
ISBN 978-82-326-7820-4 (printed ver.)
ISBN 978-82-326-7819-8 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2024:113

Yixin Zhao

System performance analysis of 
complex systems with failure 
dependenceD

oc
to

ra
l t

he
si

s

D
octoral theses at N

TN
U

, 2024:113
Yixin Zhao

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e 
of

Ph
ilo

so
ph

ia
e 

D
oc

to
r

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
ec

ha
ni

ca
l a

nd
 In

du
st

ria
l

En
gi

ne
er

in
g





Thesis for the Degree of Philosophiae Doctor

Trondheim, April 2024

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Yixin Zhao

System performance analysis of
complex systems with failure
dependence



NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Engineering
Department of Mechanical and Industrial Engineering

© Yixin Zhao

ISBN 978-82-326-7820-4 (printed ver.)
ISBN 978-82-326-7819-8 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2024:113

Printed by NTNU Grafisk senter



I 

 

Preface 

 

 
This thesis is submitted to the Norwegian University of Science and Technology (NTNU) as a 

partial fulfillment of the requirements for the degree of Philosophy Doctor (Ph.D.). The main 

work of the Ph.D. thesis was carried out at the Department of Mechanical and Industrial 

Engineering (MTP) of the Faculty of Engineering in NTNU, Trondheim, Norway. Besides, I 

also spent two months at University of Bologna, Bologna, Italy as part of my Ph.D. study. The 

research was primarily accomplished under the supervision of professor Yiliu Liu and 

Professor Jørn Vatn in Norway, with additional supervision from Professor Valerio Cozzani in 

Italy. 

This work’s target readers include researchers and practitioners interested in the following 

fields: reliability engineering, safety engineering, maintenance management, sustainability 

evaluation, and subsea industry engineering. It is assumed that the readers have basic 

knowledge of reliability and maintenance, preferably related to complex systems. 
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Summary 

 

 
Many technical systems are becoming more and more complex, consisting of multiple 

components and prone to failure dependences. Within such systems with failure dependences, 

the failure of a component or some components may accelerate the degradation of other 

components. Such failure dependences can significantly reduce system reliability and lead to 

catastrophic consequence if not well considered and effectively mitigated. In addition, within 

the complex multi-component systems, the failure dependences are commonly not expected to 

be single but multiple and heterogenous, which further complicates the investigation of system 

operation and maintenance management.  

The subsea system is typical example of complex system with failure dependence. The subsea 

system is part of the offshore oil and gas industry that performs various tasks and operates in 

the seabed or underwater environment. Given the long-term exposure to hostile environmental 

conditions encompassing high pressure, low temperature, salinity, and corrosion, et. al, 

ensuring the normal operation of the subsea system via effective maintenances becomes very 

important. Additionally, due to the complex functions, the subsea system rarely operates 

independently by a single device. In many cases, the subsea system may inevitably suffer the 

coupling effect of natural degradation and failure dependences, resulting in more severe 

consequences. Therefore, to guarantee the system performance to ensure its long-term stable 

operation in extreme environments, it is crucial to deal with these complex failure dependence 

situations of the subsea system. 

Currently, the effect of failure dependence has not been well studied neither in the reliability 

analysis, maintenance management of the complex system nor in its sustainable relationship 

with the surroundings. As a result, it is desirable to conduct a thorough investigation on the 

impacts of failure dependence in complex multi-component systems. Our research identifies 

the subsea complex system as an ideal case example for such investigation. 

This Ph.D. thesis aims to propose comprehensive methodologies to conduct reliability analysis, 

maintenance management, and sustainability evaluation for the complex systems considering 

the failure dependence. The aim is refined into the following four specific research objectives 

that are addressed in one conference paper and four journal articles: 

• Elucidate the definitions of terminologies related to failure dependence and clarify 

delimitations for various types of failure dependence. Based on that, mechanisms of 

component degradation and cascading process are better categorized and understood. 

The study could improve the recognition and comprehension of failure dependence 

during system design and operation phases. 

• Develop a system reliability analysis model for complex systems with multi-state 

components considering overloads. The cascading process is examined with its stop 

scenarios and influencing factors. It is expected to present insights to optimize the 

design and maintenance of complex loading dependent systems with overloads. 

• Establish a general maintenance model for complex systems subject to failure 
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dependences. Impacts of heterogeneous failure dependences on component degradation 

within the subsea system are explored by this model, with the aim of optimizing 

maintenance strategies to improve the system availability. 

• Propose an integrated framework to conduct sustainability evaluation for complex 

systems subject to failure dependence. This framework is capable of thoroughly 

examining the coupling effect of component degradation, failure dependence and 

maintenance management on the sustainability. It concerns the sustainability evaluation 

of complex subsea systems from environmental, social, and economic perspectives. 

Thus, it provides guidelines for long-term and sustainable optimization of maintenance 

strategies. 

From an academic standpoint, this thesis proposes approaches and models to assess the effects 

of failure dependences. The suggested approaches and models reveal the degradation patterns 

of components subjected to failure dependence and the development mechanisms of cascade 

processes. From the practical viewpoint, this thesis serves as a reminder to designers, operators, 

and safety personnels regarding the significance of acknowledging failure dependences in 

complex multi-component systems. Furthermore, it offers implications to minimize the failure 

dependence during the system design stage or implement effective measures to mitigate such 

dependences during system operation and maintenance stage.  

To conclude, this thesis provides a comprehensive overview of failure dependence issues in 

complex multi-component systems, as well as contributes to the reliability analysis, 

maintenance management and sustainability evaluation of the subsea systems subjected to 

failure dependences. 
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Chapter 1 

 

1. Introduction 

1.1 Background 

The complexity of technical systems is increasing, primarily attributed to the growing 

integration of technologies and components. These complex systems normally comprise many 

components with varying degrees of interactions and dependences. Such systems can be 

observed in various industrial contexts, encompassing but not limited to, processing systems 

[1, 2], chemical clusters [3, 4], transportation systems [5-7], power grids networks [8-13]. In 

the complex system, when one component fails resulting from a root cause, and then the failure 

propagates to cause failures in other components, it is termed as a cascading failure (CAF) [14]. 

Previous accidents [15-17] have indicated that CAFs could cause extensive damages to 

complex systems and even the environment and the society. 

The failure dependence is the primary cause that may easily trigger CAFs and negatively 

impact the system performance. The CAFs occur when failure dependences exist in such 

complex systems. Nevertheless, failure dependence may not only lead to a complete failure or 

manifest as an immediate failure in some cases, but also result in a gradual degradation of the 

components [2, 18, 19], which may also evolve into failures finally. Therefore, the failure 

dependence identifies the root cause both for an exact CAF and for a potential CAF. To better 

address all the CAFs issues that cause negatively impacts on the system performance, this thesis 

focuses on failure dependence effects of the complex system. 

The subsea system is a typical complex system, consisting of a network of interconnected 

components operating in underwater environments, each component playing a crucial role in 

the operation of the entire system. In contrast to land-based systems, subsea components face 

not only mechanical wear and tear but also exposure to hostile conditions like corrosive 

elements, high pressures, and extreme temperatures [20, 21], which places higher requirements 

on the system performance. However, the components in the subsea systems are gradually 

logically or physically interdependent, and are susceptible to failure dependence, which 

amplifies the operational risks of the system should CAFs occur. Once CAFs occurs, the system 

could be significantly impacted from the aspect of reliability, and even cause hostile ecological 

and environmental impact [22] to the sea. Understanding and effectively managing failure 

dependence in complex subsea systems is thus vital for enhancing the performance of these 

systems. 

System performance analysis encompasses various critical aspects such as reliability analysis, 

maintenance management, and sustainability evaluation. Each aspect plays an essential role in 

ensuring the inherent functionality of the system and its long-term relationship with 

surroundings. 

Reliability analysis serves undoubtedly as a cornerstone in the evaluation of system 

performance, providing quantitative insights to the performance and efficiency of engineering 

systems [5, 23-26]. In the context of subsea systems, reliability analysis serves as a powerful 
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tool to assess the failure probabilities [27, 28]. Maintenance management is crucial for 

preserving and optimizing system performance, ensuring that the system operates at peak 

efficiency throughout its lifecycle [25]. Specifically, maintenance is necessary to improve 

system reliability, availability, and productivity [29]. Effective maintenance practices 

contribute significantly to minimizing downtime and maximizing operational longevity. While 

reliability analysis and maintenance management focus on the technical aspects of system 

performance, the sustainability evaluation of the system reveals its performance in aligning 

with surrounding environments during long period [30]. In the engineering context, 

sustainability refers to the ability of a system to function efficiently while minimizing negative 

impacts on the environment and society over its entire lifecycle. The integration of 

sustainability evaluation into the analysis framework becomes imperative, considering the 

global push towards environmentally and socially responsible practices. Sustainability in the 

context of complex subsea systems involves not only operational efficiency but also 

environmental impact, safety, and economy. 

Achieving an optimal balance between performance of the subsea system and its sustainable 

relationship with surroundings requires a holistic understanding of the natural degradation of 

components, the complex failure dependence among them and their maintenance activities. 

However, there are still challenges currently for the examination of system reliability 

considering failure dependences. Besides, the effect of failure dependence has not been well 

studied neither in the maintenance management of the complex system nor in its relationship 

with the surroundings. For example, the critical concepts related to failure dependence in 

complex systems are not clearly clarified and thoroughly explored. Further, the overloading 

components often receive less attention compared to failed components, even though 

overloading components can also significantly influence system performance. Another 

underestimated yet crucial concern is that failure dependences are often multiple and 

heterogeneous. In addition, there is a lack of comprehensive examination of the system 

performance from the aspect of inherent system performance and the aspect of its relationship 

with surrounding environments and society. 

In the subsequent sections of this paper, we will delve into the theoretical basis of failure 

dependence, explore existing methodologies, and propose innovative frameworks that 

addresses the challenges posed by failure dependence in the complex systems. The research 

utilizes subsea complex systems as case studies to enhance the integration of theoretical 

methodologies with practical applications. The studies are expected to address the critical need 

for an integrated approach to system performance analysis in complex systems, considering the 

reliability, maintenance management, and sustainability evaluations in the context of failure 

dependence. Through this multidimensional lens, we aim to contribute valuable insights that 

will inform the design, operation, and maintenance of complex systems, fostering a more 

reliable and sustainable future for subsea industries. 

1.2 Objectives  

The overall Research Objective (RO) of this Ph.D. thesis is to develop models for the system 

performance analysis of complex systems with failure dependence. The proposed models and 

methodologies in this study are expected to place particular emphasis on examining the effects 

of failure dependence on the system performance of complex systems. The research is 

decomposed into four main specific research objectives as below. 

1. Research Objective 1 (RO1): Elucidate the definitions of terminologies related to 

failure dependence and clarify delimitations for various types of failure dependence. 
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2. Research Objective 2 (RO2): Develop a system reliability analysis model for complex 

systems with multi-state components considering overloads. 

3. Research Objective 3 (RO3): Establish a general maintenance model for complex 

systems subject to failure dependences. 

4. Research Objective 4 (RO4): Propose an integrated framework to conduct 

sustainability evaluation for complex systems subject to failure dependence. 

1.3 Scope and delimitations 

The thesis is driven by the aspiration to enhance the fundamental understanding of failure 

dependences and their influence on the system performance improvement of the complex 

systems. The methods and models presented in this thesis are tailored for complex systems and 

validated by the application in complex subsea systems, yet their applicability extends to other 

complex systems characterized by failure dependences. The system performance is thoroughly 

examined from aspects of reliability analysis, maintenance management, and sustainability 

evaluation. The results of the thesis are promising in the practical application, encompassing 

both qualitative and quantitative aspects. 

The following delimitations apply: 

• The complexity methodologies to study the complex systems are considered out of the 

scope. 

• Other types of dependences such as structural dependence, economic dependences, and 

resource dependences within the complex systems are not covered. 

• The proposed models are useful to analyze the fundamental complex systems with 

failure dependences, but we must realize that they are not sufficient for huge and 

extreme complex systems. 

• Discussion of the reliability and credibility of purely software programs falls beyond 

the purview. 

1.4 Structure of the thesis 

This doctoral thesis consists of two parts: Part Ⅰ is the main report, and Part Ⅱ contains a 

collection of articles that provides a basis for this thesis.  

Part Ⅰ presents the objectives, scope, theoretical background, methodologies, main 

contributions, and conclusions of the research. The Part Ⅰ is structured as follows: 

• Chapter 1 introduces the topic of the thesis and presents the limitations. 

• Chapter 2 covers the theoretical background of the research. 

• Chapter 3 summarizes the main research questions and objectives of the thesis. 

• Chapter 4 elaborates the research methodology and overall work process. 

• Chapter 5 presents the main results and contributions. 

• Chapter 6 concludes the research and suggests further works. 

• References are in the last section of Part Ⅰ. 

Part Ⅱ includes one research article published in an international conference and four research 

articles that have been published in international journals. The articles are listed in Table 1. 

 



1 Introduction 

6 

 

Table 1 List of articles in part Ⅱ 

No. Type Article Reference 

Article Ⅰ Conference Zhao, Yixin; Liu, Yiliu. Condition-based 

maintenance for systems with dependencies: A 

review on related concepted, challenges and 

opportunities. Proceedings of the 31st European 

Safety and Reliability Conference (ESREL), Sep 19-

23, 2021, Angers, France. 

[31] 

Article Ⅱ Journal Zhao, Yixin; Cai, Baoping; Kang, Henry Hooi-Siang; 

Liu, Yiliu. Cascading failure analysis of multistate 

loading dependent systems with application in an 

overloading piping network. Reliability Engineering 

& System Safety (2023); Volume 231. 109007. 

[14] 

Article Ⅲ Journal Zhao, Yixin; Sun, Tianqi; Liu, Yiliu. Reliability 

analysis of a loading dependent system with 

cascading failures considering overloads. Quality and 

Reliability Engineering International (2023). 

[32] 

Article Ⅳ Journal Zhao, Yixin; Cozzani, Valerio; Sun, Tianqi; Vatn, 

Jørn; Liu, Yiliu. Condition-based maintenance for a 

multi-component system subject to heterogeneous 

failure dependences. Reliability Engineering & 

System Safety (2023); Volume 239. 109483. 

[2] 

Article Ⅴ Journal Zhao, Yixin; Cai, Baoping; Zeng, Tao; He, 

Zhengbing; Liu, Yiliu. Sustainability evaluation of 

multi-component subsea systems considering failure 

dependence and maintenance activities. Ocean 

Engineering, 2024. 

[33] 
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Chapter 2 

 

2 Theoretical background 

The motivation of the theoretical background chapter is twofold. On one side, it aims to extract 

the research questions and reveals the challenges by a systematic review of the state of related 

field. On the other side, it intends to lay a foundation for selecting methodologies and 

approaches to address the research questions and challenges. 

This chapter starts with a general review of definitions and current models of failure 

dependence. Followed by are the illustration and delimitation of the subsea system as an 

example of complex system with failure dependence. Then, it outlines the main perspectives 

that requires emphasis when examining system performance analysis of the complex system. 

The last part of this chapter states the summary. 

2.1 Failure dependence 

2.1.1 Failure dependence and cascading failures 

Modern infrastructure systems typically exhibit complex interactions, interconnections, or 

interdependencies instead of existing in isolation, and these complex systems are thus prone to 

manifest the multiplicity, diversity, and interactivity [34]. In such complex system, a 

catastrophic situation may happen where a failure of one component can propagate, causing 

the failure of other components. This phenomenon is termed as a cascading failure in the 

reference [2, 14, 35, 36]. CAFs are recognized in the literature with various terms, each with a 

distinct emphasis, including induced failures [37-39], fault propagation [40, 41], propagated 

failure [23, 42], domino effect accidents [43, 44], and escalating scenarios [45]. But in general, 

they are all initiated by the deliberate activity carried out by a threat actor, or a random failure 

or event. CAF has been identified as one crucial cause contributing to the stability and 

reliability of numerous modern technical systems, such as subsea systems [1, 2], transportation 

systems [5-7], power grids networks [8-12], and other complex network systems [46-48]. 

Causes that can trigger CAFs include but not limited to behavioral and environmental factors  

[49], as depicted in Figure 1. 
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Figure 1 Causes of CAFs 

The CAFs occur due to the structural or functional interactions of multiple components within 

complex systems. In complex systems where CAFs may occur among specific components, 

these components are referred to as dependent components or coupling components, and there 

exists failure dependence among them. Complex systems with high failure dependence are 

more susceptible to CAFs. In reverse, in complex systems where failure dependence exists, it 

is still plausible that CAFs might not occur. This is because that CAFs are the manifestation of 

the events while the failure dependence is inherent due to the interactions of components. 

Nonetheless, CAF and failure dependence are still an inseparable pair of concepts related to 

complex systems, and understanding failure dependences is critical to predict the cascading 

process of the CAFs and identify the system failure modes. 

2.1.2 Definition and classification of failure dependence 

A notable finding in the literature is the absence of a universally accepted definition for failure 

dependence. The exploration of failure dependence could find its roots in the investigation of 

failure interaction. Murthy and Nguyen [37, 38] proposed the definition of failure interaction: 

failure interaction could be defined as the interaction between units where the failures of units 

can affect one or more of the remaining units. In addition, according to how components are 

affected by the failure interaction, the failure interactions are categorized into two types [50]: 

• Induced failure: the failure of one component can trigger the simultaneous failure of 

other components with a given probability. 

• Shock damage interaction: the failure of one component causes damage with a 

distribution to another component. 

Later, this kind of classification is extended into three types [51]:  

• Induced failure: the failure of one component can trigger the simultaneous failure of 

another component with a given probability. 

• Failure rate interaction: the failure of one component can act as an interior shock to 

affect the failure rates of another component. 

• Shock damage interaction: the failure of one component can cause a random amount of 

damage which could be accumulated and affect another component. 
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In addition, with emphasis on the failure mechanism dependent relationship, Chen et al. [52] 

proposed the concept failure mechanism dependence or failure mechanism correlation, and 

identified various failure process dependence effects for non-repairable system as shown in 

Figure 2. 

Failure mechanism 

correlations

Competition Trigger Acceleration Inhibit Accumulation

Damage Accumlation Parameter Combination
 

Figure 2 Classification of failure mechanism correlations [52] 

Stochastic dependence is also a widely accepted concept to represent the dependence related 

with failures. Stochastic dependence applies when the deterioration process of one component 

is dependent on the state of one or more other components [53]. This type of dependence is 

classified into three ways: 

• Failure-induced damage [50]: the failure of one component can trigger one-time 

damage to other components and cause an immediate degradation or failure of these 

components. 

• Load sharing [14, 54]: multiple components in a system share the overall workload, so 

that if a component fails, the workload is automatically transferred to the remaining 

functional components and may cause degradation or failure of these components. 

• Common-mode deterioration [55]: multiple components may experience simultaneous 

failure or deterioration due to similar working/environmental conditions. 

Referring to the above definitions, failure interactions and failure mechanism correlation 

demonstrate dependence upon a complete failure of the component, while the stochastic 

dependence encompasses common-mode deterioration among components. In contrast to the 

preceding definitions, another type of dependence emerges that is not necessarily initiated by 

a component failure [18, 19] but rather centers more on the interactions among components 

due to degradation. This type of dependence is defined as degradation interactions [18, 19, 56, 

57] and can be activated when the degradation behavior of a specific component can influence 

that of another component. 

• Degradation state interactions [58, 59]: the degradation of a component triggers sudden 

state increment jump of the degradation process. 

• Degradation rate interactions [19, 56, 57]: the degradation of a component triggers 

degradation rate acceleration of other components. 

From the above discussion, many studies on failure dependence have been proposed to further 

understand the complex systems, with various definitions focusing on various aspects of the 

research issue. To summarize, common classification methods of failure dependence could be 

delineated in Figure 3. 
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Failure dependence

How the effect of failure dependence is 

manifested

How failure mechanisms are correlated

How the failure dependence is triggered

Induced failure

Failure rate interaction

Shock damage interaction

How the degradation of affected 

component is changed

Failure-induced damage

Load sharing

Common-mode deterioration

Degradation state interactions

Degradation rate interactions

Competition, trigger, acceleration, inhibit, 

accumulation (seen in Figure2)

 

Figure 3 Classification of failure dependence 

Subsequently, these terms gradually evolve into the term failure dependence [2, 60-62] to 

encompass the failure and degradation interactions more comprehensively and accurately. This 

shift can be attributed to the fact that the system dependences and internal interactions have 

been gradually spotlighted with the increasing system complexity. Dependence is characterized 

as the connection between two components, wherein change of one component may influence 

the other component. Within the complex multi-component systems, components exhibit 

varying types and degrees of dependences physically, logically, or economically [53]. Among 

them, failure dependence has been acknowledged as a critical category of dependence within 

the system because it directly affects the reliability, operational integrity, and overall system 

performance of the system. 

As the name suggests, failure dependence signifies that the failures of the components are 

dependent. The scope of failure dependence in this context could be extensive. Firstly, 

concerning failure mechanisms, it encompasses failures resulting from shock or damage and 

those arising from loading dependence. Secondly, in terms of failure manifestation, failure 

dependence triggers alterations in the states or the failure rates of the affected components. 

Finally, from the perspective of failure consequences, failure dependence can lead to complete 

failures, as well as degradation or malfunctions that may develop into failures. In practice, the 

failure dependences are commonly not expected to be single among the above types, but rather 

multiple and heterogenous [2], which further complicates the investigation of failure 

dependence. In our research, the failure dependences are generally categorized as follows [2]: 

• Type I failure dependence: The direct damage triggered from the initial failure can 

result in other failures. A component suffered type I failure dependence may fail due to 

the combined impact of its inherent degradation and the shock from failures in other 

components. 

• Type Ⅱ failure dependence: The working load is redistributed in the overall system and 

the load redistribution leads to other failures. A component suffered type Ⅱ failure 

dependence may fail due to the combined impact of its inherent degradation and the 

accelerated degradation caused by failures in other components. 
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To exemplify two categories of failure dependence, consider a system composed of five 

components arranged in a mixed (series and parallel) structure, as depicted in Figure 4. If the 

component 1 fails, it could be considered as triggering component. For the consequence of type 

I failure dependence, a cascading effect exerts on the components 2 and 4, causing degradation 

or failures of components 2 and 4. Despite this, the system continues to operate as components 

3 and 5 remain functional. However, the excessive workload of components 3 and 5 accelerates 

their degradation. Therefore, in this system, there exist type I failure dependence between 

component 1 and components 2 & 4, along with type Ⅱ failure dependence between component 

1 and components 3 & 5. 

 

Figure 4 System structures with two types of failure dependence [31] 

2.1.3 Models of failure dependence 

Over the past decades, the failure dependence in complex systems have been extensively 

investigated and a widely range of models have been developed. The major contributions 

include, but not limited to shock damage model [37-39], Degradation rate interaction (DRI) 

model [19, 56, 57], CASCADE model [8, 9, 14, 24], Probabilistic models [63, 64], Bayesian 

networks (BN) [1, 4, 56, 65], Markov model [2, 13, 40, 66] Monto Carlo simulation [3], and 

Complex network model [67, 68]. These models above have their respective advantages and 

limitation. Comparisons of these models are performed and listed in Table 2. 

Table 2 A comparison of the models for failure dependence 

Model Basics Pros Cons 

Shock 

damage 

model 

When component 1 fails, it causes 

shock damage with distribution 𝐺(𝑥) 

to component 2. The damages are 

accumulated and lead to a failure of 

component 2 when exceeding a failure 

threshold. 

• Flexible for 

systems with 

various 

structures 

• Incapable of 

representing 

other failure 

modes 

• Sensitivity to 

distribution 

assumptions 

Degradation 

rate 

interaction 

(DRI) 

model 

𝑆𝑘
′ = ∆𝑆𝑘  

𝑆𝑘
′ : the degradation rate of component 

k  

∆𝑆𝑘: the amount of degradation during 

∆𝑇 

• Realistic 

consideration 

of failure 

dependence 

• Capable of 

understanding 

the system 

temporally and 

dynamically 

• Inefficient 

for large-

scale 

systems 



2 Theoretical background 

12 

 

Model Basics Pros Cons 

CASCADE 

model 

𝑙𝑗 = 𝑛𝑓(𝑗−1)𝑙𝑓 + 𝑛𝑜(𝑗−1)𝑙𝑜 

 

𝑙𝑗 : loading increments from all the 

failed and overloading components in 

the jth generation 

𝑛𝑓(𝑗−1), 𝑛𝑜(𝑗−1) : number of 

failed/overloading components in the 

generation 𝑗 − 1 

𝑙𝑓 , 𝑙𝑜: load increment from a 

failed/overloading component 

• Dynamically 

demonstrate 

the cascading 

process 

• Explicitly 

consider 

loading 

dependence 

• Require 

remodeling 

for systems 

with various 

structures 

• Incapable of 

representing 

other failure 

modes 

Probabilisti

c models 

𝑅𝑆 = ∑ 𝑃(𝐹𝑖) ∙ 𝑃𝑟 

𝑅𝑆: system reliability 

𝑃(𝐹𝑖): failure probability of 

component 𝑖 

𝑃𝑟: cascading probability 

• Easy for 

understanding 

and application 

• Incapable of 

modeling 

maintenance 

or dynamic 

changes in 

complex 

systems 

• Inefficient 

for large-

scale 

systems  

Bayesian 

networks 

(BN) 

 

The blue line indicates failure 

dependence. 

• Flexible 

• Efficient in 

computation 

• Applicable to 

specific types 

of distributions 

• Difficult in 

acquiring 

sufficient 

data 

• Limitations 

of 

assumptions 

about 

conditional 

relationship 

between 

nodes 
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Model Basics Pros Cons 

Markov 

model 

 

𝜆𝑥𝑖,𝑥𝑗

𝑖 = (1 + 𝐷𝑖,𝑥𝑗
) 𝜆𝑥𝑖

 

𝜆𝑥𝑖,𝑥𝑗

𝑖 : degradation rate of component i 

from state 𝑥𝑖 to state 𝑥𝑖 + 1  
influenced by failure dependence 

between it and component j whose 

state is 𝑥𝑗  

𝐷𝑖,𝑥𝑗
: failure dependence from 

component j on component i when 

component j is in state 𝑥𝑗 

𝜆𝑥𝑖
: degradation rate of component i 

from state 𝑥𝑖 to state 𝑥𝑖 + 1 without 

failure dependence 

• Flexible 

•  Capable of 

integrating 

maintenance 

• Inappropriat

e for large-

scale 

systems 

Monto 

Carlo 

simulation 

 

 

𝑃𝐷𝐹: probability density function 

• Suitable for 

large-scale 

systems 

• Time-

consuming 

• Susceptible 

to statistical 

errors during 

estimation 

Complex 

network 

model The scale-free network (a) exhibits a 

power-law degree distribution, 

whereas the small-world network (b) is 

characterized by average short path 

lengths and high clustering 

coefficients. 

• The topology 

of complex 

networks can 

be regular or 

random 

• Effective 

mitigation 

strategies 

• Incapable of 

representing 

component 

behavior and 

characteristi

cs 

 

𝑃𝐷𝐹 
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2.2 Subsea systems as an example of complex technical system 

2.2.1 Complex system 

The introduction of systems engineering methodologies has increased interest in complex 

technical systems over the last decades. Nevertheless, a clear and unambiguous definition for 

a complex system remains elusive. Researchers across diverse fields endeavor to characterize 

complex system in diverse ways. Table 3 includes various commonly used definitions for the 

purpose of comparison. 

From the definitions listed in Table 3, it is found that complex systems generally consist of 

numerous components and complex interconnections among the components. Such complex 

systems pose challenges in terms of description, comprehension, prediction, design, 

management, and maintenance. Aligned with the goals of this dissertation, the focus is directed 

towards exploring the interconnected characteristics of complex systems, specifically the type 

of failure dependence. Therefore, the complex system in this thesis could be defined as a system 

composed of multiple components with failure dependence. Alternatively, the failure or 

degradation of two or more components within complex systems interacts unexpectedly owing 

to interactions. The discussion will be elaborated upon in the subsequent sections. 

Table 3 Definitions of the complex system 

Authors Definition Year 

Perrow [69] Complex systems are certain technical systems exhibit high 

interactive complexity 

1999, 

2011 

Bar-Yam 

[70] 

A complex system is a new approach of science investigating how 

parts of a system and their interactions give rise to its collective 

behaviors of the system, and how the system forms relationships 

with its environment. 

2002, 

2014 

Magee et al. 

[34] 

A complex system is a system with numerous components and 

interconnections, interactions or interdependencies that are difficult 

to describe, understand, predict, manage, design, and/or change. 

2004 

Richardson 

[71] 

A complex system consists of a large number of non-linearly 

interacting non-decomposable elements. 

2005 

Boccara 

[72] 

A complex system is a system characterized by: (i) comprised of 

many interacting agents; (ii) the manifestation of emergence–a self-

organizing collective behavior that is challenging to predict based 

solely on the understanding of individual agent behavior; (iii) their 

emergent behavior does not have a central controller. 

2010 

Snyder et al. 

[73] 

A complex system is constructed from interconnected parts that as 

a whole exhibit one or more properties that are not inherent in the 

individual parts alone. 

2011 

Ladyman et 

al. [74] 

A complex system is a collection of numerous elements interacting 

in a disordered way, leading to robust organization and memory. 

2012 

Estrada [75] Complex system is defined as the system where there exists a 

bidirectional non-separability between the identity of the whole and 

the identities of the parts. 

2023 

 



2 Theoretical background 

15 

 

2.2.2 Overview of subsea systems 

The subsea system is a typical complex system, consisting of a network of interconnected 

components operating in underwater environments. As technology advancements are 

progressively made, the growing need for deepwater exploration has heightened the complexity 

of subsea system and presented superior challenges for all the subsea operating parties. Figure 

5 shows the layout of a subsea production system, primarily consisting of wells, Christmas tree, 

separators, pipelines, manifolds, compressor, pumps, etc. [76, 77]. 

 

Figure 5 Example of subsea system [78] 

Wells are the primary components for extracting oil and gas from the seabed or injecting the 

water back. Various types of wells are production wells and injection wells. 

Subsea Christmas tree is installed on the wellhead of an oil or gas production well on the 

seabed. Key components of subsea Christmas tree contain pressure- and flow-control valves 

[79], connections for production and injection lines, chokes, tree cap, etc. 

After the extraction of gas and oil, the separator is used to carry out the initial separation of 

well fluids into distinct phases. It is either a two-phase separator that separates gas and liquids 

or a three-phase separator that separates gas, oil, and water [76]. In some cases, a vertical 

scrubber may replace the separator vessel, primarily serving to capture liquid condensate 

during the dehydration process [80]. 

Multiple pipelines are used to transfer either produced or injected flows between the subsea 

completions and the subsea host facilities [79]. Following the separator outlet, several pipelines 

transport the separated substances to onshore or offshore facilities respectively. 

The manifolds serve as distribution hubs from multiple wells, collecting, controlling, 

distributing, and directing the streams of oil and gas to appropriate destinations. 

The compressor and pumps are utilized to transfer various substances. Compressors boost the 

pressure of the extracted gas and ensures that the gas reaches its destination in the topside. Oil 
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pumps convey the separated oil to surface facilities in the topside for oil export, while the water 

containing sand are also transported through pumps for reinjection via the water injection or 

potential release into the sea. 

Together, these devices form an integrated system that plays a crucial role in the offshore 

production industry. 

2.2.3 Subsea pipeline networks 

Subsea pipelines connect a set of the subsea facilities, and such interconnection, in turn, 

determines the pipeline networks and the system operation efficiency [81]. From the structural 

point of view, subsea pipelines may adopt either single wall pipe or pipe-in-pipe [21, 82, 83] 

configurations based on the specific application. From the boundary point of view, subsea 

networks schematically comprise reservoir pipelines (pre- and post-separation), injection 

pipelines, service pipelines (i.e. service for gas lift, chemical injection, monitoring, etc.) as well 

as hydraulic pipelines for actuated devices [79]. The boundary of subsea pipelines could be 

defined from a subsea production facility to a receiving facility, e.g. another subsea production 

facility or a topside production facility [84]. The boundary definition could be illustrated in 

Figure 6. 
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Figure 6 Boundary of the subsea pipelines [84] 

Previous studies on subsea pipeline networks mainly focused on the layout optimization, 

structural instabilities, and safety analysis. The layout design of subsea pipeline networks 

determines the workload of installation and maintenance. Therefore, Wang et al. [85] proposed 

a mathematical model for the layout optimization of the pipelines and manifold. Besides, Hong 
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et al. [81] developed an integrated optimization model for obtaining a minimum total pipeline 

length to optimize the layout design of subsea production system. In terms of structural 

instabilities, Gong et al. [86] conducted the experimental investigation and numerical 

simulation of the scenarios of buckles propagation for pipeline networks under the quasi-static 

steady-state circumstance. Liu et al. [87] compared the effects of various soil layers on dynamic 

response of the subsea pipelines, and established a dynamic finite element model. Azzam and 

Khalifa [88] identified the rupture, crack, fatigue, and burst of subsea oil pipelines and revealed 

their causes via experimental investigation. 

Safety analysis include risk assessment and reliability assessment. Bayesian theory [80, 89, 

90], fault tree analysis (FTA) [91], fuzzy fault tree analysis (FFTA) [77, 92], and risk matrix 

[93] are generally used to characterize the probabilistic pipelines failures along with risk 

assessment or reliability assessment. Moreover, other methodologies are also applied to 

conduct the safety analysis. To assess the leakage risk of subsea pipelines, an integrated risk-

based assessment scheme was developed by Aljaroudi et al. [94] to predict the failures and the 

consequences via limit state approach. Shabani et al. [95] analyzed the reliability of free 

spanning subsea pipeline by Probability of Failure theory, which is calculated by First-Order 

Reliability method and Monte-Carlo sampling. To seek for the optimal production system, 

Silva and Soares [96] proposed a robust optimization model decision-makers to minimize the 

risk of the pipeline system. Given the above works, main failure modes of subsea pipelines 

involve leakages, ruptures, blockage, bursting, corrosion, fracture, fatigue, vibrations, buckling 

etc. In addition, Stefani and carr [97] summarized the most probable failure modes of offshore 

pipelines: mechanical damage, external or internal corrosion, construction defect and 

mechanical or material failure, and natural hazards. 

2.2.4 Subsea transmission system 

The subsea transmission system (compressor and pumps), separation devices, and associated 

electrical power distribution devices together comprise of the subsea processing system. A 

scheme of the subsea processing system is reported in Figure 7. 

Pump 1

Pump 2

Compressor

Topside

Water injection

Transmission system

Well

Release to sea

Seperator system

Mudline

Gas

Water

Oil

Separator

 

Figure 7 Scheme of subsea processing system (separator and transmission part) [33] 
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The subsea processing system is capable of gas-liquid separation, gas compression, pressure 

boosting, desanding, and water reinjection [79, 80]. A subsea separator is utilized for the initial 

separation of well stream into three distinct phases: gas, oil, and water. After the separator 

outlet, three pipelines transport the separated flows to a compressor and two pumps 

respectively, and then distribute the flows to distinct destinations. 

The transmission devices within the subsea processing system, comprising the compressor and 

two pumps, can be regarded as an integrated and interrelated system abbreviated as the subsea 

transmission system. In the subsea processing system, the subsea transmission part is deployed 

mainly for treatment, transportation, and distribution of separated gas/liquid. In this general 

model of the subsea transmission system, a single compressor and two pumps operate in 

parallel. The gas is compressed by either the wet-gas compressor or dry-gas compressor, and 

then conveyed to the topside. In addition to the compressed gas, the separated oil is also 

transported directed topside by the pump. The separated water, on the other hand, is pumped 

either for possible release into the sea or for reinjection via the water injection system. The 

sand is transferred from the separator desander module and then mixed with the injected water 

to be deposited into a reservoir. 

Such a system necessitates a reliable and stable system performance since any interruption 

during the operation stage results in prolonged production downtimes and financial losses. 

According to the OREDA handbook [84], failure modes of the subsea items could be given for 

each severity class, i.e., critical, degraded, incipient, and unknown. Meanwhile, this handbook 

also provides a concise overview of the distinct failure modes for the compressor and pumps, 

along with their corresponding failure rates, maintenance activities, and failure mechanism. 

The failure modes [84] for compressor and pumps in the subsea transmission system involve 

abnormal instrument reading, breakdown, erratic output, external leakage, internal leakage, fail 

to start on demand, fail to stop on demand, high output, low output, minor in-service problems, 

noise, overheating, parameter deviation, plugged/choked, spurious stop, structural deficiency, 

vibration, etc. Their corresponding failure mechanisms [84] could be blockage/plugged, 

breakage, burst, clearance/alignment failure, combined causes, contamination, control failure, 

corrosion, deformation, earth/isolation fault, electrical failure, external influence, faulty 

power/voltage, faulty signal/indication/alarm, instrument failure, leakage, looseness, material 

failure, mechanical failure, no signal/indication/alarm, open circuit, out of adjustment, 

overheating, short circuiting, software failure, sticking, vibration, wear, etc. 

2.2.5 Failure dependence in subsea systems 

In this subsea system, some components are structurally or functionally interconnected with 

each other, whose degradation and failures may influence others. There arises a growing focus 

in research on the failure dependence in subsea systems. Cai et al. [1] examined the CAFs in a 

subsea transportation system, consisting of oil pipelines, transfer stations and some auxiliary 

production facilities. This subsea transportation system is divided into three areas and three 

levels. In their model, the transfer station and its related equipment are integrated into a whole 

node, whose overall degradation influences the degradation of other nodes and causes CAFs. 

Additionally, the failure dependence in subsea Christmas tree is also explored by Shao et al. 

[56]. The subsea Christmas tree is a typical complex system with multiple components, 

multiple parallel relationships, and multiple working states. The failure dependence in various 

parts (including the electronic control system, the hydraulic control system, and the valves) of 

the subsea Christmas tree, is individually modeled to establish the overall performance 

degradation model of the whole system. 
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There also exist failure dependences within the subsea pipelines networks and the subsea 

transmission system mentioned in the last two subsections, as explained below: 

Concerning subsea pipeline networks, loading dependence constitutes the primary form of 

failure dependence. If one of the pipelines is deformed or plugged, causing a reduction in flow, 

the pipeline will be not capable of operating as expected. The overall workloads of the system 

will therefore be redistributed to other pipelines via manifolds and valves. The additional 

workloads imposed on these pipelines expedite their degradation and could result in failures. 

Such failure dependence is identified as type Ⅱ failure dependence. 

In terms of the subsea transmission system, the compressor and pumps should operate at the 

desired power under ideal circumstances to transfer various substances. Nevertheless, these 

devices experience natural degradation, resulting in diverse failure modes, as discussed in the 

previous subsection. Some of these failures not only affect their individual operational 

efficiency but also contribute to the degradation of other devices in the system. For instance, if 

a compressor fails, some gas may be intermingled with liquid and enter the pumps, thus 

accelerating the degradation of pumps. Such failure dependence is influenced by the content of 

impurities present. Another case involves the vibration and overheating of one pump, which 

can directly impact the operation and degradation of another pump nearby. The nature of this 

failure dependence is related with the physical distance and the setup of safety barriers. Such 

failure dependence is identified as Type I failure dependence. 

2.3 System performance analysis 

2.3.1 The scope and basic concepts of system performance analysis 

As the modern world continually advances into a complex and interconnected network of 

systems, enhancing the capacity to design such complex systems and improving the ability to 

sustain system performance becomes crucial. The system performance could be explored from 

three perspectives, as depicted in Figure 8. 

 

Figure 8 The relationship between system performance and related concepts 

Reliability is the most important and widely adopted metric of system performance, which 

demonstrates the inherent system performance by design and manufacture. The system 

reliability, defined as the ability of a system to perform its intended function in a stated context 

over a specified period [25], stands out as the fundamental parameter that most accurately 

reflects the effectiveness, dependability, and stability of a system. Several manufacturers of 

technical systems have faced challenges and even collapsed due to flaws and failures. The key 

factors stimulating to enhanced reliability embraces safety issues, security issues, customer 

requirements, laws and regulations, environmental requirements, maintenance costs, warranty 

costs, market pressure, etc. [25] While reliability has shown improvement across almost all 

types of systems over the years, there is a growing expectation from customers for even higher 

reliability in new systems, especially the complex systems. 
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Maintenance management significantly impact the system performance during operation or 

after failures by planning and execution of maintenance activities. Conversely, the foundation 

of maintenance strategies should be grounded in the system performance. Maintenance 

management refers to the systematic process of planning, organizing, and controlling 

maintenance-related activities to ensure maximum efficiency of the system [98]. High 

maintainability improves the system reliability, but inappropriate maintenance policies or too 

much maintenance activities may also cause negative effects. Frequent maintenance activities, 

for instance, enhance system reliability while generating high costs and wasting resources. In 

addition, failure dependences may further complicate the maintenance policies [2]. Therefore, 

investigation to seek for the optimal maintenance policies is crucial for balancing the system 

performance, asset longevity, resource allocation, and cost efficiency within the complex 

systems. 

Sustainability evaluation further broadens the spatial dimension beyond the system itself to 

incorporate its relationship with surroundings, as well as enhances the examination of the long-

term system performance from a time dimension. Sustainability development aims to meet the 

needs of the present without compromising the ability of future generations to meet their own 

needs [99]. In the engineering context, sustainability refers to the ability of the system to 

maintain a long-term process continuously over time, considering the incorporation of 

environmental, social, and economic aspects [33]. Integrating sustainability into system 

performance analysis provides a comprehensive framework for decision-makers to navigate 

the failure dependence of complex systems. 

2.3.2 Reliability analysis 

Reliability describes the ability of a system to sustain its regular operation in a specific period 

without failures. System reliability analysis can offer important information to guide design, 

operation, and maintenance strategies. To analyze the system reliability, several models are 

proposed, which are basically based on two kinds of definitions: 

• The structural reliability [100] is measured as the probability that the strength is greater 

than the load at a certain time or in a period, as shown in Figure 9. 

𝑅(𝑡) = Pr(𝐿oad(𝑡) ≤ 𝑆trength(𝑡)) 

Load

distribution

Strength

distribution

Failure 

area
 

Figure 9 The load and the strength distributions 
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• The actuarial reliability [25] is measured with the occurrence probability of a failure in 

a period, no explicit modeling on load and strength. 

For the complex systems, the reliability analysis is even more crucial to minimize the failure 

probability and downtime, as well as enhance the safety and improve product design. Over the 

recent years, there has been an uprising interest in the field of reliability analysis for complex 

systems. The related researches could be summarized in Table 4. It is worth noting that the 

investigations outlined in Table 4 may employ their own method to classify the failure 

dependence. However, in this context, the categorization of failure dependence solely relies on 

the methodology presented in this thesis, referring to subsection 2.1.2 for comprehensive 

details. 

Table 4 Reliability analysis of complex systems with failure dependences 

Authors Brief description Methods 
Type of failure 

dependence  

Xu et al. 

[101] 

Explored the reliability model with the failure 

interaction coefficients characterized by the 

Copula function and the Grey model. 

Copula 

function & 

Grey model 

Type I 

Shen et al. 

[18] 

Investigated the reliability of the multi-

component system featuring interacting 

components affected by both a continuous 

degradation process and categorized shocks. 

Markov 

model 

Sun et al. 

[102] 

Developed a general reliability model for the 

system considering dependence among the 

degradation processes as well as the 

dependence between degradation and random 

shocks. 

Copula 

function 

Dong et 

al. [24] 

Developed three CAF models of system 

reliability based on the normalized CASCADE 

model, by introducing the corresponding 

system reliability indices. 

CASCADE 

model 

Type Ⅱ 

Duan et 

al. [5] 

Developed an innovative CAF model to 

investigate how route-choosing behavior 

influence the traffic network reliability. 

Network 

topology 

Zhao et al. 

[103] 

Examined a framework to conduct reliability 

analysis of load-sharing systems comprising 

identical components subject to continuous 

degradation. 

Maximum 

likelihood 

estimates 

(MLEs) 

Nezakati 

et al. 

[104]  

Explored the conditional distribution, 

considering the dependent competing soft and 

hard failures, and formulated a reliability 

function for the load-sharing k-out-of-n 

system. 

MLEs 

Guo et al. 

[105] 

Introduced an analytical model for calculating 

reliability of consecutive k-out-of-n systems 

where the workload and shock load of failed 

components are redistributed. 

Probabilistic 

model 

Che et al. 

[106] 

Proposed an analytical reliability model for the 

load-sharing man-machine system, 

Probabilistic 

model  
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Authors Brief description Methods 
Type of failure 

dependence  

incorporating the human errors with 

degradation processes and random shocks. 

Li et al. 

[107] 

Derived the failure rate function for multi-units 

system with a dominate unit and numerous 

secondary units, as well as established the 

transient reliability of the system. 

Markov 

model 

Not identified 

Kong et 

al. [59] 

Proposed explicit forms of system reliability 

functions by employing factor analysis to 

characterize the degradation interactions. 

Factor 

analysis 

Wang et 

al. [108] 

Proposed a reliability assessment model of 

multi-state reconfiguration pipeline system 

considering failure interaction based on cloud 

inference. 

Markov 

model 

Torrado et 

al. [109] 

Introduced a reliability analysis model of 

hierarchical system structures where the 

dependence exists among the components, as 

well as among the modules of the system 

Copula 

function 

According to Table 4, some researches [5, 24, 59, 101, 103, 104, 107-109] focus on the internal 

degradation of the components within the complex systems, while some other works [18, 24, 

102, 105, 106] incorporate both the internal degradation and external shocks. Despite the 

diverse methodologies, the aforementioned contributions collectively underscore the 

significance of reliability analysis for a wide range of complex systems with failure 

dependence. This motivation has prompted us to examine the system performance by 

integrating a system reliability perspective. 

2.3.3 Maintenance management 

Widely adopted maintenance activities could be categorized into three classes as: Corrective 

Maintenance (CM), Preventive maintenance (PM), and Predictive Maintenance (PdM). 

According to EN 13306 [110], CM denotes tasks carried out as a result of a detected item 

failure or system failure to restore the item to a specified condition; PM is maintenance carried 

out to mitigate degradation and reduce the failure probability of an item; PdM is extended 

Condition-based maintenance (CBM) carried out following a forecast derived from repeated 

analysis or known characteristics and parameters evaluation of the degradation of the item. 

More detailed classification could be described in Figure 10. 

Maintenance

Corrective maintenance Preventive maintenance Predictive maintenance

Statistical-

based

Condition-

based
deferred Immediate

Reliability-

based
Opportunity Design-out Time-based

 

Figure 10 Classification of maintenance types [111] 

For the complex systems, there exist various failure dependences, necessitating the 

maintenance activities to uphold optimal the system performance. Therefore there have been 
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numerous contributions on the maintenance management of complex systems with failure 

dependences, as listed in Table 5. 

Table 5 Maintenance management of complex systems with failure dependences 

Authors Brief description Methods 
Type of failure 

dependence  

Satow and 

Osaki [50] 

Studied a two-parameter maintenance policy 

for a two-component system where failures 

of component 1 follow a Poisson process 

and induces a stochastic amount of damage 

to component 2. 

Stochastic 

model 

Type I 

Lai [51] Developed an optimal periodical 

replacement policy for multi-unit systems 

subject to failure rate interaction by 

incorporating replacement costs and 

minimal repair. 

Stochastic 

model 

Liang  and 

Parlikad 

[112] 

Established a modelling approach for CBM 

optimization for complex industrial assets 

with load sharing interaction and fault 

propagation using a two-tiered approach. 

Markov 

model 

Type Ⅱ 

Rasmekomen 

and Parlikad 

[19] 

Presented a CBM optimization model for 

state-rate interactions components in the 

system using regression. 

Regression 

Zhang et al. 

[113] 

Proposed three maintenance policies for a 

two-component load-sharing system and 

conducted the theoretical propositions to 

examine the optimal average costs. 

Probabilistic 

model 

Oakley et al. 

[114] 

Proposed a CBM policy for systems subject 

to economic and stochastic dependence, 

incorporating a utility/reward function. 

Stochastic 

model 

Zhao et al. 

[115] 

Investigated the reliability and inspection 

optimization model for a k-out-of-n system 

with failure dependence under load sharing 

effect using a coupling search failure 

sequence diagram (FSD) and sampling 

algorithm. 

Coupling 

search FSD 

and 

sampling 

algorithm 

Sun et al. 

[116] 

Developed and extended Split System 

Approach for interactive failures and 

examine the impact of failure interactions on 

the intervals of preventive maintenance 

actions. 

Extended 

Split 

System 

Approach 

Not identified 

Rasmekomen 

and Parlikad 

[117] 

Presented a general approach to optimize the 

maintenance for multi-component systems 

with degradation interactions using General 

Path Degradation Modelling and regression 

techniques. 

Regression 

Gao and Ge 

[118] 

Presented periodical maintenance cost 

models for a two-state series system and a 

Probabilistic 

model 



2 Theoretical background 

24 

 

Authors Brief description Methods 
Type of failure 

dependence  

three-state series system with failure 

interactions. 

Zhang et al. 

[119] 

Developed two different shock models and 

three maintenance policies for a two-

component system with failure interactions. 

Virtual age 

method 

Zhang et al. 

[61] 

Proposed a CBM model for two-unit system 

with failure dependence under imperfect 

inspection. 

Stochastic 

model 

Rezaei et al. 

[120] 

Established a novel formulation of the linear 

consecutive k-out-of-n: F system model 

subject to failure dependence and optimized 

maintenance intervals. 

Probabilistic 

model 

Zhao et al. 

[2] 

Developed a comprehensive framework to 

evaluate heterogeneous failure dependences 

and a CBM model for maintenance 

optimization. 

Markov 

model 

Both 

According to Table 5, CBM stands out as one of the most extensively employed maintenance 

strategies Among all these maintenance activities, CBM is considered as a proactive approach 

preceding system failure and shows more cost-effective, compared to other traditional 

maintenance solutions [121]. Condition-based maintenance [110] is defined as preventive 

maintenance including assessment of physical conditions and possible ensuing maintenance 

actions. It can identify the current degradation and predict behavior patterns, and thereby 

determine optimal timing and approach for maintenance to fulfill the system performance while 

minimizing cost. Key steps of CBM are outlined as following and depicted in Figure 11. 

1. Data acquisition, to collect data related to system. 

2. Data processing, including data selection (data examination, data cleaning) and data analysis. 

3. Maintenance decision making, to provide the optimal solution for system maintenance. 

 

Figure 11 Three steps in CBM [122] 

The studies mentioned above provide inspirations to examine the failure dependence when 

exploring reliability analysis and optimizing maintenance strategies. However, to the best of 

our knowledge, there are few papers that proposed the model to mitigate the failure dependence 

even though the components decoupling could show notable efficiency in preventing 

unexpected CAFs. 

2.3.4 Sustainability evaluation 

In 1972, Meadows et al. [123] claims that “it is possible to establish a condition of ecological 

and economic stability that is sustainable far into the future.”, which could be regarded as the 

mark of the appearance of the term sustainability [124]. Later, the World Commission on 

Environment and Development (WCED) [99] clarified it as development that meets the needs 

of the present without compromising the ability of future generations to meet their own needs. 

This definition has been widely accepted in a broad point of view. In the usage across various 
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fields, the sustainability centers around diverse aspects. Nevertheless, when referring to 

sustainability evaluation, three main pillars are generally examined involving environmental, 

economic, and social aspects [124]. Furthermore, the sustainability could be represented as the 

synergy among three pillars, such as social economic aspects (e.g., business ethics, fair trade), 

social environmental aspects (e.g., conversation policies, environmental justice), 

environmental economic aspects (e.g., energy efficiency, renewable fuels) [125]. 

In the engineering context, three pillars of sustainability are holistic enough to basically 

encompass the requirements needs of the system, as presented in Figure 12. Explanations for 

three pillars are listed below. 

• Environmental sustainability: the ability to conduct activities that can protect and 

preserve the natural environment over time, ensuring the fulfillment of current needs 

without compromising the availability of resources for future generations. 

• Economic sustainability: the ability to conduct activities with the goal of promoting 

long-term economic well-being and achieving a balance between economic growth, 

resource efficiency, social equity, and financial stability. 

• Social sustainability: the ability to conduct activities that prioritize the well-being of 

individuals and communities, aiming at promoting equity, upholding human rights, 

ensuring access to education and health care, as well as fostering decent work. 

Sustainability
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Figure 12 Three pillars of the sustainability 

Considerable contributions have been made to models for estimating sustainability and 

strategies for enhancement [126-128]. In terms of specific research questions, some studies 

consider the sustainability evaluation not only during system operation, but also associated 

with the maintenance interventions. Nezami et. al. [129] presented a fuzzy framework that 

incorporates an effective sustainability program to provide appropriate decision-makings for 

maintenance strategies among a set of maintenance alternatives. Zheng et. al. [130] presented 

a comprehensive four-step structure for pavement life-cycle sustainability assessment (LCSA), 

including the maintenance phase. On the basis of above studies, some works focus on the 

assessment of the impact of maintenance activities themselves on the asset sustainability. 

Ghaleb et. al. [131] proposed an approach for quantifying and measuring the impact of 

maintenance activities on overall sustainability, which shows suitability being implemented in 

a sustainability dashboard (user interface). Saihi et. al. [132] established a fourth-order 

Hierarchical Component Model (HCM) to evaluate the sustainable performance of 
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maintenance practices, and conduct a model validation through a survey of the Oil & Gas 

industry. 

The trend of industrial engineering gradually expanding from land to ocean has also inspired 

more and more investigation [133-137] on the sustainability of the marine environments. 

Building on the frontiers of ocean science, Virto et al. [133] examined the framework for the 

most appropriate Sustainable Development Goal (SDG) 14 indicators and proposed the 

challenges and opportunities for future research. Kappenthuler et al. [134] developed a material 

selection framework to analyze the long-term potential of five common metal types in marine 

construction and provided the evaluation of their durability, economics, sustainability and 

future availability. Qiu et al. [135] developed a three-dimensional (3D) nonlinear finite element 

(FE) framework to systematically examine the time-dependent seismic resilience and 

sustainability of bridges under aggressive marine environments. 

The above studies evaluated the sustainability of the system from different aspects, but they do 

not investigate the phenomenon of failure dependence even though the complex systems are 

more vulnerable and riskier. Particularly, for some complex systems, the coupling impact of 

components degradation, failure dependences and the maintenance activities on sustainability 

is complicated, and how to construct a comprehensive model to evaluate the overall 

sustainability of the system is still a challenging issue. 

 

2.4 Summary 

In summary, this chapter clarifies the basic concepts, classifications, and concluded various 

models of failure dependences in complex systems. Furthermore, an overview is provided on 

the configuration and functions of subsea systems, exemplifying as a typical complex system. 

Key parts prone to failure dependence in subsea systems, including pipeline networks and 

subsea transmission systems, are also outlined. Subsequently, an exploration is conducted into 

research scrutinizing the influence of failure dependence on the system performance of 

complex systems, encompassing aspects such as reliability, maintenance management, 

sustainability, and more, etc. These contributions are inspiring both in quantitative and 

qualitative analysis. 

However, the research in failure dependence in the complex systems is still encountering some 

limitations which is worthy investigating. Detailed explanations about the research limitations 

and gaps are provided in subsection 3.1, and inspirations from the current contributions for our 

research objectives are presented in subsection 3.2. To solve the research problems, section 4 

offered the explanation of solution tools regarding the research gaps. 
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Chapter 3 

 

3 Research questions and objectives  

3.1 Research questions 

The examination of theoretical background in Chapter 2 underscores the significance of failure 

dependence in complex systems, which has received increasing attention in recent years. 

Nevertheless, there remains certain research questions concerning the failure dependence 

issues and its influence on the system performance, which are outlined in this section. 

3.1.1 Failure dependence 

Research gap 1: Comprehension of failure dependence 

Numerous researchers have delved into the examination of CAF and failure dependence. As 

far as CAF and failure dependence are concerned, they are a pair of closely interrelated 

concepts. CAF emerges as a consequence of failure dependence. Failure dependence serves as 

a crucial prerequisite for the manifestation of CAF and constitutes the fundamental source 

influencing system performance, warranting primary attention. However, even though many 

researchers have studied failure dependence, their investigations generally concentrate on a 

specific aspect, presenting a somewhat one-sided perspective. Currently, there is no unified 

concept for failure dependence. In fact, the concept for failure dependence is quite broad, 

encompassing diverse failure causes, mechanisms, and characters, which stimulates a thorough 

definition. 

Moreover, within a complex system, various failure dependence impacts system performance 

in varying manners. For example, a complete failure due to type I failure dependence may 

immediately lead to system shutdown, while some accelerated degradation due to type Ⅱ failure 

dependence may only result in reduced system performance. To better understand the influence 

of failure dependence on the system performance, it is required to identify the way that failure 

dependence poses an effect, and to model the different types of failure dependence within the 

system. 

To summarize, whether form a conceptual perspective or from a practical application 

perspective, it is imperative to furnish comprehensive definition and accurate classifications 

for failure dependence. This poses several research questions: 

Q1: How to define and classify the failure dependence in complex systems? 

Q2: What are the related concepts of failure dependence? 

3.1.2 System performance 

In general, the system performance can be reflected through reliability analysis, can be affected 

by maintenance management strategies, and can further include its sustainable relationship 

with the surroundings. Identifying the influencing factors of the failure dependence and 



3 Research questions and objectives 

28 

 

exploring how they manifest their influence on system performance remains a challenge. The 

following detailed illustrations provide insights into this issue from three perspectives. 

Research gap 2: Explorations into reliability analysis 

The contributions outlined in subsection 2.3.2 collectively emphasize the importance of 

reliability analysis in a diverse array of complex systems characterized by failure dependence. 

Several models can be found in these works to explore the reliability of the complex systems. 

Certain methods have already reached a relatively mature stage, capable of simulating various 

states of components and diverse levels of failure dependences. Nonetheless, the CASCADE 

model, a commonly employed classic model for analyzing type Ⅱ failure dependence in loading 

dependent systems, faces limitations in effectively simulating components in various states in 

the cascading process. An overlooked aspect is that overloading components may also 

accelerate the failure propagations in a manner similar to failed components. In practice, the 

failure dependence induced by overloading components is thought to influence state of other 

components. The reliability of the component and the system will be overestimated if such 

influence is neglected. Therefore, the CASCADE model is needed to be extended to analyze 

the performance of loading dependent system subjected to type Ⅱ failure dependence affected 

by overloads. 

The relevant research questions related to reliability analysis issues can be summarized as 

follows: 

Q1: How to model the CAFs within loading dependent systems subject to type Ⅱ failure 

dependence when considering overloads? 

Q2: What factors related to failure dependence influence system reliability? 

Research gap 3: Optimizations of maintenance 

The studies mentioned in subsection 2.3.3 offer insights into investigating failure dependence 

while delving into optimizing maintenance strategies. It is found that the maintenance 

management for the complex systems are examined for both types of failure dependence. 

However, the majority of current approaches focus on either a two-component system or an n 

component system with identical failure dependence, deviating from the complexity and 

heterogeneity present in practical multi-component systems. Heterogeneous failure 

dependences occur in the situation where at least two types of non-identical failure dependence 

exist in a multi-component system. Consequently, there is a need for a general framework that 

can capture the diverse and heterogeneous failure dependences in the context of maintenance 

optimization. 

On the other side, although there is an acknowledgment of the necessity to investigate failure 

dependence, the field lacks research that addresses maintenance measures aimed at mitigating 

failure dependence. As far as we are aware, there are scarce publications proposing models to 

mitigate the failure dependence among components despite the potential notable efficiency in 

preventing unexpected CAFs. Hence, there is also a necessity for proposing maintenance 

activities to mitigate the failure dependence and decouple the dependent components. 

To summarize, the relevant questions regarding maintenance management include: 

Q1: How to develop a maintenance model for complex systems with heterogeneous failure 

dependences? 

Q2: How do the failure dependences influence the system availability and maintenance costs? 
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Q3: What maintenance activities could be adopted to mitigate the failure dependence? 

Q4: What suggestions can be derived concerning maintenance management in complex 

systems with failure dependence? 

Research gap 4: Research on sustainability evaluation 

Sustainability assessment is an effective tool for understanding the long-term performance of 

a system and its long-term relationship with the surrounding environment and society. The 

studies presented in subsection 2.3.4 assessed the sustainability of varying systems from 

different perspectives. However, nearly none of them explored the phenomenon of failure 

dependence, despite the heightened risk and potential challenges to sustainability associated 

with complex systems subject to failure dependence. Consequently, there is a need to develop 

a sustainability evaluation framework tailored for complex systems with failure dependence. 

Furthermore, there is a notable absence of research examining system sustainability while 

considering the coupling impacts of component degradation, failure dependencies, and 

maintenance activities. From a respective standpoint, it is undeniable that research concerning 

component degradation and failure dependence is inherently complex. Regarding maintenance 

activities, their complexity arises from their potential to influence sustainability directly or 

indirectly. For instance, maintenance activities impact the sustainability in two ways: indirectly 

improve the sustainability by enhancing system performance, or directly cause sustainability 

changes by carrying out activities. Consequently, constructing a comprehensive model to 

evaluate the overall sustainability of the system, considering the coupling impact of component 

degradation, failure dependencies, and maintenance activities, poses a more challenging issue. 

Hence, there is a desire for investigation on sustainability issues in complex systems with 

failure dependence. Potential research questions could be summarized as follows: 

Q1: How to construct a sustainability evaluation framework for a complex system with failure 

dependence? 

Q2: How to incorporate the effect of degradation process and maintenances on the 

sustainability of the complex system? 

Q3: What suggestions can be derived concerning sustainability issues of complex systems with 

failure dependence? 

3.2 Research objectives 

The overall objective of this Ph.D. thesis is to develop models for analyzing the system 

performance of complex systems with failure dependence. Driven by the overall objectives and 

the summarized research gaps in subsection 3.1, the specific research objectives are proposed 

as below. 

Research question 1 concerning failure dependence identifies a research gap aligned with a 

specific research objective. 

• RO1: Elucidate the definitions of terminologies related to failure dependence and 

clarify delimitations for various types of failure dependence. 

Research question 2 regarding system performance reveals three distinct research gaps, each 

corresponding to a separate research objective. 
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• RO2: Develop a system reliability analysis model for complex systems with multi-state 

components considering overloads. 

• RO3: Establish a general maintenance model for complex systems subject to failure 

dependences. 

• RO4: Propose an integrated framework to conduct sustainability evaluation for 

complex systems subject to failure dependence. 

The relationships between two research questions, four research gaps, and four research 

objectives are presented in Figure 13. 

Research question 1: Failure dependence

Research gap 1

Failure dependence
RO1

Research question 2: System performance

Research gap 2

Reliability analysis

Research gap 3

Maintenance management

Research gap 4

Sustainability evaluation

RO2

RO3

RO4

 

Figure 13 Relationships between research questions, research gaps, and research objectives 
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Chapter 4 

 

4 Research approaches 

4.1 Research methodology 

Research is defined as the search for knowledge through objective and systematic method of 

finding solution to a problem [138]. Research consists of various academic activities and could 

be classified into a number of broad groupings. This section documents the research during the 

Ph.D. project from the perspective of methodologies. 

Methodology is the philosophical evaluation of how knowledge and inquiry are framed within 

an academic discipline or school of thought [139]. Research methodology is a way to 

systematically solve the research problem [138], characterized as a structured and scientific 

approach to collect, analyze, and interpret quantitative or qualitative data to answer research 

questions or test hypotheses. According to studies by Kothari [138] and Zhang [140], the basic 

classifications of research methodology are summarized in Figure 14. 

Research methodology

1

2

Descriptive research

Analytical research

3

Quantitative research

Qualitative research

Conceptual research

 Empirical research

Mixed-method research

 

Figure 14 Classification of research methodology 

Detailed explanations are as follows: 

1. Descriptive research and Analytical research. Descriptive research includes different 

kinds of s surveys and fact-based enquiries, aiming at describing the current state of the 

affairs/components/systems. On the contrary, the analytical research requires the 

researchers to perform analysis based on the existing facts or information. 

This thesis is a mixture of descriptive and analytical research. For example, Article Ⅰ 

describes the main contributions of some literatures. Article Ⅳ and Article Ⅴ introduce 

the complex subsea transmission system and identify different types of failure 

dependence. The above works are completed by descriptive research. In addition, all 
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the articles are analytical. Based on the contributions of literatures, research questions 

and potential challenges are extracted and proposed in Article Ⅰ. The process of 

developing models and case studies in other articles are all analytical. 

2. Quantitative research, Qualitative research, and Mixed-method research. Quantitative 

research is used to represent phenomena that can be expressed in terms of quantity or 

amount measurement. Qualitative research is concerned with phenomenon relating to 

or involving quality, aiming at underlying motives and desires. Mixed-method research 

uses the characteristics of both quantitative and qualitative research methodologies in 

the same study. 

In this thesis, Article Ⅰ reviews and analyzes the literatures qualitatively. Based upon 

the qualitative results, the models and analyses are carried out in a quantitative manner. 

For instance, Article Ⅱ and Article Ⅲ use the probabilistic method to develop a multi-

state CASCADE model and a reliability analysis mode; Article Ⅳ calculates the system 

availability and maintenance cost by Markov mode; Article Ⅴ qualifies the impact of 

component degradation, failure dependence, and maintenance activities on the overall 

sustainability by dynamic Bayesian network (DBN). 

3. Conceptual research and Empirical research. Conceptual research is generally 

conducted to develop new concepts when the existing ones require to be reinterpreted. 

Empirical research is data-based research, which is generally conducted based on 

experience or observation, often without due regard to theories. 

This thesis is mainly conceptual, with various concepts within the area of complex 

systems and reliability engineering in five articles. Aside from conceptual research, the 

experience of experts guides qualification of failure dependence in Article Ⅳ and 

contributes to the evaluation of sustainability in Article Ⅴ. These research activities 

could be classified as empirical research. 

This thesis starts from providing an overview of the current related contributions, followed by 

several analysis models to find solutions for the research questions. In general, there is a 

mixture of several types of research methodologies mentioned above in this thesis, which are 

illustrated in Figure 15. 
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 Literature review
• Complex systems

• CAFs

• Failure dependence

• Bibliometric method

• Topic analysis method

 Model development

• Multi-state CASCADE model

• Explore the probability distribution

• Identify the influencing factors

• Probabilistic model

• Matlab simulation

 Model development
• Reliability analysis model

• Identify the influencing factors
• Probabilistic model

• Matlab simulation

 Model development

• Failure dependence evaluation

• Maintenance optimization

• Application in case study

• Weighted scoring

• Markov model

• Matlab simulation

 Model development

• Sustainability evaluation

• Maintenance optimization

• Application in case study

• DBN

• Weighted scoring

Phases Methods Contents Methodologies

• Descriptive & Analytical research

• Qualitative research

• Conceptual research 

• Analytical research

• Quantitative research

• Conceptual research

• Analytical research

• Quantitative research

• Conceptual research

• Descriptive & Analytical research

• Quantitative research

• Conceptual & Empirical research

• Descriptive & Analytical research

• Quantitative research

• Conceptual & Empirical research

 

Figure 15 Overview of research methodologies in articles enclosed in this thesis 

4.2 Overall process of work 

The process of the Ph.D. project can be divided into four main phases, i.e., (1) foundation of 

Ph.D.; (2) literature review; (3) model development; and (4) finalize the thesis and defense. 

The respective results and specific research activities are depicted in Figure 16. 

 

Figure 16 Overall process of the Ph.D. project 

(1) Foundation of Ph.D. project. By taking fundamental PhD courses, a thorough insight 

on the theoretical foundation of reliability analysis and maintenance optimization is 

obtained. Acknowledged reliability analysis models and maintenance algorithms lay a 

solid theoretical foundation for further investigation. During this period, collaborative 

activities such as seminars and academic discussions among PhD candidates within the 

RAMS group played a crucial role in ideas inspiration and misunderstandings 

correction. 
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(2) Literature review. To fully understand the results of previous studies and 

comprehensively grasp the basic background related to the topic, literature review is 

conducted in the beginning. The literature review has been published as a conference 

paper. In this literature review, several key concepts in this field are clarified, and 

investigations of CBM implementation in the complex systems with dependences are 

reviewed. Based on the review, several research gaps and potential objectives are 

identified. 

(3) Model development. One key part of this Ph.D. project is developing approaches and 

models to achieve the research objectives. To investigate the system performance of 

complex systems with failure dependence, reliability analysis model, maintenance 

optimization model and sustainability evaluation model are proposed. These models are 

constructed with the help and instructions of supervisors. Furthermore, the 

establishment procedures, application verification, and the significance of these models 

have been documented in articles that underwent expert review. These models 

addressing research questions provide the basis for the publication of research articles. 

(4) Thesis and defense. The last phase of Ph.D. project is to finalize the thesis and prepare 

for doctoral defense. This is a process of highlighting the motivation, research 

questions, and research objectives of the Ph.D. project. Besides, it is also a process to 

reevaluate how the research results in Part Ⅱ are interconnected by summarizing them 

through this thesis. 

4.3 Quality assurance 

In general, the research in the thesis underwent initial scrutiny through critical reviews from 

supervisors, co-authors, and colleagues within the relevant research domain. 

Quality assurance was further ensured by the publications of the research in international 

journals. These publications underwent thorough peer review processes, with subsequent 

revisions based on valuable feedback and comments from reviewers. 

Additionally, some research works were presented at seminars and international conferences, 

after evaluation for acceptance. Thus, the thesis benefited from insights gained in 

brainstorming seminars, which brought together individuals with diverse expertise in fields 

such as reliability engineering and maintenance optimization, contributing valuable input to 

the research results. 
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5 Main results and contributions 

5.1  Overview 

This chapter presents the summary of main results of the Ph.D. thesis and contributions that 

are structured in the form of five articles. Among these articles, four have been published in 

relevant international journals, and another one has been published in the peer-reviewed 

international conference proceedings. These articles are organized to achieve the research 

objectives identified in Section 3. Their corresponding main topics are listed in Table 6. 

• Regarding Research Objective 1, theoretical basis regarding system dependence, and 

classification of failure dependence are clarified. Specifically, Article Ⅰ is a literature 

review that serves as basis for fundamental understanding of complex systems and 

system dependences; Article Ⅱ categorized the CAFs into two types; and Article Ⅳ 

further explains the definitions and classifications of failure dependence. 

• Concerning Research Objective 2, reliability analysis model of complex loading 

dependent system considering overloads is developed. In detail, Article Ⅱ develops a 

multi-state CASCADE model to examine the probability distributions of CAFs, and 

Article Ⅲ further explored the reliability analysis model based on the proposed model. 

• With respect to Research Objective 3, Article Ⅳ proposed the CBM models of complex 

systems subject to heterogeneous failure dependences to optimize the maintenance 

policies; Article Ⅴ discussed the effects of maintenances on the overall sustainability. 

• For Research Objective 4, Article Ⅴ constructed an integrated sustainability evaluation 

framework of complex systems considering failure dependence. 

Table 6 Overview of the contributions and relevant Research Objectives 

Research Objective Main topic  Article 

RO1 Theoretical basis regarding system dependence, and 

classification of failure dependence 

Article Ⅰ 

Article Ⅱ 

Article Ⅳ 

RO2 Reliability analysis of complex systems considering 

overloads 

Article Ⅱ 

Article Ⅲ 

RO3 Maintenance management of complex systems subject 

to failure dependences 

Article Ⅳ 

Article Ⅴ 

RO4 Sustainability evaluation of complex systems 

considering failure dependence 

Article Ⅴ 

Further elaborations on the contributions to each Research Objective are presented in the 

subsequent sections. The complete versions of articles are incorporated in Part Ⅱ. 
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5.2 Main results 

5.2.1 Article Ⅰ 

Topic 

Condition-based Maintenance for Systems with Dependencies: Related Concepts, Challenges 

and Opportunities 

Purpose and novelty 

Many critical systems with dependencies do not collapse immediately due to single-point 

failures but are more vulnerable to the cascading effects of these failures. Condition-based 

maintenance has been found useful not only in improving availability of technical system but 

also in reducing the risks related to unexpected breakdowns, including those events related to 

dependencies, such as cascading failures. The serious disasters created by such failures and 

increased requirements for CBM policy due to dependencies urges a comprehensive study on 

current research and future challenges. 

The main purpose of Article Ⅰ is to review the literatures systematically related with the CBM 

implementations in the systems with dependencies. The novelty of the work lies in its 

examination of CBM implementation from three perspectives: the procedure of CBM, the types 

of system dependencies, and the expected benefits of CBM. Additionally, this work proposed 

potential research directions for the future implementation of CBM. 

Methodology 

The Bibliometric method is used in conjunction with Topic Analysis method to examine the 

CBM implementations in the systems with dependencies. Concerning the Bibliometric method, 

relevant papers are selected and analyzed via the VOSviewer program, to identify co-

occurrences of keywords of CBM. As for Topic analysis method, literatures are organized 

based on topics to explain various issues related with CBM, including the CBM procedure, the 

definition and exploration of various system dependencies, and the expected benefits of CBM. 

Results and discussion 

Regarding the related concepts of CBM, a co-occurrences network is visualized based on 

related works in the last 30 years to present the occurrence frequency of keywords and their 

relationships, as shown in Figure 17. Followed by the definitions of key concepts according to 

the standard EN 13306. 

 

Figure 17 Co-occurrence of related concepts in CBM [31] 
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Besides, the CBM related papers literatures are organized based on three topics. 

• Summarized according to the process of its implementation procedure: 1. Data 

acquisition; 2. Data processing; 3. Maintenance decision making. 

• Reviewed according to the characteristics of systems subject to three types of 

dependencies: economic dependency, structural dependency, and evolution 

dependency. 

• Examined according to expected benefits of CBM: improving productivity, cost 

minimization, and acceptable level of risk. 

Drawing upon the research above, some recommendations are highlighted for CBM 

investigation. System dependencies and cascading failures triggered by that are supposed to be 

addressed in future. Also, a new, more comprehensive maintenance policy, Risk-informed 

Condition-based Maintenance, is introduced and requires further research. 

5.2.2 Article Ⅱ 

Topic 

Cascading failure analysis of multistate loading dependent systems with application in an 

overloading piping network  

Purpose and novelty 

Many production and safeguard systems consisting of multiple components are susceptible to 

the cascading failures, where one possibility is that the failure of a component leads to more 

workloads of other components. Such loading dependence can result in failure propagation, 

make the systems more vulnerable and decision-makings for maintenances more difficult. 

The main purpose of Article Ⅱ is to explore the cascading process and analyze the performance 

of loading dependent system subjected to CAFs affected by overloading components. The 

novelties of the work are 1) an extended multi-state CASCADE model is developed 

considering overloading component; 2) the situation that components degrade gradually are 

considered. 

Methodology 

To achieve the goal of investigating the cascading process in loading dependent systems with 

CAFs where the cascading process could be affected by overloading components, we 

developed a probabilistic model, multi-state CASCADE model, with the extended quasi-

multinomial distribution. The mechanism for a cascading process to proceed is shown in Figure 

18. An initial outside disturbance to all components triggers the initial event followed by 

cascading process. The algorithm for the multi-state CASCADE model refers to the flowchart 

of Figure 19, which also demonstrates how the cascading process proceeds until it stops. When 

the cascading process stops, there are three types of scenarios, denoted as stop scenarios. 
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Figure 18 Failure cascading process and stop scenarios of multi-state CASCADE model [14] 

 

 

Figure 19 Algorithm of multi-state CASCADE Model [14] 

Results and discussion 

Firstly, a practical case in piping network is investigated to illustrate the analysis procedure, 

and to compare the effectiveness of the proposed model with those of the existing methods. 

The results of the practical case indicate that the performance of components and the system 

would be overestimated if the components degradation and the influence of overloading 

components are ignored. 

In addition, numerical analyses are conducted to evaluate the factors influencing the probability 

distributions of total number of failed- and overloading components, as well as the occurrence 

frequencies of different stop scenarios. The numerical results are shown in Figure 20. 

According to Figure 20, the initial disturbance and loading increments affects the probability 

distributions. More failures may occur as the initial disturbance and loading increments 

increase, but the maximum values of probability distributions decrease. A novel finding is that 

the overloading threshold affects the probability distribution range of number of overloading 

components rather not the failed components. 
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In conclusion, the proposed model can provide a more accurate characterization of the 

cascading process of the multistate loading dependent systems, and thus to help maintenance 

crew and managers to make more reasonable maintenance policies. 

   
(a) Initial disturbance (b) Overloading threshold 

   
(c) Additional load from a failed 

component 

(d) Additional load from an overloading 

component 

Figure 20 Integration of probability distributions with different influencing factors [14] 

5.2.3 Article Ⅲ 

Topic 

Reliability analysis of a loading dependent system with cascading failures considering 

overloads 

Purpose and novelty 

In many production facilities, multiple components have to work together to share the overall 

workload on the entire system, leading to loading dependence and higher vulnerability to 

cascading failures. Additionally, overloading of one component can expedite the failures of 

others, exemplifying another form of loading dependence. 

This article primarily aims at extending the multi-state CASCADE model and conducting 

system reliability analysis for loading dependent systems considering overloads based on the 

preceding work. The novelties of the work are 1) a system reliability analysis model is 

developed considering overloading component and components degradation; 2) the reliability 

of k-out-of-n systems are discussed. 

Methodology 

This article builds upon the previous work in Article Ⅱ, characterizing the duration of each 

generation in the cascading process, along with the cumulative time of the whole cascading 

process by embedding a time variable to the multi-state CASCADE model. The new algorithm 
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considering cascading time is shown in Figure 21. In step 3 of this algorithm, record the 

cascading time for every generation. Assume that the interval time of each generation in the 

cascading process follows an exponential distribution. 

 

Figure 21 Algorithm of reliability analysis model based on multi-state CASCADE Model 

The above algorithm could identify one stop scenario of the cascading process. Based on the 

multi-state CASCADE model, the probability of every stop scenario where the system fails in 

the jth generation could be obtained. Since the cascading process can evolve in various ways, 

there are several scenarios where the cascading process stops and the system fails in the jth 

generation. The overall system failure probability is accomplished by summing the 

probabilities of all the scenarios resulting in system failure in the jth generation. 

Results and discussion 

A new reliability index for evaluating the system reliability of a loading dependent system 

considering overloading state is proposed based on the multi-state CASCADE model. The 

numerical example is conducted to examine the system reliability model and demonstrate the 

impacts of different factors on the cascading process and the system reliability: Alterations in 

the initial disturbance, the total number of components, the cascading time distribution, and the 

parameter k in a k-out-of-n system all significantly influence both the system reliability and the 

duration of the cascading process. On the other hand, the variation of the loading increments 

only exhibits an influence on the system reliability when the cascading process approaches its 

end due to influence accumulation. Notably, neither the system reliability nor the duration of 

the cascading process remains unaffected by the overloading thresholds of the components.  

These findings can help maintenance crews and managers make more informed decisions in 

terms of system design and operational management when considering cascade time and 

reliability. 
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5.2.4 Article Ⅳ 

Topic 

Condition-based maintenance for a multi-component system subject to heterogeneous failure 

dependences 

Purpose and novelty 

Many industrial facilities consisting of multiple components are prone to failure interactions 

and degradation interactions. In such systems, these interactions are frequently characterized 

by failure dependences that may accelerate the degradation of components. Due to system 

layout and functional interactions, not all components have the same failure dependence. In the 

general context of complex failure dependences in dependent multi-component systems, 

heterogeneous failure dependences further complicate the maintenance activities during 

operation. 

Article Ⅳ aims to quantify the failure dependences and construct a general maintenance 

optimization framework with heterogeneous failure dependences. The novelties of this article 

are 1) a new framework to evaluate heterogeneous failure dependences is developed; 2) a 

general CBM model for systems with heterogeneous failure dependences is constructed. 

Methodology 

Figure 22 illustrates the main steps to develop the maintenance model considering 

heterogeneous failure dependence. In the present study, an independent general degradation 

model with a general degradation path is developed firstly to reflect the inherent independent 

degradation of components in a dependent system. This model serves as the foundation of the 

degradation model for dependent multi-component system (DMDM) when failure 

dependences are considered. When the degradation rates of the component are affected by other 

degrading or failed components, there exists failure dependence and should be evaluated to 

update the affected degradation rates. Based on the independent general degradation model and 

the failure dependence model, the DMDM is obtained. The degradation models and 

maintenance model are analyzed and integrated through Markov process. After integrating the 

degradation models with the maintenance model, the system availability is maximized, and the 

maintenance cost is minimized to seek for the optimal maintenance strategy. 

Independent general degradation 

model

Dependent multi-component 

degradation model

Failure dependence 

model

Condition-based maintenance 

model

Maximize the system availability and 

minimize the maintenance cost

Markov processes

 

Figure 22 Framework of maintenance management considering failure dependence 
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Results and discussion 

A case study case considering a parallel subsea transmission system is applied to illustrate 

the effects of heterogeneous failure dependences on the system availability and maintenance 

cost. Figure 23 shows the numerical results of the practical case that the availability of the 

system would be overestimated, and the annual inspections, maintenances and repairs (IMRs) 

costs would be underestimated if we neglect the influence of failure dependences. The work 

provides some references for the decision makers when the maintenance strategies should be 

implemented for a complex multi-component system with heterogeneous failure dependences. 

  
(a) With strong dependence (b) With normal dependence 

  
(c) With weak dependence (d) Without dependence 

Figure 23 Availability and average life-time cost of the system with various dependence [2] 

Notations: 𝐴𝑆 -- The availability of the system; 𝐶𝑆 -- The average life-time cost 

5.2.5 Article Ⅴ 

Topic 

Sustainability evaluation of multi-component subsea systems considering failure dependence 

and maintenance activities 

Purpose and novelty 

Technical systems operating in the subsea context are often with multiple components under 

complex failure dependences. Due to the hostile subsea environments, it is challenging to 

perform efficient maintenance for such systems to ensure their operational reliability while 

keeping the maintenance activities sustainably. A general approach has not been established 
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yet for assessing impacts of failure dependences, effectiveness of maintenance activities, and 

sustainability. 

The purpose of Article V is to propose a comprehensive framework to evaluate the system 

sustainability with consideration of failure dependence and maintenance activities. The 

novelties of this article are 1) models the maintenance activity that can decouple dependent 

components and mitigate failure dependence; 2) develops a comprehensive framework that 

enables engineers to conduct a thorough assessment of the overall sustainability of a complex 

system, considering the failure dependence and maintenances. 

Methodology 

Figure 24 illustrates the methodology to evaluate the system sustainability incorporating the 

failure dependences and maintenance activities. This integrated framework comprises three 

sub-models. Within this framework, the degradation model involves estimating the state of 

components and failure dependences among components using historical data and expert 

assessments. Furthermore, drawing from expert experience and maintenance records, it is 

possible to determine the traditional maintenance strategies and the formulation of a 

maintenance model. Finally, a universal sustainability model is employed to assess alterations 

in sustainability throughout the system operation and maintenances, enabling optimization of 

the decision-making scheme. Given that the research issue involves dynamics of a system, the 

DBN is selected to understand and handle the probabilistic events in complex systems. 

Degradation model

Componnet degradation Failure dependence

Maintenance model

Maintenance policies

Expert experience/

Maintenance record

Sustainability evaluation 

model

Optimal decision scheme

Sustainability evaluation

Expert experience/

Historical data

 

Figure 24 The integrated framework for sustainability evaluation 

Results and discussion 

Following the proposed framework, numerical analysis is conducted through a case study of 

subsea transmission system based on a DBN model. Figure 25 shows the overall DBN model 
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with simple numerical results of the overall sustainability score (OSS) at time t and t+Δt. In 

Figure 25, the failure dependence relationship linking the components are visualized by the red 

arcs. According to the established sustainability evaluation framework, the system 

sustainability can be confined within a range from -1 to 1. A lower value of the OSS closer to 

-1 signifies a lower degree of acceptance for the system sustainability, and a higher OSS 

indicates an increased level of acceptability for the system sustainability. Figure 25 suggests 

that, even after the application of maintenance activities, the overall sustainability still exhibits 

a declining trend in general over time activities because the maintenance activities themselves 

also cause certain damage to the sustainability. 

DM1

C1

C1'

CR1 FD1

DM2

C2

C2'

CR2 FD2

DM3

C3

C3'

CR3 FD3

OSS

OSS'

Time t

Time t+Δt  

Figure 25 OSS evaluation model and results [33] 

The mean value of OSS* is selected to assess the impact of component degradation and various 

maintenance activities on the overall sustainability during the period. Figure 26 shows the mean 

values of the overall sustainability after delay period with six kinds of maintenance strategies. 

The maintenance strategies are varied by changing the conditional probability tables (CPTs) 

for various types of maintenance activities such as No Maintenance (NM) activities, Preventive 

Maintenance (PM) activities, Corrective Maintenance (CM) activities, and Decoupling 

Maintenance (DM) activities. The results show that the overall sustainability could be 

improved if the maintenance activities are implemented suitably according to specific cases. 

 

Figure 26 Mean values of OSS* with various maintenance strategies 
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5.3 Main contributions 

5.3.1 Contribution to Research Objective 1 

The RO1 of this Ph.D. thesis is set to elucidate the definitions of terminologies related to failure 

dependence and clarify delimitations for various types of failure dependence. The contributions 

to RO1 are found in three articles: 

Article I: Condition-based Maintenance for Systems with Dependencies: Related Concepts, 

Challenges and Opportunities 

Article Ⅰ introduces the definitions of terminologies related to maintenance of complex systems 

with dependences and highlighted the needs to explore the CAFs. This investigation provides 

potential directions to improve system performance and prevent CAFs by CBM. 

Article Ⅱ: Cascading failure analysis of multistate loading dependent systems with application 

in an overloading piping network  

Article Ⅱ categorizes the CAFs into two types. In this study, CAFs are classified as direct- and 

indirect- ones. The difference and similarities between two types of CAFs are listed in Table 

7. A direct CAF occurs if the failure of a component or components directly induces damage 

to other ones or reduce their lifetime to some extent, while an indirect CAF often occurs due 

to loading dependence: The overall workload of the system is redistributed because some 

components exclude from normal operation. This work acts as a foundation for further 

classification of failure dependence in Article Ⅳ. 

Table 7 Comparison between Direct and Indirect types of CAFs 

Category Direct  Indirect  

Difference Driving force Sudden shock and 

damage 

Loading dependence 

Effects on components 

in sequence 

Failures or 

degradation 

Failures, degradation or 

overloading components 

Similarities Trigger One failure or failures 

Stop condition There are no more new failures  

Article Ⅳ: Condition-based maintenance for a multi-component system subject to 

heterogeneous failure dependences 

Article Ⅳ clarifies the similarities and differences of two types of failure dependence: type I 

failure dependence exists in a context where a triggering event results in a direct damage, while 

type Ⅱ failure dependence exists in a context where a triggering event redistributes the total 

working load on the overall system. This delimitation facilitates one to improve the overall 

understanding of complex systems, as well as the initiations and consequences of the failure 

dependence. 

To summarize, the specific contributions concerning RO1 are listed as follows: 

• Highlight the importance of considering system dependences and CAFs. 

• Improve the overall understanding of complex systems, CAFs, and failure dependence. 

• Clarify the definitions and classifications of CAFs and failure dependence. 
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5.3.2 Contribution to Research Objective 2 

The RO2 is related to the reliability issues of complex systems with multi-state components 

considering overloads. The contributions to RO2include a reliability analysis model of a 

loading dependent system considering overloading state. The objective is achieved by two 

articles: 

Article Ⅱ: Cascading failure analysis of multistate loading dependent systems with application 

in an overloading piping network  

Article Ⅱ proposes a multi-state CASCADE model for analyzing the propagation process of 

failures in loading dependent systems considering overloading states and degradation of 

components. The multinomial distribution is applied to characterize the probabilities of 

numbers of failed-, overloading-, and working components, as shown in Equation (1). In 

addition, probability distributions of different stop scenarios of cascading process are derived, 

including the stop scenarios where the system fails, which lays the groundwork for the 

reliability analysis model of loading dependent systems. The contribution of this work lies in 

the investigation of CAFs in systems subject to type Ⅱ failure dependence with involvement of 

overloading components and degradation of components. The studies could be extended to 

accomplish the reliability analysis model investigation. 

𝑃[𝑋1 = 𝑛𝑓 , 𝑋2 = 𝑛𝑜 , 𝑋3 = 𝑛𝑤] = 𝐶𝑛

𝑛𝑓𝐶𝑛−𝑛𝑓

𝑛𝑜 𝑝
𝑓

𝑛𝑓𝑝𝑜
𝑛𝑜𝑝𝑤

𝑛𝑤   (1) 

Article Ⅲ: Reliability analysis of a loading dependent system with cascading failures 

considering overloads 

Article Ⅲ develops a system reliability analysis model for loading dependent systems 

considering overloads based on the multi-state CASCADE model. By incorporating the 

interval time of each generation in the cascading process which follows an exponential 

distribution, as shown in Equation (2), the multi-state CASCADE model can be extended to 

characterize the duration of cascading process. A combination of analytical and simulation 

techniques is employed to investigate how various factors of failure dependence and cascading 

processes influence the system reliability. Such findings can improve the decision-makings of 

reliability prediction, system design, and maintenance optimization, especially in scenarios 

involving the CAFs triggered by type Ⅱ failure dependence. 

𝑓𝑌(𝑡) = 𝜇𝑒−𝜇𝑡      (2) 

To summarize, the specific contributions concerning RO2 are listed as follows: 

• Propose a model to examine the cascading process of CAFs in loading dependent 

systems subject to type Ⅱ failure dependence. 

• Identify the probability distributions for evolving scenarios of the cascading process. 

• Propose a model to analyze the reliability of the loading dependent system with CAFs 

subject to type Ⅱ failure dependence. 

• Evaluate the effects of variation of some influencing factors on system reliability. 

• Highlight the overloading states and degradation of components in the models. 

• Examine the proposed models in a practical case of piping network. 

• Offer suggestions for engineers and maintenance crews from both a system design and 

managerial standpoint. 
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5.3.3 Contribution to Research Objective 3 

The RO3 concerns maintenance issues of complex systems subject to failure dependences. This 

RO is addressed through Article Ⅳ and Article V. 

Article Ⅳ: Condition-based maintenance for a multi-component system subject to 

heterogeneous failure dependences 

Article Ⅳ develops a comprehensive framework for evaluating heterogeneous failure 

dependences and a maintenance optimization model by Markov processes for multi-component 

systems. In the proposed model, the degradation rate of the component changes when there is 

failure dependence, as denoted by the equation below. The degradation of components, the 

failure dependence, and the maintenance activities are all characterized and integrated in the 

Markov model. The proposed model demonstrates its effectiveness in managing the 

maintenance of complex multi-component systems, particularly those with heterogeneous 

failure dependences. By adopting the model, organizations can optimize the maintenance 

strategies by minimizing the maintenance costs while ensuring the system availability. 

𝜆𝑥𝑖,𝑥𝑗

𝑖 = (1 + 𝐷𝑖,𝑥𝑗
) 𝜆𝑥𝑖

     (3) 

Article V: Sustainability evaluation of multi-component subsea systems considering failure 

dependence and maintenance activities 

Article V develops a comprehensive framework for sustainability evaluation of the complex 

systems, considering the effect failure dependence and maintenances. In the proposed model, 

both the failure dependence and the maintenance activities to mitigate the failure dependence 

are considered. In addition, the impacts of maintenance activities on the sustainability are 

examined two distinct ways: 1) maintenance activities indirectly contribute to sustainability 

improvement by enhancing system performance; 2) maintenance activities themselves can 

directly result in sustainability changes. This study contributes to maintenance optimization of 

complex subsea systems for higher reliability and reasonable cost. 

To summarize, the specific contributions concerning RO3 are listed as follows: 

• Propose a framework to evaluate heterogeneous failure dependences. 

• Present a generalized CBM model for complex systems with heterogeneous failure 

dependences. 

• Discussed the effects of heterogeneous failure dependences on the system availability 

and maintenance costs. 

• Verify the proposed models in practical cases of subsea transmission system. 

• Delimitate and model a new type of maintenance, the Decoupling Maintenance (DM) 

activity, to eliminate the failure dependences among components. 

• Explore the impact of various maintenance strategies on the overall sustainability of the 

system. 

• Offer suggestions for engineers and maintenance crews from both a system design and 

managerial standpoint. 

5.3.4 Contribution to Research Objective 4 

The RO4 addresses the problem of proposing a sustainability evaluation framework for 

complex systems subject to failure dependence. This RO is achieved through Article V. 
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Article V: Sustainability evaluation of multi-component subsea systems considering failure 

dependence and maintenance activities 

Article V develops an integrated framework using the Bayesian networks, which thoroughly 

examines the coupling effect of component degradation, failure dependence and maintenance 

management on the sustainability evaluation of the complex systems. The overall sustainability 

of the complex system is scored from three perspectives: Environmental, Economic, Social. 

The main steps to assess the sustainability are suggested in Table 8. This study contributes to 

sustainability evaluation of complex subsea systems, as well as provide valuable insights for 

decision-makers in seeking for sustainable maintenance practices. 

Table 8 Suggested stepwise procedure of the sustainability 

Step Description 

Step 1 System familiarization. 

Step 2 Information acquisition and determination of nominal states of the components. 

Step 3 Scoring the effects of the component performance on each sustainability indicator. 

Step 4 Weighing the contribution of the sustainability indicators to the sustainability pillar. 

Step 5 Determination of the importance of each sustainability pillar. 

Step 6 Determination of the OSS by impacts of component performance. 

To summarize, the specific contributions concerning RO4 are listed as follows: 

• Provide an integrated framework, integrating the impact of component degradation, the 

failure dependences among components, and the maintenance activities on the overall 

sustainability. 

• Explore the impact of various maintenance strategies on the overall sustainability of the 

system. 

• Verify the proposed framework in a practical case of subsea transmission system. 

• Provide managerial recommendations for maintenance crews. 
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Chapter 6 

 

6 Conclusions and future work  

6.1 Conclusions 

The overall Research Objective of the Ph.D. thesis is to explore a comprehensive and efficient 

approach for the system performance analysis of complex systems, particularly focus on the 

effects of failure dependence. The overall Research Objective is structured into four specific 

objectives, which were addressed and elaborated through an international conference paper and 

four journal articles in Part Ⅱ. The main conclusions are summarized as follows. 

1. The differences and similarities between different types of failure dependences are clarified. 

This research may help the reader to increase the awareness of CAFs, improve the overall 

understanding of complex systems, and become familiar with the most adopted analytical 

models of failure dependence. Meanwhile, it is expected to serve as a reference for 

formulating measures to weaken failure dependence and prevent CAFs during system 

design, operation, and maintenance. 

2. A multi-state CASCADE model is established to analyze the failure propagation process 

in loading dependent systems considering overloading state. The multinomial distribution 

is employed to characterize the probabilities of total numbers of failed components and 

overloading components. Besides, the probability distributions of various stop scenarios of 

cascading process are derived. Subsequently, MATLAB numerical analysis is executed to 

assess the influencing factors of the probability distributions, the occurrence of various stop 

scenarios, and the cumulative cascading time of the cascade process. The presented multi-

state CASCADE model and reliability analysis model prove valuable for enhancing the 

design and maintenance of loading dependent systems. 

3. A comprehensive framework for evaluating the heterogeneous failure dependences in 

multi-component systems is proposed, and a general CBM model to optimize the 

maintenance strategies of such system is developed by Markov model. Moreover, the 

numerical results are conduct and a case study consisting in a parallel subsea transmission 

system is examined to optimize the maintenance strategies. The findings demonstrate that 

the proposed framework and model are capable of optimizing maintenance strategies by 

maximizing system availability and minimizing maintenance costs. 

4. An integrated framework is proposed to thoroughly examine the coupling effect of 

component degradation, failure dependence and maintenance management on the 

sustainability evaluation of the complex systems. The framework is examined based on a 

DBN model and applied in a case study of the subsea transmission system. Through the 

case study, the influence of failure dependences and the influence of maintenance strategies 

on the overall sustainability are illustrated. The research is expected to guide maintenance 

optimization of complex subsea systems for higher reliability and reasonable cost. 

In summary, this paper significantly contributes to comprehension of the influence of failure 

dependence on the system performance of complex systems. The methodologies and models 

proposed in this study offer several advantages: 1) Provide accurate understanding of failure 
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dependences and holistic analysis of system performance; 2) Furnish practical guidance for the 

design, operation, and maintenance of complex systems, aiming to enhance the overall system 

performance. While these contributions are noteworthy, there remain certain unresolved issues 

in this research that requires further exploration, which are stated in the following subsection. 

6.2 Future work 

This section introduces open questions and suggestions for future research in the realms of 

approaches and models, maintenance strategies, various dependences, and verification 

techniques. 

6.2.1 Approaches and models 

While the current model in this Ph.D. work adequately fulfills the fundamental requirements 

for evaluating the system performance of complex systems with failure dependences, there 

remains a necessity for further enhancement of the approaches and models. For example, 

simplification of the system in the models raises certain gap between research and reality. Some 

assumptions of the models exhibit certain restrictiveness, as systems in more complicated 

configurations have not been considered. Additionally, as systems become increasingly 

complex, the failure dependences between components experience exponential growth, 

stimulating the need for enhanced efficiency in the proposed models. 

6.2.2 Maintenance strategies 

This thesis focuses on the maintenance activities related to complex systems with failure 

dependences, and there are three potential aspects for further investigation. Firstly, the 

consideration of additional factors in maintenance activities is stimulated, encompassing 

aspects such as repair time, repair delay, inspection intervals, proof testing, test coverage, and 

test schedules etc. Secondly, it is worthwhile to discuss more detailed maintenance activities 

aimed at mitigating failure dependences and decoupling the dependent components. The 

discussion could involve exploration of the cost and efficiency associated with various 

decoupling maintenance activities. Additionally, comparisons with alternative maintenance 

models, such as Opportunistic Maintenance or Age-based Maintenance, could be conducted to 

identify optimal maintenance policies. 

6.2.3 Various dependences 

This thesis places a spotlight on sole type of failure dependence within the complex systems. 

However, a system could be subject to combinations of several types of dependences, and their 

effects on the system performance can be interacted. It is suggested to consider the combination 

of failure dependence and other types of dependences that exist within the system, such as 

structural dependence, economic dependences, resource dependences, etc. 

6.2.4 Verification techniques 

This Ph.D. thesis needs more verification, such as the incorporation of Monte Carlo simulations 

or empirical data. To enhance the credibility of the research, Monte Carlo simulations could be 

conducted to assess the robustness of the proposed models. Additionally, accurate modeling of 

system performance analysis hinges on the availability of high-quality data. This verification 

process can be facilitated by obtaining data from industries or conducting experiments tailored 

to the specific cases under examination.  
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Condition-based Maintenance for Systems with Dependencies: Related Concepts, Challenges and 
Opportunities 

Yixin Zhao 
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Abstract: Many critical systems with dependencies do not collapse immediately due to single-point failures but are more 
vulnerable to the cascading effects of these failures.  Condition-based maintenance (CBM) has been found useful not only 
in improving availability of technical system but also in reducing the risks related to unexpected breakdowns, including 
those events related to dependencies, such as cascading failures.  The serious disasters created by such failures and 
increased requirements for CBM policy due to dependencies urges a comprehensive study on current research and future 
challenges.  In this study, a systematic literature review on the implementations of CBM in the systems with dependencies 
is conducted.  Relevant papers are deliberately selected and analyzed in the VOSviewer program, to identify co-occurrences 
of keywords and so to illustrate basic concepts of CBM.  Specifically, considering various types of dependencies, 
challenges, research advancements and research perspectives are identified.  Opportunities of CBM for improving 
availability and reducing risks of dependent systems are finally explored. 

Keywords: Condition-based Maintenance, maintenance procedure, dependent systems, cascading failure, risk analysis, Risk-
informed Condition-based Maintenance. 

 

 

1. Introduction 
In an intelligent manufacturing process under Industry 4.0 
(Lee et al. 2014), variety of equipment and programs work 
together to form a complicated and interdependent system.  
This change is largely reflected in the fields of mechanical 
manufacturing and electrical engineering.  Condition-
based maintenance (CBM) is considered as a preparatory 
strategy before a system fails, compared to other traditional 
maintenance solutions (Kwon et al. 2016).  It can detect 
the current deterioration and predict behavior patterns, so as 
to determine when and how maintenance is conducted to 
keep satisfying system performance while saving cost.   

CBM has been noted as a booming field, with some reviews 
from different perspectives providing a general 
understanding of its development.  Reviews on condition 
monitoring and Diagnostics (Peng and Chu 2004; Martin 
1994) could be found since 1990s.  Jardine (2006) 
summarized the research in diagnostics and prognostics 
when implementing CBM and discussed the techniques 
applied for data fusion from multiple sensors.  Sakib 

(2018) focused on the contributions with different methods 
in Predictive Maintenance (PdM) and CBM and proposed a 
brief discussion on the challenges.  Keizer (2017) 
reviewed multi-component systems subject to different 
dependencies and provide real-life examples for each type.  
With bibliometric tool, Quatrini (2020) gave an extensive 
literature review on CBM, encompassing over 4000 
contributions and made reflection on specific 
implementation strategies, inspection, replacement and 
Prognostics.  Bibliometric indicators (Mohammed et al. 
2019) were also utilized to determine the most influential 
author, country, organization and the most productive 
research in CBM field.   

Obviously, CBM has received increasing attention recently, 
but the research perspective of existing contributions is still 
relatively traditional.  A current trend is to implement 
CBM to more complex system (Keizer, Flapper, and 
Teunter 2017) but some special dependencies have still not 
received enough attention yet.  In addition, the 
dependencies between components within the system are 
still not defined unequivocally.  Another reason for having 
a focus on system dependency is that risk factor remains not 
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well considered in addition to traditional maintenance 
activities within contemporary dependent systems.  
Dependencies within such system may easily trigger 
cascading accidents, which threatens the surrounding 
environment and the life safety of operators.  This paper 
mainly analyzes the application of CBM in systems with 
dependency and reviews the goal of CBM especially 
including reducing risk.  Furthermore, a more 
comprehensive understanding of research perspectives that 
need to be improved in CBM could be obtained.   

The rest of the paper is organized as follows.  In Section 
2, some CBM related concepts are presented.  The related 
work about procedure of CBM, types of systems with 
dependency and expected benefits of CBM are respectively 
discussed in Section 3, 4 and 5.  Section 6 proposes 
research perspectives and potential challenges. 

2. Related concepts 
Related studies in the last 30 years are analyzed because 
research about CBM has emerged since 1990s (Mohammed  
et al. 2019).  By defining search terms and restricting 
timespan, we have collected 1074 papers in total in the Web 
of Science database (WoS).  The key terms we choose for 
searching include “Condition-based Maintenance”, 
“Predictive Maintenance” and “Condition Based Predictive 
Maintenance.  In order to avoid false screening, we use 
search logic word “and” between the first two topic terms 
and add search logic word “or” before the last topic terms.   

VOSviewer as a software tool is used here to construct 
maps in which keywords could be connected by co-
authorship, co-occurrence, citation, or co-citation links 
based on network data (Eck and Waltman 2020).  For the 
obtained 1074 papers, bibliographic data including authors, 
abstracts and references of selected papers are exported 
from WoS.  When creating the map, note that synonymous 
words may split weight of occurrence due to different 
writing of the same concept.  To avoid redundancy, 
repeating expressions are filtered out and replaced by one 
definite expression.  Minimum number of occurrences of 
a keyword is set as 20, with 27 keywords satisfying this 
threshold.   

Co-occurrence network is visualized to present the 
existence frequency of keywords and their relationships in 
this research field.  The map of Fig. 1 refers to a 
relationship of main terms used in papers related to CBM 
policies.  From a holistic point of view, the two dominant 
keywords are “Predictive Maintenance” and “Condition-
based Maintenance”.  For example, the total link strength 
and common occurrences for the two items are respectively 
604, 318 and 338, 142.  The total link strength indicates 
the total strength of the links between an item with other 
items, which to some extent explains the weight of the item.  
With “Condition-based Maintenance” as the center, the 

most closely related keywords form a cluster.  In this 
cluster, condition monitoring is important foundation to 
collect information when taking maintenance actions, and 
two main principles related to CBM program are 
prognostics and diagnostics.  Also, CBM cluster in Fig. 1 
maps the main links with some following terms: preventive 
maintenance, optimization, machine learning, neural 
network, replacement and degradation. 

 

Fig. 1.   Co-occurrence of related concepts in CBM 

We highlight their definitions in the following part.  The 
concept of condition-based maintenance was firstly 
proposed in late 1940s by the Rio Grande Railway 
Company (Prajapati, Bechtel, and Ganesan 2012) and there 
also emerges variety of definitions as application 
backgrounds change.  According to EN 13306, 
Condition-based maintenance is preventive maintenance 
which includes assessment of physical conditions, analysis 
and the possible ensuing maintenance actions.  Predictive 
maintenance is condition-based maintenance carried out 
following a forecast derived from repeated analysis or 
known characteristics and evaluation of the significant 
parameters of the degradation of the item.  Condition 
monitoring focuses on the assessment on a continuous or 
periodic basis of the system condition (Kobbacy and 
Murthy 2008), and is intended to measure at predetermined 
intervals the characteristics and parameters of the physical 
actual state of an item.  Besides, diagnostics and 
prognostics are two main aspects in CBM actions.  
Diagnostics is a detection procedure for fault recognition, 
fault localization, identification of root causes when it 
occurs and determining the current health state of the 
system (Jimenez et al. 2020).  Prognostics is dedicated to 
estimate the remaining useful life (RUL) and risk before a 
failure or more faults occur given current machine 
conditions and historical data.  After the distinctions of 
keywords with approximate concepts, we classify the 
relevant literatures in different ways: based on procedure of 
CBM, based on dependent types of systems, and based on 
the goals of maintenance. 



Proceedings of the 31st European Safety and Reliability Conference 268

3. Procedure of CBM 
Three key steps of the CBM program should be firstly 
specified (see Figure 2): 

1. Data acquisition, to collect data related to system. 

2. Data processing, including data selection (data 
examination, data cleaning) and data analysis. 

3. Maintenance decision making, to provide the optimal 
solution for system maintenance. 

 

Fig. 2.   Three steps in CBM (Jardine, Lin, and Banjevic 2006) 

3.1. Data acquisition 
Data acquisition is the first and necessary step in a CBM 
process.  In CBM practices, two types of data, the event 
data and condition monitoring data, are often required to be 
obtained concurrently (Jardine, Lin, and Banjevic 2006).   

Event data is the basis for familiarity with system structure, 
operating information, potential faults, normally including 
installation, breakdown, overhaul, minor repair, preventive 
maintenance, etc.  Event data is of equal importance with 
monitoring data, which it is usually underestimated due to 
that human manipulation is often involved in this process.  
Condition monitoring data such as vibration data, acoustic 
data, or environment data including temperature, pressure, 
moisture, humidity is collected by a variety of sensors.  
With the development of sensor technology, their accuracy 
and storage capacity have been greatly improved, which 
also ensures that the accuracy of monitoring data is 
improved.   

3.2. Data processing 
When referring to larger and more sophisticated systems 
with dependencies, a deeper investigation on large amount 
of data will be certainly necessary.   

Data selection still remains as one promising area.  It is 
crucial even for contemporary CBM field mainly because 
that either event data or conditioning data might involve 
errors.  For event data, human operations such as 
collecting data and inputting data are prone to human error.  
For monitoring data, errors can exist because sensors are 
not fully accurate.   

Handling of missing data is also crucial aspect especially 
for modern CBM implementation (Jardine, Lin, and 
Banjevic 2006).  For incomplete or missing data, 
dedicated approach is needed for its compensation.  To 
achieve that, Jardine (2006) proposed to utilize the 
expectation-maximization (EM) algorithm to deal with the 
missing data.  Furthermore, Zuashkiani et al. (2009)  

described the methodology to estimate the parameters with 
time-dependent covariates based on expert's beliefs and 
experience.   

Data analysis is known for building, based on data, a 
mathematical model that properly describes the underlying 
mechanism of a fault or a failure.  A time-dependent 
proportional hazards model is typically used for analyzing 
both event and condition monitoring data together.  Data 
for proportional hazards model construction comprise 
installation data, failure or replacement data, condition data 
and maintenance data (Jardine, Lin, and Banjevic 2006).   

3.3. Maintenance decision making 
Techniques support for maintenance decision making in 
CBM is divided into two main categories: diagnostics and 
prognostics (Jardine, Lin, and Banjevic 2006).  The 
necessity of diagnostics lies in the detection of some 
unexpected faults in actual applications, which cannot be 
identified 100% by prediction, while prognostics facilitates 
preventing failures, preparing for troubleshooting, and 
saving on additional maintenance costs.  Diagnostics 
helps to improve prognostics by providing more accurate 
data for the similar type of failure.  Prognostics can be 
regarded as a supplementary tool to optimize maintenance 
decision making support during diagnostics.  Three types 
of approaches are often put forward in CBM: physics-based 
approaches (Mehdigholi, Rafsanjani, and Mehdi 2012; Luo 
et al. 2008), data-driven approaches (Javed, Gouriveau, and 
Zerhouni 2017), and hybrid prognostics approaches (Qian, 
Yan, and Gao 2017; Zhang, Kang, and Pecht 2009).   

Maintenance decision optimization is usually based on 
reliability and cost, with parameters such as the products’ 
degradation patterns.  Among that RUL estimation plays 
an important role in maintenance decision making process.  
To describe fault propagation and predict RUL, model-
based methods artificial intelligent approaches and data-
driven models are widely adopted (Jardine, Lin, and 
Banjevic 2006).  More available historic data, more 
accurate estimation results could be achieved (Olesen and 
Shaker 2021).  Suitable models for reflecting dependent 
degradation phenomena are also required (Tian et al. 2011; 
Shi and Zeng 2016).  A clearer definition of parameters in 
degradation models for case study helps the estimation to 
be more consistent with the actual situation to a large extent.  
To address this problem, one particular objective of related 
contributions recently is to demonstrate how dependencies 
between different components in complex systems 
influence the optimal CBM policy for the system as a whole 
(Keizer, Flapper, and Teunter 2017).   

4. CBM for system with different dependencies 
There generally exist economic, structural or evolution 
dependencies within a multi-component system (Dekker, 
Wildeman, and Schouten 1997), which cannot be neglected 
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in maintenance decisions to avoid high cost and extra 
downtime.   

4.1. CBM for system with economic dependency 
Economic dependency exists in systems where inspection 
or maintenance cost differs when multiple components are 
inspected and maintained simultaneously or separately 
(Dekker, Wildeman, and Schouten 1997).  The review 
article of Dekker et al. (1997) gave a good overview of 
multi-component systems with economic dependence, 
including stationary and dynamic models.  Tian et al.  
(2011) developed a numerical algorithm for exact cost 
evaluation and applied it into the multi-component system 
where economic dependency exists to obtain optimal CBM 
policy considering proportional hazards model.  By a 
artificial neural network, an optimal CBM policy was also 
proposed by the same authors to address the economic 
dependencies among multiple wind turbines in wind farms 
(Tian et al. 2011).  These works provide reference to solve 
the maintenance decision-making related to economic 
dependently multi-component systems, while there still to 
be further investigated about CBM in systems containing 
various types of components instead of same components.  
Studies mentioned above do not distinguish between 
positive and negative economic dependency.  When cost 
could be saved via jointly maintenance, it is called positive 
economic dependence (PED), whereas negative economic 
dependence (NED) occurs when it cost more to maintain 
several components simultaneously than separately 
(Nguyen, Do, and Grall 2015).  However, NED has not yet 
been deeply investigated in the current CBM study, which 
could be underlined in future works.  When the system 
subjected to economic dependency, priorities should be 
placed on cost when making decisions.   

4.2. CBM for system with structural dependency 
Structural dependency exists when some components 
structurally form a part or a system.  To carry out 
maintenance process for a failed component in such system, 
working components should also be involved 
simultaneously (Dekker, Wildeman, and Schouten 1997) or 
at least dismantled (Nguyen, Do, and Grall 2015).  
Structural dependencies are mainly represented by two 
ways, technical dependency or performance dependency.  
Considering technical dependencies, failure or maintenance 
of some components can either prohibit maintenance on 
other components or influence the operation on other 
components alternatively.  Most of the studies focus on 
performance dependency, mainly including series, parallel 
relationship and redundancy components.  In some 
circumstances, series and parallel relationship coexist in the 
same system (Wang et al. 2009; Mercier and Pham 2012; 
Liu et al. 2014).  The series structure means that 
maintenance on one component requires the entire system 
to be stopped.  Such issues are often investigated 
accompanied by other types of dependencies (Keizer, 

Flapper, and Teunter 2017) such as economic dependency 
and may result in high cost for downtime yet also provide 
other components opportunities for maintenance 
correspondingly.  It is worth noting that even if the system 
with a parallel configuration is still running, it would be 
affected and gradually degrade, eventually causing 
downtime costs at both component and system level.  
Redundancy is also an important factor utilized to avoid 
sudden failures in maintenance activities (Keizer, Teunter, 
and Veldman 2016), which is often largely overlooked 
when construct the system model.   

4.3. CBM for system with evolution dependency 
Evolution dependency often occurs when the failure or 
degradation of one component directly or indirectly 
facilitates decreasing reliability and availability of the 
remaining components.  It describes some similar 
situation where stochastic dependence was traditionally 
used, e.g. degradation or failure related dependence, but we 
choose the term of evolution for this category, since at least 
economic dependency, also can be stochastic.  Another 
argument is that in this paper propagation of failures is 
considered, which can lead to a sequence of events, and 
when one event occurs, the occurrence of the subsequent 
event can be deterministic.   

Evolution dependency can be direct or indirect.  The 
previous one occurs if the degradation and failure of a 
component directly induce to the damage of other 
components or influence the lifetime distribution of other 
ones to some extent (Dekker, Wildeman, and Schouten 
1997).  Shi et al. (2016) presented a dynamic opportunistic 
CBM strategy considering trade-off between RUL and the 
set-up cost.  In his research, real-time RUL prediction is 
carried out considering such dependency of the components, 
namely the impact of real-time degradation states of certain 
components on the RUL of other components.  The 
indirect evolution dependency often occurs by load sharing 
(Keizer, Flapper, and Teunter 2017).  For this case, the 
system will continue to operate, but the failed component 
puts higher demands on the output of the remaining 
components.  Therefore, the load on working parts 
increases and aggravates the deterioration of the whole 
system.  To illustrate two types of evolution dependencies, 
a system comprising five components in a mixed (series and 
parallel) structure is introduced, as shown in Fig.3.  If the 
component 1 fails, it can be regarded as an initiative event. 
For the consequence of direct failure propagation, a 
cascading effect exerts on the components 2 and 4.  The 
system will still operate at this moment because 
components 3 and 5 are still available.  However, as the 
system continues running, the excessive load accelerates 
the degradation of components 3 and 5.  So for this system, 
there exist direct evolution dependencies between 
component 1 and component 2&4, as well as indirect 
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evolution dependencies between component 1 and 
component 3&5.   

 

Fig. 3.   System structures with evolution dependency 

When the failure of certain components can be cascaded, it 
is necessary to consider the effects of evolution dependency 
when we predict RULs of other components and update 
maintenance plan for the whole system.   

5. Expected benefits of CBM to systems with 
dependencies 
5.1. Higher productivity 
When a system is subjected to failures especially the 
dependent failure modes, the productivity would be reduced 
due to system performance degradation and possible 
downtime and maintenance time.  Whether existing 
research focuses on perfect maintenance (Ahmad and 
Kamaruddin 2012; Dieulle et al. 2003) or imperfect 
maintenance (Wang et al. 2011; Yang et al. 2019; Fan et al. 
2011), and whether the target system is a single-unit 
component system (Yang et al. 2019) or multi-component 
systems, improving system productivity is the primary goal 
of maintenance.  Implementing CBM helps develop 
productivity via improving system availability, extending 
component life expectancy and reducing system downtime.  
To evaluate the expected productivity, Van et al. (Van and 
Berenguer 2012) assumed a very large interval of time to 
do the simulations, namely the long-run expected 
productivity.  Long-run expected productivity is of great 
importance because given productivity level in industrial 
engineering is jointly determined according to the system 
capacity and customer requirements within a certain 
running time.  Therefore, it is necessary to seek for an 
optimal maintenance strategy to restore the system capacity 
to required productivity level during operation, instead of 
taking perfect maintenance measures for the system.   

5.2. Lower cost 
The goal of reducing maintenance costs is reflected in 
almost every CBM case study, especially in systems with 
economic dependencies.  To develop the maintenance cost 
model, several cost functions have been proposed (Alaswad 
and Xiang 2017), involving some variables: inspection cost, 
maintenance cost, replacement cost, cost rate, downtime 
cost rate, as well as two parameters that influence the 
maintenance cost, inter-inspection interval and preventive 
replacement threshold.  Before maintenance is carried out, 

decisions should be made whether preventive maintenance 
or corrective replacement is required, which affects the 
values of the variables mentioned above.  It depends on 
the inspection results.  Obviously, the inspection cost also 
depends on the inspection types.  When the system 
subjected to continuous monitoring (Tian et al. 2011), 
maintenance activities can be carried out only when 
necessary, but there also lies high inspection cost.  On the 
other hand, some systems such as the underground 
infrastructures cannot be applicable for continuous 
monitoring and could only be inspected periodically.  In 
addition, regular inspections may also not be cost-effective 
when the inspection process is expensive.  Under this 
circumstance, the next inspection interval is determined 
based on the system status after maintenance and 
deterioration trend, which is known as non-periodic 
inspection (Flage et al. 2012).   

5.3. Acceptable level of risk 
To start with, the definition of risk should be specified: risk 
consist of probability of failure and consequence of failure, 
as well as the cost particularly in the CBM area.  It is well 
known that safety barriers are embedded in many 
manufacturing engineering systems to ensure smooth and, 
more importantly, safe operation of the system.  The 
safety and risk level of the system should never be ignored, 
otherwise, once suffered a fault which can cause an accident, 
not only the productivity will be reduced, but also the safety 
of the entire system and the environment (e.g., nearby units 
and operators) will be threatened.  In practical 
applications, risk acceptability can be combined with the 
requirements of maintenance and cost.   

Potter et al. (2015) proposed the Reliability Centered 
Maintenance (RCM) framework to ensure asset availability 
and reliability for the aviation industry.  RCM has been 
implemented in various fields such as medical devices, 
petrol station, railway systems.  Based on RCM, an 
emerging framework namely risk-based maintenance 
(RBM) was developed, which could also be considered as 
a complement of CBM (Leoni et al. 2019).  Risk 
assessment and maintenance measures are adopted in RBM 
scheduling (Cullum et al. 2018), endowing this method with 
applicability, innovation and comprehensiveness and 
compensates for the limitations of RCM.  Khan et al. 
(2003) presented methodology for risk-based maintenance 
as shown in Fig.4.  Dawotola et al. (2012) also proposed 
the RBM optimization process consisting of six steps for 
petroleum pipeline system: (1) probability of failure 
estimation, (2) determination of consequences of failure, (3) 
estimation of risk of failure, (4) calculation of risk reduction, 
(5) calculation of total cost, and (6) determination of cost-
optimal inspection frequency.  Their contributions based 
on risk analysis provided reference to minimize the 
consequences related to safety and environment of a system 
outage but focused too much on risk reduction so as to 
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neglected to improve the most basic requirements of the 
system -- productivity and availability.   

Even if the research about RBM flourish in recent years, 
more comprehensive investigation, with better balance 
between risk and reliability appears still challenging.  In a 
recent study (Yeter, Garbatov, and Soares 2020), the most 
cost-effective inspection and maintenance policy is found 
for wind farms and a novel framework that maximizes the 
inspections benefits for a multi-unit system is developed.  
Nevertheless, the dependencies within this multi-
component system are still weak since that the difference 
between offshore wind farms studied is relatively low.   

 

Fig. 4.   Architecture of RBM methodology 

6. Research perspectives and final discussion 
6.1. Research perspectives 
The above results show that CBM implementation still 
comes with some research perspectives to be solved.  It is 
noteworthy that three aspects display challenges within 
dependent systems.   

 Maintenance optimization for systems with 
dependencies 

To optimize maintenance process, dependencies within 
systems need to be defined more specifically.  On the one 
hand, types of dependency could impose influence on 
possible maintenance activities.  For example, preventive 
maintenance should be performed at a relatively early stage 
for systems with serial configurations, and at a later stage 
for systems with redundancy.  On the other hand, it 
appears still immature to define interactions among 
components, with most studies highlighting the effects of 
solely single type of dependency and neglecting the joint 
effects of other types, not to mention considering special 
dependencies like NED.  Further, as systems become 
more complex, new dependencies are emerging.  For now, 
the case that maintenance of one component also requiring 
maintenance of other components, namely grouping 
maintenance, is still rare in CBM research.  At this point, 

it is necessary to balance the implementation time and 
method of maintenance measures to optimize maintenance 
planning.  Therefore, new degradation model and 
maintenance model incorporating detailed dependencies 
need to be deeply investigated.   

 CBM for systems where cascading failures occur 

Cascading failures calls for more attention in maintenance 
activities especially in dependent systems.  In 
interdependent systems or systems with functional 
redundancies, five correlations among cascading failures 
comprise competition, inhibit, trigger, acceleration, and 
accumulation (Chen et al. 2015).  In fact, researchers have 
been making efforts to study how to mitigate the cascading 
development of accidents in these five phases.  As a 
typical domino risk prevention and control measure, safety 
barriers are installed to avoid whole system bankrupt due to 
a single component failure (Liu 2020).  Cascading failures 
highlights the practical relevance, due to that if one of the 
components is detected to be faulty, it is also helpful to 
inspect and maintain the other component that may fail due 
to the initial failure.  In terms of risk assessment, 
cascading failures also play an important role, because the 
propagation of failures has a great impact on the probability 
of accidents and the severity of consequences.  So far, the 
quantification of the probability and consequences of 
failure propagation still remains an urgent problem to be 
addressed.  The last thing to be clear is that cascading 
failures may not occur in systems with dependencies, but 
there must be dependencies in systems where cascading 
failures occur. 

 Combination of CBM with risk analysis 

CBM is expected to be capable of optimizing maintenance 
to better obtain the anticipated benefits by introducing risk 
analysis.  Though the importance of productivity and cost 
management has already been clearly highlighted in CBM, 
it has been hardly to meet the expected requirements of 
maintenance activities for some systems in Industry 4.0.  
When it comes to cascading failures in a complex system, 
risk remains as an unavoidable factor that is difficult to 
implement in traditional CBM.  While in another 
maintenance policy, RBM as discussed before, risk level of 
a system is regarded as the basic criteria.  We notice that 
CBM and RBM have addressed their respective fields and 
performed well, but the negative impact of system outages 
or failures will only be minimized from an economic 
perspective both risks and cost-effectiveness are considered 
in maintenance activities.  We hereon extend CBM as 
multiple-objective decision-making maintenance activities 
with considering risks, by including the new concept Risk-
informed Condition-based Maintenance (RICBM) more 
specifically.  RICBM requires that the probability and 
consequence of events, as well as the productivity and 
maintenance cost should be considered comprehensively 
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when carrying out maintenance management.  In other 
words, the RICBM program represents a further 
development of the work in CBM and RBM policies.   

6.2. Final discussion 
In this paper, a short review of CBM for dependent systems 
is presented.  We summarize CBM related papers 
according to the process of its implementation and mainly 
review characteristics of systems subject to three types of 
dependencies (economic, structural, and evolution).  We 
also notice that many researchers are going after improving 
productivity, cost minimization, and acceptable level of risk 
in CBM.  Based on this, we highlight some 
recommendations for CBM investigation.  System 
dependencies and cascading failures triggered by that are 
supposed to be addressed in future.  Also, a new, more 
comprehensive maintenance policy, Risk-informed 
Condition-based Maintenance (RICBM), is introduced and 
requires further research.   
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A B S T R A C T   

Many production and safeguard systems consisting of multiple components are susceptible to the cascading 
failures, where one possibility is that the failure of a component leads to more workloads of other components. 
Such loading dependence can result in failure propagation, make the systems more vulnerable and maintenance 
decision-makings more difficult. In this study, we develop a model for analyzing the propagation process of 
failures in loading dependent systems considering overloading states and degradation of components. The 
multinomial distribution is applied to characterize the probabilities of total numbers of failed- and overloading 
components, and probability distributions of different stop scenarios of cascading process are derived. A practical 
case in piping network is investigated to illustrate the analysis procedure, and to compare the effectiveness of the 
proposed model with those of the existing methods. Numerical analyses are conducted for evaluating the factors 
influencing the probability distributions of total number of failed- and overloading components, as well as the 
occurrence frequencies of different stop scenarios. It is expected that design and maintenance of loading 
dependent systems can be optimized with the support of this new cascading analysis approach.    

Notation 
n Total number of components in a system 
j Cascading generation j = 0,1, 2, …. 
d Initial disturbance amount 
Lmax Maximum workload on a component 
Lmin Minimum workload on a component 
li Initial workload on component i 
lf The additional load from a failed component 
lo The additional load from an overloading component 
lj Loading increments from all the failed and overloading 

component in the jth generation 
lij Workload on component i in the jth generation 
Cmax Maximum capacity of a component 
Cmin Minimum capacity of a component 
c0 Initial capacity of component i 
cd Capacity decrement of functioning component in every 

generation 
cj Capacity of every component in the jth generation 
rij The workload-capacity ratio of component i in the jth 

generation 
r* The overloading threshold for a component 
pf The probability for a component to fail 
po The probability for a component to overload 
pw The probability for a component to work normally 
Φ(x) The saturation function representing the probability 
nfj Number of failed components in the jth generation 
noj Number of overloading components in the jth generation 
nwj Number of working components in the jth generation 
sj The case of how many components are in each state in the jth 

generation 
u The total number of the failed components 
v The total number of the overloading components 
t Cascading time, and t = 0 when the cascading process starts 
R(t) The probability that the system is still working until time t 
Tj The duration of cascading process from the start to the jth 

generation 
F(J + 1)(t) The probability distribution function that all components fail 

in generation J at time t 
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1. Introduction 

Technologies bring more capabilities as well as more complexities to 
production, transportation, storage, and safeguard systems, which are 
currently composed of interacted subsystems and components. In a 
complex system, when one component fails, the failure may propagate, 
meaning to cause failures of other components. Each failed component 
further weakens system performance. We call this phenomenon as a 
cascading failure (CAF). CAF has been recognized as one of the usual 
causes resulting in the catastrophes of many modern technical systems 
[1], such as power grids system [2,3], industrial communication net
works, railway networks [4], chemical clusters [5] and other complex 
network systems [6,7]. Typical events triggered by CAFs are blackout in 
American in 1996 [8] and massive blackout occurred in Italy [9] in 
2003, seriously shocks the normal functions of the society. The 
Fukushima nuclear accident generated by a tsunami and started by 
earthquake in 2011 and The Amazon Web Services outage in 2012 are 
also classical CAFs examples [6,10]. These CAF events occur because 
technical systems are composed of multiple components structurally or 
functionally dependent with each other. Loading dependent system is 
one of the typical systems with dependence, where all components share 
the overall workload on the system. 

Performance of a component always depends on its capacity and 
workload. In most cases, when the workload on a component is much 
higher than its capacity, a failure occurs. Then, the overall load on the 
system is re-distributed to the remaining functioning components whose 
workloads become higher, and these components become more 
vulnerable to failures. Such a re-distribution of workloads thus initiates 
a cascading process. For a loading dependent system, e.g., a wind farm, 
an energy station with several chargers, a piping network, and a medical 
center relying on several key devices, its performance can be related to 
the number of functioning components. If a cascading process starts, 
performance of such a system will degrade with less functioning com
ponents. For an individual component, an increasing workload can 
result in an immediate failure or an overloading state [11,12]. In the 
latter situation, the increased workload does not exceed the capacity of 
the component but is higher than the normal. Another non-negligible 
factor is the natural degradation of components in a loading depen
dent system, which has been studied in some research [13,14]. The 
degradation of components consists of their independent natural 
degradation and the degradation initiated by the conditions of other 
components [15], namely the capacity loss of components in our work. 
The performance of such an overloading component due to additional 
loads and capacity loss can thus be expected to deteriorate, and such 
degradation can shorten the lifetime of this component and affect the 
associated maintenance planning. For a loading dependent system, 
appropriate understanding on the overloading problems can be helpful 
to avoid the system-level failure or serious accidents. 

Several models can be found for analyzing CAFs, such as the sand pile 
model [16,17], the ORNL-PSerc-Alask (OPA) model [18], the CASCADE 
model [8,19], the branching process model [20,21], and the topological 
models from the complex network theory [22,23], etc. Moon et al. [24] 
have proposed a load-dependent cascading failure model to evaluate the 
resilience of small devices’ network to strategies for node removal by 
adopting the principle of sandpile process. Qi et al. [25] have estimated 
the joint distribution of two types of cascading outages with multi-type 
branching processes and tested with data generated by the AC OPA 
cascading simulations on the IEEE 118-bus system. Some methods based 
on the CASCADE model can be found in [16,26] for solving the 
self-organizing issue during cascading overload failures. The cascading 
process in a loading dependent system was first investigated by the 
CASCADE model [8,18], following an extended quasi-binomial distri
bution. The classical CASCADE model calculates probabilistic cascading 
failure for the weakening of the system as the basic cascade proceeds due 
to loads transformation [18]. The branching process model [21], as 
approximation of the CASCADE model, describes the total number of 

failed components as a Poisson random variable. However, the afore
mentioned cascading overload failure still refers to a failure mode 
induced by overloads, which is distinct from the notion overloading 
state as we proposed. To our best knowledge, most previous work fo
cuses on direct failure spreading while ignoring the overloading phe
nomenon and components degradation. 

Some practical challenges motivate the extension of the existing 
models on the issue of lacking the discussion about the overloading 
phenomenon and components degradation. For example, some pipes 
operating at higher pressures than expected might impose additional 
loads on other pipes in the same network. This kind of overloading state 
may occur due to their own degradation or other environmental factors 
and lead to loads transformation. The loading dependence induced by 
overloading components is thought to exert influence on the failure 
cascading process, though it is not as noticeable as that caused by failed 
components. The additional loads from overloading components and the 
natural degradation of components will undoubtedly promote compo
nent degradation and affect the evolution of the cascading process. The 
component reliability and system performance will be overestimated if 
the influence of this type of loading dependence and components own 
degradation on the failure cascading process is discarded. If the state of a 
component or system is overestimated when performing maintenance 
activities, delayed or inadequate maintenance may follow. In such cases, 
a more precise, realistic model that accounts for overloading compo
nents and component degradation supports maintenance decision 
makers in making more appropriate decisions. 

Therefore, a more practical method is needed for analyzing the 
performance of loading dependent system subjected to CAFs affected by 
overloading components. In this new model, we consider the situation 
that components degrade gradually and may become overloading. 
Whenever a component is overloaded, it might have a negative effect on 
the other functioning components in the loading dependent system. It is 
expected that the extended model can reflect the cascading process more 
practically and detect more information such as the effect of overloading 
phenomenon and components degradation which are ignored in the 
existing classical CASCADE models. 

The remainder of this paper is organized as follows. In Section 2, we 
describe the states transition mechanism in loading dependent systems 
and the algorithm of the classical CASCADE modeling, based on which 
some assumptions and algorithm of the CASCADE model are proposed. 
The model considering overloading components and three stop sce
narios for cascading process are illustrated in Section 3. To illustrate the 
differences between the proposed model and classical model, an 
example of a piping system is provided in Section 4. In Section 5, we 
examine the variables affecting probability distributions of total number 
of failed and overloading components by discussing numerical results. 
Conclusions and future research directions are summarized in Section 6. 

2. Cascading failures and analysis models 

2.1. Loading dependence as a cascading mechanism 
CAFs occur when the failure or degradation of one component 

weakens reliability and availability of the remaining components [27]. 
In this study, we classify CAFs as direct- and indirect- ones. The 

Table 1 
Comparison between Direct and Indirect Types of CAFs.  

Category Direct Indirect 

Difference Driving force Sudden shock 
and damage 

Loading dependence 

Effects on 
components in 
sequence 

Failures or 
degradation 

Failures, degradation or 
overloading components 

Similarities Trigger One failure or failures 
Stop condition There are no more new failures  
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difference and similarities between two types of CAFs are listed in 
Table 1. A direct CAF occurs if the failure of a component or components 
directly induces damage to other ones or reduce their lifetime to some 
extent, while an indirect CAF often occurs due to loading dependence: 
The overall workload of the system is redistributed because some 
components exclude from normal operation. The loading dependence is 
resulted from the activities of loading balancing or loading sharing. 
Loading balancing is the practice of equally spreading the workload 
across distributed system nodes to optimize resource efficiency and task 
response time, which avoids a situation that some nodes are substan
tially loaded while others are idle or performing little work [28]. 
Loading sharing system is the practice of spreading the workload in a 
way that some loads are sent to one node in the system while the 
remainder is routed to others [28]. Loading dependent systems suffer 
from indirect CAFs. 

2.2. CASCADE models 

2.2.1. Classical CASCADE model 
In this section, we present the mechanism of the classical nonstan

dard CASCADE model in loading dependent systems and the failure 
mechanisms of cascading process. This model is the basis inspired by 
which we extend our model. In current research related to classical 
CASCADE model, states Working and Failed are characterized for a 
component in a loading dependent system. When the workload is higher 
than the failure threshold, a failure occurs. Load redistribution then 
further facilitates the cascading process until that no new failures occur. 
Some assumptions are made in this classical CASCADE model:  

1) The total number of components n in the system is finite.  
2) All components in the system are identical, exchangeable and 

nonrepairable.  
3) Each component in the system has two states: Working and Failed. 

The classical CASCADE model is proceeding as the following steps:  

Step 0. All components are normally working initially with random 
loads uniformly distributed in [Lmin, Lmax].  

Step 1. An initial outside disturbance to all components triggers the 
initial event followed by failure propagation. The initial failure 
is set as a trigger in generation 0 of a CAF.  

Step 2. Check states for each component. If the load of component i 
exceeds Lmax, then component i is failed. Otherwise, the 
component is working. Suppose that there are nfj failed com
ponents in the jth generation. If nfj = 0, there is no more new 
failures in the jth generation, and the cascading process stops. 
The stop condition of cascading process is that all components 
fail or the loads of the unfailed components are less than Lmax.  

Step 3. Additional loads due to failed components in this generation are 
allocated according to the number of failed components and 
added to working components in next generation.  

Step 4. Go to the next generation and iterate from step 2. 

This cascading mechanism is shown in Fig. 1. According to the 
CASCADE algorithm, the failure cascading process is triggered by an 
outside disturbance and stops in the jth generation if there are no more 
new failures in generation j + 1. This cascading process can stop when a) 
all components fail (cascading process stops, system fails); or b) the load 
of the unfailed component is less than the failure threshold (cascading 
process stops, system does not fail). 

The classical CASCADE model is a tractable tool to capture the basic 
failure cascading process driven by loading dependence. However, the 
effect of some practical issues such as other states of components and 
components degradation on cascading property should be considered 
more. This encourages us to extend and improve the current classical 
models to tackle more practical problems. In practices, some compo
nents are functioning in the overloading state, which is often under
valued since the overloading components only seem to reduce the 
efficiency of the system. For example, the cascading process of a loading 
dependent piping network may vary if we consider not only the failures 
but also the overloading state of the pipelines, compared to the 
cascading process considering only the failures. Moreover, what about 
the impact on the cascading process when the inherent degradation of 
pipelines is also considered? This is also a subject we need focus on since 
most components may degrade naturally in reality, which should not be 
neglected. These practical problems will be addressed in the following 
sections. 

2.2.2. Multi-state cascade model 
In this section, we provide the mechanism of multi-state CASCADE 

model considering overloading components in loading dependent sys
tems and the failure mechanisms of cascading process. For a component 
in a loading dependent system, it can actually have three states or per
formance levels: Normally Working, Overloading and Failed. The per
formance level can be determined by the ratio of workload to capacity r. 
When the workload is very highly, namely the ratio to capacity exceeds 
the failure threshold, a failure occurs. When the workload is higher than 
normal value, but the load/capacity ratio is still below the failure 
threshold, we regard the component is at an overloading state. We can 
also have a certain value of the load/capacity ratio as the overloading 
threshold, indicating that if the ratio is lower than this value, the 
component is Normally Working. In both Normally Working and Over
loading states, a component is functioning, but it is inclined to fail when 
it is overloading. We use Functioning to denote the states of Overloading 
and Normally Working for short in this study. The failed and over
loading components allocate loads to the functioning components dur
ing cascading process. Note that the overloading components also 
allocate loads to themselves. Here we do not consider maintenance, and 
the component state is generally getting worse. The states transition 
during cascading process are illustrated by Fig. 2. 

Consider a technical system, some assumptions for our model are 
shown as below  

1) The total number of components n in the system is finite. 

Fig. 1. Failure cascading process and stop scenarios of classical CASCADE model.  
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2) All components in the system are identical, exchangeable and 
nonrepairable. 

3) Each component in the system has three states: Working, Over
loading and Failed.  

4) The capacity of every functioning component degrades naturally as 
the cascading failure propagate. The value of capacity decrement in 
every generation is cd. 

We can set that the workload on components lies in [Lmin, Lmax], the 
capacity lies in [Cmin, Cmax], and the initial disturbance D lies in [Dmin,

Dmax]. When illustrating these parameters with a case of piping network, 
the workload can correspond to the flow rate through a pipeline, and the 
capacity is related with the failure limit and the expectation flow rate. 
An unexpected rise in flow rate is triggered by change of client 
requirement or work schedule, to lead to an initial disturbance. 
Furthermore, abrupt temperature fluctuations from the surroundings 
might affect workload via provoking an initial disturbance. These un
desirable alterations should be observed since they are the driving force 
behind the start of the CAFs. The values of Lmin, Cmin and Dmin are 
generally 0 in practice, but the values of Lmax, Cmax and Dmax are not 
fixed. It is convenient for calculation to normalize the loads l and ca
pacity c in [0, 1]. Based on the normalization of loads and capacity, if the 
initial disturbance d ≥ 1, all components fail, and the cascading process 
stops immediately. If the initial disturbance d = 0, every component is 
working well and there is no failure to start the failure cascading pro
cess. Hence the following discussions assume that the range of d is 
normalized in (0, 1). 

The nonstandard CASCADE model [8,19,20] and Modified Normal
ized CASCADE model [29] have been introduced for assigning work
loads and initial disturbance to the components. Inspired by the existing 
CASCADE models, we reflect the cascading process in a similar way. To 
illustrate overloading state and capacity degradation, we introduce the 
quasi-multinomial distribution to model the three states of components. 
The extended multi-state CASCADE is modeled as the following steps:  

Step 0. All components are normally working initially with capacity c0 
= 1 and random loads li that are uniformly distributed in [0, 1].  

Step 1. An initial outside disturbance d to all components triggers the 
initial event followed by failure propagation. The initial failure 
is set as a trigger in generation 0 of a CAF.  

Step 2. Check states for each component. The performance level is 
represented by ratio of workload to capacity l/c. If the ratio ri of 
component i < r∗, then component i is working well. When the 
ratio ri of component i exceeds 1, the workload of the component 
will be more than its capacity could endure, so the component 
fails. Otherwise, the component is overloading. Suppose that 
there are nfj failed components and noj overloading components 
in the jth generation. If nfj = 0, there is no more new failures in 
the jth generation, and the cascading process stops. We define 
the stop condition of cascading process that if no new failures 
occur in one generation, the failure cascading process stops 
here, regardless of whether there would be more failures occur 
in subsequent generations.  

Step 3. The capacity of every functioning component decreases due to 
natural degradation, so we have the capacity of the component 
in the jth generation cj = c0 − j⋅cd and the load/capacity ratio of 
the component rij =

lij
cj
. The additional load due to each failure in 

this generation on every functioning component in next gener
ation is lf. The additional load on every functioning component 
in next generation due to each overloading component in this 
generation is lo. It is natural that lo is considered smaller than lf. 
Additional loads lj = nfjlf + nojlo are allocated according to the 
number of failed and overloading components and added to 
every functioning component. Each functioning component is 
assigned an additional load value of lj.  

Step 4. Go to the next generation and iterate from step 2. 

This cascading mechanism is shown in Fig. 3. According to the 
CASCADE algorithm, if and only if there are no more new failed com
ponents in generation j + 1, the cascading process stops in the jth gen
eration. This is the only criterion for determining if the cascading 
process stops, regardless of whether there are still functioning compo
nents in the system currently. We consider it as a new cascading process if 
the remaining components tend to fail after a period and there would be 
new generation 0. We shall clarify that the stop condition of cascading 
process is differentiated from the stop condition of system. The former 
one is determined by whether new failures occur at a certain generation, 
whereas the latter one is determined by the system reliability. In 
conclusion, the cascading process stops when all components fail, but 
not all components fail when the cascading process stops. Following the 
explanation of the stop condition of cascading process, we can charac
terize three stop scenarios (scenarios of how the system works) when the 
cascading process terminates as follows. This cascading process can stop 
when a) all components fail (cascading process stops, system fails); or b) 
the load/capacity ratio of the functioning component is less than the 
failure threshold (cascading process stops, system does not fail). These 
two cases could be classified into three scenarios. In stop scenario 1, all 
components and the system already failed; in stop scenario 2, there exist 
some overloading components; in stop scenario 3, the load/capacity 
ratio of the functioning component is less than r* and all components 
work normally. 

3. Quantitative analysis with the multi-state CASCADE model 

3.1. Total number of components in different states 

To start the cascade, initial disturbance d is assigned to each 
component. If there are components failed, the failure cascading process 
starts, followed by that the number of failed components increases and 
the functioning components decreases generally. The numbers of failed 
components, overloading components and normally working compo
nents are nf , no, nw and nf + no + nw ≤ n. It is natural that n > 0 and nfj,

noj, nwj for j = 0, 1,… are restricted to nonnegative integers. The state of 
the component follows a multinomial distribution X ∼ PN(N : pf ,po,pw), 
determined by outside initial disturbance, additional loads from failed 
and overloading components, and overloading threshold of components. 
In each generation, the probability that there are nfj components failed, 
noj components overloading and nwj components normally working is 

P
[
X1 = nf , X2 = no,X3 = nw

]
= Cnf

n Cno
n− nf

pnf
f pno

o pnw
w (1)  

where pf ≥ 0, po ≥ 0, pw ≥ 0, pf + po + pw = 1. 
The probability of the total number of components in different states 

might be derived as follows: 
In generation 0, before the initial disturbance applied, the proba

bilities that the component in different states depend solely on the 
random loads li. Then we could obtain pf = 0, po = 1 − r∗, pw = r∗. In 
generation 0, the cascading process has not been started yet since all 
components are functioning. 

After the initial disturbance d is applied in generation 1, the load of 
component i is li + d. But the capacity of each component is still c0 since 
the cascading process just started from this generation. After the 
cascading process begins, the capacity of components gradually 

Fig. 2. States transition of components.  
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declines. Similar to the load redistribution principle, the component 
capacity loss at this generation (generation 1) will be reflected in the 
next generation (generation 2). For generation 1, if the load/capacity 
ratio of a component exceeds 1, the component fails, we have li ≤ 1 and 
1 < li+d

c0
, and the probability that the component fails is the probability 

that li satisfies the constraints of the previous two equations. So, we 
could obtain the interval of li: c0 − d < li ≤ 1, and further we could easily 
achieve pf = 1 − c0 + d. The same holds applicable for the other two 
probabilities. According to our definition, if the load/capacity ratio of a 
component lies in [r*, 1], this component is overloading, which could be 
represented by r∗ < li+d

c0
< 1. Hence, we obtain the probability that the 

component in overloading state is po = c0(1 − r∗). When li+d
c0 

< r∗, the 
component works well, and the probability is pw = c0r∗ − d. The three 
probabilities are respectively pf = d, po = 1 − r∗, pw = r∗ − d in gener
ation 1 based on that the initially capacity is normalized as c0 = 1. 

In the jth generation, the cascading process has already gone through 
some generations, the total number of failed components and the total 
number of overloading components could be calculated. Let sj = (nfj,noj,

nwj), Sj = (Nfj,Noj,Nwj) for j = 0,1,… and write 

uj = nf 0 + nf 1 + ⋯ + nfj and vj = noj (2)  

for j = 0,1,⋯. 
Each functioning component suffers additional loads ulf +vlo from 

failed and overloading components and total loads li + d + ulf + vlo. 
With the same principle for calculation of probability of components in 
different states in generation 1, we have li ≤ 1 and 1 < (li +d+ulf +vlo)
/cj for the case that the component fails, and the probability that the 
component fails is the probability that li satisfies the previous two 
constraint equations. So, we could obtain the interval of li: cj − (d +

ulf + vlo) < li ≤ 1, and further we could get pf = 1 − cj + d + ulf + vlo. 

The same holds applicable for the other two probabilities. Likewise, we 
could obtain the constraint equations of other two states after some 
generations: when r∗ < (li + d + ulf + vlo)/cj < 1, the component is 
overloading and the probability is po = cj(1 − r∗). When (li + d + ulf +

vlo)/cj < r∗, the component works well, and the probability is pw = cjr∗

− (d + ulf + vlo). 

Note that the total number of overloading components vj is not sum 
of noj in previous generations for j = 0, 1,… since the overloading 
components may fail in a cascading process. If we calculate the total 
number of overloading components by summing up the overloading 
components in all generations, the total number of failed components 
partially overlaps the total number of overloading components. We only 
use the number of the overloading components in latest generation to 
represent the total number of overloading components. Generalize the 
derivation and apply this distribution to normalized load-dependent 
case and we can obtain the distribution of the total number of failed 
components and overloading components. An extended quasi- 
multinomial distribution is applied as following on basis of extended 
quasi-binominal distribution introduced by Consul [19,30]. The 
quasi-binomial distribution is a small “perturbation” of the binomial 
distribution, whose mass probability function could be defined by P(X =

k) = Ck
np(p + kϕ)k− 1

(1 − p − kϕ)n− k. When extended to 
quasi-multinomial distribution, we also strictly follows the format of the 
distribution, as shown in Eq. (3). 

P[U=u,V=v]=

⎧
⎪⎪⎨

⎪⎪⎩

Cu
nCv

n− uφ(d)φ
(
pf
)u− 1φ(po)

vφ(pw)
n− u− v

,u=0,1,…,n− 1

1−
∑u=n− 1

u=0
P(U=u,V=v),u=n

(3) 

In Eq. (3), φ(x) is a saturation function representing the probability 

p = φ(x) =

⎧
⎨

⎩

0, x < 0
x, 0 ≤ x ≤ 1
1, x > 1

(4) 

We have Eq. (5) to calculate the distributions of the total number of 
components in different states.   

When we consider the accident risk, the number of failures is more of 
interest than number of overloading components. The equation to 
denote the distributions of the total number of failed components is Eq. 
(6). 

Fig. 3. Failure cascading process and stop scenarios of multi-state CASCADE model.  

P[U = u,V = v] =

⎧
⎪⎪⎨

⎪⎪⎩

Cu
nCv

n− uφ(d)φ
(
1 − cj + d + ulf + vlo

)u− 1φ
(
cj(1 − r∗)

)vφ
(
cjr∗ −

(
d + ulf + vlo

))n− u− v
, u = 0, 1,…, n − 1

1 −
∑u=n− 1

u=0
P(U = u, V = v), u = n

(5)   
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P[U = u] =

⎧
⎪⎪⎨

⎪⎪⎩

Cu
nφ(d)φ

(
pf
)u− 1φ

(
1 − pf

)n− u
, u = 0, 1,…, n − 1

1 −
∑n− 1

u=0
P(U = u), u = n

(6) 

In this CASCADE model, the system reliability could be calculated as 
Eq. (7) when considering the cascading time t, which could be discussed 
in further research. 

R(t) = 1 −
∑n− 1

j=0
P
(
Uj = n, Tj < t

)

= 1 −
∑n− 1

J=0
F(J+1)(t)⋅P[u= n]

(7)  

where R(t) is the probability that the system is still working until time t. 
Tj is duration of cascading process from the start to generation J. 
F(J+1)(t) is the probability distribution function that all components fail 
in generation J at time t. This equation is independent of the number of 
overloading components, as only failed components are typically 
included when investigating system reliability. 

3.2. Distributions of stop scenarios 
In the previous subsection, the probability that there are nfj compo

nents failed, noj components overloading and nwj components normally 
working in the jth generation is 

P
[
X1j = nfj, X2j = noj,X3j = nwj

]
= Cnfj

n Cnoj
n− nfj

pnfj
f pnoj

o pnwj
w (8) 

However, in the cascading process, the sojourn probability of com

ponents in different states is not constant as the failure propagates and 
loads are reallocated. Since the workload of components is mounting 
due to loading dependent and the capacity of components is decreasing 
due to natural degradation gradually, the probability of the number of 
components in different states should be recalculated after each gener
ation according to the loading increments. It is convenient to use 
equations of αj = φ(pfj), βj = φ(poj), γj = φ(pwj) for calculating in the 
subsection. 

In generation 0, pf0 = 0, po0 = 1 − r∗, pw0 = r∗, and we could obtain 
αj = 0, βj = 1 − r∗, γj = r∗ for j = 0. 

In generation 1, with the initial workloads given as described in step 
0 and the initial disturbance applied as in step 1, the CASCADE algo
rithm starts. In step 2, for a loading dependent system considering 
decreasing capacity, the probability that the initial disturbance triggers 
one component fails or overloads in generation 1 is α1 = φ(1 − c0 + d), 
β1 = φ(c0(1 − r∗)), γ1 = φ(c0r∗ − d), and could be written as α1 = φ(d),
β1 = φ(1 − r∗), γ1 = φ(r∗ − d) since c0 = 1. The probability that there are 
nf0 failed components and no0 overloading components is 

P(S0 = s0) = P
[
X1 = nf 0, X2 = no0,X3 = nw0

]

= Cnf 0
n Cno0

n− nf 0
αmf 0

0 βmo0
0 γ(

n− nf 0 − no0)
0

(9) 

In the jth generation, the capacity of each functioning component 
decreases due to natural degradation after several generations, and the 
additional loads are accumulated and added to each functioning 
component as cascading process proceeds. Additional loads from failed 
components in generation j-1 to the functioning components in the jth 
generation is nf(j− 1)lf . Additional loads from overloading components in 

generation j-1 to the functioning components in the jth generation is 
no(j− 1)ld. The additional loads from failed and overloading components 
could be assigned to the functioning components including itself in 
generation j + 1. 

lj = nf (j− 1)lf + no(j− 1)lo (10) 

For loading dependent system considering capacity decrement of the 
components, we have 

αj = φ
(

1 − d − u(j− 2)lf − v(j− 2)ld − cj + lj

1 − d − u(j− 2)lf − v(j− 2)ld

)

,

βj = φ
(

cj(1 − r∗)
1 − d − u(j− 2)lf − v(j− 2)ld

)

,

γj = φ
(

cjr∗ − lj

1 − d − u(j− 2)lf − v(j− 2)ld

)

(11)  

for j = 2,3,…, and u− 1 = 0, v− 1 = 0. 
The probability that the number of failed components and over

loading components in every generation follows (s0, s1,…sj) until the 
jth generation is given by Eq. (12).   

Suppose that cascading process stops in the jth generation and d+
u(j− 1)lf + v(j− 1)ld ≥ cj, then all components fail in the jth generation. 
Cascading process stops according to stop scenario 1. In this case 

P
[
Sj+1 = sj+1|Sj = sj,…, S0 = s0

]
= 1 (13)  

for nf(j+1) = 0. 
Suppose that cascading process stops in the jth generation and d+

u(j− 1)lf + v(j− 1)ld < cj, meaning to satisfy the stop scenarios 2 or 3. In 

addition, the loads of functioning components are uniformly distributed 
in [d+u(j− 1)lf +v(j− 1)ld, cj] conditioned on n − uj not have failed in gen
eration j + 1. The probability that there are no(j+1) overloading compo
nents and nw(j+1) normally working components is given by Eq. (14). 

P
[
Sj+1 = sj+1

⃒
⃒Sj = sj,⋯, S0 = s0

]
= Cno(j+1)

n− uj βno(j+1)
j+1 γnw(j+1)

j+1 (14) 

Table 2 
Load of components in an example of classical CASCADE model.  

j 1 2 3 4 5 Loading 
increments to 
next generation 

Notes 

0 0.75 0.5 0.45 0.25 0.9 / Initial workloads 
1 0.95 0.7 0.65 0.45 1.1 0.1 Initial disturbance 

d added; 5 fails 
2 1.05 0.8 0.75 0.55 / 0.1 1 fails 
3 / 0.9 0.85 0.65 / 0 No new failure 

occurs, and the 
cascading process 
stops  

P
[
Sj = sj,…, S0 = s0

]
=

n!
nf 0!no0!nw0!

αnf 0
0 βno0

0 γnw0
0

(n − u0)!

nf 1!no1!nw1!
αnf 1

1 βno1
1 γnw1

1 ⋯
(
n − u(j− 1)

)
!

nfj!noj!nwj!
αnfj

j βnoj
j γnwj

j (12)   
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Multiplying Eqs. (12) and (14) we could obtain Eq. (15) to verify the 
distribution for the stop scenarios.   

In case cascading process stops according to stop scenario 1, all 
components fail in the jth generation. In the case cascading process stops 
with stop scenario 2, some components (or all functioning components) 
are overloading in the jth generation, and the number of failed com
ponents in generation j + 1 is 0. In case cascading process stops ac
cording to stop scenario 3, there are still n − uj components normally 
working well in the jth generation, and the number of failed components 
in generation j + 1 is also 0. 

4. A practical case with model comparison 

In this section, we apply both the classical CASCADE model and the 
proposed multi-state CASCADE model to a generic petrochemical piping 
network for comparing their effectiveness in the analysis of cascading 
failures due to loading dependence. We consider a part of a piping 
network system consisting of 5 gas pipes. Each pipe is designed with a 
failure limit of 20 m/s and expectation flow rate 16 m/s. Fouling would 
emerge inside the pipe as the pipe transfers gas, increasing the pressure, 
reducing the gasses throughput, and lowering system operation effi
ciency, which is the process we called natural degradation. The volume 
of gas transported in the pipes is the indicator of working load, and the 
capacity of the pipe is determined by the degree of fouling. If one pipe 
stops functioning due to exogenous disturbance, sudden changes in 
temperature for example, other pipes share the workload of the failed 
pipe. 

It is possible to use the classical CASCADE model to study the 
cascading failure in such a system. According to the classical CASCADE 
model, the components fail or normally working during the cascading 
process without degradation. We normalize the workloads and capacity 
to [0, 1]. The initial loads of components are randomly valued in [0, 1]. 
Assume that the initial disturbance d = 0.2, loading increments from 
failed components lf = 0.1 without losing generality. Table 2 and Fig 4 
show the changes of the workloads of all components and the cascading 
process. The loading increments in this model depends on the number of 
the failed components, the load of which exceeds 1. The failure 
cascading process ends in the third generation with components 1 and 5 
failed, and the system is still working. 

The classical CASCADE model investigates the loading dependence 
due to malfunction of some pipes. The congestion due to filth accumu
lation, which is inevitable during system operation, also require addi
tional gas on the remaining functioning pipes. The extra gas speed up 
fouling of functioning pipes and let them undergo accelerated degra
dation. When the gas is transferred in the pipe at a rate more than the 
expectation flow rate 16 m/s but under the failure limit of 20 m/s, we 
think the pipe is overloading since the workload exceeds its expectation 

capacity. We could consider that there is the overloading threshold r* =
0.8. In one specific circumstance, we can assume that the value of 
overloading threshold is constant. However, when the component de

grades, it stores less capacity, hence a lower workload will overload the 
component with the same overload threshold. Some pipes become 
overloading with excessive workloads, and their performance suffers 
severely, which is why overloading components need to be addressed in 
the proposed model. Based on the assumption about the initial loads, 
initial disturbance, and loading increments from failed components 
when using classical CASCADE model, the loading increments from 
overloading components lo is set to be 0.05 without losing generality. In 
addition, assume that the capacity decrement of functioning component 
in every generation cd = 0.01. The load/capacity ratio r of components 
and cascading process are listed and performed in Table 3 and Fig 5. The 
loading increments in this model depends on the number of the failed 
components and overloading components. The capacity of the func
tioning components decreases in every generation. Using this model, 
load/capacity ratio r is utilized to determine states of components. When 
the failure cascading process stops in the fourth generation, all compo
nents fail, and the system fails. 

From the example, we can see that the system and the pipes function 
in radically different states under the same circumstances. The 
cascading process of classical CASCADE model ends in the third gener
ation, but the system continues to function. The cascading process of the 
proposed multi-state CASCADE model stops in the fourth generation, 
and all components fail. Furthermore, we can see that the load/capacity 
ratio values in Table 3 are generally bigger than those in Table 2 (if we 
consider the component capacity in the example in Table 3 to be con
stant at 1). This implies that the components in multi-state CASCADE 
model operates in somewhat worse state than those in classical 
CASCADE model. The primary difference between the two conclusions is 
that the degradation of components and the effects of overloading 
components are considered, which is more compatible with how the 
system works in engineering industry. In practice, if we neglect com
ponents degradation and the influence of overloading components, we 
may overestimate the performance of components and the system, 
negatively affecting maintenance decision making. 

5. Model parameter analysis 

The model proposed can be used to analyze the cascading process in 
a large complex system with loading dependence. These systems can be 
wind plants, power systems, piping networks, key medical devices, road 
systems, etc., where the system performance is related to the number of 
functioning components. To investigate the usefulness of this CASCADE 
model in the optimization of controllable variables in design and oper
ation, this section examines several examples of the effects with varying 
parameters of CASCADE distribution on failures and stop scenarios of a 
general loading dependent system. 

Fig. 4. Failure cascading process of a piping system using classical CASCADE model.  

P
[
Sj+1 = sj+1,⋯, S0 = s0

]
=

n!
nf 0!no0!nw0!

αnf 0
0 βno0

0 γnw0
0

(n − u0)!

nf 1!no1!nw1!
αnf 1

1 βno1
1 γnw1

1 ⋯
(
n − u(j− 1)

)
!

nfj!noj!nwj!
αnfj

j βnoj
j γnwj

j ⋅Cnf (j+1)
n− uj βno(j+1)

j+1 γnw(j+1)
j+1 (15)   
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5.1. Effect of initial disturbance 

This subsection illustrates the change of CASCADE distribution as the 
initial disturbance varies by comparing the probabilities of total 
numbers of failed and overloading components. We consider a system in 
which the number of components n = 100. Without losing generality, we 
firstly assume that the overloading threshold of a component is r* = 0.8, 
the loading increments from failed and overloading components are 
respectively lf = 0.005, and lo = 0.001. The changes of probability dis
tributions of total numbers of failed and overloading components are 
observed with different initial disturbance d = 0.001, 0.01, 0.05, 0.1. 

The probability distributions of total numbers of failed and over
loading components are calculated and shown in Figs. 6 and 7. The 
nodes on the surfaces in Fig. 6 denotes the probabilities of total numbers 
of failed and overloading components of numerical results. When the 
initial disturbance increases, the workloads of components tend to 

exceed the failure threshold, which is the reason the value of u grows up. 
For d = 0.001, the initial disturbance value is relatively small, causing 
only a small number of failures. The low number of failed components 
also results in fewer additional loads to drive the cascade process. The 
cascading process ends quickly when there are still some functioning 
components, and the system is still operating (stop scenario 2). The short 
cascading process leads to that only few nodes can be observed to 
compose a surface in Fig. 6(a), which is more like a folded plane. As 
d increases, the number of obtained nodes in Fig. 6(b), (c) and (d) 
gradually rises, the surface becomes smoother and shows obvious peaks. 
This peak represents the highest probability of a scenario with a certain 
total number of failed components and a certain total number of over
loading components in this case. The phenomenon that all components 
fail emerges in Fig. 6(d), indicating that stop scenario 3 occurs. 

Fig. 7 integrates the five surface to illustrate the variation tendency 
better. Fig. 7(a) illustrates the trend of a lower overall probability 

Table 3 
Load/capacity ratio of components in an example of multi-state CASCADE model.  

j 1 2 3 4 5 Loading increments to next 
generation 

Capacity of the functioning 
components 

Notes 

0 0.75 0.5 0.45 0.25 0.9 / 1 Initial workloads/ Initial capacity 
1 0.96 0.71 0.66 0.45 1.11 0.15 0.99 Initial disturbance d added; 5 fails 
2 1.12 0.87 0.82 0.61 / 0.2 0.98 1 fails 
3 / 1.08 1.03 0.82 / 0.25 0.97 2 and 3 fail 
4 / / / 1.09 / 0.15 0.96 4 fails; the system fails; the cascading process 

stops  

Fig. 5. Failure cascading process of a piping system using multi-state CASCADE model.  

Fig. 6. Total number of failed and overloading components with different d. (a) d = 0.001. (b) d = 0.01. (c) d = 0.05. (d) d = 0.1.  

Fig. 7. Integration of probability distributions with different d. (a) Three-dimensional profile. (b) p-u profile. (c) p-v profile.  
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distribution of total numbers of failed and overloading components. 
Fig. 7(b) verifies the conclusion that there is a critical value of u that 
maximizes the probability. As d increases, this peak value of probability 
gradually decreases. In addition, the probability distribution range 
corresponding to u gradually shifts to the direction that u becomes larger 
when d becomes larger. It could also be observed from Fig. 7(c) that for 
different d, the number of overloading components is basically 
concentrated from 15 to 25, and the probability peak decreases gradu
ally as d increases. Besides, the peaks of probabilities for u and v both 

show approximate power law behavior near the peak value. 
Overall, when the initial disturbance value is small, the number of 

failed components is small, but the maximum probability of its occur
rence is large. When the initial disturbance value is large, more com
ponents fail, but the maximum probability of its occurrence is small. The 
initial disturbance can be sudden shock or short-term increase in flow. 
Since the initial disturbance is an external factor, it is difficult to be 
controlled in system design, but we can still obtain some managerial 
implications, such as avoiding disturbances that can directly trigger 

Fig. 8. Total number of failed and overloading components with different lf. (a) lf =0.0001. (b) lf =0.0005. (c) lf =0.001. (d) lf =0.005.  

Fig. 9. Integration of probability distributions with different lf. (a) Three-dimensional profile. (b) p-u profile. (c) p-v profile.  

Fig. 10. Total number of failed and overloading components with different lo. (a) lo =0.0001. (b) lo =0.0005. (c) lo =0.001. (d) lo =0.005.  

Fig. 11. Integration of probability distributions with different lo. (a) Three-dimensional profile. (b) p-u profile. (c) p-v profile.  
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failure of components. In practices, such efforts can lead to high cost to 
ensure that none of the components in the system fail. In addition, it is 
unwise to ignore outside disturbances due to the low probability of 
occurrence that many components fail. When the system can accept a 
certain range of number of failed components, we can get an acceptable 
external disturbance value accordingly. In a bridge system, for example, 
the value of a sudden increase in traffic caused by holiday trips can be 
limited to an acceptable range to ensure long-term good operation of the 
system. During inspection, if the external disturbance is lower than this 
value, we do not need take more actions. 

5.2. Effect of loading increments 

To compare the effects of two kinds of loading increments, we use 
different values of lf and lo for different configurations in this subsection. 
To match the configurations with reality, lo cannot exceed lf. For the case 
that n = 100, we set d = 0.05, r* =0.8. Firstly, we evaluate the loading 
increments lf as: 0.0001, 0.0005, 0.001, and 0.005 when fixing lo =

0.0001. Then, we set lf = 0.005, and observe different loading in
crements lo as 0.0001, 0.0005, 0.001, and 0.005. 

Figs. 8 and 10 respectively describe the probability distributions of 
total numbers of failed and overloading components under different 
settings of parameters lf and lo. It can be found that such changes have 
little influence on the shape of the surface. From integration results in 
Figs. 9 and 11, surfaces cannot be easily differentiated when lf and lo 
varying from 0.0001 to 0.001, while the surface apparently changes 
when lf and lo assumed to be 0.005. A reasonable explanation can be 
provided that when the loading increments are small, the effect of their 
changes on the probability distributions could be ignored, but when it 
reaches to a certain value, it still can affect the probability distributions 
of total numbers of failed and overloading components. This conclusion 
recommends that more attention should be paid to the timely mainte
nances of overloading components in practice. It is also worth 
mentioning that the probability distributions range of the number of 
overloading components is almost same as in the previous section. 

Actually, the values of two kinds of loading increments could be 
impacted by management or strategies. Given that an initial failure has 
already been triggered, we try to avoid subsequent failures by devel
oping a more rational strategy for workload distribution, that is, to 
manage how much workload should be reallocated to which component 
during system operating. Generally, the loading increments are not fixed 
in the design period, hence the measures to manage workload distri
bution would be preferred. Taking a road system as an example, when a 
road section cannot be used or gets blocked due to overloading, other 
roads will bear more traffic and pedestrian flow, or in other words, bear 
additional workloads. This kind of additional workloads can be adjusted 
by taking current limiting and reasonable diverting measures. 

5.3. Effect of overloading threshold 

The overloading state of components has been introduced in the 
proposed extended multi-state CASCADE model, accompanying with the 
new parameter overloading threshold considered to distinguish the state 

of overloading components from normally working components. Here 
we discuss the influence of this new parameter. Consider that the 
overloading threshold r* varies from 0.6 to 0.9 as shown in Figs. 12 and 
13, in which n = 100, d = 0.05, lf = 0.005, lo = 0.001. 

The shape and trend of each surface are still consistent with our 
previous discussion: each surface has an obvious peak, and the 
approximate power function law appears near the peak. In addition to 
this, the similarities and differences of the surfaces deserve more dis
cussions. In Fig. 12, the probability distributions of total numbers of 
failed and overloading components, as well as the shape and trend of the 
surfaces are roughly same. The curved surfaces in Fig. 13 gradually shifts 
in the direction of v decreasing, as the overloading threshold increases. 
Different from the previous discussions, the distribution range of the 
number of failed components are almost same in this example, 
concentrated in 0 to 20, and the probability peaks when the overloading 
threshold r* is 0.9. The results indicate that change of the overloading 
threshold mainly affect the probability distribution range of the number 
of overloading components but can barely affect that of failed compo
nents. It should be noted that even though the probability distribution 
range of the number of failed components is slightly affected by the 
overloading threshold, the maximum probability value ascends as the 
overloading threshold value increases, which demonstrates that as the 
overloading threshold value increases, it would be easier for compo
nents to fail. 

The above results can provide references for practical system engi
neering design and operation. In a loading dependent system where the 
overloading components also influence the failure propagation, the 
overloading threshold should be a moderate value, neither not too high 
to make failures occurring easily, nor too low to prompt too many 
overloading components. The practical overloading threshold is a crit
ical value beyond which the component operates in poor conditions and 
requires maintenance action. It could be controlled through providing 
different expectation values of safety margin in design. For a component 
designed with a failure limit of 200 MPa and normally working under its 
design expectation stress, it is overloading below the failure limit but in 
excess of the design expectation stress. Its threshold is 0.8 when 
expectation stress set to be 160 MPa and is 0.7 when expectation stress 
set to be 140 MPa. Apart from design in practical, some guidance could 
be provided during operation. For a repairable loading dependent sys
tem, periodical inspections and imperfect repair could be carried out 
during operation to restore the performance of overloading components 
under the threshold. 

5.4. Stop scenarios and occurrences 

In the previous analysis, we only consider the probability distribu
tions of the total number of failed and overloading components in the 
meantime when the cascading process is not stopped yet. We now 
explore the stop scenarios of the cascading process and their possibilities 
of occurrences. 

It has been summarized in previous examples that the initial 
disturbance d has a relatively large impact on the number of failures, and 
the number of failures largely determines how the system operates when 

Fig. 12. Total number of failed and overloading components with different r*. (a) r*=0.6. (b) r* =0.7. (c) r* =0.8. (d) r* =0.9.  
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the cascading process stops, which is the so-called stop scenarios. Be
sides, the case that all components fail only occurs in Fig. 6(d), denoting 
that stop scenario 3 only happen in this configuration. Therefore, only 
the initial disturbance d is changed to conduct the investigation in this 
section. 

Suppose n = 100, r* =0.8, lf = 0.005, lo = 0.001, and we perform 100 
numerical calculations respectively for each d from 0.005 to 0.5 and 
examine how many times every stop scenario occurs. According to 
classification of stop scenarios in Section 2.2.2, there are three kinds of 
stop scenarios that may occur when the cascading process stops for each 
d. The dots in the results plotted in Fig. 14 show the occurrences times 
for three stop scenarios per 100 calculations for each d, denoting their 
possibilities of occurrences for each d. The sum of occurrences times of 
three stop scenarios is thus 100 for each d. The findings could be briefly 
summarized as follows: The cascading process of the system basically 
stops according to the stop scenario 2 if there is no sufficient initial 
disturbance. As the initial disturbance is larger, stop scenarios 1 and 3 
are more likely to appear. More specifically, if the initial disturbance is 
small, the system is generally still working and there exist some over
loading components when the cascading process terminates. When the 
cascading process stops, the possibility of the system being in one of two 
other stop scenarios grows as the initial disturbance increases: the sys
tem fails (stop scenario 1), or the system is running with all the 
remaining components working normally (stop scenario 3). 

The difference between stop scenarios 1 and 3 is that the mounting 
trend of the occurrences of stop scenario 3 emerges earlier than that of 
stop scenario 1, which indicates that stop scenario 1 occurs with a larger 
initial disturbance. The occurrence times of stop scenario 1 ascends at a 
gradually increasing rate, while the occurrence times of stop scenario 3 
initially rises rapidly, then tends to stabilize, and even shows a slight 
downward trend at the end of the trendline. Since the system stops 
running only when the stop scenario 1 occurs, the trendline of stop 

scenario 1 also reflects the failure probability variation of the system. 

6. Conclusion remarks and future works 

In this paper, we have developed a novel probabilistic model, multi- 
state CASCADE, with the extended quasi-multinomial distribution, for 
loading dependent systems with CAFs where the cascading process 
could be affected by overloading components. Three cascading process 
stop scenarios are identified and interpreted. The contribution of this 
work lies in the involvement of overloading components and degrada
tion of components, extending the existing studies. The results of the 
practical case indicate that the performance of components and the 
system would be overestimated if we neglect components degradation 
and the influence of overloading components. The proposed model can 
provide a more accurate characterization of the cascading process of the 
multistate loading dependent systems. Consequently, we can help 
maintenance crew and managers to make more reasonable maintenance 
policies. The more precise information regarding the performance of 
components and the system serves as the backbone to improve the 
decision-making process when people consider maintenance optimiza
tion for a loading dependent system with CAFs. For example, the interval 
between maintenance activities can be shortened to ensure that proper 
maintenance actions are performed on time, or that overloading com
ponents can be also considered when taking maintenance actions. 

In addition, numerical examples are given to illustrate the proposed 
model by analyzing the influencing factors of the probability distribu
tions of total numbers of failed and overloading components. The find
ings in the numerical cases have shown that the initial disturbance and 
loading increments affects the probability distributions. More failures 
may occur as the initial disturbance and loading increments increase, 
but the maximum values of probability distributions decrease. A novel 
finding is that the overloading threshold affects the probability 

Fig. 13. Integration of probability distributions with different r*. (a) Three-dimensional profile. (b) p-u profile. (c) p-v profile.  

Fig. 14. Occurrences of three stop scenarios.  
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distribution range of number of overloading components rather not the 
failed components. For stop scenarios of cascading process, system al
ways operates when there are still normally working and overloading 
components (stop scenario 2) if the initial disturbance is quite small. As 
the initial disturbance increases, the cascading process tends to stop in 
scenarios 1 and 3. 

The proposed model will encounter some issues which may be worth 
to investigate in the future. Firstly, since our proposed model is still 
limited in the multi-component system in simple configuration, further 
investigations on multi-state CASCADE model for k-out-of-n system and 
engineering application are stimulated. Secondly, it may demonstrate 
the necessity and practical significance of the model more intuitively to 
apply a practical example with maintenance activities included. Thirdly, 
a comparison with other models, such as modeling the situation of three 
states and a finite number of components by a Markov chain with 
transition probabilities, is suggested in our future work. 
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Abstract
In many production facilities, multiple components have to work together to
share the overall workload on the entire system, leading to loading dependence
and higher vulnerability to cascading failures. Additionally, overloading of one
component can expedite the failures of others, exemplifying another form of
loading dependence. In this study, we develop a system reliability analysis model
for loading dependent systems considering overloads based on the Multi-state
CASCADEmodel. By incorporating a time variable, the tailor-mademodel is able
to characterize the duration of each generation in the cascading process, along
with the cumulative time of the whole cascading process until the system col-
lapse.A combination of analytical and simulation techniques is then employed to
investigate how various potential influencing factors of loading dependence and
cascading processes influence the system reliability. The results demonstrate that
the effectiveness of proposed method in estimating the system reliability of the
loading dependent system considering overloads. Such findings can improve the
decision-makings of reliability prediction, system design, andmaintenance opti-
mization, especially in scenarios involving the loading dependentwith cascading
failures.

KEYWORDS
cascading failures, cascading time, multi-state CASCADE model, overloading, system
reliability

1 INTRODUCTION

Modern production systems become increasingly complicated with more interconnected devices and components. Inter-
actions and dependences between various components can increase the likelihood of failures. When one component fails,
the failure might propagate and cause failures of other components. This phenomenon is known as a cascading failure
(CAF). CAFs are the major threat to electric power transmission systems,1,2 transportation systems,3 healthcare infras-
tructure systems,4 safety instrumented systems,5 chemical industry clusters,6,7 and other complex network systems.8–10
For example, the 2003 blackout in the Northeastern United States was initially triggered by the tripping of multiple power

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
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transmission lines, and finally led to considerable traffic congestion and communication breakdowns due to dependen-
cies between various systems.11 Another typical event triggered by CAFs is the domino accident that took place in Mexico
in 1984.12 This event led to a chain reaction, resulting in 12 to 20 subsequent accidents, and this catastrophic sequence of
events claimed the lives of 650 people. Concerning the damages brought by CAFs, it is essential to consider themechanism
and consequence of potential CAFs in system design, system reliability analysis and maintenance optimization.
CAFs can be attributed to the structural or functional dependence among various componentswithin a complex system.

One of the prime examples of systems exhibiting such dependencies is a loading dependent system, in which all compo-
nents collectively share the overall workload of the entire system.13 CAFs have been found common in loading dependent
systems.14–16 Keizer et al.14 explored a parallel and redundant system that experiences failure dependence due to load shar-
ing and economic dependence. The study varies the extent of load sharing and the degradation process to uncover crucial
insights into the optimal maintenance strategy. Brown et al.15 proposed an innovative spatial model aimed at assessing the
reliability of load-sharing systems, accounting for spatial dependence and proximity effects, which is suitable for systems,
whether they can provide distance-related information or not. Sharifi et al.16 presented a novel matrix-based approach for
the multi-state and load-sharing components to calculate the system inspection cost. These contributions have served as
inspiration for researchers to focus on the loading dependence mechanism and CAFs.
For a loading dependent system, degradation of components and the systems due to overloading “nodes” are very com-

mon, which nevertheless is not well studied in current research. Evaluation of the overloading state of components needs
to be generalized. In a loading dependent system, “overloading” typically refers to a scenario where a component experi-
ences the operational workloads surpassing its intended or specified capacity. The overloading state of a component may
be caused by a sudden outside disturbance or by additional workloads allocated from other components during the cas-
cading process, or by capacity decrement due to component degradation. These overloading components are frequently
overlooked in comparison to outright failures, because they still continue to be functioning or at least partly functioning.
However, despite not presenting as severe a risk as complete failures, these overloads can pose hazards and require costly
maintenance or replacement of the associated components if not addressed promptly. Besides, overloading components
may allocate loads to the others, and reduce the performance of more components, accelerate their deterioration, or even
result in substantial failures. The following two examples can illustrate such situations. In a power system, if a transformer
is overloading, it can lead to overheating or potential damage. Other transformers in the system are therefore required to
share more workloads, possibly approaching or exceeding their expected capacity. In terms of a traffic network, if there is
a traffic jam on a major road, causing an “overloading” major road, vehicles are then forced to pass through other roads,
which triggers an increase in traffic flow on other roads and an intensification of congestion. These examples also demon-
strate that the study of CAFs for loading dependent systems, considering overloading components, remains worthy to be
investigated.
To address the above issue concerning overloading components, an extended multi-state CASCADE Model13 has been

developed based on some studies of classical CASCADE models.17–19 Such a model13 involves discussions on three types
of stop scenarios of the cascading process. It reflects the cascading process mechanism more practically and provides
a reference for cascading probability analysis of loading dependent systems subjected to CAFs affected by overloading
components. However, some special scenarios need to be further explored, including the cascading scenarios where the
cascading process stops and the system fails. Such a study is crucial for analyzing system reliability. Further investigations
of the previous model on system reliability analysis are thus stimulated.
Reliability describes the ability of a system to sustain its regular operation in a specific period without failures. Sys-

tem reliability analysis can offer important information to guide design, operation, andmaintenance strategies. There has
been an uprising interest in the research of reliability analysis for loading dependent systems in recent years.2,20–24 Some
researches consider the internal degradation of the components in loading dependent systems. For example, Duan et al.2
developed a novel cascading failure model to uncover the influence of route-choosing behavior on traffic network reliabil-
ity with consideration of overload failures. Zhao et al.20 explored a framework for modeling and analyzing the reliability
of load-sharing systems consisting of identical components. Some other works include both the internal degradation and
external shocks simultaneously. For example, Guo et al.21 proposed an analytical model to compute the reliability with
local load-sharing effect and shock processes for consecutive k-out-of-n: F systems. Nezakati et al.24 investigated the condi-
tional distribution considering the soft and hard failures, and developed a reliability model for the load sharing k-out-of-n
system. Despite the varying approaches, the contributions outlined above collectively emphasize the importance of relia-
bility analysis for loading dependent systems and their relevance to a wide range of complex systems. This has motivated
us to enhance the multi-state CASCADE model to incorporate a system reliability perspective.
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In the analysis of system reliability, it is essential to consider the failure scenarios and the duration for such a scenario
to occur. For a loading dependent system with CAFs, the time for the system to fail can be naturally assumed to be closely
related with the duration of the cascading process. The duration for a cascading process to proceed could be referred to as
cascading time. The previously proposed model solely accounted for varying evolving scenarios of the cascading process,
without considering the time for each generation or the time for the overall duration, let alone emphasizing the time
at which system failure occurs during the cascading process. In the new model, we consider that there is a period for
each generation in the cascading process. The cascading time of each generation, the duration of the whole cascading
process, and the probability that the loading dependent system fails are also calculated. By integrating the cascading time
and failure probability, the system reliability is expected to be estimated. Some discussions about reliability analysis of a
loading dependent system considering overloads are given with case studies.
The rest of the paper is organized as follows. In Section 2, detailed descriptions of the theoretical basis and our previous

works are presented. Themethod to consider cascading period and the system reliability function is discussed in Section 3.
Section 4 illustrates the reliability analysis results by the case study, and conclusions are presented in Section 5.

2 MULTI-STATE CASCADEMODELWITH CASCADING TIME

This section provides the theoretical basis of this study by illustrating the multi-state CASCADE model briefly. The
mechanism of multi-state CASCADE model considering overloading components in loading dependent systems and the
cascading scenarios of cascading process are performed in our previous contribution.13 In this model, the components in
a loading dependent system have three states or performance levels: Normally Working, Overloading and Failed, which
can be determined by the ratio of load to capacity, denoted as load/capacity ratio for abbreviation. The capacity of com-
ponents decreases when the cascading failures propagate, due to the naturally degradation of components. The load on
components depends on the initial workload, the sudden outside disturbance, and additional loads from overloading and
failed components. The initial workload refers to the load that a component bears during its normal operation before
encountering a sudden disturbance. The sudden outside disturbance can be a suddenly environmental change, such as
temperature and pressure, etc., or manifest as unexpected damage, such as pollution or strikes. Additional loads arise
due to overloads or the failures of other components with loading dependence. In a loading dependent system, when
some components fail, they become incapable of handling the expected workloads, and additional loads are assigned to
the components that are still functioning. Considering the actual situation, overloading components cannot bear all the
expected workloads well, and also in turn allocate additional loads to the components that are still functioning. Therefore,
this article considers the intermediate state between the Normally Working and Failed, defining as the Overloading state.
The introduction of a new state can bring challenges in modeling since it is difficult to achieve a classification that

perfectly aligns with real-world situations. In addition, the cost required for detailed differentiation of component states
when themodel is applied in practice is also substantial. According to existing research,13 despite the fact that overloading
components exert certain influence on the cascading process, their impact on the probability distribution of the number
of failed components and system reliability is less pronounced when compared to failed components. Therefore, although
the value of the additional loads depends on the actual state of the component, it is of little significance to determine the
additional loads based on the specific actual states of the overloading component. This study simplifies the additional
loads into two types: those from failed components and those from overloading components.
This model acts as the foundation for our subsequent reliability analysis. According to the steps of the multi-state

CASCADE model, a new algorithm that accounts for cascading time is structured as the following steps:

Step 0. All components are normally working initially.
Step 1. An initial outside disturbance d to all components triggers the initial event.
Step 2. Check states for each component i. If the load/capacity ratio of component is less than 𝑟∗, then it is work-
ing well. When the load/capacity ratio exceeds 1, the component fails. Otherwise, the component is overloading.
Suppose that there are nfj failed components and noj overloading components in the jth generation.

Step 3. The capacity of functioning components decreases due to natural degradation. The additional loads due to each
failure and each overloading component in this generation on every functioning component in next generation are
respectively.

Step 4. lf and lo. Additional loads 𝑙𝑗 = 𝑛𝑓𝑗 𝑙𝑓 + 𝑛𝑜𝑗𝑙𝑜 are allocated and added to every functioning component. In this
step, the new state of each component could be obtained according to the ratio of new workload and new capacity.
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4 ZHAO et al.

F IGURE 1 Cascading process of multi-state CASCADE model.

Step 5. Record the cascading time for every generation. Assume that the interval time of each generation in the
cascading process is 𝑌𝑗 .

Step 6. If 𝑛𝑓𝑗 = 0, there is no more new failures in the jth generation, and the cascading process stops. Then the total
cascading time from the start until the cascading process stops can be calculated by accumulation. Otherwise, the
cascading process proceeds, then go to the next generation and iterate from step 2.

In this multi-state CASCADE model, some assumptions are made as below:

1. The system contains a finite number of components, denoted as n.
2. Every component within the system is identical, exchangeable, and nonrepairable.
3. The initial capacity of the components 𝑐0 = 1, and their random loads li are uniformly distributed in [0, 1].
4. As the cascading process proceeds, the capacity of each functioning component naturally decreases. The reduction in

capacity for each generation is denoted as cd.
5. The cascading process starts when there is a failure at time 𝑇0 = 0.

This cascading process is shown in Figure 1. According to the above algorithm, the cascading process stops in the
jth generation if and only if when there are no subsequent failed components in the generation j+1. If the remaining
components tend to fail after a period, we consider it as a new cascading process with a new generation 0. When the
cascading process ends, this does not imply that all components fail. However, when all the components fail in the jth
generation of the cascading process, the system fails, and the cascading process stops in the jth generation since there are
no new failures in the generation j+1.
There are plenty of cascading scenarios for the cascading process to proceed. When the cascading process stops, there

are three types of scenarios, denoted as stop scenarios:

⋅Stop scenario 1: All components fail (cascading process stops, the system fails);
⋅Stop scenario 2: The load/capacity ratio of the functioning component is less than the failure threshold, and there
exist some overloading components (cascading process stops, the system does not fail);

⋅Stop scenario 3: The load/capacity ratio of the functioning component is less than 𝑟∗, and all components work
normally (cascading process stops, the system does not fail).

Based on the multi-state CASCADE model proposed in Ref.,13 the probability that the number of failed components
and overloading components in every generation follows (𝑠0, 𝑠1, … 𝑠𝑗) until the jth generation is given by Equation (1).

𝑃
[
𝑆𝑗 = 𝑠𝑗,⋯, 𝑆0 = 𝑠0

]
=

𝑛!

𝑛𝑓0!𝑛𝑜0!𝑛𝑤0!
𝛼
𝑛𝑓0
0

𝛽
𝑛𝑜0
0
𝛾
𝑛𝑤0
0

(𝑛 − 𝑢0)!

𝑛𝑓1!𝑛𝑜1!𝑛𝑤1!
𝛼
𝑛𝑓1
1

𝛽
𝑛𝑜1
1
𝛾
𝑛𝑤1
1

⋯

(
𝑛 − 𝑢(𝑗−1)

)
!

𝑛fj!𝑛oj!𝑛wj!
𝛼
𝑛fj
𝑗
𝛽
𝑛oj
𝑗
𝛾
𝑛wj
𝑗

(1)

In Equation (1),𝑛𝑓𝑗, 𝑛𝑜𝑗, 𝑛𝑤𝑗 are respectively the numbers of failed components, overloading components and normally
working components in the jth generation. 𝑢𝑗 is the total number of the failed components until the jth generation. 𝑣𝑗 is
the number of overloading components in the jth generation. 𝛼, 𝛽, and 𝛾 are the indices used to abbreviate the probability
of components in different states. More illustrations about the indices and this equation could be referred to Ref.13
Suppose that cascading process stops and all components fail in the jth generation, it could be obtained that 𝑛𝑓(𝑗+1) =

0, then 0 = 𝑛𝑓(𝑗+1) = 𝑛𝑓(𝑗+2) = …. Besides, since 𝑢𝑗 = 𝑛 in this stop scenario, there are no more subsequent failures in
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ZHAO et al. 5

following generations. In this case, we have

𝑃
[
𝑆𝑗+1 = 𝑠𝑗+1 | 𝑆𝑗 = 𝑠𝑗, … , 𝑆0 = 𝑠0

]
= 1 (2)

for 𝑛𝑓(𝑗+1) = 0.
By multiplying Equation (1) with Equation (2), we could derive Equation (3) to verify the distribution associated with

the stop scenario 1.

𝑃
[
𝑆𝑗+1 = 𝑠𝑗+1,⋯, 𝑆0 = 𝑠0

]
=

𝑛!

𝑛𝑓0!𝑛𝑜0!𝑛𝑤0!
𝛼
𝑛𝑓0
0

𝛽
𝑛𝑜0
0
𝛾
𝑛𝑤0
0

(𝑛 − 𝑢0)!

𝑛𝑓1!𝑛𝑜1!𝑛𝑤1!
𝛼
𝑛𝑓1
1

𝛽
𝑛𝑜1
1
𝛾
𝑛𝑤1
1

⋯

(
𝑛 − 𝑢(𝑗−1)

)
!

𝑛fj!𝑛oj!𝑛wj!
𝛼
𝑛fj
𝑗
𝛽
𝑛oj
𝑗
𝛾
𝑛wj
𝑗

(3)

The probability distribution of cascading scenarios, represented by (𝑠0, 𝑠1, … 𝑠𝑗+1), is provided by the multi-state CAS-
CADEmodel. Using this model, the probability distribution of overall scenarios where the cascading process stops in the
jth generation could be identified. Furthermore, with the inclusion of cascading time, the system reliability analysis could
then be conducted.

3 SYSTEM RELIABILITY ANALYSIS

This section provides the reliability analysis of a loading dependent system based on the multi-state CASCADEmodel. As
distinguished before, the criterion to determine if the cascading process stops in the jth generation is whether there are
new failed components in the generation j+1. The criterion to determine if the system fails is whether all the components
fail. The situations in which the cascading process ends following stop scenario 1 are examined to assess system reliability.
Since the cascading process can evolve in various ways, there are several scenarios where the cascading process stops

and the system fails in the jth generation. It is necessary to determine the probability of each scenario resulting in system
failure in the jth generation. The overall system failure probability is accomplished by summing the probabilities of all the
scenarios resulting in system failure in the jth generation. Equation (3) represents one cascading scenario of the cascading
process, which follows (𝑠0, 𝑠1, … 𝑠𝑗). By summing all the cascading scenarios where the cascading process ends and the
system fails in the jth generation, we can obtain Equation (4). The cascading scenarios encompass situations where there
are varying number of failed and overloading components for each generation. The equation represents the probability
distribution of 𝑆𝑗 , as shown the probability that the cascading process ends and the system fails at the jth generation,
no matter how the cascading process proceeds before the jth generation. The probability distribution of 𝑆𝑗 is crucial to
evaluate the system reliability when the cascading process proceeds to the jth generation.

𝑃
[
𝑆𝑗 = 𝑠𝑗

]
=

𝑛−𝑗∑
𝑛𝑓0=1

𝑛−𝑛𝑓0−𝑗∑
𝑛𝑜0=0

𝑛−𝑢0−(𝑗−1)∑
𝑛𝑓1=1

𝑛−𝑢1−(𝑗−1)∑
𝑛𝑜1=0

⋯

𝑛−𝑢(𝑗−2)−1∑
𝑛𝑓(𝑗−1)=1

𝑛−𝑢(𝑗−1)−1∑
𝑛𝑜(𝑗−1)=0

×
𝑛!

𝑛𝑓0!𝑛𝑜0!𝑛𝑤0!
𝛼
𝑛𝑓0
0

𝛽
𝑛𝑜0
0
𝛾
𝑛𝑤0
0

(𝑛 − 𝑢0)!

𝑛𝑓1!𝑛𝑜1!𝑛𝑤1!
𝛼
𝑛𝑓1
1

𝛽
𝑛𝑜1
1
𝛾
𝑛𝑤1
1

⋅ ⋅

(
𝑛 − 𝑢(𝑗−1)

)
!

𝑛fj!𝑛oj!𝑛wj!
𝛼
𝑛fj
𝑗
𝛽
𝑛oj
𝑗
𝛾
𝑛wj
𝑗

(4)

The probability that the cascading process stops in the Jth generation is

𝑃 (𝑗 = 𝐽) = 𝑃
(
𝑢𝐽 = 𝑛, 𝑛fJ ≠ 0

)
+ 𝑃

(
𝑢𝐽 < 𝑛, 𝑛fJ ≥ 1, 𝑛𝑓(𝐽+1) = 0

)
(5)

In Equation (5), 𝑃(𝑢𝐽 = 𝑛, 𝑛𝑓𝐽 ≠ 0) implies the probability of the stop scenario 1. 𝑢𝐽 = 𝑛 implies the event that the total
number of failed components until the Jth generation is n, which means that all the components fail until the generation
J. 𝑛𝑓𝐽 ≠ 0 implies the event that the number of failed components in the Jth generation is not 0, which means that there
are still new failures in the Jth generation. In addition, 𝑢𝐽 < 𝑛, 𝑛𝑓𝐽 ≥ 1, and 𝑛𝑓(𝐽+1) = 0 separately implies the event that
the total number of failed components until the Jth generation is less than n, the event that there are at least one failed
component in the Jth generation, and the event that there are no new failed components in the generation J+1. These
restrictions exhibit a scenario that the cascading process stops, but the system does not fail in the Jth generation, whose
probability could be denoted by 𝑃(𝑢𝐽 < 𝑛, 𝑛𝑓𝐽 ≥ 1, 𝑛𝑓(𝐽+1) = 0).
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6 ZHAO et al.

Therefore, the probability that the system fails and cascading process stops in the Jth generation is

𝑃 (𝑗 = 𝐽, 𝑢𝐽 = 𝑛) = 𝑃
(
𝑢𝐽 = 𝑛, 𝑛𝑓𝐽 ≠ 0

)
(6)

Since the cascading time is further considered in the model, and the cascading time is closely related to the generation
j of the cascading process, the index Jwhere the cascading process stops is the key factor to analyze the system reliability.
The cascading events occur at time {𝑇0, 𝑇1, …𝑇𝑗}, and 𝑇𝑗 is duration of cascading process from the start to the jth gener-
ation 𝑇𝑗 = 𝑇𝑗−1 + 𝑌𝑗 . Assume that the cascading time 𝑌𝑗 for every generation follows an exponential distribution19 with
probability density function

𝑓Y (𝑡) = 𝜇e−𝜇𝑡 (7)

for 𝜇 > 0, where µ is the rate parameter, which could be changed to control the cascading time distribution.
Then the cumulative probability distribution function that all components fail in the Jth generation at time t could be

denoted as

𝐹Y
(𝐽+1)

(𝑡) = 1 − e−𝜇𝑡 (8)

The system reliability can be represented as the probability that the system is still working until time t, and could then
be evaluated using the following equation

𝑅 (𝑡) = 1 −

𝑛−1∑
𝑗=0

𝑃(𝑈𝑗 = 𝑛, 𝑇𝑗 < 𝑡)= 1 −

𝑛−1∑
𝐽=0

𝐹𝑌
(𝐽+1)

(𝑡) ⋅ 𝑃 (𝐽 = 𝑗, 𝑢𝐽 = 𝑛) (9)

where 𝑃(𝑈𝑗 = 𝑛, 𝑇𝑗 < 𝑡) represents the probability that the system fails before time t. Through the integration of the
Equations (4), (8), and (9), the system reliability over time could be obtained.
This model could be more general to extend the assumption of system failure. For instance, it can encompass scenarios

where the system fails if a specific number of components fail, as in the case of a k-out-of-n system where the system fails
when k components out of n fail. The only difference shown by the model for a k-out-of-n system is the stop scenario 1
where the cascading process stops if the total number of failed components is no less than k.
In this case, the probability that the system fails and cascading process stops in the Jth generation is

𝑃 (𝑗 = 𝐽, 𝑢𝐽 ≥ 𝑘) = 𝑃
(
𝑢𝐽 ≥ 𝑘, 𝑛𝑓𝐽 ≥ 1, 𝑛𝑓(𝐽+1) = 0

)
(10)

The system reliability for a k-out-of-n system can be represented as Equation (11). Through the integration of the
Equations (4), (8), and (11), the reliability for the k-out-of-n system over time could be obtained.

𝑅 (𝑡) = 1 −

𝑘−1∑
𝑗=0

𝑃(𝑈𝑗 ≥ 𝑘, 𝑇𝑗 < 𝑡) = 1 −

𝑘−1∑
𝐽=0

𝐹𝑌
(𝐽+1)

(𝑡) ⋅ 𝑃
(
𝑢𝐽 ≥ 𝑘, 𝑛fJ ≥ 1, 𝑛𝑓(𝐽+1) = 0

)
(11)

The above outputs improved themulti-state CASCADEmodel by inducing cascading time and offers failure probability
estimation of the loading system considering different cascading scenarios. The improved model can be used to assess the
system condition, optimize system design and maintenance activities to increase reliability. The following section will
provide some numerical examples for further illustration.

4 NUMERICAL EXAMPLES

To provide guidance on system design and operation, the effects of variation of some parameters on system reliability
are examined in this section. Numerical examples are studied with coding in MATLAB. These case studies are mostly
sensitivity analysis, meaning that when one parameter is analyzed, the other parameters remain constant.
Table 1 shows the parameter benchmark. In this study, load redistribution is the main driving force of the cascading

process. The parameters c0 and cd imply the properties of the components themselves and the natural degradation, which
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ZHAO et al. 7

TABLE 1 Parameter benchmark of the examples.

Parameter d c0 cd n lf lo r⁎ 𝝁

Value 0.3 1 0.05 100 0.05 0.01 0.8 0.2

F IGURE 2 System reliability over time as a benchmark.

are relatively independent of the load redistribution mechanism. Therefore, the case studies do not delve into the impact
of c0 and cd on the system reliability. Values of the other parameters are drawn from our previous work.13 For example, the
total number of the components is fixed as 100, and the overloading threshold is set as 0.8 in the benchmark. However,
since the focus of this study is on studying the stop scenario 1 and system reliability, the values that increase the likelihood
of stop scenario 1 occurring are favored. Therefore, the values of initial disturbance and the loading increments in this
numerical example are set much larger than that in previous example.13
Based on the benchmark, a reliability curve is drawn to show the main properties of the reliability over time, as shown

in Figure 2.
In overall, the system reliability experiences a minor decline at the start, a sharp drop in the middle phase, and another

slight decrease towards the end of the curve. Towards the end, there seems to be a trend for the curve to remain constant.
Such a curve can be explained as follows: At the onset of the cascading process, the probability of system failure is deter-
mined by adding the initial disturbance to the initial workload of components. As a result, there is a very low likelihood
of all components failing simultaneously in the beginning, meaning that the system reliability is close to 1. As the cas-
cading process proceeds, more generations of the cascading process imply more additional workloads on the functioning
(overloading and normally working) components, and such load redistribution causes more components to fail, leading
to a rapid decline in the system reliability. The total number of generations J remains stable for a given initial disturbance
d in the scenario where the cascading process stops and the system fails. Consequently, as the cascading process slows
down, and the reliability curve approaches its tail, the system reliability gradually reaches a stable value, which could be
abbreviated as the minimum stable system reliability in our study.
According to Figure 2, it is also found that the curve stops at a specific time, instead of extending further. This is because

that the curve only demonstrates the system reliability within a single cascading process that terminates at a specific time
due to various cascading scenarios. As mentioned before, we only consider one cascading process until it stops. If the
remaining components tend to fail after a period, we mark it as a new cascading process, which is not included in this
model. This clarifies why the curve comes to a halt at a specific time, rather than advancing continuously. The duration
of cascading process stopping in stop scenario 1 could also be employed to help to evaluate system reliability, because the
system is generally expected to maintain normal operation for longer period.
System reliability, as defined, can be assessed using two primary metrics: the probability of system failure and the

operating time before failures. These aspects can be described in terms of the duration cascading process stopping in stop
scenario 1 and the minimum stable system reliability. This prompts us to emphasize these two aspects when performing
sensitivity analysis.

 10991638, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3475 by N

tnu N
orw

egian U
niversity O

f S, W
iley O

nline L
ibrary on [30/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 ZHAO et al.

F IGURE 3 System reliability with different initial disturbance.

4.1 Effect of initial disturbance

This subsection illustrates the change of system reliability with different initial disturbances. According to the previous
work, stop scenario 1 was reported to occur only when there is a sufficient initial disturbance of at least 0.2. Besides, the
analysis of system reliability is performed when the system fails under stop scenario 1, which can occur with different
initial disturbances valued at d = 0.2, 0.3, 0.4, 0.5.
Figure 3 presents the variations in system reliability with various initial disturbances. Through a detailed comparison

of these four curves, some findings could be obtained. The system reliability is lower when the initial disturbance value
is larger at the same timepoint. Besides, the minimum stable system reliability is also lower when the initial disturbance
value is larger. The explanation is provided as follows: As the initial disturbance increases, the workloads of more compo-
nents tend to surpass the failure threshold, resulting in lower system reliability. Apart from the system reliability, it is also
found that the cascading process stops and the system fails in shorter time when the initial disturbance value is larger.
The results emphasize the importance of controlling the initial disturbance to improve the system reliability and provide

somemanagerial implications. In practice, it is costly to strive for an extremely high system reliability approaching a value
of 1. However, it is equally unwise to ignore the impact of disturbances. Thus, we can determine an acceptable range for
external disturbance when the system can tolerate a certain level of reliability. An example from the solar panel system
could be taken to demonstrates that how the proposed model serves as an effective tool in system reliability prediction
andmaintenance optimization. The solar panel system is a loading dependent systemwith CAFs, where the performance
of the panel is affected by a variety of external disturbances, including light intensity, temperature, and contaminants. In
terms of the external disturbance contaminants, the pursuit of maintaining 100% power output can result in high cleaning
and maintenance costs. On the contrary, by employing the proposed model, the system reliability under varying initial
disturbances can be estimated. The estimation results, when combined with system design specifications and standards,
allows for the determination of an acceptable range of system reliability. Subsequently, maintenance strategies for regular
solar panel cleaning can be customized to minimize costs while ensuring that the system can tolerate a certain degree of
surface contamination without causing a significant decline in system reliability.

4.2 Effect of total number of components

The proposed model is now used to examine the cascading process and system reliability changes in various systems with
different total number of components. Figure 4 displays the changes in system reliability observed when altering the total
numbers of components n = 50, 100, 150, 200.
Figure 4 illustrates a similar trend of all the curves, which is consistentwith the trend of the curves in the last subsection.

When comparing the four curves, it is observed that as n increases, the system reliability curves shift toward the right.
Specifically, the curves begin to decline at a later time and reach the halt point at a later time aswell. Additionally, for larger
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ZHAO et al. 9

F IGURE 4 System reliability with different total number of components.

values of n, the system reliability displays a lower value once it stabilizes and reaches the endpoint. In brief, an increased
number of components in a system lead to lower minimum system reliability and an extended cascading process. This
implies that when there are more components within a system, the likelihood of system failure increases, but the time
it takes for the system to eventually fail is longer. The aforementioned findings can be explained by that when there are
more components in a system, it takes more time for all the components to fail and also takes more time for a cascading
process to end in stop scenario 1. In a systemwithmore components, a longer cascading process implies more possibilities
for the process to proceed, resulting in an increased likelihood of system failure and lower system reliability.
Such findings also can remind engineers that during the design phase of a system with CAFs, reducing the number of

components to a suitable range may improve the minimum stable system reliability and assist in sustaining the system
operation within an acceptable timeframe. In term of the operation phase, some suggestions can be provided: when time
is limited, priority is given to maintaining systems with fewer components, while when the primary aim is to improve
system reliability, it is advisable to allocate more maintenance resources to systems with more components.

4.3 Effect of loading increments

In this subsection, we utilize varying values of lf and lo for different configurations to compare the impacts of two types
of loading increments. The loading increments are the additional loads from the failed or overloading components to the
remaining functioning components, representing the dependence among components. Based on the assumption that the
initial workload of the component lies in [0, 1], the values of lf and lo also lie in [0, 1], and the value of lo must not surpass
lf to align the configurations with reality. In this example, we firstly set lo = 0.01, and set different loading increments lf
as: 0.03, 0.05, 0.07, and 0.09. Then, we set different loading increments lo as 0.01, 0.02, 0.03, and 0.04 for lf = 0.05.
The changes of system reliability under two types of loading increments are respectively depicted in Figures 5 and 6. It

is noteworthy that the curves closely overlap during the previous part of the cascading process, and discernible differences
only as the process nears its tails. The results show that the loading increments have a stronger influence on the system
reliability as the cascading process proceeds. The reason for this finding can be attributed to the following. At every gener-
ation, the two kinds of load increments are added to the functioning components, resulting in increased cumulative loads
as the cascading process proceeds over time. Furthermore, the dissimilarity in cumulative loads induced by distinct load
increments becomes more apparent, amplifying the variance in their effect on the system reliability. Besides, As shown in
Figures 5 and 6, higher values of loading increments result in reduced system reliability. Higher loading increments lead
to increased additional loads on functioning components, and lead to a higher likelihood of their failures. This ultimately
leads to lower system reliability. This outcome implies that the loading increment has a certain degree of impact on the
system reliability, but the extent of this influence is observable only when it is considerably large.
Another finding is that the impact on the system reliability due to failed components and that due to overloading com-

ponents are similar to a certain extent. According to the proposedmodel, both kinds of loading increments are assigned to
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10 ZHAO et al.

F IGURE 5 System reliability with different loading increment from failed components.

F IGURE 6 System reliability with different loading increment from overloading components.

the remaining functioning components in the same way. This distribution way ensures that the influence of these loading
increments on the component should be comparable.
Based on such findings, firstly, management need to attempt to avoid subsequent failures by developing a more reason-

able workload allocation strategy. Taking a pipeline system as an example, when a pipeline ruptures or becomes blocked,
other pipelines will bear more flow, in other words, additional workload. This extra workload can be adjusted through
valve regulation and reasonable diversion measures. Besides, given the roughly equal impact of both loading increments
changes on system reliability, the strategy with higher cost-effectiveness can be chosen by comparing the costs associated
with controlling the two kinds of loading increments.

4.4 Effect of overloading threshold

By setting that the overloading threshold r⁎ varies from 0.5 to 0.9, the changes of system reliability are observed as shown
in Figure 7.
According to Figure 7, we can observe that as the overloading threshold increases or decreases, the system reliability

curve changes, but not in a systematic manner. In other words, we cannot make a definitive conclusion that the overload
threshold has a significant impact on the system reliability. This finding aligns with our prior research result, where we
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ZHAO et al. 11

F IGURE 7 System reliability with different overloading threshold.

F IGURE 8 System reliability with different cascading time.

discovered that altering the overloading threshold mainly influences the probability distribution range of the number of
overloading components, but has minimal impact on the probability distribution range of failed components, which is
closely linked to system reliability.

4.5 Effect of cascading time

The developmental features of the cascading process may vary for distinct systems, environments, and failure modes. In
various cascading scenarios, alternative probability distributions may be considered. This paper assumes that the expo-
nential probability distribution governs the cascading time taken for the development of each generation in the system
cascading process. To investigate the effect of cascading time, an example is given by changing the rate parameter µ of
the probability density function. Set that the value of rate parameter µ varies from 0.1 to 0.5, and the changes of system
reliability are observed as shown in Figure 8.
Figure 8 displays how system reliability changes with different cascading time. As the value of µ increases, it can be

observed that the system reliability curves shift towards the right. This implies that in situations where µ is high, the
evolving of the cascading process takes more time. Besides, the minimum stable system reliability decreases when µ is
high. In mathematical terms, µ represents the scale parameter of the exponential distribution. As µ increases, the value of
𝑓𝑌(𝑡)near the origin also increases, signifying that the time needed for each generation at the start of the cascading process
increases. Consequently, with an increase in the µ value, the initial cascading process requires more time to proceed,

 10991638, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3475 by N

tnu N
orw

egian U
niversity O

f S, W
iley O

nline L
ibrary on [30/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 ZHAO et al.

F IGURE 9 System reliability with different parameter k in a k-out-of-n system.

causing the corresponding system reliability curve to display its decline at a later period. This, in turn, contributes to an
extended total duration for the development of the whole cascading process. In addition, as µ increases, the value of 𝑓𝑌(𝑡)
far away from the origin decreases, implying that as the cascading process proceeds, the time needed for each generation,
and the time for causing the failed components, decreases, resulting in a faster rate for system degradation. This also
accounts for the phenomenon that a higher value of µ leads to a more significant slope in the declining section of the
system reliability curve.
This finding offers insights for system design andmanagement. Regarding system design, simplifying the internal com-

ponents and avoiding a tightly-packed layout can be effective in reducing cascading time. In terms ofmanagement, systems
with higher rate parameters and fast-developing cascading processes should undergomore frequent inspections andmain-
tenance activities. Moreover, systems with different rate parameters have distinct reliability curves, leading to different
results in risk assessments. These dissimilar outcomes are crucial references for managers when making decisions.

4.6 Effect of parameter k in a k-out-of-n system

The above subsections discuss the reliability analysis for the systemwhere system failure occurs onlywhen all components
fail. In this part, the value of k is changed from 60 to 100 to display the reliability variations of the k-out-of-n system
consisting of 100 components in total.
From Figure 9, when the value of k decreases, the system reliability curves shift toward the left. Initially, the minimum

stable system reliability experiences a gradual decline, but it increases when k = 60. Following is the explanation for this
phenomenon.When k decreases, it signifies that a smaller number of failed components can lead to system failure. Firstly,
the systemwill therefore fail in a shorter period, reducing the duration of the cascading process and causing the reliability
curves to shift leftward. Secondly, the system becomes more prone to failures, meaning the probability of system failure
increases, thereby decreasing the minimum stable system reliability. However, when k decreases to a certain extent, the
system fails very quickly, increasing the value of system reliability. According to the definition of system reliability, it
depends on the combined influence of the probability of system failure and the operating time before failures. Therefore,
in this case, even though the probability of system failure increases, its impact on system reliability is not as significant as
the effect of the duration for the system to fail, leading to an increase in the minimum system reliability value instead.

5 CONCLUSION AND FUTUREWORKS

In this paper, we have proposed a new reliability index for evaluating the system reliability of a loading dependent sys-
tem considering overloading state based on the multi-state CASCADE model. Cascading time is well considered in such
a method. The numerical example is conducted to examine the system reliability model and demonstrate the impacts
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ZHAO et al. 13

of different factors on the cascading process and the system reliability: Alterations in the initial disturbance, the total
number of components, the cascading time distribution, and the parameter k in a k-out-of-n system all significantly influ-
ence both the system reliability and the duration of the cascading process. On the other hand, the variation of the loading
increments only exhibits an influence on the system reliability when the cascading process approaches its end due to influ-
ence accumulation. Notably, neither the system reliability nor the duration of the cascading process remains unaffected
by the overloading thresholds of the components. These findings can help maintenance crews and managers make more
informed decisions in terms of system design and operational management when considering cascade time and reliability.
Some relevant topics are worth examining in future studies. Firstly, given that themodel we propose aremainly used for

the multi-component systems with simple structures, further investigations for complex systems such as series-parallel
system or parallel-series system in engineering applications are encouraged. In addition, from a comprehensive point
of view, the system may still operate after the cascading process end. Therefore, the system reliability analysis could be
examined after the first cascading process ends. Thirdly, since the environmental factors are dynamic and may cause
multiple outside disturbances, this model can be extended to allow a series of outside disturbances which happen at dif-
ferent time points before the system fails. The extendedmodel will consider the probabilities of more cascading scenarios.
These cascading scenarios are categorized based on different numbers of outside disturbances, and are subsequently sub-
divided into two types, the scenario where the cascading process ends before the arrival of the last disturbance, as well as
the scenario where the cascading process ends after the last disturbance has arrived. All scenarios will be examined and
the probabilities of cascading scenarios where the system fails are accumulated to provide a final calculation of system
reliability.

NOMENCLATURE

c0 initial capacity of the component
cd capacity decrement of the functioning components during each generation
cj capacity of the component in the jth generation
d the value of the initial disturbance
j generation of the cascading process, j = 0,1, 2, . . . .
J the generation that the cascading process stops
k the number of components out of the total number of components that need to be functioning for the entire

system to function.
lf the loading increment from a failed component
li the initial workload on component i
lj the loading increments from all the failed and overloading component in the jth generation
lo the loading increment from an overloading component
n total number of the components in a system
nfj number of the failed components in the jth generation
noj number of the overloading components in the jth generation
nwj number of the working components in the jth generation
r⁎ overloading threshold of the component

R(t) the system reliability with time t
sj the case that there are nfj failed components, noj overloading components, and nwj normally working components

in the jth generation
t cascading time, and t = 0 when the cascading process starts
Tj the time interval from the initiation of the cascading process to the jth generation
u total number of the failed components
v total number of the overloading components
Yj the cascading time for generation j

𝛼, 𝛽, 𝛾 the indices used to abbreviate the probability of components in three different states
𝜇 rate parameter of the exponential distribution characterizing the cascading time
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A B S T R A C T   

Many industrial facilities consisting of multiple components are prone to failure interactions and degradation 
interactions. In such systems, these interactions are frequently characterized by failure dependences that may 
accelerate the degradation of components. Due to system layout and functional interactions, not all components 
have the same failure dependence. In the general context of complex failure dependences in dependent multi- 
component systems, heterogeneous failure dependences further complicate the maintenance activities during 
operation. The present study developed a comprehensive framework for evaluating heterogeneous failure de
pendences and a maintenance optimization model by Markov processes for multi-component systems. The 
proposed method is applied to a practical case consisting in a parallel subsea transmission system to illustrate the 
effects of heterogeneous failure dependences. The results show that the heterogeneous failure dependences 
framework and the maintenance model guide the optimization of maintenance strategies to maximize the system 
availability and minimize the maintenance cost.   

1. Introduction 

Modern industrial systems usually consist of several components that 
need to operate simultaneously to accomplish the overall mission. As the 
systems become more complex with more interactions among the 
components, it is essential to pay close attention to the failure de
pendences existing between them. Failure dependences exist in such 
systems, meaning that the failure of one component may have influence 
on the failures of the other components, usually increasing their failure 
probabilities. The malfunction or degradation of the first component is 
defined as the triggering event of a failure cascading process. The failed 
component is defined as the triggering component. In some cases, failure 
dependence may not manifest as an immediate termination of compo
nent functions, but as a gradual degradation in the performance of those 
components. Thus, the failure dependences can be classified as [1,2]: 

• Type I failure dependence: A triggering event results in direct dam
age. In such a context, a component could fail due to a combined 
effect of its normally inherent degradation, and the shock from the 
failures of other components.  

• Type II failure dependence: A triggering event redistributes the total 
working load on the overall system. In such a context, a component 
could fail due to a combined effect of its normally inherent degra
dation, and the accelerated degradation caused by the failures or 
malfunctions of other components. 

These two types of failure dependences can take place within the 
same system [3]. Thus, it is necessary to consider both in reliability 
analysis and maintenance. 

In reliability analysis, degradation models are generally developed 
based on the performance data of a system or component over time to 
predict how it will degrade in the future. By considering failure 
dependence in degradation models, it is possible to have a better un
derstanding on the underlying mechanisms of degradations and failures 
in complex systems. This can lead to more accurate models reflecting the 
reality. Therefore, numerous studies have been conducted so far inte
grating failure dependence in degradation models for reliability analysis 
and maintenance optimization. These models are roughly divided into 
three categories: multivariate joint distribution-based models, copula- 
based models, and degradation rate interaction (DRI) models [4,5]. 
Multivariate joint distribution-based models use joint probability dis
tribution to present the dependence of degradation paths [6,7]. 
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Copula-based method models the dependence between components in 
the combination of multivariate dependence with univariate marginals 
[8–10]. These two approaches have one common property that they use 
a multivariate distribution or copula to describe the joint aging process. 
Different from the above two methods, the DRI models manifest the 
degradation process of one component affected by the degradation of 
other components, which is more in accordance with the actual degra
dation of a dependent multi-component system [4]. The DRI model was 
firstly proposed by Bian and Gebraeel [11] to analyze the stochastic 
degradation process and prognostics of a multi-component system. 
Hafsa et al. [12] defined a degradation effect coefficient and presented a 
stochastic methodology by modeling the DRI effects of multi-component 
interaction in the remaining useful life (RUL) calculation. Considering 
Based the influence of degradation interaction and uncertainty, Shao 
et al. [13] contributed a multi-stage model-based framework to better 
describe the degradation acceleration process and evaluate the system 
RUL. 

Given that the degradation status can be observed or measured, 
condition-based maintenance (CBM) is applied to many technical sys
tems to keep system reliability while reducing maintenance cost. The 
Markov chain has been used for modeling the interactions between 
degradation processes and maintenance activities [14–18]. In these 
studies, a continuous-time Markovian chain (CTMC) is generally adop
ted to describe the system degradation behavior and the transitions 
between states. There are plenty of studies applying CTMC to model the 
degradation process and maintenance policies of a multi-state system, 
providing approximate analytical solutions for availability and cost [15, 
19-21]. However, CBM for a multi-component system with failure de
pendences is generally more complicated [22]. Several previous studies 
on CBM strategies for multi-component system with failure dependence 
using the CTMC model were carried out by Liang et al. [15,23,24], 

where the failure dependence is modeled as the accelerated deteriora
tion, and CBMs is optimized in considering multiple dependent deteri
oration path. Inspired by the above, we intend to build the CBM model 
by CTMC to present the normal degradation process and accelerated 
degradation process. 

To the best of our knowledge, most of the current modeling ap
proaches consider a two-component system or an n components system 
with identical failure dependence. For example, the chemical cluster is a 
system with n components mainly subject to Type I failure dependence, 
and a road network is a system with n components only subject to Type II 
failure dependence. However, such approaches are no longer completely 
aligned with reality, since the failure dependences in a multi-component 
system are more complex and heterogeneous [4]. Heterogeneous failure 
dependences occur in the situation where at least two types of 
non-identical failure dependence exist in a multi-component system. 
Therefore, a flexible framework to model the heterogeneous failure 
dependences in the context of maintenance optimization is desired for 
designing more reasonable CBM policies. In this paper, we focus on 
modeling the heterogeneous failure dependence within a 
multi-component system. Compared to alternative modeling approaches 
applied only in a two-component system, or in a multi-component sys
tem with identical components, the presenting work targets a 
multi-component system with non-identical components. In contrast to 
the current approaches, heterogeneous failure dependences modeling 
accounts better for the variety of interactions and dependences among 
non-identical components in a system. Such work is expected to predict 
the system behavior more precisely, which helps identify critical com
ponents and failure modes that are often overlooked in simpler models. 
In detail, the degradation model for dependent multi-component system 
(DMDM) is proposed based on two basic principles: (1) the general 
degradation process of independent component is depicted by a discrete 

Notation 

n Total number of components in a system 
k The number of degradation states of components before 

failure 
xi The degradation state of component i 
xi(t) The degradation state of component i at time t 
χ The state space of the n components system, which is taken 

to be {X0, X1,… Xkn}

a The threshold for minor preventive maintenance activity 
b The threshold for major corrective maintenance activity 
NIMR The total number of inspections, maintenances and repairs 
s The number of inspections, maintenances and repairs 
Pxi (t) The probability that the component i is in state xi at time t 
PXi (t) The probability that the entire system is in state Xi at time t 
P(t) The sojourn probability of the Markov process at time t. 
λxi The degradation rate of component i from state xi to state xi 

+1 without failure dependence 
λi

xi ,xj 
The degradation rate of component i from state xi to state xi 

+ 1 when there exists failure dependence between it and 
another component j whose state is xj 

γij Cascading intensity from component j to component i 
φj Degradation level of component j 
βj Correction coefficient 
ϕxj 

Influencing level from component j 
Di,xj The failure dependence from component j on component i 

when component j is in state xj 

A The transition matrix denoting the transition rates of the 
entire system 

B The probability matrix of different states after inspection, 

maintenance and repair actions 
D The matrix of failure dependences among components 
t− The time immediately before inspection 
t+ The time right after inspection, maintenance and repair 

actions 
Ts The time when the sth inspections, maintenances and 

repairs are conducted 
XF The failed state of the component or the entire system 
As The unavailability of the system 
AS The availability of the system 
cin The inspection cost of the system for each time 
cm1,i The cost of each minor preventive maintenance activity on 

component i 
cm2,i The cost of each major corrective maintenance activity on 

component i 
cp The planned downtime cost per inspection 
cu The unplanned downtime cost of the system 
CS The average life-time cost 

Abbreviation 
DMDM Degradation model for dependent multi-component system 
FD Failure dependence model 
CBM Condition-based maintenance 
CTMC Continuous-time Markovian chain 
IMRs Inspections, maintenances and repairs 
PM Minor preventive maintenance 
CM Major corrective maintenance 
MTTF Mean time to failure 
MTBI Mean time between inspections 
OREDA Offshore and Onshore Reliability Data  
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state space; (2) the failure dependences among components are char
acterized and quantified by proposing the failure dependence (FD) 
model. 

Then, we will specify the CBM policy for multi-component systems 
accordingly. The maintenance policies are depicted considering pre
ventive maintenance (PM) and corrective maintenance (CM). The major 
contributions of this study are outlined below: 

(1) A new mechanism to model the heterogeneity of failure de
pendences for the degradation process in a multi-component 
system.  

(2) A novel CBM strategy-making method for the multi-component 
system with heterogeneous failure dependences.  

(3) Managerial implications on optimizing maintenances with a case 
study on a parallel subsea transmission system after the 
separator. 

The rest of this paper is structured as follows. To start, we present a 
description of the motivating example about the subsea transmission 
system in Section 2. The degradation models for independent compo
nents and the dependent multi-component system are described in 
Section 3. In Section 4, the maintenance policies are interpreted by the 
Markov chain. Section 5 applies the overall approach to the practical 
case study of a three-component system maintenance. Finally, suggested 
future work and conclusions occur in Section 6. 

2. Motivating example and problem description 

In our study, we consider that load redistribution and failure-induced 
damage mainly lead to failure and degradation dependences. In the load 
redistribution mode, redistributed load determines the strength of fail
ure dependence. In the failure-induce damage mode, the distance be
tween components and safety barrier measures influence failure 
dependence. 

In order to illustrate the problem, we introduce the transmission 
system of a subsea separation system that is developed to enhance oil 
recovery, using a horizontal gravity separator to separate bulk water 
from the hydrocarbon stream. A scheme of the system is reported in 
Fig. 1. Three pipes transporting gas, oil and water after the outlet of 
separator [25] are directed to the pump station and compression station, 
which are located near the separation station. The transmission part of 
the subsea system, which encompasses the compression station and 
pump station, can be regarded as a dependent system. In the following, 
we will refer to this system as the transmission system for the sake of 

brevity. One compressor and two pumps are installed in parallel in the 
simplified transmission system model. Wet gas is compressed by a 
compressor routed to the topside platform. Then, the separated oil and 
water are respectively pumped following the topside direction or rein
jected into a reservoir via the water injection. 

The service life of the compressor and pump are generally designed 
for 5-10 years without any intervention [26] and they are expected to 
serve 30-50 years with inspections, maintenances and repairs (IMRs) 
[27]. During their long service lifetime, these devices deteriorate sto
chastically, and the degradation process may be accelerated by the 
malfunction or degradation of the other components. The compressor 
and the two pumps normally transport different substances at the 
desired power under ideal conditions. In practice, however, devices 
degrade naturally, resulting in a variety of failure modes such as low 
output, leakage, vibration, overheating, spurious stop, etc. Some of the 
failures affect not only their own production efficiency, but also the 
degradation rates of other devices in the system. For example, the 
separator cannot separate the three substances completely, and the 
mutual doping of substances will aggravate the degradation of the 
compressor and pumps. Similarly, if a component such as compressor 
malfunctions, but somehow the system cannot be inspected and repaired 
timely, and it still needs to continue working, gas will enter the pipeline 
that transports oil or water, and the doping of the gas will compound the 
damage to the pumps, which is what we call failure dependence. This 
type of failure dependence can be considered as load redistribution. 
Another example is that the vibration and overheating of one pump may 
have a direct impact on the operation and aging process of another pump 
within a certain distance in the pump station. This kind of failure 
dependence is related to the safety distance, and the safety barrier 
measures. Hence, we can find that the compressor and pumps are subject 
to gradual degradation failure and two types of failure dependences. 

Condition of the transmission system is assessed through periodic 
inspections. Two types of maintenances can be implemented according 
to the inspection results. The first is minor preventive maintenance 
which could lower the accumulated damage to a certain level, such as 
anti-corrosion coating, de-rusting and cleaning. The second type is 
major corrective maintenance including overhaul and preventive 
replacement that components are perfectly overhauled or replaced, and 
their states are reset to “as-good-as-new” state. 

IMRs are considered very costly when the accessibility of the item to 
be maintained is low, such as this system operating in deep water[27]. It 
is beneficial to conduct a reasonable maintenance strategy for reducing 
IMRs costs while keeping the system performance acceptable. With the 
motivating example, a comprehensive approach is proposed to optimize 

Fig. 1. Scheme of the transmission system considered in the motivating case  
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the maintenance activities for dependent multi-component systems. The 
overall approach developed in this paper can be summarized as follows:  

Step 1 Describe the degradation process of the system without failure 
dependence.  

Step 2 Identify the system structure and factors influencing the failure 
dependence.  

Step 3 Evaluate the failure dependences between components based on 
system and environmental conditions.  

Step 4 Describe the degradation process of the system with failure 
dependence.  

Step 5 Construct a CBM model.  
Step 6 Calculate the system availability and maintenance cost.  
Step 7 Find the optimal maintenance threshold for maintenance 

activities. 

The proposed approach is detailed and discussed in the following 
sections. 

3. Degradation models for a dependent multi-component system 

3.1. Independent general degradation model 

An independent general degradation model with a general degra
dation path is developed firstly in Fig. 2 to reflect the inherent inde
pendent degradation of components in a dependent system. This model 
serves as the foundation of DMDM when degradation dependences are 
taken into account in a dependent multi-component system. 

We start with a fully functioning state x = 0 at time t=0 and observe 
the component until failure. State x = k represents the failed state of 
component i as an absorbing state. Between x = 0 and x = k there are k 
− 1 intermediate states. Let Px(t) be the probability that the component 
is in state x at time t. We could obtain a time dependent probability 
vector P(t) = [P0(t),P1(t),…,Pk(t)], denoting the sojourn probability of 
the Markov process at time t. The initial state probability P(0) = [1,0,…,

0], and the sum of state probabilities is equal to 1 at any time. 
Let A be a k × k matrix where the element ax,y denotes the transition 

rates from state x to state y for all x ∕= y and x,y ∈ {0,1,2,…,k}. State 0 is 

the brand-new state. For this simple independent degradation model, we 
assume that the degradation process proceeds all states chronologically 
from 0 to k. The degradation rate could be represented by λx from state x 
to state x+1. Then the state equation may be written according to Kol
mogorov forward equations[28] in matrix terms as 

P(t)⋅A = Ṗ(t) (1)  

from which it follows 

Ṗy(t) =
∑k

x=0
ax,yPx(t) (2)  

If Px(t) tends to a constant value when t→∞, then 

lim
t→∞

Ṗy(t) = 0 (3) 

The steady state probabilities P = [P0,P1,⋯,Pk] must therefore 
satisfy the matrix equation 

P⋅A = 0 (4) 

More basic illustrations and details about how to develop the Markov 
models are reported in the literature[28]. 

3.2. Failure dependence model 

If the degradation rate of a component is impacted by other 
degrading or failed components, the state transition can be shown in 
Fig. 3. The state of two-component system is expressed as X = (x1, x2)

T, 
and so is the state of the n components system X = (x1, x2,… xn)

T, 
where xi ∈ {0,1, 2,…, k} could characterize the degradation state of 
component i in this system. Each component has k + 1 states, and the 
state in which the component is depends on how degraded it is in 
comparison to the failed state. As a result, components in the same state 
may exhibit varying degrees of degradation. This means that although 
there may be some components in the same degradation state, they 
could have distinct levels of degradation. The degradation of the two- 
component system could be illustrated by {X0, X1,… X

(k+1)2} since 

there are states for each component and (k + 1)2 states for the whole 
system. Similarly, the degradation of the n components system is gov
erned by the state space , which is taken to be {X0, X1,⋯ X(k+1)n} since 
there are k + 1 states for each component and (k + 1)n states for the n 
components system in total. State X0 = (0, 0,⋯, 0)T is the brand-new 

Fig. 2. State transition diagram of individual component  

Fig. 3. State transition diagram of a two-component system with failure dependence  
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state. State X(k+1)n = (k, k,⋯, k)T is an absorbing state. 
Now we start with X = (0,0)T at time t=0 in Fig. 3. State X = (k, k)T 

represents the failed state of the two-component system as an absorbing 
state. The transition rates in this state transition diagram are illustrated 
as follows. The (k + 1)2

× (k + 1)2 matrix now represents the transition 
rates from state (x1, x2) to next state. λ1

x1 ,x2 
is the degradation rate of 

component 1 from state x1 to state x1 + 1 when there exists failure 
dependence between it and another component 2 whose state is x2. 
Similarly, in an n components system, the (k + 1)n

× (k + 1)n matrix 
represents the transition rates from state (x1, x2,⋯, xi,⋯, xn) to next 
state. λi

x1 ,x2 ,⋯,xi ,⋯,xn 
is the degradation rate of component i from state xi to 

state xi + 1 when there exists failure dependence between it and other 
components whose states are (x1, x2, ⋯, xn). Observe that events of 
multiple transitions are not included in the state transition diagram, 
such as a transition between state (xi, xj) and (xi + 1,xj + 1), since it is 
assumed to be impossible for all the components in a system to degrade 
simultaneously during a short time interval from the point of practical. 

We initially examine the failure dependence between two compo
nents i and j, and then expand the failure dependence model to conclude 
n components. For failure dependence between two components i and j, 
when component j degrades, the degradation rate of component i 
increased, and the calculation procedure of new degradation rate for 
component i could be demonstrated by the flowchart in Fig. 4. The new 
degradation rate for component i from state xi to state xi +1 and influ
enced by degradation of component j is expressed by 

λi
xi ,xj =

(
1 + γijϕxj

)
λxi , ∀i ∕= j (5)  

where γij is the cascading intensity between components i and j, repre
senting the possibility that failures or degradations are cascaded to 
components i from component j; ϕxj 

is the influencing level from 
component j, whose value is determined by the degradation degree of 
component j compared to its failed state. Detailed explanations about 
the parameters are provided in the following:  

(1) Cascading intensity γij 

The cascading intensity[29,30] between components is determined 
based on system layout, material backup, safety redundancy, and other 
practical constraints. According to industrial standards, expert experi
ence, and practical scenarios, it is possible to obtain γij, which charac
terizes the influence of component j on component i in a probabilistic 
manner, and the same goes for the influence of component i on 
component j. Furthermore, the value of cascading intensity is supposed 
to be between 0 and 1. When γij is closer to 0, the degradation of 
component j has little influence on the degradation of component i. 
When γij is closer to 1, the failure dependence between components is 
quite strong. 

The value of cascading intensity depends on the importance of 
influencing factors and the situation of each factor in the given cir
cumstances. A simple example is given here to illustrate how to deter
mine γij. Assume that there are three factors determining the cascading 
intensity between two pipelines: distance, load redistribution, and safety 
barrier. These three factors basically encompass the two types of failure 
dependences outlined previously, as well as the safety measures to 
mitigate them. More specifically, the distance between components is an 
essential factor influencing Type I failure dependence. Similarly, load 
redistribution is the dominant factor in Type II failure dependence. We 
assign weights for them based on historical data and expert experience: 
0.4, 0.2, and 0.4. The value of distance degree could be scored simply as 
1 − (d/D), where d is the real distance between two pipelines and D is the 
safe distance. Thus, the distance degree could be 2/5 if their horizontal 
clearance is 30mm but the required horizontal clearance is 50mm. For 
load redistribution, if two pipelines are both required to transfer fluid at 
70% capacity, and one pipeline would suffer 10% more when another 
pipeline fail, we can score the factor load redistribution between the two 
pipelines at 1/7. We can score the third factor based on whether a safety 
barrier is in place or not and what is its availability. If there is no safety 
barrier, the score is set as 1, and the score decreases as the availability 
and reliability of safety barrier improved. Here we assume there are 
thermal-protective coating surrounding the pipelines, but its reliability 
is on the decline, and we can provide a score of 0.7 after evaluation. The 
examination aforementioned can reach the conclusion that the overall 
cascade intensity between two pipelines is 0.4 × 2/5+ 0.2 × 1/7+

Fig. 4. Flowchart of new degradation rate identification considering failure dependence  
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0.4 × 0.7 = 0.4686. However, this study intends to develop a universal 
model to provide some guidance to quantify the failure dependence. 
Therefore, the methods to assign weighs and score influencing factors 
are not highly emphasized in our methodology.  

(1) Influencing level ϕxj 

The influencing level ϕxj 
denotes the loading increment or shock 

from degrading or failed inducing component j to the induced compo
nent i. It is considered to be determined by the degradation degree of 
component j: 

ϕxj = φjβj (6)  

where φj is the degradation degree of inducing component j, which 
depends solely on its degradation level compared to the failed state. 
Since the components degrade overtime and may be repaired after 
maintenance actions, the value of φj varies over time. 

φj = xj
/
k (7) 

Technical errors or environmental factors can negatively impact the 
accuracy of engineering data, resulting in obtained data that may not be 
in accordance with real data. In order to minimize such errors, we 
introduce a correction coefficient βj considering that the effect of 
component degradation degree on other components is not strictly 
distributed due to unstable factors. Introducing correction coefficients 
enables adjustments of the influencing level model to better reflect the 
actual situation based on historical or experimental data. The range of 
correction coefficient should be [0, 1] empirically. Normally linear 
regression could be used to estimate the value of βj based on historical 
data or experimental data. We assume the correction coefficient is uni
formly distributed in [0, 1] in our study. 

3.3. Dependent multi-component degradation model 

For the degradation process in a system composed of n components, 
the state transition influenced by degradation of all the other compo
nents could be expressed by a Markov model step by step. Since there are 
n2 correlations denoting the cascading intensity in the n components 
system, the cascading intensity among components could be expressed 
by a matrix γ = {γij}n×n. In addition, ϕ = (φ1β1, φ2β2, ⋯, φkβk)

T is a 
vector of influencing level for all the components j ∕= i. We can use an n 
× n matrix D to denote the failure dependences among components 

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

D1

D2

⋮

Dn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 D1,2

D2,1 0
⋯

D1,n− 1 D1,n

D2,n− 1 D2,n

⋮ ⋱ ⋮

Dn,1 Dn,2 ⋯ Dn,n− 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(8)  

where Di is the matrix of failure dependences from other components to 
component i following the selection of component i as the target 
component, which is component 1. As the identification numbers of the 
components do not carry any significance, any component in the system 
can be designated as component 1. For this reason, in the section of our 
study that follows, we presume that component 1 and the identification 
numbers of the other components have been determined to simplify the 
issue. 0 is the null matrix whose order is corresponding by the di
mensions of blocks Di,j, indicating that the component suffers no failure 
dependence from itself. This also means that Di,xi = 0 for any component 
i. Di,j = (Di,xj=0, Di,xj=1, ⋯, Di,xj=k) denoting the failure dependence 
from component j on component i. Furthermore, the element in the 

submatrix Di,xj = γijϕxj 
is vector to represent the failure dependence 

from component j on component i when component j is in state xj. After 
the qualification of the correlations among components, the new tran
sition rates of the component could be updated as below. 

λi
xi ,xj =

(
1 + Di,xj

)
λxi (9)  

λj
xi ,xj =

(
1 + Dj,xi

)
λxj (10)  

where λi
xi ,xj 

is the degradation rate of component i from state xi to state 
xi + 1 when there exists failure dependence between it and another 
component j whose state is xj, and λj

xi ,xj 
is the degradation rate of 

component j from state xj to state xj + 1 when there exists failure 
dependence between it and another component i whose state is xi. 

The states of the system (x1, x2, ⋯, xn), from (0,…,0) to (k,…,k), 
are divided into (k + 1)(n− 1) subsets, where only the component 1 
(any component could be chosen as component 1) degrades and other 
components remain the constant states in every subset 
{(0,x2,⋯, xn),(1,x2,⋯, xn),⋯, (k,x2,⋯, xn)}. Consequently, the matrix 
could be expressed as a (k + 1)(n− 1)

× (k + 1)(n− 1) matrix as follows. 

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A0
n A0

n

A1
n A1

n

A2
n

⋱
Ak− 1

n Ak− 1
n

Ak
n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(11) 

The blocks Axn
n are the sub matrixes of the whole matrix A, denoting 

the transition rates of the system where the state of component n keeps 
constant xn; The blocks Axn

n are also the sub matrixes of the whole matrix 
A, denoting the transition rates of the system where only the component 
n degrades from state xn to state xn + 1. The other blocks are null, and 
their orders are corresponding by the dimensions of blocks and Axn

n . The 
blocks Axn

n could also be further represented by smaller sub matrixes and 
Axn− 1

n− 1 using the same recursive way from A to and Axn
n . The same applies 

to the general sub matrixes Axi
i . With the recursive method, the general 

blocks Axi
i could also be further represented by smaller sub matrixes and 

Axj
j as below. The blocks Axi

i are the sub matrixes denoting the transition 
rates of the system where the state of component i keeps constant xi; The 
blocks Axj

j are the sub matrixes denoting the transition rates of the sys
tem where only the component j degrades from state xj to state xj + 1. 
The other blocks are null, and their orders are corresponding by the 
dimensions of blocks and Axj

j . 

A
xi
i =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A0
i− 1 A0

i− 1

A1
i− 1 A1

i− 1

A2
i− 1

⋱
Ak− 1

i− 1 Ak− 1
i− 1

Ak
i− 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(12)  
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Axj
j =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Aj
x2 ,⋯,0,xj+1 ,⋯,xn

Aj
x2 ,⋯,1,xj+1 ,⋯,xn

⋱
Aj

x2 ,⋯,k,xj+1 ,⋯,xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for j = 2, 3,⋯, n.

(13)  

where the elements Aj
x2 ,⋯,xj , ⋯xn 

in Axj
j are also sub matrixes, as shown in 

equation (14), denoting the transition rates of the system where only the 
component j degrades from state xj to state xj + 1 when other compo
nents are at state (x1,⋯, xn) for j ∕= 1. For example, Aj

x2 ,⋯,0,xj+1 ,⋯,xn 
refers 

to the transition rates of the system where only the component j de
grades from state 0 to state 1 when other components are at state (x1,⋯ 
, xn) for j ∕= 1. 

Aj
x2 ,⋯,xj , ⋯xn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λj
0, x2 ,⋯,xj , ⋯xn

λj
1, x2 ,⋯,xj , ⋯xn

⋱
λj
k, x2 ,⋯,xj , ⋯xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(14) 

As mentioned before, the whole matrix A is recursed to the blocks 
Axn

n , and further recursed to the blocks for i = 3,⋯, n − 1. The recursive 
process stops when i equals 3, and at this point we have 

A
x3
3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A0, x3 ,⋯, xn A2
0, x3 ,⋯, xn

A1, x3 ,⋯, xn A2
1, x3 ,⋯, xn

A2, x3 ,⋯, xn

⋱
Ak− 1, x3 ,⋯, xn A2

k− 1, x3 ,⋯, xn

Ak, x3 ,⋯, xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(15) 

The block Aj
x2 ,⋯,xj , ⋯xn 

could be obtained by equation (14). The block 
A x2 ,⋯, xn is the submatrix denoting the transition rates of components 1 
when other components are at state (x2, ⋯, xn). 

A x2 ,⋯, xn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
∑n

j=1
λj

0,x2 ,⋯,xn λ1
0,x2 ,⋯,xn

−
∑n

j=1
λj

1,x2 ,⋯,xn

⋱

−
∑n

j=1
λj
k− 1,x2 ,⋯,xn λ1

k− 1,x2 ,⋯,xn

−
∑n

j=2
λj
k,x2 ,⋯,xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(16)  

where λ1
x1 ,x2 ,⋯,xn 

is transition rate of the component 1 from state from 
state x1 to state x1 + 1 when there exist failure dependences between it 
and other components whose state are (x2,⋯,xn)

λ1
x1 ,x2 ,⋯,xn = λx1 ⋅

∏n

j=1

(
1 + D1,xj

)
(17)  

and λj
x1 ,⋯,xn 

is transition rate of the component j from state from state xj 

to state xj + 1 when there exist failure dependences between it and other 
components whose state are (x1,⋯, xn) for j ∕= 1. 

λj
x1 ,⋯,xn = λxj ⋅

∏n

i=1

(
1 + Dj,xi

)
(18) 

In this situation we let Pxi (t) be the probability that the component i 
is in state xi at time t and PXi (t) be the probability that the entire system 
is in state Xi at time t. The vector P(t) = [PX0 (t), PX1 (t),⋯,P Xkn − 1 (t)] de
notes the time dependent state probability, and the initial state proba
bility P(0) = [1,0,…,0]. 

4. Modeling and formulation of condition-based maintenances 

In this section we describe the general maintenance policies for 
multi-component systems with heterogeneous failure dependences. We 
consider a system with n components. The system state transition pro
cess is modeled with a Markov model. In the model, the following as
sumptions are introduced:  

• The states of components are revealed upon periodic inspections.  
• The maintenance policies are based on the detected state of system.  
• At inspection, a maintenance action can begin without any delay.  
• The inspection and repair time could be ignored compared to its long 

service lifetime. 

4.1. Inspections and maintenances 

Regular inspections are conducted for many passive items such as 
valves, pipelines, vessels, and pumps in the process industry. As assumed 
above, the inspection interval is (s − 1)τ ≤ t ≤ sτ for s = 1, 2,⋯,NIMR, 
where τ is a constant value independent of the component state and the 
time. Suppose every inspection for the system could reveal the states of 
all components. The inspections durations are assumed to be neglected 
and the state of components are revealed immediately. The inspection 
intervals are recounted after each inspection, maintenance, or repair in 
the overall lifecycle of the system, and could be modeled as [0,T1],

[T1,T2],⋯, [TNIMR − 1,TNIMR ] If the states of components are found to reach 
the thresholds of maintenance measures, then a corresponding mainte
nance task will be carried out timely. The time immediately before in
spection is denoted by t− and the time right after IMRs is denoted by t+
When the state of the system when t = T−

s is given, the maintenance 
activities for the system could be then decided. Note that CBM is a 
maintenance strategy that involves monitoring the actual condition of 
systems in order to determine the maintenance activities. Based upon 
the maintenance policy, the possible maintenance actions and the state 
of the system just after IMRs are assumed to depend on the state of the 
system when t = T−

s , but independent of all transitions of the system 
before Ts The effect of IMRs at time t = Ts could be illustrated by 

Pr
(
X
(
T+
s

)
= Xj

⃒
⃒X
(
T −
s

)
= Xi

)
= bXi ,Xj ,

for all Xi,Xj ∈ χ
(19)  

where bXi ,Xj is the probability that the system is in state Xj after IMRs, 
given that it was in state Xi before inspection. 

Considering the aforementioned inspection strategies, several 
maintenance strategies are proposed. PM and CM are implemented ac
cording to the inspection results. The maintenance strategies are illus
trated in the Fig. 5. 
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For an independent component, the maintenance policy is classified 
into three phases. 

In phase I (x ≤ a), the component is in an acceptable state, and no 
maintenance activities (NM) are required. 

In phase II (a+ 1 ≤ x ≤ b), the component is operating in a 
degrading state, and PM will be performed to improve the component 
condition by one state. 

In phase III (b+ 1 ≤ x ≤ k), CM is needed to restore the component 
to an as good as new state. 

After applying the maintenance actions, the state transitions could be 
denoted by degradation transitions, repair transitions, and combinations 
of those, as seen in Fig. 6. Assume that the components have constant 
transition rate between two states. 

Let B describes the corresponding maintenance transition matrix of 
the system, then 

P
(
T+
s

)
= P

(
T −
s

)
⋅B (20) 

The corresponding maintenance matrix B is expressed by the sub 
matrixes 

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

BI
n 0 0 0

0 Ba
n 0 0

0 Ba+1
n 0 0

0 0 BII
n 0

BIII
n 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(21) 

The blocks BI
n and Ba

n are the sub matrixes, separately denote the 
maintenance transition of the system where the component n is in phase 
I or in state a. The explanation for other sub matrixes in equation (21) 
can be obtained similarly. These sub matrixes could be generalized and 
recursively defined using equation (22) 

B
xi
i =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

BI
i− 1 0
0 Ba

i− 1

0 0
0 0

0 Ba+1
i− 1

0 0
BIII

i− 1 0

0 0
BII

i− 1 0
0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(22) 

The blocks 0 are null, and their orders are corresponding by the di
mensions of sub matrixes. 

Recurse the matrix until reaching the matrix of component 2. 

B
x2
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
⋱

1
1
1 0

⋱
0
1 0

1
⋮
1

0
⋱

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(23) 

Since the process has no steady state and could be divided into 
several time units on a given finite time horizon, the time-dependent 
state probability vector P(t) at time t could be then given by 

P(t) = P(0)⋅
(
∏s=NIMR

s=1
exp(A(Ts − Ts− 1)

)

⋅B)⋅

exp(A(t − TNIMR ))

(24)  

Fig. 6. Markov model of an individual component  

Fig. 5. Illustration of maintenance policies  
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4.2. System availability analysis 

In this subsection, the developed state probabilities formulas are 
applied to quantify the system availability, which refers to the per
centage of time that the system remains operational under normal cir
cumstances in order to perform its intended function. Suppose that the 
system is not available only when it fails, the mean value of the system 
failure probability over a period of time could then be used to represent 
the unavailability of the system 

As =
1
T

∫T

0

P XF (t)dt (25)  

where XF denotes that the component or the entire system is in the failed 
states immediately at time t. P XF (t) represents the probability that the 
entire system is in the failed states at time t. Based on the identification 
of all the failed states and the probabilities that the system is in various 
states at time t included in vector P(t), P XF (t) could be calculated by 
summing up all the probabilities that the entire system is in the failed 
state at time t. 

The availability of the system is the probability of being operational 
given by 

AS = 1 − As (26) 

The model in this subsection is proposed to seek for the optimal value 
of the maintenance threshold to increase the system availability to an 
acceptable level. 

4.3. Maintenance cost 

Here we consider that the maintenance cost consists of the inspection 
cost, the downtime cost, and the repair cost. 

Suppose that the inspection cost is cin for each time. The downtime 
cost contains the planned downtime cost cp caused by the scheduled 
maintenance activities and the unplanned downtime cost cu induced by 
unexpected failures. 

The cumulative maintenance cost between two inspections in the 
time interval (Ts− 1,Ts] accounts for the maintenance cost at time t = Ts. 
The repair cost is supposed to includes cm1,i and cm2,i respectively for 
maintenance activities PM and CM to component i. Therefore, the cu
mulative maintenance cost for the system in (Ts− 1,Ts] is 

C((Ts− 1,Ts]) =
∑n

i=1

[
cm1,iPr(a+1≤ xi(Ts)≤ b)+ cm2,iPr(b+1≤ xi(Ts)≤ k)

]

=
∑n

i=1

[
cm1,iPa+1≤xi≤b(Ts)+ cm2,iPb+1≤xi≤k(Ts)

]

(27)  

where xi(t) is the degradation state of component i at time t. 
The average life-time cost during the period T could be given by 

CS =

[

cinNIMR + cpNIMR +
∑NIMR

s=1
C((Ts− 1,Ts])

]/

T + cuAs (28) 

The model in this subsection is proposed to seek for the optimal value 
of the maintenance threshold to minimize the maintenance cost. 

5. Case-Study: assessment of the motivating example 

The motivating example of a subsea transmission system is explored 
to illustrate the advantages of the proposed maintenance policies. To 
reveal the hidden failures, inspections are performed regularly to 
examine the system to confirm compliance with the performance re
quirements. The parameter setting of the degradation, inspection and 
maintenance are provided Table 1. The failure rates values are obtained 
from the existing literature[25,31] and from the application of the Cox 
model [32], using the data derived from OREDA database[33]. The 
service life and repair cost were obtained from the article[34] and thesis 
[27]. 

We assume that there are only four states for each component: nor
mally operating, moderately degraded, severely degraded, and failed. 
The initial state probability . The states of the system X = (x1, x2, x3)

from (0, 0, 0) to (3, 3, 3), are divided into 42 subsets: (0,0,0), (1,0,0), 
(2,0,0), (3,0,0); (0,1,0), (1,1,0), (2,1,0) (3,1,0); …; (0,3,0), (1,3,0), 
(2,3,0), (3,3,0); ……; (0,0,3), (1,0,3), (2,0,3), (3,0,3); (0,1,3), (1,1,3), 
(2,1,3), (3,1,3); …; (0,3,3), (1,3,3), (2,3,3), (3,3,3). 

As illustrated before, three key factors are generally considered to 
impact on the failure dependences between components: load redistri
bution, distance, and safety barrier. In this system, weights of the factors 
are assigned according to experts’ experience: distance (2), load redis
tribution (5), and safety barrier (3). Here load redistribution denotes the 
material transfer and doping. After expert experience, the parameters of 
the failure dependences could be evaluated as Table 2 based on the 
method proposed in Subsection 3.2. Since the states of all the compo
nents are expressed as xi ∈ {0, 1, 2, 3}, the degradation level of the 
components could be estimated as φj ∈ {0, 1 /3, 2 /3, 1}. It is plausible 
to conclude that ϕ = (ϕ0, ϕ1, ϕ1, ϕ3)

T
= (0, 1/3, 2/3, 1)T is the vec

tor of influencing level for all the components when correction coeffi
cient βj is assumed to be 1. To address the necessity of considering failure 
dependence, we also set all the parameters in Table 2 as 0 or other values 
to imitate the scenario when failure dependence is neglected or varied in 
this example. With modifying the values in the table after assessing the 
failure dependences of differing levels, the proposed model could be 
applied to computing the system under various conditions. 

Based on the data from Table 2, we could obtain a 3 × 3 matrix D to 
denote the failure dependences among components 

D =

⎛

⎝
E D1,2 D1,3

D2,1 E D2,3
D3,1 D3,2 E

⎞

⎠ (29) 

Taking the failure dependence from component 2 on component 1 as 
a simple example to illustrate the calculation of failure dependences, we 
have D1,2 = (D1,x2=0, D1,x2=1, ⋯, D1,x2=3) = (0, 0.103, 0.207, 0.31) if 

Table 1 
Parameter setting of the subsea system considered in the case-study.  

Parameter Value (/year) Parameter Value (€) Parameter Value (€) 
Compressor Pumps Compressor Pumps 

λ0 0.046 0.104 cm1 1.93 × 106 2.41 × 106 cin 1.21 × 106 

λ1 0.021 0.105 cm2 2.89 × 106 3.86 × 106 cp 7.23 × 105 

λ2 0.041 0.056    cu 6.51 × 107  

Table 2 
Parameter setting of the failure dependences.  

Parameter Value Parameter Value 

γ12 0.34 ϕ0 0 
γ13 0.24 ϕ1 1/3 
γ23 0.66 ϕ2 2/3 
γ21 0.44 ϕ3 1 
γ31 0.34   
γ32 0.56    
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the correction coefficient β2 is supposed to be 1. The same calculation 
method can be applied to other submatrices of failure dependences. 
With the confirmation of failure dependences among components, the 
DMDM could be denoted by the transition matrix A. The transition 
matrix A could be expressed as a 42 × 42 matrix 

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A0
3 A0

3

A1
3 A1

3

A2
3 A2

3

A3
3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(30)  

A
x3
3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A0,x3

A2
0,x3

A1,x3
A2

1,x3

A2,x3 A2
2,x3

A3,x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for x3 = 0, 1, 2, 3.

(31)  

Ax3
3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A3
x2 ,x3

A3
x2 ,x3

A3
x2 ,x3

A3
x2 ,x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for x3 = 0, 1, 2.

(32)  

Ax2
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A2
x2 ,x3

A2
x2 ,x3

A2
x2 ,x3

A2
x2 ,x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for x2 = 0, 1, 2.

(33)  

where the blocks A x2 , x3 and Aj
x2 , x3 

are as follows 

A x2 , x3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
∑3

i=1
λi

0, x2 , x3
λ1

0, x2 , x3

−
∑3

i=1
λi

1, x2 , x3
λ1

1, x2 , x3

−
∑3

i=1
λi

2, x2 , x3
λ1

2, x2 , x3

−
∑3

i=2
λi

3, x2 , x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(34)  

Aj
x2 , x3

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λj
0, x2 , x3

λj
1, x2 , x3

λj
2, x2 , x3

λj
3, x2 , x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for j = 2, 3.

(35) 

The matrix B could be expressed as a 42 × 42 matrix. 

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0
3 0

0 B1
3

0 0
0 0

0 B2
3

B3
3 0

0 0
0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(36)  

B
x3
3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0
2 0

0 B1
2

0 0
0 0

0 B2
2

B3
2 0

0 0
0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B
x2
2 =

⎛

⎜
⎜
⎜
⎝

1 0
0 1

0 0
0 0

0 1
1 0

0 0
0 0

⎞

⎟
⎟
⎟
⎠

(37) 

B
x3
3 and represents the maintenance matrix when components 3 or 2 

are respectively in the state x3 or x2. 
The whole degradation transition matrix A and the whole mainte

nance transition matrix could be obtained after splicing the matrices. 
The state probability vector P(t) could then be calculated by equation 
(24). The time dependent failure probabilities P XF (t) are obtained by 
summing the probabilities of different failure states of the system. 

The maintenance cost for an independent component in (Ts− 1,Ts] is 

C((Ts− 1,Ts]) = cm1,compPx1=2(Ts) + cm2,compPx1=3(Ts)

+
∑3

i=2

[
cm1,pumpPxi=2(Ts) + cm2,pumpPxi=3(Ts)

] (38)  

where the cm1,comp and cm2,comp are respectively the PM and CM for a 
compressor, cm1,pump and cm2,comp are respectively the PM and CM for a 
pump. 

For this kind of system, the availability of the system and its average 
life-time cost could be obtained by equations (28) and (38). 

5.1. Failure probabilities 

The time dependent failure probabilities could be found by CTMC 
simulation. To evaluate the effect of mean time between inspections 
(MTBI) on the system conditions, observe the difference of P XF (t) curves 
in the log-run horizon by testing various MTBI (MTBI =

1 year;2 years;5 years.). The results are shown in Fig. 7. 
It can be found that the failure probability increases with time and 

decreases suddenly at the IMRs timepoints under varying MTBI. This is 
because the system and its components degrade over time. When 

Fig. 7. Failure probabilities for different MTBI  
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approaching the IMRs timepoints, the failure probability peaks in this 
interval of time. However, after the IMRs timepoints, the status of the 
system and its components could be noticeably improved, and the sys
tem failure probability is close to zero, indicating a peak value at the 
IMRs timepoints. Another finding can be obtained by comparing the 
failure probability curves under different MTBI. It is obvious that with 
smaller MTBI, the maximum values of failure probabilities are expected 
to be lower. On the contrary, the maximum values of failure probabili
ties tend to be higher when the MTBI increases, which means that the 
system tends to be less reliable. In this regard, the reliability and 
availability of the system can be improved by reducing the value of 
MTBI, that is, shortening the IMRs interval. However, a lower MTBI is 
not always preferable. The following subsections will go through how to 
achieve the optimum MTBI value in practical applications. 

5.2. Maintenance strategies with various failure dependences 

Fig. 8 shows the availability and average life-time cost of the tran
sition system under the condition of with various failure dependence 
respectively. The actual failure dependence in Table 2 is denoted as 
normal dependence. The failure dependences of the system under other 
circumstances are also accounted for: The strong dependence is set when 
all the γ take the maximum value (0.66) in Table 2; the case that all the γ 
take the minimum value (0.24) in Table 2 is weak dependence; there is 
no dependence when all the γ take the value of 0. 

The figures show that the availability of the system decreases with 
the increase of MTBI. One interesting observation is that these curves are 
not smooth, but rather contain distinct breaking lines. It is found by 
examining these fold points that they are always located at certain MTBI 
values that enable the IMRs number to be an integer. For the As-MTBI 

curves, the smaller the MTBI is, the larger number of inspections and 
maintenance activities are needed, the higher the availability reached, 
and vice versa. This trend is consistent with the conclusion of the pre
vious subsection. At each fold point, the IMRs frequency drops by one, 
which leads to a sudden increase in system failure probability and steady 
state probability of failure, resulting in a sudden decrease in system 
availability. Besides, the curves Cs-MTBI show a similar trend that the 
average life-time cost falls initially and subsequently climbs as MTBI 
grows, indicating that there is a point to minimize the cost. A reasonable 
explanation is that when the MTBI is relatively small, more inspections 
and maintenance are undertaken, which may lower the failure proba
bility of system and the unexpected downtime cost, also may impose 
considerable IMRs costs. However, when the MTBI is greatly increased, 
the IMRs costs can be accordingly decreased; but the system unavail
ability rises, inevitably leading to more production loss due to un
planned downtime. Similarly, before the cost reaches the lowest value, 
the variation of IMRs cost dominates the trend of Cs-MTBI curves. As 
MTBI increases, the amount of IMRs may drop by one, causing the im
mediate drop of total IMRs cost and the average life-time cost. After the 
lowest value, the variation of unexpected downtime cost dominates the 
trend of Cs-MTBI curves. Hence the effect of drop amount of IMRs on the 
unexpected downtime cost is stronger than the effect on the IMRs cost. 
As the amount of IMRs drops, the failure probability increases suddenly, 
as well as the downtime cost, which is strongly proportional to it. 

In practical engineering applications, an acceptable availability 
threshold is generally determined since it is too costly to pursue exten
sive system availability. In this case the average life-time cost should be 
minimized while ensuring system availability over 0.99. The optimum of 
the maintenance policy could be achieved by adjusting the parameter 
MTBI. From the figures of Fig. 8, the minimal cost appears in the range of 

Fig. 8. Availability and average life-time cost of the transition system under different MTBI  
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system availability greater than 0.99, thus the point of this minimal 
value could be considered as the ideal option of the maintenance 
strategy. 

Notable distinctions between the findings with various failure 
dependence could also be observed. Table 3 displays the comparison of 
the results. In terms of the impact of MTBI on system availability, the 
availability of the system with stronger failure dependence is generally 
lower than that of the system with weaker failure dependence and that 
of the system without failure dependence. The thresholds of MTBI for 
system availability under 0.99 increases as system failure dependence 
weakens: 8.35 (strong), 8.65 (normal), 9.15 (weak), 9.65 (without). This 
means that when there is stronger failure dependence, the system should 
be inspected and maintained more regularly to keep its availability. 
From a financial standpoint, the minimal average life-time cost 
considering strong, normal, and weak failure dependence are respec
tively 454525€, 448474€, and 438202€, higher than the minimal 
average life-time cost without failure dependence (428870€). This also 
supports a similar result that a higher investment is required when 
stronger failure dependence is considered. The comparison of these 
graphs reveals the necessity of highlighting the failure dependence of 
complex systems while implementing CBM. 

5.3. Maintenance strategies for various initial costs input 

In the following, the variation of some cost parameters setting on the 
average life-time cost is investigated and the other parameters remain 
unchanged. By resetting the inspection cost cin = [1.21 × 105,1.21 ×

106,1.21 × 107], the planned downtime cost cp = [7.23 × 104,7.23 ×

105, 7.23 × 106], the unplanned downtime cost cu = [6.51 × 106,

6.51 × 107, 6.51 × 108], the influence of costs input on the average 
life-time cost is explored in Fig. 9. The As-MTBI curves are not depicted 
in this figure because the costs input hardly imposes effect on avail
ability of the system. 

Fig. 9 shows that the average life-time cost basically increases as the 
three kinds of cost increase. However, the impact of inspection cost and 
the planned downtime cost are most prominent when the MTBI value is 
small, whereas the impact of unplanned downtime cost is most pro
nounced when the MTBI value is high. This finding can serve as a 
guideline for adjusting the cost in accordance with the existing main
tenance strategy. For example, when the MTBI is small and the amount 

of IMRs is high, the inspection cost can be appropriately decreased to 
control the average life-time cost. When the value of MTBI is high and 
the amount of IMRs is low, the unplanned downtime cost is preferred to 
be lowered by implementing some safety measures to minimize the 
average life-time cost. 

6. Conclusions 

Focusing on the heterogeneous failure dependences of component 
degradation process in a multi-component system, this paper proposed a 
framework to quantify the failure dependences between components 
and optimized the policy of condition-based maintenance. By taking the 
reasonable system availability and minimal average life-time cost in the 
long-run as the objectives, the Markov process is implemented to with 
varying MTBI. The impact of the heterogeneous failure dependences on 
the system maintenance strategies were discussed examining a practical 
subsea transmission system. The practical implementation of the pro
posed model in a case study demonstrates its effectiveness and potential 
for widespread adoption in managing complex multi-component sys
tems, particularly those with heterogeneous failure dependences. The 
combination of theoretical modeling and its application in a practical 
case study validates the usefulness of the proposed model. The results of 
the practical case indicate that the system tends to be more reliable with 
smaller MTBI. Furthermore, the availability of the system would be 
overestimated and the annual IMRs costs would be underestimated if we 
neglect the influence of heterogeneous failure dependences. For various 
values of MTBI, the inspection cost and planned downtime cost have 
significant effect on the average life-time cost for low MTBI values, while 
the impact of unplanned downtime cost is prominent for high MTBI 
values. 

The paper presents managerial actions as references for the decision 
makers on when to implement the maintenance strategies for complex 
multi-component system with heterogeneous failure dependences. 
Based on the finding that a certain system with higher failure depen
dence is more likely to experience unavailability, one implication could 
be to address the dependence or to increase the frequency of inspections 
and maintenance checks. In addition, the system can be assessed to 
identify the different MTBI ranges and determine the optimal type of 
cost that maintenance crews could manage to improve the system 
availability. By optimizing condition-based maintenance strategies, 

Table 3 
Results for the transition system with various failure dependence.   

Availability Average life-time cost 
When As is 0.99 When MTBI=15 When Cs is minimized When MTBI=15 

With strong dependence (8.35, 0.99) (15, 0.9408) (4.55, 454525) (15, 4047150) 
With normal dependence (8.65, 0.99) (15, 0.9452) (5.05, 448474) (15, 3755460) 
With weak dependence (9.15, 0.99) (15, 0.9516) (5.6, 438202) (15, 3333170) 
Without dependence (9.65, 0.99) (15, 0.9574) (5.6, 428870) (15, 2948640)  

Fig. 9. Maintenance cost for different initial costs input.  
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organizations can minimize their maintenance costs while ensuring the 
system remains highly available. 

Some other perspectives may be worth to investigating in future 
work. Firstly, the applicability of the given method may be further 
verified by applying the proposed model to the maintenance strategies 
of systems in other configurations. In addition, comparisons with other 
maintenance models, such as Age-based Maintenance or Opportunistic 
Maintenance, could be investigated to seek for the optimal maintenance 
policies for such complex systems. 
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A B S T R A C T   

Technical systems operating in the subsea context are often with multiple components under complex failure 
dependences. Due to the hostile subsea environments, it is challenging to perform efficient maintenance for such 
systems to ensure their operational reliability while keeping the maintenance activities sustainably. A general 
approach has not been established yet for assessing impacts of failure dependences, effectiveness of maintenance 
activities, and sustainability. This paper innovatively develops an integrated framework using the Bayesian 
networks, which thoroughly examines the coupling effect of component degradation, failure dependence and 
maintenance management on the sustainability evaluation of the complex systems. The impact of different 
maintenance strategies and the impact of different failure dependences on the overall sustainability are explored 
to apply the proposed model. The case study verifies the necessity of considering failure dependence and the 
feasibility of the proposed sustainability evaluation model, as well as provides solutions for optimizing main
tenance strategies from a sustainable perspective. The findings of this study contribute to maintenance optimi
zation of complex subsea systems for higher reliability and reasonable cost, as well as provide valuable insights 
for decision-makers in seeking for sustainable maintenance practices.   

1. Introduction 

In some complex multi-component engineering systems like subsea 
production systems, some components tend to be functionally or struc
turally interdependent on each other, whose states could be influenced 
by others. Subsea production systems encompass various components, 
such as wells, pipelines, manifolds, separators, Christmas trees, and 
pumps (Cheliyan et al., 2018). Among these components, the failure 
dependences may exist to speed up their degradation. If the failure of 
one component may impact the failures of the other components, it is 
termed as a cascading failure (CAF). In complex systems where CAFs 
may occur among specific components, these components are referred to 
as dependent components or coupling components, and there exists 
failure dependence among them (Zhao et al., 2023a). The term couple 
represents the action to connect two items together. The term coupling 
components thus refer to components within a system that are inter
connected with failure dependence which can amplify the impact of 
CAFs. Due to such failure dependence, the malfunction of one 

component may trigger CAF events, lead to system failures, damage 
long-term economic viability, amplify the environmental risks, and thus 
result in severe sustainability issues. Sustainability aims to ensure that 
technical systems are designed and operated in a way that fulfills current 
requirements while preserving the capacity of future generations to 
meet their own (Development, 1987). In the engineering sense, sus
tainability refers to the ability of the system to maintain a long-term 
process continuously over time, considering the incorporation of envi
ronmental, social, and economic aspects. To attain economic growth, 
subsea industrial engineering is experiencing rapid growth, resulting in 
more and more complicated systems to meet the human needs. How
ever, this growth also brings challenges linked to social and environ
mental concerns, namely the sustainability issues highlighted above. 
More complicated multi-component systems are more susceptible to the 
failure dependences, leading to increased risks, higher economic losses, 
and more serious environmental pollution, which are all manifestations 
of reduced sustainability from various aspects. In this context, the 
operation and expansion of subsea production systems subject to failure 
dependences also pose hazards to the marine ecosystem from the aspect 
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of sustainability, especially as the systems gradually grow in both scale 
and complexity. 

To mitigate the failure dependences and improve the overall sus
tainability, some specific maintenance activities could be taken to 
decouple the components. However, both such maintenance activities 
and the conventional maintenance practices for subsea components 
present a set of unique challenges due to the hostile subsea environ
ments such as high pressure and low temperature, corrosive seawater, 
and the constant exposure to the wastes. Moreover, the maintenance 
itself is placed as an essential element within the paradigm of sustain
able development (Ghaleb et al., 2022), and may also have an impact on 
the sustainability. Given the fact that the failures such as leakage, 
collapse, erosion, the accelerated degradation due to failure de
pendences, as well as the challenging maintenance activities could all 
significantly impact sustainability, the mitigation of failure dependences 
and the evaluation of sustainability for subsea systems considering 
maintenance activities becomes imperative tasks. 

The shock or the loading dependence could be the factors that result 
in failure dependences and couple the components (Zhao et al., 2023b). 
For subsea systems, since maintenance interventions are extremely 
challenging, costly and time-consuming (Cheliyan et al., 2018), the 
damage from the failure dependences potentially is amplified. Some 
studies have been conducted for reliability analysis and maintenance 
optimization in consideration of failure dependence (Sheu et al., 2015; 
Gao et al., 2015; Zhang et al., 2022; Chang et al., 2024; Schafer et al., 
2018). Cai et al. (2021) introduced an innovative modeling approach to 
predict the remaining useful life (RUL) of multilevel subsea systems with 
consideration of CAF based on the position importance and function 
importance. Shao et al. (2022) contributed a multi-stage model-based 
RUL estimation approach for the subsea Christmas tree considering 
component degradation interactions. To evaluate the reliability of sub
sea pipelines with dependent competition failure, Liu et al. (2023) 
developed a novel method for evaluating the system reliability and 
studied the interaction between the degradation failure and sudden 
failure. Sometimes the failure dependences in the systems are complex 
and heterogeneous. In this situation, Zhao et al. (2023a) proposed a 
framework for heterogeneous failure dependences in multi-component 
systems by Markov processes and developed a general 
Condition-based maintenance (CBM) model to optimize the mainte
nance strategies. These studies emphasize the necessity of considering 
the failure dependences within subsea systems when investigating the 
reliability analysis and maintenance strategies optimization. However, 
to the best of our knowledge, none of the previous research pointed out 
the specific maintenance activities that can help to decouple dependent 
components, in other words, to mitigate the failure dependences among 
components, even though the maintenance activities to mitigate the 
failure dependences show great efficiency in avoiding unexpected CAFs. 

Considerable contributions have been made to models for estimating 
sustainability and strategies for enhancement (Shukor et al., 2022; 
Jaradat et al., 2023; Juhl et al., 2024). In terms of specific research 

questions, some studies consider the sustainability evaluation not only 
during system operation, but also associated with the maintenance in
terventions. Nezami et al. (2013) presented a fuzzy framework that in
corporates an effective sustainability program to provide appropriate 
decision-makings for maintenance strategies among a set of mainte
nance alternatives. Zheng et al. (2019) presented a comprehensive 
four-step structure for pavement life-cycle sustainability assessment 
(LCSA), including the maintenance phase. On the basis of above studies, 
some works focus on the assessment of the impact of maintenance ac
tivities themselves on the asset sustainability. Ghaleb et al. (2022) 
proposed an approach for quantifying and measuring the impact of 
maintenance activities on overall sustainability, which shows suitability 
being implemented in a sustainability dashboard (user interface). Saihi 
et al. (2023) established a fourth-order Hierarchical Component Model 
(HCM) to evaluate the sustainable performance of maintenance prac
tices, and conduct a model validation through a survey of the Oil & Gas 
industry. The trend of industrial engineering gradually expanding from 
land to ocean has also inspired more and more investigation (Virto, 
2018; Kappenthuler et al., 2021; Frederiksen et al., 2021; Chen et al., 
2023; Qiu et al., 2023) on the sustainability of the marine environments. 
Building on the frontiers of ocean science, Virto et al. (Virto, 2018) 
examined the framework for the most appropriate Sustainable Devel
opment Goal (SDG) 14 indicators and proposed the challenges and op
portunities for future research. Kappenthuler et al. (2021) developed a 
material selection framework to analyze the long-term potential of five 
common metal types in marine construction and provided the evalua
tion of their durability, economics, sustainability and future availability. 
Qiu et al. (2023) developed a three-dimensional (3D) nonlinear finite 
element (FE) framework to systematically examine the time-dependent 
seismic resilience and sustainability of reinforced concrete (RC) bridges 
under aggressive marine environments. The above studies evaluated the 
sustainability of the system from different aspects, but they do not 
investigate the phenomenon of failure dependence even though the 
dependent systems are riskier. Particularly, for complex subsea systems, 
the coupling impact of components degradation, failure dependences 
and the maintenance activities on sustainability is complicated, and how 
to construct a comprehensive model to evaluate the overall sustain
ability of the system is still a challenging issue. 

The above discussions lead to the following unresolved research is
sues: Lack of research on modeling the maintenance activity that can 
decouple dependent components and mitigate failure dependence; 
Absence of a sufficiently comprehensive framework that enables engi
neers to conduct a thorough assessment of the overall sustainability of a 
subsea system, considering the failure dependence and maintenance 
activities. Directing to these research issues, this paper proposed a novel 
framework to evaluate the system sustainability with consideration of 
failure dependence and maintenance activities, and subsequently ap
plies this model to a subsea transmission system. The expected contri
bution of this study could be summarized below: 

Abbreviations 

CAF Cascading failure 
RUL Remaining useful life 
CBM Condition-based maintenance 
LCSA Life-cycle sustainability assessment 
HCM Hierarchical Component Model 
SDG Sustainable Development Goal 
3D Three-dimensional 
FE Finite element 
RC Reinforced concrete 
DM Decoupling Maintenance 

DBN Dynamic Bayesian network 
BN Bayesian network 
NM No Maintenance 
PM Preventive maintenance 
CM Corrective maintenance 
SI Sustainability indicator 
SP Sustainability pillar 
OSS Overall sustainability score 
OREDA Offshore and Onshore Reliability Data 
QRA Quantitative risk analysis 
CPT Conditional probability table 
StdDev Standard Deviation  
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(1) Delimitate and model the new maintenance activity, called as 
Decoupling Maintenance (DM) activity, that is used to eliminate 
the failure dependences among components, in addition to the 
conventional maintenance activities.  

(2) Provide a comprehensive methodology, integrating the impact of 
component degradation, the failure dependences among com
ponents, and the maintenance activities on the overall 
sustainability.  

(3) Explore the impact of various maintenance strategies on the 
overall sustainability through application of the proposed meth
odology in a case study. 

The rest of the work is outlined as follows. Section 2 provides an 
overview of the multi-component subsea transmission system and the 
integrated evaluation framework. The illustration of the degradation 
model and maintenance model are presented in Section 3. In Section 4, 
the sustainability evaluation model considering the impact of compo
nent performance and maintenance activities is constructed. In Section 
5, a case study is conducted to demonstrate the practical application of 
the proposed methodology in the subsea transmission system. Section 6 
discussed the influence of maintenance strategies and failure de
pendences on the overall sustainability following the case study. Section 
7 outlines the conclusions of this paper and the direction of future work. 

2. Integrated evaluation framework with a motivating example 

Here we consider subsea transmission system, as illustrated in 
reference (Zhao et al., 2023a), suffering failure dependences and facing 
sustainability issues. Fig. 1 refers to (Zhao et al., 2023a; Grieb et al., 
2008) and illustrates the subsea separation and transmission part. In this 
setup, a subsea separator is used to carry out the initial separation of 
well fluids into three distinct phases: gas, oil, and water. Following the 
outlet of the separator, three pipes convey the separated gas, oil, and 
water to a compressor and two pumps respectively. The components of 
the subsea production system responsible for transmission, including the 
compressor and two pumps, can be considered as a dependent system, 
referred to as the subsea transmission system. In this simplified model of 
the transmission system, there are one compressor and two pumps 
operating in parallel. The gas compressed by the compressor and the oil 
transported by the pump are both directed topside, while the separated 
water containing sand is pumped for potential release into the sea or for 
reinjection through the water injection process. 

The compressor and pumps are used to transfer various substances at 
the desired power under ideal circumstances. However, these devices 
naturally undergo degradation, leading to various failure modes in 
practice, such as leakage, plugged, corrosion, vibration, overheating, 
spurious stop, etc. Some of these failures impact both their own opera
tional efficiency and the degradation of other devices within the system. 
For instance, when a compressor fails, the intermingling of gas and 
liquid in the pumps exacerbates the degradation of the pumps. This kind 

of failure dependence has a relationship with the content of impurities 
contained. As another example, vibration and overheating of one pump 
may directly affect the operation and degradation of another pump. This 
type of failure dependence is associated with physical distance and 
safety barriers. 

In this subsea transmission system, the component failure can easily 
trigger CAFs due to failure dependences and cause more severe acci
dents. Moreover, the inherent challenges in maintenance activities for 
subsea transmission system contribute to increased costs and resource 
demands. These factors collectively exert significant impacts on the 
subsea environment, the society, and the economy, thereby influencing 
the overall sustainability of the system. 

To evaluate the sustainability of the subsea transmission system over 
time, we develop an innovative methodology incorporating the failure 
dependences and maintenance activities, which is depicted in Fig. 2. 
This integrated framework comprises three sub-models. Within this 
framework, the degradation model involves estimating the state of 
components and failure dependences among components using histori
cal data and expert assessments. Furthermore, drawing from expert 
experience and maintenance records, it is possible to determine the 
traditional maintenance strategies and the formulation of a maintenance 
model, which helps to identify the impacts that the maintenance stra
tegies can have on the components. It is important to highlight that the 
innovative DM activities are embedded in the maintenance model to 
mitigate the failure dependences. Finally, a universal sustainability 
model is employed to assess alterations in sustainability throughout the 
system operation and maintenance activities, enabling optimization of 
the decision-making scheme. It is worth noting that the degradation 
process and maintenance activities of components within systems are 
closely interconnected and mutually influential. The degradation pro
cess determines the state of components and thus influences the main
tenance policies. Conversely, the maintenance activities changed both 
the component states and degradation process. This prompt introducing 
the integration merging the degradation and maintenance models, 
denoted as degradation-maintenance model for short. Furthermore, 
changes in either of these elements of degradation and maintenance 
activities can significantly affect the overall sustainability, thereby the 
degradation-maintenance model influences the sustainability evaluation 
model. 

Given that this research issue involves dynamics of a system, the 
dynamic Bayesian network (DBN) can be reasonable method for 
capturing capture the dynamic behaviors of the system in a real ever- 

Fig. 1. Scheme of the subsea separator system and transmission system.  Fig. 2. The integrated framework of the proposed methodology.  
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changing environment (Wu et al., 2022). DBN can handle the uncer
tainty of complex systems, allowing engineers to better understand the 
evolution of the system over time and better formulate maintenance 
strategies. The advantage can be demonstrated in some existing studies. 
To predict the RUL of multilevel subsea systems with consideration of 
CAF, Cai et al. (2021) introduced the modeling using DBNs. Liu et al. 
(2023) developed a DBN-based modeling for evaluating the reliability of 
subsea pipelines considering the interaction between degradation fail
ure and sudden failure. In our research, the DBN model addresses the 
components and the system at different time intervals. Comparisons of 
overall sustainability before and after required maintenance activities 
can therefore be studied. Specifically, the DBN is a model represented by 
a directed temporal acyclic graph. Nodes in the model represent sto
chastic variables, while the directed arcs correspond to the probabilistic 
conditional relationships among these variables. The DBN calculation is 
implemented through the software GeNIe. The GeNIe primarily serves 
the purpose of constructing, assessing, and visualizing probabilistic 
graphical models, with a particular focus on Bayesian networks (BNs) 
and DBNs (Ma et al., 2018). The GeNIe provides a free development 
environment for graphical decision-theoretic models to analyze the 
probabilistic relationships among various variables (Cheng et al., 2021), 
which is helpful to understand and handle the probabilistic events in 
complex systems. 

3. Degradation-maintenance model 

The degradation-maintenance model is illustrated in Fig. 3. Taking 
component 1 as an example to illustrate this model, the grey nodes 
labeled C1 and C1’ denote its state of at time t and t + Δt. The nodes CR1 
and DM1 in yellow represents the maintenance activities concerning the 
component and the maintenance activities to mitigate the failure de
pendences, respectively. The node FD1 denotes the overall failure 
dependence originating from other components towards component 1. 
The failure dependence relationship linking component 1 with each of 
the other components is visualized by the red arcs extending from their 
respective nodes to the node FD1. 

The state of the n components system could be denoted by X =

(x1, x2,… xn)
T, where xi ∈ [0, 1] characterizes the state of component i 

in this system. When xi = 0, the component i is in the As-Good-As-New 
state, i.e., the component is brand new; while when xi = 1, the 
component i is in Failed state. As the component degrades, its state value 
increases. Use a saturation function φ(x) to restrict the state of the 
components in [0,1]

xi =φ(xi)=

⎧
⎨

⎩

0, xi < 0
xi, 0 ≤ xi ≤ 1
1, xi > 1

(1) 

The components experience degradation and maintenance inter
vention over time. Let xi(t) represent the state of component i at time t. 
Then xi(t+Δt) is the state of component i at time t+ Δt, where Δt is the 
period of component degradation and maintenance intervention, 

starting from the moment the component states are observed until 
completion of the maintenance, which could be abbreviated as delay 
period. The delay period may be affected by the following factors: 
maintenance type, component importance, failure impact, maintenance 
procedures and resource availability, etc. Overall, the delay period is 
generally determined based on balancing factors such as component 
availability, cost-effectiveness, and safety. Its specific scope varies based 
on specific application scenarios and component characteristics. The 
function to determine xi(t+Δt) refers to equation (2). 

xi(t+Δt)=φ(xi(t) • Di + η) (2)  

where Di is the failure dependences from other components on compo
nent i, implying that the state of a component can be affected by the 
degradation or failure of other components; 

Di =
∏n

j=1

(
1+ xj(t)

)
(3)  

and η is the state change of the component, representing the degradation 
and the maintenance effectiveness. 

η=

⎧
⎨

⎩

ηDΔt, for NM
ηPM, for PM
ηCM, for CM

(4) 

In equation (4), ηD is the degradation decrement of component i 
during time unit. When there is no maintenance intervention, the state 
of component i only changes due to degradation and failure de
pendences. A value between 0 and 1 is assigned to state change rate due 
to degradation. If there is maintenance intervention during Δt, the state 
of component i changes due to maintenance intervention and failure 
dependences. Let ηPM and ηCM denote the maintenance effectiveness of 
Preventive Maintenance (PM) activities and Corrective Maintenance 
(CM) activities respectively, then a value between − 1 and 0 is assigned 
to state change caused to each PM and CM activities. In this model, the 
ηD is assigned a positive value since it signifies the degradation of the 
component. On the other hand, ηPM and ηCM are assigned negative values 
because they denote the improvement of the component state, leading to 
a decrement in its state value. This model assume that the maintenance 
activities could eliminate the cumulative effect of both previous and 
current damage. Therefore, the degradation during the period of Δt is 
not considered in the equations related to the maintenance activities. 

In addition, this study also examines maintenance activities aiming 
at diminishing the failure dependences, i.e., Decoupling Maintenance 
(DM) activities. When such maintenance activities are implemented, the 
failure dependence is assumed to drop to 0, and the state of component i 
at time t + Δt is 

xi(t+Δt)=φ(xi(t)+ η) (5) 

In conclusion, several types of maintenance activities are suggested, 
with the implementation of PM and CM activities aligned with the 
component states, as well as the implementation of DM activities aligned 

Fig. 3. DBN model for degradation process and maintenance activities considering CAFs.  
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with the failure dependences among components.  

• No Maintenance (NM) activities: the state of the component is 
acceptable, which does not exceed the threshold for any mainte
nance activity (x ≤ a), and thus no maintenance intervention is 
required. 

• Preventive Maintenance (PM) activities: The PM is imperfect main
tenance and could only improve the component performance to a 
certain extent. Common PM activities for subsea systems include 
coating repair, cleaning, anti-rust treatment, etc. 

• Corrective Maintenance (CM) activities: The CM is perfect mainte
nance, which restores the component to normally operating state. 
Typical CM activities for subsea systems involve replacements of 
broken pipelines or damaged key devices, etc.  

• Decoupling Maintenance (DM) activities: The DM aims to decouple 
dependent components and is only related to the failure dependences 
among components. The failure dependence is assumed to be elim
inated completely after DM activities. Examples of DM activities for 
subsea systems are physical isolation between equipment, redundant 
design, interlocking systems, etc. 

4. Sustainability evaluation model 

4.1. Evaluation of impacts of component performance on sustainability 

The system performance determines not only the output efficiency, 
but also the pollution during its regular operation, and the pollution due 
to failures, i.e., the emissions, the wastes, and the noise. While the 
regular operation of the system constantly results in a certain amount of 
emission or pollution to the surrounding environment, its production 
will contribute positively to both society and the economy. To evaluate 
the impact of the component performance on the sustainability more 
comprehensively, the suggested procedure is provided as below (see 
Table 1). 

Step 1. System familiarization. 

The system should be well-defined, with clearly outlined physical 
boundaries and specific details regarding its operational requirements 
and relationship with sustainability. Operational familiarization in
cludes the system structure, components functions and dependence 
among components. Environmental familiarization involves identifica
tion of all potential sustainability pillars and sustainability indicators 
that may contribute to each sustainability pillar. 

Step 2. Information acquisition and determination of nominal states 
of the components. 

States of the components are defined as xi ∈ [0,1] in subsection 3.1. If 
the component is normally working, and no maintenance is required, it 
is supposed that the damage from the component performance to the 
sustainability is infinitely close to 0 and could be neglected. The state of 
component that falls below the threshold for maintenance activities 
could be then considered as the nominal state. Information about the 

nominal values of component states could be obtained from OREDA 
(SINTEF and NTNU, 2015), historical data, maintenance records, and 
other relevant sources. 

Step 3. Scoring the effects of the component performance on each 
sustainability indicator. 

Components below the maintenance threshold are assumed to be in a 
nominal state and have no effect on system sustainability indicators. 
Once a component surpasses this nominal state, the disparity between 
the component state and the nominal state can be utilized quantitatively 
to evaluate the effects of the component performance on sustainability 
indicators. Compared to the nominal states of the components, the ef
fects of the component performance on each sustainability indicator 
could be denoted as 

σi→SIj =

{
0, xi < a

xi − a, xi ≥ a (6) 

The integrated effects of the component performance from all the 
components on each sustainability indicator can be then given by 
∑n

i=1εi→SIj σi→SIj , where εi→SIj represents the relationship between the state 
of component i and the sustainability indicator SIj, and 

∑n

i=1
εi→SIj = 1, for j= 1, 2,…r (7) 

The scores of εi→SIj can be derived from technical documentation, 
operational information, expert assessments, accident reports, and in
terviews with engineers. When the performance of the component de
clines, indicating an increase in the value of the component state, and 
such degradation negatively impacts the sustainability, εi→SIj assumes a 
negative value within the range of − 1 to 0. Conversely, when the 
component degradation positively affects the sustainability, εi→SIj as
sumes a positive value within the range of 0–1. 

Step 4. Weighing the contribution of the sustainability indicators to 
sustainability pillars. 

Sustainability indicators and sustainability pillars are related con
cepts, but they serve different purposes. Sustainability indicators are the 
tools to assess how well the sustainability goals are achieved within 
these sustainability pillars. Sustainability pillars are the fundamental 
categories that represent the various aspects of sustainability. The most 
common sustainability pillars (Ghaleb et al., 2022) are Environmental, 
Social, Economic. Sustainability indicators are specific metrics used to 
evaluate the performance of a system in terms of sustainability. Exam
ples include hazardous substances, carbon emissions, wastes, and noise 
regarding to the sustainability pillar Environmental. The sustainability 
indicators contributing to a sustainability pillar may have varying 
weights of influence. The contributing weight of sustainability indicator 
SIj for the sustainability pillar SPk is denoted as wjk. Should there be no 
relation between sustainability indicator SIj and the sustainability pillar 
SPk, then wjk = 0. The weights could be scaled in 

Table 1 
Suggested stepwise procedure of the sustainability evaluation concerning the impact component performance.  

Step Description 

Step 1 System familiarization. 
Step 2 Information acquisition and determination of nominal states of the components. 
Step 3 Scoring the effects of the component performance on each sustainability indicator (SI). 
Step 4 Weighing the contribution of the sustainability indicators to the sustainability pillar (SP). 
Step 5 Determination of the importance of each sustainability pillar. 
Step 6 Determination of the overall sustainability score (OSS) by impacts of component performance.  
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∑r

j=1
wjk = 1, for k = 1, 2,…p (8)   

Step 5. Determination of the importance of each sustainability pillar. 

The sustainability pillars provide a framework for conceptualizing 
the different sustainability indicators of systems. However, distinct 
systems may seek diverse sustainability objectives, leading to variations 
in the importance of sustainability pillars. To ensure alignment with the 
system distinctiveness and sustainability objectives, it is essential to 
assign weights to the sustainability pillars individually according to 
their importance to the overall sustainability when conducting sus
tainability evaluations. Suppose that there are p sustainability pillars in 
total, then 

∑p

k=1
Ik = 1 (9)   

Step 6. Determination of the overall sustainability score by impacts 
of component performance. 

Finally, the overall sustainability can be calculated based on the 
obtained scores and weights, as shown in equation (10). While the in
fluence of component performance on sustainability indicators and 
pillars may not perfectly align with the reality, it is still a reasonably 
accurate approximation for quantifying the OSS. 

OSS=
∑p

k=1
Ik •

[
∑r

j=1
wjk •

(
∑n

i=1
εi→SIj σi→SIj

)]

(10) 

Since equation (10) solely represents the influence of component 
performance on sustainability, which is, the evaluation of system sus
tainability prior to the execution of maintenance activities, it could be 
used to evaluate the system sustainability at time t. This system sus
tainability can be confined within a range from − 1 to 1. A lower value of 
the OSS closer to − 1 signifies a lower degree of acceptance for the sys
tem sustainability, and a higher OSS indicates an increased level of 
acceptability for the system sustainability. According to the sustain
ability evaluation framework we established, the value of OSS can 
comprehensively reflect the impact of component performance on sus
tainability from three aspects (environmental, social, and economic). 

4.2. Evaluation of impacts of maintenance activities on sustainability 

Maintenance activities can have a substantial impact on sustain
ability in two distinct ways: To start with, by enhancing system per
formance, maintenance activities indirectly contribute to improved 
system performance and thus improved the sustainability, which could 
be categorized to the discussion in the last subsection. However, main
tenance activities themselves can directly result in sustainability 
changes. For example, Emissions arise from the transportation and 
deployment of old and new devices, as well as the maintenance crews. 
Replacement of failed components also contributes to resource wastage. 
This subsection examines the second type of effect. 

Assign a correlation value ranging from 0 to 1 to map and assess the 
impact of each maintenance activity. Let σMSSi→SIj represent the impact 
of maintenance activities for component i on sustainability indicator SIj, 
and εMSSi→SIj denote the relationship between the maintenance activities 
of component i and the sustainability indicator SIj. In this case, the cu
mulative impact from all the maintenance activities on sustainability 
indicator SIj could be denoted as 

∑n
i=1εMSSi→SIj σMSSi→SIj . Afterwards, the 

assessment of relationships among sustainability indicators, sustain
ability pillars, and the overall sustainability could adhere to the same 
steps that examines how component performance influences 

sustainability. 
Every maintenance activity and component state change lead to the 

overall sustainability changes. The overall sustainability evaluation at 
time t + Δt contains both of their effects. Since the impact of mainte
nance activities on sustainability is considered independent of the 
impact of component state change, their impact on sustainability in
dicators can be simply superimposed. Therefore, the overall sustain
ability score at time t + Δt (OSS*) can be calculated as below. 

OSS∗ =
∑p

k=1
Ik •

[
∑r

j=1
wjk •

(
∑n

i=1

(
εi→SIj σi→SIj + εMSSi→SIj σMSSi→SIj

)
)]

(11) 

Compared with the OSS at time t, the overall sustainability at time t 
+ Δt considers the influence of maintenance activities as an independent 
factor. Consequently, the combination of the effects from component 
performance and the maintenance activities on sustainability can lead to 
an OSS* value at time t + Δt that falls beyond the range of [ − 1, 1]. 
Nonetheless, similarly with OSS, a higher OSS value still indicates an 
increased level of acceptability for system sustainability. Besides, the 
value of OSS* can comprehensively reflect the impact of component 
performance and maintenance activities on sustainability from three 
aspects (environmental, social, and economic). 

4.3. Process of overall sustainability evaluation 

Fig. 4 shows the whole process to evaluate the overall sustainability. 
The blue nodes labeled OSS and OSS* denote the overall sustainability 
score at time t and t + Δt. The OSS is calculated only relying on the states 
of the components at time t, while OSS* calculation involves the effects 
of the component states at time t + Δt, as well as the effects of main
tenance activities during the period Δt. At time t, the maintenance ac
tivities are not carried out, and the overall sustainability score depends 
only on the component states, denoted by the grey nodes. At time t + Δt, 
the overall sustainability score depends both on the component states 
and on the impact of maintenance activities for the component on the 
sustainability, which encompasses the impact of maintenance activities 
CR and the impact of maintenance activities DM. Based on the evalua
tion of the impact from maintenance activities and the impact of new 
component states at time t + Δt, the new overall sustainability score 
could be estimated. 

5. Numerical analysis for the subsea transmission system 

5.1. Degradation-maintenance model of the subsea transmission system 

According to the proposed model, the state of component i is char
acterized by xi ∈ [0,1]. Assume that the state of component i follows a 
beta distribution X ∼ Beta (α, β) to restrict the state values within the 
range of [0, 1]. The Beta distribution is widely used in statistical appli
cations as a prior distribution for proportions in Bayesian analysis due to 
its analytical tractability, versatility (Fernández et al., 2012) and flexi
bility for modeling (Horn et al., 2019). In particular the beta distribution 
could be used to describe failure probability estimation in quantitative 
risk analysis (QRA) (Steijn et al., 2017) and denote failure rates of 
offshore components in reliability assessment (Horn et al., 2019), which 
demonstrates its relevance to our research. The beta distribution pa
rameters could be adjusted for a more realistic representation to align 
the distribution shape with expert experience and empirical data (SIN
TEF and NTNU, 2015; O’Connor et al., 2016). Determine the probability 
distributions of the states for the compressor and two pumps as: X1 ∼

Beta (1, 5), X2 ∼ Beta (2, 4), X3 ∼ Beta (2, 5). Their distributions are 
capable of being defined within the software GeNIe, and the screenshots 
depicting their representation in the software can be observed in Fig. 5. 
Fig. 5 illustrates the probability values associated with different states of 
distinct components at the initial time point t. 

Each component exists in one of four states: normally operating 
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(state 0), moderately degraded (state 1), degraded (state 2), and failed 
(state 3). To scale the four states of component, the range of the value 
characterizing each state is set to be 0.25：Normally Operating state 
falls within the interval of [0, 0.25); Moderately Degraded state lies in 
the interval of [0.25, 0.5) and so forth. During one time unit, the 
degradation decrement of the compressor is 0.01, and the degradation 
rates of the pumps is 0.05. If the component is degraded (state 2), PM is 
required to restore the component state to moderately degraded (state 
1). Considering that PM solely restores the component to its prior state, 
and given that the gap between distinct states is 0.25, the assigned value 
for PM in this context is − 0.25. This ensures that components under
going PM revert to their previous state. If the component fails (state 3), 
CM is needed to take the component to the normally operating state 
(state 0). To handle the variety of CM activities, the CM activities are 
allocated a value of − 0.75, guaranteeing that, following CM, the 
component falls within the Normally Operating state range [0, 0.25), 
regardless of its initial state. In this case, the state change rates due to 
degradation and the maintenance effectiveness could be valued as listed 
in Table 2. 

In practical engineering, the implementation of maintenance activ
ities relies not solely on the states of the components but also on factors 
like the urgency of the degradation or failures, the complexity of 
maintenance procedures, and the constraints of available maintenance 
resources. Consequently, there is not always a fixed, predetermined 
maintenance activities for a particular state of the component. The 
probabilities of choosing a specific maintenance activity for a particular 
component state are given according to the historical data, maintenance 
records and expert opinions. The historical data and maintenance 

records are documented by the industry. The expert opinions come from 
one engineer in the industry, one researcher in the safety institute, one 
professor in the university, and one PhD working on the maintenance 
management. According to their experience, the probabilities of various 
maintenance activities, considering the state of components are delib
erated, gathered, and assessed. These probabilities can be considered as 
the prior probabilities and generalized into conditional probability ta
bles (CPTs) when applied to DBNs, as shown in Table 3. 

Similar to PM activities and CM activities, the prior probabilities of 
DM activities are also conditional. The probabilities carrying out the DM 
activities depend on the strength of failure dependence between com
ponents. Given the limited occurrence of DM maintenance activities 
addressing failure dependences in practical situations, the level of fail
ure dependence is quantified by equation (3) and simply classified into 
Weak and Strong. Besides, the likelihood of undertaking corresponding 
maintenance activities for various components based on two levels is 
approximately equal, as inferred from maintenance records and expert 
opinions. From another perspective, reciprocal nature of failure 
dependence among components results in a more evenly distributed 
probability of performing DM maintenance activities for them. Table 4 
shows the CPT for the DM maintenance policies. 

5.2. Sustainability evaluation model of the subsea transmission system 

The methodology to determine OSS is not focused in this study, so 
three sustainability-related pillars were assigned weights based on the 
BWM method applied in a case study (Ghaleb et al., 2022): Environ
mental (0.4); Social (0.2); and Economic (0.4). The sustainability pillars 
are specifically expressed by sustainability indicators. The sustainability 
indicators associated with each sustainability pillar does not have any 
contribution or connection on the other sustainability pillars. The 
contribution weights of sustainability indicators for each sustainability 
pillar should be given by experts. Table 5 lists the results of experts’ 
estimation. 

The effects of the component performance on each sustainability 
indicator and the impacts of maintenance activities on sustainability 
indicators are also evaluated through expert opinions, primarily derived 

Fig. 4. DBN model for sustainability evaluation.  

Fig. 5. State distributions of the components at time t.  

Table 2 
Parameters for the degradation decrement and maintenance effectiveness.  

Parameters Degradation 
decrement ηD 

Maintenance 
effectiveness for 
PM ηPM 

Maintenance 
effectiveness for 
CM ηCM Compressor Pumps 

Values 0.01 0.05 − 0.25 − 0.75  
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from the information contained within maintenance records. An 
example serves to highlight variations in the influence of maintenance 
activities on sustainability indicators. Maintenance activities such as 
replacement of components can significantly impact both SI-wastes and 
SI-downtime. An escalation in such maintenance activities leads to 
greater wastes and extended downtime, consequently diminishing sus
tainability. Consequently, the impact of these maintenance activities on 
sustainability indicators SI-wastes and SI-downtime can be quantita
tively negative. On the other hand, maintenance activities centered on 
failure dependences among components, such as the installation of 
safety barriers, may result in some wastes but do not significantly impact 
component downtime. Therefore, the impact of DM activities on the 
sustainability indicator SI-downtime may register as a value that is 
either slightly negative and approaching zero, or it can be entirely 
directly ignored as 0 when quantified. 

5.3. Overall sustainability scoring 

After scoring all the values and weights, the overall sustainability 
score at time t and t + Δt could be calculated using the software GeNIe. 

Suppose that the maintenance activities are completed in one time unit. 
Regarding to this case, the results of OSS and OSS* are in distribution 
terms and shown in the right of Fig. 6. 

As depicted in Fig. 6, prior to the implementation of the maintenance 
activities, the probability distribution of sustainability values lies to the 
left of 0, with a higher probability for values closer to 0. However, after 
experiencing component degradation and maintenance activities during 
the delay period Δt, the probability distribution of sustainability values 
shifts leftward, and some smaller sustainability values appear with a 
certain probability. This suggests that, even after the application of 
maintenance activities, the overall sustainability still exhibits a 
declining trend in general over time. Since GeNIe displays a handful of 
parameters of the distribution, more specific values of the results could 
be calculated and listed in Table 6. In Table 6, the StdDev is the 
abbreviation of Standard Deviation, which is used to measure the 
dispersion of a set of data. The maximum value indicates the peak level 
of overall sustainability acceptability, which is consistent for both OSS 
and OSS*. Conversely, the minimum value and the mean value signify 
the lowest level and the average level of overall sustainability accept
ability, and these two parameters may serve as estimates for overall 
sustainability. Therefore, we could also obtain a similar conclusion that 

Table 3 
CPT for the PM and CM maintenance policies.  

Maintenance activities Component 1 Component 2 Component3 

State 0 State 1 State 2 State 3 State 0 State 1 State 2 State 3 State 0 State 1 State 2 State 3 

NM 1 0.45 0 0 1 0.6 0 0 1 0.6 0 0 
PM 0 0.55 0.6 0.1 0 0.4 0.7 0.1 0 0.4 0.7 0.1 
CM 0 0 0.4 0.9 0 0 0.3 0.9 0 0 0.3 0.9  

Table 4 
CPT for the DM maintenance policies.  

DM activities Component 1 Component 2 Component 3 

Weak Strong Weak Strong Weak Strong 

NO 1 0.4 1 0.4 1 0.4 
YES 0 0.6 0 0.6 0 0.6  

Table 5 
Contribution weights of SIs for each SP.  

SPs SIs 

Energy consumption Wastes Noise Accidents Injury frequency Resource usage costs Productivity Downtime 

Environmental 0.6 0.25 0.15 – – – – – 
Social – – – 0.55 0.45 – – – 
Economic – – – – – 0.3 0.4 0.3  

Fig. 6. OSS evaluation model and results.  

Table 6 
Results for the OSS and OSS* evaluation.  

Values StdDev Maximum value Minimum value Mean value 

OSS 0.0542 0 − 0.3125 − 0.0634 
OSS* 0.0765 0 − 0.5687 − 0.1259  
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the overall sustainability declines by comparison of the results of these 
two parameters. 

Then we assume that the duration of component degradation and 
maintenance interventions are extended, meaning that the value of 
delay period Δt is altered. The changes of the overall sustainability could 
be observed by comparing its mean values and minimum values. The 
results are shown in Fig. 7. From this figure, the mean values of OSS are 
almost stable on a horizontal line, while the minimum values of OSS 
exhibit minimal variation with changes in the delay period. This phe
nomenon can be easily comprehended since the value of OSS is inde
pendent of the delay period and the activities that occur during it. 
Hence, to assess the impact of component degradation and various 
maintenance activities on overall sustainability during the delay period, 
it is rational to exclusively consider the values of OSS*. Regarding OSS*, 
its minimum values experience fluctuations without obvious time- 
dependent pattern. However, the mean values of OSS* demonstrate a 
consistent and steady decline as the delay period extends, making it a 
more suitable fundamental parameter for our analysis, compared to the 
minimum value. Furthermore, it is noteworthy that both the mean 
values and minimum values of OSS* are considerably lower than their 
counterparts of OSS. This revalidates the previous conclusion that the 
overall sustainability diminishes following the delay period of compo
nent degradation and maintenance activities. 

6. Results and discussion 

6.1. Influence analysis of failure dependence 

The numerical results of OSS* with and without failure dependence 
could be compared by Fig. 8. The results show that the mean values of 
the overall sustainability with failure dependence are obviously smaller 
than that without failure dependence. The finding implies that the 
overall sustainability is in a less acceptable level when there is failure 
dependence. This phenomenon can be explained as follows: the failure 
dependence accelerates the component degradation, thereby amplifying 
the damage to the overall sustainability, ultimately causing the decline 

in the values of OSS* to an even more unacceptable level. From Fig. 8, 
the corresponding changes in the overall sustainability are observed 
with varying the failure dependence. In reality, structural and functional 
failure dependences among components are very common and become 
more pronounced as system complexity grows. Consequently, neglecting 
the influence of failure dependences during system sustainability as
sessments can lead to overestimated outcomes than the actual values, 
potentially resulting in inappropriate maintenance strategies. 

6.2. Influence analysis of maintenance strategies 

The CPT of nodes can be flexibly changed in the DBN. Taking 
advantage of the feature, the overall sustainability can be reassessed 
under the assumption that various maintenance strategies are imple
mented. Subsequently, a maintenance decision can be determined ac
cording to the optimization of the reassessed sustainability, as 
mentioned in equation (11). The aforementioned maintenance strategy 
in the case study is denoted as maintenance strategy 1. Some other 
maintenance strategies are also considered. Fig. 9 shows the mean 
values of the overall sustainability after delay period with six kinds of 
maintenance decision. Compared to maintenance strategy 1, other 
maintenance strategies have varying alteration, as illustrated below.  

• Maintenance strategy 2: Decreasing the probability of DM activities 
from 0.6 to 0.3 for all components;  

• Maintenance strategy 3: Ignoring the DM activities (the probability 
of DM activities will be 0);  

• Maintenance strategy 4: Using PM activities instead of CM activities 
(the probability of NM activities remains the same and the proba
bility of PM activities will be 1 − Pr (NM));  

• Maintenance strategy 5: Using NM activities instead of PM activities 
(the probability of CM activities remains the same and the proba
bility of NM activities will be 1 − Pr (CM));  

• Maintenance strategy 6: Ignoring all kinds of maintenance activities 
(the probability of NM activities will be 1, and the probability of DM 
activities will be 0). 

As shown in Fig. 9, all the mean values of the overall sustainability 
considered other maintenance strategies are smaller than that consid
ered maintenance strategy 1. The mean values of OSS* show the biggest 
difference between the maintenance strategy 1 and maintenance strat
egy 6. It implies that the worst-case scenario for overall sustainability 
occurs when no maintenance interventions are implemented, and the 
component degradation is the sole factor causing a negative impact on 
overall sustainability. Despite the maintenance strategy itself having a 
somewhat adverse impact on sustainability, its beneficial consequences 
on the overall sustainability by improving the component performance 
far outweigh its inherent drawbacks. In addition, a more detailed dis
cussion of maintenance strategies can reveal the different impacts that 

Fig. 7. OSS and OSS* results with different delay period.  

Fig. 8. Mean values of OSS* with and without failure dependence.  Fig. 9. Mean values of OSS* with various maintenance strategies.  
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different maintenance strategies have on overall sustainability. Among 
them, maintenance strategies 2 and 3 focus on the alteration of DM 
maintenance activities, while maintenance strategies 4 and 5 focus on 
the alteration of PM and CM maintenance activities. Compared the 
maintenance strategies 1, 2 and 3, as the probability of implementing 
DM activities becomes smaller (0.7 to 0.3 to 0), the mean value of the 
overall sustainability is lower, while the reduction is not substantial. 
This implies that the DM activities have a modest capacity to enhance 
the overall sustainability, though their impact is not particularly pro
nounced. Therefore, in engineering practice, the DM activities could be 
considered when the budget and maintenance resources are sufficient. 
In terms of the maintenance strategies 1, 4, the differences between their 
numerical results are also not obvious, denoting that if all the mainte
nance activities are taken with CM, the overall sustainability could 
remain a pretty good level. However, if the moderate degradation or 
degradation are ignored to a large extent, and no maintenance activities 
are taken, which is maintenance strategy 5, the overall sustainability is 
largely decreased. Another observation is that as the delay period in
creases, the mean value of overall sustainability in the case of mainte
nance strategy 5 diminishes more rapidly than that in the case of 
maintenance strategy 1, in other words, the difference between them 
becomes larger. This could be attributed to the assumption that some 
components with moderate degradation or degradation are not main
tained when considering only CM activities. With longer delay times, the 
degradation of these components intensifies. When components degrade 
severely, their hostile effect on the sustainability largely surpasses the 
possible negative impact of maintenance activities on the sustainability. 
Moreover, as the degree of component degradation increases, its hostile 
effect escalates at a faster rate, leading to a more rapid decline in the 
overall sustainability with longer delay period. 

The above discussions involve the maintenance strategies under 
extreme circumstances and can serve as reference for investigating the 
influence of various maintenance activities on the overall sustainability. 

To further consider the optimization of maintenance strategies based on 
the case study, altering the parameters of maintenance activities within 
the CPTs may yield diverse simulation results, revealing more effective 
maintenance strategies. An example of optimized maintenance strategy 
is provided, whose details are listed in Tables 7 and 8. 

Fig. 10 shows the comparison of the sustainability evaluation under 
previous maintenance strategy and the optimized maintenance strategy. 
As shown in Fig. 10, the mean values of OSS* under optimized main
tenance strategy are always higher than that under previous mainte
nance strategy, which implies that the optimized maintenance strategy 
notably enhances the overall sustainability. This case demonstrates that 
the proposed methodology could be used to optimize the maintenance 
strategies based on sustainability in practice. In practical applications, 
this model can be used to simulate the enhancement of system sus
tainability under different maintenance strategies before decision- 
making, which is achieved by changing the type and corresponding 
probability of maintenance activities, thereby determining the optimal 
maintenance strategy. 

7. Conclusions and future work 

In this paper, a comprehensive framework to evaluate the overall 
sustainability of the complex multi-component system considering the 
failure dependences among components and the maintenance activities 
is proposed. The maintenance activities to mitigate the failure de
pendences are innovatively taken into account. The framework is 
examined based on a DBN model and applied in a case study of the 
subsea transmission system. Through the case study, the influence of 
failure dependences and the influence of maintenance strategies on the 
overall sustainability are illustrated. The results show that the overall 
sustainability is declining over time even after maintenance activities 
because the maintenance activities themselves also cause certain dam
age to the sustainability. Another finding is the overestimated sustain
ability without consideration of failure dependence, highlighting the 
significance of considering the failure dependence. Following that, 
several various maintenance strategies are examined and show that the 
overall sustainability could be improved to more acceptable level if the 
maintenance activities are implemented suitably according to the spe
cific situations. 

This research addressed several issues, such as introducing a novel 
maintenance activity (DM), and formulating a sufficiently comprehen
sive framework to assess the influence of failure dependence and 
maintenance activities on the overall sustainability of the system. The 
proposed framework is flexible, allowing for the investigation of various 
scenarios, including different degrees of failure dependence and diverse 
maintenance activities, through the straightforward adjustment of the 
CPTs. However, this research still has specific limitations that necessi
tate further investigation, as outlined below. 

Firstly, the characterization of failure dependences among compo
nents was oversimplified due to that the study focuses more on the 
evaluation of overall sustainability. In fact, the failure dependences are 
complex and heterogeneous. To propose a more realistic framework, it is 
imperative to develop a more precise failure dependence model. Di
rections for future work can involve more investigations on the degra
dation mechanism caused by failure dependences. In addition, this 
research examines the contrast in overall sustainability pre and post 
once maintenance activities. Nevertheless, in practice, the system 

Table 7 
CPT for the optimized PM and CM maintenance policies.  

Maintenance activities Component 1 Component 2 Component3 

State 0 State 1 State 2 State 3 State 0 State 1 State 2 State 3 State 0 State 1 State 2 State 3 

NM 1 0.4 0.05 0 1 0.35 0 0 1 0.35 0 0 
PM 0 0.55 0.7 0.1 0 0.6 0.6 0.15 0 0.6 0.6 0.15 
CM 0 0.05 0.25 0.9 0 0.05 0.4 0.85 0 0.05 0.4 0.85  

Table 8 
CPT for the optimized DM maintenance policies.  

DM activities Component 1 Component 2 Component 3 

Weak Strong Weak Strong Weak Strong 

NO 1 0.3 1 0.3 1 0.3 
YES 0 0.7 0 0.7 0 0.7  

Fig. 10. Mean values of OSS*under previous and optimized mainte
nance strategy. 
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operates for several decades, during which it will undergo multiple 
testing and maintenance activities. If the degradation of the system and 
more maintenance activities over a longer period are considered, the 
results obtained should be more comprehensive and informative. 
Therefore, the Bayesian networks are suggested to be extended with 
multiple changes over longer periods. Thirdly, a more effective main
tenance strategy is identified through inputting various maintenance 
strategies into the proposed model and conducting multiple simulations 
to compare the outcomes. However, pinpointing the optimal mainte
nance strategy proves challenging. Therefore, the model can be further 
improved to achieve the most optimal maintenance strategy to maxi
mize the overall sustainability of the system. 
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