

This general search by itself likely produces a large number of false positives, thus
we placed an additional condition to improve the algorithm’s precision. We de-
termine if the potential timestamp to be searched for consists of a single repeated
byte value, and if so, we skip the search procedure and move forward m bytes. This
is to avoid fruitless searches on blocks of repetitive bytes. Examples of such time-
stamps we wish to avoid are 0x0000000000000000 and 0xFFFFFFFFFFFFFFFF.

Here we approximate the time complexity of the worst case search scenario. We
assume that the entire disk image could be read into memory at once to simplify
our approximation. In this scenario, we are searching a disk image with no sets of
co-located bytes that are repeated two or more times (we get no hits). In this fash-
ion, we cannot perform any byte window skips after searching through our search
window threshold. We also perform the most generic type of potential timestamp
carving, where we do not consider repetitive byte sequences. In this way, we can-
not skip any particular keyword byte sequence, since all byte sequences will be
considered to be potentially valid timestamps. Thus, every m sequence of non-
overlapping bytes on the array of disk image bytes T will have a search procedure
performed on it, in which the entire threshold window of size k is searched.

Given this worst case scenario, the computational time complexity is O(
⌊
|T |
m

⌋
×

k
m). The integer of the cardinality of T divided by m is the number of byte se-
quences that have a search procedure performed on it, and it is multiplied by the
maximum number of byte matching checks, the threshold of bytes k divided by m
where m is a factor of k.
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B.3.2 Practical Potential Timestamp Program Details

The general timestamp carving algorithm was implemented in C++, which we
refer to as cPTS, and is supported by a number of libraries. Since disk images under
analysis are likely greater than memory, we use the cross-platform mio memory
mapping library2. This allows us to read in 1 GB of memory at a time, and read the
image as a series of arrays. However, once the potential time stamp carver arrives
within the last 4096 bytes of the gigabyte in memory, we load a new gigabyte into
memory from the search point relative to the disk, as to handle directory entries
that are spread across segments. For converting datetime formats into decimal
form, we used the Date library3. The program outputs a text file list of all the
potential timestamp locations (in byte offset) that were found.

B.3.3 Semantic parsers

Identifying closely co-located potential timestamps based on equality will provide
generic results, but will contain many false positives due to its genericity. There-
fore, parsers which utilize the semantics of the expected metadata structures of
specific file systems were developed for more accurate automation. Our Python 3
parsers accept the timestamp locations from the generic timestamp carver and the
disk image as input, as seen in Figure 2. Our experiments utilize this process.

Figure B.2: Diagram for system deployment, used in our experiments.

NTFS semantic parser

The NTFS script assesses if the potential timestamp is within the Standard Inform-
ation Attribute (SIA), or a Filename Attribute (FNA). To reduce the number of
false positives, we exclude any potential timestamps from before the year 1970
and years beyond 2100. The script outputs metadata information contained in the
SIA, FNA, and Data Attribute if possible. When attempting to parse out a full MFT
entry, we start with the identification of the SIA. Once we identify the location of
the SIA header, we use the length of the SIA to see what the header of the next
attribute is, ultimately searching for the Data Attribute. If the next attribute header

2https://github.com/mandreyel/mio
3https://github.com/HowardHinnant/date
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is not the Data attribute, and the first byte of the attribute type is less than 0x80, we
read the length of the attribute and perform another skip down to the next attribute.
Though, if the next attribute is an FNA, we will output its metadata information,
and add the byte location of its first timestamp to a list of future timestamps to
avoid. This is done so we do not get redundant FNA outputs. Encountering at least
one FNA is required to read out a potential Data Attribute we encounter. This is
repeated until we find the Data attribute, or abandoned if we identify an attribute
type where its first byte is greater than 0x80 or if we have searched more than the
length of the potential MFT entry. A limitation of this work is that we do not cur-
rently perform MFT entry searching starting from identified File Name Attributes,
where their timestamps are more likely to be reliably4 found due to their relat-
ively unchanging nature compared to Standard Information Attributes (Cho 2013).
Another limitation is that we currently do not support Alternate Data Streams. Rel-
evant MFT entry information is output into the file NTFSResults.txt, and if
the file is resident, we also include the resident file encoded in ASCII.

Ext4 semantic parser

The Ext4 Python 3 script uses the text file produced by the cPTS tool containing
the potential timestamp locations, the disk image, the byte position to where the
partition starts, and the assumed block size. For conducting a similar search as was
done in the NTFS parser, these parameters and a default static inode size of 256
bytes are the only assumptions we make.

Like the NTFS parser, we use the potential timestamps as anchor points and test
for various semantics at local offsets. But now, we also verify information found
in likely directory entries. For Ext4, we test all possible offsets backwards for
file flags of interest: 0x04 for directories, 0x08 for regular files, and 0x0A for
symbolic links. For Ext4 inodes not using extents, we ensure the relative position
of bytes 36-39 of the inode are unused. For inodes using extents, we check that the
relative position of its extent header magic number is equal to 0xF30A. We then
conduct additional tests to increase the likelihood of having discovered an inode,
such as using some of Dewald and Seufert (2017) timestamp consistency tests, that
the size of the file appropriately fits the sector count, and that the size of the file
cannot exceed the size of the disk image. All inodes found to be sufficiently valid
have their likely starting points added to a list.

The great difficulty in performing full file extraction in Ext4 is connecting inodes
and their directory entries when not relying on superblocks, block group descriptor
tables, or inode bitmaps. Such connections will need to be made if these metadata
structures are irrecoverable. The inode contains the majority of the metadata for

4FNA timestamps are updated mainly on MFT entry creation and on file name change
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the file, but its associated directory entry contains the filename and the inode num-
ber. The task was then to connect inodes based on their physical position to their
actual inode number. We pursued solving this problem solely relying on informa-
tion we can find locally within or around a validated inode.

Our solution revolves around using the verified inodes of directories that have not
been deleted, as this gives us ground truth information about inode numbers and
filenames, including the inode number of the directory itself. Verification is per-
formed by following the directory’s extent or direct block pointer to its first dir-
ectory entry and checking if bytes 4-6 are 0x0C0001 (the length of the entry and
the first byte of the length of the name). For Ext4, we perform two passes over
the disk image. The first pass collects information on valid inodes, creating a dic-
tionary of inode numbers and filenames found in all validated directories, as well
as a so-called synchronization list. This synchronization list is a recording of the
first validated inode of a directory found per block group, wherein we record the
inode’s location and inode number. The second pass uses the inode dictionary and
the synchronization list to make inode number estimations of validated inodes,
outputting the inode number alongside its likely filename.

We can estimate the inode number of potential inodes in two different ways. The
first way uses the positions found in the inode synchronization list, where we can
then make estimates of the inode numbers of the validated inodes that are in the
same block group as the validated directory being used from the inode synchron-
ization list. Assuming that the Ext4 inodes are a static size of 256 bytes, the
following is the equation of the estimated inode number e, where dn represents
the inode number of the validated directory being used from the inode synchroniz-
ation list, vl represents the validated inode location, and dl represents the location
of the inode of the same directory obtained from the inode synchronization list:

e = dn+ ((vl − dl)/256) (B.1)

Using the inode synchronization list, we can estimate inode numbers prior to en-
countering the directory its filename and inode number are held in (in case of
deletion). During the second pass (while we are estimating inode numbers), when
encountering a validated inode of a directory, we update the entry in the inode syn-
chronization list for the current block group we are in. This allows for rather local
synchronization of the current inode number.

The second way of estimating inode numbers uses the previous estimations, and
the inode dictionary. The first time we make an estimate for a particular inode
number, we update its entry in the inode dictionary by adding in the inode’s file
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version number and created time as parameters. If the inode number did not exist
in the dictionary prior to the inode estimation, we simply create an entry with these
parameters. Once the entry has been updated or created, it cannot change. The file
version number and the created time should be relatively unique per inode, and so
when parsing future inodes we check if we have already recorded its file version
number and creation time in the inode dictionary, and write out the associated
recorded inode number and filename.

We output a text file and csv file, ExtResults, where we record pertinent inode and
directory entry information. We list both the estimated inode number and filename
(using the inode number as a key in the inode dictionary), and the recorded in-
ode number and filename (using the file version number as the key in the inode
dictionary).

B.3.4 Experimental setup

We used an external USB thumb drive and wiped the partition5 using the tool
dc3dd v. 7.2.646 (Department of Defence Cyber Crime Center 2012) in
macOS Mojave v. 10.14 (Linux could also be used).

sudo dc3dd hwipe = / dev / r d i s k 8 s 1 hash =md5

Listing B.1: Wiping USB thumb drive.

B.3.5 Experiment - NTFS reformatted with exFAT

We formatted the device in Windows 10 using NTFS, where we created 50 files,
and for each file type we named them File1, File2, File3,..,File10. Five different
file types were used, and there were 10 files for each of these file types, where the
extensions were added to the filename. Then we reformatted the file system using
exFAT. Fragments, or the complete MFT table should still be available. Finally,
10 text files were added to the reformatted image.

The files created by the batch file give us a known basis in order to test precision
and recall. We know all the file names and content, as the base forensic image
(ntfsbase.dd) of the partition was created before reformatting it with exFAT.
After the reformatting and the creation of 10 text files, we created a new forensic
image of the partition (nftsexfat.dd) using dc3dd.

We measured the false positive and false negative rates by comparing the carved
metadata results with the filenames we found in ntfsbase.dd. A false positive
is a hit location not found within metadata describing a file or directory, while a

5We wiped only the partition, shown in Listing B.1, because MacOS gave a resource busy mes-
sage when trying to wipe the complete raw disk
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false negative is a set of timestamps not identified as a hit, but which is located
within metadata describing a file or directory. Finally, we calculated the precision
and recall (Perry et al. 1955) of the methods implemented.

cPTS n t f s e x f a t . dd 8 24 3

Listing B.2: Command to find possible NTFS timestamps.

We used a timestamp size of 8 bytes, a search threshold of 24 bytes to search for
equivalent timestamps, where at least 3 timestamps are equal. The output from
Listing B.2 was saved to the file cPTS.txt.

python3 n t f s P a r s e r . py cPTS . t x t n t f s e x f a t . dd

Listing B.3: Command to identify if the hits are SIA or FNA in a MFT entry, and outputs
information from these attributes and from the DATA attribute if possible.

The next step was to assess if each hit was part of a standard information attribute
(SIA) or a file name attribute (FNA). Then the script in Listing B.3 identifies the
Data attribute and shows the resident data or the non-resident data runs.

Additionally, we tested if X-Ways, EnCase, and Recuva were able to recover
the previous NTFS partition or to find unallocated MFT entries using the same
forensic image.

B.3.6 Experiment - Previous Ext4 reformatted with NTFS

For the Ext4 experiment we used Linux Mint 18.2 and Windows 10. In
Linux we wiped the storage device using the command shred, overwriting using
zeros. Then we formatted the storage device with Ext4, and mounted it. We
created 50 directories with 500 files in each directory. The files were numbered
from 1.txt to 25000.txt. The file names correspond with the number of bytes (a’s)
in each file. The text files were selected because they are more difficult for carving
tools to recover, as there is no signature. Therefore, recovery of these text files
rely only on metadata recovery. The file system was unmounted, and a ground
truth forensic raw image named expExt4.dd was created using dd. Then it was
mounted to a Windows 10 OS, and quick reformatted with NTFS using a 4096
byte cluster size. Then 10 files were created. A raw image was created with the
name Ext4NowNTFS.dd.

cPTS Ext4NowNTFS . dd 4 12 2

Listing B.4: Command to find possible Ext4 timestamps.

We used a timestamp size of 4 bytes, a search threshold of 12 bytes to search
for equal timestamps, where at least 2 timestamps are equal. The output from
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Listing B.4 was saved to the file cPTS.txt.

e x t 4 P a r s e r . py cPTS . t x t Ext4NowNTFS . dd 0 4096

Listing B.5: Command to parse Ext4 inodes.

In Listing B.5 we start at byte offset 0 in the image, the block size is 4096 bytes,
blocks per group are estimated to block size ∗ 8 = 32768.

B.3.7 Limitations

We do not know at the start of the investigation if there has been a previous file
system. We suggest to search for known signatures of volume boot records/super-
blocks, which may document the start of a previous partition. We also suggest to
try to recover the partition before attempting our metadata carving approach.

The output results of the prototype should be assessed by file system experts (or
expert systems) in order to assess if a file (name, metadata and content) can be fully
or potentially recovered. This is called authentication, and it includes an evaluation
of the classifier, the results, and finally a confident decision (Casey et al. 2019).

Our prototype tool will not work properly on a manipulated file system where
sectors or clusters are removed or added, because the mapping between data runs
(extents) and the cluster locations are not in sync. Our approach depends on the
existence of metadata structures in the unallocated area of the partition, and we
assume that the start of a data run (extent block pointer) is relative to the start of
the partition. The prototype also does not consider fixup values found in the last
two bytes in each sector in a MFT entry. Since both SIA and FNAs are among
the first attributes in a MFT entry, we assume they normally will not be found
within a fixup value. We do not consider files that use multiple MFT records if
the DATA attribute is not located in the first of these MFT records. The currently
implemented semantic parsers do not consider FNAs in directory indexes, but the
cPTS tool will locate them. Lastly, we do not consider Ext4 inode record sizes
larger than the standard 256 bytes.

We are aware our experiments have a small sample size, and we have not included
testing on real forensic images from real criminal cases in order to comply with
legislation. We are also aware that we have only tested using specific versions
of Linux and Windows, which opens for possible deviations if other OSes are
selected. We selected this small sample because it allows us to know the ground
truth of the content, which is difficult when using a system volume where the OS
is continuously creating and deleting files. Using an unknown source makes it
difficult to compute precision and recall, and gives us no control of the different
variables that may affect the results.
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B.4 Results
The cPTS command took 13 seconds to run on a 2 GiB byte dd image file. The
ntfsParser.py took less than 1 second, while the ext4parser.py took 8
seconds. This is faster than the runtime performance of Dewald and Seufert (2017)
tools, however they additionally exported the file content automatically.

B.4.1 NTFS metadata carving

For each discovered MFT entry, we know the SIA is associated with the FNA be-
cause of the distance between them is less than 1024 bytes, which could visually
be verified or falsified by interpreting the byte location for the SIA and FNA time-
stamp hits. The Data attribute belongs to the FNA because we skipped to the next
attribute until we found the unnamed Data attribute, which we found within the
next 1024 bytes. This means we have the name, metadata and the content, and
since we have the data runs, we know this record is non-resident and potentially
recoverable. In order to test if the original content can be connected to the meta-
data, we need to extract the content and perform hypothesis testing. Extraction of
the content based on known data runs is described by Carrier (2005).

TP FP FN Precision Recall
SIA matches 162 1 0 0.9939 1

Table B.2: Precision and Recall for finding MFT records in ntfsexfat.dd

In Table B.2 we focus on files/directories and Standard Information Attributes
(SIAs). We know each base MFT entry has one SIA. Since we have 79 files (50
files and the 29 system generated files and directories) in our experiment, we know
there must be 79 SIAs in the MFT table. We also know there must be 79 SIAs in
$LogFile6 and 4 SIAs in $MFTMirr (Carrier 2005, p. 303). This gives a total of
162 SIAs. We found all 162 SIAs, and only one of the hits was a false positive.
We did not have any false negatives for SIAs. Our computation of precision and
recall is shown below.

Precision =
True Positives

True Positives + False Positives
=

162

163
= 0.9939

Recall =
True Positives

True Positives + False Negatives
=

162

162
= 1

6The only file system transactions we performed were creating files.
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For our simple experiment, it was easy to verify the found MFT records with the
known base. However, with a forensic image from a real criminal case hypothesis
testing must be performed in order to verify that the data runs found in the MFT
entries still can be connected to the file content, and that they are not completely
or partly overwritten by another file.

Hits from $LogFile

In addition to entries in the MFT Table and the MFTMirr, we found MFT entries
within the unallocated $LogFile, but in this case they did not include data runs
or resident data. It was interesting to observe that our created files had a Data
attribute within the $LogFile with the size of only 0x18 bytes, which only contains
the attribute header. This means that we cannot fully recover files from all MFT
entries found in $LogFile.

B.4.2 Ext4 metadata carving

We were able to recover all inode metadata entries that were not overwritten by
NTFS, but reformatting Ext4 with NTFS in our experiment wiped approximately
20257 inodes from the inode table. When using flex groups, the inode tables are all
located continuously in the first block group (Dewald and Seufert 2017), instead of
being divided into its corresponding block group. Our current observations show
that our approach supports both types, and does not depend on information from
the block group descriptors. For each extent found in an inode, an extraction of the
file content is easily performed by extracting from the extent start block as well as
the number of blocks contained in this extent. A deleted inode will normally have
the extents zeroed out, making the inode connection to the file content infeasible.
However, since we find hits for duplicated inodes in different physical locations,
we may be able to recover the file content by using extents found in these duplic-
ates. We did not extract the files from the overwritten Ext4 image due to their
quantity, and thus are only discovering potentially recovered files.

In order to measure precision and recall, we created the same Ext4 dd images again
following the same method as previously described, but in addition we added the
real inode number as an attribute to each inode for the 25000 text files and 50
directories we created in the experiment using the Linux attr command. This
way we could compare our estimated inode number and the recorded inode number
with the real inode number included in the attribute.

For the original and reformatted images, we conducted two precision and recall
experiments. The first calculates the precision of attributing our recorded or es-
timated inode number to the true inode number of the inode, and we also calculate
the recall of finding our known files with correct attribution. For calculating recall,
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if at least one inode per inode number was found and we correctly estimated or
recorded its inode number, it counted as a true positive, where the duplicate inodes
(with respect to its true inode number) were removed. Table B.3 shows our results
for the non-reformatted version of the dd file. A similar process was done for the
reformatted dd file, as seen in Table B.5, except rather than calculating the recall
we simply record the number of discovered inodes per method of inode number
estimation. This was done since we cannot be certain of how many false negatives
were either due to our methods, or due to the file system reformatting. Note that
since at least 20257 of 25050 inodes were wiped from the table, and we recover
5755 inodes, that we are potentially recovering at least 963 previously overwritten
inodes.

The second experiment calculates the precision of our method to correctly classify
inodes, whether they were from known files or not. False positives in this case are
inode hits that contain junk information. Table B.4 shows the precision from the
non-reformatted experiment, and Table B.6 shows the precision of the reformatted
experiment. In both experiments, we obtained 100% precision. We cannot calcu-
late the recall in this case, since we cannot know how many inodes (from the inode
tables and copies throughout the disk) exist on the image.

TP FP Precision Recall
Recorded inode matches True inode 77481 194 0.9975 1
Estimated inode matches True inode 27336 50339 0.3519 1
Est or Rec inode Matches True inode 77481 194 0.9975 1

Table B.3: Precision and Recall for finding and attributing iNode numbers for known files
in expExt4Attr.dd

TP FP Precision
77675 0 1

Table B.4: Precision of iNode classification for non-reformatted image.

TP FP Precision Files Found
Recorded inode matches True inode 15544 41864 0.2078 4848
Estimated inode matches True inode 7091 50336 0.1235 5755
Est or Rec inode Matches True inode 16553 40874 0.2882 5755

Table B.5: Precision and Files Found for finding and attributing iNode numbers for known
files in Ext4AttrNowNTFS.dd
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TP FP Precision
57426 0 1

Table B.6: Precision of inode classification for reformatted image.

B.4.3 Commercial tools

The results of the tool testing described in this section are shown in Table B.7.

NTFS now exFAT

EnCase X-Ways EaseUS Bulk_Extr cPTS
NTFS metadata N N Y? Y Y

Ext4 inode N N N N Y

Table B.7: Tool testing - Carve for metadata from previous file system when reformatted
with another file system.

We created a case in X-ways v 19.8 and imported the file ntfsexfat.dd.
Using the feature refine volume snapshot, we selected the particularly thorough file
system data structure search, and checked search FILE records everywhere. The
X-ways manual describes that this search should be able to find MFT entries from
unallocated space. However, the tool did not find any of the MFT entries from the
previous NTFS file system.

X-Ways also has a function that should be able to scan for lost partitions, but this
feature was disabled. X-ways was not able to detect the previous partition auto-
matically. We created a new image of the complete USB thumb drive, including
the MBR. In this case, it was possible to search for lost partitions, but X-Ways did
not find the NTFS partition or its MFT entries.

We also tried to carve for file content, and X-Ways was able to carve the contiguous
files, but not the tiff files that had two fragments.

EnCase v8.08 was not able to find the MFT records from the previous NTFS
partition in ntfsexfat.dd. We selected the Full Investigation pathway, which
includes the relevant Recover Folders (which should locate hidden files in FAT and
NTFS volumes), and the Windows Artifact Parser with MFT Transactions selected.
According to the EnCase manual, the Recover Folder option should be able to
recover NTFS files from unallocated clusters. Since EnCase is a closed source
tool, we do not know how this is implemented. EnCase did find the Backup
VBR (Volume Boot Record) when we searched for it using the Partition Finder.
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However, it was not possible to recover the partition in disk view.

We tried using EnCase to carve for picture files (bmp, jpg, png, and tiff). The
content of all 10 bmp files were found, but also 178 extra false positives. Each of
the 10 jpg file contents were found, and with no false positives. We missed one
of the png files, but found the others. EnCase did not find any of the tiff files.
This is because EnCase searched for the tiff signatures 49492A000A, 49492B00,
4D4D002A, 4D4D002B, while the tiff file created in Windows 10 had a signature
49492A008E.

We tested the storage device we performed the experiment on with EaseUS Data
Recovery Wizard v11.15 (previously named Recuva), and it was able to
identify all the 50 files and their content. Since this tool is closed source, we as-
sume they performed a partition recovery by using the VBR backup. For partition
recovery they only showed the size, the date created and the path. It also carved
for files, but the carved files did not include the metadata. Lastly, we found the
tool could not correctly carve the fragmented files or the text files.

Ext4 now NTFS

Carving for ASCII text files is not supported by EnCase v8.08, and therefore
carving for the ASCII text files in the previous Ext4 file system is not possible.
However, we tried to carve for 10 different supported file types and measured the
run time to be 27 seconds on a 2 GiB disk image. Next we tried 100 different sup-
ported file types, which took about 1 minute. Finally, we selected all 349 supported
file types, but we canceled the progress after 6 hours.

We performed a test using the tool EaseUS Data Recovery Wizard v11.15
(previously named Recuva), but it did not find any of the 25000 text files within
the experiment storage media. All the 16 files it listed were allocated NTFS files,
and it did not find any previous Ext4 partition.

Additional testing

In order to identify an expected number of false positives using our tools, we per-
formed additional testing on a real 16 GiB raw image from a cell phone that did
not have any MFT records and an 80 GiB Windows 10 machine with no Ext4 in-
odes. Searching for inodes in the Windows image we found 3 false positives, and
searching for MFT entries on the cellphone image we found 8 false positives.

Lastly, we tried running Bulk_Extractor on our reformatted images, wherein
it found all of the filenames of the MFT entries in both images, but did not recover
any of the metadata information from Ext4.
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B.5 Discussion
In our experiments, we reformatted one file system with a different file system.
If we know it has been reformatted, we can first try to recover the previous file
system by assessing the backup VBR or superblocks. This may potentially recover
the file system, and we can accurately find files that the other file system did not
overwrite. However, if the other file system has overwritten parts of the previous
file system, then we may need to use our approach to find the parts that are not
overwritten.

B.5.1 Discussion related to NTFS

For the timestamp hits where we found NTFS MFT entries with a resident data
attribute, we can reliably connect the metadata and the file content (Casey et al.
2019). This is because the resident data is found within the MFT entry. Normal
file carving will not find small ASCII text files that are resident in MFT entries,
because these files have no signature within their content.

MFT entries could potentially be found in multiple sources; memory dumps, un-
allocated space, in the allocated system files like $MFT, $MFTMirr, $LogFile,
hiberfil.sys, etc. The allocated $MFT should normally be accurate if not manipu-
lated.

Our approach does not need a complete MFT table, nor a complete MFT entry. For
instance, we do not use the MFT entry header at all. However, we rely on that the
SIA, FNA or Data attributes are co-located within the size of a typical MFT entry.
This allows recovery of partly overwritten metadata. Currently, we do not search
for a Data attribute if the SIA is not found, but we plan to change this dependency
in later releases of the tool. This change will allow detection of FNAs in index
entries.

We need to use the $Bitmap of the new file system to identify which clusters/blocks
are in use. If a data run found in a recovered metadata structure uses one or more
of the clusters allocated by a file in the new file system, we must assume that the
file content is partly overwritten.

It is important that the investigator is knowledgeable about the file systems found
when using our approach. First of all, our approach uses the data runs found within
the NTFS metadata, and the first data run for the MFT entry is relative to the start
of the file system, and we need to use the correct cluster size used by the previous
NTFS file system. Furthermore, subsequent data runs are relative to the previous
run (Carrier 2005, p. 258).

Since we are proposing a generic approach, we cannot automate the extraction
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of files without considering the specific context, which requires context based re-
covery tools or manual expert assessment. For instance, the storage media could
have first had an NTFS file system, and then been reformatted with NTFS or an-
other file system. Then of course the context is different, and must be taken into
consideration.

We have shown that popular digital forensic tools, such as the current versions
of X-Ways or Encase, do not necessarily find the MFT entries when the NTFS
system is reformatted to exFAT. This may incorrectly cause the investigator to
utilize file carving, which of course does not include the metadata, but only the file
content. Such actions would result in missing pertinent files, and partly recovered
fragmented files.

B.5.2 Discussion related to Ext4

If a user deleted files using the command line rm tool, or by emptying the trash,
some of the important fields in the deleted inodes are set to 0, for instance the total
size, the link count, the number of extents, and the extents fields. The timestamps
for changed, modified and deleted are set to the deletion time, while the accessed
and created are not changed. However, since we may find duplicate inodes in loc-
ations outside the inode tables, we may find previous versions of a deleted inode,
which can allow us to recover the content and the metadata.

B.5.3 Addressing Our Statistics and Current Challenges

Statistics: Our high precision and recall does not indicate that our tool will find
nearly all metadata entries without error, but it indicates that it will work well given
that the metadata structures include repeated timestamps. When creating the disk
images, files were guaranteed to have at least two or three identical timestamps. If
our current solution is applied on a realistic disk image, the percentage of identi-
fied metadata entries should effectively be the same as the percentage of metadata
entries on the disk that have the identical timestamps.

Metadata Remnants: Our approach does not differentiate between MFT record-
s/inodes found in the the MFT/inode table and the instances found in the journal or
elsewhere. This is not a limitation, this is a feature since remnant from metadata
structures describing files can be scattered across the file system.

Virtual Machines: We assume that not all virtual storage in a Virtual Machine
is wiped on creation. This means there could be remnants from metadata from
previous host file systems if the area assigned to the virtual storage has previously
been allocated to the MFT/inode table or to a previous journal. Our approach will
also find these timestamp locations.
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Our approach can also be used to identify metadata currently not linked to existing
file content, which is important for event reconstruction.

B.6 Conclusion and further work
The aim of this research was to answer the following research questions.

• Can we reliably use time as a generic identifier to carve for file and directory
metadata structures in different file systems?

• What is the reliability of recovery of files using the discovered metadata in
Ext4 and NTFS?

We have shown that a set of similar timestamps can be used as a form of dynamic
signature (magic identifier), and we carve for these by using a simple byte match-
ing algorithm. Then we use file system semantics in order to interpret metadata
structures, and manually extract the resident or non-resident files. Finally, a file
system expert evaluates the classification, authentication and makes a decision for
final classification of the manually recovered files.

We argue that a manual evaluation of the reliability of the connection between the
metadata and file content is necessary, and that this assessment is context based
and should be manual for non-resident file content. The manual assessment could,
however, be supported by automated tools.

Connecting the inode number and the file name is challenging in Ext4 when an
inode table is partly wiped. However, connecting the inode metadata with its cor-
responding file content is still possible even without the correct inode number or
file name. On the non-reformatted Ext4 image, we were able to achieve greater
than 99% precision when attributing an inode number to discovered inodes, and
full recall. For the reformatted Ext4 image, it was possible to achieve greater
than 28% precision in correctly attributing inode numbers to found inodes. Of the
known 25050 known files and directories in the original image, we were able to
recover inodes for 5755 of them. Since at least 20257 of the 25050 inodes were
wiped from their inode tables, this means that we are potentially recovering at least
963 inodes.

When accurately connecting the metadata to the file content, we increase the evid-
ential value of the evidence. We should not only use file carving when searching
for files in unallocated space, since there may be pertinent metadata structures
within unallocated space. As long as metadata structures exist in unallocated
space, our generic metadata time carving approach combined with the semantic
parsers can be used to connect metadata to file content. Knowledge of the file
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system context is necessary in order to assess the accountability of the connection
between the metadata carved and the file content recovered.

When extracting inodes, our method had 100% precision for both the original
Ext4 image and the reformatted image. Even though our tool outperforms com-
mercial tools given our specific experimental setup, our tool should still be con-
sidered a proof of concept prototype.

Support for file systems other than Ext4 and NTFS is left for further work. Auto-
mation of file recovery is possible, but requires context aware features. Further
research is needed in order to improve the accuracy of connecting Ext4 inode
number and file name to the inode entry, especially in the context of partially wiped
inode tables.
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Input: Raw disk image T as a byte array
Output: Potential timestamp positions (in bytes)
m # Length of timestamp;
k # Length of search threshold;
h # Theshold of matching timestamps;
i = 0 # Byte location;
bool repeatedBytes = False;
while (i < |T | − k) do

searchString = T [i : (i+m)];
decimalDate = stringToDecimal(searchString);
repeatedBytes = checkRepeatBytes(decimalDate);
if (!repeatedBytes) then

matchCount = 0;
j = i+m;
while (j < i+m+ k) do

testBlock = stringToDecimal(T [j: j + m]);
if ((testBlock == decimalDate) then

matchCount += 1;
end
j += m;
if (matchCount >= (h− 1)) then

Print Byte Location i;
j = i+m+ k + 1;
i += (k −m);

end
end

end
i += m ;

end
Algorithm 1: Basic Potential Timestamp Carving Algorithm.
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Abstract
While file carving is a popular and effective method for extracting file content from
unallocated space in a forensic image, it can be time consuming to carve for the
wide variety of possible file signatures. Furthermore, file carving does not connect
the discovered file to its filesystem metadata. These limitations of file carving are
the advantages of Generic Metadata Time Carving, in which filesystem metadata
is searched for by first finding repeated co-located timestamps using a potential
timestamp carving algorithm. The potential metadata is verified by a filesystem
specific parser, and the pointer within the metadata to the file data may allow for
full file recovery. Currently, a limitation of the Generic Metadata Time Carving
method is that it will only find metadata records that have multiple equivalent
timestamps, thus missing metadata records and files with differing, but very sim-
ilar, timestamps. Therefore, in order to improve the recall of the Generic Metadata
Time Carving methodology, we have designed and implemented a prefix match-
ing potential timestamp carving algorithm. We apply our experiments to realistic
NTFS and Ext4 forensic images, in which we compare the precision and recall
results for differing prefix lengths. Our results indicate that using prefix-based
potential timestamp carving can yield significantly greater recall for extracting
filesystem metadata records, with little to no reduction in precision as compared to
the original exact potential timestamp carving method.

C.1 Introduction
File carving is an established digital forensics method for extracting files that can-
not be found using the filesystem, and while extremely useful it is not without its
faults. When applying popular file carving tools such as Scalpel (Richard III and
Roussev 2005), one must attempt to search for all possible file signatures that are
relevant to the case, which not only makes the search process more time consum-
ing,1 but more importantly, the file signature database may be incomplete. Omitted
file signatures means missing files when carving.2 File carving also does not have
an automated method for connecting filesystem metadata to the discovered file (as-
suming the metadata still exists on disk) (Dewald and Seufert 2017, Nordvik et al.
2019), and has difficulty dealing with fragmentation (Garfinkel 2007).

1While Scalpel uses a modified version of the single-pattern string matching algorithm Boyer-
Moore (Boyer and Moore 1977) (as of 2018 (Bayne et al. 2018)) and causes header-footer matching
to run in O(sn) time where s is the number of header-footer signatures and n is the length of the
data being processed, Zha and Sahni (2010) created FastScalpel which uses the multi-pattern string
matching algorithm (Aho and Corasick 1975) that performs header-footer matching in linear time.

2In the case of general data carving methods (for example, the Bulk Extractor (Garfinkel 2013)),
omitted regular expressions may mean missed data such as credit card numbers, social security
numbers, etc.
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These limitations of file carving are the advantages of Generic Metadata Time
Carving (GMTC) by Nordvik et al. (2020). GMTC is a metadata carving method
that uses a simple string matching algorithm, a potential timestamp carver, to
search for equivalent and closely co-located byte sequences in order to find po-
tential filesystem metadata record timestamps. After the locations of the potential
timestamps are found, a filesystem specific parser either accepts or rejects the sur-
rounding content as filesystem metadata. The filesystem metadata record may then
be used to retrieve the associated file whether or not the file is fragmented, where
the ability to do so is dependent on the filesystem and its policy for deleted files.
This technique thus connects filesystem metadata to the file data, enabling at least
metadata and content recovery (Casey et al. 2019). Furthermore, the method does
not depend on file signatures, since timestamps are essentially a dynamic signature
for all filetypes.

Use-cases of GMTC and other metadata carving methods include scenarios where
the filesystem has been severely damaged or overwritten. Moreover, GMTC can
also be used to find metadata records hidden in perfectly functioning filesystems.

Generic Metadata Time Carving has several limitations as well. The largest of
which is that the method can only find metadata records that contain precisely
equivalent timestamps, thus limiting the recall of discovered files in an image to
the same number of metadata records that contain at least 2 or more equal time-
stamps. In order to improve this limitation, we have created and implemented a
new potential timestamp carving algorithm that performs timestamp prefix match-
ing. Allowing for some minor tolerance of difference between potential time-
stamps, we aim to improve filesystem metadata record recovery recall for GMTC
without significantly reducing its precision. We formalize our research questions
below:

1. How does the value of the prefix parameter affect the precision and recall of
the Generic Metadata Time Carving method?

(a) How does the original Generic Metadata Time Carving method com-
pare with the prefix matching implementation?

2. Do the experimental results indicate that Generic Metadata Time Carving,
prefix matching or otherwise, may be used in realistic digital forensic scen-
arios?

We hypothesize that timestamp matching using shorter prefixes will result in more
potential timestamp matches, thus increasing recall, while reducing precision, as
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is often seen in precision-recall trade-offs.3 Furthermore, due to the time complex-
ity of potential timestamp carving, previous work on this subject, and the size of
our data we hypothesize that even relatively large images can be processed in a
reasonable amount of time. To test our hypotheses, our prefix matching method
of Generic Metadata Time Carving is applied to two NTFS images and one Ext4
image, where the sizes of the images range from 1 GB to 476 GB. For each image,
we apply all possible prefix length parameters and record the runtime for the time-
stamp carver and filesystem specific parser, and also record the number of potential
timestamp hits.

We perform a location-based data recovery evaluation to test the performance of
our tools’ abilities to carve for filesystem metadata records, wherein we measure
their precision and recall for extracting records from specific files or regions of
the disk (such as from the $MFT, $LogFile, and the inode table). Note that we
are running our tools on the entire disk images, as the tools are intended to be
used, but we only calculate precision and recall for identifying filesystem metadata
record hits for specific regions of disk, on a particular partition. We would have
liked to obtain the precision and recall of our tools’ ability to carve for filesystem
metadata records across an entire disk image or partition, but since we did not
create the test images we have no way of knowing the ground truth information
regarding the locations of all filesystem metadata records on any partition. We
additionally determine the files containing any hits for file system metadata records
found outside these test spaces.

The prefix-based potential timestamp carver, the filesystem specific parsers, and
instructions on how to use the tools are provided on a GitHub repository.4

The paper is organized as follows. The Introduction section has described the ob-
jectives and experiments of this paper and the Related Work section covers past
work, such as prominent metadata carving methods and timestamp carving meth-
ods. The Methodology section describes our prefix matching potential timestamp
carving algorithm, how it fits into the greater Generic Metadata Time Carving
methodology, a description of the experiments, and a description of the location-
based data recovery evaluation. The Results section covers the outcomes of our
experiments. The Discussion section analyzes and synthesizes our results, as well
as looks at the limitations of this study. Lastly, we conclude in the Conclusion and
Further Work section.

3In short, precision is the percentage of returned hits that are relevant to the user’s search, and
recall is the percentage of the total amount of relevant items that were returned.

4Timestamp Prefix Carving for Filesystem Metadata Extraction code
https://github.com/TimestampPrefixCarving/Peer-Review
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C.2 Related Work
Metadata carving is a niche field in digital forensics, as opposed to file carving
which is better studied, so we have attempted to cover the subject in full. In sum-
mary, these methods do not depend on critical filesystem data such as the $MFT
record, superblocks, or group descriptor tables. Carving for metadata is done in a
byte-wise manner, and if the pointers in the metadata records to their files have not
been deleted, then there is a possibility of full file recovery.

In Figure C.1, we show an abstraction of a disk image with two partitions, which
also shows a simplified abstraction of filesystems. The image is a representation
of how critical filesystem data such as the MFT table or superblocks keeps track
of the filesystem metadata records. For details on traditional file carving, see the
Forensics Wiki (forensicswiki.xyz 2012).

Figure C.1: An abstraction of a simple disk image, partitions, and filesystems. The large
encompassing rectangle is the entire disk image, the furthest left rectangle with internal
lines is the partition table that points to the partitions, and the other rectangles with rounded
corners are partitions. Each partition has a filesystem, where the green rectangles represent
filesystem critical data structures such as the $MFT record (and its mirror), superblock,
or group descriptor table. These help keep track of the filesystem records (for example,
inodes or MFT records), which are represented by the red rectangles. Generic Metadata
Time Carving (Nordvik et al. 2020), and our work, attempts to find the red blocks without
help from the green blocks. For a more complete picture of the general filesystem structure,
see the work by Carrier (Carrier 2005).

C.2.1 Metadata Carving

One of the first works that scientifically studied metadata carving was done by
Dewald and Seufert (2017). They exclusively carve for inodes in Ext4, where they
intentionally made their images’ superblocks and group descriptor tables unus-
able. Their method of byte-wise search uses search patterns that are expected to
be found in inodes such as file flags, extent header magic numbers, and tests the
relationships between the timestamps ensuring their validity. In their experiments,
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they tested a variety of combinations of the inode attributes to search for, where
the effectiveness of the combination of patterns is dependent on the case. Similar
work was performed by Plum and Dewald (2018), where they carved for nodes
using different combinations of object type and subtype.

Our work extends the work by Nordvik et al. (2020), wherein they created the Gen-
eric Metadata Time Carving method. The method considers every non-overlapping
m length sequence of bytes as a search keyword, where this keyword is checked
for equivalency against every non-overlapping m length sequence of bytes in a
k length search window directly following the keyword. If the keyword matches
one or more of the sequences of bytes in the search window, then the location of
the potential timestamp is recorded. One notable aspect of their byte-wise search
approach to timestamps is that it does not require the user to set a minimum or
maximum date they are searching for, only a guess as to what the length of the
timestamp is and the filesystem that is suspected. For instance, it is required that
the length m of the timestamp must be defined as either 4 or 8. After a list of
potential timestamp locations are compiled, another scan over the disk image is
performed that is filesystem specific. Using the list of potential timestamp loca-
tions, they directly access each location on the image and check if specific byte
offsets relative to the timestamp location fit the profile of the metadata record be-
ing searched for. Examples of such expected features are Standard Information
Attribute (SIA) or Filename Attribute (FNA) flags for NTFS, or the extent header
magic number for Ext4. Once the metadata record is identified as a positive hit,
the metadata information can easily be read out, including resident files for NTFS
records, dataruns from NTFS Data Attributes, and extents and block pointers from
Ext4.

The potential timestamp carver by Nordvik et al. (2020) works generally, but to
date, their filesystem specific parsers only support NTFS and Ext4. For their ex-
periments, they created disk images with a known set of files for each filesystem,
where each filesystem was then damaged by reformatting the image with a differ-
ent filesystem. Their results for the NTFS experiment achieved greater than 99%
precision in identifying MFT records and full recall in retrieving files known to the
original filesystem. For Ext4 they obtained 100% precision in identifying inodes,
but only retrieved about 23% of the inodes known to the original filesystem. Their
experiments however only included metadata records that had multiple timestamps
that were exactly the same, thus our work intends to apply a prefix matching ver-
sion of their approach to more realistic datasets.

The first notable reference to byte-wise timestamp carving appears to be from Mc-
cash (2010), wherein he used an EnScript from Mueller (2008) to discover MFT
records, indexes, and registry keys. The timestamp carving methodology essen-
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tially allows the user to input a date or range of possible dates, the EnScript con-
verts the dates into their NTFS byte format, and the possible byte sequences are
then searched for. To improve the precision of the tool, there is an option to search
for contiguous potential timestamps.

C.2.2 Related Methods of Data Retrieval

We briefly touch upon some tools that do not strictly use filesystem metadata ex-
traction, but whose functionality is similar.

One tool that focuses on Ext4 file recovery via non-traditional means is Ext4Magic
(Maar 2014). The basics of the tool is that it uses journal blocks with an old but
functional deleted inode. The inode will hopefully point to datablocks which have
not been reused for a different file.

Bulk Extractor by Garfinkel (2013) gathers relevant forensic features such as email
addresses, phone numbers, credit card numbers, and more by parsing through a
disk image in a single scan block by block. A benefit of the tool is that it truly is
filesystem agnostic, and can analyze different parts of the disk in parallel.

C.3 Methodology
In this section we first describe our prefix-based potential timestamp carving al-
gorithm and how it fits into Nordvik et al. (2020)’s Generic Metadata Time Carving
workflow, and then describe our experimental and evaluative methodologies.

C.3.1 Prefix-Based Potential Timestamp Carving Algorithm

The prefix-based potential timestamp carving algorithm, like the exact matching
version by Nordvik et al. (2020), is used to identify the byte offset locations of
potential filesystem metadata record timestamps from across an entire disk image.
The algorithm outputs the offsets from the beginning of the image to a text file.
Our prefix-based potential timestamp carving algorithm adds unique elements to
the timestamp carving algorithm and source code from Nordvik et al. (2020). We
briefly review the original algorithm, as understanding their work is imperative for
understanding our own contributions. Their basic assumption is that timestamps
within filesystem metadata records are typically co-located close to each other, and
often two or more timestamps are identical.5

The search procedure for these algorithms is based on the sliding window ap-
proach, where we have some byte-stream T representing the forensic image being
searched, and we let m be the length of a timestamp. Potentially, almost every

5Filesystem metadata records often record their timestamps consecutively, and oftentimes actions
on a file (creation, access, modification, etc.) update several of its timestamps simultaneously.
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non-overlapping m bytes of the forensic image is tested as a candidate timestamp,
and used as a keyword. This test requires a user defined value k, which is the length
of bytes for a search window following each candidate timestamp. If the candidate
timestamp passes the test, then it is considered to be a potential timestamp. The
search begins at T [0], with the first candidate timestamp being T [0 : m− 1]. This
candidate timestamp is then compared to each non-overlapping m byte sequence
within the k length window for equivalency. We refer to this process as the time-
stamp equivalency test, and these byte sequences as test sequences. If the number
of matches is greater than or equal to the threshold h − 1, h being the number
of required matching timestamps within a metadata record set by the user, then
the position of the candidate timestamp (now potential timestamp) is recorded, the
search skips ahead by k, and repeats the search procedure. The definitions given in
this paragraph and the timestamp equivalency test are illustrated in Figure C.2. If
the candidate timestamp is not found to be a potential timestamp, then the search
only skips ahead by m, and the search procedure repeats. The search continues
until the last k bytes of T . Full details of the algorithm can be found in Nordvik
et al. (2020).

Figure C.2: For 8 byte timestamps, the candidate timestamp is highlighted with green,
and the test sequences are highlighted in blue. The search window is indicated by the
brackets. The timestamp equivalency test simply checks how many times the candidate
timestamp matches the test sequences. If the number of matches is greater than or equal
to the threshold h − 1, where h is the number of required matching timestamps within a
metadata record set by the user, the candidate timestamp is deemed a potential timestamp.

Our major contribution in this work is the modification of the timestamp equival-
ency test. In most cases, timestamps that are stringologically similar should also be
temporally similar. Our implementation of the timestamp equivalency test simply
tests if the p most significant bytes, which we refer to as the prefix, of a candidate
timestamp is equivalent to the prefixes of the test sequences.

An example of such a search is shown in Figure C.3. The prefix of the timestamp
(the most significant bytes) is least likely to change when a timestamp is updated,
and typically holds information regarding the timestamp’s month and year. We
argue this form of prefix matching is more suitable as an approximation metric
than other popular metrics such as the Hamming (Hamming 1950) or edit distance
(Levenshtein 1966), since they do not consider the order in which the matching
errors occurred. Furthermore, the method for prefix matching is algorithmically
simple.
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Figure C.3: Hex dump with highlights to illustrate the timestamp prefix matching search
procedure. The byte sequence underlined in green represents the current candidate time-
stamp, and those underlined with blue are test sequences. The brackets represent the can-
didate timestamp’s search window. The red boxes represent the little-endian prefixes that
are being compared for equivalency. The first two examples show matches, despite the fact
the candidate timestamp does not equal the subsequent ones. If three matching timestamps
are required (h = 3), the third example shows the advancement of the search by k bytes,
and begins to repeat the entire procedure.

For testing if a candidate timestamp is a potential timestamp, the original algorithm
by Nordvik et al. (2020) converted the candidate timestamp byte sequence and
the test sequences to their big-endian forms for using them as unsigned long
longs, and we do this as well. For most operating systems and filesystems, time-
stamps are recorded in little-endian, but utilizing them in a program in big-endian
is generally more useful. In order to test whether the candidate timestamp and the
test sequences have an equivalent prefix of length p (that the p most significant
bytes of the timestamps are the same) we need only XOR the timestamps in their
big-endian form, and shift the resulting value to the right by 8 ∗ (m− p) bits. The
shift to the right removes the m − p least significant bytes from the result of the
XOR, and if the remaining value is 0, then the prefixes must match. If the prefixes
match, the count of matching timestamps for the candidate timestamp is increased
by 1. Algorithm 2 explicitly describes this process. The prefix matching algorithm
is only a component within the prefix-based potential timestamp carving algorithm
(see Algorithm 2), which is shown in C.8.

We add one extra condition that must be met when applying prefix-based time-
stamp carving. The original method requires that candidate timestamps cannot be
sequences of repeated bytes, as this filters out very common byte sequences such
as 0x0000 and 0xFFFF. These common byte sequences would otherwise generate
many false positive timestamp matches. We keep this condition, but add that a
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Input: Big-endian unsigned long long forms of candidate timestamp
x and test sequence y

Output: Number of matches for the candidate timestamp either increases or
stays the same

m # Length of timestamp;
p # Size of prefix;
xorResult = x

⊕
y;

if ((xorResult >> (8*(m-p))) == 0) then
matchCount += 1;

end
Algorithm 2: Prefix matching algorithm.

candidate timestamp’s most significant bytes cannot be 0. This is due to the fact
that there are many byte sequences which in big-endian start with non-zero val-
ues, but end with zeros, which will cause our algorithm to identify many potential
timestamps where the candidate timestamp is a non-zero byte sequence, but the
prefixes being tested are not. We consider this to be a fair assumption to make,
as most timestamps’ most significant bytes are non-zero. Both conditions can be
found in Algorithm 2 within C.8.

Since the modification of the potential timestamp carving algorithm by Nordvik
et al. (2020) primarily only changes the timestamp equivalency test by a constant
number of steps, it implies that the time complexity of the prefix-based potential
timestamp carving algorithm must remain the same. While Nordvik et al. showed
that a general potential timestamp carver would run in nonlinear time (their worst
case scenario omits the repeated byte timestamp check and conversion from a
string of characters to a 64-bit data type), the implementation of the potential time-
stamp algorithm effectively runs in linear time, dependent on the length |T | of the
disk image. This is because length m is limited to a choice of 4 and 8 (timestamps
are stored in an unsigned long long type), and because the search window length
k in most practical situations would never exceed the size of a block or cluster.

Note, the potential timestamp carving algorithm assumes that timestamps fall on 4
or 8 byte boundaries, so metadata that is unaligned will be missed. We also note
that if timestamps are recorded in big-endian, prefix-matching will not work.

C.3.2 Generic Metadata Time Carving and the Filesystem Specific Parsers

The potential timestamp carving algorithm described in the previous section is only
the first step of the Generic Metadata Timestamp Carving (GMTC) methodology.
The produced list of potential timestamp locations in general will be extremely



C.3. Methodology 137

large, and thus referring to many “false positive timestamps” identified across the
full disk image. In the GMTC method, the list of potential timestamp locations
is then fed into a filesystem specific parser, and the parser checks the offsets on
the disk image given by the potential timestamp list in an attempt to verify if the
potential timestamp is contained within a filesystem metadata record. The output
of the parser is a .csv and .txt file containing data from the suspected records. More
or less, a filesystem specific parser acts as a filter. We briefly describe the strict
verification tests performed by the NTFS and Ext4 parsers. The majority of stated
parser tests were in the original work by Nordvik et al. (2020)

The NTFS parser first checks if the date of a potential timestamp falls within the
year range of 1970 and 2100. If so, it then checks all possible offsets behind the
potential timestamp location for Standard Information Attribute (SIA) or Filename
Attribute (FNA) attribute header flags. If one of these flags are found, we make
an assumption of where the attribute begins. We can use the identified attribute
lengths to navigate from one attribute to the next, where we require to start from
the SIA, then hop to an FNA, and then if possible the Data attribute. Further-
more, the MFT attributes encountered must be in numerical order (as given by
their header flags). Any attributes encountered for an assumed record must oc-
cur within a 1024 byte space. The parser also only reports an MFT record if the
identified filetype extracted from an FNA is one of four possible types. The ac-
cepted filetypes are: "File", "Directory", "Index View", or "Directory and Index
View". More information regarding MFT data structures can be found in the work
by Carrier (2005).

The Ext4 parser is more complicated due to the fact that inodes are small, have far
less features to strictly identify than MFT records, and that the parser attempts to
connect the inodes to a filename and inode number. Both the inode number and
filename are in a different data structure than the inode. The first step for validating
potential timestamps is to check the possible offsets from the potential timestamp
to the filetype nibble at the start of the inode. We only allow for three different
types: "Regular Files", "Directories", and "Symbolic Links". The offset to one of
these values dictates our guess to where the inode begins. If the extent flag is set,
and the offset to the extent header magic number is 0xF30A, or if there is no extent
flag and the offsets from the beginning of the inode 0x24 to 0x27 are 0, we continue
our validation tests. The total size of the file is checked to see if it corresponds to
the total amount of blocks it is occupying, if the total size of the file is less than
the size of the image, and if the relationships between the timestamps are valid.
For instance, we check if the deleted value is not 0, then it must be greater or
equal to both the modified and created time. The steps so far are the validation
checks done in the preprocessing phase, as we need to gather information to try
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to connect inodes to their filename and inode numbers. If the inode passes the
initial preprocessing and validity checks, it is fully processed. The timestamps are
checked to ensure they fall within the years 2000 and 2020 (the deletion timestamp
being the exception). For more information about Ext4 data structures and inodes,
see Ext4 (and Ext2/Ext3) Wiki (2019).

C.3.3 Experimental Methodology

We use our prefix-based Generic Metadata Time Carving (GMTC) method on
three realistic forensic images. We first apply our novel prefix-based potential
timestamp carving algorithm on the images, where the output of the algorithm cre-
ates a text file list of the locations of the potential timestamps in byte offsets from
the beginning of the image. This list is then input into one of the two pre-existing
but modified filesystem specific parsers (NTFS or Ext4), where the output of the
parser is a .csv and .txt file with data from the discovered metadata records. We
identified a few bugs in the original filesystem specific parser scripts by Nord-
vik et al. (2020), so we updated them so that we may achieve more complete and
accurate results.

The three images being tested are a 1 GB NTFS image, one 59.5 GB Ext4 image
from a real device, and one 476 GB synthetic NTFS image. The small NTFS image
is from NIST’s Deleted File Recovery page (DFR-13) (NIST 2017), the Ext4
image was extracted by the authors from a real Samsung S8 mobile phone, and
the large NTFS image is the “Lone Wolf” forensic image, available from Digital
Corpora (Moore et al. 2018). Notably, these images are not guaranteed to have at
least two equivalent timestamps per metadata record, unlike the work by Nordvik
et al. (2020).

For each image we try all possible sizes, p, of the prefixes of the candidate time-
stamps that are required to be equivalent to the prefixes of the test sequences.
Since it is possible that the prefix of the candidate timestamp can be the length
of the timestamp itself, we are also comparing the precision-recall performance of
the original GMTC method to our method.

We clarify some items regarding our testing and evaluation methods. The prefix-
based GMTC methodology (the potential timestamp carving followed by the filesys-
tem specific parser) is applied to the entire disk image for our tests. Thus we obtain
potential timestamp locations and filesystem metadata records from across entire
disk images. However, since we have no ground truth information regarding the
number and location of all file system metadata records across the disks, we cannot
evaluate the precision and recall of our tools across an entire disk. Thus, we limit
our precision and recall evaluations to specific areas or files on the disk, where we
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can easily retrieve the number and location of records. Examples of such files or
regions of disk include the MFT table or inode table for a particular partition. This
is explained more in depth in the next subsection.

Other data we record are the number of potential timestamps logged by the prefix-
based potential timestamp carving algorithm, the time required by this algorithm
and the filesystem specific parsers, and the number of metadata records extracted
that were outside the $MFT, $LogFile, or inode table and which file they were
found in.

C.3.4 Precision-Recall Location-Based Data Recovery Evaluation

Ideally, our experiments would measure the precision and recall of our tools’ abil-
ity to carve all filesystem metadata records from an image or partition, but this is
infeasible since we have no reliable method of obtaining ground truth knowledge
of every single offset of every single file system metadata record. Thus, while we
still run our tool on entire disk images, we focus on our tools’ precision and recall
for carving filesystem metadata records from specific files or regions of disk where
record offsets are more easily obtainable. We also determine the files on the same
partition that contain the hits for file system metadata outside the precision-recall
evaluated files or data structures.

For NTFS, we measure the precision and recall for carving MFT records from
the $MFT of the partition of interest, and we perform another precision and recall
evaluation for carving MFT records from the $LogFile. To obtain ground truth
knowledge of the offsets to MFT records in each file, we used The Sleuthkit to ex-
port these files from the NTFS image with icat, search the file for FILE signatures,
and check if the 0x38 byte offset from the FILE signature equals the Standard In-
formation Attribute flag (0x10000000). For the $LogFile, we also check the 0x78
byte offset from the FILE signature for the cases that an MFT record is divided
between $LogFile pages, where the beginning of each page has header that begins
with the signature “RCRD”. Using The Sleuthkit’s istat command we also obtained
the clusters that the $MFT and $LogFile occupy, so that we can translate the files’
logical offsets to MFT records into physical offsets on the disk. All the discovered
offsets for MFT records in the $MFT matched possible locations of records given
by the clusters output from the istat command on the $MFT.

We refer to these ground truth offsets to MFT records as Condition Positives.
Formally, a Condition Positive is the knowledge that at address A, there exists
a filesystem metadata record. It is conditioned on the fact that we are limiting our
precision-recall evaluations to the regions of the disk occupied by a specific file
or ranges of disk space. By running our prefix-based GMTC method on the entire
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disk image, we obtain a large set of byte offset locations that our tools detect as the
locations of filesystem metadata records.6 We refer to the offsets identified by our
tools as Test Positives. One can think of our filesystem specific parsers similar to
that of a classifier when they filter potential timestamp locations, which declares
at address A we detect a filesystem metadata record of minimum length L. The
value L for inodes and MFT records is 256 bytes (the minimum length of an MFT
record includes the record header of length 0x38, Standard Information Attribute
of length 0x60, and a minimum length Filename Attribute of 0x68). A Test Neg-
ative is simply that our tools do not detect a filesystem metadata record at address
A.

For Ext4, we measure the precision and recall for carving inodes from the inode
table of the partition of interest. To determine the Condition Positives in the inode
table, we use the Sleuthkit’s fls –r command to dump all files to a list (wherein
we add the root directory and Journal with inode numbers 2 and 8 respectively).
Using The Sleuthkit’s fsstat command, we determine which blocks the inode table
occupies, and which inodes are in which fragment of the inode table. Using this
information (inode numbers provide a 256 byte multiple offset into their respective
inode table fragment), we can calculate the physical positions of each inode offset
from the beginning of the disk. We would have liked to perform similar tests on the
Ext4 Journal, but we would need a more certain method of identifying Condition
Positives other than performing a string search for the extent signature 0xF30A.

We reiterate that we limit the Condition Positives to the regions of disk where
the precision and recall is being measured. If a Test Positive is also a Condition
Positive, then the result produced by the GMTC tools is a true positive. That is,
our tools detected a filesystem metadata record at address A with minimum length
L, and the beginning of a record truly begins at address A. A false positive occurs
if we obtain a Test Positive at some address B within the region of disk under
examination, where according to our list of Condition Positives no record exists.
If there are Condition Positive addresses that do not have a matching Test Positive
address, then our tools have produced a false negative, a miss.

We use the typical precision and recall measures for our analysis, as seen in the
equations below.

Precision =
True Positives

True Positives + False Positives
6The Ext4 parser reports the byte offsets to the beginning of the inode, whereas the NTFS tool

reports the byte offsets to the potential timestamp identified by the potential timestamp carver. Thus
for MFT records, we have to consider the set of all possible locations of the beginning of the record
with respect to the identified Standard Information Attribute timestamp.
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Recall =
True Positives

True Positives + False Negatives

When calculating precision and recall, it is possible that after accounting for all the
Test Positives located in the disk image regions such as the $MFT, $LogFile, or
inode table that there may still be a large number of Test Positive hits that are still
unaccounted for elsewhere on a partition. To find where these extra records come
from, we use The Sleuthkit’s istat command to list the blocks/clusters (we refer to
these as “blocks” from here on out) allocated to files known to the inode or MFT
table, where the files’ records are filtered with respect to our calculated Condition
Positives. For each list of blocks extracted from the istat output, we create a list of
block ranges that a file occupies, which also accounts for fragmentation. We then
build a Python dictionary of such values where the key is the record number, and
the values associated with a key are the block ranges of the file, and the file’s name.
It is then possible to create a derived version of this dictionary, where the key is a
starting block of a particular file fragment, and the values associated with the key
are the ending block of the file fragment, as well as the file’s name and number.
When this dictionary is ordered numerically, and our Test Positives are ordered by
their offsets numerically, we can quickly search through all the file fragments to
identify where our remaining hits lie.

C.3.5 Specifics of NTFS Experiments

The 1 GB NTFS image is the 13th test case (dfr-13-ntfs.dd) from NIST’s Deleted
File Recovery page (NIST 2017). This test case has performed random filesystem
activity, so the timestamps of the MFT entries are rarely all equal. When running
our prefix-based timestamp carving algorithm we set the length of the timestamps
m = 8, the search window k = 24, and the required number of matching time-
stamps to h = 3 (the same parameters used by Nordvik et al. (2020)). We carved
for timestamps for all possible prefixes p, from 1 to 8.

For this image, we only performed the location-based data recovery evaluation on
the $MFT of the partition starting at sector 128, as we did not identify any MFT
records in the $LogFile. We verified the lack of full MFT records in the $LogFile
by running the LogFileParser by Schicht7 on the file. Transactions in the LogFile
where the Redo Operation or Undo Operation has the status of “InitializeFileRe-
cordSegment”, and the other Redo or Undo Operation has the status of “Noop”
indicates that the transaction contains an entire MFT record (Cowen and Seyer
2013). We found no such transactions.

7https://github.com/jschicht/LogFileParser



142 142

The experiment using the 476 GB Lone Wolf forensic image (available from Di-
gital Corpora (Moore et al. 2018)) focuses on the “Basic Data Partition” for the pre-
cision and recall evaluations, the largest partition on disk. Our timestamp carving
experiments for the Lone Wolf image use the same parameters as the DFR-13 im-
age.

We performed the location-based data recovery evaluation on the $MFT and the
$LogFile on the LoneWolf image’s partition.

C.3.6 Specifics of Ext4 Experiments

The Ext4 experiment uses a dump of a Samsung S8 mobile phone running An-
droid, where we specifically focus on the “SYSTEM” partition’s inode table for the
precision and recall calculations. The User partition was encrypted, and SYSTEM
partition was the second largest partition on the image. The image was created
by first flashing the recovery partition using the TWRP Recovery image (TWRP
2019), and then using an ADB bridge executing a combination of netcat and dd
commands in order to acquire the raw image. The recovery image method is de-
scribed in detail by Son et al. (2013) and Vidas et al. (2011). We ran our prefix-
based timestamp carving algorithm on the image with the same parameters as those
used by Nordvik et al. (2020), where the length of the timestamps m was set to 4,
the search window k = 12, and the required number of matching timestamps to
h = 2. We carved for timestamps for all possible prefixes p, from 1 to 4.

The Ext4 parser also requires a few additional parameters, which are assumptions
that assist in attempting to connect inodes to their filename and inode number.
Using the Sleuthkit, we obtained the blocksize of 4096 bytes (which is the default
blocksize (Ext4 (and Ext2/Ext3) Wiki 2019)), and the byte offset of 225968128 to
the partition. Thus, the parser only examines the disk from this offset onward.

C.3.7 Computer Specifications

A Mac with the following specifications was used to run the timing experiments.

• OS: MacOS Catalina v 10.15.4

• Processor: 4.2 GHz Quad-Core Intel Core i7

• Memory: 64 GB 2400 MHz DDR4

• Storage: APPLE SSD SM0128L 3.12 TB, PCI-express, a hybrid, where
128GB is pure SSD, and 3 TB is SATA. Sequential Read: 952 MB/s, se-
quential write 57 MB/s. Random read 0.9 MB/s, and random write 50 MB/s.
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While running the tools we did not activate any other resource demanding pro-
cesses. However, it is always possible that the OS performed additional scheduled
tasks. We used the tool DiskMark8 v2.2 to measure the read/write speed.

C.4 Results
Overall, our results show that by reducing the size of the prefix p of a timestamp in
the timestamp equivalency test, a much higher recall for filesystem metadata record
extraction can be achieved using the Generic Metadata Time Carving (GMTC)
method as compared to the exact timestamp matching approach. To our surprise,
the precision of the metadata extraction was not reduced by decreasing the size of
the matching prefix p, and remained at 100% for all experiments. We go through
each disk image we tested, showing the results of the individual precision-recall
tests over specific areas of the disk, and the timing results for the potential time-
stamp carver and parser for that particular image. All timing experiments were run
twice, and the listed runtimes are their averages. We also describe the files on the
evaluated partition that contained filesystem metadata records that were outside
the $MFT, $LogFile, and inode table.

C.4.1 Small NTFS Image

The results for carving MFT records from the $MFT from the 1 GB NTFS image’s
partition beginning at sector 128, as seen in Table C.1, show that applying prefix
matching of timestamps greatly increases the recall, and appears to maintain the
exact matching Generic Metadata Time Carving method’s 100% precision. The
exact matching GMTC (p = 8) only obtained 8.8% recall for finding MFT records,
whereas decreasing p to 3 and less achieved a 97.9% recall. The number of Test
Positives identified over the entire partition for different values of p is shown in
Table C.2. The true positives account for most of the Test Positives found over the
entire partition, but three had gone unaccounted for. It transpired they were the
$MFTMirr, $LogFile, and $Volume records found in the $MFTMirr file.

This increase in recall was not without its trade-offs, as seen in Table C.3. Upon
decreasing p from 8 to 4, the number of identified potential timestamp locations
increased by three magnitudes. While this did not appear to unduly influence the
timestamp carving algorithm, the time required for the filesystem parser increased
more than 100 fold.

C.4.2 Ext4 Samsung S8 Image

The results for carving inodes from the Ext4 image’s SYSTEM partition’s inode
table are shown in Table C.4. Like the small NTFS image, we achieved 100%

8https://inchwest.com/diskmark/
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p True Positives False Positives False Negatives Precision Recall
8 21 0 218 1 0.088
7 21 0 218 1 0.088
6 126 0 113 1 0.527
5 164 0 75 1 0.686
4 219 0 20 1 0.916
3 234 0 5 1 0.979
2 234 0 5 1 0.979
1 234 0 5 1 0.979

Table C.1: Precision and recall for carving MFT records from the $MFT from the 1 GB
NTFS image’s partition beginning at sector 128 with p = 1, 2, . . . , 8. The $MFT had 239
Condition Positives.

p 8 7 6 5 4 3 2 1
Test Pos. Count 24 24 129 167 222 237 237 237

Table C.2: Test Positive count over entire partition from the 1 GB NTFS image, where
p = 1, 2, . . . , 8.

precision in identifying inodes, where the recall increased for carving inodes from
the inode table as the prefix length value of p decreased. However, the increase in
recall was quite minor, only increasing by about 3%. We discuss our theories of
why the precision and recall were so high for the Ext4 experiment in the Discussion
section.

Table C.5 shows the Test Positive counts of detected inodes found over the entire
partition, with respect to the prefix length p being used. All test positive hits that
were not discovered in the inode table were discovered in the Journal where, when
the timestamp prefix length p = 1, we detected 1924 inodes.

In terms of computational performance, Table C.6 exposed trends regarding the
timestamp carving program when working with large files. Larger prefixes p
caused the timestamp carver to take longer to complete, but not by too much.
Unlike the small NTFS image experiment, the number of potential timestamp loc-
ations only increased by about one magnitude going from p = 4 to p = 1. The
time required to run the filesystem parser appears to have an approximately linear
relationship between the number of potential timestamp carving locations, as the
time required to run at p = 1 is about 10 times as slow as using a prefix size of
p = 4.
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p # PTS Locations TS Carve Time (s) Parser Time (s) Total Time (s)
8 892 8.177 0.049 8.226
7 3143 8.132 0.082 8.214
6 4311 8.128 0.104 8.232
5 3638 8.131 0.106 8.237
4 2056322 8.451 6.59 15.042
3 2056629 8.413 6.689 15.102
2 2056636 8.459 6.659 15.117
1 2061768 8.4 6.622 15.019

Table C.3: Generic Metadata Time Carving performance for the entire 1 GB NTFS image
with p = 1, 2, . . . , 8. PTS stands for “Potential Timestamp”.

p True Positives False Positives False Negatives Precision Recall
4 6766 0 670 1 0.910
3 6766 0 670 1 0.910
2 7004 0 432 1 0.942
1 7004 0 432 1 0.942

Table C.4: Precision and recall for carving inodes from the inode table from the SYSTEM
partition in the 59.5 GB Ext4 Samsung S8 image with p = 1, 2, 3, 4. The inode table had
7436 Condition Positives.

C.4.3 Large NTFS Image

The results for carving MFT records from the $MFT and $LogFile from the Lone-
Wolf image’s Basic Data Partition are seen in Table C.7 and Table C.8 respect-
ively. Again, we achieved 100% precision in identifying MFT records, both for
the $MFT and $LogFile (we encountered no false positives with respect to our
Condition Positive lists). The recall results reflect previous trends. Using exact
matching timestamp carving we only achieved 41.6% recall for carving MFT re-
cords from the $MFT, and allowing for smaller timestamp prefix matching caused
increasingly higher recall. The point of diminishing returns appeared to have oc-
curred at p = 2, where about 97.2% recall was achieved. The recall results are
quite different for carving MFT records from the $LogFile, as the recall hovered
around 87% despite the value of p.

Table C.9 shows the total number of test positives found over the entire partition,
and after filtering out the Test Positive hits found in the $MFT and $LogFile, there
were still a large number of hits left unaccounted for. When discussing where these
hits were found on the partition, we focus on the results for p = 1, since each value
of p larger than this should be a subset of the p = 1 results. In total, there were
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p 4 3 2 1
Test Pos. Count 8470 8470 8928 8928

Table C.5: Test Positive count over entire SYSTEM partition from the Ext4 Samsung S8
image, where p = 1, 2, 3, 4.

p # PTS Locations TS Carve Time (s) Parser Time (s) Total Time (m:s)
4 10630945 1401.78 45.73 24:07.51
3 26228387 1397.36 115.25 25:12.60
2 41610448 1369.78 186.43 25:56.21
1 97555603 1266.81 452.42 28:39.22

Table C.6: Generic Metadata Time Carving performance for the entire 59.5 GB Samsung
S8 image with p = 1, 2, 3, 4. PTS stands for “Potential Timestamp”, m for minutes, and s
for seconds. Note, the Ext4 parser skips the first approximately 210 MB.

91157 test positive hits that were yet to be accounted for. Using the dictionary we
created that contained the allocated cluster ranges of all known files on the par-
tition, we were able to discover where these potential MFT records were coming
from, as seen in Table C.10. The $MFTMirr contained the usual records of $MFT,
$MFTMirr, $LogFile, $Volume. Four different boot.sdi files (with the filenames
"boot.sdi, boot.sdi") each contained 42 filesystem metadata record hits, where a
boot.sdi file is essentially a small partition of its own with completely irrelevant
MFT records. It is used as a Ramdisk which can be shown with the bcdedit com-
mand (Active KillDisk 2021). Lastly, we have the two Volume Shadow Copies9

that contained 90985 detected MFT records.

In terms of timing performance, the large NTFS experiment mostly behaved as
expected (see Table C.11). Like in the Ext4 timestamp carving experiment, the
run-times for all values of p were similar, but experiments with lower values of
p took less time. What was rather surprising was the relatively small increase in
potential timestamp locations that were found by p = 1 versus p = 8, given the
size of the image. The increase was only by a factor of about 4.77, quite a deal

9Using The Sleuthkit’s (versions 4.4.1 and 4.10.1 tested) istat command for Volume Shadow
Copies (VSC) will show that the file only occupies a single cluster, having a large non-zero size, and
an init_size of 0. This error has been seen before: https://github.com/sleuthkit/sleuthkit/issues/466.
Why we bring this up is that relying on the Python dictionary we created for cluster ranges of files
will be incorrect for the VSCs. To address this, we used the given cluster as the start of a VSC’s
range, and added the size of the file to obtain the end of its range. To ensure this unfragmented region
of disk was truly a VSC file, we performed the following. icat -s will output a VSC entirely, and we
took the MD5 hash of the VSC files. We then took MD5 hashes of the unfragmented disk regions
defined by the byte ranges we were using for the VSCs. The hashes of the files and the regions of
disk were identical.
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p True Positives False Positives False Negatives Precision Recall
8 59422 0 83538 1 0.416
7 59422 0 83538 1 0.416
6 72284 0 70676 1 0.506
5 95193 0 47767 1 0.666
4 120482 0 22478 1 0.843
3 129220 0 13740 1 0.904
2 139022 0 3938 1 0.972
1 139082 0 3878 1 0.973

Table C.7: Precision and recall for carving MFT records from the $MFT of the Basic Data
Partition from the 476 GB LoneWolf NTFS image with p = 1, 2, . . . , 8. The $MFT had
142960 Condition Positives.

p True Positives False Positives False Negatives Precision Recall
8 2251 0 353 1 0.864
7 2251 0 353 1 0.864
6 2251 0 353 1 0.864
5 2251 0 353 1 0.864
4 2263 0 341 1 0.869
3 2263 0 341 1 0.869
2 2267 0 337 1 0.871
1 2267 0 337 1 0.871

Table C.8: Precision and recall for carving MFT records from the $LogFile of the Basic
Data Partition from the 476 GB LoneWolf NTFS image with p = 1, 2, . . . , 8. The $Log-
File had 2604 Condition Positives.

less than the increase of magnitudes we saw before. A possible reason for this is
that the Lone Wolf image is a synthetic image that was only being used for some
months. Stranger still, were the parser times over all possible values of p. Given
the previous results, we should have seen parser times drastically increase as p
decreased. This did not happen, as seen by the fact that the parsing time for p = 1
was on average less than most other values of p, and this is despite the fact that
the experiment for p = 1 had about 46 million more potential timestamps to check
than the p = 8 experiment. Since both runs of the parser produced such similar
results, at the moment we can only guess that some aspect of the parser script
handles things inefficiently. A major difference between the NTFS parser and the
Ext4 parser is that the Ext4 parser uses a Python memory mapping library10 to

10https://docs.python.org/3/library/mmap.html
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p 8 7 6 5 4 3 2 1
Test Pos. Count 108852 108852 134227 169588 204467 218559 232425 232506

Table C.9: Test Positive count over entire Basic Data Partition from the large LoneWolf
NTFS image, where p = 1, 2, . . . , 8.

File Record Number Test Positive Count
$MFTMirr 1 4
boot.sdi 21992 42
boot.sdi 21993 42
boot.sdi 21994 42
boot.sdi 21995 42
Volume Shadow Copy 1 96066 51795
Volume Shadow Copy 2 123530 39190

Table C.10: Files containing the remaining Test Positives not found in the $MFT or $Log-
File of the Basic Data Partition, where p = 1. The number associated to each file indicates
how many MFT records were found in that particular file.

handle the parsing of large files, while the NTFS parser has handcrafted code to
handle large files.

We note that our tools found no Test Positives (detected hits of filesystem metadata
records) in unallocated space for any of the disk images.

C.5 Discussion
Here we analyze our results, consider why we may have missed extracting some
metadata records, the limitations of our research, and finally answer our research
questions.

C.5.1 Analysis: Small NTFS Image

The small image from NIST (NIST 2017) purposefully created chaotic actions on
the system, thus creating MFT records with erratic timestamps. The missed MFT
records from the MFT table when p = 1 were the $MFT, as the Standard Inform-
ation Attribute timestamps were 0, and 4 other records that did not contain File
Name Attributes. The NTFS parser requires a File Name Attribute to be present.

The only other interesting item to note is explaining why the number of potential
timestamp locations jumped drastically from p = 5 to p = 4. The dfr-13-ntfs.dd
image fills sectors not occupied by an MFT entry with repeated byte sequences of
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p # PTS Locations TS Carve Time (s) Parser Time (s) Total Time (hr:m:s)
8 12235330 7324.28 1761.83 2:31:26.11
7 17426880 7322.61 2177.43 2:38:20.04
6 23192352 7291.95 2793.94 2:48:05.89
5 30135982 7279.97 2266.49 2:39:06.45
4 32353209 7286.00 2218.84 2:38:24.83
3 33625310 7296.31 2596.24 2:44:52.55
2 46791325 7298.88 1617.81 2:28:36.68
1 57934625 7137.19 1707.40 2:27:24.59

Table C.11: Generic Metadata Time Carving performance for the entire 476 GB NTFS
image with p = 1, 2, . . . , 8. PTS stands for “Potential Timestamp”, hr for hours, m for
minutes, and s for seconds.

either 0x2A or 0x5A, and the beginning of each sector has a message describing
how the sector is or is not used. The combination of this message and the repeated
byte sequences creates a large occurrence of valid potential timestamps. Such a
situation would be unusual for more realistic images.

C.5.2 Analysis: Ext4 Samsung S8 Image

The location-based data recovery evaluation for carving inodes from the inode
table of the Ext4 Samsung S8 image performed suspiciously well, having 100%
precision and and 91% or greater recall. The high recall for extracting inodes from
the inode table may indicate that the SYSTEM partition had fairly static files.
Again, we would have liked to run the tests on the User partition, which would
have included real user behavior, but it was encrypted.

The 432 false negative inodes from the inode table were entirely comprised of
Symbolic Links. While the GMTC method by Nordvik et al. (2020) and our work
is said to consider symbolic links (and will catch some), the Ext4 parser always
assumes that at offset 0x28 from the start of the inode will be direct blocks or
the start of the extents. However, this is an incorrect assumption, as a symbolic
link will be stored at this offset if the string is less than 60 bytes long (Ext4 (and
Ext2/Ext3) Wiki 2019).11

C.5.3 Analysis: Large NTFS Image

Other than the strange runtimes of the NTFS parser, the results from the experi-
ments on the large NTFS image were in line with what we had seen in the previous
images. Three items of interest are worth discussing: The high recall of MFT re-
cords carved from the $LogFile, false negative MFT records, and Test Positives

11https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Symbolic_Links
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found outside the $MFT and $LogFile.

The high recall of at least 86.4% of MFT records found in the $LogFile can be
attributed to the fact that full MFT records only occur in $LogFile transactions
with “InitializeFileRecordSegment” operations, which means a new file is being
created (Schicht 2018). When a new file is created, all the timestamps for the
Standard Information Attribute (SIA) are updated (Knutson and Carbone 2016).
This implies all the timestamps for the MFT records should be the same or nearly
the same. Decreasing the timestamp prefix length p from 8 to 1 increased recall by
less than 1%, which shows that some of the timestamps were indeed slightly dif-
ferent. The implications of these results is that the exact matching GMTC method
will work well for carving MFT records from the $LogFile. However, as Nord-
vik et al. (2020) previously observed, the majority of records recovered from the
$LogFile contained no datarun information, where we only identified 11 records
that did.

It would appear that most of the 3878 false negative MFT records in the $MFT
were those that needed to have non-resident attributes. This was expected, as the
NTFS parser does not handle MFT records that are larger than 1024 bytes. Most of
the 337 false negative MFT records in the $LogFile were records that crossed log
pages, where a log page header (containing the magic number ’RCRD’) split the
MFT record somewhere after the Standard Information Attribute. We do however
still find MFT records where they are split by a log page header after the MFT
record header, and before the Standard Information Attribute.

Of the 91157 Test Positive hits for MFT records that were found in neither the
$MFT or the $LogFile (see Table C.10), the 90985 hits in Volume Shadow Copies
are the most interesting. This is because the Volume Shadow Copies are snapshots
of previous states of the partition, and thus may either contain previous states of
files and their MFT records, or they may contain MFT records that are now deleted.
Furthermore, a large number of Test Positive hits outside the MFT table or LogFile,
but within specific regions of disk, may indicate that Volume Shadow Copies even
exist on a partition in the first place.

C.5.4 Limitations

The purpose of this work was to show that the GMTC method can be used on
realistic images and timestamps, and that the use of a timestamp prefix matching
method could greatly improve the method’s ability to extract filesystem metadata
records. Here, we address the issues we believe to be the primary limitations of
our work.

The first issue is that we are applying the GMTC method to data that does not fit
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its more typical use-case. The GMTC method should be applied if the filesystem
is damaged or otherwise inaccessible. We are applying the method to perfectly
working images, and undamaged filesystems. The reason for this is to understand
what the prefix-based GMTC method can potentially recover.

Another limitation of this work is that we were not using a user partition for the
Ext4 experiments, so the filesystem we were analyzing was likely more static and
not as realistic as we would have liked it to be.

The last large limitation of our work is our experiments’ unsatisfying explanation
of the unflagging 100% precision. However, by looking at our results, we can
see that low timestamp prefix lengths do indeed produce many more false positive
potential timestamps. For example, reducing the prefix length p from 4 to 1 in
the Ext4 experiment increased the number of potential timestamps from approx-
imately 11 million to 98 million. For the Large NTFS experiment, reducing p
from 8 to 1 increased the number of potential timestamps from about 12 million
to 58 million. The effect of prefix length p on the number of potential timestamps
identified for the large NTFS and Ext4 images is shown in Figures C.4 and C.5
respectively, where we also show the number of Condition Positives to illustrate
that the count of Condition Positives is only a fraction of the the number of false
positive timestamps we may be encountering. According to our filesystem spe-
cific parsing experiments, it would seem that the filesystem specific parsers are
extremely strict since we encountered no false positive records despite checking
for millions of more offsets on the disk image. Likewise, it appears that the roll
of the potential timestamp carver is to control the total number of byte offsets
that a filesystem specific parser must verify when looking through a disk image
for filesystem metadata records (affecting recall), and that the filesystem specific
parser ultimately controls the precision of the GMTC method.

We wanted to observe these suspected rolls of the prefix-based potential timestamp
carver and filesystem specific parsers empirically, so we conducted a short exper-
iment. This experiment obtains the results of performing the prefix-based GMTC
method on an encrypted image, as the data is essentially a large string of random
bytes, and also obtain the results of applying the filesystem specific parsers dir-
ectly on the encrypted image without first performing timestamp carving. Results
we were interested in included the number of false positive filesystem metadata re-
cords the experiments would encounter, and how long the runtimes for the different
experiments were. Our hypothesis was that we would not encounter any false pos-
itive records for any experiment, and that Generic Metadata Time Carving should
be faster than applying the parsers directly on the image.
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Figure C.4: Histogram comparing the number of Condition Positives we account for on
the Basic Data Partition of the 476 GB Lone Wolf image and the number of potential
timestamp (PTS) locations identified after carving for all possible prefix lengths.

We encrypted the 59.5 GB Ext4 image with Kleopatra12 and carved for potential
timestamps on the encrypted image using the same parameters as our previous ex-
periments, but only searched for timestamps based on a prefix size of 1 byte. Then
both filesystem specific parsers were ran on the encrypted image using their re-
spective potential timestamp locations from the potential timestamp carving. Next,
we ran the NTFS and Ext4 parsers over every byte of the encrypted image without
using potential timestamp information, with the exception of the first and last 1024
bytes.

For searching for NTFS MFT records, we obtained no false positives for the
GMTC experiment or the pure parser experiment. Carving for potential time-
stamps took approximately 17 minutes, and where 360990 potential timestamps
were discovered. Applying the NTFS specific parser on the image with the po-
tential timestamp results took about 7 minutes to run. Applying the NTFS parser
directly on the encrypted image took 5.75 hours.

When searching for inodes, we encountered no false positives for the GMTC ex-
periment or the pure parser experiment. The potential timestamp carving took
about 17.5 minutes, and we identified 182405692 potential timestamps. When ap-
plying the Ext4 specific parser on the image with the potential timestamp results,
the parser ran for about 17.5 minutes. Applying the Ext4 parser directly on the
encrypted image took about 17.5 hours.

12https://www.openpgp.org/software/kleopatra/
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Figure C.5: Histogram comparing the number of Condition Positives we account for on
the SYSTEM partition of the 59.5 GB Samsung S8 image and the number of potential
timestamp (PTS) locations identified after carving for all possible prefix lengths.

These results further reveal why it is the GMTC method produces little to no false
positives. The tests where the parsers are directly executed on the encrypted image
show that it is the file system specific parsers that ultimately control the precision
of the GMTC method since no false positives were encountered. This implies
that the filesystem specific parsers are extremely strict when verifying filesystem
metadata records, and that the records themselves are highly structured. However,
running the parsers directly on the encrypted image took much longer to run.

With these results we get a clearer picture on how potential timestamp carving
effectively acts as a data reduction technique, where its parameters influence the
number of potential timestamps returned, going on to influence recall and parser
runtime, and that the filesystem specific parsers ultimately control the precision of
the GMTC method. We can also see that the other parameters for the potential
timestamp carver such as the user defined threshold h of the required number of
matching timestamps per record also controls the number of returned potential
timestamps. For example, despite both applying a prefix length p = 1, using the
NTFS timestamp carving settings (requiring h = 3 matching timestamp prefixes)
only encountered 360990 potential timestamps, whereas carving with the Ext4
settings (requiring h = 2 matching timestamp prefixes) encountered 182405692
potential timestamps. However, more research needs to be done to understand all
the implications of applying different potential timestamp carving parameters.
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C.5.5 Revisiting Research Questions

Below, we answer our research questions based on our results and analysis of the
experiments.

How does the value of the prefix parameter effect the precision and recall of the
Generic Metadata Time Carving method?

We hypothesized that as the length of the prefix of the most significant bytes, p,
of a potential timestamp decreased, that this in turn would increase the recall but
reduce the precision of the Generic Metadata Time Carving method. According to
our results, the recall for finding metadata records may significantly increase when
applying prefix-based timestamp carving, but the precision in our experiments did
not decrease when applying prefix-based timestamp carving. In fact, the preci-
sion remained at 100% for all possible prefix values. These items require a short
discussion.

It seems that the recall reaches a point of diminishing returns once the timestamp
prefix length p ≤ 2, no matter what the filesystem is. We cannot suggest to make
the value of p as low as possible either, as reducing p = 2 to p = 1 increased
the number of potential time timestamps locations in the Ext4 experiment by 55.9
million (increasing parser time by over 100%) and in the Large NTFS experiment
by 11.1 million. As noted in the Limitations subsection, decreasing p yields more
potential timestamp locations, most of which will not be timestamps at all, but also
allows for greater filesystem metadata record recall.

Despite producing much greater recall and many more potential timestamps, lower-
ing the prefix-length p did not reduce the precision for carving MFT records or in-
odes. Our brief further investigations in the Limitations subsection demonstrated
that by using the filesystem specific parsers on an encrypted version of the 59.5
Ext4 image produced no false positive record hits. We mention the trade-offs
between the potential timestamp carver and parsers when addressing the last re-
search question.

But overall, we can state with confidence, according to our experiments, that de-
creasing the value of the prefix parameter p can drastically increase the recall of
finding metadata records, without much (if any) loss in precision of identifying
metadata records.

How does the original Generic Metadata Time Carving method compare with our
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prefix matching implementation?

For comparing our GMTC method to the original, we simply set the value of the
prefix length, p, of a potential timestamp to its maximum (8 for NTFS or 4 for
Ext4). In the small NTFS experiment, the exact matching timestamp method only
achieved a recall of 8.8% for carving MFT records from the MFT table, while using
the prefix-based method achieved 97.6% recall. Then in the Ext4 experiment, the
exact matching timestamp method achieved a 91% recall for carving inodes from
the inode table, while using the prefix-based method achieved 94.2% recall. In
the Large NTFS experiment, the exact matching timestamp method only achieved
a recall of 41.6% for carving MFT records from the MFT table, while, using the
prefix-based method achieved 97.3% recall. The precision-recall experiments on
the $LogFile also showed improvement of recall as p decreased, though not nearly
as drastic as the MFT Table experiments. In fact, our results indicate that the exact
matching GMTC method performs nearly identically on the $LogFile from NTFS
as our prefix-based version, due to the nature of MFT records found within the file.
In all experiments, the precision remained a constant 100%.

Our results indicate that the degree of improvement of the recall is dependent upon
the temporal variety of the filesystem metadata records. Both the $LogFile and
inode table results showed only a minor improvement in recall since both the data
sources appeared to have static records. As the records in the $MFT from both
NTFS images were more often updated, then the improvement in recall was much
more significant.

Overall, we have shown that the prefix-based GMTC method can potentially carve
a significantly greater number of filesystem metadata records than the original,
while maintaining perfect or near-perfect precision for realistic test datasets.

In terms of time and space complexity, the time complexity of the prefix match-
ing algorithm is the same as the exact matching algorithm. Our results show that
the timestamp carving times are close to constant for all values of p, but carving
with lower values of p will take slightly less time. A limitation of our work is that
we did not perform extensive tests on the original GMTC algorithm, thus making
statements on the speed of our algorithm versus the original mostly theoretical.
Where the prefix-based GMTC method performs worse than the original method,
is the space required for the potential timestamp locations produced by the po-
tential timestamp carver, and consequentially the time required by the filesystem
specific parsers. For example, the exact timestamp carving on the Ext4 image iden-
tified nearly 11 million potential timestamps and the parser took about 46 seconds
to run, but carving for timestamps with a prefix length of 1 byte on the same im-
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age identified nearly 98 million potential timestamps and the parser took about 7.5
minutes to run. As there were only 7436 inodes in the Ext4 partition’s inode table,
the grand majority of the potential timestamps are false positive timestamps.

The rather unexpected results of the timing of the NTFS parser for the Lone Wolf
image, where the time to parse the image decreased when applying p = 1, is likely
the result of the implementation of the NTFS parser.

Do the experimental results indicate that Generic Metadata Time Carving, prefix
matching or otherwise, may be used in realistic digital forensic scenarios?

In terms of functionality, the prefix-based GMTC method appears practical for
carving filesystem metadata records as our experiments acheived recall of approx-
imately 90% or greater. The exact matching GMTC can be practical if time is of
primary concern, or one wishes to carve for records in specific files such as $Log-
File (where the existence of dataruns is rare), but for many files or regions of disk
this will risk missing many filesystem metadata records.

As filesystem metadata records are highly structured (and often sparse) data, and
our filesystem specific parsers run many verification tests, we can understand why
our parsers filtered out all of the tested false positive potential timestamps. Further
investigations in our Limitations subsection showed that even when running our
tools on the encrypted Ext4 image, that we encountered no false positives. The
implication is that while potential timestamp carving will allow for greater recall,
what ultimately controls the precision are the filesystem specific parsers, and that
the precision measured in all cases was 100%.

However, we also showed in the Limitations subsection that by running the parser
without potential timestamp information on the disk images took a significantly
longer time than the GMTC method. For example, the prefix-based GMTC method
took about 35 minutes to fully run on the encrypted Ext4 image when searching
for inodes, whereas running the Ext4 parser alone took about 17.5 hours. Applying
the prefix-based GMTC method to the encrypted image took 24 minutes to search
for MFT records, while running the NTFS parser directly on the image took 5.75
hours.

In terms of time and space both the exact matching and prefix matching GMTC
methods are practical. The time taken to carve out potential timestamps on the 476
GB NTFS image was on average just over two hours. Furthermore, the carving
time is not much affected by the change in the prefix length p, as was predicted by
the fact that the time complexity of the prefix-based timestamp carving method is
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the same as the exact timestamp carving method. In general, it appears that as we
allow for smaller prefixes in timestamp carving, the time it takes for the filesystem
specific parsers to complete increases. The exception to this rule is the NTFS
parser for large files, but we believe this to be more of an implementation issue
than indicative of a general trend. Even so, the longest time it took for the NTFS
parser to scan the Lone Wolf image was about 46 minutes. Thus, the longest time
for total analysis of the 476 GB NTFS image was about 2 hours and 48 minutes
(as seen in Table C.11).

In summary, there is a performance trade-off that exists for prefix-based Generic
Metadata Time Carving, where lowering the prefix parameter p may significantly
increase recall, slightly reduces timestamp carving time, but can also significantly
increase the filesystem specific parser time due to having the need to validate more
potential timestamps.

C.6 Conclusion and Further Work
In this work, we created and applied a timestamp prefix matching version of the
Generic Metadata Time Carving (GMTC) method (Nordvik et al. 2020). The
GMTC method can be used to carve for filesystem metadata records from a forensic
image without the use of the filesystem, and can potentially allow for full file re-
covery on a damaged or partially overwritten disk. The crux of our contribution
was the prefix-based potential timestamp carving algorithm, that only compares
the prefixes of length p as opposed to the entire timestamp. This is because strin-
gologically similar timestamps in most cases should be temporally similar as well.
We tested the prefix-based method on three realistic forensic images. Two of the
images used NTFS, one of the images used Ext4, and they varied in size from 1
GB to 476 GB.

Our location-based data recovery experiments mostly support our hypotheses. First,
we have shown that applying timestamp prefix matching to the GMTC method can
produce significantly greater recall in carving filesystem metadata records than the
exact timestamp matching version. Surprisingly, performing prefix-based time-
stamp matching did not appear to affect the precision for carving MFT records or
inodes from our test data, as we obtained 100% precision for all of our experi-
ments. Further examinations in the Limitations subsection shows that prefix-based
potential timestamp carving will increase the number of potentially valid offsets to
metadata timestamps, but it is ultimately the filtering done by the filesystem spe-
cific parsers that controls the precision. However, running the parsers on an image
without prior potential timestamp information will take significantly longer than
using a GMTC method. Using the prefix-based Generic Metadata Time Carving
method, the potential timestamp carver essentially performs data reduction of pos-
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sible MFT record or inode locations for the filesystem specific parsers to check.
The method appears to be practical, as our longest experiment on a 476 GB image
in total clocked in at about 2 hours and 48 minutes.

Interestingly, changing the size of the matching prefix for the timestamps does not
affect the time taken to perform timestamp carving by much. This makes sense
as the prefix-based potential timestamp carving algorithm only added a constant
number of steps to the original algorithm, therefore producing an algorithm with
the same time complexity. Our experiments showed that timestamp carving with
lower values of p took slightly less time than experiments with larger p values. On
the other hand, reducing the size of the timestamp prefix often greatly increased
the time taken by the filesystem specific parsers to extract the metadata records.
This is due to the fact that matching for timestamps that are approximately similar
results in some magnitudes more of potential timestamps to consider, and thus
causing some magnitudes more time to run the filesystem specific parsers. We
noted an exception to this rule for the large NTFS image, but this may be due to
its implementation and the fact it does not use Python memory mapping libraries
as the Ext4 parser does.

Future work for the prefix-based timestamp carving algorithm would be to try
to improve its efficiency. Since the algorithm ingests the disk image in a linear
fashion, perhaps the efficiency could be improved by using parallel processing
to analyze different parts of the disk simultaneously, much like Garfinkel’s Bulk
Extractor (Garfinkel 2013). The filesystem specific parsers can also be further
optimized.

Our work has shown there needs to be improvements made to the filesystem spe-
cific parsers as well, so that they can handle more possible variations to filesystem
metadata records. For instance, the NTFS parser needs to be able to handle MFT
records with non-resident attributes. For Ext4, there needs to be hard link support,
and better support for symbolic links. Then in general, there is also a need for
development of parsers of filesystems other than NTFS and Ext4.
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C.8 Prefix-Based Potential Timestamp Carving Algorithm
Note, we do not include the memory mapping aspects to handle large files. For the
full potential timestamp carving program, see:

https://github.com/ TimestampPrefixCarving/ Peer-Review/blob/ main/main.cpp.
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Input: Raw disk image T as a byte array. Parameters:
m # Length of timestamp;
k # Length of search threshold;
h # Threshold for number of required matching timestamps per record;
p # Prefix Length;
Output: Potential timestamp offsets from beginning of image (in bytes) in txt file.
i = 0 # Current byte offset from start of image;
while (i < |T | − k) do

candidateTS = T [i : (i+m)];
# Boolean holding status of repeated byte sequence check;
repeat = True;
for b← 1 to m− 1 by 1 do

repeat = repeat&(candidateTS[0] == candidateTS[b]);
end
# Variable for holding value of a string of characters read little-endian and

transformed into a numerical value;
littleEndian = 0;
if m == 8 then

littleEndian = (candidateTS[0] << (8 ∗ 0) |...| (candidateTS[7] <<
(8 ∗ 7));

else if m == 4 then
littleEndian = (candidateTS[0] << (8 ∗ 0)) |...| (candidateTS[3] <<
(8 ∗ 3));

#If candidate timestamp is not a repeated sequence of bytes, and the prefix value
of littleEndian is not 0;

if (!repeat&((littleEndian >> 8 ∗ (m− p)) ! = 0)) then
matchCount = 0;
j = i+m;
while (j < i+m+ k) do

testSequence = 0;
if m == 8 then

testSequence = (T [j] << (8 ∗ 0)) |...| (T [j + 7] << (8 ∗ 7));
else if m == 4 then

testSequence = (T [j] << (8 ∗ 0)) |...| (T [j + 3] << (8 ∗ 3));
#Our timestamp prefix matching equivalency check;
xorResult = littleEndian

⊕
testSequence;

if ((xorResult >> (8 ∗ (m− p))) == 0) then
matchCount+ = 1;

end
j+ = m;
if (matchCount >= (h− 1)) then

#Print Byte Location i;
j = i+m+ k;
i += (k −m);

end
end

end
i += m ;

end
Algorithm 3: Prefix-based potential timestamp carving algorithm, using time-
stamp prefix matching for the timestamp equivalency test.
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Publication D: It is about
time—Do exFAT
implementations handle
timestamps correctly?

It is about time—Do exFAT implementations handle timestamps correctly?, Rune
Nordvik and Stefan Axelsson. In: Forensic Science International: Digital Invest-
igation Volumes 42/43. October-December 2022, Pages 301476. DOI: https:
//doi.org/10.1016/j.fsidi.2022.301476

Note: The version included in this thesis is a corrected version, including the
corrigendum of the original paper (Nordvik and Axelsson 2023).
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abstract
Digital forensic investigations require that file metadata are interpreted correctly.
In this paper we focus on the timestamps of the exFAT file system. How these time-
stamps are written may depend on the implementation of the file system. We have
performed experiments using Windows, MacOS and Linux to examine whether the
respective file system drivers for exFAT use timestamps in the same manner, and
whether they take the directory entry UTCOffset fields into account. We have also
studied whether the forensic tools: Autopsy, X-Ways Forensics, EnCase Examiner,
and FTK Imager interpret the timestamps consistently.

The results show that there are substantial inconsistencies both in the file system
implementations, in atomic storage features implemented by applications or their
libraries, and in how forensic tools handle these inconsistencies. For the unwary
forensic examiner, there is a clear risk of interpreting timestamps incorrectly by a
substantial margin.

We conclude that timestamp interpretation during criminal investigations should
not be based on the assumption that the file system specifications are followed
flawlessly by the file system driver developers or necessarily interpreted and dis-
played correctly by the digital forensic tools.

D.1 Introduction
During the investigation of criminal cases it is important that timestamps are inter-
preted correctly. Misinterpreting timestamps may exclude the guilty or implicate
the innocent. For instance; a Word document on a USB stick belonging to the
suspect with a creation timestamp corresponding to the time the crime was com-
mitted may indicate that the suspect was using a computer at the time of the crime
to store the file on the USB stick. If traces found on the suspect’s home computer
also show that the same USB stick was inserted one hour before the time of the
crime, and removed a day after, this may indicate that someone was at the suspect’s
home at the creation of the document. If the crime took place at another address
at the same time, this finding may exclude the person as a suspect if the investig-
ation can connect the suspect to the computer. If further hypothesis testing shows
that the computer has not been connected to any other network than the home net-
work, and that the computer clock has not been manipulated, this will strengthen
the main hypotheses that the suspect or someone else was at the suspect’s home
address at the time of the crime. However, more detailed hypothesis testing must
be performed before this conclusion is firmly drawn.

The above deductions can only be drawn if file systems follow their specifications.
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However, these may not be available or only partly available. Specifications may
also be misinterpreted by the implementer. For example, a previous study of N-
version programming by Knight and Leveson (1986) show that developers tend to
make similar mistakes even when they are following the same specification, i.e.
the flaws they introduce in the code are not independent of each other. This means
that there is little support to trust a tool is correct only by comparing its results
with a similar tool (Nordvik et al. 2021). In addition, applications and libraries
may impact file metadata by using atomic storage approaches (Suhanov 2022).

In this paper we focus on the exFAT file system. The specifications are available
from Microsoft (2021b). The exFAT file system can be used on Windows, MacOS,
Linux, and other operating systems (Bretel 2017). Off the shelf removable storage
devices are today often pre-formatted with exFAT as it can work on most com-
puters and supports file system volume sizes much larger than the 32 GiB FAT32
limitation (Microsoft 2021a). These removable devices can be mounted with read
and write support on all previous mentioned operating systems, all thanks to the
usage of the exFAT file system (USB Memory Direct 2022).

For most users of file systems it is not critical that timestamps are accurate. How-
ever, when investigating criminal cases the accuracy of times given could be crit-
ical in order to answer the when question in the 5WH questions (Ieong 2006).
Ieong (2006) describes these 5WH questions as “What (the data attributes), Why
(the motivation), How (the procedures), Who (the people), Where (the location)
and When (the time)”.

When it comes to the investigation of metadata, such as timestamps from file sys-
tems, most investigations take for granted that the digital forensic tools are able to
parse the file systems that they claim to support, and courts depend on the tools ac-
curacy and reliability (Nordvik et al. 2021). As timestamp interpretations may give
a suspect an alibi, the investigation should not rely solely on tool interpretation.

Law enforcement organisations typically have a large backlog of seized devices
waiting for acquisition and analysis (Scanlon 2016). Digital forensic investigators
use digital forensic tools when investigating criminal cases to increase the effi-
ciency of the investigation. The concept of trust in criminal investigations is dis-
cussed by Neale et al. (2022), including erroneous trust in the accuracy of digital
forensic tools. Error rates for digital forensic tools are seldom available (Nord-
vik et al. 2021), and previous research have shown that it is difficult to measure
error rates involving all independent variables (conditions) that may impact the
dependent variable (here the error rate) (Lyle 2010).

In order to comply with certain human rights, like the right to privacy, family life,
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and correspondence (Article 8) (European Court of Human Rights 2021), law en-
forcement may utilise a more granular acquisition of files, e.g. by only including
files from a specific time range (European Committee for Standardization 2022).
In these cases law enforcement of course depend on accurate timestamp interpret-
ations.

Therefore, one can hardly overemphasise the importance of manual verification of
tool findings, and how file system timestamps are interpreted.

The contributions of this paper:

• File system driver developers do not implement exFAT equally.

• When specifications are made available, they are not necessarily followed.

• Digital forensic tools have a tendency to make assumptions about metadata.

• Even when specifications are available, reverse engineering by performing
black box testing is necessary.

• Atomic storage implemented by applications or libraries may impact time-
stamp accuracy.

To the best of our knowledge, it has not been performed experiments including
multiple operating systems and multiple driver implementations of the same ex-
FAT file system. Since digital forensic investigators do not necessarily know which
operating system a removable device has been connected to, they should not as-
sume that the exFAT specifications were followed by the driver. Even building
digital forensic tools to automate file system parsing require a detailed understand-
ing about how the file system drivers store metadata, and this paper will show that
it is not necessarily always the case.

D.1.1 Background

The background information presented in this section is based on Microsoft (2021b).
The exFAT file system has a volume boot record (VBR) which contains informa-
tion necessary to find the important metadata structures such as the file allocation
table (FAT), the cluster heap (data region), and the cluster of the Root directory.
It also defines the size of a sector, cluster, the size of the volume, the number of
FATs, the length of each FAT, and percentage of allocated clusters in the cluster
heap.

The data region starts at cluster 2 and it is recommended that exFAT implement-
ations place the root directory after the clusters used for the allocation bitmap
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and the up-case table. The allocation bitmap defines the allocation status of all
clusters in the data region. The allocation bitmap has a corresponding set of dir-
ectory entries, and its primary directory entry has the type 0x81. The number of
allocation bitmaps correspond with the number of FATs, and this is normally 1, or
maximum of 2.

The exFAT FAT table is mainly used for fragmented files, which are files that do
not use contiguous clusters. When a file becomes fragmented, the stream extension
directory entry will set the NoFatChain field to zero, meaning the FAT is in use.
By using the FirstCluster field in the stream extension directory entry, the system
identifies the correct cluster start in the FAT, and it can continue to the next cluster
in the allocation chain by reading FAT chain. This enables the system to find all
fragmented clusters for the file. If the file is not fragmented, the FAT is not in use,
by setting the NoFatChain to one. Then the system can use the FirstCluster and
the DataLength fields to extract the contiguous clusters for the file.

Figure D.1: ExFat set of directory entries.

Figure D.2: ExFat allocation of directory entries.

The root directory contains files and folders and each of them have a set of dir-
ectory entries, as shown in Figure D.1. Allocated files have a file directory entry
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(type 0x85), a stream extension directory entry (type 0xC0), and one or more file
name directory entries (type 0xC1), which is a set of allocated directory entries
as illustrated in the top part of Figure D.2. The file directory entry contains time-
stamps, UTCOffset fields, file attributes, and a directory entry set checksum. The
stream extension directory entry gives information about where the data content
(the stream) is stored (FirstCluster, DataLength), the length of the FileName, and
a hash of the FileName in upper case. The file name directory entry describes the
name of a file, and will need NameLength/15 file name directory entries.

In this paper we mainly focus on the timestamps found in file directory entries,
as shown in Table D.1. There are three different timestamps in a file directory
entry (FDE); Create, Last Modified, and Last Accessed. According to the specific-
ations, to interpret the actual time the timestamp, the 10ms increments, and the
UTC offset should be considered (Microsoft 2021b). The UTC offset describes
the offset from UTC to local time (including daylight savings adjustments) in 15
minute increments. The 10ms increments are only available for the Create and
the Last Modified timestamp, and increases the granularity from 2 seconds to 10
milliseconds.

Figure D.3: ExFat timeszone field, from hex byte to UTC offset.

In Figure D.3 we see the UTCOffset value 0x84. This value can be converted to
the UTC offset used since the timezone enabled bit is set. We do not count the
timezone enabled bit, and get the value 0x04, meaning UTC+1:00 because each
units corresponds to 15 minute intervals.

For more information about the exFAT file system please see Schullich (2009).

D.1.2 Research problem

Since the exFAT file system is supported on all main desktop operating systems (Bretel
2017), can we be sure that the specifications are followed by the exFAT file system
developers for each of these platforms? Previous research has not tested exFAT
implementations on multiple platforms, and our contribution will bridge that gap.
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Field Name Offset Size Value example Comments

EntryType 0x0 0x1 0x85 Regular primary directory entry in use
SecondaryCount 0x01 0x01 0x04 Number of secondary directory entries in this set
SetChecksum 0x02 0x02 A checksum of all bytes (except this field) of directory entry set
FileAttributes 0x04 0x02 0x20 DOS mode: Archive and a file
Reserved1 0x06 0x02 0x00 Reserved
CreateTimestamp 0x08 0x04 0xAA493A54 Created 2022-01-26 09:13:20
LastModifiedTimestamp 0x0C 0x04 0xAA493A54 Modified 2022-01-26 09:13:20
LastAccessedTimestamp 0x10 0x04 0xAA493A54 Accessed 2022-01-26 09:13:20
Create10msIncrement 0x14 0x01 10 ms increments for Create
LastModified10msIncrement 0x15 0x01 10 ms increments for Modified
CreateUtcOffset 0x16 0x01 0xF4 Valid, UTC-3
LastModifiedUtcOffset 0x17 0x01 0xF4 Valid, UTC-3
LastAccessedUtcOffset 0x18 0x01 0xF4 Valid, UTC-3
Reserved2 0x19 0x07 0x00 Reserved

Table D.1: File directory entry (all fields are mandatory)

A new feature of the exFAT compared to the FAT32 is the UTCOffset field for
each timestamp. Since the specifications describe that the value stored is the offset
from UTC to local time including any daylight adjustments (Microsoft 2021b),
it is relevant in an investigative context to test if we can find the timezone of the
computer used to store the data on the file system by interpreting the file system
metadata only. Currently, most Digital forensic tools claim support for the exFAT
file system, but is this support accurate and reliable, and can it be validated for
law enforcement purposes? Do the latest versions of the tools follow the exFAT
specifications, and how do they handle exFAT implementations that do not comply
with the exFAT specifications? The problems described above are defined as the
following research questions:

• How do current exFAT implementations store timestamps?

• Can we use the UTC offset stored in a directory entry to describe the local
time of the computer?

• Do current forensic tools interpret exFAT timestamps differently?

The main hypothesis:

• H1: the local time (the base truth) is related to the time stored within the
primary directory entry when the timezone offset is valid.

The null hypothesis:

• H0: the local time is not related to the timezone offset in the primary direct-
ory entry when the timezone offset is valid.
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The α = 0.01 is the significance level, meaning if less than 1 percent of the ob-
servations supports the null hypothesis, then the null hypothesis is falsified, giving
additional strength to the corresponding main hypothesis.

We have only defined one main hypothesis that is related to all three research
questions, and the main hypothesis is based on an assumption that the exFAT spe-
cifications are followed, both by exFAT driver developers and by digital forensic
tool developers.

D.1.3 Organisation of this paper

In the Introduction section we have introduced the importance of interpreting file
system metadata, especially timestamps, in an investigative context, and we have
given a short introduction to the exFAT file system. In addition, we have defined
the research problems. In the Related Work section we summarise the current
state of the art research related to exFAT. In the Methodology section we describe
the methods we used for the experiments for all the supported operating systems
(Windows, MacOS, and Linux), and in the Results section we describe our res-
ults. Then we discuss our results in the Discussion section, and we conclude in
the Conclusion and Further Work section.

D.2 Related Work
Hamm (2009) was of the first to publish documentation about the exFAT file sys-
tem structures. He described the file system from the view of a Digital Forensic
practitioner. The exFAT system is similar to the old FAT systems, but each file
has a set of directory entries which describe metadata of files. The file allocation
table is mainly used for fragmented files, and an allocation bitmap file for describ-
ing which cluster (block) is allocated. Hamm (2009) describes that exFAT was
first introduced in Windows CE in 2006, and then in Vista SP1 in 2008. In 2009
Windows XP drivers for exFAT were released. This work was performed before
Microsoft released the full specifications, and the work was based on the patent
US 20090164440 A1 (Microsoft 2009), which describes most of the file system
structures and their meaning.

Schullich (2009) continued the work from Hamm (2009) and described reverse
engineering of the exFAT file system utilising black box analysis, using existing
documentation such as patents, examination of other file systems in the FAT fam-
ily, Google searches, Microsoft knowledge base, and low level examination of the
exFAT file system. Schullich (2009) also developed a C program to output meta-
data structures. Files were created, added, deleted, and added again to observe
the effect these operations had on the file system. The output of the C program
was compared to the output of native Windows program such as dir, chkdsk, disk
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management, and Windows Explorer. Schullich (2009) also describes the intern-
als of exFAT and its metadata structures. The timezone value fields (UTCOffset)
were found based on experiments and observations, they were not described in the
patents. These fields describe the timezone offset in units of 15 minutes.

Munegowda et al. (2012) describe allocation strategies for exFAT and compares
them to FAT32. The exFAT file system uses the allocation bitmap (they call it
the cluster heap) to search for free clusters. If enough free contiguous clusters
are available for allocation, then the “No FAT Chain” is set to 0, the allocation
bitmap is set for the new allocated clusters, and the FAT is not used. The stream
extension directory entry points to the first cluster. However, if it is not possible to
allocate contiguous clusters the “No FAT Chain” is set to 1, the allocation bitmap
is updated with the new allocated clusters, and the FAT is used.

Unfortunately, the use of the “No FAT Chain” is misinterpreted by Munegowda
et al. (2012), since the specifications from Microsoft (2021b) state that the NoFat-
Chain field is set to 1 if the clusters are contiguous, and 0 if the FAT cluster chain
is in use.

Munegowda et al. (2014) describe how exFAT can implement directory compac-
tion techniques when its first cluster only has deleted/unallocated entries. In this
case the directory entry for this directory should be changed to point to the next
cluster, and the previous first cluster should be marked free in the allocation bitmap
and in the file allocation table (compaction).

Ma et al. (2015) describe different approaches for data recovery for the exFAT
file system. An unallocated file will change the set of directory entries from the
types 0x85, 0xC0, and 0xC1, to the types 0x05, 0x40, and 0x41. One approach
is using the second directory entry (stream extension directory entry, here type
0x40) of an unallocated file. Read its cluster start, find the start sector and extract
the size of the file. If the file is not stored in contiguous clusters and not in the
FAT (if damaged), then the file may not be completely recovered. Ma et al. (2015)
also describe carving using signatures, and a machine learning approach utilising
a Support-Vector Machine (SVM) classification algorithm.

Vandermeer et al. (2018) describe how a set of exFAT directory entries can be unal-
located not necessarily as a result of deletion. By combining information from the
allocation bitmap it is possible to differentiate between renamed, moved or deleted
files. All these scenarios will have a set of unallocated directory entry sets, but
only the deletion scenario will also set the bits in the bitmap for the corresponding
clusters to zero. If the clusters of an unallocated file is allocated in the bitmap, the
file may just as well be moved or renamed. If the file clusters are zeroed out in the
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allocation bitmap, then the file is deleted. They also proposed a methodology for
recovering deleted files.

Heeger et al. (2021) describe anti-forensic techniques to hide data in the exFAT file
system. They suggest the hiding of encrypted data in the Create10msIncrement
and LastModified10ms-Increment fields, by only using six of the least significant
bits in these single byte fields. In addition, one of the two most significant bits
are set or none of these two bits are set. The SetChecksum field in the file dir-
ectory entry is updated to take the hidden data into consideration. This process is
done for all necessary directory entry sets used. Heeger et al. (2021) also sug-
gest another approach called exHide which only uses metadata from deleted files.
This approach uses the Create10msIncrement field (6 bits), and 1 bit from Creat-
eTimestamp and LastModifiedTimestamp are used in order to create one byte. In
addition, the FirstCluster and file size fields ValidDataLength and DataLength are
used (the two latter needs to be equal). A total of 4 bytes are used for hiding for
each metadata structure. For the exHide approach the LastModified10msIncrement
was not used because Windows does not use this field when writing to the File Sys-
tem (Heeger et al. 2021).

D.3 Methodology
We used Linux Ubuntu 20.04 (using exFAT fuse v. 1.3), and Ubuntu 20.04 (us-
ing the native kernel exFAT driver), MacOS Monterey/Mojave (both using exFAT
driver extension v. 1.4) and Windows 10 as target operating systems (OSes).

We repeated the Linux experiments after removing the exFAT fuse package in
Linux Ubuntu 20.04 to enforce the usage of the native kernel exFAT driver.

All experiments are described in this section and illustrated in Figure D.4. The
experiments A, C, and D were performed using a bash shell script in MacOS and
Linux, and a batch script was used in Windows 10. Experiment B, and E were
manually performed to simulate normal user activity. We have shared the scripts
and the forensic images (Nordvik 2022).

An overview of all experiments are shown in Figure D.4.

D.3.1 Experiment A - Base

First we wiped the storage device, then we formatted it using the exFAT v. 1.0
file system. We performed experiments by utilising four different timezones, and
for each timezone 100 files were created in their own directory on the USB stor-
age device. Before each timezone change we performed an unmount and mount to
make sure the data was written to the device. The local time as seen by the user and
a timezone index (from 0-3) was encoded as a part of the filenames. After the ex-
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Figure D.4: Overview of all experiments, and all of them have a forensic image associated

periments were performed a forensic image was created for each target OS/driver.
Metadata for the created files were observed and timestamp related information
was interpreted.

The timezones index includes:

• Europe/Moscow (index 0, UTC+3). Files stored in the directory Experiment-
0.

• America/Godthab (index 1, UTC-3). Files stored in the directory Experiment-
1.

• Atlantic/Azores (index 2, UTC-1). Files stored in the directory Experiment-
2.

• Europe/Oslo (index 3, UTC+1). Files stored in the directory Experiment-3.

For the Windows OS we used similar timezone values;

• Russian Standard Time (index 0, UTC+3). Files stored in the directory
Experiment-0.

• E. South America Standard Time (index 1, UTC-3). Files stored in the dir-
ectory Experiment-1.
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• Azores Standard Time (index 2, UTC-1). Files stored in the directory Experiment-
2.

• W. Europe Standard Time (index 3, UTC+1). Files stored in the directory
Experiment-3.

The following forensic images were created in this experiment:

ExFAT-Base-Experiment-A-Linux-NativeExfat.E01
ExFAT-Base-Experiment-A-Linux.E01
ExFAT-Base-Experiment-A-MacOS.E01
ExFAT-Base-Experiment-A-Windows10.E01

D.3.2 Experiment B - mounting and unmounting only

We used the Linux (fuse) base forensic image from experiment A, restored to
the USB storage device using ewfmount and dd commands, then the timezone
was changed to Europe/Oslo (UTC+1) for MacOS, and W. Europe Standard Time
(UTC+1) for Windows, which is different from each base experiment 0, 1, 2. The
storage device was mounted on MacOS or Windows 10. We also restored the Win-
dows base forensic image, and mounted and unmounted the USB storage device
on Linux.

We did not make any change to any file. Then we unmounted the device and
created a forensic image for each target OS/driver.

The following forensic images were created in this experiment:

ExFAT-Experiment-B-Linux-MountedLinux-NativeExfat.E01
ExFAT-Experiment-B-Linux-MountedMacOS.E01
ExFAT-Experiment-B-Linux-MountedWindows.E01
ExFAT-Experiment-B-MacOS-MountedWindows.E01
ExFAT-Experiment-B-Windows-MountedLinux.E01

D.3.3 Experiment C - accessing selected files

We selected the Linux (fuse) base image when targeting MacOS, Windows and
Linux native exFAT drivers, and we selected the Windows base image when tar-
geting Linux exFAT fuse driver. We restored the base forensic images to the USB
storage device using ewfmount and dd commands, and we re-mounted it on one
of the other operating systems after changing the timezone to America/New_York
(UTC-5). We opened the files in TextEdit on MacOS, Notepad in Windows 10,
and Gedit in Linux and then closed each file. Then we created a forensic image
for each target OS/driver. We did not change or save any content.
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The following forensic images were created in this experiment:

ExFAT-Experiment-C-Linux-LinuxOpenFiles-NativeExfat.
↪→ E01

ExFAT-Experiment-C-Linux-MacOpenFiles.E01
ExFAT-Experiment-C-Windows-LinuxOpenFiles.E01
ExFAT-Experiement-C-Linux-WindowsOpenFiles.E01

D.3.4 Experiment D - changing the content of all files

We performed experiments to change the files to simulate normal user activity.
We selected the Linux (fuse) forensic image from the base experiments, restored
to the USB storage device using ewfmount and dd commands, then re-mounted
the device on one of the other operating systems. For every file in each of the 4
directories, we changed the content using the timezone America/New_York (UTC-
5) for Linux and MacOS, and Eastern Standard Time (UTC-5) for Windows which
is different from each base experiment. The batch script failed to set the timezone
in Windows, and instead UTC+0 was used. This is still a difference from each base
experiment. We therefore repeated the experiment using the correct timezone.
Then we created a new forensic image for each target OS/driver. The metadata
changes of the files were observed and documented.

The following forensic images were created in this experiment:

ExFAT-Experiment-D-Linux-Linux-Overwrite-Files-
↪→ NativeExfat.E01

ExFAT-Experiment-D-Linux-Windows-Overwrite-Files.E01
ExFAT-Experiment-D-Linux-Windows-Overwrite-Files-v2.

↪→ E01
ExFAT-Experiment-D-Windows-Linux-Overwrite-Files.E01
ExFATExperiment-D-Linux-MacOS-Overwite-Files.E01

D.3.5 Experiment E - changing the content of selected files

We selected the Linux (fuse) base image, restored it to the USB storage device
using ewfmount and dd commands, changed the timezone to America/New_York
(UTC-5) for Linux and MacOS and Eastern Standard Time (UTC-5) for Windows,
and re-mounted it on one of the other operating systems. We changed the content
of selected files manually by opening them in TextEdit for MacOS, Notepad in
Windows 10 (the timezone had entered daylight time, meaning UTC-4), or Gedit
in Linux. Then we wrote a word and saved and closed each file. We only changed
the files in the directory Experiment-0.

Then we created a forensic image for each target OS/driver. The following forensic
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images were created in this experiment:

ExFAT-Experiment-E-Linux-Linux-Overwrite-Files-
↪→ Manually-NativeExfat.E01

ExFAT-Experiment-E-Linux-MacOS-Overwrite-Manually.E01
ExFAT-Experiment-E-Linux-Windows-Overwrite-Manually.

↪→ E01
ExFAT-Experiment-E-Windows-Linux-Overwite-Manually.E01

D.3.6 Tool Testing

If the tool supported changing timezone, we adjusted to the timezone stored in
the hex dump for each experiment. We tested the following Digital Forensic (DF)
tools:

• Autopsy v. 4.19.3 (Windows version)

• FTK Imager v. 4.5.0.3 and v. 4.7.1.2

• X-Ways Forensics v. 20.04 SR-4

• EnCase Examiner v. 22.1

The FTK Imager does not support changing timezone, while Autopsy, X-Ways and
EnCase do.

When testing the tools we did not only compare the result from different tools,
but we also assessed the results manually in the directory entries of the exFAT file
system. This manual verification was necessary since dual tool verification is not
a reliable method (Nordvik et al. 2021, Knight and Leveson 1986).

D.3.7 Limitations and assumptions

We assumed that the current implementations of exFAT v. 1.0 store timestamps as
localtime, and that each UTCOffset field describes the deviation between the local
time and the UTC, which the exFAT specifications describes (Microsoft 2021b).
However, an implementation may choose not to utilise the UTCOffset fields.

In the original version of this paper we assumed that the applications we used to
perform the experiments did not implement atomic storage. It was brought to our
attention that Gedit (Linux) and other applications may implement atomic storage,
and we have confirmed that atomic storage is implemented in Gedit or in one of
the libraries used by it. This finding has an impact on the interpretation of our
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observations. Hence, we have updated some of our conclusions compared to the
original publication.

We did not consider file systems that are manipulated, attacked, or where anti-
forensic methods as described by Wani et al. (2020) are used. The experiment
methodology described includes the actions that were performed on the USB stor-
age device.

We also assume the exFAT file system interpretation by forensic tools was unreli-
able until we have verified the findings (Zero Trust (Neale et al. 2022)).

D.4 Results

D.4.1 Experiment A - Creating files on an exFAT storage

Base TZ Action Stored TZ Stored Time Real TZ Real Time Observations

Europe/Moscow Created 0xF4 (UTC-3) 23/02/2022 21:52 UTC+3 24/02/2022 03:52 100
America/Godthab Created 0x8C (UTC+3) 24/02/2022 03:53 UTC-3 23/02/2022 21:53 100
Atlantic/Azores Created 0x84 (UTC+1) 24/02/2022 01:53 UTC-1 23/02/2022 23:53 100

Europe/Oslo Created 0xFC (UTC-1) 23/02/2022 23:53 UTC+1 24/02/2022 01:53 100

Table D.2: Experiment A Results - MacOS. We can see that stored timestamps use a time-
zone offset with switched signs compared to the computer the experiments were executed
on

We observed, as shown in Table D.2, that for MacOS the timestamps were stored
on disk in UTC-3 when the local time was UTC+3 (Europe/Moscow), and sim-
ilar were the UTC offset switched from negative to positive for timezones with
negative UTC offset.

If we normalise the stored timestamps to UTC-0, we can see that all files are cre-
ated in the period 24/02/2022 00:52 to 00:53. The files were created using a script,
explaining why they were near in creation time.

It was interesting to observe that the latest timezone used on MacOS also changed
the last access time for all files, even for files not accessed.

Base TZ Action Stored TZ Stored Time Real TZ Real Time Observations

Russian Standard Time Created 0x8C (UTC+3) 24/02/2022 21:23 UTC+3 24/02/2022 21:23 100
E. South America Standard Time Created 0xF4 (UTC-3) 24/02/2022 15:23 UTC-3 24/02/2022 15:23 100

Azores Standard Time Created 0xFC (UTC-1) 24/02/2022 17:24 UTC-1 24/02/2022 17:24 100
W. Europe Standard Time Created 0x84 (UTC+1) 24/02/2022 19:24 UTC+1 24/02/2022 19:24 100

Table D.3: Experiment A Results - Win10. We can see that all types of timestamps are
stored using the local UTC offset of the computer the experiments were executed on, and
that real time is the same as stored time.

Table D.3 shows that the Windows exFAT driver is following the exFAT specifica-
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tions when setting the UTCOffset fields. In this case the local time (real time) was
stored.

Table D.4 shows the results for the Linux Ubuntu experiment with the exFAT fuse
driver, and it set the UTCOffset fields to 0x00, meaning these fields are not valid
because the most significant bit is not set. We observed that the timestamps are
stored using localtime. However, it is not possible to interpret what the local time
UTC offset was by only assessing the stored timestamps and the UTCOffset fields.

Base TZ Action Stored TZ Stored Time Real TZ Real Time Observations

Europe/Moscow Created 0x00 (Not used) 02/03/2022 16:11 UTC+3 02/03/2022 16:11 100
America/Godthab Created 0x00 (Not used) 02/03/2022 10:12 UTC-3 02/03/2022 10:12 100
Atlantic/Azores Created 0x00 (Not used) 02/03/2022 12:12 UTC-1 02/03/2022 12:12 100

Europe/Oslo Created 0x00 (Not used) 02/03/2022 14:13 UTC+1 02/03/2022 14:13 100

Table D.4: Experiment A Results - Linux Ubuntu 20.04 using exFAT fuse v.1.3. We can
see that the timestamps are stored using the local time of the computer the experiments
were executed on, and that real time is the same as stored time. However, the UTCOffset
fields are not in use.

Table D.5 shows the results for the Linux Ubuntu experiment using the native
exFAT driver, and it sets the UTCOffset fields to 0x80, meaning these fields are
valid and is set to UTC+0. The experiment shows that we cannot interpret what
the local time UTC offset was by assessing only the stored timestamps and the
UTCOffset fields.

Base TZ Action Stored TZ Stored Time Real TZ Real Time Observations

Europe/Moscow Created 0x80 16/03/2022 14:48 UTC+3 16/03/2022 17:48 100
America/Godthab Created 0x80 16/03/2022 14:49 UTC-3 16/03/2022 11:49 100
Atlantic/Azores Created 0x80 16/03/2022 14:49 UTC-1 16/03/2022 13:49 100

Europe/Oslo Created 0x80 16/03/2022 14:50 UTC+1 16/03/2022 15:50 100

Table D.5: Experiment A Results - Linux Ubuntu 20.04 using exFAT native driver. We
can see that the timestamps are stored using UTC+0, not the local time of the computer
the experiments were executed on. The UTCOffset fields are used (set to 0x80).

The Experiment A shows that:

• 400 of 1600 observations show the usage of the 0x00 invalid UTCOffset
value. Invalid values are excluded from hypothesis testing.

• 400 of 1200 (33 percent) show the usage of 0x80 valid value, even when
local time deviates from UTC+0.
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• 800 of 1200 (67 percent) observations take the local time into consideration
when storing timestamps and UTC offsets.

This means that our main hypothesis is not true for all operating systems.

D.4.2 Experiment B - Mounting exFAT storage

OS Action Timestamp 10msIncrement UtcOffset Observations New Directories

MacOS Mount/ unmount LA Not changed LA (switched sign) 400 .fseventsd, .SpotLight-V100
Windows Mount/ unmount Not changed Not changed Not changed 400 System Volume Information

Linux Mount/ unmount Not changed Not changed Not changed 400

Table D.6: Experiment B Results - MacOS. Impact of mounting and unmounting

The result shown in Table D.6 shows that MacOS will change the UTCOffset of
the last accessed timestamp for all files when a USB storage device is mounted
and unmounted. It also shows that when mounted on MacOS the directories .fsev-
entsd and .SpotLight-V100 were created. When mounted on Windows, the System
Volume Information directory was created.

D.4.3 Experiment C - Opening files

OS Action Tool used Timestamp 10msIncrement UtcOffset Observations

Linux (fuse) Open Gedit LA using local time Not changed Not changed 400
Linux (native) Open Gedit LA using UTC+0 Not changed All to 0x80 400

MacOS Open TextEdit LM(*) and LA using local time Not changed LM and LA (switched) 400
Windows Open Notepad Not changed Not changed Not changed 400

Table D.7: Experiment C Results. Impact of opening files

In the Experiment C in Table D.7, we used the timezone America/New_York
(UTC-5). The last accessed timestamp was changed and stored using UTC-5 (local
time), but the UTCOffset fields were not changed in Linux exFAT fuse driver. Since
we used the Windows base forensic image, and UTCOffset fields were not touched
in Linux (exFAT fuse) when opening files using Gedit, the local timestamp stored
does correspond with the preserved UTCOffset fields for the last modified and the
created, but not necessarily the last accessed. We illustrate this in Figure D.5.

For the Linux native driver we used the base of the Linux exFAT fuse, and here
all UTCOffset fields were changed to 0x80 when using the Linux exFAT native
driver, even though only the timestamp last accessed was changed. This change
shows that the native driver interprets the previous value 0x00 UTCOffsets fields
as timestamps stored in UTC+0, which was an incorrect assumption for all our
experiments. We illustrate this in Figure D.6.

It was strange that the last modified timestamp was changed when files were
opened using TextEdit on MacOS, especially because we did not change the con-
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Figure D.5: Changes in timestamps and UTCOffset fields when opening a file using Gedit
in Linux Ubuntu 20.04 exFAT fuse driver. The LastAccessedTimestamp is changed using
local time (LT), which was UTC-5, however the LastAccessedUtcOffset is not changed. In
this case the last accessed is inaccurate.

Figure D.6: Changes in timestamps and UTCOffset fields when opening a file using
Gedit in Linux Ubuntu 20.04 exFAT native driver. The LastAccessedTimestamp is stored
as UTC+0, however the CreateUtcOffset and LastModifiedUtcOffset are also changed to
UTC+0, but not the timestamps. In this case the create and last modified timestamps are
inaccurate.

tent of any files. The timestamp for last modified was just converted to use the
local UTC offset of the computer. The previous last modified timestamp was as-
sumed to be UTC-5 (our local UTC offset) and then the timestamp was converted
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Figure D.7: Changes in timestamps and UTCOffset fields when opening a file using
TextEdit in MacOS Monterey/Mojave. The LastAccessedTimestamp is stored as UTC+5,
even though the real timezone was UTC-5. The CreateUtcOffset is not changed, but the
LastModifiedUtcOffset is changed to UTC+5, trying to convert LT from UTC-5 to UTC+5.
In this case the last modified timestamp is inaccurate.

to UTC+5. This must fail since the Linux base did not use UTCOffset fields, and
the UTC-5 assumption was wrong. We illustrate this in Figure D.7.

Figure D.8: Changes in timestamps and UTCOffset fields when opening a file using Note-
pad in Windows 10. Nothing was changed. In this case the LastAccessedTimestamp is
inaccurate.
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In Windows no change at all was registered when just opening files in Notepad.
We illustrate this in Figure D.8.

D.4.4 Experiment D and E: Changing exFAT files on multiple OSes

The results are shown in Table D.8. We can see that Windows set the LastModi-
fied10msIncrement to 0x00 when changing the files in Windows, and the last mod-
ified and last access timestamps and the corresponding UTCOffset fields are up-
dated. We did not see any traces of atomic storage in the Windows experiments
using the command line or Notepad. However, an app that uses atomic storage
(safe store) will leave traces in the exFAT file system when changing a file; for
instance when we performed a small test using MS Word v. 16.0.16130.20218 we
observed the original unallocated file, two unallocated temporary files, and the
renamed new allocated file. In this context we also saw proof of file system tun-
neling, meaning the created timestamp was preserved in the new changed file even
when using atomic storage. This is due to that the original file was unallocated and
the temporary file was renamed to the same name as the original (Chen 2023). We
did not observe this kind of usage in Notepad.

Linux (exFAT fuse driver) only changes the last modified timestamp and the Last-
Modified10msIncrement (values 0x00 or 0x64), but not the UTCOffset fields when
changing the files using the bash script for appending more text in each file. The
last accessed timestamp was not changed. However, when using Gedit to change
the file content in Linux, it set all timestamps to the change time using the local
time of the computer and sets all UTCOffset fields to 0x00. This is because the
Gedit application use atomic storage which on content change creates a new tem-
porary file with a set of new timestamps. If this temporary file is successfully
written, then the old file will be unlinked, and the temporary file will be renamed
with the filename of the old unlinked file. The remnants of the delinked file may
exist as a set of unallocated directory entries, or they may be overwritten. In the
latter case the old metadata of the file is lost.

The 10msIncrement fields are also updated. Since all timestamps are equal, it looks
like the file was created at the time it actually was only changed. The observations
are similar when using the Linux Ubuntu native exFAT driver, except that the UT-
COffset fields are set to 0x80, and that not only 0x64 and 0x00 are used for the
10msIncrement fields. For both Linux drivers, the original create timestamp may
be lost.

MacOS also behaves differently if the content is changed using piping in a bash
script, or if the files are changed by manually opening and changing the files in
TextEdit. The latter will even try to set the UTCOffset for the created timestamp,
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assuming the original timestamp was stored with the same timezone offset as the
local computer (in our case UTC-5), which was an incorrect assumption in our
case. This resulted in a changed created timestamp in addition to the changes of
last modified and last accessed. We have not identified that these changes could be
a result of atomic storage within TextEdit. The created timestamp is changed based
on an assumption that the invalid UTC offset is equal to whatever local timezone
UTCOffset is used by MacOS. We also observed that additional fork files were
created when changing the files in TextEdit, but not when using the bash script.
These fork files are pre-pended with ._ and may contain metadata information that
describes which app was used to change the file. A fork is a named attribute used
normally in HFS or APFS that contains a stream of data, and is similar to alternate
data streams in NTFS (Wani et al. 2020).

OS Action Tool used Timestamp 10msIncrement UtcOffset Observations

Windows Change ≫ LM and LA LM (0x00) LM and LA 400
Windows Change Notepad (manual) LM and LA LM (0x00) LM and LA 100
MacOS Change ≫ LM and LA LM LM and LA 400
MacOS Change TextEdit (manual) C*, LM and LA LM C, LM and LA 100

Linux (fuse) Change ≫ LM LM (0x00 or 0x64) Not changed 400
Linux (native) Change ≫ LM LM All is set to 0x80 400
Linux (fuse) Change Gedit (manual) C, LM, and LA C and LM (0x00 or 0x64) All is set to 0x00 100

Linux (native) Change Gedit (manual) C, LM, and LA C and LM All is set to 0x80 100

Table D.8: Experiment D and E Results - Changes in Timestamps, 10msIncrement and
UTCOffset fields in the exFAT file directory entry when changing the files on Windows,
MacOS or Linux. The C* means a special case where an invalid UTCOffset for the Created
is interpreted incorrectly and then the Created timestamps is converted using the switching
feature of MacOS.

D.4.5 10msIncrement fields

Another result we observed was the usage of the 10ms granularity fields; Cre-
ate10msIncrement and LastModified10msIncrement. Based on the results in Table
D.9 we can verify that Windows 10 does not update the LastModified10msIncrement
on change, as described by Heeger et al. (2021). However, MacOS does update
these fields. We also observed that Linux update these fields, and we observed that
both 10msIncrement fields either had the value 0x00 or 0x64 for the exFAT fuse
driver. The latter value 0x64 is 100 in decimal, meaning in this context 1000 ms
or 1 second. However, the native exFAT driver used by Ubuntu 20.04 updates the
10msIncrement fields similar to MacOS.

D.4.6 Tool testing

Law enforcement require tools that give accurate results, and interpret timestamps
correctly, else any incorrect results may impact a criminal case. Therefore, we will
show how different Digital Forensic tools show timestamps from the exFAT file
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OS Create10msIncrement LastModified10msIncrement Observations

Windows In use Not used 400
Mac OS In use In Use 400
Linux In use In Use 400

Table D.9: Experiment Results - Usage of the 10ms granularity fields in the exFAT file
directory entrywhen using Windows, MacOS or Linux.

system, in the context of the above mentioned experiments.

Autopsy

Base TZ (Index) Type Stored TZ Stored Time Autopsy TZ Autopsy Time Observations

Europe/Moscow (0) Created 0xF4 (UTC-3) 23/02/2022 21:52 UTC-3 23/02/2022 17:52 100
America/Godthab (1) Created 0x8C (UTC+3) 24/02/2022 03:53 UTC+3 24/02/2022 05:53 100
Atlantic/Azores (2) Created 0x84 (UTC+1) 24/02/2022 01:53 UTC+1 24/02/2022 01:53 100

Europe/Oslo (3) Created 0xFC (UTC-1) 23/02/2022 23:53 UTC-1 23-02-2022 21:53 100

Table D.10: Experiment Results - MacOS and Autopsy v. 4.19.3

When testing Autopsy we adjusted the timezone for each experiment in order to
match the timezone used for storing the timestamp. The date/time should match
between stored time and the time shown in Autopsy, and the results are shown in
Table D.10. We can see that experiment index 2 matches where both timezones
are using UTC+1. We also need to take into consideration that Autopsy was ini-
tially set to the timezone Europe/Oslo (UTC+1) in standard time when adding the
forensic image. Therefore, we found that Autopsy interprets the exFAT timestamps
using this initial timezone as the stored local time. In the other experiments we
saw that Autopsy interpreted all stored timestamps as the initial local time (here
UTC+1), and then tries to convert it to a timezone selected in Autopsy options
view tab. This assumption about the current timezone was incorrect in most of our
experiments. For instance, in order to change to UTC-3, Autopsy tries to subtract
-4 from the stored timestamp, since it assumes the stored timestamp is given in
UTC+1. For UTC+3 Autopsy adds 2 hours to get from UTC+1 to UTC+3. The
only place it gives the same timestamp is when the UTC offset is the same as
the assumed timezone. However, even in the latter case it is inaccurate, because
Atlantic/Azores is using UTC-1 in standard time as seen in Table D.10.

When we added the Windows exFAT forensic image to Autopsy, we adjusted the
initial value to Europe/Moscow (UTC+3). Autopsy tried to adjust the timezone
based on the initial UTC+3 that it interpreted as the local time stored. This as-
sumption is only correct for the Experiment-0 files.
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FTK Imager

Base TZ (Index) Type Stored TZ Stored Time FTK TZ FTK Time Observations

Europe/Moscow (0) Created 0xF4 (UTC-3) 23/02/2022 21:52 UTC+0 24/02/2022 00:52 100
America/Godthab (1) Created 0x8C (UTC+3) 24/02/2022 03:53 UTC+0 24/02/2022 00:53 100
Atlantic/Azores (2) Created 0x84 (UTC+1) 24/02/2022 01:53 UTC+0 24/02/2022 00:53 100

Europe/Oslo (3) Created 0xFC (UTC-1) 23/02/2022 23:53 UTC+0 23/02/2022 00:53 100

Table D.11: Experiment Results - MacOS and FTK Imager v. 4.5.0.3

In Table D.11 we were not able to adjust the timezone shown by FTK Imager.
Instead, the tool converted the timestamps to UTC+0. The conversions from stored
timestamp to UTC+0 was correct. However, when adding the linux base image
from the exFAT fuse driver with UTCOffset fields not valid, then the Created,
Modified and Accessed are set to N/A (Not Applicable). The latter approach is
fine, since it is infeasible to show the date and time when the UTC offset fields are
not valid. However, showing the timestamps with a LT (Local Time) would have
been better.

X-Ways Forensics

Base TZ (Index) Type Stored TZ Stored Time X-Ways TZ X-Ways Time Observations

Europe/Moscow (0) Created 0xF4 (UTC-3) 23/02/2022 21:52 UTC-3 23/02/2022 21:52 100
America/Godthab (1) Created 0x8C (UTC+3) 24/02/2022 03:53 UTC+3 24/02/2022 03:53 100
Atlantic/Azores (2) Created 0x84 (UTC+1) 24/02/2022 01:53 UTC+1 24/02/2022 01:53 100

Europe/Oslo (3) Created 0xFC (UTC-1) 23/02/2022 23:53 UTC-1 23/02/2022 23:53 100

Table D.12: Experiment Results - MacOS and X-Ways Forensics v. 20.04 SR-4

Table D.12 shows the timestamps correctly using the same UTC offset as they
were stored. X-Ways also displays the applied UTC offset after each timestamp, as
shown in Figure D.9 and the hex representation of the first file in Figure D.10. X-
Ways converts the exFAT timestamp correctly using any selected timezone. When
X-Ways interprets UTCOffset fields with a mix of valid and invalid values, it tries
to convert all values using the stored UTC offset to compute the selected timezone
UTC offset. However, converting an invalid UTC offset value to a timezone UTC
offset is based on an assumption about the previous stored UTC offset.

EnCase Forensic

Base TZ (Index) Type Stored TZ Stored Time EnCase TZ EnCase Time Observations

Europe/Moscow (0) Created 0xF4 (UTC-3) 23/02/2022 21:52 UTC-3 23/02/2022 21:52 100
America/Godthab (1) Created 0x8C (UTC+3) 24/02/2022 03:53 UTC+3 24/02/2022 03:53 100
Atlantic/Azores (2) Created 0x84 (UTC+1) 24/02/2022 01:53 UTC+1 24/02/2022 01:53 100

Europe/Oslo (3) Created 0xFC (UTC-1) 23/02/2022 23:53 UTC-1 23/02/2022 23:53 100

Table D.13: Experiment Results - MacOS and EnCase Forensic v. 22.1
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Figure D.9: ExFat timezones using stored UTC-1 offset for Experiment3 on MacOS and
the X-Ways directory listing

Figure D.10: ExFat timeszones using stored UTC-1 offset for Experiment3 and the X-
Ways for D2022-02-24T01-53-54-tz-3-file1.txt

EnCase shows the timestamps in the selected timezone taking the UTCOffset fields
into consideration, as shown in Table D.13. When it comes to interpreting an ex-
FAT filesystem created by the Linux Ubuntu exFAT fuse driver, EnCase interprets
the stored timestamp as UTC+0 and tries to convert to the selected timezone, even
though the UTCOffset fields have the 0x00 value (not valid). This is only accurate
if the local time of the Linux computer was UTC+0, which it was not in all our
experiments.

When there were mixed values in the UTCOffset fields, EnCase correctly showed
timestamps where UTCOffset fields contained valid values, but failed if these val-
ues were invalid (0x00). For instance, Encase correctly showed the ones with value
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0x80 using the selected timezone in EnCase, however the 0x00 value was wrongly
interpreted as if the timestamps are stored using UTC+0.

Based on the experiments we can see that EnCase can be validated for exFAT as
long as the UTCOffset fields are valid. If they are not valid, then EnCase seems to
make an assumption about the UTC offset that may be wrong.

Figure D.11: ExFat timeszones using stored UTC+3 offset for Experiment0 from the
Linux Base exFAT fuse image and the EnCase

We can see this interpretation in Figure D.11 where the local time stored was
02.03.2022 at 16:11 (UTC+3), but wrongly interpreted as UTC+0 because of the
0x00 values in the UTCOffset fields, and then EnCase adds 3 hours to convert to
UTC+3, which is incorrect in this context.

D.5 Discussion
The observations show that exFAT on Windows uses the local timezone offset in-
cluding any daylight settings without switching signs, accurately storing the time-
stamp using the UTC offset of the local time of the computer. The MacOS experi-
ments show that timestamps are not stored in the local time, instead it converts the
UTC offset by switching signs. The Linux experiments using exFAT fuse driver
shows that the timezone UTCOffset fields are not in use, and that the timestamp
is stored using localtime, while the Linux native driver and UTCOffset fields are
set to 0x80 (UTC+0) and the timestamps are stored using UTC+0 for the native
exFAT driver.

The implementation used by MacOS will not make timestamps inaccurate when
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showing the files from these experiments in Windows. Windows File Explorer in-
terprets the exFAT file system correctly, meaning File Explorer will take the time-
zone UTCOffset field into consideration before converting it to the local time used
by the local computer. An example from Experiment-3 is shown in Figure D.12
for File Explorer. The same is true when mounting an exFAT storage device from
Windows to MacOS, except that MacOS changes the Last Accessed timestamp
and the LastAccessedUtcOffset. However, both MacOS and Windows take the UT-
COffset fields into account and show them in the local time of the computer.

When it comes to Linux Ubuntu 20.04 exFAT fuse driver, no tools examined in
this experiment will know what the timezone offset of the local time was for each
file created. If the files are changed by using Gedit in Linux the UTCOffset are
set to 0x00 and all timestamps are changed to the time of the update. This is due
to the atomic storage features used by Gedit. Therefore, the original created date
may be lost if no remnants of previous metadata entries are found. Linux Ubuntu
20.04 native exFAT driver store the time in UTC+0 no matter what the timezone
was, and this is an implementation were the knowledge of the local time of the
computer is not preserved. It is not necessarily an incorrect method, and it does
not impact how the timestamps are presented in other OSes and in Digital Forensic
tools. However, they are not following the specifications (Microsoft 2021b).

Digital Forensic tools interpreting the timestamps should describe that the time-
stamps are stored as the localtime whenever the UTCOffset fields are not in use,
and investigators cannot assume anything about which timezone was in use for a
particular file when using the Linux exFAT fuse driver. If the UTCOffset fields
was not in use, any change of timezone using a Digital Forensic tool should not
change the time shown, but continue using the local time. However, if UTCOffset
fields are valid, then Digital Forensic tools should change to the selected timezone
utilising the necessary computation based on the stored timestamp and UTCOffset
fields. Further, it should not be assumed that the UTCOffset fields only use one
timezone offset.

If we know that an exFAT storage device has only been used on a MacOS, we can
describe the local time of the computer (UTC offset for the timezone and any day-
light settings) by switching the sign again. We can also find the last registered Ma-
cOS local computer UTC offset used by checking the LastAccessedUtcOffset field.
On the other hand it will be difficult to assess if the timezone offset was initially
set by a Windows or a MacOS computer. For instance, a MacOS using UTC-1
will store the timestamp in UTC+1, and a Windows computer using UTC+1 will
store timestamps in UTC+1. In this scenario we have UTCOffsets of 0x84 on all
timestamps, though they were actually running on two different timezones.
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Figure D.12: ExFat timeszones using Europe/Oslo timezone (UTC+1) for Experiment-3
and the Windows 10 computer.

The existence of a .fseventsd and .Spotlight-V100 directory within the root direct-
ory is an indication of MacOS usage, while existence of a System Volume Inform-
ation directory within the root directory is an indication of Windows usage.

If only mounting and dismounting a USB storage device with exFAT file system on
a MacOS, then the LastAccessedUtcOffset field will be updated and stored using
the switching signs method on every file on the device. However, the Created
and Modified timestamps and their corresponding UTCOffset fields will not be
updated. Therefore, it is common that a storage device used on both on Windows
and MacOS will include timezone offsets that deviate within the same directory
entry, even when using the same timezone. It is also important to note how easy
it is to change timestamps unintentionally by connecting a storage device to a
MacOS without using a write blocker.

D.5.1 Rules for updating timestamps

Timestamp Specs Driver compliance

CreateTimestamp On creation Windows 10
LastModifiedTimestamp Modifying cluster content Windows 10, Linux
LastAccessedTimestamp Modifying or reading cluster content MacOS

Table D.14: Rules for updating timestamps - compliance

Table D.14 shows which operating system exFAT driver complies with the ex-
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FAT specifications for updating the different timestamps. The MacOS and Linux
changes the timestamp for creation when using TextEdit or Gedit to change the
content of a file. The latter because of atomic storage utilised by the application
or its library. The former due to misinterpreting invalid UTCOffsets. This means
the timestamps are changed by the driver when using MacOS, and it may already
be inaccurate before parsing and interpretations of Digital Forensic tools. Most
of the drivers update the last modified on change, but MacOS may update the last
modified on open only. The last accessed timestamp is updated on open for all
exFAT drivers except on Windows when using Notepad to open files. In Linux
when using a bash script to append content the last accessed is not updated for
both exFAT drivers, only the last modified timestamp.

This unequal behaviour impact the investigation, and therefore it must be emphas-
ized that it is important to understand which OS driver has been used in order to
interpret the findings correctly.

D.5.2 10ms granularity

Even though the exFAT specifications describe that the LastModified10msIncrement
field should be updated when updating any clusters used by the stream extension
directory entry, or when changing the ValidDataLength or DataLength fields (Mi-
crosoft 2021b), we observed that this was not implemented in Windows and im-
plemented in MacOS.

The stego-only approach proposed by Heeger et al. (2021) will fail if the storage
device is mounted and files are updated using MacOS or Linux, since this approach
is using the LastModified10msIncrement. However, their exHide approach will
work since they are not using this field and are utilising only unallocated directory
entries.

D.5.3 Patterns

The three operating systems used in our experiments show distinct patterns which
can be used to identify the OS used for a particular exFAT storage device. The most
clear pattern is when the UTCOffset fields have the 0x00 value, meaning it is used
by the Linux exFAT fuse driver. The other Linux exFAT fuse pattern is that the
10msIncrement fields have the value 0x00 or 0x64. We should not see any System
Volume Information directory or .fseventsd and .SpotLight-V100 directories if the
USB storage is only used on Linux. We only know that the local time is used to
store the timestamps when using the exFAT fuse driver, we do not know which
timezone was used. The Linux exFAT native driver uses 0x80 (UTC+0) always,
but other OSes using the GMT timezone will also use 0x80, and therefore this is
not a good pattern to identify Linux.



D.5. Discussion 193

MacOS uses all UTCOffset fields and both 10msIncrement fields. In addition it
creates the directories .fseventsd and .Spot-Light-V100. If no UTCOffset fields
are 0x00 and the System Volume Information directory is not present in the root
directory, then we know MacOS has been used. However, the native Linux driver
may also have been used, but in this context if all files are using another timezone
than GMT, then we know MacOS has been used. Another sign is the usage of fork
files when using GUI apps to change files. The latter is very interesting since we
can see which app was used to change the files. When only MacOS has been used,
we can switch the stored UTCOffset sign to find the local time of the computer
used when creating or updating a file.

Windows updates all UTCOffset fields and Create10msIncrement, and the Last-
Modified10msIncrement is set to 0x00 on creation. In addition the directory Sys-
tem Volume Information is created in the root directory. On change the last mod-
ified and last accessed timestamps are updated, and the last modified is updated
for the 10msIncrement field, which is set to 0x00. If no UTCOffset fields have the
value 0x00, and the directories .fseventsd and the .SpotLight-V100 are not present,
and the System Volume Information directory is present, and all files have 0x00
for the LastModified10msIncrement, but uses the Create10msIncrement, then we
know that Windows has been used. When Windows is the only OS used, then we
can find the local time used by the computer by using the UTCOffset fields.

D.5.4 Challenges

The MacOS exFAT driver will try to update the Create timestamp when changing
a file manually using TextEdit. The driver makes an assumption that the timezone
must be equal the local time of the Mac computer if it finds an invalid value in
the UTCOffset fields. This may or may not be true, and if wrong will effectively
change the created date to a wrong time.

Linux (both drivers) changed all timestamps when changing files using Gedit due
to the atomic storage features implemented by Gedit or a library, using the local
time when the change happened (3 equal timestamps). A text document created
a year ago, will get a new set of equal timestamps for create, last modified, and
last accessed when changing the file using Gedit. If the digital forensic investig-
ator identify that the exFAT storage device has been used on Linux, we can only
identify previous metadata if remnants of previous directory entry sets are found.

In Experiment E we manually changed 100 files in the directory Experiment-0 us-
ing Gedit and the Ubuntu Linux exFAT native driver. The base image was from the
exFAT fuse driver. We observed one unallocated temporary file—.goutputstream-
8KK4I1—which corresponds to the metadata for the allocated file D2022-03-02T16-
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11-55-tz-0-file100.txt, and we also found the latter file in an unallocated directory
entry with the previous timestamps. We found the unallocated file .goutputstream-
A6L58I1 in the same directory, which corresponds with the allocated file D2022-
03-02T16-11-55-tz-0-file1.txt, but not the corresponding unallocated file. In ad-
dition, we found a single unallocated File Name Directory Entry with last part
of its name; 99.txt in this directory. This means that 98 of the 100 changed files
lost all their original metadata due to atomic storage implemented by the Gedit
application. One file lost all previous metadata, except the last part of the name.

D.5.5 Tools

In this section we discuss if different tools can be validated for law enforcement
usage. With tool validation we mean if the tool is appropriate for its intended
usage (ISO 2017). Our aim is that the tool developers improve tools where we
have found inaccuracy. This also means that in future releases of these tools, the
interpretation may have been improved.

Autopsy

Autopsy interpreted that exFAT has stored the timestamp as the local time initially
set when adding the forensic image into Autopsy, and does not consider the time-
zone offset in the directory entry. If the initial given local time does not match the
stored local timezone UTCOffset for each timestamp, then it will yield erroneous
results. Setting the initial local timezone correctly requires the DF investigator
to verify the timezone UTCOffset manually in a hex viewer, but Autopsy cannot
support files with multiple timezone offsets stored on the same file system.

Based on these findings we assess that Autopsy v. 4.19.3 (Windows version) cannot
be validated for interpreting exFAT timestamps.

FTK-imager

FTK Imager displays the timestamps in UTC+0 by taking the UTCOffset fields into
consideration. FTK Imager can be validated for interpreting exFAT timestamps as
long as the timestamps shown are interpreted as UTC+0 by the digital forensic
investigator. It is not suitable to use for a storage that have been using the Linux
exFAT fuse driver, since it will not show any timestamps because of the non valid
UTCOffset field values.

Another issue is that FTK Imager v 4.5.0.3 (version used in this paper) and 4.7.1.2
(a newer version) do not show all directories, the .fseventsd and the .SpotLight-
V100 are not shown.

These versions of FTK Imager cannot be validated for interpreting the exFAT file
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system as long as it does not show all files or directories.

X-Ways

X-Ways displays the timestamps correctly in the timezone selected by the invest-
igator, and it takes the stored UTCOffset fields into consideration when adjusting
the time to the selected timezone. X-Ways also show the UTC offset used after
each timestamp. X-Ways can be validated for interpreting exFAT timestamps as
long as all UTCOffset fields are the same within the same directory entry.

If the CreateUtcOffset is 0x00 and the LastModifiedOffset and LastAccessedUt-
cOffset is a valid UTC offset, then it will try to show all timestamps in the selected
timezone. However, it cannot know the local time of the timestamp using UT-
COffset value 0x00, and any conversion must be based on assumptions. This is
especially important when there are mixed UTCOffset values, where one or more
contain the value 0x00.

EnCase

EnCase displays timestamps correctly if the UTCOffset fields have valid values.
The assumption made by EnCase is that the UTCOffset field value 0x00 means
UTC+0, but this is a wrong assumption. If the stored timestamp was stored using
UTC+3, then the accuracy is 3 hours off.

EnCase can be validated for interpreting exFAT timestamps when the UTCOffset
fields contain valid values.

D.6 Conclusion and Further Work
• How do current exFAT implementations store timestamps?

In Windows 10 the exFAT specifications (Microsoft 2021b) are followed by storing
timestamps using the UTC offset of the local computer, including any daylight
settings. MacOS has their own method of storing exFAT timestamps that switches
the UTC sign and store the time accordingly. Linux Ubuntu 20.04 when using the
exFAT fuse driver sets the UTCOffset fields to 0x00, which means the fields are
not in use. Linux Ubuntu 20.04 native exFAT driver uses the UTCOffset fields, but
sets them always to 0x80 (UTC+0). We also observed that graphical user interface
apps could update the create timestamps in Linux to the time of modification time
due to atomic storage features implemented in the application or by a library used
by the application, or adjust it in MacOS making assumptions about the invalid
UTC offset previously registered.

• Can we use the UTC offset stored in a directory entry to describe the local
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time of the computer?

If the exFAT storage device has only been used on MacOS computers, we can
switch the sign of the UTCOffset fields and find the local UTC offset used by
the MacOS computer for a specific timestamp. If the storage device has only
been used on a Windows computer, we can interpret the local UTC as equal to
the UTCOffset field for a specific timestamp. However, if mix usage between
Windows and MacOS then it may be more difficult. In Linux it is not possible to
know what UTC offset were used, but still the local time is used for storing the
timestamps when using the exFAT fuse driver, and UTC+0 when using the native
exFAT driver. We may be able to find remnants from the previous metadata, but
these are not always available.

We were not able to falsify our null hypotheses, because 33 percent of the valid UT-
COffset observations in Experiment A showed that timestamps were stored using
UTC+0, and only 67 percent were stored related to the local time. This means our
main hypothesis is wrong for Linux Ubuntu 20.04 native exfat driver, but correct
for the Windows and the MacOS exFAT driver.

• Do current forensic tools interpret exFAT timestamps differently?

The four different ways of storing exFAT timestamps between MacOS, Windows
and Linux do impact tools that take the timezone UTCOffset fields into consider-
ation (FTK Imager, X-Ways, and EnCase). Unfortunately, Autopsy does not con-
sider the UTCOffset fields stored in the directory entry and uses the given timezone
when adding the forensic image as the local time used for storing the timestamps.
EnCase does not interpret exFAT with a non-valid UTCOffset field correctly, but
make an assumption that the value 0x00 means UTC+0, which is incorrect in most
cases. FTK Imager convert all timestamps to UTC+0 taking the UTCOffset fields
into consideration. If one or more of theUTCOffset fields contains a non valid
value, it only shows the timestamps for the valid UTCOffset fields. Unfortunately,
FTK Imager does not show all directories. X-Ways take UTCOffset fields into
consideration, and if these fields are all invalid it describes that local time (LT) is
being used. However, X-Ways does not handle a mix of valid and invalid UTCOff-
set values, it then makes assumptions about the non-valid value in order to convert
all timestamps of a file to the selected timezone.

It is not just the tools that may interpret exFAT differently, but also the different file
system drivers may incorrectly change timestamps. MacOS makes an assumption
that the created time uses the local time of the MacOS when the UTCOffset fields
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are invalid, and updates the Create time when changing a file using TextEdit by
switching the UTC offset and storing the time accordingly. If the assumption is
wrong, then the created time is stored incorrectly.

Finally, the conclusion is that exFAT timestamps stored by file systems may be
unreliable, especially when used on multiple OSes, and that Digital Forensic tools
may even interpret reliable dates in an unreliable way. We recommend using X-
Ways to interpret exFAT, and use patterns to identify which OS has been used in
order to make an accurate interpretation of the timestamps. In addition, the digital
forensic expert should be aware that some applications may implement atomic
storage of files, which effectively modifies all timestamps by creating a new file
on any change. The previous file metadata is unallocated and often overwritten.

As further work we suggest observing other file systems that can be used on mul-
tiple OSes, to assess if the drivers store timestamps equally, and if Digital Forensic
tools interpret the timestamps accurately and reliably. Further, we recommend law
enforcement to reassess criminal cases where exFAT and timestamps have been an
important evidence to make sure innocent persons have not been convicted based
on misinterpreted timestamps. We also suggest studying the impact of atomic stor-
age have on accuracy of timestamps using different file systems.
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