Doctoral theses at NTNU, 2024:82

Feiyang Tang

Analyzing Privacy in Software

A3ojouyda] uonedunwwo)

pue A11un23s uonewJoyul Jo 1dag

Sunissuidug

[B21393|3 pue ASojouyda| uoiew.olu| Jo Aynde4
J030(Q aeiydoso|iyd

40 92435Q 9Y3 Joy sisay |

A3ojouydal pue 33uU312S Jo ANISIaAIUN UeISaMION
NNLN

NTNU

Norwegian University of
Science and Technology

Feiyang Tang

Analyzing Privacy in Software

Thesis for the Degree of Philosophiae Doctor
Gjevik, April 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

NTNU

Norwegian University of
Science and Technology

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

© Feiyang Tang

ISBN 978-82-326-7758-0 (printed ver.)
ISBN 978-82-326-7757-3 (electronic ver.)
ISSN 1503-8181 (printed ver.)

ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2024:82

Printed by NTNU Grafisk senter

To my mother,

for her endless love.

ABSTRACT

In our increasingly digital world, a pressing concern emerges: How do we secure
our privacy as we increasingly depend on software? As we navigate through apps
and platforms, the complexities of data privacy become evident. Understanding the
intricate flow of personal data, ensuring compliance with evolving global regulations,
and developing adaptable tools for diverse software environments are paramount.
This Ph.D. thesis delves deep into these challenges, offering insights and solutions
that span from the granular details of code to the broader validation of privacy
policies.

The first challenge is the subtlety of personal data. Legal definitions are often
abstract and translating them into technical requirements is no easy task. Identifying
what constitutes personal data in a sea of code is a daunting challenge. Secondly,
understanding how personal data flows within systems is crucial. With regulations
like the General Data Protection Regulation (GDPR) in place, it is crucial to know
what kind of processing personal data undergoes for compliance checks. Lastly,
different projects have different needs. For developers doing self-analysis, a detailed
examination of compiled code can reveal intricate data flows. However, for large
industry projects, high-level source code analysis may be more practical for third

parties to quickly gauge privacy compliance situations across millions of lines.

Investigations into these aspects resulted in the eight papers that are presented
in this dissertation. They also led to the following additional contributions: (1)
A privacy flow-graph tailored for Java and Android applications; this approach
aids in the Data Protection Impact Assessment (DPIA) process. (2) A biometric
data identification approach developed to pinpoint biometric API usage within Java
and Android applications; this method ensures alignment with the GDPR. (3) An
automatic comparison approach that addresses the collection of user interaction
data in mobile apps by comparing an app’s privacy policy claims with its actual
code implementation. (4) An automated code review assistant that offers a method
to identify and categorize relevant code segments in source code, thus reducing the

manual review effort.

II

The contributions offer guidance for developers and legal experts, connecting the
detailed aspects of software development with the clear rules of privacy regulations.
These contributions can pave the way for a clearer, more streamlined, and compliant
online environment, ensuring that as we use digital platforms, our privacy is always

protected.

CONTENTS

Abstract 1
List of Papers VI
List of Figures VII
List of Tables VIII
Preface X
Acknowledgments XI

A Thesis Summary 1
1 Introduction 2
1.1 Motivationo 3
1.2 Research questions L. 4
1.3 Contributions 5
1.4 Structure of the dissertation 6

2 Background 9
2.1 Privacy o . 9
2.1.1 A historical perspective 9

2.1.2 Privacy in the bigdataera 10

2.1.3 Definition of personal data 10

2.2 Program analysis 11
2.2.1 Static analysis for security and privacy 12

2.2.2 Program analysis for different languages 13

2.3 Issues with privacy policies 14
2.3.1 Length and complexity 14

v CONTENTS
2.3.2 Inconsistencies and contradictions 14
2.3.3 Lack of transparency 15
3 State of the Art 17
3.1 Taint analysis for personal data flows 17
3.1.1 Identifying data flows 17
3.1.2 Categorizing data flows 18
3.2 Policy analysis.o L 18
3.3 Tailoring approaches for front-end and back-end systems 19
3.4 Evaluating transmission and storage mechanisms 19
3.5 Researchgaps 19
4 Method 21
4.1 Literature analysis 21
4.2 Program analysis 22
4.3 Machine learningo 23
4.4 Experiments 23
4.5 Expert validation 24
5 Summary of Papers 25
5.1 Paper 1: Assessing Software Privacy using the Privacy Flow-graph . . 25
5.2 Paper 2: PABAU: Privacy Analysis of Biometric API Usage 26
5.3 Paper 3: Identifying Personal Data Processing for Code Review . . . 27
5.4 Paper 4: Helping Code Reviewer Prioritize: Pinpointing Personal
Data and its Processing 28
5.5 Paper 5: Transparency in App Analytics: Analyzing the Collection of
User Interaction Data 30
5.6 Paper 6: User Interaction Data in Apps: Comparing Policy Claims
to Implementations 31
5.7 Paper 7: Finding Privacy-relevant Source Code 32
5.8 Paper 8: Software Privacy and Program Analysis: Insights, Methods,
and Opportunities 33
6 Discussion 35
6.1 Theresultsasawhole 35
6.2 Linking results to the research questions 36
6.3 Linking results to fields of research 38
6.4 Linking results to social topics 39

CONTENTS

7 Conclusion
7.1 Conclusion
7.2 Future directionso
7.2.1 Redefining and expanding the scope of personal data
7.2.2 DBridging the gap between legal and technical experts
7.2.3 Real-time analysis
7.2.4 Machine learning for data flow classification

7.2.5 Enhanced alignment of program and policy analysis

References

B The Papers
Paper 1
Paper 2
Paper 3
Paper 4
Paper 5
Paper 6
Paper 7

Paper 8

41
41
42
42
43
43
44
44

47

955

56

71

86

98

115

131

146

160

LIST OF PAPERS

Paper 1

Tang, F. and Ostvold, B. (2022). Assessing software privacy using the privacy
flow-graph. In Proceedings of the 1st International Workshop on Mining Software
Repositories Applications for Privacy and Security (MSR4PE&S 2022). Association
for Computing Machinery, New York, NY, USA, 7-15.

Paper 2

Tang, F. (2022)., PABAU: Privacy Analysis of Biometric API Usage, In Proceed-
ings of the 2022 IEEE Conference on Privacy Computing (PriComp 2022), Haikou,
China, 2022, pp. 2301-2308.

Paper 3

Tang, F.; Ostvold, B. and Bruntink, M. (2023). Identifying Personal Data Process-
ing for Code Review. In Proceedings of the 9th International Conference on In-
formation Systems Security and Privacy - ICISSP; ISBN 978-989-758-624-8; ISSN
2184-4356, SciTePress, pages 568-575.

Paper 4

Tang, F.; Ostvold, B. and Bruntink, M. (2023). Helping Code Reviewer Prioritize:
Pinpointing Personal Data and its Processing. In Proceedings of the 22nd Inter-

national Conference on Intelligent Software Methodologies, Tools and Techniques
(SOMET 2023). DOI: 10.3233/FAIA230228.

VI

Paper 5

Tang, F. and Ostvold, B. (2023). Transparency in App Analytics: Analyzing the
Collection of User Interaction Data. In Proceedings of the 20th Annual International
Conference on Privacy, Security € Trust (PST 2023)

DOI: 10.1109/PST58708.2023.10320181.

Paper 6

Tang, F. and Ostvold, B. (2023). User Interaction Data in Apps: Comparing Policy
Claims to Implementations. Published at the 18th IFIP Summer School on Privacy
and Identity Management 2023 (IFIPSC 2023).

Paper 7

Tang, F. and Ostvold, B. (2024). Finding Privacy-relevant Source Code. Accepted
by the 2nd International Workshop on Mining Software Repositories Applications
for Privacy and Security (MSR4PE&S 2024).

Paper 8

Tang, F. and Ostvold, B. (2024). Software Privacy and Program Analysis: Insights,
Methods, and Opportunities. A book chapter submitted to the Springer Handbook

on Privacy and Security Matters in Biometric Technologies.

VII

LIST OF FIGURES

5.2.1 General architecture of PABAU 27
5.4.1 Overview of our approach in Paper 4 29
5.5.1 Example of a vague privacy policy fragment describing the collection

of interaction data in The Weather Channel app. 30
5.6.1 Overview of our two-fold approach in Paper 6 32
5.7.1 The process of privacy code review 33

VIII

LIST OF TABLES

1.3.1 Breakdown of research questions addressed by paper. 6

2.1.1 Aspects of personal data in privacy 11
2.2.1 Comparison of analysis techniques for statically typed and dynami-

cally typed languages 14

IX

PREFACE

Two critical moments stand out in my journey, shaping the direction of this Ph.D.
research.

After completing my Honours degree at the University of Auckland in 2019, I
returned to China and was immediately struck by the rapid digital transformation
that had taken place during my absence. Services that were once straightforward
now required a digital interface, and to access them, I had to share an extensive array
of personal details, from my real-time location to biometric data. This immersion
into a digital-first environment sparked my curiosity about the balance between
convenience and privacy in software applications.

My interest deepened when I stumbled upon the recruitment post for the PriMa
project. The project’s focus resonated with my personal experiences, and I imme-
diately shared this with my mother. Her casual acceptance of the extensive data
collection by everyday digital tools highlighted a broader societal unawareness. It
became clear to me that there was a pressing need to address this gap, to ensure
that as we embrace digital tools, we remain informed and protected.

These two moments, one personal and the other academic, have been the guiding
lights of my Ph.D. journey. They emphasized the importance of understanding and
addressing software privacy, making it accessible and comprehensible to everyone in

our increasingly digital world.

ACKNOWLEDGMENTS

Embarking on a Ph.D. journey is never a solitary endeavor, especially when faced
with the unique challenges of a global pandemic. T am deeply grateful for the
community of scholars, mentors, and friends who have enriched this experience in
so many ways. As I reflect on this journey, I find it fitting to acknowledge the
invaluable contributions of those who have been crucial in shaping both my research
and personal growth.

First and foremost, my advisors deserve my heartfelt gratitude. Dr Bjarte M.
@stvold, my primary supervisor, has been a guiding light throughout this process.
His openness to meaningful academic dialogue and his meticulous attention to detail
have been cornerstones in crafting my research. He has generously devoted his time,
even beyond the confines of the office, to elevate the quality of my work. Beside him,
Prof Staal Vinterbo, my co-supervisor, has provided timely and insightful advice that
has effectively honed my research.

My thesis committee members also deserve special mention and sincere thanks:
Dr Nataliia Bielova from Inria, Prof Lothar Fritsch from OsloMet, and Prof Basel
Katt from NTNU. Their thorough evaluation and insightful feedback have been
critical in refining my dissertation. The time and effort they invested have not just
improved this thesis but also broadened my perspective in my field of study.

Moving outward, I acknowledge my NR colleagues Ahmed Fraz Baig, Nicholas
Walker, and Dr Izzie Yi Liu, as well as Dr Wolfgang Leister. Our lunchtime dis-
cussions have been sources of inspiration and intellectual challenge. Further, my
fellow doctoral students from the PriMa project have added depth to my academic
experience. Our collective brainstorming and debates have been fertile ground for
scholarly development.

I extend my thanks to Dr Magiel Bruntink and Prof Raymond Veldhuis, who
guided my secondments at the University of Twente and the Software Improvement

Group. Their wisdom has been instrumental in directing my research.

XI

Beyond the academic sphere, my friends have been a sustaining force in my
life. Huan Zhang, you are more than just a friend; you have been my anchor in
challenging times. To my Leuven mates: Jinjiu, Nanxu, Xinyi, Shuxian and Lieven,
you have kept me grounded when the world seemed to spin out of control. And
Henrik Hoggen, your ability to make even the darkest Norwegian nights feel koselig
has been a comfort. To all my friends, thank you genuinely for being there.

Last but certainly not least, this work is dedicated to my mother, Ning Yang.
Her sacrifices, boundless love, and unwavering faith have been my guiding light.
Her resilience is the strong foundation upon which I have built my achievements.
Her enduring love and support have been my pillars, and I can only aspire that my
accomplishments make her proud.

As I pen these final words, I am drawn to the wisdom of Norwegian ethnographer
Thor Heyerdahl: “Grenser? Jeg har aldri sett noen. Men jeg har hort at de eksisterer
1 tankene til enkelte mennesker.” In English, this translates to, “Borders I have never
seen one. But I have heard they exist in the minds of some people.” This journey
has indeed been about pushing boundaries — both personal and academic — and
each one of you has played a role in that. Thank you for being an integral part of

this transformative experience.
[EAWAJE > M BIJE o | — (HEF)

Feiyang Tang,
Oslo, February 202/

XIT

Part A

Thesis Summary

2 CHAPTER 1. INTRODUCTION

CHAPTER
ONE

INTRODUCTION

Arguing that you don’t care about
the right to privacy because you
have nothing to hide is no different
than saying you don’t care about
free speech because you have

nothing to say.

Edward Snowden

In the realm of digital technology, software plays a key role in our daily interac-
tions. Defined as a set of instructions or programs directing a computer, software has
become an integral part of modern life. Alongside this rise of software applications,
the concept of privacy has evolved. Privacy, traditionally understood as the right to
keep personal matters and information undisclosed, has taken on new dimensions in
the digital age, especially concerning how software handles and protects user data.

Privacy has long been valued as an important principle in human societies across
history. Westin [1] discusses the history of privacy, emphasizing its relevance from
ancient times to the present day. The swift growth of the digital era, marked by
the rise of big data and the internet, has further highlighted the significance of
privacy. The introduction of the General Data Protection Regulation (GDPR) in
2018 brought a renewed focus on the need to protect personal data online.

As we integrate digital applications into our daily routines, from online banking
to social media, these applications often access a large amount of our personal
information. The challenge lies in ensuring that this data remains protected and
is not used inappropriately.

The primary focus of this dissertation is to examine software development and
its implications for privacy. Software systems pervade modern life, from mobile apps

to enterprise platforms, handling large amounts of potentially sensitive user data.

CHAPTER 1. INTRODUCTION 3

How software is designed and built directly impacts what data is collected and how
it is processed, stored, and shared. Therefore, understanding privacy issues in the
software development process is crucial. The first area of exploration centers on
how legal definitions of personal data can be translated into technical requirements.
With a diverse range of data types and their associated nuances, it becomes crucial to
understand and identify what constitutes personal data within software. The second
area delves into the movement and processing of personal data within software
systems. With regulations such as GDPR setting clear guidelines, understanding
how data is used and processed becomes essential for compliance.

However, the challenges extend beyond these areas. The realities of software
development create a need for flexible analysis approaches. For example, developers
working on smaller compiled projects may want to do in-depth inspection of bytecode
to closely track data flows during coding. This low-level view can uncover subtle
leaks missed in source code. In contrast, third-party reviewers assessing privacy
compliance in large uncompiled codebases cannot manually comb through millions
of lines. They need higher-level static analysis to quickly flag areas of concern for
more targeted review. The diversity of software projects calls for privacy tools
tailored to different needs, from fine-grained bytecode tracing to fast overviews of
massive codebases.

This dissertation pursues advances in two areas to expand privacy protection
in software development. One focus is refining analysis approaches themselves to
provide impactful insights across diverse codebases and workflows. The second is
bridging the gap between privacy regulations and development processes by trans-
lating legal principles into technical requirements and integrating privacy analyses
into developer workflows.

Before delving deeper into these topics, it is essential to understand the backdrop
against which this research is set. Understanding this context will help clarify the

motivations and objectives driving this work.

1.1 Motivation

The concept of privacy, traditionally understood as the right to keep personal mat-
ters and information undisclosed, has taken on new dimensions in the digital age.
The subtlety of privacy, especially in the context of software, poses significant chal-
lenges. While legal and psychological definitions of privacy exist, translating them
into technical solutions remains a complex endeavor.

The advent of the big data era has led to an exponential increase in the amount of
data individuals provide to software applications. From online shopping preferences

to health metrics, the range of data we willingly or unknowingly share is broad.

4 CHAPTER 1. INTRODUCTION

However, the specifics of what software applications collect, how they use this data,
and the purposes for which they use it often remain obscured from users. The
primary sources of information on these practices, privacy policies, and consent
forms, are frequently vague and difficult for the average user to interpret [2].

Moreover, these documents are challenging to validate. The gap between the le-
gal and psychological definitions of privacy and the technical solutions implemented
by software developers is widening. This discrepancy raises concerns about the effi-
cacy of current privacy protection measures in software applications. For instance,
both studies from Reidenberg et al. [2] and Solove [3] highlighted that while users are
concerned about their online privacy, they often struggle to make informed decisions
due to the complexity and ambiguity of privacy policies.

Furthermore, the expansive scope of the digital environment entails users inter-
acting with many different software applications every day. Each of these applica-
tions has its own set of privacy policies and data collection practices. Keeping track
of and understanding the implications of these myriad policies is a daunting task
for users [4].

The challenge, therefore, lies in developing technical solutions that align with
the nuanced definitions of privacy while ensuring transparency and user trust. As
software becomes a more global part of our daily lives, addressing this research
problem is of paramount importance. The goal is to ensure that as we navigate the

digital realm, our right to privacy remains protected and respected.

1.2 Research questions

The research questions for this Ph.D. thesis were shaped by the motivation. These

questions, along with their related sub-questions, are outlined below.
RQ1 What constitutes personal data within the context of software?

RQ1.1 What is the relationship between the concepts of personal data and

personally identifiable information (PII) in software?
RQ2 How to identify personal data in software?
RQ3 How to trace the flow of personal data and categorize these flows in software?

RQ4 How to leverage the identified flows of personal data to support various privacy-
related tasks?

RQ4.1 How to assist legal experts in conducting privacy tasks such as data

protection impact assessment (DPIA) or records of processing activities

(ROPA)?

CHAPTER 1. INTRODUCTION d

RQ4.2 How to make privacy code reviews more effective and efficient?

RQ4.3 How to verify the consistency between privacy policies and actual im-

plementation?

1.3 Contributions

This dissertation follows a collection of articles format. The primary contributions

are the papers included within the body of the work. Detailed introductions to each

paper can be found in Chapter 5, but we present the titles and their respective

venues here:

Paper 1

Paper 2

Paper 3

Paper 4

Paper 5

Paper 6

Paper 7

“Assessing Software Privacy using the Privacy Flow-Graph”. In Proceed-
ings of the 1st International Workshop on Mining Software Repositories
Applications for Privacy and Security (MSR4P&S 2022). Association for
Computing Machinery, New York, NY, USA, 7-15.

“PABAU: Privacy Analysis of Biometric API Usage”. In Proceeding of the
2022 IEEE Privacy Computing (PriComp 2022), Haikou, China, 2022, pp.
2301-2308.

“Identifying Personal Data Processing for Code Review”. In Proceedings
of the 9th International Conference on Information Systems Security and
Privacy - ICISSP; ISBN 978-989-758-624-8; ISSN 2184-4356, SciTePress,
pages 568-575.

“Helping Code Reviewer Prioritize: Pinpointing Personal Data and its
Processing”. Published in the 22nd International Conference on Intelligent
Software Methodologies, Tools and Techniques (SOMET 2023).

DOI: 10.3233/FATA230228.

“Transparency in App Analytics: Analyzing the Collection of User Inter-
action Data”. Published in the 20th Annual International Conference on
Privacy, Security & Trust (PST 2023).
DOI: 10.1109/PST58708.2023.10320181

“User Interaction Data in Apps: Comparing Policy Claims to Implementa-
tions”. Published at the 18th IFIP Summer School on Privacy and Identity
Management 2023 (IFIPSC 20253).

“Finding Privacy-relevant Source Code”. Accepted by the 2nd Interna-
tional Workshop on Mining Software Repositories Applications for Privacy
and Security (MSR4PES 2024).

6 CHAPTER 1. INTRODUCTION

Paper 8 “Software Privacy and Program Analysis: Insights, Methods, and Oppor-
tunities”. A book chapter submitted to the Springer Handbook on Privacy

and Security Matters in Biometric Technologies.

Each included paper is designed to address one or more of the research questions
outlined in Section 1.2. A detailed breakdown connecting the papers to the research

questions is provided in Table 1.3.1.

Paper Knowledge for Research Questions
Paper 1 [5] RQ1, RQ2, RQ3, RQ4.1
Paper 2 [6] RQ2, RQ3
Paper 3 [7] RQ1, RQ2, RQ4.2
Paper 4 [§] RQ1, RQ2, RQ3, RQ4.2
Paper 5 [9] RQ1.1, RQ3, RQ4.3
Paper 6 [10] RQ1.1, RQ3, RQ4.3
Paper 7 [11] RQ1, RQ2, RQ3, RQ4.1, RQ4.2
Paper 8 [12] RQ1, RQ2, RQ3, RQ4

Table 1.3.1: Breakdown of research questions addressed by paper.

1.4 Structure of the dissertation

The dissertation is organized into two main parts. Part A offers an overview and a
broader context for the papers that are included in Part B. It is recommended to
read the chapters in Part A sequentially, while the chapters in Part B can be read
in any preferred order.

Chapter 1 sets the stage by outlining the primary aim, motivation, and a sum-
mary of the contributions of the research.

Chapter 2 situates the research within the broader fields of study, providing
essential background information.

Chapter 3 discusses current state-of-the-art works on the topic of privacy pro-
tection in software. It covers literature from taint analysis and adaptive program
analysis to differential privacy. The chapter addresses research gaps identified from
studying the state of the art.

Chapter 4 delves into the specific methods and methodologies employed in the
dissertation, along with a documentation of selected project activities. While only
some activities are included in the dissertation papers, all have contributed to the
research.

Chapter 5 offers a summary and rationale for each of the eight papers that

constitute this dissertation.

CHAPTER 1. INTRODUCTION 7

Chapter 6 provides a discussion of the papers, highlighting their contributions
and addressing the relevance of each paper to the research questions, different re-
search fields, and social topics.

Chapter 7 concludes Part A with a final summary and explores potential avenues
for future research.

Part B of the dissertation contains the reprinted versions of the eight papers,

with each paper occupying a separate chapter.

CHAPTER 1. INTRODUCTION

CHAPTER 2. BACKGROUND 9

CHAPTER
TWO

BACKGROUND

2.1 Privacy

Privacy is a fundamental human right and a core value that shapes our individuality,
autonomy, and freedom. It encompasses the right to control personal information,
maintain confidentiality, and make independent decisions without undue interfer-
ence. In the context of software and technology, privacy takes on new dimensions
and complexities, reflecting the evolving nature of human interaction with the dig-
ital world. This section explores the multifaceted concept of privacy, its historical
evolution, and the pressing challenges and issues in the era of big data and digital

transformation.

2.1.1 A historical perspective

Privacy is a principle that has evolved significantly throughout human history. In
ancient civilizations, such as those of Greece and Rome, privacy was primarily as-
sociated with physical seclusion and personal autonomy [13]. The invention of the
printing press shifted the concept towards control over personal data, giving rise to
the idea of the right to be left alone [14].

In contrast, ancient Eastern philosophies like Confucianism and Taoism did not
have a concept directly corresponding to the Western notion of privacy. These
philosophies emphasized unity with society or nature rather than individual auton-
omy [15].

The digital age has further expanded the scope of privacy, introducing challenges
such as the Privacy Paradox, where people’s actions do not align with their stated
privacy concerns [13]. Advances in technology have led to significant changes in
Asian privacy regulations, including the introduction of laws like China’s Personal

Information Protection Law (PIPL), Japan’s Personal Information Protection Act

10 CHAPTER 2. BACKGROUND

(PIPA), and Singapore’s Personal Data Protection Act (PDPA) [16].
Despite these regulatory efforts, privacy remains a complex and evolving issue,
with ongoing debates about balancing privacy protection with utility and the chal-

lenges of creating privacy-compliant applications [17].

2.1.2 Privacy in the big data era

The era of big data has introduced both opportunities and significant privacy chal-
lenges. The extensive collection of personal data has heightened awareness of poten-
tial risks and abuses, such as targeted advertising, profiling, and decision-making [18].
High-profile incidents like the Cambridge Analytica scandal have further emphasized
the risks of data misuse [19].

Regulatory frameworks like the GDPR and the California Consumer Privacy
Act (CCPA) aim to protect individual privacy rights and offer control over personal
data [16]. However, these efforts face challenges due to the complexity of privacy
policies, lack of user understanding, and difficulties in verifying compliance [20]. The
trade-offs between privacy and utility, as well as the tension between individual rights
and societal benefits, add another layer of complexity to the privacy landscape [21].

In summary, the big data era has fundamentally reshaped our understanding of
privacy, introducing new risks, regulations, and debates. These ongoing efforts to
balance privacy protection with innovation and societal needs highlight the enduring

complexity and importance of privacy in our increasingly digital world.

2.1.3 Definition of personal data

The concept of personal data is central to the discourse on privacy, but its definition
is far from straightforward. Traditionally, personal data has been equated with PII,
such as names, social security numbers, and addresses [22]. However, this narrow
definition is increasingly being challenged.

Beyond PII: a broader scope Recent studies argue that personal data ex-
tends beyond PII to include behavioral and interaction data [23]. For instance,
our interaction data, such as location changes in a weather app, can reveal patterns
about our lifestyle. A frequent change in the location setting could indicate frequent
travel, which could then be used for targeted advertising, such as travel insurance
offers. This kind of data may not be directly identifiable but can still be highly per-
sonal and sensitive [24]. The implication is that privacy protection measures need
to consider this broader scope of data that can be personal in nature.

Is privacy just about personal data? While personal data is a significant
aspect of privacy, it is not the only concern. Privacy also involves the right to solitude

and the freedom from surveillance [25]. The collection of seemingly non-personal

CHAPTER 2. BACKGROUND 11

data can still have implications for privacy. For example, smart office environments
collect data for energy efficiency but can inadvertently reveal information about
individual work patterns [26]. Therefore, privacy protection should also encompass
these less obvious but equally important dimensions.

The complexity of defining personal data The definition of what constitutes
personal data can vary depending on legal, cultural, and individual perspectives [27].
For instance, some privacy laws focus on personalized privacy loss, which allows
individuals to set their own boundaries on what they consider private [28]. This
suggests that a one-size-fits-all approach to defining personal data is insufficient and
that context-specific definitions are necessary.

Implications for privacy protection Understanding the nuanced definition
of personal data is crucial for effective privacy protection. Privacy-enhancing tech-
nologies and regulations need to adapt to these broader definitions to provide com-
prehensive privacy safeguards [29]. The challenge lies in developing frameworks that
are both flexible and robust enough to accommodate the evolving nature of personal
data.

Table 2.1.1: Aspects of personal data in privacy

Aspect Examples

Traditional PII Names, SSN, Addresses, phone numbers
Behavioral data App interactions, online behavior

Non-PII but sensitive | Work patterns, masked IP addresses
Beyond data Right to solitude, freedom from surveillance

The table above (Table 2.1.1 ') summarizes the different aspects of personal
data in the context of privacy. It highlights that personal data is not just about
traditional PII but also includes behavioral data and other sensitive information.
Moreover, it emphasizes that privacy concerns extend beyond just data to include
other dimensions like the right to solitude and freedom from surveillance. This multi-
faceted view of personal data underscores the complexity of privacy protection and

the need for a nuanced approach.

2.2 Program analysis

Program analysis refers to a broad set of techniques for analyzing software systems,
with the goal of extracting information that can support various software engineer-

ing tasks such as testing, debugging, maintenance, and verification [30]. Program

! Behavioral data refers to user activities within an application, including app interactions and
online behavior. In our papers, interaction data is a specific subset of behavioral data, focusing on
user-initiated actions.

12 CHAPTER 2. BACKGROUND

analysis can be classified into two main categories: static analysis and dynamic
analysis.

Static analysis examines a program without executing it, analyzing properties
and behaviors based on the program source code, bytecode, or binary code. Static
analysis techniques include data flow analysis, control flow analysis, abstract inter-
pretation, type systems, model checking and symbolic execution [31, 30]. These
techniques have been commonly applied for program optimization, bug finding, se-
curity, and other applications. For example, static analysis can check for undefined
values, null pointer exceptions, buffer overflows, concurrency errors, information
leaks, etc. While static analysis has the potential for precision and completeness,
these are not guaranteed benefits; they are properties that depend on the specific
techniques and tools employed. In fact, static analysis can often be imprecise and,
due to inherent limitations, may not be fully complete. However, one definitive
advantage of static analysis is its capacity for automation, which allows for scalable
and systematic code evaluation.

In contrast, dynamic analysis examines properties and behaviors of a running
program, often instrumented to collect runtime data on variables, method calls,
memory accesses, etc. Dynamic analysis is traditionally used for profiling, testing,
debugging, and malware analysis, especially in-depth malware analysis which ex-
ecutes an instrumented version of the malware sample. While dynamic analysis
provides insight into a specific program execution, it cannot guarantee full coverage
of all possible executions. Hybrid analysis combines static and dynamic techniques

to leverage their complementary strengths.

2.2.1 Static analysis for security and privacy

Many static analysis tools and techniques have been developed for analyzing secu-
rity and privacy properties of software systems, as these are difficult to thoroughly
test and often lead to exploitable vulnerabilities if overlooked. For example, static
analyzers can detect access control violations, insecure data flows, use of weak cryp-
tography, and violations of information flow policies [31].

Lightweight syntactic pattern matching can find potentially dangerous APIs and
language constructs based on rules. Data flow analysis tracks the flow of data
through a program to identify leaks of sensitive data. Taint analysis is a common
approach using information flow tracking to detect when untrusted data reaches
sensitive program point. Type systems can enforce security policies by checking
variable and data types. Well-designed type systems prevent bugs and vulnerabil-
ities by guaranteeing program properties. They also allow encoding security and

privacy policies into program semantics, enabling enforcement of allowed informa-

CHAPTER 2. BACKGROUND 13

tion flows and operations on sensitive data. Abstract interpretation offers sound
over-approximate analysis through approximating program semantics. Meanwhile,
symbolic execution symbolically follows execution paths and generates inputs to un-
cover vulnerabilities. This approach represents values as symbolic variables rather
than concrete data. Theorem proving uses logical deduction to verify program cor-
rectness relative to a specification.

Widely-used static analysis frameworks such as FindBugs, Fortify, Coverity, and
CodeSonar implement many of these techniques to find bugs and security issues in
Java, C/C++, and other languages [32]. Specialized tools like IeccTA [33], Flow-
Droid [34], and Amandroid [35] leverage advanced static analysis to detect inter-
component vulnerabilities and sensitive data leaks in Android apps. Facebook’s
Infer, Google’s Tricorder, and GitHub’s Semmle apply abstract interpretation for
scalable bug finding. The Clang analyzer provides source code analysis for C/C++.
Theorem provers like Dafny are used to verify correctness of mission-critical soft-
ware. Thus, continued innovation in static analysis is enabling more automated

reasoning about complex software behaviors.

2.2.2 Program analysis for different languages

The type system of a programming language greatly influences how program analysis
is performed. Techniques can be broadly categorized based on whether they are
applied to statically typed languages, such as Java and C#, or dynamically typed
languages, such as JavaScript and Python.

For statically typed languages, program analyses often work on bytecode, which
is the result of compiling high-level code into a standardized instruction set archi-
tecture [36]. Examples include Java bytecode, NET’s Common Intermediate Lan-
guage, and LLVM’s intermediate language. Analyzing bytecode has the advantage
of preserving detailed type information from the high-level code [37]. This enables
analyses to make stronger assumptions about data types and call graphs, such as
precisely determining object types being referenced [38]. Whole-program analysis
is also easier since bytecode files for an entire codebase can be combined. However,
challenges exist, such as handling reflection and native calls [37].

For dynamically typed languages like JavaScript and Python, analyzing raw
source code is often necessary since compilation to bytecode loses type details [39].
This analysis relies more on data flow analysis to recover type information [40],
but the lack of native type declarations limits precision [41]. Challenges also arise
from dynamic code loading and eval statements [39]. Tools like JSNice have been
developed to improve analysis by predicting missing type annotations [42].

The key differences between program analysis techniques for statically typed and

14 CHAPTER 2. BACKGROUND

dynamically typed languages are summarized in Table 2.2.1:

Table 2.2.1: Comparison of analysis techniques for statically typed and dynami-
cally typed languages

Statically typed (Java, C#, etc.) Dynamically typed (JavaScript, Python, etc.)
Bytecode analysis Source code analysis

Uses declared type information Infers types from usage

Precise points-to and call graph analysis Approximate type determination

Facilitates whole-program analysis Challenged by dynamic code loading

Challenges with reflection and native calls ~ Limited by eval statements and missing annotations

Both statically typed and dynamically typed program analysis follow core prin-
ciples like data flow analysis, but key differences in handling type information lead

to distinct techniques.

2.3 Issues with privacy policies

Privacy policies are vital documents that inform users about the collection, use, and
sharing of their personal information by companies. However, numerous studies have
identified significant shortcomings in current privacy policies, undermining their
effectiveness in informing and protecting users. This section explores the main
issues with privacy policies, including their length, complexity, inconsistencies, and

lack of transparency.

2.3.1 Length and complexity

A consistent finding across studies is that privacy policies tend to be extremely long
and complex, making them difficult for average users to read and comprehend. A
2008 study analyzed privacy policies from 75 popular websites and found the average
length was over 2,500 words, with the longest being over 11,000 words [43]. This
length far exceeds the reading level of most internet users.

Another study tested the readability of Facebook’s privacy policy over time
and found it required a university graduate reading level, while getting increas-
ingly longer and more complex [44]. The complexity is further increased by the
use of vague, legalistic language, making it difficult for users to fully grasp what is

covered under the policy [2].

2.3.2 Inconsistencies and contradictions

In addition to their length and complexity, privacy policies often contain inconsistent

or contradictory statements. A 2017 study of mobile app privacy policies found a

CHAPTER 2. BACKGROUND 15

number of internal inconsistencies, such as apps claiming they did not share personal
information while also stating they shared data with third parties [45]. Another
study found inconsistencies in how concepts like opt-out choices were described
across sections of the same policy [2]. These inconsistencies create confusion over

what policies actually mean in practice.

2.3.3 Lack of transparency

Numerous critiques have argued that privacy policies often lack key details and
transparency about how user data is really handled. Policies tend to describe data
practices in broad, abstract ways that obscure specifics on what is collected and
shared [46]. Vague references to third parties make it impossible to know exactly
who user data is going to [45]. And details on secondary uses of data beyond the
immediate service are often missing entirely [47]. This lack of transparency runs
counter to the purpose of informing users.

While privacy policies aim to disclose data practices to users, in reality, their
length, complexity, inconsistencies, and lack of transparency often achieve the op-
posite effect. These issues make privacy policies difficult to comprehend and obscure
key details on how user data is handled. Significant improvements to privacy policies

are needed for them to properly serve user rights and interests.

16

CHAPTER 2. BACKGROUND

CHAPTER 3. STATE OF THE ART 17

CHAPTER
THREE

STATE OF THE ART

Whatever worked in the past, build
on it; whatever didn’t work in the
past, break the chain that binds

you to it.

Marianne Williamson

This section discusses the challenges of protecting personal data in software,
highlighting the essential technique of taint analysis and detailing the various phases

of data flow analysis, all while using studies from recent research as references.

3.1 Taint analysis for personal data flows

Understanding the flow of personal data is essential for the secure and private op-
eration of software systems. Taint analysis serves as a key in this context, as it
tracks sensitive data as it moves through a program. Slavin et al. [48] have notably
contributed to this area by developing a framework that aligns Android application
behavior with privacy policies.

Data flow analysis is a structured approach to tracking how personal data move
through a software system. This process involves different stages, each with its own

set of challenges and methods.

3.1.1 Identifying data flows

Identifying the paths through which personal data traverses within a system is
foundational to data flow analysis. Li et al. [33] introduced ICCTA, a tool that

employs static taint analysis to detect inter-component privacy leaks in Android

18 CHAPTER 3. STATE OF THE ART

apps. This approach is particularly effective for bytecode, where data flows can be

traced through specific I/O methods.

Staicu et al. [49] conducted an empirical study on real-world JavaScript appli-
cations, revealing the prevalence of different kinds of flows and their significance
in ensuring security. Their findings suggest that while explicit flows are common,
implicit flows, which arise from not executing certain branches, are more challenging

to detect and analyze.

3.1.2 Categorizing data flows

Once data flows are identified, they must be categorized based on their nature and
associated risks. This categorization is crucial for understanding the potential im-
plications of each flow and for devising appropriate mitigation strategies. Zimmeck
et al. [45] automated the analysis of privacy requirements for mobile apps, stream-
lining the categorization process. Their approach leverages machine learning to

automatically classify data flows based on predefined privacy requirements.

Wilson et al. [45] took a different approach by analyzing a corpus of website
privacy policies. Their work underscores the importance of consistency in data flow
categorizations, especially when considering the legal and regulatory implications of

data processing.

Piskachev et al. [50] introduced fluent TQL, a query language specifically designed
for taint-flow. This internal Java DSL allows for the expressive specification of
various taint-style vulnerabilities, facilitating the categorization and clustering of

data flows in software systems.

3.2 Policy analysis

Numerous studies have focused on analyzing and improving privacy policies in mo-
bile apps. Researchers have explored various NLP approaches to automatically pro-
cess and understand privacy policy texts, as well as to assist users in comprehending
these policies more effectively [51, 52, 53]. Tools like PrivacyFlash Pro [54] and Au-
toCog [55] have been developed to audit privacy policy compliance by comparing
disclosed policies with actual app behavior. A recent study by Bardus et al. [56]
systematically mapped existing contact-tracing apps and evaluated the permissions

required and their privacy policies.

CHAPTER 3. STATE OF THE ART 19

3.3 Tailoring approaches for front-end and back-end

systems

Different systems, such as front-end and back-end, necessitate distinct approaches for
data flow analysis. Von Maltitz et al. [57] presented a formalization based on static
taint analysis to assess software architectures. Their work highlights the differences
in data flow patterns across various system components and emphasizes the need
for adaptive solutions tailored to each system’s unique characteristics.

Kohli [58] proposed a coarse-grained dynamic taint analysis technique that tracks
information flow at the level of application data objects. This approach reduces taint
management overhead and can detect a wide range of attacks, including non-control

data attacks, without requiring source code access.

3.4 Evaluating transmission and storage mechanisms

The methods through which data is transmitted and stored also warrant meticulous
examination. Differential privacy and anonymity are two critical concepts in this
domain. Leoni [59] surveyed non-interactive differential privacy applications, em-
phasizing its applicability on real-life datasets. Li, Qardaji, and Su [60] discussed the
relationship between k-anonymity and differential privacy, highlighting the potential
of random sampling in enhancing privacy protection.

Domingo-Ferrer and Soria-Comas [61] explored the connection between t-closeness
and differential privacy, suggesting that both models can offer robust privacy guar-
antees when used in tandem. Kroll [62] delved into pointwise adaptive kernel density
estimation under local approximate differential privacy, emphasizing the importance
of adaptive methods for data analysis. Lastly, Sanchez et al. [63] proposed utility-
preserving differentially private data releases using individual ranking microaggre-

gation, focusing on the preservation of data utility while ensuring privacy.

3.5 Research gaps

The existing research offer valuable contributions to the understanding of personal
data processing and risk assessment. However, there are limitations in the current
state of the art that pose challenges for software privacy. This dissertation attempts
to address some of these open issues and advance the field.

Firstly, the issue of scalability in personal data identification methods is a clear
gap. While existing research has made strides in identifying personal data within

specific programming languages or types of analysis (compiled or uncompiled), there

20 CHAPTER 3. STATE OF THE ART

is a lack of methods that are universally scalable. For example, current tools may
excel in Java but falter when applied to other languages like Python or JavaScript.
Furthermore, the speed of these methods is often not up to the mark, especially in
real-time development environments. This gap is concerning given the diverse range
of programming languages and software types in use today.

Secondly, the categorization of data flows is another area where existing research
falls short. While contributions from Zimmeck et al. [45] and Wilson et al. [64]
have aided in the categorization of data flows, their methods are not universally
applicable. Moreover, even when data flows are categorized, these categorizations
often do not align with relevant legal regulations such as GDPR. This is an important
gap, as it hampers the generation of Records of Processing Activities (ROPA) and
Data Protection Impact Assessments (DPIA), which are crucial for compliance with
privacy laws.

Thirdly, there is a noticeable lack of support for code review tasks, which are an
integral part of the software development life cycle. Code review requires methods
that are not only fast but also applicable across multiple programming languages [65,
66]. These methods should provide insights that enable reviewers to quickly identify
potential privacy hotspots in the code. The absence of such methods creates a
bottleneck in the development process, delaying the release of privacy-compliant
software.

Fourthly, the debate on what technically constitutes personal data is another area
that has been largely overlooked. While there is decent amount of research focusing
on the sociological or legal aspects of what constitutes personal data [67], there is a
lack of technical evidence and analysis. This gap is particularly problematic because
it leaves room for interpretation, which could lead to inconsistencies in how personal
data is handled across different software systems.

Lastly, another gap lies in the integration of privacy policy analysis with tangible
program analysis. While there are efforts to analyze privacy policies and understand
their implications [68, 45, 69|, these are often not combined with a detailed analysis
of the actual software behavior. This lack of integration results in a disconnect
between what the privacy policy promises and what the software actually does,
making it difficult to verify alignment between the two. This is a critical gap, as
it undermines the trust users place in software systems and poses challenges for
ensuring privacy compliance.

By addressing these gaps, this dissertation aims to make significant contributions
to the field, particularly in the areas of scalable personal data identification, effective
data flow categorization, privacy code review support, and privacy policy consistency

analysis, all while ensuring compliance with evolving legal regulations.

CHAPTER 4. METHOD 21

CHAPTER

FOUR

METHOD

The proper method for inquiring
after the properties of things is to

deduce them from experiments.

Isaac Newton

This dissertation employs a combination of methods from computer science, law,
and empirical analysis to address the research questions outlined in Chapter 1. The
choice of methods is crucial to obtain valid and insightful results. This chapter

provides an overview and justification of the key techniques used in the dissertation.

4.1 Literature analysis

A literature review forms the basis of this research. We systematically studied exist-
ing works on the technical definitions of privacy, program analysis, policy analysis,
and related areas. This provided essential context on the current state of knowledge,

open challenges, and promising directions.

We used snowballing to expand the literature search. Starting from seminal
papers, we followed citations and references to uncover additional relevant works. We
also examined recent conference proceedings and journal publications, particularly

the latest preprints on Arxiv, to identify cutting-edge advancements.

In total, over 150 papers were reviewed, analyzed, and synthesized, especially in
the first 1.5 years. We extracted key concepts, methods, evaluations, and limita-
tions. Comparing approaches revealed gaps and opportunities for contribution. The

literature analysis guided the formulation of the research questions and methods.

22 CHAPTER 4. METHOD

4.2 Program analysis

Program analysis, particularly static analysis, is the core of our research method.
The choice of static analysis is motivated by its ability to analyze code without exe-

cution, making it scalable for large codebases and suitable for privacy assessments.

We employ control flow analysis, a well-established static analysis technique, to
trace personal data flows in software. This choice is motivated by the technique’s
proven effectiveness in identifying potential data leaks and risky data processing
activities. Control flow analysis constructs a model that reveals how data flows
through a program, from its source to its destination, offering insights for privacy

compliance.

Our implementation leverages Soot [70], a Java optimization and analysis frame-
work, along with FlowDroid [34], a precise Android-focused data flow analyzer.
We customized Soot and FlowDroid to identify sources of personal data, categorize
sinks representing data usage, and extract flows between them. The modifications
account for features specific to privacy analysis like sensitive data types and domain

knowledge of risky sinks derived from legal principles.

We further applied semantic rules and customized inter-procedural data flow
analysis using the source code analyzer Semgrep! to rapidly analyze source code
written in diverse languages like Java, JavaScript, Python, and PHP (Papers 3, 4, 7).
Semgrep’s flexibility in handling diverse languages, AST-based analysis and support
for custom rules allows building rich static checkers that go beyond simple syntactic
pattern matching. Our rules leverage Semgrep’s intra- and inter-procedural data
flow analysis to identify flows of personal data between sources and sinks across class
boundaries. The rules account for the contextual nature of privacy by incorporating
restrictions based on data types, packages, and other semantic criteria. This achieves
more precise source code analysis while maintaining scalability across large, multi-
language codebases. The combination of Semgrep and our custom rules complements
the precision of Soot and FlowDroid for Java with expanded language support and

practical utility.

In summary, the combined use of Soot, FlowDroid and Semgrep provides both
precise data flow tracing for Java and Android, and rapid analysis of extensive multi-
language codebases. This balances accuracy with practical utility when analyzing

personal data usage in diverse software.

'https://semgrep.dev

https://semgrep.dev

CHAPTER 4. METHOD 23

4.3 Machine learning

In Paper 2, we develop a multi-label classifier using machine learning to automat-
ically categorize biometric API usage. The motivation for using machine learning
stems from its ability to generalize from training data, thereby automating tasks
that would be labor-intensive to perform manually. This classifier uses features de-
rived from static analysis as input and predicts privacy-related behaviors, such as
authentication and encryption.

We experiment with different algorithms, including logistic regression, random
forests, and neural networks, using the scikit-learn library in Python. Through
parameter tuning, we identify the models that perform best, and we use cross-
validation to prevent overfitting. This illustrates the potential of machine learning
in identifying privacy attributes based on program analysis data.

Additionally, in Papers 5 and 6, we employ natural language processing tech-
niques to extract and categorize claims about user interaction data collection from
privacy policies. We fine-tune BERT-based models on a manually annotated subset
of the APP-350 mobile app privacy policy corpus [71]. This enables us to auto-
matically identify relevant sentences in privacy policies and classify them into cat-
egories such as data types and collection methods. Our models achieve high levels
of precision and recall, underscoring the effectiveness of neural language models in
structured policy analysis. By extracting these structured claims, we can compare
them with evidence from static analysis to evaluate their consistency. Overall, our
research highlights the utility of machine learning in enhancing both privacy policy

and code analysis.

4.4 Experiments

Experiments are our primary method of validation. This approach is chosen for its
capacity to provide quantifiable metrics, such as precision and recall. These metrics
are particularly useful for tasks like identifying personal data (as discussed in Papers
3, 4, 7) and categorizing biometric API usage (Paper 2). By comparing these metrics
against a ground truth, we can objectively evaluate the accuracy and reliability of
our methods.

We supplement these experiments with case studies on widely-used applications,
such as Signal Desktop (Paper 7). These case studies offer real-world context and
qualitative insights, enhancing the practical relevance of our research. We also
address potential threats to validity and outline steps taken to mitigate biases. This
balanced approach, combining quantitative metrics and qualitative analysis, ensures

a comprehensive evaluation of our techniques.

24 CHAPTER 4. METHOD

4.5 Expert validation

In addition to experiments, we utilize expert analysis for further validation. The
reason for incorporating expert input is its ability to capture nuances that automated
methods may miss. For example, experts can manually cross-validate the claims
made in top Android apps’ privacy policies against the actual data practices coded
into the apps. This is demonstrated in Paper 5, where we manually verified such
claims, and in Paper 6, where we annotated policy sentences to train classifiers for
identifying user interaction data claims.

This layer of expert validation adds depth to our empirical evaluations, offer-
ing an additional layer of scrutiny that complements machine-based assessments.
Alongside literature analysis, surveys, and case studies, this multifaceted valida-
tion approach contributes to a rigorous and transparent evaluation of our proposed
methods.

In summary, our method is designed to address the research questions through a
combination of literature analysis, program analysis, machine learning, experiments,
and expert validation. This integrated approach allows us to explore and evaluate

privacy-related issues in software from both technical and legal perspectives.

CHAPTER 5. SUMMARY OF PAPERS 25

CHAPTER

FIVE

SUMMARY OF PAPERS

Art is not what you see, but what

you make others see.

Edgar Degas

5.1 Paper 1: Assessing Software Privacy using

the Privacy Flow-graph

Tang, F. and Ostvold, B. (2022). Assessing software privacy using the privacy
flow-graph. In Proceedings of the 1st International Workshop on Mining Software
Repositories Applications for Privacy and Security (MSR4PE&S 2022). Association
for Computing Machinery, New York, NY, USA, 7-15.

Motivation

With increased digitalization, processing of personal data is common in software
services. Regulations like GDPR mandate documenting software’s privacy and data
protection, requiring collaboration between developers (who understand the code)
and legal experts (who understand privacy laws). However, developers may lack legal
knowledge and tracking all privacy-related code changes is difficult. This paper
proposes using static analysis to build privacy flow-graphs showing how personal
data flows through the software, providing an abstraction understandable to legal
experts. This facilitates mutual understanding and aids legal requirements like Data

Protection Impact Assessments (DPIAs).

26 CHAPTER 5. SUMMARY OF PAPERS

Summary

This paper proposes privacy flow-graphs to help developers and legal experts docu-
ment personal data processing in software for legal compliance like GDPR.

The approach transforms bytecode to an intermediate representation using Soot.
It finds source (entry) and sink (exit) methods in code using pre-built datasets. A
privacy flow-graph is built by tracing data-flow from each source method using
control-flow-graphs. Each flow is a series of connected flows between methods of
different classes. The graph nodes are all methods in a privacy flow and edges are
method invocations. To simplify, an abstraction is created representing key privacy
symbols like start source, security process, and sink.

The approach is applied to Signal (messaging) and NextCloud (file hosting)
services. For Signal, it identified 11 privacy flows and produced abstractions showing
end-to-end encryption. For NextCloud, it revealed personal data upload steps. The
privacy flow-graphs help answer key Data Protection Impact Assessment (DPIA)

questions by providing flows and abstractions to developers and legal experts.

5.2 Paper 2: PABAU: Privacy Analysis of Bio-
metric API Usage

Tang, F. (2022)., PABAU: Privacy Analysis of Biometric API Usage, In Proceeding
of the 8th IEEE Conference in Privacy Computing (PriComp 2022), Haikou, China,
2022, pp. 2301-2308.

Motivation

Biometric authentication is becoming common, raising privacy concerns as biomet-
ric data is sensitive. Most apps use biometric APIs, so understanding their usage is
important. Technical and legal experts face a communication gap - developers pro-
vide specifications but legal experts need privacy assessments like DPTAs. Manually
reviewing code is difficult. This paper proposes automatically categorizing biometric
API usage into privacy behaviors to help both developers and legal experts quickly

understand biometric processing and aid privacy assessments.

Summary

This paper proposes PABAU, an approach to analyze privacy behaviors in the us-
age of biometric APIs in apps. The architecture of our technique is illustrated in
Fig. 5.2.1. Biometric authentication is increasingly employed in apps, raising privacy

concerns as biometric data is sensitive. Most apps rely on standard biometric APIs,

CHAPTER 5. SUMMARY OF PAPERS 27

Feature Types NN — Testing
Feature Instances J&i J&i Jﬂ!

i =

Ground Truth

Methods from biometric APIs

]
fido & - W reatureinstances tabets
CERTIFIED [N H
ans=01d 6
Instances P Learner Classifier

Figure 5.2.1: General architecture of PABAU

necessitating an understanding of their usage for legal compliance requirements like
DPIAs. However, reviewing code manually is difficult. PABAU utilizes static anal-
ysis and a multi-label classifier to categorize biometric API usage into behaviors like
authentication, cryptography, data deletion etc.

It is evaluated on Android biometric APIs and a FIDO2 implementation, achiev-
ing high precision. When applied to 8 Android apps, it provided categorizations of
their biometric API usage that could help answer DPIA questions.

PABAU enables developers and legal experts to quickly gain a high-level un-
derstanding of how biometric APIs are used, aiding privacy assessments. Overall,
PABAU shows promise in bridging communication gaps between technical and legal

teams regarding privacy behaviors in biometric systems.

5.3 Paper 3: Identifying Personal Data Process-

ing for Code Review

Tang, F.; Ostvold, B. and Bruntink, M. (2023). Identifying Personal Data Pro-
cessing for Code Review. In Proceedings of the 9th International Conference on In-
formation Systems Security and Privacy - ICISSP; ISBN 978-989-758-624-8; ISSN
2184-4356, SciTePress, pages 568-575.

*Paper 3 serves as a position paper, motivating the technique proposed in Pa-
per 4, which presents a core technique for pinpointing and grouping personal data

processing activities in code.

Motivation

Ensuring privacy compliance like GDPR requires identifying personal data process-
ing in code, often done manually by reviewers. This is time-consuming, requiring
specialized knowledge. This paper proposes an approach to automatically iden-

tify personal data and processing to assist reviewers in prioritizing their efforts on

28 CHAPTER 5. SUMMARY OF PAPERS

relevant code. It provides specialized views highlighting data types and flows to
focus manual examination, expediting review. This conserves resources, enhancing

productivity.

Summary

This paper tackles the challenge of manually identifying personal data processing
for GDPR compliance, which is time-consuming and requires specialized knowledge.

It proposes an approach to facilitate rapidly pinpointing relevant code using
static analysis. Personal data sources/sinks are identified via Semgrep pattern
matching. Code fragments are abstracted into flow patterns capturing process-
ing context. Two specialized views are provided: one showing personal data types,
another showing processing flows and details.

The approach was evaluated on 4 open-source GitHub projects, achieving 0.87
precision in identifying personal data flows. It also fact-checked privacy statements
of 15 Android apps. The specialized views enable focused manual review on high-
priority code areas, expediting analysis.

Overall, by highlighting key code fragments and providing task-specific infor-
mation, the approach simplifies GDPR compliance tasks like ROPA creation. The
multi-faceted views conserve reviewer time/effort, showcasing the potential to stream-

line privacy analyses.

5.4 Paper 4: Helping Code Reviewer Prioritize:
Pinpointing Personal Data and its Process-
ng

Tang, F.; Ostvold, B. and Bruntink, M. (2023). Helping Code Reviewer Prioritize:

Pinpointing Personal Data and its Processing. In Proceedings of the 22nd Inter-

national Conference on Intelligent Software Methodologies, Tools and Techniques
(SOMET 2023). DOI: 10.3233/FAIA230228

Motivation

Manual identification of personal data processing is challenging for code reviewers
doing GDPR compliance, requiring specialized knowledge and being time-consuming.
Reviewers often resort to techniques like keyword searches which yield overwhelming
results. There is a need for a more abstract, categorized view highlighting relevant
code fragments. The paper proposes an approach to facilitate rapid pinpointing of

personal data processing to assist reviewers. It provides specialized views displaying

CHAPTER 5. SUMMARY OF PAPERS 29

data types and abstract flows, focusing manual examination on key areas. This

saves time and effort, expediting GDPR compliance tasks like ROPA creation.

Summary

This paper extends paper 3, aims to assist code reviewers performing privacy analy-
ses for GDPR compliance by pinpointing personal data processing. Manual identifi-
cation in extensive codebases is challenging, requiring specialized knowledge and be-
ing time-consuming. Reviewers often use inefficient techniques like keyword searches

that yield overwhelming results.

The paper proposes an approach to rapidly locate relevant code fragments. Fig-
ure 5.4.1 presents an overview of our approach, which consists of three major phases.
It employs Semgrep pattern matching to identify personal data sources and sinks.
Code fragments are abstracted into flow patterns capturing processing context. Two
specialized views are provided: one displaying personal data types, another outlining

abstract flows with optional detailed exploration.

” identification ‘ Code fragments
Source code u :U

with flows
abstraction
A 4
Two views: personal " presentation “ Simplified

data and processing “ U Code snippets

Figure 5.4.1: Overview of our approach in Paper 4

The approach was evaluated on 4 open-source GitHub projects, achieving 0.87
precision in identifying flows. It also fact-checked 15 Android app privacy state-
ments. The views focus manual review on high-priority areas, directing reviewers to

key code fragments. This streamlines analysis, saving significant time and effort.

Overall, by simplifying the pinpointing of personal data processing, the approach
has potential to expedite compliance tasks like ROPA creation. The multi-faceted

assistance demonstrates promise in augmenting the efficiency of privacy analyses.

30 CHAPTER 5. SUMMARY OF PAPERS

5.5 Paper 5: Transparency in App Analytics: An-
alyzing the Collection of User Interaction
Data

Tang, F. and Ostvold, B. (2023). Transparency in App Analytics: Analyzing the
Collection of User Interaction Data. In Proceedings of the 20th Annual International
Conference on Privacy, Security & Trust (PST2023).

Motivation

Mobile apps extensively collect user interaction data like clicks and scrolls through
analytics services. Privacy policies often vaguely describe this collection as usage
data or how you interact with the service, lacking transparency, as exemplified by The
Weather Channel app' in Figure 5.5.1. This data can reveal sensitive information
about users when aggregated, raising ethical concerns. The paper examines common
practices of user interaction data collection in apps and proposes a standardized
collection claim template for summarizing an app’s practices. This is compared to
collection evidence from static analysis to fact-check policy claims, addressing the
transparency issue.

C. Automatic Collection. We also collect certain information through automated means.

Some of the information we collect through automated means may, whether alone or combined with other data, be personal data. For example,
we automatically collect:

« Information about your device and device capabilities;
« Information about your device operating system;

« Information about your browser;

« Information about how you use and interact with the Services;
« Your activities on the Services;

« [P address;

« Advertising identifiers;

« Mobile or Internet Carrier;

* Browser type;

« Browser identifier; and

« Referring URL.

Figure 5.5.1: Example of a vague privacy policy fragment describing the collection
of interaction data in The Weather Channel app.

Summary

This paper tackles the issue of lack of transparency in mobile apps’ collection of user
interaction data through analytics services. Privacy policies often vaguely describe
such collection as usage data, raising concerns. User interaction data can reveal per-
sonal information when aggregated, challenging its non-personal label. The paper

studies common practices by analyzing top analytics libraries.

"https://weather.com/en-US/twc/privacy-policy

https://weather.com/en-US/twc/privacy-policy

CHAPTER 5. SUMMARY OF PAPERS 31

It proposes a standardized collection claim template summarizing an app’s prac-
tices. This is compared to collection evidence from static analysis of apps to fact-
check claims, addressing the transparency issue. Analysis of the top 100 Android
apps revealed widespread collection across Ul types like View and Button, show-
ing pervasive data gathering. Case studies manually fact-checking the top 10 apps
found all but one failed to declare all data types collected or specify some techniques
used. The collection claim template promotes clearer policy disclosures. Comparing
claims to evidence assesses alignment and transparency.

Overall, the study enhances understanding of user interaction data collection
practices and demonstrates potential for the proposed techniques to improve trans-

parency.

5.6 Paper 6: User Interaction Data in Apps:
Comparing Policy Claims to Implementa-

tions

Tang, F. and Ostvold, B. (2023). User Interaction Data in Apps: Comparing Policy
Claims to Implementations. Published at the 18th IFIP Summer School on Privacy
and Identity Management 2023 (IFIPSC 2023).

*Paper 6 develops the ideas first introduced in Paper 5 for analyzing consistency

between app privacy policies and implementation.

Motivation

Mobile apps extensively collect user interaction data like taps and swipes. This
data is often labeled mon-personal in privacy policies, but can reveal personal in-
formation when aggregated. There are gaps between policy claims and actual data
collection practices, raising transparency concerns. The paper proposes automat-
ically extracting and classifying claims from policies, analyzing apps to categorize
collection evidence, and comparing both to identify inconsistencies. This enhances

transparency, informing discussions on appropriate data classification.

Summary

This paper extends Paper 5, tackles the lack of transparency in mobile apps’ collec-
tion of user interaction data, often labeled non-personal in privacy policies despite
privacy risks when aggregated.

It proposes automatically extracting and classifying claims about such collection

from policies using NLP. Apps are statically analyzed to categorize actual collection

32 CHAPTER 5. SUMMARY OF PAPERS

evidence. Claims are compared to evidence to assess transparency. Our two-fold
approach, encompassing privacy policy analysis and application code analysis, is
illustrated in Fig. 5.6.1.

icy: policy :
Cllsfim segment
extraction
e NLP
b?ytecode invocation
+: APT list Static +UI file Evidence
analysis categorization

Figure 5.6.1: Overview of our two-fold approach in Paper 6

labeled
collection claim

labeled
collection evidence

Analysis of 100 apps revealed widespread interaction data collection, with policy
claims often misaligned with practices. Case studies of 4 popular apps showed vague
policy contexts and incomplete disclosures. The approach identifies transparency
gaps, enabling informed data classification discussions.

Overall, comparing claims to evidence promotes transparency, providing insights
into discrepancies between stated practices and actual app behavior. This lays
groundwork for improving data collection transparency in mobile apps, underscoring

the need for clearer policy communication to foster user trust.

5.7 Paper 7: Finding Privacy-relevant Source Code

Tang, F. and @Ostvold, B. (2024). Finding Privacy-relevant Source Code. Accepted
by the 2nd International Workshop on Mining Software Repositories Applications
for Privacy and Security (MSR4PE&S 2024).

*Paper 7 builds directly on Paper 4, extending the introduced technique.

Motivation

Privacy code reviews are crucial for compliance with data protection regulations like
GDPR. However, manually reviewing large codebases to identify methods that pro-
cess personal data is resource-intensive. Existing tools lack a structured framework
for categorizing the diverse ways personal data can be handled in code. This paper
proposes an automated approach to assist code reviewers by identifying and cate-
gorizing privacy-relevant methods — methods that directly process personal data.

By analyzing popular libraries and ranking methods based on their usage frequency,

CHAPTER 5. SUMMARY OF PAPERS 33

it highlights the methods most relevant for privacy. This provides reviewers with a

focused starting point, enabling more efficient reviews.

Summary

This paper builds upon previous work and aims to assist privacy code reviewers by
automatically identifying and categorizing privacy-relevant methods. The challenge
of reviewing extensive codebases to pinpoint methods involved in personal data

processing is both time-intensive and crucial for compliance with regulations like

DPO
i

GDPR. The privacy code review process is illustrated in Figure 5.7.1.

Program personal _Catesorized Privacy Report
analysis tool datn flows Personal data

Figure 5.7.1: The process of privacy code review

Developer Code Code Reviewer

The paper investigates 50 commonly used libraries to understand their role in
personal data processing. It introduces a set of labels of methods, grounded in legal
and privacy considerations, and ranks these methods based on their frequency of
usage in 30 popular GitHub applications to highlight prevalent practices.

By analyzing 100 open-source applications, the paper demonstrates that its ap-
proach narrows the focus to fewer than 5% of privacy-relevant methods, thereby
enabling a more targeted review. Case studies on Signal Desktop and Cal.com fur-
ther illustrate how the approach reduces the scope of manual reviews by focusing on
key areas of concern. The labeling serves as a guide for categorizing types of data
processing, directing reviewers to high-priority sections of code and saving time.

Overall, the paper shows potential to assist code reviewers in conducting more
efficient privacy reviews, thereby aiding in legal compliance. By identifying and
categorizing common patterns and practices, the approach streamlines the review

process, conserving valuable resources.

5.8 Paper 8: Software Privacy and Program Anal-
ysis: Insights, Methods, and Opportunities

Tang, F. and @Ostvold, B. (2024). Software Privacy and Program Analysis: Insights,
Methods, and Opportunities. Submitted to the Springer Handbook: Privacy and

Security Matters in Biometric Technologies.

34 CHAPTER 5. SUMMARY OF PAPERS

Motivation

As software permeates daily life, protecting user privacy is paramount. However,
identifying and managing personal data in code is challenging. Privacy policies in-
adequately disclose data practices, and regulations like GDPR are ambiguous to
apply in software. Program analysis can analyze code to detect personal data flows
and recommend interventions, crucial for compliance. But limitations exist, includ-
ing unclear definitions of personal data and complex system architectures. This
chapter explores applying program analysis to enhance software privacy, examin-
ing techniques and discussing challenges. It aims to provide insights to advance

privacy-respecting software.

Summary

This book chapter examines the evolving role of program analysis in software pri-
vacy. It discusses the ambiguity in regulations like GDPR for identifying personal
data in code. Different program analysis techniques are explored, like taint analysis
to trace data flows. Benefits are highlighted, such as automated policy compliance
checks and streamlining code reviews. However, challenges remain, including classi-
fying ambiguous forms of personal data. Potential research directions are identified,
like employing machine learning to categorize data flows. Overall, the chapter pro-
vides a nuanced overview of applying program analysis to software privacy. While
acknowledging limitations, it offers insights into existing techniques and future op-

portunities to advance privacy protections in software systems.

CHAPTER 6. DISCUSSION 35

CHAPTER
SIX

DISCUSSION

In this section, we first summarize the contributions of this dissertation in relation to
the research questions presented in Chapter 1. We then situate these contributions
within the broader field of privacy protection, and finally discuss their relevance to

relevant social topics.

6.1 The results as a whole

In this section, we revisit the primary contributions and research questions outlined
in Section 1.2 and 1.3 to provide an overview of the results. Our research offers
a multi-faceted understanding of personal data management in software applica-
tions, particularly Java/Android applications. The contributions can be organized
into four main categories: (1) defining personal data in software, (2) methods for
identifying personal data, (3) mapping and categorizing personal data flow, and
(4) practical applications in privacy-related tasks such as DPIA and privacy code
review.

The first part of our contributions revolves around defining what constitutes
personal data within the realm of software. This is crucial because the boundaries
of personal data have expanded beyond traditional identifiers like names and email
addresses. Our research provides a nuanced framework that includes categories like
biometric data, thereby enhancing the understanding of what needs to be protected
under privacy laws like GDPR.

The second part focuses on the methods we developed for identifying personal
data within software applications. We introduced an automated approach that em-
ploys static analysis techniques to scan Java and Android applications for potential
personal data. This method not only identifies traditional forms of personal data

but also flags biometric data, thereby filling a gap in existing approaches.

36 CHAPTER 6. DISCUSSION

Our third contribution is a privacy-flow-graph that visualizes how personal data
moves within an application. This is particularly useful for DPIA processes, as it
allows for a more granular understanding of data flow, especially concerning 1/0
user input. This method advances the field by providing a tool that can be used to
identify potential vulnerabilities or compliance issues.

The fourth and final layer of our contributions is the application of our findings
to real-world privacy-related tasks. We have developed techniques that can be in-
tegrated into existing DPIA processes and code review practices. These techniques
not only make these processes more efficient but also ensure that they are more

effective in identifying and mitigating privacy risks.

6.2 Linking results to the research questions

To assess how the results address the original research aims, we will revisit the
research questions outlined in Section 1.2. We will go through each research question
individually, analyzing how the findings provide insights related to the question and

associated sub-questions.

RQ1: What constitutes personal data within the context of

software?

Our work offers a framework for defining personal data within software, particularly
Java/Android applications. We developed a list of personal data sources in Paper 1
that can be identified through I/O methods, thereby providing a structured way to
understand data entry points. Additionally, we engaged in a discussion on whether
behavioral interaction data, such as mouse clicks and keystrokes, should be classified
as personal data. This debate in Paper 5 enriches the understanding of personal data
by considering non-traditional forms, thereby expanding the scope of what needs to

be protected under privacy laws like GDPR.

RQ2: How to identify personal data in software?

To locate where personal data resides in software, we introduced methods for iden-
tifying personal data in software. We developed a list in Paper 3 and 4 that can
identify personal data in source code based on regular expression rules. We also
proposed an automated approach in Paper 1 that employs static analysis to scan

Java and Android applications for potential personal data acquired from users.

CHAPTER 6. DISCUSSION 37

RQ3: How to trace the flow of personal data and categorize

these flows in software?

RQ3 involved the adoption of program analysis in order to taint personal data,
identify their flows, and further classify them. We developed a privacy flow-graph
in Paper 1 that visualizes how personal data moves within an application. This tool
is particularly useful for Data Protection Impact Assessment (DPIA) processes, as

it allows for a more granular understanding of data flow, especially concerning user

1/0.

By categorizing these flows based on the different types of processing involved, we
offer methods that can identify potential vulnerabilities or compliance issues specific
to various contexts and data types. For example, our methods can address issues
related to biometric data (Paper 2), general personal data processing in source code
(Papers 4 and 7), and user interaction data (Papers 5 and 6). This advances the
field by providing a more structured approach to data flow analysis that is sensitive

to the nature of the data being processed.

RQ4: How to apply the findings to support various privacy-

related tasks?

Results from the papers can provide answers to the main question and the sub-

questions.

In response to RQ4, we demonstrated how our findings could be applied to real-
world privacy tasks. We developed methods that can be integrated into existing
DPIA processes (RQ4.1, Paper 1) and code review practices (RQ4.2, Papers 3, 4
and 7). These methods streamline the tasks for code reviewers, enabling them to
complete their assessments in a shorter amount of time without compromising on
the quality of the review. They also improve the effectiveness of both DPIA and
code review processes by providing more accurate identification and mitigation of

privacy risks.

We also proposed methods which can be used to automatically extract relevant
parts in privacy policies and actual implementation in code to verify the policy
(RQ4.3, Papers 5 and 6). Our contributions in this area offer both theoretical
insights and practical methods for better data management, thereby fulfilling the

need for actionable outcomes based on our research findings.

38 CHAPTER 6. DISCUSSION

6.3 Linking results to fields of research

This dissertation contributes to multiple academic and practical areas, such as soft-
ware privacy, program analysis, and policy analysis. In software privacy, our research
clarifies the types of data considered personal within software applications. The term
software privacy is often cited in scholarly works but lacks a universally accepted
definition [72, 73]. Our research adds to this discussion by proposing methods to

identify personal data in software, especially in the Internet of Things (IoT) context.

The rise of IoT makes our work timely, as the scope of what is considered personal
data is continuously expanding. The privacy flow-graph we introduce can be a useful

tool for DPIA, offering a systematic way to assess privacy risks in IoT data flows.

In program analysis, our research provides methods for identifying and catego-
rizing personal data flows. These methods are adaptable to different software types,
enhancing their broad applicability. In policy analysis, our work can guide the for-
mulation of robust privacy regulations, bridging the technical and legal aspects [74,
75].

Additionally, the methods we propose for identifying and categorizing personal
data can be integrated into the software development life cycle. This facilitates
compliance with privacy regulations like the GDPR and opens avenues for developing
privacy-preserving design patterns applicable to various programming languages and

platforms.

Regarding program analysis, our techniques offer new perspectives for analyz-
ing different types of data flows. Our source code analysis technique is versatile,
applicable to multiple programming languages and various codebase sizes. It also
allows for personalized rules for identifying personal data, offering scalability. This
adaptability suggests that our methods could be extended to detect other software

vulnerabilities and code smells, thereby enhancing software quality and security.

From a policy standpoint, our research offers a structured approach to evaluate
the privacy implications of software systems. This is particularly relevant given the
growing legislative focus on digital privacy, as seen in laws like the GDPR and CCPA.

Our work can inform and shape more effective privacy policies and regulations.

Lastly, our research has interdisciplinary applications, facilitating collaboration
among computer scientists, legal experts, and policymakers. The adaptable solu-
tions we provide for analyzing personal data in software can benefit various fields,
including software engineering, security, law, and policy. These techniques could be
used to inform policy debates, assist companies in identifying compliance gaps, or

guide developers in building privacy-preserving features.

CHAPTER 6. DISCUSSION 39

6.4 Linking results to social topics

Our research has implications for addressing privacy issues that are often overlooked
in society. One of the most pressing concerns is the extensive collection of inter-
action data by various software applications. While users may be aware that their
personal information is being collected, they often overlook the extent to which their
interactions — such as clicks, scrolls, and time spent on specific tasks — are also
being monitored and stored. Our work in identifying and categorizing personal data
flows in apps can raise awareness for users and policy makers on the need to enforce
regulations around collecting interaction data.

Moreover, our research can help inform public discourse on the ethical consid-
erations surrounding data privacy. By providing methods to trace and categorize
data flows, we offer tools that can be used to assess the ethical implications of data
collection and processing. This is particularly relevant in the age of big data, where
massive datasets are often used without adequate scrutiny of the potential privacy
risks involved.

Our work also has the potential to influence consumer behavior. As users become
more aware of the types of data being collected and how it is being used, they may
become more selective in the software and services they choose to engage with.
This could drive a market shift towards more privacy-conscious products, thereby
encouraging software developers to prioritize privacy in their design and development
processes.

Lastly, our research can serve as a resource for educational initiatives aimed at
improving digital literacy, particularly in the context of data privacy. By under-
standing the technical aspects of how personal data is processed, individuals can
make more informed decisions about their online activities, contributing to a more

privacy-aware society.

40

CHAPTER 6. DISCUSSION

CHAPTER 7. CONCLUSION 41

CHAPTER
SEVEN

CONCLUSION

There is no end of learning until
one is encased in coffin.

MZEmre Bk o |

Confucius {ILTF #2353 7ME)

7.1 Conclusion

This dissertation has focused on addressing gaps in the field of software privacy,
particularly in the identification, categorization, and tracing of personal data within
software applications. We started by examining what types of data can be considered
personal in a software context. Through the development of a privacy flow-graph,
we have expanded the understanding of personal data to include interaction data,
aligning with the first challenge mentioned in the abstract.

We then introduced methods for identifying personal data within software ap-
plications. These methods, such as regular expression matching and biometric API
usage detection, aim to help software applications comply with privacy regulations
like the GDPR. These methods align with the second challenge in the abstract and
offer practical tools for developers while laying the groundwork for future research.

Next, we developed techniques for visualizing and categorizing data flows within
software systems. These methods are useful for Data Protection Impact Assessments
(DPIA) and other privacy-related tasks. This aligns with the DPIA-focused contri-
bution in the abstract and is relevant in a data-driven world where understanding
data movement is essential for compliance and ethical considerations.

We also demonstrated how our methods could be applied to various privacy-

related tasks, such as improving code reviews and policy analysis. This aligns with

42 CHAPTER 7. CONCLUSION

the automated code review assistant mentioned in the abstract and has practical
applications in multiple areas.

Beyond academic contributions, our work has societal implications. It can in-
form public discussions on less-discussed privacy issues, like the capture of interac-
tion data, and potentially influence regulatory changes. Additionally, our methods
offer ways to encourage a more privacy-conscious consumer base and software de-
velopment community.

Lastly, our work facilitates collaboration among computer scientists, legal ex-
perts, and policymakers. It addresses various aspects of software privacy, laying a
foundation for interdisciplinary work aimed at creating a more secure and privacy-
respecting digital environment.

In conclusion, this dissertation has addressed several key issues in software pri-
vacy. While we have made strides in this area, the continually evolving nature of
technology means that new challenges will always arise. We hope this work will
serve as a basis for future research and practical applications, contributing to a

more privacy-aware digital world.

7.2 Future directions

The ever-changing world of software development and privacy regulations calls for
ongoing research and innovation in software privacy. As we look to the future,

several key research areas and challenges stand out for both academia and industry.

7.2.1 Redefining and expanding the scope of personal data

The traditional scope of personal data, often limited to explicit identifiers like names
and email addresses, is increasingly challenged by emerging technologies such as the
IoT [76]. A pressing issue is the categorization of non-personal data, like aggregated
user interactions, which can become personally identifiable when combined with
other data types. This complexity calls for a re-evaluation of what constitutes
personal data in the context of modern software systems.

A concrete research problem for future scholars could be the development of
program analysis tools that can identify and assess composite personal data. This
refers to data that becomes personally identifiable only when aggregated, posing
unique challenges for privacy assessments. For instance, how should a system that
collects both movement data and shopping history be evaluated for privacy risks
when each data type alone might be considered non-personal after de-identification?

To address these evolving challenges, future research should focus on creating

program analysis tools adaptable to new, nuanced definitions of personal data. These

CHAPTER 7. CONCLUSION 43

tools should be capable of analyzing a wide range of software domains, from web
applications to IoT, thereby ensuring comprehensive and up-to-date privacy assess-

ments.

7.2.2 Bridging the gap between legal and technical experts

The challenge in software privacy is that technical experts can analyze code but often
lack legal knowledge, while legal experts may not understand code. This creates a
gap in effective collaboration. Current tools mainly serve technical experts and offer
little for legal professionals [77].

Current program analysis tools primarily target technical experts and do not
provide an interface that legal experts can easily use. This lack of a common platform
blocks effective collaboration between the two groups. Such platform should not only
be able to translate technical findings into legal terms but also allow legal experts
to input their requirements, which can then be translated into technical criteria for
program analysis.

Future research could focus on creating program analysis tools equipped with
user interfaces specifically designed for legal experts. These interfaces could facilitate
a two-way translation between technical and legal languages. For instance, legal
requirements could be converted into configurable rules for program analysis, and
the results of the analysis could be mapped back to legal categories. To achieve
this, advanced techniques such as natural language processing and machine learning
could be employed to enable seamless communication between code analysis and

legal assessments.

7.2.3 Real-time analysis

The current methods in our research are not designed for real-time feedback, which
is important as software development moves towards continuous integration and de-
ployment [78]. While we have provided techniques to help reviewers and developers
quickly gain an overview of personal data locations and processing in code, running
such analyses cannot happen in real-time during active development or reviewing
tasks.

Future research should aim to develop real-time program analysis techniques that
can be integrated into Integrated Development Environments. The goal would be
to have privacy analyses occur concurrently as developers write code, allowing them
to immediately see when personal data is likely being accessed or manipulated.

For example, IDE plugins could use lightweight static analysis to highlight per-
sonal data flows and accesses as they are coded. Developers could then appropriately

mark or document these areas to streamline future privacy tasks like ROPA creation.

44 CHAPTER 7. CONCLUSION

To be practical, these real-time methods would need to be efficient to provide
feedback within seconds, without disrupting coding flow. Accuracy would also be
crucial to avoid many false positives. Achieving this combination of speed and pre-
cision poses research challenges but promises to greatly assist developers in building

privacy directly into applications.

7.2.4 Machine learning for data flow classification

The problem with our current rule-based methods for data flow classification is their
limited adaptability to new types of data flows [79]. These rule-based systems are
confined to a static taxonomy, which makes them less effective for classifying data
flows in software that utilize unconventional APIs or have unique data processing
patterns.

The problem becomes even more complex when considering software diversity.
For instance, how can a classification system accurately categorize data flows in a
healthcare app versus a social media app? Each domain has its own specific types
of data and processing activities, requiring a classification system that can adapt
accordingly.

By training machine learning models on large datasets of software code, systems
could learn to automatically classify personal data flows without relying solely on
predefined rules. The models could infer categories of processing directly from data
flow features and context. With sufficient training data encompassing diverse soft-
ware types and languages, the models could develop a nuanced understanding of how
different applications handle personal data. They could then automatically provide
flow categorizations tailored to the specific software, beyond our static taxonomy.

This data-driven approach, together with potential real-time analysis, would
greatly benefit developers and reviewers. By automatically generating insightful
flow categories directly from code, machine learning would streamline compliance

tasks and augment human analysis with adaptable, large-scale pattern recognition.

7.2.5 Enhanced alignment of program and policy analysis

Our current approach to privacy analysis is limited by its focus on user interaction
data, leaving a gap in the analysis of many other diverse types of personal data in
privacy policies. This limitation poses a concrete challenge: How can we develop
methods that not only identify but also categorize a broader range of personal data
types mentioned subtly in privacy policies?

The challenge extends to the dynamic nature of privacy policies and regulations.

As these policies evolve, how can program analysis techniques adapt in real-time to

CHAPTER 7. CONCLUSION 45

ensure ongoing compliance? This is particularly crucial for software that undergoes
frequent updates or operates in regulatory environments with changing privacy laws.

Future work could develop large language models tailored for privacy policies and
regulations. These could identify key features in legal text related to personal data
processing and consent. The extracted details could be translated into configurable
rules to guide dynamic program analysis aligned with each policy’s specifics.

By creating a tight feedback loop between policy interpretation and tailored soft-
ware analysis, we can work towards ensuring alignment between privacy promises
and system behaviors. This co-design of policy analytic and program analysis tech-
niques shows promise in verifying that privacy commitments are fulfilled in imple-

mentation.

46

CHAPTER 7. CONCLUSION

REFERENCES 47

2]

3]

[4]

7]

REFERENCES

Alan F. Westin. “Privacy and freedom”. In: Washington and Lee Law Review
25.1 (1968), p. 166.

Joel R Reidenberg et al. “Disagreeable privacy policies: Mismatches between

meaning and users’ understanding”. In: Berkeley Tech. LJ 30 (2015), p. 39.

Daniel J. Solove. “Privacy self-management and the consent dilemma”. In:
Harvard Law Review 126 (2012), p. 1880.

David Thompson. “I Agreed to What-A Call for Enforcement of Clarity in the
Presentation of Privacy Policies”. In: Hastings Comm. € Ent. LJ 35 (2012),
p- 199.

Feiyang Tang and Bjarte M. Ostvold. “Assessing Software Privacy Using the
Privacy Flow-Graph”. In: Proceedings of the 1st International Workshop on
Mining Software Repositories Applications for Privacy and Security. MSRAP&S
2022. Singapore: Association for Computing Machinery, 2022, pp. 7-15. ISBN:
9781450394574. DOI: 10.1145/3549035.3561185.

Feiyang Tang. “PABAU: Privacy Analysis of Biometric API Usage”. In: The
8th IEEE International Conference on Privacy Computing (PriComp 2022).
IEEE, Dec. 2022. DOI: 10.1109/smartworld-uic-atc-scalcom-digitaltwin-
pricomp-metaverseb6740.2022.00327.

Feiyang Tang, Bjarte M. @stvold, and Magiel Bruntink. “Identifying Per-
sonal Data Processing for Code Review”. In: arXw preprint arXiw:2301.01568
(2023). DOI: 10.5220/0011725700003405.

Feiyang Tang, Bjarte M. @stvold, and Magiel Bruntink. “Helping Code Re-
viewer Prioritize: Pinpointing Personal Data and its Processing”. In: arXiv
preprint arXiv:2306.11495 (2023). DOI: 10.3233/FAIA230228.

Feiyang Tang and Bjarte M. Qstvold. “Transparency in App Analytics: Analyz-
ing the Collection of User Interaction Data”. In: arXiv preprint arXiv:2306.11447
(2023). DOI: 10.1109/PST58708.2023.10320181.

https://doi.org/10.1145/3549035.3561185
https://doi.org/10.1109/smartworld-uic-atc-scalcom-digitaltwin-pricomp-metaverse56740.2022.00327
https://doi.org/10.1109/smartworld-uic-atc-scalcom-digitaltwin-pricomp-metaverse56740.2022.00327
https://doi.org/10.5220/0011725700003405
https://doi.org/10.3233/FAIA230228
https://doi.org/10.1109/PST58708.2023.10320181

48
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

Feiyang Tang and Bjarte M. Ostvold. User Interaction Data in Apps: Com-
paring Policy Claims to Implementations. 2023. arXiv: 2312.02710 [cs.SE].

Feiyang Tang and Bjarte M. @stvold. Finding Privacy-relevant Source Code.
To be appeared in the 2nd International Workshop on Mining Software Reposi-
tories Applications for Privacy and Security. 2024. arXiv: 2401.07316 [cs.SE].

Feiyang Tang and Bjarte M. @stvold. “Software Privacy and Program Analy-
sis: Insights, Methods, and Opportunities”. A book chapter submitted to the
Springer Handbook on Privacy and Security Matters in Biometric Technolo-
gies. 2024.

Meredydd Williams, Jason R. C. Nurse, and Sadie Creese. “The Perfect Storm:
The Privacy Paradox and the Internet-of-Things”. In: 2016 11th International
Conference on Availability, Reliability and Security (ARES). 2016, pp. 644—
652. DOI: 10.1109/ARES.2016.25.

Michela lezzi. The Fvolving Path of "the Right to Be Left Alone"” - When
Privacy Meets Technology. 2021. arXiv: 2111.12434 [cs.CR].

Christina B Whitman. “Privacy in Early Confucian and Taoist Thought”. In:
Individualism and Holism: Studies in Confucian and Daoist Values (1985).

Isabel Wagner. “Privacy Policies across the Ages: Content of Privacy Policies
1996-2021". In: ACM Trans. Priv. Secur. 26.3 (May 2023). 1SSN: 2471-2566.
DOI: 10.1145/3590152.

Ghazaleh Beigi et al. “Protecting User Privacy: An Approach for Untraceable
Web Browsing History and Unambiguous User Profiles”. In: Proceedings of
the Twelfth ACM International Conference on Web Search and Data Mining.
WSDM ’19. Melbourne VIC, Australia: Association for Computing Machinery,
2019, pp. 213-221. 1SBN: 9781450359405. DOI: 10.1145/3289600.3291026.

Omer Tene and Jules Polonetsky. “Big data for all: Privacy and user control
in the age of analytics”. In: Nw. J. Tech. & Intell. Prop. 11 (2012), p. 239.

Hannes Grassegger and Mikael Krogerus. “The data that turned the world
upside down”. In: Vice Motherboard 28 (2017).

Rebecca Balebako et al. ““Little brothers watching you” raising awareness of
data leaks on smartphones”. In: Proceedings of the Ninth Symposium on Usable

Privacy and Security. 2013, pp. 1-11.

Alessandro Acquisti, Laura Brandimarte, and George Loewenstein. “Privacy
and human behavior in the age of information”. In: Science 347.6221 (2015),
pp. 509-514.

https://arxiv.org/abs/2312.02710
https://arxiv.org/abs/2401.07316
https://doi.org/10.1109/ARES.2016.25
https://arxiv.org/abs/2111.12434
https://doi.org/10.1145/3590152
https://doi.org/10.1145/3289600.3291026

REFERENCES 49

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Juan Luis Herrera et al. Personal Data Gentrification. 2021. arXiv: 2103 .
17109 [cs.CY].

Sarah Spiekermann and Alexander Novotny. “A vision for global privacy bridges:
Technical and legal measures for international data markets”. In: Computer
Law & Security Review 31.2 (2015), pp. 181-200.

Shuyuan Zheng, Yang Cao, and Masatoshi Yoshikawa. Trading Location Data
with Bounded Personalized Privacy Loss. 2019. arXiv: 1906.05457 [cs.CR].

Zhiqi Bu et al. “Deep Learning With Gaussian Differential Privacy”. In: Har-
vard Data Science Review 2.3 (Sept. 2020).

Beatrice Li, Arash Tavakoli, and Arsalan Heydarian. “Occupant privacy per-
ception, awareness, and preferences in smart office environments”. In: Scientific
Reports 13.1 (2023), p. 4073.

Rachana Nget, Yang Cao, and Masatoshi Yoshikawa. “How to balance privacy
and money through pricing mechanism in personal data market”. In: arXiv
preprint arXiv:1705.02982 (2017).

Shuyuan Zheng, Yang Cao, and Masatoshi Yoshikawa. “Pricing Private Data
with Personalized Differential Privacy and Partial Arbitrage Freeness”. In:
arXiv preprint arXiw:2105.01651 (2021).

David J. Phillips. The Influence of Policy Regimes on the Development and So-
cial Implications of Privacy Enhancing Technologies. 2001. arXiv: ¢s/0109098
[cs.CY].

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Pro-

gram Analysis. Springer, 1999.

Brian Chess and Jacob West. Secure Programming with Static Analysis. Addison-
Wesley Professional, 2007.

Al Bessey et al. “A few billion lines of code later: Using static analysis to find
bugs in the real world”. In: Communications of the ACM 53.2 (2010), pp. 66—
75.

Li Li et al. “IccTA: Detecting Inter-Component Privacy Leaks in Android
Apps”. In: 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering. Vol. 1. IEEE. 2015, pp. 280-291.

Steven Arzt et al. “FlowDroid: Precise Context, Flow, Field, Object-sensitive
and Lifecycle-aware Taint Analysis for Android Apps”. In: Proceedings of the
85th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation. ACM. 2014, pp. 259-269.

https://arxiv.org/abs/2103.17109
https://arxiv.org/abs/2103.17109
https://arxiv.org/abs/1906.05457
https://arxiv.org/abs/cs/0109098
https://arxiv.org/abs/cs/0109098

50

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

REFERENCES

Fengguo Wei et al. “Amandroid: A Precise and General Inter-component Data
Flow Analysis Framework for Security Vetting of Android Apps”. In: Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security. ACM. 2014, pp. 1329-1341.

Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of program

analysis. Springer, 2015.

Benjamin Livshits, John Whaley, and Monica S Lam. “Reflection analysis
for Java”. In: Programming Languages and Systems: Third Asian Symposium,
APLAS 2005, Tsukuba, Japan, November 2-5, 2005. Proceedings 3. Springer.
2005, pp. 139-160.

Ondrej Lhotak and Kwok-Chiang Andrew Chung. “Points-to analysis with
efficient strong updates”. In: Proceedings of the 38th annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages. 2011, pp. 3—
16.

Esben Andreasen et al. “A survey of dynamic analysis and test generation for
JavaScript”. In: ACM Computing Surveys (CSUR) 50.5 (2017), pp. 1-36.

Simon Holm Jensen, Anders Mgller, and Peter Thiemann. “Type analysis for
JavaScript”. In: Static Analysis: 16th International Symposium, SAS 2009,
Los Angeles, CA, USA, August 9-11, 2009. Proceedings 16. Springer. 2009,
pp- 238-255.

Matiéas Toro, Ronald Garcia, and Eric Tanter. “Type-driven gradual secu-
rity with references”. In: ACM Transactions on Programming Languages and
Systems (TOPLAS) 40.4 (2018), pp. 1-55.

Veselin Raychev, Martin Vechev, and Andreas Krause. “Predicting program
properties from “big code””. In: ACM SIGPLAN Notices 50.1 (2015), pp. 111-
124.

Aleecia M. McDonald and Lorrie Faith Cranor. “The cost of reading privacy
policies”. In: ISJLP. Vol. 4. 2008, p. 543.

Sanda Erdelez and Abhijit Bhowmick. “Readability of Privacy Policies of
Healthcare Websites”. In: Online Journal of Public Health Informatics 12.1
(2020).

Sebastian Zimmeck et al. “ Automated analysis of privacy requirements for mo-
bile apps”. In: Twenty-Sizth Annual Network and Distributed System Security
Symposium. 2017.

REFERENCES 51

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Kirsten E. Martin. “Transaction costs, privacy, and trust: The laudable goals
and ultimate failure of notice and choice to respect privacy online”. In: First
Monday (2013).

Fred H. Cate. “The failure of fair information practice principles”. In: Con-

sumer protection in the age of the information economy (2006), p. 341.

Rocky Slavin et al. “Toward a framework for detecting privacy policy viola-
tions in android application code”. In: Proceedings of the 38th International

Conference on Software Engineering. 2016, pp. 25-36.

Cristian-Alexandru Staicu et al. “An empirical study of information flows in
real-world javascript”. In: Proceedings of the 14th ACM SIGSAC Workshop on
Programming Languages and Analysis for Security. 2019, pp. 45-59.

Goran Piskachev et al. “Fluently specifying taint-flow queries with fluent
TQL”. In: Empirical Software Engineering 27.5 (2022), p. 104.

Welderufael B. Tesfay et al. “PrivacyGuide: Towards an Implementation of
the EU GDPR on Internet Privacy Policy Evaluation”. In: Proceedings of
the Fourth ACM International Workshop on Security and Privacy Analytics.
IWSPA ’18. Tempe, AZ, USA: Association for Computing Machinery, 2018,
pp. 15-21. 1SBN: 9781450356343.

Rohan Ramanath et al. “Unsupervised alignment of privacy policies using
hidden markov models”. In: Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics. 2014, pp. 605-610.

Abhilasha Ravichander et al. “Breaking Down Walls of Text: How Can NLP
Benefit Consumer Privacy?” In: Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint

Conference on Natural Language Processing. Vol. 1. 2021.

Sebastian Zimmeck, Rafael Goldstein, and David Baraka. “PrivacyFlash Pro:
Automating Privacy Policy Generation for Mobile Apps.” In: NDSS. 2021.

Zhengyang Qu et al. “Autocog: Measuring the description-to-permission fi-
delity in android applications”. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. 2014, pp. 1354-1365.

Marco Bardus et al. “Data management and privacy policy of COVID-19
contact-tracing apps: Systematic review and content analysis”. In: JMIR mHealth
and uHealth 10.7 (2022), e35195.

Marcel von Maltitz, Cornelius Diekmann, and Georg Carle. “Privacy Assess-
ment of Software Architectures based on Static Taint Analysis”. In: arXiv
preprint arXiv:1608.04671 (2016).

92

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

REFERENCES

Pankaj Kohli. “Coarse-grained Dynamic Taint Analysis for Defeating Control
and Non-control Data Attacks”. In: arXiv preprint arXiv:0906.4481 (2009).

David Leoni. “Non-interactive differential privacy: a survey”. In: Proceedings
of the First International Workshop on Open Data. 2012, pp. 40-52.

Ninghui Li, Wahbeh Qardaji, and Dong Su. “On sampling, anonymization,
and differential privacy or, k-anonymization meets differential privacy”. In:
Proceedings of the 7th ACM Symposium on Information, Computer and Com-
munications Security. 2012, pp. 32-33.

Josep Domingo-Ferrer and Jordi Soria-Comas. “From t-closeness to differential
privacy and vice versa in data anonymization”. In: Knowledge-Based Systems
74 (2015), pp. 151-158.

Martin Kroll. “Pointwise adaptive kernel density estimation under local ap-

proximate differential privacy”. In: arXiv preprint arXiv:1907.06233 (2019).

David Sanchez et al. “Utility-preserving differentially private data releases via
individual ranking microaggregation”. In: Information Fusion 30 (2016), pp. 1-
14.

Shomir Wilson et al. “The creation and analysis of a website privacy policy
corpus’. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 2016, pp. 1330-1340.

Oleksii Kononenko, Olga Baysal, and Michael W Godfrey. “Code review qual-
ity: How developers see it”. In: Proceedings of the 38th international conference

on software engineering. 2016, pp. 1028-1038.

Alifia Puspaningrum et al. “Vulnerable Source Code Detection using Sonar-
Cloud Code Analysis”. In: arXiv preprint arXiv:2507.02446 (2023).

Awanthika Senarath and Nalin Asanka Gamagedara Arachchilage. “Why de-
velopers cannot embed privacy into software systems? An empirical investiga-
tion”. In: arXiv preprint arXiv:1805.09485 (2018).

Michael J May, Carl A Gunter, and Insup Lee. “Privacy APIs: Access con-
trol techniques to analyze and verify legal privacy policies”. In: 19th IEEE
Computer Security Foundations Workshop (CSFW’06). IEEE. 2006, 13-pp.

Yue Xiao et al. “Lalaine: Measuring and characterizing non-compliance of ap-
ple privacy labels at scale”. In: arXiv preprint arXiv:2206.06274 (2022).

Patrick Lam et al. “The Soot framework for Java program analysis: a ret-
rospective”. In: Cetus Users and Compiler Infastructure Workshop (CETUS
2011). Vol. 15. 35. 2011.

REFERENCES 93

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

Sebastian Zimmeck et al. “Maps: Scaling privacy compliance analysis to a
million apps”. In: Proceedings on Privacy Enhancing Technologies 2019 (2019),
p. 66.

Abdulrahman Hassan Alhazmi, Mumtaz Abdul Hameed, and Nalin Asanka
Gamagedara Arachchilage. “Developers’ Privacy Education: A game frame-
work to stimulate secure coding behaviour”. In: arXiv preprint arXiv:2211.03498
(2022).

Marcel von Maltitz, Cornelius Diekmann, and Georg Carle. “Privacy Assess-
ment of Software Architectures based on Static Taint Analysis”. In: arXiv
preprint arXiw:1608.04671 (2016).

Leonardo Horn Iwaya, Muhammad Ali Babar, and Awais Rashid. “Privacy
Engineering in the Wild: Understanding the Practitioners’ Mindset, Organi-
sational Aspects, and Current Practices”. In: IEEE Transactions on Software
Engineering (2023), pp. 1-26. DOI: 10.1109/TSE. 2023.3290237.

Blagovesta Kostova, Seda Giirses, and Carmela Troncoso. “Privacy Engineer-
ing Meets Software Engineering. On the Challenges of Engineering Privacy
ByDesign”. In: arXiv preprint arXiv:2007.08613 (2020).

Z Berkay Celik et al. “Program analysis of commodity IoT applications for
security and privacy: Challenges and opportunities”. In: ACM Computing Sur-
veys (CSUR) 52.4 (2019), pp. 1-30.

Kalle Hjerppe, Jukka Ruohonen, and Ville Leppénen. “ Annotation-based static
analysis for personal data protection”. In: IFIP International Summer School

on Privacy and Identity Management. Springer, 2019, pp. 343-358.

Gilles Barthe et al. “Deciding Differential Privacy for Programs with Finite
Inputs and Outputs”. In: Proceedings of the 35th Annual ACM/IEEE Sym-
posium on Logic in Computer Science. LICS '20. Saarbriicken, Germany: As-
sociation for Computing Machinery, 2020, pp. 141-154. 1SBN: 9781450371049.
DOI: 10.1145/3373718.3394796.

Elisabet Lobo-Vesga, Alejandro Russo, and Marco Gaboardi. A Programming
Framework for Differential Privacy with Accuracy Concentration Bounds. 2019.
arXiv: 1909.07918 [cs.CR].

https://doi.org/10.1109/TSE.2023.3290237
https://doi.org/10.1145/3373718.3394796
https://arxiv.org/abs/1909.07918

54

REFERENCES

Part B

The Papers

95

Assessing Software Privacy using the Privacy
Flow-Graph

Tang, F. and Ostvold, B. (2022). Assessing software privacy
using the privacy flow-graph. In Proceedings of the 1st Interna-
tional Workshop on Mining Software Repositories Applications
for Privacy and Security (MSR4P&S 2022). Association for
Computing Machinery, New York, NY, USA, 7-15.

o6

PAPER 1

Assessing Software Privacy using the Privacy Flow-Graph*

Feiyang Tang and Bjarte M. Ostvold

Norwegian Computing Center, Oslo, Norway
{feiyang,bjarte}@nr.no

Abstract. We increasingly rely on digital services and the conveniences they provide. Pro-
cessing of personal data is integral to such services and thus privacy and data protection
are a growing concern, and governments have responded with regulations such as the EU’s
GDPR. Following this, organisations that make software have legal obligations to document
the privacy and data protection of their software. This work must involve both software
developers that understand the code and the organisation’s data protection officer or legal
department that understands privacy and the requirements of a Data Protection and Impact
Assessment (DPIA).

To help developers and non-technical people such as lawyers document the privacy and
data protection behaviour of software, we have developed an automatic software analysis
technique. This technique is based on static program analysis to characterise the flow of
privacy-related data. The results of the analysis can be presented as a graph of privacy
flows and operations—that is understandable also for non-technical people. We argue that
our technique facilitates collaboration between technical and non-technical people in docu-
menting the privacy behaviour of the software. We explain how to use the results produced
by our technique to answer a series of privacy-relevant questions needed for a DPIA. To
illustrate our work, we show both detailed and abstract analysis results from applying our
analysis technique to the secure messaging service Signal and to the client of the cloud service
NextCloud and show how their privacy flow-graphs inform the writing of a DPIA.

Keywords: Program analysis - Data protection and privacy - GDPR - Software design
documentation.

1 Introduction

Privacy has been widely discussed in recent years — with the rise in public awareness and associ-
ated legislative developments, guaranteeing privacy while processing large amounts of private user
data has become an important topic. Following recent law implementations such as the GDPR, we
now have a regulated and clear framework for ensuring privacy compliance, which mandates doc-
umenting software properties through, for example, a Data Privacy Impact Assessment (DPIA).
Such an examination must include all parts of the software and it requires a grasp of the software
as well as sufficient technical knowledge to analyse the implementation. As a result, we would
anticipate a development team expert who has a brief grasp of the implementation while also
having sophisticated analysis and tools at their disposal to assist ensure that critical questions in
evaluation frameworks such as DPIA can be answered.

The reality, however, is considerably different. While having a privacy compliance checking
process operating alongside a software development life cycle is important, analysis and tools
at the code level with tailored assistance to legal experts are insufficient. In the meantime, DPTA
questions require an understanding of both technical and legal aspects. This means that performing
a successful DPTA cannot be done exclusively by a non-technical Data Protection Officer (DPO)
who specialises in data protection policy or a technical professional from the data controller (e.g.,

* Published at the 1st International Workshop on Mining Software Repositories Applications for Privacy
and Security (MSRAP&S 2022), DOIL: 10.1145/3549035.3561185

57

2 Feiyang Tang and Bjarte M. @stvold

a developer in the service provider organisation) with programming experience. Simultaneously, it
is difficult for developers to keep track of every single change in terms of private data processing
among hundreds of lines of code.

This raises the following question: how can we help both technical developers (from or work for
data controllers) and non-technical (DPOs) individuals examine privacy compliance in software?
Since tracking the flow of data originating from users is important for privacy protection, we must
check sensitive user inputs to the software and use an explainable abstraction to illustrate the
privacy behaviours in the software, address privacy elements, and provide assistance in producing
a better privacy analysis.

We propose privacy flow-graphs as a means to help both developers and DPOs, they can
adopt our technique to discover privacy-related behaviours in software. Such graphs produced by
our technique enable documenting private data processing actions, assist organisations (the data
controller) in showing compliance with their duties and assist the DPO in carrying out its missions.
Illustrating the processes may also assist developers to construct more privacy-compliant software
and achieve privacy-by-design throughout development and deployment.

Our contributions are:

— The definition of the privacy flow-graph (Section 3.2)
— How to write a DPIA informed by the privacy flow-graph (Section 4).
— A static program analysis that builds the privacy flow-graphs for Java programs (Section 5).

We demonstrate the utility of our research by examining privacy-related trends in two well-known
Java applications: Signal and NextCloud (Section 6).

2 Motivation

Examining data protection compliance is essential for the vast majority of software released to the
market, as well as for every service update when new user data must be analysed or when the way
data is handled changes. Legal regulations such as the GDPR necessitate that legal experts ob-
tain detailed privacy-related information processes from software developers. This implementation-
specific information is typically obtained through manual labour by developers, and may not include
all that a legal expert needs.

However, there are developers that are unfamiliar with the existing software and might have
difficulties providing in-depth information to legal experts.

This circumstance motivated us to design a lightweight, semi-automated program analysis tech-
nique that automatically analyses how and where personal data is accessed and processed, therefore
providing software developers and DPOs with a great deal of ease.

3 Preliminaries

In this section, we describe the preliminary aspects of our analysis: the local and global data-flow,
the privacy flow-graph, the source and sink methods, and the handcrafted datasets we created to
support the analysis.

Let ¢,d denote classes, n, m methods, and let notation c.m make explicit that class ¢ that
declares m. We assume that method names are unique in a class.

3.1 Local Data-Flow in Methods

We define some notation to refer to results obtainable from the control flow graph (CFG) of a
method. These results concern the kind of values that may flow between various points either
inside the method body.

58

Assessing Software Privacy using the Privacy Flow-Graph 3

Definition 1 (Method data-flow point p). A data-flow point p associated with a method c.m
is one of the following:

start — the start of the method;

invoke d.n; — an invocation of method d.n;
i_primitive; — an input primitive;
o_primitive; — an output primitive;
return; — a return statement.

Definition 2 (Local data-flow F; beginning, end). Let p,p’ be data-flow points, let F be
p—p' and let c.m be a method. We write F' =5 CFG(c.m) to means that the control-flow-graph of
c.m specifies a local data-flow F, that is, that values may flow from p to p'. We refer to p as the
beginning of F, denoted begin(F) and p’ as the end of F, denoted end(F).

An invocation can be both a beginning and an end of a flow, whereas the start of the method and
an input primitive can only be a beginning, and a return statement and an output primitive can
only be an end.

We are concerned with all data-flows that originate from the use of an input primitive. We now
define some particular types of flows.

Definition 3 (Source flow, F°). Given method c.m where
(i_primitive; — return;) 5 CFG(c.m). This flow is called a source flow, denoted F*°.

Definition 4 (Sink flow, F?). Given method c.m where
(start — o_primitive;) = CFG(c.m). The flow is called a sink flow, denoted F*.

3.2 Global Data-Flow & the Privacy Flow-Graph

We now consider global data-flow, specifically data-flows between methods of different classes,
those are, all data-flows that start from the use of an input primitive.

We extend the concept of a data-flow from local flows F' inside methods to global flows G
across methods. A global data-flow is defined by a series of local data-flows, each corresponding to
a method invocation, and that satisfies certain conditions.

Definition 5 (Global data-flow G). A global data-flow G is finite series of two or more local
data flows, Fy --- F,. The notions of beginning and end extend to G in an obvious way. Further-
more, any Fi, Fp41 above must satisfy the following: Let cx.my be such that Fy, = CFG(ck.my)
and cpi1.mps1 such that Fry1 = CFG(cgpi1.mps1) and end(Fy) = return; and begin(Fji1) =
invoke ci.my; for some i, j.

A global data-flow G = F} ... F, is a privacy flow if F} is a source flow. We are especially inter-
ested in global data-flows that involve data from input primitives ending up in output primitives.

Let P be a program with privacy flows Gi,...,Gy. The privacy flow-graph is a graph where
there the nodes are all methods involved in a privacy flow and the edges are pairs of methods
involved in successive flows F}, Fj,;1 part of some Gj.

Java specifics Here we consider some issues in adapting our data-flow definitions to Java.
First, we define rich types with the intuition that we are only interested in flows that involve
values of these kinds of types.

Definition 6 (Rich type). A rich type is any of following: the primitive data types string, int,
byte, the object types, as well as arrays of rich types.

99

4 Feiyang Tang and Bjarte M. @stvold

Values of rich types are those values that may contain privacy-related information. In principle, a
boolean could also be relevant to privacy, but we limit our scope to the rich types to simplify our
task. We are concerned with the processing of privacy-related data and not with the leakage of
bits of privacy information stemming from such processing.

All non-trivial programs refer to either standard libraries or third-party libraries and thus
source flows and sink flows may take place inside the methods of these libraries. In order to include
these flows without analyzing the libraries, we introduce the concept of source methods and sink
methods where such flows happen, and we apply a separate library analysis to pre-build a collection
of source and sink methods.

A source method is a method whose invocation results in a source flow, and we denote it as
om. A sink method is a method whose invocation results in a sink flow, denoted im.

Library analysis We have manually constructed a dataset of source and sink methods in the
native Java library! as well as the most used third-party Java libraries across different categories?.
The third-party libraries were selected from the Maven Repository list based on their download
frequency®. There are 158 Java source methods and 257 third-party library methods, which are
divided into five groups based on the return data type. Table 1 displays three Java source method
samples and three from third-party libraries.

Table 1. Examples of source methods

Method signature Category
int java.io.DatalnputStream.read(byte[]) I/0
java.lang.String java.net.URL.getQuery/() Network
java.sql.ResultSet java.sql.Statement.getResultSet() Database
int org.apache.commons.io.input.ProxyInputStream.read(byte[]) 1/0

org.apache.http.ssl.SSLContextBuilder org.apache.http.ssl.SSLContextBuilder.loadKeyMaterial() Network
java.sql.ResultSet org.apache.derby.iapi.jdbc.BrokeredStatement.executeQuery (java.lang.String) Database

Similarly, we created a dataset that included 350 sink methods from the same Java and 365
sink methods from the third-party libraries we investigated for the source method. Five examples
of sink methods are displayed below in Table 2.

Table 2. Examples of sink methods

Method signature Category
void java.util.logging.Logger.log(java.util.logging.LogRecord) Log

void java.io.Buffered Writer.write(int) I/0

void javax.servlet.http.HttpServletResponse.sendRedirect(java.lang.String) Network
void com.sun.xml.txw2.output. XMLWriter.comment(char(],int,int) 1/0

java.net. HttpURLConnection org.jsoup.helper.HttpConnection(org.jsoup.Connection) Network

! Based on JDK 8u201

2 Jackson, Log4j2, Apache Commons, Guava, HttpClient, JMS, Joda Time, Apache MINA, Apache Com-
mons and Derby

3 Maven Repository: https://mvnrepository.com/

60

Assessing Software Privacy using the Privacy Flow-Graph 5

A global privacy data-flow is made up of many nodes that represent various methods. Dif-
ferent methods imply different types of data processing; to help demonstrate these processes, we
characterise process under four categories.

Definition 7 (Process). A process is a local data-flow F in a privacy flow G = Fy ... F, that is
not a source flow F° or a sink flow F*.

To specify some special kinds of processes, we use the following separate terms:

— Security process, if a process involves cryptography, database, security, or network packages.
— Authentication process, if authentication is involved.

— Initialisation process, if a process initialises a class.

— Non-privacy process, if it does not belong to either of the three categories above.

4 Assessing data privacy

It is challenging for software developers and legal privacy experts to have a mutual understanding
and benefit from each other’s expertise and insights. To address this, we examine how to leverage
information from data flows in software to answer particular concerns related to GDPR rules.
According to Article 4 in GDPR, “the data controller determines the purposes for which and
the means by which personal data is processed”; hence, software providers (organisations) are data
controllers if the organisation develops its own software. Otherwise, the software developers provide
the implementation to the data controllers who are responsible for privacy protection. In this
paragraph, we first look at the core GDPR obligations of the data controller, which serves as the
duty of DPOs, and then discuss how we may help DPOs answer key DPIA questions (the document
created by the approach in this study is referred to as a DPIA.).

4.1 Obligation of the Data Controller

Article 24 in the GDPR [9] states several obligations of the data controller which should be moni-
tored by the DPO:

by default and by design, the data controller should have a record of processing activities
(Article 30);

— to ensure the security of the processing (Article 32);

to notify personal data breaches to the supervisory authorities (Article 33);

— to communicate personal breaches to the data subject (article 34)

to conduct DPTA (Article 35);

— to conduct prior consultation with supervisory authorities (Article 36).

The DPOs’ role is to monitor whether the data controller fulfilled all of their commitments, which
includes performing a DPIA when required. The writing of a DPIA is a shared duty for data
controllers and DPOs.

As one of the major data protection authorities in Europe, the Irish Data Protection Commis-
sion [8] provides a short explanation of what DPIA contains:

“A DPIA describes a process designed to identify risks arising out of the processing of
personal data and to minimise these risks as far and as early as possible.”

Here we picked one of the most often used sample templates for generating a DPIA from the British
Information Commissioner’s Office (ICO) [20].
Under Section 2: Describe the processing of the template, there are three questions:

61

6 Feiyang Tang and Bjarte M. @Ostvold

— Describe the nature of the processing: how will you collect, use, store and delete data? What is
the source of the data? Will you be sharing data with anyone? You might find it useful to refer
to a flow-graph or another way of describing data flows. What types of processing identified as
likely high risk are involved?

— Describe the scope of the processing: what is the nature of the data, and does it include special
category or criminal offence data? How much data will you be collecting and using? How often?
How long will you keep it? and more

— Describe the context of the processing: what is the nature of your relationship with the indi-
viduals? How much control will they have?

Also under Step 5: Identify and assess risks, DPIA requires “Describe the source of risk and nature
of the potential impact on individuals.”

With a list of privacy data-flows listed under different categories, developers and DPOs could
identify the parts of the program that collect privacy data from users and the relevant risky sinks.
As a result of identifying privacy flows, they can pinpoint exposure risks and offer solutions to
minimise those risks.

4.2 Answering Key DPIA Questions

Based on the previous paragraph, we now define six key questions relevant to the DPIA. Software
development teams and DPOs should consider how to answer these questions when writing the
DPIA. Each question is followed by an explanation of how our proposed analysis technique can
help answer the questions.

Q1 What is the source & nature of the data?

A1l We need to know where the data is acquired originally and through which way. By having
privacy source methods detected from the target program, we are able to look for all the po-
tential locations in which personal data from users might get captured by the system. Different
categories of privacy source methods might also indicate the type and nature of the data. For
example, a method from java.io.File indicates this method reads from a file in the local file
system.

Q2 How is private data processed?

A2 We want to identify the parts of the program that involve the processing of private data. This
is a discovery study based on the flows that stem from privacy source methods. There are many
patterns that might provide details on the processing of privacy data, for example, data travel
through multiple sources or reach into multiple different sinks.

Q3 Will the data be transformed? If so, how to ensure privacy data quality?

A3 Data transformation and quality control can be subtle. There are clues such as the change of
data types, certain types of data manipulation methods or certain APIs that might get involved
in data transformation such as encryption or database packages.

Q4 Will the data be shared/transferred and if yes, how?

A4 Most of the data transportation happens when the privacy data flow into a sink method. By
pinpointing the location and type of sink methods, we are able to identify whether there are
private data being shared or transferred out of the target program.

Q5 Does the data collected include special/highly sensitive personal data?

A5 The property of privacy data need to be manually identified or with the help of developers.
By adopting pure logic we can pick up properties that are directly linked with specific input
devices of software.

Q6 How is the data secured?

A6 The security of private data is ensured when there are data protection mechanisms adopted,
for example, the usage of cryptographic libraries or some encrypted databases. By locating the
occurrence of these methods, we are able to analyse the data security protection of the target
program.

62

Assessing Software Privacy using the Privacy Flow-Graph 7

5 Implementation

In the following paragraphs, we explain how our program analysis technique is implemented. Our
implementation is built on Soot [16], a Java optimisation framework that provides four intermediate
representations for analysing and transforming Java bytecode. Our technique consists of three parts:

Transforming program bytecode to intermediate representation;

Finding the source and sink methods;

— Building a privacy flow-graph by constructing one privacy flow for each source method at a
time;

— Producing the abstraction extracted from the privacy flow-graph.

5.1 Finding Source and Sink Methods

Soot helps us transform our target program into a 3-address intermediate representation [23]. By
traversing the CFG(c.m) of each method c.m in the program (provided in Jimple), the local data-
flow analysis helps us detect the occurrences of source and sink methods in the pre-set annotation
datasets (om and im) defined in Section 3.2. By having a complete list of source and sink methods
in the application as O and Z, we now use them to start building the privacy flow-graph.

5.2 Building the Privacy Flow-Graph

For every class that includes a detected source method, we mark it as a class-of-interest (COI).
For each COI, we first build a complete call-graph for it.

Definition 8 (Class-of-interest). A Class-of-interest (COI) is a class that contains an invoca-
tion to one of the source methods (O).

ceCOL < 3Joec,0e O (1)

Now for each source method o € O, we build a global data-flow G, = F°...F™ for it from
the call-graphs of each class that G, passes through. The final output is a union of all the global
data-flows originating from source methods. This graph uses A — B to represent that method B
invokes method A. Each G, will be output as a separate dot file consisting of all the nodes (full
signature of methods) and edges (invocations among the methods) which enables users to easily
visualise it with simple tools.

5.3 Abstracting the Privacy Flow-Graph

Privacy flows can be lengthy and comprise a variety of non-sensitive processes, many of which are
from the same class and are unrelated to privacy protection yet may confound both developers and
DPOs. We want to enable DPOs to get a big picture of the important processes without getting
bogged down in minutiae by creating an abstraction from the privacy-flow-graphs generated by
each source method. The abstraction is powered by a simple Python script running automatically
on the initial complete privacy flow-graph. We select several key parts from the complete privacy
flow-graph which are listed below as symbols:

— A: the starting source method;

— A: a non-starting source method;

— O: a non-special process;
Multiple processes that belong to the same package will be grouped into one process symbol
in the abstraction.

63

8 Feiyang Tang and Bjarte M. @Ostvold

— ®: a security process (cryptography, database, or network);
A security process is detected by the substring detector, we look for substrings such as ‘encrypt’,
‘db’, ‘send’, ‘connect’ in the method and its package name.

— V: the end sink method;

— V: a non-ending sink method;

— @: the end process;

— {: an authentication process;
Similar to a security process, we report an authentication process when we detect the substring
‘auth’ in the method or its package name.

— (@: initialisation process(es).
The initialisation process has ‘init’ in their names which can be picked up by our substring
detector.

The above key information can be interpreted to help developers pin down specific issues in
code and assist DPOs to have a sketch of high-level privacy patterns in the program, to also better
answer the relevant questions in DPIA.

An example abstraction output reflecting the code snippet in Figure 5.3 is shown below: The

1 public class Student { read()

> double id; Category: /O

3 String name; A
4

5 Student() { ..

6 //read() is a source method Student(init)

7 this.id =[read(); |

8 this.name = "John Doe";

9 }

10 Status(init)

11 }

12 public class Status { @
13 double id;

14 String name;

15 Status() { calculate()

16 Student student = /\
17 this.id = student.1id; encode()

18 this.name = student.name; Category: S ity/Crynt

19 } gory: Security/Crypto

20 public static String findResult °
21 return "Result is: " +

22 }

23 public static String calculate() { findResult()

24 Status s ~[new SEatus(]:] O
25 return String.valueOf("Out: " + s.id + s.name); .

26 } print()

27 public static String encode() Category: I/O

28 return String.valueOf(calculate().hashCode()]);

29} N/
30 public static void main(String args[]) {

31 System.out Jprintin(findResult())y Main()

32 }

53 @,

Fig. 1. Example of a privacy data-flow generated for a source code fragment and its abstraction

example has one obvious source method read() (line 7) which acts as the starting point of our

64

Assessing Software Privacy using the Privacy Flow-Graph 9

analysis. The technique then finds the next invocation to the source method when class Student
gets initialised (line 16). This initialisation is triggered later by another initialisation of class
Status (line 24). Following the newly created object Status s, we can trace the invocations to
calculate() (line 28), encode() (line 21), findResult () (line 31) and finally to a sink print ()
(line 31) which is invoked by the Main () method. Source method read () and sink method print ()
have their categories labelled as well as the special process encode().

Along with the abstraction figure, we provide short labels with the symbols which consist of
information such as 1) categories of starting source method and sink methods; 2) categories of the
special processes (security, authentication, or initialisation); 3) the class name is displayed when it
is an initialisation process (optional).

6 Experiment

We are looking for apps that accept raw sensitive user data and entail data transmission, often in
messaging and cloud storage applications. We thus selected the following two applications: Signal®
and NextCloud®. The non-profit Signal Foundation and Signal Messenger LLC created Signal,
a cross-platform end-to-end instant messaging service. We intend to study how Signal processes
privacy-related user data by analysing both Signal’s front-end Android application and the Signal
Client Service API because of its expertise in end-to-end encryption. The purpose is to figure
out how data is taken from the user and sent to the server. NextCloud is a client-server software
package for developing and managing file hosting services. It is free and open-source software
that anybody may install and run on their own private servers. We chose an implementation of
its Client API that assists developers in developing Java apps with NextCloud integration since
it is highly configurable. Similar to Signal, we intend to determine how the application handles
privacy-sensitive user data.

6.1 Signal

The Signal Service API contains 17,710 lines of code, which might require developers and DPOs
significant time and effort to comprehend. With our samples of DPTIA answers, DPOs could effort-
lessly use our implementation results to create a DPIA.

A total number of 11 privacy flows were detected in Signal Service API (9 out of a total 11 are
displayed here), the abstraction of its privacy flow-graph is shown below as Figure 2. We categorise
the 9 source methods found into four 4 different functionalities. In Signal, we have discovered a
similar pattern for all types of data communication: each raw entry is instantly sent into Signal’s
own cryptography libraries, allowing all user entries to be completely encrypted before they reach
any possible sinks or processes. Signal: Send Message and Signal: Receive Message in Figure 2
demonstrate this end-to-end encryption mechanism. As indicated by the dashed green lines, there
are some source methods that accept some values from local fields which originated from source
methods in other flows. PS01, for example, gets value from source methods 06 and 09, which are
network-related properties associated with the message object.

Now, we answer the DPIA questions we listed in Section 4.2 using the flow that originates from
01 (blue flow) in Signal: Send Message of Figure 2. To analyse privacy compliance, we combine the
abstraction figure (which only comprises shapes and categories of critical processes) with detailed
privacy flow-graphs (which contain every node in the flow-graph as well as their complete signature),
shown as in Table 3.

Q1 What is the source & nature of the data?

4 https://signal.org/en/
® https://nextcloud. com/

65

10 Feiyang Tang and Bjarte M. Ostvold

Signal: Send Message

!

Category: /O

Category: /O

Category: /0 - -

)
<%

Category: Security/Crypto Category: Network

- Category: Security/Crypto

Signal: Receive Message

Category: /O
Category: Network

Category: /O

Category: 10

Signal: Build Connection

Category: Network

Category: Network

Category: Network -

O——=0=0=—=p>

Category: Network

A

Category: /O

02

ategory: Network Category: Network

Category: Network

Category: 1/0

Fig. 2. Sample abstract privacy flows for Signal and NextCloud

66

Assessing Software Privacy using the Privacy Flow-Graph 11

Table 3. Complete privacy data-flow with abstraction symbols for sending a text message in Signal

Abstraction Complete privacy data-flow

A android.widget.EditText getText()

O org.thoughtcrime.securesms.jobs.PushTextSendJob deliver(message)

A org.thoughtcrime.securesms.messages. MessageContent Processor handleMessage(content, timestamp, ...)

® org.whispersystems.signalservice.api.crypto.SignalServiceCipher encrypt(destination, message, ...)
org.whispersystems.signalservice.api.SignalServiceMessageSender getEncryptedMessage(content, recipient, timestamp, ...)

O org.whispersystems.signalservice.api.SignalServiceMessageSender getEncryptedMessages(content, recipient, timestamp, ...)
org.whispersystems.signalservice.api.SignalServiceMessageSender createMessageContent(message)

v org.whispersystems.signalservice.api.SignalServiceMessageSender sendMessage(message, recipient, ...)

A1 Android applications take text input from a TE object which is a Ul fragment providing a text
field for users. The message field contains the raw message users want to send out.

Q2 How is private data processed?

A2 The abstraction tells us that there exist multiple processes when the text message is being
sent out. There are two non-privacy processes from packages org.signal.securesms.jobs
and org.signalservice.api.signalservicemessagesender. The package names indicate
the types of processing behind the processes. There are also highly sensitive privacy processes
such as the MessageContentProcessor() which is a non-starting source method that takes
privacy data from a local field, in this case, it combines multiple privacy data including the
text message. org.signalservice.api.crypto shows a typical encryption process, this also
demonstrates the end-to-end encryption in Signal.

Q3 Will the data be transformed? If so, how to ensure privacy data quality?

A3 We notice that the data type gets immediately changed after being read into the device as
raw strings. Both non-privacy and privacy processes transform data in order to achieve their
functionality. However, encrypted messages stay encrypted before they get sent out, which
ensures the content will not get manipulated by external parties.

Q4 Will the data be shared/transferred and if yes, how?

A4 The final ending sink method sendMessage() sends encrypted message objects out to the
server from the client.

Q5 Does the data collected include special/highly sensitive personal data?

A5 The properties of the message object are sensitive. Not only the text message body itself, its
attributes such as the details of senders but receivers and timestamps also remain sensitive
during the entire process.

Q6 How is the data secured?

A6 Data security is guaranteed here by end-to-end encryption. All the privacy data related to the
message get encrypted together as an EncryptedMessage object. This encrypted object cannot
be decrypted by the server, which remains unreadable until it reaches the destination client.

Our discovery also supports what Signal claims in its privacy policy. By supplying the afore-
said information to both developers and DPOs, they are able to receive adequate information for
creating DPIA and examining the privacy protection status in Signal without having to read the
original code.

6.2 NextCloud

Since NextCloud recently implemented end-to-end encryption in their products, this feature only
offers on the level of ‘end-to-end encrypted folders’. Hence in our analysis, we only apply the tech-
nique to the client API which is applied to the traditional version that relies on TLS communication
for safely transferring files.

From a total of 8,923 lines of code, we are able to extract key information from the NextCloud
Client API using a simplified privacy flow-graph along with the complete flow-graphs with full
signatures, as we did with Signal. We evaluate the DPIA questions to help DPOs in getting

67

12 Feiyang Tang and Bjarte M. @stvold

information from a legal standpoint, using the abstraction graph derived from our technique in
Figure 2.

Q1 What is the source & nature of the data?

A1 NextCloud Client API allows a client to upload a new file via uploadNewFile(). The files
can be of various types but shall be categorised as the user’s personal data. There is also one
network source, which links with data that can be used to identify users on the Internet.

Q2 How is private data processed?

A2 The file is transmitted from the device to the network; this is how a file is sent from the client
to the server.

Q3 Will the data be transformed? If so, how to ensure privacy data quality?

A3 Not only the file acquired from the user is transferred to the server, but also network data and
configuration settings. These various user data are processed and loaded into multiple fields of
various class objects (reflect on the two initialisation processes). During these procedures, data
types must be transformed in order to be organised for transmission as a type that the server
accepts.

Q4 Will the data be shared/transferred and if yes, how?

A4 The final node is a network sink, which indicates that the user’s data has been transmitted
into the network and shared with the server.

Q5 Does the data collected include special/highly sensitive personal data?

A5 In this example, the data comprises user files, settings, and network details. User files are highly
sensitive in terms of privacy.

Q6 How is the data secured?

A6 The network process here depicts a TLS connection, which is a cryptographic technology meant
to ensure network communications security.

With the information provided above, we provide both developers and DPOs a better understand-
ing of how the file upload process works in the NextCloud Client API, as well as what and where
are the important aspects of privacy protection for NextCloud.

Privacy flow-graphs illustrate trends in terms of privacy-related data processing, including
both benign and bad practices. It can assist not just DPOs and developers in responding to DPIA
questions and addressing important processing, but also in identifying potentially questionable
practices and ensuring good practices on privacy-related data.

7 Related Work

Using static analysis for security bug detection in software [6,4,10] is a source of inspiration for our
work. In our work, we used hand-crafted datasets of source and sink methods for Java and popular
third-party libraries as the start point for our analysis. The idea of using a pre-built set as a basis
of static analysis is similar to SUSI [2], IccTA [17], MudFlow [3] and AndroidLeak [11] in terms of
privacy protection for Android applications. Most current work, including the above, is specific to
Android sinks and sources and often uses name features as the basis of their analysis, whereas we
focus on Java in general without adopting heuristics. Regarding the GDPR, we demonstrate the
utility of employing privacy flow-graphs to ease the DPIA process, which saves manual labour and
assists in identifying possible sensitive processes that may be missed by human eyes.

Overall, there is an increasing interest in assuring privacy protection compliance prior to or
throughout the software development lifecycle [22]. Privacy-by-design (PbD) has sparked research
into methodologies and models for preserving software privacy before implementation begins, as
well as forecasting or managing developer privacy compliance throughout implementation [12,1,14].
Many of these approaches may also be employed on a regular basis during the development cycle
and while updating software. In the era of GDPR in Europe, there is also prior research [15,5,13]
that aims to provide personalised solutions for DPIA in a variety of applications. According to a

68

Assessing Software Privacy using the Privacy Flow-Graph 13

survey conducted by Dias Canedo et al. [7], technical staff frequently lack legal knowledge regarding
privacy protection. Many existing works [18,19,21] propose models that limit on a conceptual level,
that are not tangible for both technical and non-technical people to apply to implementation,
motivating us to propose an automatic technique to analyse privacy compliance in software.

8 Conclusion

In terms of privacy protection, there always exists a barrier between developers and DPOs. DPOs
need to generate a successful DPIA to document the privacy protection behaviour of software, this
requires the developer’s comprehensive knowledge of code details. Our work provides a technique
for detecting privacy source and sink methods in software bytecode, generating privacy flow-graphs
from the discovered sources, and supporting DPOs in writing a DPIA utilising privacy flow-graphs
and associated abstractions.

9 Limitation and future work

Our present method requires predetermined source and sink lists. Given that modern applications
typically contain hundreds of direct and indirect dependencies, we may miss a significant number
of privacy-related sources and sinks. Therefore, we rely on the knowledge of technical specialists
to create a more precise list of sources and sinks. Moreover, despite the fact that our complete
privacy flow-graphs and their abstractions can express key privacy-sensitive behaviours such as
data acquisition, encryption, and transportation, they are unable to provide complete information
regarding which type of data manipulation was involved in terms of privacy protection; therefore,
developers may be required to provide additional explanation for DPOs.

Future work includes a more detailed local flow analysis for each local data-flow in a privacy
global data-flow, such as tracking how values from privacy-related data are modified in the local
method and flagging sensitive manipulations such as value accumulation and separation. In the
meantime, it is feasible to extract information from the manifest file on which third-party libraries
are imported by the software in order to assist in the construction of a more adaptable list of
sources and sinks. This procedure might be automated by including these third-party libraries
(which are usually downloadable as JAR files) as a part of the input of the analysis. Additionally,
since dynamically-typed languages such as JavaScript are used in many different types of modern
systems, it would be advantageous to build a source code-based analyser based on tools such as
Semgrep 8, which as a starting point for extending our results to web applications.

Acknowledgement

We appreciate the legal insight that Jan Czarnocki and Lydia Belkadi have given. This work is part
of the Privacy Matters (PriMa) project. The PriMa project has received funding from European
Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant
agreement No. 860315.

References

1. Antignac, T., Métayer, D.L.: Privacy by design: From technologies to architectures. In: Annual privacy
forum. pp. 1-17. Springer, Berlin, Heidelberg (2014)

2. Arzt, S., Rasthofer, S., Bodden, E.: Susi: A tool for the fully automated classification and categorization
of android sources and sinks (2013)

S https://semgrep.dev/

69

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

Feiyang Tang and Bjarte M. @Ostvold

. Avdiienko, V., Kuznetsov, K., Gorla, A., Zeller, A., Arzt, S., Rasthofer, S., Bodden, E.: Mining apps

for abnormal usage of sensitive data. In: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering. vol. 1, pp. 426-436. IEEE, Italy (2015). https://doi.org/10.1109/ICSE.2015.61

. Ayewah, N.; Pugh, W., Hovemeyer, D., Morgenthaler, J.D., Penix, J.: Using static analysis to find

bugs. IEEE software 25(5), 22-29 (2008)

. Bu-Pasha, S.: The controller’s role in determining ‘high risk’ and data protection impact assessment

(dpia) in developing digital smart city. Information & Communications Technology Law 29(3), 391-402
(2020)

. Chess, B., McGraw, G.: Static analysis for security. IEEE security & privacy 2(6), 76-79 (2004)
. Dias Canedo, E., Toffano Seidel Calazans, A., Toffano Seidel Masson, E., Teixeira Costa, P.H., Lima,

F.: Perceptions of ict practitioners regarding software privacy. Entropy 22(4), 429 (2020)

. (DPC), D.P.C.: Data protection impact assessments (jul 2022), https://www.dataprotection.ie/en/

organisations/know-your-obligations/data-protection-impact-assessments

. European Commission: Regulation (EU) 2016/679 of the European Parliament and of the Council

of 27 April 2016 on the protection of natural persons with regard to the processing of personal data
and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection
Regulation) (Text with EEA relevance) (2016), https://eur-1lex.europa.eu/eli/reg/2016/679/0j
Evans, D., Larochelle, D.: Improving security using extensible lightweight static analysis. IEEE software
19(1), 42-51 (2002)

Gibler, C., Crussell, J., Erickson, J., Chen, H.: Androidleaks: Automatically detecting potential privacy
leaks in android applications on a large scale. In: International Conference on Trust and Trustworthy
Computing. pp. 291-307. Springer, Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

Hadar, I., Hasson, T., Ayalon, O., Toch, E., Birnhack, M., Sherman, S., Balissa, A.: Privacy by de-
signers: software developers’ privacy mindset. Empirical Software Engineering 23(1), 259-289 (2018)
Henriksen-Bulmer, J., Faily, S., Jeary, S.: Dpia in context: Applying dpia to assess privacy risks of
cyber physical systems. Future Internet 12(5), 93 (2020)

Hoepman, J.H.: Privacy design strategies. In: Cuppens-Boulahia, N.; Cuppens, F., Jajodia, S., Abou
El Kalam, A., Sans, T. (eds.) ICT Systems Security and Privacy Protection. pp. 446-459. Springer
Berlin Heidelberg, Berlin, Heidelberg (2014)

Horak, M., Stupka, V., Husdk, M.: Gdpr compliance in cybersecurity software: A case study of dpia
in information sharing platform. In: Proceedings of the 14th International Conference on Availability,
Reliability and Security. ARES 19, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3339252.3340516, https://doi.org/10.1145/3339252.3340516

Lam, P., Bodden, E., Lhotdk, O., Hendren, L.: The soot framework for java program analysis: a
retrospective. In: Cetus Users and Compiler Infastructure Workshop (CETUS 2011). vol. 15. IEEE,
Purdue University (2011)

Li, L., Bartel, A., Bissyandé, T.F., Klein, J., Le Traon, Y., Arzt, S., Rasthofer, S., Bodden, E., Octeau,
D., McDaniel, P.: Iccta: Detecting inter-component privacy leaks in android apps. In: 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering. vol. 1, pp. 280-291. IEEE, Italy (2015).
https://doi.org/10.1109/ICSE.2015.48

Martin, Y.S., Kung, A.: Methods and tools for gdpr compliance through privacy and data protection
engineering. In: 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW).
pp. 108-111. IEEE, London (2018). https://doi.org/10.1109/EuroSPW.2018.00021

Massey, A.K., Otto, P.N., Hayward, L.J., Antén, A.L.: Evaluating existing security and privacy re-
quirements for legal compliance. Requirements engineering 15(1), 119-137 (2010)

Office, I.C.: Data protection impact assessments (dpias). https://ico.org.uk/for-organisations/
guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/
data-protection-impact-assessments-dpias/ (02 2018), (Accessed on 03/02/2022)

Piras, L., Al-Obeidallah, M.G., Praitano, A., Tsohou, A., Mouratidis, H., Gallego-Nicasio Crespo, B.,
Bernard, J.B., Fiorani, M., Magkos, E., Sanz, A.C., et al.: Defend architecture: a privacy by design
platform for gdpr compliance. In: International Conference on Trust and Privacy in Digital Business.
pp. 78-93. Springer, Springer, Bratislava, Slovakia (2019)

Rubinstein, I.S.: Regulating privacy by design. Berkeley Tech. LJ 26, 1409 (2011)

Vallée-Rai, R., Hendren, L.J.: Jimple: Simplifying java bytecode for analyses and transformations
(1998)

70

PAPER 2

PABAU: Privacy Analysis of Biometric API
Usage

Tang, F. (2022)., PABAU: Privacy Analysis of Biometric API

Usage, In Proceeding of the 2022 IEEE Privacy Computing
(PriComp 2022), Haikou, China, 2022, pp. 2301-2308.

71

PABAU: Privacy Analysis of Biometric API Usage*

Feiyang Tang

Norwegian Computing Center
N-0314 Oslo, Norway
feiyang@nr.no

Abstract. Biometric data privacy is becoming a major concern for many organizations in
the age of big data, particularly in the ICT sector, because it may be easily exploited in
apps. Most apps utilize biometrics by accessing common application programming interfaces
(APIs); hence, we aim to categorize their usage. The categorization based on behavior may be
closely correlated with the sensitive processing of a user’s biometric data, hence highlighting
crucial biometric data privacy assessment concerns. We propose PABAU, Privacy Analysis
of Biometric API Usage. PABAU learns semantic features of methods in biometric APIs and
uses them to detect and categorize the usage of biometric API implementation in the software
according to their privacy-related behaviors. This technique bridges the communication and
background knowledge gap between technical and non-technical individuals in organizations
by providing an automated method for both parties to acquire a rapid understanding of the
essential behaviors of biometric API in apps, as well as future support to data protection
officers (DPO) with legal documentation, such as conducting a Data Protection Impact
Assessment (DPIA).

Keywords: Data protection - privacy - GDPR - biometric privacy - program analysis.

1 Introduction

Authentication solutions are shifting from password-based to passwordless solutions due to the
documented risks of passwords because of the user-generated credentials, brute-force attacks, recy-
cled passwords, and large-scale breaches. Taking advantage of biometrics, biometric authentication
solutions are deployed for both professional usage, for example, company intranet authentication,
and personal usage, for example, bank app authentication. The usage diversification of password-
less authentication solutions, based on biometrics, raises privacy concerns since biometric data is
acquired and processed within a connected multi-program environment, such as a mobile device or
a laptop instead of an offline single-program environment, such as a USB stick ! that uses biometric
as the authentication resource.

With the more common usage of biometric authentication, manipulating biometric data be-
comes controversial and makes those solutions run the risk of exposing this sensitive data. It
is critical to guarantee excellent practice and effective solution implementation throughout the
software development process. With more and more privacy-focused legal provisions being imple-
mented, such as the General Data Protection Regulation (GDPR) in Europe and the California
Consumer Privacy Act (CCPA), many companies are becoming aware of the importance of privacy
in software development. They are beginning to review their code for potential privacy issues in
order to avoid the potential legal risks associated with these newly implemented provisions. GDPR
classifies biometric data as “sensitive” [6], and privacy protection on biometric data has become
one of the most discussed topics in privacy-related research [9,16]. Biometric processing is now
a significant and vital aspect of privacy protection. Given that more software employs biometric

* Published at 2022 IEEE Conference of Privacy Computing (PriComp 2022), DOI: 10.1109/SmartWorld-
UIC-ATC-ScalCom-Digital Twin-PriComp-Metaverse56740.2022.00327
! nttps://fidoalliance.org/specifications/

72

2 Feiyang Tang

APIs to authenticate users for convenience, it is critical to understand how biometric APIs function
and how biometric data is processed. As a result of their nature and sensitive use, biometric APIs
must be used with a clear understanding by developers and data protection officers (DPOs) need
relevant information from developers. A rigorous privacy assessment of the biometric authentica-
tors is crucial to mitigate privacy risks. However, such an assessment is difficult to perform due
to the subtle nature of privacy and the complex structure of programs implementing biometric
authenticators.

In this paper, we would like to understand how biometric-relevant APIs are implemented in
real-world applications. We propose PABAU, a technique to classify the usage of biometric APIs
in the applications. Various usages (those are, methods from the biometric APIs) are classified into
different labels according to their behavior, for example, biometric acquisition, user interaction,
data transfer, data erasure, etc. We can use the results of the analysis to assist developers in better
understanding current solutions that adopt biometric APIs in an action-based analysis and guide
them to the section that requires more attention and provide a broad overview of how biometric
data is handled and manipulated in the application to either project managers or data protection
officers without examining the actual implementation code.

Our contributions are:

— An method for automatically categorizing biometric API methods (Section 4.1 and Section 5).

— A handcrafted ground-truth dataset built from the popular Android and FIDO2 biometric
authentication APIs (Section 4.4).

— An automatic scheme to describe the privacy behavior of API usage in client code, for in-
stance, authentication, cryptography, termination, and permission, that could aid developers
and DPOs in analyzing biometric-related privacy compliance (Section 4.3).

We demonstrate the utility of our research by testing our classifier on eight popular Android
applications (Section 6).

2 Related work

Our study focuses on utilizing static analysis to discover software vulnerabilities and supporting
non-technical experts with software privacy compliance checks. This section begins with a discus-
sion of traditional software security vulnerability discovery using program analysis, followed by a
discussion of software privacy assessment research.

Taint analysis is a practical approach to information flow analysis that is frequently used by
researchers to analyze the transmission of private data. It comprises both dynamic and static taint
analysis techniques. Using taint analysis to find privacy vulnerabilities in Android applications has
been discussed in multiple research.

By studying data relationships between program variables without running the program, static
taint analysis may determine if data can propagate from a taint source to a taint aggregation
point [22]. Many Java and Android-based research are based on the tool Soot. Soot [21]% is a
Java bytecode analysis tool developed by the Sable research group of McGill University in 1996. It
provides a variety of bytecode analysis and transformation functions, through which it can perform
intra- and inter-process analysis and optimization, and program flow analysis. FlowDroid [2] mimics
a component’s lifecycle by building virtual main functions to find sensitive data transfer channels
for privacy leaks with an 86% accuracy. MudFlow [3] used the static taint analysis tool FlowDroid
to test 2,866 benign software and produced a total of 338,610 taint analysis results. The tool can
only give out whether a piece of software as a whole has malicious behavior (and the tool will also
have false positives) and cannot tell whether a taint analysis path (source to sink) is the result
of direct privacy leakage. Moving from Android to general Java applications, in 2018, Sas et al.

2 https://github.com/soot-oss/soot

73

PABAU: Privacy Analysis of Biometric API Usage 3

proposed SSCM [19] to identify data sources and sinks from arbitrary Java libraries. SSCM uses
Soot Framework to extract information from the Java Bytecode and uses its novel rules and WEKA
Data Mining Framework [11] to classify different types of security sources and sinks. SWAN [18]?
is similar to SSCM. Both SSCM and SWAN use similar features for the classification model’s
learning process. SSCM proposed 9 when SWAN contains 25 basic features. These features focus
mostly on the name of Resource Class and Resource Method and call to the corresponding methods.
Meanwhile, parameters and some specific patterns are also important. Almost all the features used
in SSCM have been included in SWAN, and SWAN contains a few more features on return types
and some specific patterns in methods. Meanwhile, parameters and some specific patterns are also
important.

Privacy-by-design (PbD) has inspired a significant amount of research that provides approaches
and models to preserve software privacy before implementation begins, as well as to forecast or
manage developer privacy compliance throughout implementation [10,14]. According to a survey [7]
written by Dias Canedo et al., technical employees frequently lack legal expertise in terms of privacy
protection, which encouraged us to design a new easy-to-use technique for developers to check the
privacy compliance of their implementation on a regular basis without diving into hundreds of lines
of code.

With requirements like the data protection impact assessment (DPIA), researchers have been
attempting to make it easier for non-technical professionals, such as attorneys, to confirm GDPR
compliance. To aid the examination of privacy consequences in ubiquitous computing systems,
Ferndndez et al. [8] suggested a software-assisted process methodology. Similarly, the BPRAGDPR [17]
initiative has the same objective, while Zibuschka [24] analyzed the automation potential of the
DPIA process. Using privacy flow-graphs, Tang et al. [20] presented an approach for analyzing
privacy in the context of GDPR. This motivates us to bridge the gap between the technical and
non-technical experts with an approach that might assist both parties in terms of assessing privacy
in biometric API usage.

3 Motivation

Conducting a privacy analysis necessitates a vast number of software information, many of which
might be highly specific. Privacy lawyers may request that developers offer precise answers with
particular processing in software, which could be challenging when the software is not built and
maintained by a single team from the start. Furthermore, manually reviewing hundreds of lines of
code demands a significant amount of effort on the part of the development team. It is difficult for
developers and lawyers to have a mutual understanding and benefit from each other’s expertise
and analyzes [4,10,12]. Our goal is to see if we can transpose GDPR principles and requirements
with actual code locations or patterns in software. In this section, we look at fundamental GDPR
obligations from the standpoint of a developer and then consider how we may change our solution
to serve both parties in terms of privacy protection in biometric API usage.

3.1 Legal perspectives

GDPR states several obligations from the data controller which should be monitored by the
DPO [5]:

by default and by design, to have a record of processing activities (Article 30);
— to ensure the security of the processing (Article 32);

— to notify personal data breaches to the supervisory authorities (Article 33);

— to communicate personal breaches to the data subject (Article 34);

— to conduct DPIA (Article 35);

3 https://github.com/secure-software-engineering/swan/tree/master/swan_core

74

4 Feiyang Tang

— to conduct prior consultation with supervisory authorities (Article 36).

The DPO’s mission is to monitor whether the data controller fulfilled all of his or her commit-
ments, which includes performing a high-quality DPIA when required. This makes the assignment
of DPIA creation a duty for both data controllers and DPOs. DPIA is a technique that assists
developers and organizations in systematically analyzing, identifying, and mitigating data protec-
tion risks in a project or plan. The deliverable document created by the approach in this study is
referred to as a DPIA.

We intend to offer tailored solutions for DPIA under diverse applications, similar to earlier
research [13,15]. The aim of our technique is to provide information that can directly benefit
developers and DPOs by providing comprehensive guidance on producing a quality DPIA. Devel-
opers and DPOs may identify the components of the software that process biometric data from
users within applicable legal viewpoints with a list of biometric API use described under different
kinds of behavioral labels. Because various API methods can capture different forms of biometrics
processing, we can adopt this into our study.

4 Approach

To tackle the barrier between developers and DPOs in terms of biometric privacy protection compli-
ance checks, we utilize SWAN as a foundation to create a technique PABAU that can automatically
categorize methods in biometric APIs based on their actions.

4.1 General architecture

The architecture of our technique is illustrated in Fig. 1. The compiled class files from Java or
Android applications are our source of analysis. We can learn the features of these APIs and use
them to categorize their usage in real-world applications by training a model based on the most
common biometric API methods, such as the Android official biometric API and FIDO2 imple-
mentations. The biometric types included in this study cover the two most common biometrics:
face and fingerprint.

PABAU operates on different classification sets, one for each kind of biometric API method.
Most action-based sets are not disjoint (for example, Authenticate() may be labeled as both
CRYPTO (cryptography involved) and AUTHENTICATE), but certain sets like the biometric
strength levels (for example, BSC1 and BSC2) are disjoint (that is, each method can only get
labeled as one of them). The classification for each label operates independently.

Feature Types NN — Testing
 Festurentances JAR JAR JAR
CJL JC]

I

|

|

2
Ground Truth

Methods from biometric APIs

0 Em L F— QG
=

CERTIFIED
andloI1d

| Featurenstances P Learner Classifier

Fig. 1. General architecture of PABAU

75

PABAU: Privacy Analysis of Biometric API Usage 5

4.2 Feature types and feature instances

We adopted the same system as SWAN with feature types and corresponding feature instances.
The features are extracted from the semantics of methods in the program. Feature types are general
features such as methodNameContains and feature instances represent concrete instances of feature
types such as methodNameContainsUser. We considered the following criteria when constructing
feature types.

— Names of the methods and the declaring classes:
e Start with a keyword;
e Contain a keyword;
e End with a keyword.
Return types of the methods:
e Primitive types (for example, int, string);
e Other objects (for example, PromptInfo).
Parameters:
e Number of parameters;
e Types of parameters: primitive or other object types.
Invocations: whether the current method calls any other method:
e The name of callee;
e The return type of callee;
e The parameter of the callee.
— Particular pattern derived from above:
e Parameter flows into the return statement;
e Parameter flows into a local field;
o A local field flows into the return statement.

4.3 Labels

Some particular actions of biometric APIs might lead to potential privacy risks, which motivates
us to create labels representing different actions. The following labels in Tab. 1 are what we used
to classify different behaviors in biometric API usage.

4.4 Ground-truth

In order to train PABAU, we need to build a ground-truth dataset specific to biometric authentica-
tion and annotate the methods. Because Android apps are the most popular domain for biometric
API usage, we chose official Android Biometric APIs as our domain of study. To also cover web
applications that use FIDO2, we also find a representative implementation to enrich the ground
truth.

Initially, we parse the existing methods from Android biometrics APIs* and the FIDO2 server
implementation from LINE®. To enrich the training set, we also manually annotated over 150
methods from several popular sample implementations of biometric APIs®78. We manually decom-
press the library files, which were originally in JAR format, and label the methods in the class
files in accordance with their corresponding behaviors. A general training set should cover all of
the common biometric API methods, which is why we include the native Android biometric API
methods and some third-party ones. Each of these methods is annotated with privacy behavior
labels. Then, in a structured manner, for each method we collect the following properties:

4 https://android.googlesource.com/platform/frameworks

® https://github.com/line/line-fido2-server

6 Soter: https://github.com/Tencent/soter/

7 Android-Goldfinger : https://github.com/infinum/Android-Goldfinger
® https://github.com/sergeykomlach/AdvancedBiometricPromptCompat

76

6 Feiyang Tang

Table 1. Labels and the description

Label Description
BSC1 Biometric strength level ‘convenience’.

This level does not use cryptography nor the BiometricPrompt APL.
BSC2 Biometric strength level ‘weak’.

This level uses only the BiometricPrompt API but no cryptography.
BSC3 Biometric strength level ‘strong’.

This level uses both theBiometricPrompt API and cryptography.
SOURCE Where the potentially sensitive data come from.
SINK The places where the sensitive data might end up in.
CHECKER Checking occurs, for example, check for hardware prerequisites.

PERMISSION Getting or verifying the user’s permission for the biometric process.
AUTHENTICATE Authentication-related process.

CRYPTO Where encryption is involved in the process.

TERMINATION Where termination of specific service(s) happens.

The system is making interactions with users,

INTERACTION
for example, giving users a few options.
TRANSFER Biometric-related data or decisions derived from it are being transferred.
ACQUISITION The acquisition of biometric-related data.
DELETION The deletion of biometric-related data.
STORAGE Where biometric-related data is being stored and kept.
DATABASE Where a database is involved.

— name. The method’s fully qualified name (for example, package.class.method). This indi-
cates which class the method belongs to.

— return. The method’s return type (void, primitive types (for example, int), or objects of
other classes). This helps determine whether there is biometric data flow out from a local
method.

— parametersTypes. The method’s parameters types (empty, primitive types, for example,
int), or reference types).

— calleeNames. The full name of the methods invoked inside that method. This helps determine
relationships between methods, to locate data flows of biometric data better.

Each method in this dataset is manually associated with the label(s), the detailed explanation
of labels is discussed in Section 4.3. The example of how the training process is illustrated in Fig. 2
along with an annotation example in Fig. 3. Details on which type of feature and feature instance
are summarized in Section 4.2.

5 Training and classification

Similarly to SWAN [18]’s technique, we develop a collection of binary features that assess certain
qualities of the methods to assist the machine learning algorithm in labeling the methods based
on their actions.

We evaluated six popular classifiers from WEKA [11], a commonly used machine learning API
written in Java: Bayes Net, Naive Bayes, Logistic Regression, C4.5, and Decision Stump and SVM.
For each classifier in the training set, ten 10-fold cross-validations were conducted to find the best
classifier for PABAU. The median precision and recall statistics for each classifier are presented in

7

PABAU: Privacy Analysis of Biometric API Usage 7

Permission method name

1 @RequiresPermission(USE_BIOMETRIC) [EEIER TR

2 public [Vold [authent Lcatg @NonNull parameter name
3 return type @NONNUll CancellationSignal cancel,
4 @NonNull @CallbackExecutor Executor executor,
5 @NonNull AuthenticationCallback callback) {
6 FrameworkStatsLog.write(FrameworkStatsLog.AUTH_PROMPT_AUTHENTICATE_INVOKED,
7 true /* isCrypto */, calleesNames
8 mPromptInfo.flsConfirmationRequested(),
9 mPromptInfo.fisDeviceCredentialAllowed(),
10 mPromptInfo.getAuthenticators() != Authenticators.EMPTY_SET
11 mPromptInfo.getAuthenticators());
12 // Exceptions omitted here calleesNames
13 @Authenticators.Types int authenticators = mPromptInfow
14 if (authenticators == Authenticators.EMPTY_SET) {
15 authenticators = Authenticators.BIOMETRIC_STRONG;
16
17 final int biometricStrength = authenticators & Authenticators.BIOMETRIC_WEAK;
18 if ((bilometricStrength & ~Authenticators.BIOMETRIC_STRONG) != 0) {
19 throw new IllegalArgumentException("Only Strong biometrics supported with crypto");
20 3
21 |authenticatelnternal(crypto, cancel, executor, callback, mContext.getUserId());l
22 } calleesNames
package class (‘D method @
~1 "name": fandroid.hardware.biometricsfBiometricPromptfauthenticate],
2" "vold",
3 "parametersTypes": [
4 "android.hardware.biometrics.BiometricPrompt.CryptoObject", @@
5 "android.os.CancellationSignal",
6 "java.util.concurrent.Executor",
7 "android.hardware.biometrics.BiometricAuthenticator.AuthenticationCallback"
81,
@ 9 "parametersNames": [
Qo |10 "crypto",@@
T11 “cancel”,
g— 12 "executor",
5 [13 “callback"
14]

B
15 "calleeNames": [@@
16 "android.hardware.biometrics.PromptInfo.isConfirmationRequested",

17 "android.hardware.biometrics.PromptInfo.isDeviceCredentialAllowed", @
18 "android.hardware.biometrics.PromptInfo.getAuthenticators”,

19 "android.hardware.biometrics.BiometricPrompt.authenticateInternal", @
20 "android.content.Context.getUserId" @

21]

22 "labels": [

23 "BSC3", (D),

24 "crypto",

25 "checker",

26 "acquisition”,(d)

27 “interaction", @
28 "authen‘t'\cate"@

29],

30 "framework": "android"

Fig. 2. Example of a method from the Android Biometric API: authenticate is a method from the class
android.hardware.biometrics.BiometricPrompt and the corresponding annotated method (in the green
text) data point. The numbered circles (from lines 23 to 28) correspond to the labels (Section 4.3). They
were assigned to this data point since authenticate has the properties in lines 1, 4, 7, 10, 16-20 in the
text.

Table. 2. In terms of average accuracy and recall, we can observe that SVM performed the best
with an average precision of 0.9725 and recall of 0.98. Except for Stump, which performed far less
well than the other five, the majority of classifiers functioned well.

For example, the feature instance hasCalleeNameStartsCheck is likely to indicate that the
current method calls a checker function to see whether specific conditions have been satisfied.
When the learning process starts, PABAU computes a yes or no response for each feature instance
for each method in the training set. Based on the feedback, we are able to learn which combination

78

8 Feiyang Tang

Feature Type ‘ Feature Type Feature Type
Method takes Method name starts Method name contains
“OBJECT” as parameter ‘with “KEYWORD" ‘with “KEYWORD"

OBJECT = CryptoObject KEYWORD =is. KEYWORD = get KEYWORD = authenticator KEYWORD = allowed KEYWORD = user
- ~ — .

1 android. hardwa

android. hardware.biometrics.CryptoObjes

L T s

Annotated Method Data Point

authenticate

isDeviceCredentialAllowed
getAuthenticators
CryptoObject

getUserid

Fig. 3. Annotation diagram of the sample method

of features is the most associated with the labels. These combinations will be then used to label
methods in testing sets.

Table 2. Precision (P) and recall (R) of the 10-cross fold validation for all classifiers averaged over 10
iterations

Source Sink Auth Crypto Average
P R|P R|P R|P R| P R
BayesNet {0.92 0.97]0.95 0.95/1.00 1.00(1.00 1.00| 0.9675 0.9800
NaiveBayes 0.93 0.95/0.94 0.96]0.88 1.00(1.00 1.00| 0.9375 0.9775
Logistic Reg|0.94 0.95]0.95 0.92]0.88 1.00(1.00 1.00| 0.9425 0.9675

C4.5 0.93 0.96/0.93 0.95|0.88 1.00{1.00 0.75| 0.9350 0.9775
Stump 0.79 0.84/0.88 0.92|0.75 1.00(1.00 0.5 |0.8550 0.8150
SVM 0.94 0.96/0.95 0.96/1.00 1.00|1.00 1.00/0.9725 0.9800

6 Experiment

The main research question here is how our technique performs in terms of assigning biometric API
methods with the corresponding behavioral labels. We aim for high precision because calculating
recall is unrealistically tricky. All our experiments were performed on a Windows machine with an
Intel i7 1.90GHz CPU and 16 GB memory.

6.1 Description of the datasets

Besides the ground-truth dataset we built using Android biometric APIs and FIDO2 server im-
plementation, we also manually annotated biometric API usages from real-world Android mobile
applications. Given that biometric authentication is only used in a subset of Android applications,

79

PABAU: Privacy Analysis of Biometric API Usage 9

we chose eight popular apps from the Google Play Store® in four categories: banking & finance
(Klarna, Sparebank1, Revolut, Paypal), private storage (Private Photo Vault, NordLocker), privacy
notebook (Notability), and password management (1Password).
The description of the main functionality and biometric usage of the apps are listed in Table 3.
We split the entire handcrafted dataset into two parts, 70% of the data points were used to
train the classifier and the rest 30% were used for testing.

Table 3. Description of the datasets

App name Description

A financial app that provides online payment and
direct payments along with post-purchase payments.
Users can use biometrics to unlock the app

and authorise certain payments.

Klarna

A online banking app for Sparebankl.
Sparebank1 Users can use biometrics to unlock the app,
authorize certain payments and approve e-invoice.

An online banking app for Revolut Bank.
Revolut Users can use biometrics to unlock the app, add a
new card, authorize payments, and update profiles.

A financial app that provides the online payment
between users or merchants.

Users can use biometrics to unlock the app,

authorize payments, and update card/account details.

Paypal

A photo storage app that provides access control.
Private Photo Vault Users can use biometrics to unlock the app, add photos
to the vault and add extra control to certain folders.

A storage app that provides access control.
NordLocker Users can use biometrics to unlock the app, add files into
the locker and apply extra encryption to certain files.

An online notebook.

N ili R . .
otability Users can use biometrics to lock and unlock certain notes.

A password manager.
1Password Users can use biometrics to unlock the app, add/update
credentials, and sync information with the cloud.

6.2 Example

Fig. 4 gives an example of what kind of result PABAU generates by analyzing the JAR files. The
method onCreateView was extracted from the class
androidx.biometrics.BiometricFragment.

We could see that the method itself gets classified by multiple labels, for example, it gets
classified as BSC3 and Crypto from the invocation to the data type CryptoObject. The app’s
implementation has a fairly small number of biometric API methods, however, this does not di-
minish their importance. Actually, their significance might be underestimated, and the underlying
correlations between one method and other subtle behaviors reveal a sensitivity to privacy. This

9 https://play.google.com/store/apps/

80

10 Feiyang Tang
is also why we need a technique such as PABAU to classify each method rigorously with as many

privacy behavior labels as feasible.

1_public \/1ew@NonNu11 Layoutlm‘later @Nullable V'LewGroup @Nullable Bundle
[var3) { Interaction

2 if (!this.mShowing) {

3 Bundle var5 = this.mBundle;

4 if (var5 != 1 BSC2 or BSC3

5 thlS = var9.build(); Termination

6 CancellationSignal varl@ = new ();

7 this.mCancellationSignal = varl@;

8 Crypto & BSC3 varlS = this.mCryptoObject;

9 1 varils ==) { Authenticate

10 th'LsAmbmetrLcPromptvarl@, this.mExecutor,
this.mAuthenticationCallback);

11 } else {

12 this.mBiometricPrompt.authenticate(wrapCryptoObject(varl5), this.mCancellationSignal,
this.fExecutor] this.mAuthenticationCallback);

13 Interaction

14 }

15 }

16 this.mShowing = e; Flow to return

17 return super.onCreate\/Lew;

18 }

Fig. 4. Sample classification result snippet from Sparebankl

6.3 Runtime and memory performance

Table 4 demonstrates the stability of PABAU, and it does not require huge computational costs
to analyze common mobile apps. The cost of time and memory increases as the size of a program
grows, which also reflects a greater number of methods inside the application. We also observed
that the quantity of biometric-related approaches influences the time and memory requirements.
Even though Notability is almost three times the size of Sparebankl, it does not cost three times
as much in terms of time and memory since Notability uses biometric APIs for fewer features than
Sparebankl.

Table 4. Average runtime and memory usage for classifying different apps

#Total Average cost

methods Time (s) Memory (MB)
Sparebank1 89,142|32.79 £ 0.72 584.37 £+ 1.93
Revolut 86,457(30.25 + 0.78 518.56 + 1.84
Paypal 94,618(35.96 + 1.23 604.62 £+ 1.89
Private Photo Vault| 175,841|43.19 + 1.48 659.07 £+ 2.24
NordLocker 115,294|30.57 £+ 1.55 556.29 + 2.05
Notability 284,585|65.48 £+ 2.14 844.73 + 3.21
1Password 134,806(31.33 £+ 1.67 581.46 + 2.23

6.4 Evaluating the precision

To examine the classification precision, we manually go through the methods that got classified by
each behavioral label. The methods were extracted from the decompiled apk files and read by our

81

PABAU: Privacy Analysis of Biometric API Usage 11

technique. Table 5 displays the total number of methods analyzed in each application as well as the
classification results for various behaviors (categories). It is worth noting that all finance apps use
the cryptography-related API, and none of the apps have access to actual biometric data storage,
database, or acquisition (the only acquisition that happens is the cryptographic keys involved in
the authentication process, no biometric data involved). This is aligned with GDPR requirements
since transporting and storing biometric data is very sensitive and requires further consent from
data owners.

According to Table 6, PABAU has an average precision of 0.84 across all the labels. It is more
precise for detecting Source and Sink (0.96), as well as some categories such as BSC1/2/3
(0.97), than for other categories such as Termination (0.87). Some of the behavior labels appear
infrequently in the dataset as well.

PABAU can be improved by using a larger and more diverse training set that includes real-world
API usage annotations and domain-specific information.

Table 5. Total number of methods analyzed (#M) and numbers of methods detected by PABAU per
behavioral label.

Klarna Sparebankl Revolut Paypal PPV~ Nordlocker Notability 1Password
#M 105,185 89,142 86,457 94,618 175,841 115,294 284,585 134,806
Source 127 94 174 140 65 98 39 55
Sink 96 70 143 109 41 64 17 32
BSC1 15 12 21 16 15 20 11 13
BSC2 17 24 29 14 7 9 0 5
BSC3 2 2 3 2 0 0 0 0
Checker 9 7 13 8 3 4 1 3
Permission 7 5 9 8 1 1 1 3
Auth 8 6 9 11 2 3 2 4
Crypto 5 5 [§ 9 0 0 0 0
Termin 9 7 10 9 3 1 1 5
Interact 4 2 5 7 1 2 1 4
Transfer 0 0 0 0 0 0 0 0
Acquist 1 1 1 1 0 0 0 0
Delete 2 1 2 3 0 0 0 0
Storage 0 0 0 0 0 0 0 0

7 Threats to validity

To check for GDPR compliance in the biometric authentication system and find relevant behavior,
here we picked one of the most often used sample templates for generating a DPIA from the
Commission nationale de l'informatique et des libertés (CNIL) [1].

Under “Section 2 Assessment of controls protecting data subjects’ rights”, there are key ques-
tions that can be answered by the classification results from PABAU. We pick the following exam-
ples which can be answered by our classification result:

— Determination and description of the controls for obtaining consent.
Typically, the operating system, such as Apple or Google, obtains biometric permission first
from users when they enroll their biometrics into the system. Permission is required the first
time an application asks for access to the biometric API. This refers to the methods we clas-
sified with the Permission label, these methods indicate the code location and description
of biometric permissions sought by the application. From the preceding experiment result, it
is evident that all apps that implemented biometric authentication requested permission. By
analyzing the discovered methods, further information can be uncovered. For instance, the use

82

12

Feiyang Tang

Table 6. Number of biometric-related methods detected (#BM), and precision of PABAU for each label
on eight Android applications. ¢/’ marks labels for which PABAU detected no methods.

Klarna Sparebank1 Revolut Paypal PPV Nordlocker Notability 1Password

#BM 326 201 427 372 170 233 89 143
Source 0.95 0.94 0.92 0.9 0.99 0.99 0.97 0.99
Sink 0.97 0.95 0.97 0.94 0.98 0.99 0.99 0.96
BSC1 0.93 1 1 0.89 1 0.95 1 0.92
BSC2 1 0.96 0.93 1 1 0.89 / 1
BSC3 1 1 1 1 / / / /
Checker 0.67 0.57 0.77 0.5 0.33 0.5 1 0.67
Permission 1 0.8 0.67 0.89 1 1 1 1
Auth 1 1 1 1 1 1 1 1
Crypto 1 1 1 1 / / / /
Termin 0.56 0.86 0.8 1 1 1 1 0.8
Interact 1 1 1 0.86 1 1 1 1
Transfer / / / /o / / /
Acquist 1 1 1 0 / / / /
Delete 0.5 1 1 0.3 / / / /
Storage / / / /) / / /

8

of Permission methods may be used to examine privacy policies to determine whether there
are locations that utilize biometric data without user consent.

Information on the secure data storage method, particularly in the event of sourcing.

Various biometric security class levels signify varying degrees of security. DPOs need to un-
derstand how user data is being securely stored. Labels Crypto and BS3 offer the greatest
degree of data protection and inform DPOs that the biometric authentication method utilized
sophisticated encryption.

Detailed presentation of the data processing purposes (specified objectives, data matching where
applicable, etc.).

Biometric APIs are utilized for more than just app unlocking. The label Iteract classifies the
interaction between the user and the application in terms of biometric API usage, as user
interaction must be precisely identified. By analyzing these approaches, DPOs can determine
which activity motivates the use of biometric APIs. Similarly, labels such as Auth explain
the authentication procedure in a clear manner by pinpointing the locations of authentication
processes and associating the context in the code.

Possibility of retrieving, in an easily reusable format, personal data provided by the user, so as
to transfer them to another service

Transferring biometric data or the authentication session’s decisions is a highly sensitive pro-
cess. In spite of the fact that our experiment did not reveal any methods with the Transfer
label, it is still worthwhile to discover them in the implementations. Considering the Android
biometric data is stored in the Trusty TEE (Trusted Execution Environment) [23], which is
isolated from the rest of the system by both hardware and software. By analyzing the Android
implementation, we should not find any data transportation process since Trusty and Android
run parallel to each other.

Indication of the personal data that will nevertheless be stored (technical requirements, legal
obligations, etc.).

The Storage and Delete labels enable DPOs to identify and comprehend methods that may
breach GDPR data retention requirements.

Conclusion and future work

It has always been a barrier between technical and non-technical people in terms of privacy pro-
tection for biometric data. DPOs rely on technical specifications from developers to make legal

83

PABAU: Privacy Analysis of Biometric API Usage 13

decisions in order to continue monitoring privacy protection compliance in software implementa-
tions.

In this paper, we propose a technique for labeling biometric API usage with behavioral labels.
This approach overcomes this barrier by providing an automated method for both parties to gain
a quick overview of the important fundamental behaviors of biometric API in applications, as well
as future assistance to DPOs with legal paperwork, such as performing a DPIA.

Our work provides an early promising result in categorizing the behaviors of biometric API
methods in eight popular apps. However, we did not have a large number of samples for the
training set, the diversity can also be improved. Meanwhile, experienced developers’ involvement
might benefit the learning process by providing valuable relevant elements for training, such as
varied weights for features. We hope that this method will help both technical and non-technical
workers gain a better grasp of privacy protection scenarios during the software development process.

Acknowledgment

We appreciate the insightful remarks made by Bjarte M. @Jstvold and Amina Bassit. This work
is part of the Privacy Matters (PriMa) project. The PriMa project has received funding from
European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-
Curie grant agreement No. 860315.

References

1. Privacy Impact Assessment (PIA) by CNIL. https://www.cnil.fr/en/
privacy-impact-assessment-pia (February 2018), (Accessed on 08/19/2022)

2. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D., McDaniel,
P.: Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps. Acm Sigplan Notices 49(6), 259-269 (2014)

3. Avdiienko, V., Kuznetsov, K., Gorla, A., Zeller, A., Arzt, S., Rasthofer, S., Bodden, E.: Mining apps
for abnormal usage of sensitive data. In: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering. vol. 1, pp. 426-436. IEEE (2015)

4. Bettini, C., Riboni, D.: Privacy protection in pervasive systems: State of the art and technical chal-
lenges. Pervasive and Mobile Computing 17, 159-174 (2015)

5. Council of European Union: General data protection regulation (GDPR) (2018), https://gdpr-info.
eu/

6. Council of European Union: General data protection regulation (GDPR) Art. 9: processing of special
categories of personal data (2018),
https://gdpr-info.eu/art-9-gdpr/

7. Dias Canedo, E., Toffano Seidel Calazans, A., Toffano Seidel Masson, E., Teixeira Costa, P.H., Lima,
F.: Perceptions of ICT practitioners regarding software privacy. Entropy 22(4), 429 (2020)

8. Fernandez, A.P., Sindre, G.: Software Assisted Privacy Impact Assessment in interactive ubiquitous
computing systems. In: Conference on e-Business, e-Services and e-Society. pp. 60-71. Springer (2019)

9. Gruschka, N., Mavroeidis, V., Vishi, K., Jensen, M.: Privacy issues and data protection in big data:
a case study analysis under GDPR. In: 2018 IEEE International Conference on Big Data (Big Data).
pp. 5027-5033. IEEE (2018)

10. Hadar, I., Hasson, T., Ayalon, O., Toch, E., Birnhack, M., Sherman, S., Balissa, A.: Privacy by de-
signers: software developers’ privacy mindset. Empirical Software Engineering 23(1), 259-289 (2018)

11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining
software: an update. ACM SIGKDD explorations newsletter 11(1), 10-18 (2009)

12. Hansen, M.: Top 10 mistakes in system design from a privacy perspective and privacy protection goals.
In: IFIP primelife international summer school on privacy and identity management for life. pp. 14-31.
Springer (2011)

13. Henriksen-Bulmer, J., Faily, S., Jeary, S.: Dpia in context: Applying DPIA to assess privacy risks of
cyber physical systems. Future Internet 12(5), 93 (2020)

84

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Feiyang Tang

Hoepman, J.H.: Privacy design strategies. In: Cuppens-Boulahia, N.; Cuppens, F.; Jajodia, S., Abou
El Kalam, A., Sans, T. (eds.) ICT Systems Security and Privacy Protection. pp. 446-459. Springer
Berlin Heidelberg, Berlin, Heidelberg (2014)

Horak, M., Stupka, V., Husdk, M.: Gdpr compliance in cybersecurity software: A case study of dpia
in information sharing platform. In: Proceedings of the 14th international conference on availability,
reliability and security. pp. 1-8 (2019)

Jasserand, C.: Legal nature of biometric data: From generic personal data to sensitive data. Eur. Data
Prot. L. Rev. 2, 297 (2016)

Lioudakis, G.V., Koukovini, M.N., Papagiannakopoulou, E.I., Dellas, N., Kalaboukas, K., Carvalho,
R.M.d., Hassani, M., Bracciale, L., Bianchi, G., Juan-Verdejo, A., et al.: Facilitating GDPR compliance:
the H2020 BPRAGDPR approach. In: Conference on e-Business, e-Services and e-Society. pp. 72-78.
Springer (2019)

Piskachev, G., Do, L.N.Q., Bodden, E.: Codebase-adaptive detection of security-relevant meth-
ods. In: Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ISSTA 2019, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3293882.3330556, https://doi.org/10.1145/3293882.3330556

Sas, D., Bessi, M., Fontana, F.A.: Automatic detection of sources and sinks in arbitrary java libraries.
In: 2018 IEEE 18th International Working Conference on Source Code Analysis and Manipulation
(SCAM). pp. 103-112. IEEE (2018)

Tang, F., Ostvold, B.M.: Assessing software privacy using the privacy flow-graph. In: Proceed-
ings of the 1st International Workshop on Mining Software Repositories Applications for Privacy
and Security. MSR4P&S’22, Association for Computing Machinery, New York, NY, USA (2022).
https://doi.org/10.1145/3549035.3561185, https://doi.org/10.1145/3549035.3561185

Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot: A Java bytecode
optimization framework. In: CASCON First Decade High Impact Papers, pp. 214-224 (2010)

Wang, L., LI, F., LI, L., et al.: Principle and practice of taint analysis. Journal of Software 28(4),
860-882 (2017)

Wikipedia contributors: Trusted execution environment — Wikipedia, the free encyclopedia
(2022), https://en.wikipedia.org/w/index.php?title=Trusted_execution_environment&oldid=
1105563332, [Online; accessed 15-October-2022)

Zibuschka, J.: Analysis of automation potentials in privacy impact assessment processes. In: Computer
Security, pp. 279-286. Springer (2019)

85

Identifying Personal Data Processing for Code

Review

Tang, F.; Ostvold, B. and Bruntink, M. (2023). Identifying
Personal Data Processing for Code Review. In Proceedings of
the 9th International Conference on Information Systems Se-
curity and Privacy - ICISSP; ISBN 978-989-758-624-8; ISSN
2184-4356, SciTePress, pages 568-575.

86

PAPER 3

Identifying Personal Data Processing for Code Review*

Feiyang Tang', Bjarte M. @stvold', and Magiel Bruntink?

! Norwegian Computing Center, Oslo, Norway
2 Software Improvement Group, Amsterdam, The Netherlands

Abstract. Code review is a critical step in the software development life cycle, which as-
sesses and boosts the code’s effectiveness and correctness, pinpoints security issues, and
raises its quality by adhering to best practices. Due to the increased need for personal data
protection motivated by legislation, code reviewers need to understand where personal data
is located in software systems and how it is handled. Although most recent work on code
review focuses on security vulnerabilities, privacy-related techniques are not easy for code
reviewers to implement, making their inclusion in the code review process challenging. In
this paper, we present ongoing work on a new approach to identifying personal data pro-
cessing, enabling developers and code reviewers in drafting privacy analyses and complying
with regulations such as the General Data Protection Regulation (GDPR).

Keywords: Data privacy protection - Code review - Static analysis.

1 Introduction

The General Data Protection Regulation (GDPR) lays the legal foundation for data protection in
the EU and increases individual data protection rights throughout Europe. It also carries significant
fines of up to 4% of yearly worldwide revenue for businesses that do not comply with the legislation.
Many IT system providers, especially software-producing firms, may need to alter their systems
in order to comply with the GDPR. This is predicted to require significant effort [4]. As a result,
providing software engineers in the industry with effective and systematic ways to build data
protection into software is an essential and beneficial study topic [13]. Organizations are pushing
security to the software development life cycle, such as code review, to prevent software security
vulnerabilities [5]. Similarly, to comply with privacy-by-design and perform privacy analysis tasks,
code reviewers would benefit from similar tools to those used for security to identify privacy-related
patterns in software.

Developers address privacy concerns using data security terminology, and this vocabulary con-
fines their notions of privacy to threats outside of the organization [10]. However, even though data
security is the main prerequisite of data privacy, privacy protection in software is still very much
different from traditional security-related vulnerabilities. And according to Bambauer: “security
and privacy can and should be treated as distinct concerns” [1]. Developers struggle to convert
legal, ethical, and social privacy concerns into concrete technology and solutions [16].

Assessing privacy involves not only finding personal data in the software but also evaluating
compliance with the related processing. GDPR defines as processing: “any operation or set of
operations which is performed on personal data or on sets of personal data, whether or not by
automated means.” The definition encompasses a vast range of actions performed on personal
data, such as collecting, recording, organization, structuring, storage, adaption or modification,
retrieval, transit, etc. Privacy assessment tasks beg the question: How can we assist code reviewers
and software developers in assessing personal data processing? By identifying personal data and
the relevant processing in the system, code reviewers can uncover interesting patterns and utilize
them to redesign the system to be more privacy-friendly or perform privacy analysis.

* Published at the 9th International Conference on Information Systems Security and Privacy (ICISSP
2023), DOIL: 10.5220,/0011725700003405

87

2 F. Tang et al.

In this paper, we present ongoing work on a novel approach designed to assist developers and
code reviewers in identifying personal data processing, which can subsequently be used for privacy
analysis. This enables developers and code reviewers to assist organizations with a variety of
important privacy-related tasks, such as completing a data protection impact assessment (DPIA)
and creating a privacy policy.

2 Related work

An essential step in the software development process, code reviewing incorporates both man-
ual and/or automated reviews. The main goal of code reviews is to assess and boost the code’s
effectiveness and correctness, pinpoint security issues, and raise its quality by adhering to best
practices [15]. To automatically evaluate code, a variety of vulnerability detection tools have been
built. They are also known as source code analyzers or static analysis tools, as they can analyze a
program’s code without having to execute it [14].

CodeQL?, and Semgrep [20]* are two popular code review tools that utilize static analysis.
CodeQL treats code as if it were data, and issues are modeled as queries. Following the extraction
of these queries from the code, they are executed against a database. The database is a directory
containing data, a source reference for displaying query results, query results, and log files. Semgrep
matches grammatical patterns on parsed programs (represented as an Abstract Syntax Tree (AST))
instead of matching string or regular expression (regex) patterns on the program as a string.
Semgrep makes it considerably simpler to construct customized rules than CodeQL, which needs
rules to be defined in QL, a declarative object-oriented query language.

There is relatively little published work that focuses on code reviews to identify privacy-related
vulnerabilities, and it is problematic to translate current security knowledge to privacy, which we
will explain in Section 3. There are studies on the identification of personal data that are valuable
to our research. Fugkeaw et al. [9] proposed AP2I to enable organizations to identify and manage
personal data in the local file system automatically. By monitoring network traffic, ReCon [21]
utilized machine learning to identify probable personal data breaches. van der Plas et al. [18] used
CodeBERT, a RoBERT-like transformer model, to identify personal data in Git commits.

3 Background and challenges

Data privacy analysis is becoming as crucial as security vulnerability discovery and has brought a
new dimension to the data security dilemma [3]. It is advantageous for code reviewers to be able
to conduct a similar privacy analysis that they did for security.

The current state of the art is mostly focused on security analysis. Although data security
is a primary requirement for data privacy, the analysis domain and identification process are
rather different [11]. Simply adopting security mechanisms and mindsets to analyze privacy can be
misguided, and even harmful [1].

Integration of recent studies on assessing software privacy during code review is challenging. On
the subject of program analysis, three well-known privacy analysis methods are available. First,
static analysis based on bytecode requires project compilation, whereas dynamic taint analysis
requires project execution. This is not practical nor efficient for code reviewers to implement. A
machine learning-based technique is similarly difficult to implement, as it requires a large and
diverse training data set. Obtaining and generating such data sets requires additional effort and
could be outside the scope of code reviewers’ capabilities. Lastly, text analysis based on UI widgets
is constrained for privacy by domain-specific Ul attributes. A financial web application that employs

3 https://codeql.github.com/
4 https://semgrep.dev/

88

Identifying Personal Data Processing for Code Review 3

a model trained on an Android health mobile application is unlikely to benefit. Code reviewers
require an approach that is simple to deploy, efficient, and adaptable [6].

Due to the complex nature of privacy and the fluidity of the definition of personal data, iden-
tifying the processing of personal data in the codebase presents challenges.

In the following paragraphs, we highlight the two most significant challenges related to the task
in the context of code review.

3.1 The Ambiguous Definition of Personal Data

Article 4(1) in GDPR defines personal data as:

any information relating to an identified or identifiable natural person (‘data subject’); an
identifiable natural person is one who can be identified, directly or indirectly, in particular
by reference to an identifier such as a name, an identification number, location data, an
online identifier or to one or more factors specific to the physical, physiological, genetic,
mental, economic, cultural or social identity of that natural person.

The definition of personal data in the GDPR is so broad that almost any information may
qualify as personal data if it refers to a specific individual, such as the fact that a person is wearing
a red shirt [2]. The definition is also semantically ambiguous.

In contrast to the fact that certain data may be anonymous from the start (such as weather
sensor data without any connection to real people), other data may initially be personal data but
later be successfully altered to no longer have any connection to an identified or identifiable natural
person. This emphasizes how flexible the categorization of personal data is [8].

The same data point may be personal or non-personal depending on the context and may thus
be covered by the regulation or not. This implies that the categories of personal data in the software
vary depending on the software and the processing underlying it. For instance, health data such as
blood pressure and medical records, for example, are sensitive for a health application, but location
data is sensitive for navigation software.

Even if we accept that content-wise every item of information can be considered personal data
if it can be related to an individual, the GDPR’s definition is still rather vague structurally since it
is not always clear what kind of structure every ‘record’ of an individual must have to be considered
personal data [23].

Due to the ambiguous nature of the definition of personal data in the relevant legislation, it is
practically difficult for us to have a clear and fixed identifier to precisely locate personal data in
code.

3.2 What Counts as Sensitive Processing?

Data subjects may agree to data processing for particular reasons. This is the usual legal basis but
only counts as one factor. Processing may also be “necessary for the performance of a contract to
which the data subject is a party or in order to take steps at the request of the data subject prior
to entering into a contract.” [23]

Unfortunately, concerns that arise in principle about the relationship between contract and
consent tend to be avoided in reality by disregarding consent requirements [19].

We cannot rely on existing privacy policies and written consent to uncover personal data pro-
cessing in the codebase. This requires us to consider all potential personal data processing in the
codebase. Later we will explain how we define and identify the relevant processing in software in
Section 4.1.

89

4 F. Tang et al.

4 Approach

We present an approach to identify instances of personal data processing in the codebase and
present them in a way that facilitates the code review.

The approach has three primary phases: pattern matching, labeling, and grouping of results.
As input, we take the codebase, which consists of source code files. Then, a static analyzer will
evaluate these source code files using our rules and patterns. The code snippets discovered by the
static analyzer are then labeled according to the various features they include. Finally, we allow
users to group the results by single or several labels, allowing a personalized exploration of the
findings.

An illustration of our approach is shown in Figure 1.

pattern
matching .
Codebase » Code snippets
labeling
v
grouping .
Results < Labeled snippets

Fig. 1. Approach

4.1 Design Choices

In the following paragraphs, we discuss our design choices for implementing the approach.

Types of Findings We want to have a basic default list of personal data that we want to locate,
this is mostly personal identification and characteristics data, such as full name, email address,
gender, sexual orientation, and age. We call them fixed personal data.

According to different types of software, we customize default lists for them. For example, for a
banking/finance application, the list may contain bank account numbers, credit scores, and salary
information. This type of personal data is subject to context - the types of processing in specific
software, which we named contextual personal data.

Depending on how we locate the mentioned personal data in the software, we can divide their
occurrences in code into simply two types.

The first is in clear text. This includes all kinds of locations where personal data appear in
clear text. It is verbatim or direct personal data. For example, a credit card number appears in an
SQL query, or an email address falls into a log function.

The other type is more common and subtle, where personal data is stored in a variable or an
object. Depending on the different types of programming languages, the object types might vary
from a local variable, a class instance, or a prototype. This means we aim to find the code that
processes this type of data.

Types of Processing Simply locating every instance of personal data produces a large number
of results. Many of these do not directly help the code reviewer’s work, which is to find meaningful
processing. We want to use a hybrid approach to cover as many as processing as possible.

90

Identifying Personal Data Processing for Code Review 5

Processing personal data represents a specific behavior. This motivates our first approach: to
use an action name tag to find relevant processing. We adopted most of the verbs from Section 3
of DPV [17] 5. These vocabularies help us to find relevant processes in the software.

The second approach is the identification of external libraries. We know that modern applica-
tions rely on various APIs to achieve different goals. Therefore, obtaining a list of relevant APIs
and detecting the existence of personal data that flows into them helps us find meaningful patterns.

4.2 Pattern Matching

The first step is to feed our codebase (consisting of source code files) to the static analyzer for
pattern matching. We chose Semgrep as our analyzer because of its user-friendly rules and rapid
processing performance. Depending on the different syntactic characteristics of personal data, as
we discussed in Section 4.1, we adopt a hybrid approach that combines two different types of
analysis.

— Match personal data in clear text using regular expression matching.
— Taint analysis to find flows in each file between a source (where personal data enters the analysis
scope) and a sink (where personal data gets processed) that match our criteria.

Our personal data processing rules currently support Java, JavaScript, and TypeScript as our
primary analysis domains. However, our rules for identifying clear-text personal data apply to the
vast majority of Semgrep-supported languages.

Source and Sink Our prototype classifies the sources into nine separate categories. As stated in
Section 4.1, we divide fixed personal data into four different categories: account, contact, national
ID, and personal ID. Included are five more contextual personal data categories, such as location,
health, and financial data. In addition, we provide a template for identifying the processing of
personal data and enable code reviewers and developers to submit additional personal data simply
by entering the relevant keywords. Then, corresponding rules will be automatically produced for
future use.

Sinks are categorized into five main types. Three types of action: data manipulation (M), data
transportation (T), and data creation/deletion (C/D). Another two represent two special types:
database (DB) and encryption (E).

A sink’s name may contain a specific type of source. For example, setLatitude(100,100)
does not take any source into the method, but includes a source identifier Latitude and a sink
identifier set, showing that it processes values directly as a source into a sink. We call this special
type of sink a source-specific sink. When a source-specific sink invokes anything, we mark this
source-specific sink as the new source but the caller of the source-specific sink as the new sink.
For example, in gpsTracker.setLatitude(100,100), setLatitude becomes the new source and
gpsTracker is the new sink.

Inspired by how Privado uses regular expressions to identify GDPR-related data in Java
applications, a sample Semgrep rule that matches the pattern of account data source goes into a
transportation ('T) sink is shown below in Figure 2, followed by a sample code snippet detected in
Figure 5.

4.3 Labeling

The identified findings from Semgrep are in the form of various lengths of code snippets (consisting
of statements and expressions). Each finding contains at least one detected sink and one source
(or an object that received value from a source). We abstract the structure of possible sources and
sinks in each code snippet using the symbols below.

® https://w3c.github.io/dpv/dpv/
S https://www.privado.ai

91

6 F. Tang et al.

1 rules:

2 - id: account-data-transportation

3 languages:

4 - javascript

5 - java

6 - typescript

7 mode: taint

8 message: Match found

9 pattern-sinks:

10 - patterns:

11 - pattern: $SINK(..., $Z, ...)

12 - metavariable-regex:

13 metavariable: $SINK

14 regex: (?i)(.x(send|move|connect|escap|stream|redirect|

erase|query|share|stor|transfer|transmit|move).*)

15 pattern-sources:

16 - pattern-regex: (?i).x(?:account|user|customer|doctor|patient|
policyholder|insurer|claimant) [*\\s/(;)|,=!>]{0,3}(id|number|no|
num)

17 - pattern-regex: (?i)(?:facebook|twitter|instagram|linkedin]|

pinterest|behance|dribble) [*\\s/(;)|,=!>1{0,2}(?:id|account|
username | handle)

18 - pattern-regex: (?i).x(?:db|database|jiralsql|postgres|mongo|aws)
[*\\s/(;)1,=1>1{0, 3} (psw|pswd | password | passwrd)
19 - pattern-regex: (?1)(.x(?:db|database|jiralsql|postgres|mongol|

aws) ["\\s/(;)|,=1>]1{0,3}user["\\s/(;) |,=!>]{0,3}name) | (.*(account]|
customer|doctor|patient|teacher|student|person|organi[zs]ation]|
company) [*\\s/(;)|,=!>1{0,3}name)

20 severity: WARNING

Fig. 2. Semgrep rule: find personal data flows from account data source to transportation sink

1 this.usersService.updateUser(newUser.id,
{defaultOrganizationId:
newUser.organizationId})
.catch((error) => {
console.error('Error while updating default
organization id', error);

Noubs WwN

)8

Fig. 3. Sample code snippet (from ToolJet) detected by Semgrep showing a flow from account personal
data to a transportation sink.

— O ranges over sources
— [ranges over sinks
— IO ranges over source-specific sinks

We write O as shorthand for a possibly empty sequence Oq,---,0,,. Here the underscore _
represents a placeholder for an expression that is insignificant in terms of privacy - it is neither a
source nor sink nor contains a value from a source.

Below is a list of the common flow abstracts between sources and sinks that we observed in each
code snippet. Each abstract represents a typical flow, for example, @) to) show that there are
values passing through a sink to a source, from a non-privacy sensitive value (D) or from another
source ((2)) or from innovating a sink inside another source object ().

® o=_1() © ~0.1()
@ 09 = _1(04,.) @ -0.I(,,0)
®02=7011() ® -19() _

@ -=_01() © -I1°(.,0)
® = _10,) -1(0,.)

92

Identifying Personal Data Processing for Code Review 7

For each identified code snippet, we label them with 22 labels (9 types of source, 5 types of sink,
5 types of source-specific sink, and 3 types of change in the sensitivity level), which are listed in
Table 1. Besides the definition of source and sinks, we also introduce an important label: sensitivity.
The sensitivity level can increase, decrease, and stay the same in one identified code snippet.

O Nine types of source: {O*,0%,...,0%}
T Five types of sink: {I*, 1% ...,I°}
o Five types of source-specific sink :
(1°", 1°° ... 1°%}
S Sensitivity level change: {up, down, equal}
Table 1. Labels to be assigned to each code snippet

Sensitivity Level Not every result shares the same level of sensitivity regarding personal data
processing. After processing, the data from the source might remain at a similar sensitivity level,
become more sensitive, or become less sensitive.

-S=up: 0, DG
- S:equal: @7 @7 @a @7 7@

— S8 = down:

4.4 Result Presentation

Johnson et al. [12] pointed out that “because the results are dumped onto a code reviewer’s screen
with no distinct structure causing him to spend a lot of time trying to figure out what needs to
be done”. This indicates that developers and code reviewers may not benefit from ungrouped code
snippets from static analysis tools if they are not presented in a sensible manner.

To tackle this issue, we present a two-phase technique to process the findings from Semgrep
and present them to code reviewers in a smart way.

After each code snippet is labeled, we start to group them for presentation using their labels
and other criteria. Criteria for grouping include not only the labels but also other properties:

— neighboring results will be combined (same file and within a line number threshold);
— same or similar source/sink name;
— same API usage (e.g. every code snippet that is related to the same API MongoDB).

Figure 4 following provides a straightforward illustration of how we present our results. The
results are presented in two separate sections: plain text results and flow results. Users have the
flexibility to select any label or label combination to filter the results.

5 DEMONSTRATION

We created rules in Semgrep trying to capture as many useful findings for our analysis. The software
we analyzed here is ToolJet”, an open-source low-code framework for building React-based web
applications. ToolJet’s implementation is mostly in JavaScript and TypeScript. Users can build
internal tools using ToolJet’s prebuilt UI widgets to connect to data sources like databases, API
endpoints, and external services. This means ToolJet has many parts that process personal data,
which makes it a good starting example.

" https://github.com/ToolJet/ToolJet

93

8 F. Tang et al.

4 N\

-
-

4 N

« Transportation
« Manipulation
« Sensitivity level: up

createRepository{userId: userIld;
pasId: pasId;

« Creation/deletion ssn: ssn}

K « Manipulation

Fig. 4. Example presentation of the result. Personal data occurrences is at the top and personal data
processing code is at the bottom.

Our Semgrep rules produce a total of 1,589 results from ToolJet’s source code. We manually re-
viewed each of the results and calculated the precision for each category. If a single result can clearly
demonstrate the processing of personal data, we consider it relevant and it could be beneficial for
privacy code review. Surprisingly, most false positives come from the personal data occurrence
detector (with a precision of only 46.6%), while most personal data processing results are relevant
(with an average of 90.9% precision for categories that have more than 50 code snippets identified).

Detailed statistics are listed in Tables 2 and Table 3.

M TC/DDBE L

Account 66 171 84 24 -21
Contact 89175 36 3 - 3
Personal ID 56 133 41 7 1 4
Online 1D 6 26 1 --1
Location 1 2 - - - -

Table 2. The code snippet count for each identified source and sink identified, ‘-’ marks labels for which
our approach detected no code snippet. Sink types are: data manipulation (M), data transportation (T),
data creation/deletion (C/D), database (DB), encryption (E) and log (L).

Figure 5 shows a simple interesting example of a grouped result showing how personal data
userId is retrieved from a local repository in app_users.service.ts and then utilized to generate
many data structures, such as the app object in app_service.ts.

5.1 Future work

Since our objective is to identify all relevant processing of personal data in source code, reducing
false negatives is our next primary priority. However, in our case, false positives are not a major

94

Identifying Personal Data Processing for Code Review 9

M TC/D DBE L

Account 90.9 90.6 95.2 91.67 - 95.2
Contact 89.9 94.9 80.6 ¥ .o*
Personal ID 92.9 81.9 85.4 ¥ kK
Online ID *84.6 * - - %

Location * X - - - -

Table 3. The precision of code snippet relevance (in %) for each identified type of source and sink, ‘-’
marks the labels for which our approach did not detect any code snippet, ‘*’ marks the labels for which
our approach detected less than 10 results. Sink types are: data manipulation (M), data transportation
(T), data creation/deletion (C/D), database (DB), encryption (E) and log (L).

1 async create(user: User): Promise<App> {

2 const app = await this.appsRepository.save(
3 this.appsRepository.Ereate]{

4 name: 'Untitled app',

5 createdAt: new Date(),

6 updatedAt: new Date(),

7 organizationId: user.organizationld,

8 userId: user.id,

9 1)

0

g app.service.ts

1 async create(user: User, appId: string, organizationUserId: string,
2 role: string): Promise<AppUser> {

3 const organizationUser = await this.organizationUsersRepository.
4 [findOne({ where: { id: organizationUserIid } })}
5

6 return await this.appUsersRepository.save(

7 this.appUsersRepository.{

8 appld,

9 userId: organizationUser.userld,

10 role,

11 createdAt: new Date(),

12 updatedAt: new Date(),

13 1)

14)3)

15 app_users.service.ts

Fig. 5. Grouped example results showing how organizationUserId flows between functions.

concern. Due to the subtlety of personal data processing, determining relevance without human
assistance is particularly challenging. Specifying the analysis to certain specific patterns would
ease manual analysis. This necessitates the implementation of a privacy taxonomy. Using Ethyca’s
taxonomy [7] as an example, we may modify our labels to match the technique with the taxonomy.

As an extension of this article, we propose an automated mapping of personal data in an
unpublished (under review) manuscript [22] to assist developers and code reviewers in identifying
privacy-related code. The mapping based on static analysis automatically detects personal data
and the code that processes it, and we offer semantics of personal data flows.

6 CONCLUSIONS

This short paper presented ongoing work on a novel, customizable approach to identify personal
data processing for code review. This three-phase technique first uses Semgrep to match patterns
in the code based on rules for sources and sinks, then associates code snippets generated from

95

10 F. Tang et al.

pattern matching with a set of behavioral labels, and finally groups results to reduce code reviewer
workload. Our demonstration shows the utility and feasibility of this method for gathering and
presenting code snippets related to personal data processing from a codebase.

Along with the continued development of the approach architecture (refined rules for source
and sink, more meaningful labels, and additional criteria for grouping), future work will focus on
expanding the case study to include a larger set of open-source software from various domains and
conducting a thorough user evaluation of the resulting platform.

ACKNOWLEDGEMENTS

This work is part of the Privacy Matters (PriMa) project. The PriMa project has received funding
from European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-
Curie grant agreement No. 860315.

References

1. Bambauer, D.E.: Privacy versus security. J. Crim. L. & Criminology 103, 667 (2013)

2. Ber¢ic, B., George, C.: Identifying personal data using relational database design principles. Interna-
tional Journal of Law and Information Technology 17(3), 233-251 (2009)

3. Bertino, E.: Data security and privacy: Concepts, approaches, and research directions. In: 2016 IEEE
40th Annual Computer Software and Applications Conference (COMPSAC). vol. 1, pp. 400-407. IEEE
(2016)

4. Blume, P.: Impact of the EU General Data Protection Regulation on the public sector. Journal of Data
Protection & Privacy 1(1), 5363 (2016)

5. Braz, L., Bacchelli, A.: Software security during modern code review: The developer’s perspective.
arXiv preprint arXiv:2208.04261 (2022)

6. Buse, R.P., Zimmermann, T.: Information needs for software development analytics. In: 2012 34th
International Conference on Software Engineering (ICSE). pp. 987-996. IEEE (2012)

7. Ethyca: Fides language. https://ethyca.github.io/fideslang/ (2022), (Accessed on 11/15/2022)

8. Finck, M., Pallas, F.: They who must not be identified—distinguishing personal from non-personal
data under the GDPR. International Data Privacy Law 10(1), 11-36 (2020)

9. Fugkeaw, S., Chaturasrivilai, A., Tasungnoen, P.; Techaudomthaworn, W.: AP2I: Adaptive PII scan-
ning and consent discovery system. In: 2021 13th International Conference on Knowledge and Smart
Technology (KST). pp. 231-236. IEEE (2021)

10. Hadar, 1., Hasson, T., Ayalon, O., Toch, E., Birnhack, M., Sherman, S., Balissa, A.: Privacy by de-
signers: software developers’ privacy mindset. Empirical Software Engineering 23(1), 259-289 (2018)

11. Jain, P., Gyanchandani, M., Khare, N.: Big data privacy: a technological perspective and review.
Journal of Big Data 3(1), 1-25 (2016)

12. Johnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R.: Why don’t software developers use static anal-
ysis tools to find bugs? In: 2013 35th International Conference on Software Engineering (ICSE). pp.
672-681. IEEE (2013)

13. Lenhard, J., Fritsch, L., Herold, S.: A literature study on privacy patterns research. In: 2017 43rd
Euromicro Conference on Software Engineering and Advanced Applications (SEAA). pp. 194-201.
IEEE (2017)

14. McGraw, G.: Automated code review tools for security. Computer 41(12), 108-111 (2008)

15. Mclntosh, S., Kamei, Y., Adams, B., Hassan, A.E.: The impact of code review coverage and code
review participation on software quality: A case study of the qt, vtk, and itk projects. In: Proceedings
of the 11th working conference on mining software repositories. pp. 192-201 (2014)

16. Notario, N., Crespo, A., Martin, Y.S., Del Alamo, J.M., Le Métayer, D., Antignac, T., Kung, A.,
Kroener, 1., Wright, D.: PRIPARE: integrating privacy best practices into a privacy engineering
methodology. In: 2015 IEEE Security and Privacy Workshops. pp. 151-158. IEEE (2015)

17. Pandit, H.J., Polleres, A., Bos, B., Brennan, R., Bruegger, B., Ekaputra, F.J., Ferndndez, J.D., Hamed,
R.G., Kiesling, E., Lizar, M., et al.: Creating a vocabulary for data privacy. In: OTM Confederated
International Conferences” On the Move to Meaningful Internet Systems”. pp. 714-730. Springer
(2019)

96

18.
19.

20.
21.

22.

23.

Identifying Personal Data Processing for Code Review 11

van der Plas, N.: Detecting PII in Git commits. TU Delft Master’s thesis (2022)

Pormeister, K.: Informed consent to sensitive personal data processing for the performance of digital
consumer contracts on the example of “23andMe”. Journal of European Consumer and Market Law
6(1) (2017)

r2c: Semgrep. https://semgrep.dev/ (2022), (Accessed on 11/15/2022)

Ren, J., Rao, A., Lindorfer, M., Legout, A., Choffnes, D.: Recon: Revealing and controlling pii leaks
in mobile network traffic. In: Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services. pp. 361-374 (2016)

Tang, F., Ostvold, B.M., Bruntink, M.: Mapping personal data in source code for GDPR compliance
(2023)

Voss, W.G., Houser, K.A.: Personal data and the GDPR: providing a competitive advantage for US
companies. American Business Law Journal 56(2), 287-344 (2019)

97

Helping Code Reviewer Prioritize: Pinpoint-

ing Personal Data and its Processing

Tang, F.; Ostvold, B. and Bruntink, M. (2023). Helping Code
Reviewer Prioritize: Pinpointing Personal Data and its Pro-
cessing. In Proceedings of the 22nd International Conference
on Intelligent Software Methodologies, Tools and Techniques
(SOMET 2023). DOI: 10.3233/FAIA230228

98

PAPER 4

Helping Code Reviewer Prioritize: Pinpointing Personal
Data and its Processing*

Feiyang Tang!, Bjarte M. Qstvold!, and Magiel Bruntink?

! Norwegian Computing Center, Oslo, Norway
2 Software Improvement Group, Amsterdam, The Netherlands

Abstract. Ensuring compliance with the General Data Protection Regulation (GDPR) is
a crucial aspect of software development. This task, due to its time-consuming nature and
requirement for specialized knowledge, is often deferred or delegated to specialized code
reviewers. These reviewers, particularly when external to the development organization, may
lack detailed knowledge of the software under review, necessitating the prioritization of their
resources.

To address this, we have designed two specialized views of a codebase to help code reviewers
in prioritizing their work related to personal data: one view displays the types of personal
data representation, while the other provides an abstract depiction of personal data process-
ing, complemented by an optional detailed exploration of specific code snippets. Leveraging
static analysis, our method identifies personal data-related code segments, thereby expedit-
ing the review process. Our approach, evaluated on four open-source GitHub applications,
demonstrated a precision rate of 0.87 in identifying personal data flows. Additionally, we
fact-checked the privacy statements of 15 Android applications. This solution, designed to
augment the efficiency of GDPR-related privacy analysis tasks such as the Record of Pro-
cessing Activities (ROPA), aims to conserve resources, thereby saving time and enhancing
productivity for code reviewers.

Keywords: Personal data processing - GDPR analysis - Static analysis - Code review.

1 Introduction

In the 21st century, companies have been collecting and distributing massive amounts of personal
data [1]. The sheer volume and capacity to access and integrate data in unprecedented ways is
novel [14]. To protect individual rights, the European Union’s General Data Protection Regulation
(GDPR) requires substantial data protection, posing both challenges and opportunities for global
software companies and imposing severe fines for non-compliance [7]. Article 30 of the GDPR
necessitates the creation of a detailed document, the Records of Processing Activities (ROPA),
to ensure GDPR compliance. This document, which must be readily accessible to the supervisory
authority, can be challenging to construct. Code reviewers often play a crucial role in this process,
tasked with analyzing extensive codebases for GDPR-relevant aspects. Their findings not only help
ensure compliance but also assist in the formation of the intricate ROPA, a task that can be quite
demanding.

While the manual identification of personal data and its processing in the codebase is an
inevitable part of a code reviewer’s work, our goal is to facilitate the rapid pinpointing and un-
derstanding of relevant code fragments. To this end, we propose an approach that identifies and
abstracts both personal data and its processing in the codebase. Our solution provides two special-
ized views: one that emphasizes the types of personal data, and another that outlines an abstract
perspective of data processing flows.

* Published at the 22nd International Conference on Intelligent Software Methodologies, Tools and Tech-
niques (SOMET 2023).

99

2 F. Tang et al.

These views aim to empower code reviewers by streamlining the task of locating and compre-
hending personal data processing within the software. By providing a focused direction, highlighting
key code fragments, and supplying task-specific information through different views, our approach
conserves time and effort. This multi-faceted assistance greatly simplifies GDPR-related tasks, such
as the formation of a ROPA.

The three main components of our approach are:

— A set of adaptable static analysis rules for pinpointing personal data and its processing in
source code. (Refer to Section 3.1, identification in Figure 1)

— A collection of flow patterns derived from large-scale analysis, which simplifies identified code
fragments containing a data flow into abstracted code snippets. These snippets capture the
context and manner in which personal data is processed. (Refer to Section 3.2, abstraction in
Figure 1)

— Two specialized views provide code reviewers with options for displaying information about
personal data or flow-specific information, depending on their specific task, thereby reducing
manual work. (Refer to Section 3.3, presentation in Figure 1)

We demonstrate the effectiveness of our approach by 1) achieving high precision and generating
corresponding ROPAs compared to published privacy statements for four trending GitHub projects
and 2) evaluating the accuracy of privacy statements provided by 15 popular Android applications
from the Google Play store.

2 Challenges in Personal Data Identification

Identifying personal data within extensive codebases poses a significant challenge for code reviewers,
especially given the diversity of personal data types and the lack of standardized patterns for their
identification. This issue is further complicated by the reality that personal data may be either
directly or indirectly associated with an individual, a relationship that can vary across cultural,
linguistic, and domain-specific contexts. Privacy statements often describe personal data collection
and processing in broad terms, making it difficult to pinpoint what data is collected and how it is
processed within the source code.

When reviewing code for GDPR-relevant aspects, code reviewers often resort to manual tech-
niques such as keyword searching, filtering, and grepping to identify potential areas of concern.
However, these methods can be time-consuming and often yield an overwhelming number of results,
making it challenging to discern the key areas of focus. There is a clear need for a more abstract,
categorized view of the results that could help reviewers identify and focus on the most relevant
code fragments.

User Requirement Study In order to grasp the challenges faced by code reviewers in GDPR-related
tasks, we undertook a user requirement study with six experienced code reviewers from a medium-
sized European software company. They were selected based on their experience, familiarity with
GDPR tasks, and diverse European representation. The research, primarily focused on European
data formats, did not consider formats outside the EU. The interviews elicited key issues in privacy
analysis tasks, preferred presentation formats, and the potential of an abstract view of results.

During the structured interviews, participants discussed the most challenging facets of their
privacy analysis tasks, the desired format for the presentation of findings, and their views on the
possible advantages of having an abstract, categorized overview of the results. The study highlighted
that identifying personal data within source code remains a significant hurdle for reviewers. This
challenge arises primarily due to the fluctuating context and semantics. Participants voiced a
preference for a results presentation that offers ample context and underscores potential areas of
concern, such as personal data processing.

100

Helping Code Reviewer Prioritize: Pinpointing Personal Data and its Processing 3

There was unanimous agreement among participants about the potential benefits of incorpo-
rating an automated, abstract presentation of the results into their workflows. They preferred
comprehensive coverage, even if it occasionally introduced false positives, on the condition that
their manual examination could be concentrated on a smaller, more relevant segment of the soft-
ware. While this study has certain limitations, such as a smaller sample size and potential bias
due to the limited participant selection, it does provide valuable initial insights into the needs and
preferences of code reviewers tasked with GDPR-related duties in Europe.

Presentation Design Current static analysis tools offer some flexibility in results grouping and
presentation. For instance, tools like FindBugs and ESLint allow results to be grouped by various
criteria, such as bug category/name, code location, and bug ranking. However, these tools often
lack the ability to provide a task-specific view that aligns with the code reviewers’ current analysis
focus. Such a view could allow reviewers to focus on personal data and its processing, thereby
simplifying the analysis process and making it more efficient.

2.1 The Role of Code Reviewers in ROPA Creation

In the context of GDPR compliance, code reviewers often play a crucial role in creating a Record
of Processing Activities (ROPA). A ROPA should contain detailed information about personal
data processing, such as the categories of individuals and personal data, recipients of personal
data, details of transfers to third countries, retention schedules, and technical and organizational
security measures. Code reviewers, through their thorough analysis of the codebase, contribute
significantly to the collection of this information, thereby helping to ensure GDPR compliance.

3 Constructing Task-Specific Views for Code Reviewers

We propose an approach that creates two distinct views, providing code reviewers with varying
levels of information about personal data types and their processing within the codebase. Our
approach employs static analysis to identify personal data and the source code where the processing
of such data occurs. The result of the static analysis comprises identified code fragments that match
the specified patterns. We introduce an abstracted flow representation that simplifies each identified
code fragment, capturing the essence of personal data processing. This flow representation not only
translates effectively into a more comprehensible format but also facilitates labeling and grouping
of code fragments, presenting the results to code reviewers in a unified and efficient manner for
analysis.

identification | Code fragments
(Section 3.1) with flows

Source code

abstraction
(Section 3.2)"

Two views:
personal data
and processing

presentation Simplified
(Section 3.3) Code snippets

Fig. 1: Overview of our approach

101

4 F. Tang et al.

Figure 1 presents an overview of our approach, which consists of three major phases: pattern
matching with static analysis, abstraction of code fragments to generate flow representations, and
creation of the two task-specific views for code reviewers.

3.1 Pattern Matching on Source Code

The first phase of our approach involves static analysis to pinpoint code fragments that contain
or process personal data. For this task, we employ Semgrep, a powerful static analysis tool well-
regarded for its flexibility and efficiency in analyzing voluminous source code files [9]. Semgrep’s
multi-language support and local data flow analysis capabilities are instrumental to our endeavor.
This section elaborates on our rules for identifying personal data sources and sinks, and the sub-
sequent extraction of flows.

Identification of Personal Data and Processing The concept of sources and sinks is vital to
our approach. In the context of our analysis, sources refer to personal data, while sinks represent
different forms of personal data processing. We define personal data as 1) literal personal data
in source code text (constants identified via real values), and 2) variables (identified via name
identifier). As for personal data processing, it refers to any distinct action or operation performed
on personal data. Our rules for identifying personal data and its processing currently support Java,
JavaScript, and TypeScript. Nevertheless, our rules applicable to plain-text personal data can be
extended to the majority of Semgrep-supported languages. Semgrep parses the source code to build
an abstract syntax tree (AST) for taint analysis, similar to how ESLint processes JavaScript code.
This method enables us to efficiently identify sources, sinks, and data types. We further augment
Semgrep’s identification process with pattern matching.

Crafting Identification Rules Literal personal data identification relies on matching specified
regular expressions, such as the syntax of national ID numbers. For variable sources, we have
established a default list of personal data identifiers, covering data from 10 categories: Account,
Contact, Personal ID, Online identifier, Location, Feedback, Health, National ID, Technical, and
Financial.

These distinct identifiers are used to construct Semgrep rules with regular expressions (regex).
To reduce false positives and enhance recall, we apply restrictions to the regex rules. For instance,
to identify all human names in source code, we improve precision and cover first, last, and full
names by using regex such as (?7i).(7:first|given|full|last|sur(?!geon)

)[s/ () 1,=t>]1name).

Simultaneously, we identify potential sinks, which represent distinct actions of personal data
processing. We utilize the majority of verbs from Section 3 of the Data Privacy Vocabulary
(DPV) [10] to identify relevant processes. These verbs are utilized to generate corresponding regex
for our taint analysis rules, and specific conditions are incorporated to pinpoint relevant sinks in
the code effectively.

APIs are extensively used to implement functionalities in current software development. We
performed a simple static analysis on the 20 most popular libraries each from Maven and npm (40
in total), followed by a manual inspection to filter out false positives. The resulting list consists
of potential sink methods, predominantly related to databases from prominent providers such as
AWS and Google Firebase. These API methods, akin to the verb identifiers, serve as sinks for our
analysis. We categorize sinks into six classes: Manipulation, Transportation, Creation/Deletion,
Database, Encryption, and Log.

Flow Extraction and Semgrep Output Once sources and sinks have been identified, we need
to understand how personal data flows from the former to the latter. A flow represents a sequence

102

Helping Code Reviewer Prioritize: Pinpointing Personal Data and its Processing 5

Table 1: Source and sink category abbreviations

Source type Abbreviation Sink type Abbreviation
Account ACC Manipulation M
Contact CON Transportation T
Personal ID PID Creation/Deletion C/D
Online identifier OID Database D
Location LOC Encryption E
Feedback FEE Log L
Health HEA
National ID NID
Technical TEC
Financial FIN

of operations, starting from a source, moving through intermediate nodes (if any), and ending at
a sink. We extend Semgrep’s capabilities to not only identify but also comprehend these flows.

Semgrep’s output typically includes the code fragment where the flow ends, i.e., the statement
that processes personal data. However, we have customized Semgrep to provide more detailed
information, such as the precise location and name of the source and sink, along with the code
fragment. This information is vital for code reviewers, helping them quickly locate and comprehend
personal data processing within the software.

Example: Application on ToolJet To illustrate the effectiveness of our approach, we applied our
rules to ToolJet, a low-code, open-source framework for creating and deploying internal tools.
ToolJet was selected because of its popularity and extensive use of personal data, making it a
representative case study. The ease of access to its source code also facilitated our analysis.

Figure 2a depicts an example of a rule we created to identify flows of account-specific data into
a manipulation sink in ToolJet. The corresponding identified code snippet, an output of Semgrep
that includes both the code fragment and key information about the source and sink, is shown in
Figure 2b.

3.2 Flow Patterns: Abstracting Personal Data Flows

A critical aspect of our approach is the abstraction of identified personal data flows into more
manageable and comprehensible representations. This step facilitates the review and understanding
of these flows, offering a more streamlined approach to software privacy analysis. Here, we introduce
the concept of flow patterns, which are simplified, standardized representations of personal data
flows, distilled from the identified code fragments.

Semgrep outputs a statement of code, which corresponds to a chunk of a code fragment that
could span multiple lines in the source code, where the personal data flow culminates. The value
at the sink within this statement may not necessarily be the original source, yet it definitely
encapsulates the value originating from the source. However, such code fragments can be intricate
and challenging to comprehend. In our work, we address this by abstracting each result we capture,
which represents a flow from a personal data source to a processing sink. Our abstraction combines
this code fragment with source and sink information to depict the flow in a simplified form.

We applied our pattern-matching rules to over 20 open-source software projects on GitHub (the
top 20 trending ones across three languages: JavaScript, TypeScript, and Java) and identified a
vast number of personal data flow instances. From these instances, we generalized the structure of
more than 150,000 detected code snippets into a set of eight distinct flow patterns.

Defining Flow Patterns The flow patterns, collectively denoted as F, abstractly represent
various forms of personal data flows from a source to or via a sink. Each pattern in F reflects a

103

6 F. Tang et al.

rules:
- id: ACCM
languages:
- javascript
- java
- typescript
mode: taint
nessage: Flow identified from $SRC to $SINK.
pattern-sinks:
- patterns:
= PEEEmE Blos0p 5 oocl) const = groupBy(comments,)
- metavariable-regex: s EETEE < [T
metavariable: $SINK -
regex: (?1)(.*(execut |authen|check|verif|login|

-addselect(Huser id), 5 1
//Trrelevant code omitted here

Object.keyb(groupedComments).map((k) => {

bind|thread|request |writ|updat|handl]...).*)
pattern-sources: push({ comment d(groupedComments[k]),
- patterns: count: groupedComments[k].length });
- pattern: $SRC
- metavariable-regex: return [Jpdate(_comments)}

metavariable: $SRC
regex: (?1).*(?:account|user|customer|insurer |
claimant)[*\\s/(;)|,=!>1{0,3}(id|number |no|num) Semgrep output:
- patterns:
- pattern: $SRC return update (_comments) ;
”ﬁi{:;ff:geg;ékc Message: Flow identified from user .id to update
regex: (?1)(?:facebook|twitter|instagram|linkedin|

pinterest |behance|dribble)["\\s/(;)|,=!>]{0,2} 3 H : i
OB SE ST T (b) Code fragment identified using the rule il-
i — lustrated in Figure 2a. In this case, the flow
B 8 originates from the source user.id and ends at
regex: (?1).%(?:db|database|jira|sql|postgres| the sink update(). Along with the code frag_
mongo|aws) ["\\s/(;)| ,=1>1{0,3}(psu| pswd | password| passwrd)

ment, Semgrep provides an accompanying mes-
(a) Sample identification rule to find flows be- sage that details the names of both the source
tween account data and manipulation sink and the sink involved in the flow.

Fig.2: An example of pattern matching on ToolJet

typical flow type, and Table 2 presents these flow patterns alongside their English interpretations.
The table also introduces syntactic conventions for meta-variables used in the following discussion.
E ranges over expressions, m ranges over methods, and v ranges over source variables. An expression
with an underscore as an argument, F|[], signifies that the expression is not significant in terms
of personal data processing — it is neither a source nor a sink, nor does it contain a value from a
source.

In a flow pattern E; =% Ej, a solid arrow — indicates that a value on the left-hand side (LHS)
contributes to the value on the right-hand side (RHS). If we are uncertain whether a value flows
from the LHS to the RHS, such as when the LHS value is processed and merely outputs a Boolean
to the RHS, we use a dashed arrow --» to indicate that the LHS value may not fully reach the
RHS. Each pattern’s interpretation in English is also provided in Table 2.

The flow patterns in F abstract the flows between sources and sinks occurring in the identified
code snippets. Table 3 offers eight examples illustrating the code snippets corresponding to flow
patterns, ordered according to the flow patterns in Table 2.

These examples represent the different types of flows that may occur when processing personal
data in code snippets. By identifying, analyzing, and categorizing these flows into simplified flow
patterns, we can provide a uniform view of the data flows in code, capturing the properties of
sources and sinks in a single flow, the pathway from source to sink, and any other involved values.
This abstraction step is crucial in creating an intuitive and efficient approach to understanding
personal data flows, thereby enhancing privacy protection in software systems.

3.3 Specialized Views for GDPR Analysis Tasks

As GDPR compliance tasks can vary in their requirements, we provide specialized views to as-
sist code reviewers in understanding and analyzing personal data handling within the system. An
overview of personal data types and their distribution is useful when developing a broad under-
standing of personal data usage, while a detailed analysis of each data flow is required for tasks
like constructing a Record of Processing Activities (ROPA) or assessing the risk of personal data
handling. By providing these specialized views, we aim to support reviewers in efficiently and
effectively performing GDPR compliance tasks.

104

Helping Code Reviewer Prioritize: Pinpointing Personal Data and its Processing 7

Table 2: The collection of flow patterns F
Flow Patterns Translation to English

m . .
E[|50 A non-personal data value flows via sink m into a source v.
m . .
vz + E[_] -=» v1 Value from source vz and non-personal data are both processed by sink m and the result flows into source v;.
m o .
v2(E[_]) = v1 Value from source vz flows via sink m into source v;.
m
v--E[_] Value from source v gets processed by sink m and the result flows into a new expression.

m - . . -
v— E[_] Value from source v flows via sink m into a new expression, making it a new source.

v 4 v2 S vy Value from source v flows via sink m declared by v; into source v;.
v+ E[_] 3 v Value from source v and non-personal data are both processed by sink m and the result flows into itself.

m . .
v — m(v) Value from source v flows into sink m.

Table 3: Examples demonstrating the relationship between code snippets and their corresponding
flow pattern instances in F. The examples are related to the flow patterns listed in Table 2.

Code Snippet Flow Pattern Instance

full_name = retrieve(record_data,2) E[_| retrigve full name

isFemale = check(user_detail,’F’) wuser detail+ E[| Y isFemale
first_name = UserInfo.get(2) UserInfo(E[_]) £ first_name

choice = match(name,list) name mateh choice

choice = UserInfo.retrieve(2) UserInfo "5 choice
AccountInfo.update (userId,index) AccountInfo + userld ""%*° AccountInfo
AccountInfo.update (index) AccountInfo + E[| P4t A ccountInfo
print (SSN) SSN Py print(SSN)

Personal Data Type View The Personal Data Type View presents an overview of personal
data identified in the source code. This view is a hierarchical representation that illustrates the
distribution of personal data types. The tree-like structure is automatically generated based on
our static analysis findings, categorizing personal data identifiers by their nature such as account
information or personal ID. For instance, all source names with a stem-identifier like email_addr,
email_id, e-mail, and email are grouped together. This overview provides users with a clear
image of the types of personal data and their respective identifiers present in the source code. See
Figure 3 for an example.

assword
company_name P phone_number

Account q
Contact email
user_id
gender
Personal ID
first_name
last_name

Fig. 3: Personal Data Type View of ToolJet

105

8 F. Tang et al.

Detailed Flow View For tasks requiring a deeper understanding of specific personal data flows,
we provide the Detailed Flow View. This view presents comprehensive information about each
identified flow, including the file path, source and sink names and types, and abstract flow patterns.
Furthermore, it offers the ability to link to the actual location of the code fragments, supporting
a deeper contextual analysis when necessary. Features for filtering and ranking the identified flows
are also included, allowing reviewers to focus on specific flows or those of high potential risk. An
example of the Detailed Flow View is provided in Table 4.

These specialized views are designed to be flexible and adaptable to various GDPR compliance
tasks. We incorporate grouping functionalities based on feedback from potential users, allowing
results to be organized by specific source identifiers, file locations, or other relevant criteria. This
flexibility is designed to make our approach practical, user-friendly, and adaptable to various GDPR
compliance tasks.

Table 4: Detailed Flow View grouped by identifier ‘email’ in ToolJet (top 7 results displayed)

Path Source Sink Sink Type Flow Pattern Instance

createQueryBuilder
o

ces /organizations.service.ts users.email_addr createQueryBuilder DB users.email_addr query

ces/group_permissions.service.ts users.cmail createQueryBuilder DB users.cmail query

findQne
dQ

sers.service.ts email this.usersRepository.findOne DB email

rganizations.service.ts email _addr this e.create C/D email _addr+4_ "= UserInfo
findOrCreateByBmail

Service.findOrCreateByEmail C/D UserInfo-+email UserInfo

sendData.
=

/oauth /oauth.service.ts email this
/users.service.ts email user.organizationUsers.sendData T email sendData(email)

email _addr this.usersService.update M Userlnfo +email _addr """ UserInfo

In a Detailed Flow View, we present key information such as file path, source and sink names
and types, and flow pattern instances, which are displayed by default. For example, Table 4 shows
the Detailed Flow View for all source identifier email identification results. This information can
be used to construct a ROPA using the official template provided by data protection authorities or
a research semantic model like CSM-ROPA [13]. By traversing flow pattern instances in Table 4,
users can generate a list of processing related to personal data “email” and identify their location.

To better assist GDPR compliance, our Detailed Flow View should not be limited to a fixed
presentation style. Based on feedback and recommendations from potential users, we incorporate
grouping to simplify GDPR compliance. We also refer to the ICO’s ROPA template [8], which
specifies the information required for GDPR compliance mentioned in Section 2.1, such as the
categories of individuals and personal data, categories of recipients of personal data, transfer details
to third countries, retention schedules, and technical and organizational security measures. Thus,
we group the results by various attributes such as source and sink categories and their distinct
identities, which can help users answer ROPA queries.

Moreover, users can experiment with different grouping criteria while examining the code. For
example, they can group the results by a specific source identifier or file name/location of interest.
We aim to incorporate GDPR-related grouping criteria to ease GDPR compliance and make our
approach more useful.

3.4 Implementation

In recognizing the contextual nature of personal data, we have designed a flexible system allowing
users to customize pattern-matching rules via a Python script. This script simplifies the definition
of flow syntax and the addition of new identifiers. All our identification rules are open-source to
encourage collaborative enhancement of the system’s capabilities. The results of our analysis are
produced in the Standard Static Analysis Results Interchange Format (SARIF), facilitating easy
filtering and sorting based on parameters such as rules or file locations.

106

Helping Code Reviewer Prioritize: Pinpointing Personal Data and its Processing 9

For visualizing the findings, we employ the Mermaid diagramming tool to automatically gen-
erate a personal data distribution graph. This visual representation aids in the identification and
selection of specific source identifiers for further examination. Finally, we’ve adopted a SARIF
viewer for filtering and sorting functionalities, and designed an interactive interface for the Spe-
cialized Views, offering users an adjustable and task-specific data exploration experience.

4 Experiment

To assess our approach, we focus on open-source software that processes personal data. The ex-
periment consists of two parts. In the first part, we analyze popular open-source projects from
GitHub, manually evaluating the true positives (TP) and false positives (FP) in the results to
validate our approach. We illustrate the usefulness of our two specialized views by aligning them
with the published privacy statements of four validation applications, showcasing how these views
can guide the creation of a ROPA. In the second part, we apply our approach to 15 popular An-
droid applications on Google Play, scrutinizing the accuracy of the information given in the “Data
collected” section of Google Play’s “Data safety” section.

4.1 Validation: Analyzing Trending GitHub Applications

Since we have used ToolJet in the previous sections as an example, here we select our analysis target
from the trending repositories on GitHub list. Among the repositories captured from the GitHub
monthly trending list (accessed on 6/Dec/2022) under three different languages: Java3, JavaScript?,
and TypeScript?, we selected the top four complete applications, that are not a framework, an add-
on, or a tutorial: Rocket Chat®, Telegram?”, Odoo®, and Joplin®. We now refer to them as validation
applications.

We display the time taken to complete the identification task on validation applications and
the number of identified flows in Table 5.

Table 5: Identified code snippet count and the time consumed for each application

Time Code Snippet Count

Rocket Chat (TypeScript) 397s 6,935
Telegram (Java) 562s 16,963
Odoo (JavaScript) 916s 25,653
Joplin (TypeScript/JS) 694 s 17,299

For large projects such as Odoo and Telegram, our analysis takes about 15 minutes to analyze
2,285 files (Odoo) using 70 static analysis rules. Odoo is the business content management system
with the highest number of identified personal data flows among the four validation applications,
indicating that it processes a substantial amount of personal data.

Next, we validate our approach in two steps. First, we manually examine the precision of iden-
tified code snippets, assessing whether they are related to personal data processing. Figure 4 and

3 https://github.com/trending/java?since=monthly

4 https://github.com/trending/javascript?since=monthly
® https://github.com/trending/typescript?since=monthly
S https://github.com/RocketChat/Rocket.Chat

" https://github.com/DrKL0/Telegram

8 https://github.com/odoo/odoo

9 https://github.com/laurent22/joplin

107

10 F. Tang et al.

Telegram
107 57 174

1000

800
a7 152 RREEM 1 1 1

2000 2000

1500 1500

con e

1250 1250

§
o0 e s
H Ed- 6 1 7 2 1a wo 53-8 a7 28 1000 1000
L 7 22 68 4 5 3 i &
w g- 3 10 18
g3 o2 8 6 1 2 B 2y 1o 1as ies 00 00
Fa o w . ¢
g+ o g aes [Tz w0 o o IR = =
L b w4 e b T
(a) Rocket Chat (b) Telegram (¢) Odoo

Fig. 4: The overview statistics of identified flow under all possible combinations of source and sink
types as illustrated in heatmaps.

a Personal Data Type View figure (akin to Figure 3) form the initial perspective of our gener-
ated views. The four heatmaps present overview statistics of the different categories of personal
data and its processing in the four validation applications. The overview statistics indicate that all
four applications collect a significant quantity of account and contact information, which is under-
standable as they function as identifiers for system users and communication mediums. However,
we observe that certain applications gather more categories of personal data from users, such as
Telegram, which collects nine categories of personal data, with the majority stored in databases.
Table 6 summarizes the results of the code snippet detection in each example application, as
well as the precision calculated through manual inspection for each identified flow provided in the
Detailed Flow View. Given that this evaluation requires manual inspection and we need to avoid
false negatives, we examine the code snippets identified by the static analysis using the following

criteria to determine their precision score!?:

— Do the source and sink identifiers match their respective categories? For instance, if the analysis
intended to match “log” but instead matched “login”, which is irrelevant to the context.

— Do the source and sink matches qualify as personal data processing? For instance, “noreply@test.org”
was detected as a clear-text result for explicit personal data in the system, although it is not
personal data.

Our main objective is to lessen the manual workload for code reviewers in identifying and
analyzing personal data flows, though we recognize that manual scrutiny continues to play a crucial
role. A high level of precision in our flow identification technique indicates that we can conserve
resources by directing code reviewers to potential areas of concern, and offering guidance on the
potential data flow paths and locations within their applications. This aligns with our specialized
views approach, enhancing the efficiency and efficacy of GDPR compliance tasks.

For the manual analysis, we conducted a thorough evaluation of a representative sample of
the identified code snippets to estimate the precision, rather than individually checking all code
snippets identified. Table 6 shows that the majority of flow types have a precision of at least 0.8,
with an average of over 0.9 for categories with more than 500 identified flows. Some categories of
flows that have a smaller sample size have a lower precision, ranging from 0.65 to 0.75. Although
a precision of 0.8 might result in 5K false positives for an application with 25K identified snippets
(e.g., Odoo), our approach aims to assist developers and code reviewers in finding possible directions
and locations for personal data processing, thereby reducing the overall time and effort spent on
manual analysis.

Note that we do not include the number of occurrences of literal personal data identified by
the pattern matching, as their precision is typically less than 0.6. A precision of less than 0.6
indicates that developers and code reviewers still need to devote considerable effort to exclude

10 Precision = TP/(TP+FP), where True Positives (TP) are identified results that meet both of our
criteria, while False Positives (FP) are identified results that do not meet one of our criteria.

108

Helping Code Reviewer Prioritize: Pinpointing Personal Data and its Processing 11

Table 6: Statistics showing the precision of different types of flows detected. ‘-> marks the labels for
which our approach detected less than 20 results. Sink types are: data creation/deletion (C/D),
data manipulation (M), data transportation (T), database (DB), encryption (E) and log (L).
Source types are: account (ACC), contact (CON), personal ID (PID), online identifier (OID),
location (LOC), feedback (FEE), health (HEA), national ID (NID), technical (TEC), and fi-
nancial (FIN).

Application Source Basic Sink Special Sink
C/DM T DB E L

Rocket Chat ACC 0.80 0.950.94 0.97 - -
CON 0.85 0.880.950.96 - -
PID 0.83 0.920.950.96 - -

OID 0.73 0.88 - -

FEE - 082091 - - -

LOC - - 089 - - -
Joplin ACC 0.88 0.930.96 - 0.89 0.95

CON 0.93 0.810.92 - 0.920.98
PID 0.81 0.89095 - - -
OID 0.79 0.870.84 - - -
FEE 0.84 095 0.8 - - -
LOC 091 0.860.89 - - -
TEC - 071 - - - -

Telegram ACC 0.89 0.920.96 0.87 0.86 0.96
CON 0.90 0.96 0.94 0.93 0.91 0.92
PID 0.84 0.930.890.86 - -
OID 0.70 0.730.81 - - -
FEE - - -
LOC 092 090095 - - -
TEC - - -
FIN - 094097 - - -
NID 0.86 0.96 0.94 0.88 0.91 -

Odoo ACC 091 0.860.980.94 - 0.95
CON 0.84 0.870.93 0.92 0.92 0.96
PID 0.82 0.950.970.96 - -

OID - 066063 - - 0.82
FEE - - 072 - - -
TEC 089095 - -

FIN 0.88 0.920.94 0.95 0.90 0.95

literal identification results that are not relevant. Identifying literal personal data is difficult due
to its ambiguous and highly contextual nature.

Next, we leverage the attributes available in the detailed Detailed Flow View to evaluate existing
privacy statements. Figure 5 depicts an instance of a flow identified through our Detailed Flow
View (similar to Table 4). This flow was identified by a rule pinpointing the flow of location data
into a transportation sink. When a flow is selected for deeper scrutiny, crucial information such as
the file location, rule type and name, abstract flow pattern (displayed under “Rule Description”),
source/sink identifiers, and the original code are readily accessible.

By integrating the Detailed Flow View with the provided statistics and heatmaps from the
Personal Data Type View, we can guide ROPA development and verify the accuracy of existing
privacy statements. For mobile applications, we additionally examine the accuracy of personal
data processing disclosures made to platforms like Google Play or Apple’s App Store. In situations

109

12 F. Tang et al.

where a comprehensive privacy statement is absent, such as with Joplin'!, we illustrate how our
views can be employed for ROPA creation.

Line ™ File Message

/\ 120 twilio.js Match found ([longitude, latitude],, client.mes...

INFO ANALYSIS STEPS (0 STACKS (0

Match found [([Iongitude, Iatitude]],[client.messages.create}

Rule Id Basic.CD.LOC

Rule Name Location data -> Creation/Deletion sink

Rule Description Flow found: client. messages + [Longitude, Latitude] ->
Level Note (client.messages.create) client.messages
Kind —

Baseline State New

Locations twilio.js

Log rocketchat_result.sarif

113 Llet persistentAction;

114 if (extraData && extraData.location) {

extraData.location.coordinates;
‘geo:${latiftude}, ${longitude}";
ocation’y” { lng: defaultlLanguage });

115
116

117

118 }
119
120
121
122
123
124
125
126
127 }

(mediaUrl & { mediaUrl }),
(persistentAction && { persistentAction }}

Fig. 5: Example of an identified flow in the Detailed Flow View for Rocket Chat

In order to establish a connection between ROPA requirements and our specialized views, we
reference Table 8 which addresses four critical requirements outlined in Section 2.1. These can
subsequently be incorporated into a comprehensive ROPA. Furthermore, we juxtapose our results
with the published privacy statements of the chosen four applications.

Rocket Chat’s detailed and well-structured privacy statement'? aligns closely with our Personal
Data Type View and Detailed Flow View. Telegram and Odoo also offer comprehensive and lucid
privacy policies. However, our experiment uncovered that Telegram collects user feedback and
financial data, an activity not explicitly mentioned in their privacy statement. On the other hand,
Joplin’s privacy statement!® is brief and lacks specificity on the types of personal data collected,
except for geolocation data. We also discovered instances where some personal data is temporarily
stored without being disclosed in the statement.

Our approach demonstrated its effectiveness in covering personal data and its processing in the
selected validation applications, as compared to their published privacy statements. Nonetheless, we
also found instances where the applications collected personal data beyond their disclosed policies.
Personal data logging is a sensitive matter and should be meticulously inspected and documented.

" https://joplinapp.org/privacy/
12 https://docs.rocket.chat/legal/privacy
13 https://joplinapp.org/privacy/

110

Helping Code Reviewer Prioritize: Pinpointing Personal Data and its Processing 13

Table 7: Identified personal data types, their quantity, and how they are covered by Google Play’s
privacy policies. In column ‘Coverage’, ‘-’ indicates the types of personal data identified by our
approach but not covered in the privacy statement; ‘+’ implies that there is coverage of all identified
personal data types in the privacy statement.

Android Apps ACC CON PID OID LOC FEE HEA NID TEC FIN Coverage Logging
Discord 1621 791 31 399 159 107 - - 87 9 + 41
Kik 2065 1923 17 817 51 39 - - 46 31 -ACC, -LOC 133
Viber 1823 2093 101 740 219 42 - - 71 16 -ACC, -OID, -FEE, -TEC 82
Amazon 905 2762 1025 1623 634 198 42 - 231 129 -ACC 162
AliExpress 1244 2381 1730 2094 841 217 - - 309 261 -LOC, -FEE 217
Shein 1072 1967 965 978 409 96 - - 160 373 -LOC 62
The Weather Channel 239 2384 1291 1328 2623 172 - - 16 22 + 76
AccuWeather 176 2137 1102 1736 3321 98 - - 5 9 -PID, -OID, -ACC, -CON 41
Windy 312 246 567 803 1196 - - - - 14 -LOC 22
SamSung Health 273 182 31 98 685 44 1027 - 28 21 } 10
Google Fit 105 49 14 6 271 19 580 - 9 4 + 7
My Fitness Pal 328 209 19 113 902 75 721 - 47 69 -PID 89
Uber 1497 1054 298 835 2094 511 - - 814 427 + 294
Trainline 469 107 244 54 626 - 4 82 562 -NID 104
Omio 724 151 457 72 729 - 12 205 710 -ACC, -NID, -OID 71

4.2 Application: Assessing Google Play Data Safety Statements

To further highlight the applicability of our approach, we examined the top three Android applica-
tions from Google Play ('4) in five different categories: communication, online shopping, weather,
fitness/health, and transportation. As the decompilation process generated some noise, potentially
distorting the count of data processing flows, we focused on assessing the categories and distribu-
tions of personal data collected by the applications.

In our evaluation, we verified the “Data Safety” statements of 15 applications against the Per-
sonal Data Type View and Detailed Flow View generated by our approach. Table 7 presents the
results, including the number of identified flows for each personal data category, the coverage of
their data safety statements in Google Play, and the amount of personal data logged.

We found that our approach detected certain types of personal data not disclosed in the Google
Play data safety section. While Google allows exceptions for “on-device access,/processing” and
“end-to-end encryption”, we found instances where data left the device without being disclosed. For
example, location data in the online chatting app Kik and national ID data in the transportation
app Omio are transmitted outside the device, but this was not stated in their respective Google
Play disclosures.

Interestingly, we observed that applications across various domains commonly collected ac-
count and contact data, with additional domain-specific types. For instance, weather applications
gathered significant location data, while transportation/ticketing applications acquired national
ID data from users. Consistent with the GitHub projects evaluated earlier, all the apps logged
personal data. This assessment underscores the utility of our approach in helping apps improve the
accuracy of their data safety statements and increase transparency in their data handling practices.

4.3 Threats to Validity

Our approach does not offer a fully automated solution for GDPR compliance tasks, such as
generating a ROPA, due to the lack of a natural language processing module. This limitation
makes it challenging to directly generate or verify statements based on the output of our approach,
which consists of code snippets, fragments, labels, and additional details. As a result, manual
effort is required in our experiments, which consequently restricts the number of applications we

' https://play.google.com/store/apps?gl=US, accessed on 8/Dec/2022, from the U.S. store

111

14 F. Tang et al.

Table 8: Fact-check the published privacy statements of the four applications using the information
supplied by our two specialized views. The missing information is highlighted.

App

Data Captured via Views Aligned with Published Privacy Statement/Policy
ROPA

Rocket
Chat

Categories of personal data: ACC, CON,
PID, OID, FEE, LOC.

Categories of processing: basic processing:
C/D, M, and T. Minor logging personal data
identified.

Transfer to a database or third-party APIs:
own database access identified on ACC,
CON, and PID data, minor on OID, FEE,
and LOC data, no third-party database API
detected.

Data encryption or anonymization: Encryp-
tion on ACC, CON, PID, OID, FEE data.
No anonymization was identified.

Categories of personal data: personal ID (PID, CON),
account data (ACC), usage data (OID, FEE), location
data (LOC), cookie data (OID)

Categories of processing: for contact/identification: PID,
CON; for market/communication: PID, CON; for regis-
tration: ACC; for maintenance/tech support/monitoring:
OID, FEE; for functionalities: OID, LOC, OID.
Transfer to a database or third-party APIs: no third-
party services mentioned, data outside of the USA might
be transferred to services in the USA.

Data encryption or anonymization: relevant security
measures were taken into account.

Telegram

Categories of personal data: ACC, CON,
PID, OID, FEE, LOC, TEC, FIN, NID
Categories of processing: basic processing:
C/D, M, and T. Major logging ACC and
CON data identified.

Transfer to a database or third-party APIs:
there are database calls for ACC, CON, PID,
and NID data identified to both internal and
external databases.

Data encryption or anonymization: there is
major encryption on NID, ACC, and CON
data.

Categories of personal data: account data (ACC, PID),
contact data (CON, ACC, NID), location data (LOC),
chats (OID), and cookies (TEC, OID)

Categories of processing: for identification/account pur-
poses (ACC, PID, NID); for communication (CON,
ACC); for improving services (TEC, OID); for function-
alities (LOC, TEC, OID).

Transfer to a database or third-party APIs: data is saved
in third-party provided data centers in the Netherlands
for European users, and end-to-end chats are not trans-
mitted out of the device

Data encryption or anonymization: “All data is stored
heavily encrypted so that local Telegram engineers or
physical intruders cannot get access.”

Odoo

Categories of personal data: ACC, CON,
PID, OID, FEE, TEC, FIN

Categories of processing: basic processing:
C/D, M, and T. Major logging ACC, CON,
and FIN data identified.

Transfer to a database or third-party APIs:
there are database calls for ACC, CON, PID,
and FIN data identified to both internal and
external databases.

Data encryption or anonymization: there is
encryption on ACC, CON, PID, and FIN
data.

Categories of personal data: account & contact Data
(ACC, CON), job application data (CON, PID), browser
data (FEE, TEC), customer databases (ACC, CON, PID,
FIN), free trial session recording (FIN, TEC, OID, FEE),
In-App Purchase transaction data (FIN)

Categories of processing: for the recruitment process
(ACC, CON, PID); for maintaining and improving ser-
vices (FEE, TEC, OID); for providing services (ACC,
PID), answering requests (CON), and for billing man-
agement (FIN, CON, ACC)

Transfer to a database or third-party APIs: “customer
databases are hosted in the Odoo Cloud Region closest
to where they are based, and can request a change of
region”

Data encryption or anonymization: “info is securely pro-
cessed, stored and preserved from data loss and unautho-
rized access”.

Joplin

Categories of personal data: ACC, CON,
PID, OID, FEE, LOC, TEC

Categories of processing: basic processing:
C/D, M, and T. Major logging contact data
identified.

Transfer to a database or third-party APIs:
Almost none, only less than 5 identified for
ACC and LOC data to be passed into a local
temporary data model.

Data encryption or anonymization: There
are encryption measures on ACC and CON
data identified.

Categories of personal data: It is not mentioned in the
privacy policy, only explicitly mentioned geo-location
data.

Categories of processing: Not mentioned.

Transfer to a database or third-party APIs: Only men-
tioned: “Any data that Joplin saves, such as notes or im-
ages, are saved to your own device and you are free to
delete this data at any time.”

Data encryption or anonymization: Not mentioned.

112

Helping Code Reviewer Prioritize: Pinpointing Personal Data and its Processing 15

can feasibly validate (four in this study). Each application must be open-source, widely used, gather
diverse types of personal data, and possess a publicly available privacy statement.

The primary threat to the validity of our experiments is the difficulty in establishing a ground-
truth set of actual data processing activities within the source code. This is due to the necessity
of domain knowledge from the original development team, which is typically inaccessible. Conse-
quently, it is not feasible to accurately measure the recall value (TP /(TP+FN)) for our approach.

In the context of fact-checking Google Play data safety statements, we are unable to verify
which types of personal data are sent outside of the device. This limitation prevents us from fully
assessing the accuracy of these statements.

5 Related Work

Existing research on incorporating privacy-by-design (PbD) into the software development life cycle
lacks concrete tools to assist software developers in designing and implementing GDPR~compliant
systems [3]|. Moreover, such PbD-created systems lack standards for mapping particular legislative
data protection obligations, such as the GDPR.

Ferrara et al. propose a framework to adopt static analysis to assess GDPR compliance [4].
However, this approach requires compiled bytecode, which may not always be readily available
during the development process. Arfelt et al. provide a formal logic for monitoring GDPR compli-
ance [2| and a functional tool was developed by [6] for analyzing cross-border data transmission in
Android applications, which is limited in scope to a specific platform.

Some existing research focuses on the identification of personal data but does not consider
broader GDPR compliance aspects. Fugkeaw et al. [5] design a technique to let enterprises auto-
matically detect and handle personal data stored in the local file system. ReCon [12] uses machine
learning to detect possible breaches of personal data by monitoring network traffic, requiring a pre-
trained ML model. van der Plas [11] identifies personal data in Git commits using CodeBERT, a
transformer model similar to ROBERT, but this approach only focuses on the presence of personal
data.

Our work aims to address these research gaps by providing a comprehensive solution that does
not rely on compiled bytecode, pre-trained ML models, or platform-specific tools, and goes beyond
merely identifying the presence of personal data to ensure broader GDPR compliance during the
software development process.

6 Conclusion and Future Directions

Ensuring GDPR compliance demands detailed information on personal data processing, often re-
quiring significant manual effort. Our work strives to lessen this burden by offering two specialized
views — Personal Data Type View and Detailed Flow View, facilitating code reviewers in iden-
tifying potential data processing locations and providing necessary information. Our approach,
leveraging static analysis, has shown an average precision of 0.87 in our experiments, demonstrat-
ing its effectiveness.

However, our approach has limitations. Currently, it is based on Semgrep for static analy-
sis, which captures intra-procedural data flows, leaving inter-procedural flows unaccounted for.
The adoption of the Semgrep Pro Engine, offering inter-procedural analysis, could enhance our
approach’s precision.

In conclusion, our approach presents specialized views, aiding in GDPR compliance tasks, such
as ROPA production, by reducing manual effort. With further improvements, such as incorporating
the Semgrep Pro Engine and refining our identification rules, we aim to make the process of privacy
analysis more efficient and manageable for code reviewers.

113

16

F. Tang et al.

Acknowledgement

This paper is an extended version of work published in [15]. We would like to extend our sincere
gratitude to Rob van der Veer for his valuable insights and contributions to this research. This
work is part of the Privacy Matters (PriMa) project. The PriMa project has received funding from
European Union’s Horizon 2020 research and innovation program under the Marie Sktodowska-
Curie grant agreement No. 860315.

References

10.

11.

12.

13.

14.

15.

. Alharthi, A., Krotov, V., Bowman, M.: Addressing barriers to big data. Business Horizons 60(3),

285-292 (2017)

. Arfelt, E., Basin, D., Debois, S.: Monitoring the GDPR. In: European Symposium on Research in

Computer Security. Springer (2019)

. Baldassarre, M. T., Barletta, V.S., Caivano, D., Scalera, M.: Integrating security and privacy in software

development. Software Quality Journal 28(3), 987-1018 (2020)

. Ferrara, P., Spoto, F.: Static analysis for gdpr compliance. In: Italian Conference on Cybersecurity

(2018)

. Fugkeaw, S., Chaturasrivilai, A., Tasungnoen, P., Techaudomthaworn, W.: Ap2i: Adaptive PII scan-

ning and consent discovery system. In: 2021 13th International Conference on Knowledge and Smart
Technology (KST). pp. 231-236. IEEE (2021)

. Guaman, D.S., Del Alamo, J.M., Caiza, J.C.: Gdpr compliance assessment for cross-border personal

data transfers in android apps. IEEE Access 9, 15961-15982 (2021)

. Huth, D., Tanakol, A., Matthes, F.: Using enterprise architecture models for creating the record of

processing activities (Art. 30 GDPR). In: 2019 IEEE 23rd International Enterprise Distributed Object
Computing Conference (EDOC). pp. 98-104. IEEE (2019)

. ICO: How do we document our processing activities? information commis-

sioner’s office. https://ico.org.uk/for-organisations/guide-to-data-protection/
guide-to-the-general-data-protection-regulation-gdpr/documentation/
how-do-we-document-our-processing-activities/, (Accessed on 04/29/2023)

. Naik, A., Mendelson, J., Sands, N., Wang, Y., Naik, M., Raghothaman, M.: Sporq: An interactive

environment for exploring code using query-by-example. In: The 34th Annual ACM Symposium on
User Interface Software and Technology. pp. 84-99 (2021)

Pandit, H.J., Polleres, A., Bos, B., Brennan, R., Bruegger, B., Ekaputra, F.J., Fernandez, J.D., Hamed,
R.G., Kiesling, E., Lizar, M., et al.: Creating a vocabulary for data privacy. In: OTM Confederated
International Conferences" On the Move to Meaningful Internet Systems". pp. 714-730. Springer (2019)
van der Plas, N.: Detecting PII in Git commits. Master’s thesis - TU Delft (2022)

Ren, J., Rao, A., Lindorfer, M., Legout, A., Choffnes, D.: Recon: Revealing and controlling PII leaks
in mobile network traffic. In: Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services. pp. 361-374 (2016)

Ryan, P., Pandit, H.J., Brennan, R.: A common semantic model of the gdpr register of processing
activities. arXiv:2102.00980 (2021)

Solove, D.J.: Access and aggregation: Public records, privacy and the constitution. Minn. L. Rev. 86,
1137 (2001)

Tang., F., @stvold., B., Bruntink., M.: Identifying personal data processing for code review. In: Pro-
ceedings of the 9th International Conference on Information Systems Security and Privacy - ICISSP.
pp. 568-575. INSTICC, SciTePress (2023). https://doi.org/10.5220/0011725700003405

114

Transparency in App Analytics: Analyzing the
Collection of User Interaction Data

Tang, F. and Ostvold, B. (2023). Transparency in App Ana-
lytics: Analyzing the Collection of User Interaction Data. In

Proceedings of the 20th Annual International Conference on
Privacy, Security & Trust (PST2023).

115

PAPER 5

Transparency in App Analytics: Analyzing the Collection of
User Interaction Data*

Feiyang Tang and Bjarte M. @stvold

Norwegian Computing Center, Oslo, Norway
{feiyang,bjarte}@nr.no

Abstract. The rise of mobile apps has brought greater convenience and many options for
users. However, many apps use analytics services to collect a wide range of user interaction
data, with privacy policies often failing to reveal the types of interaction data collected or
the extent of the data collection practices. This lack of transparency potentially breaches
data protection laws and also undermines user trust. We conducted an analysis of the top
20 analytic libraries for Android apps to identify common practices of interaction data col-
lection and used this information to develop a standardized collection claim template for
summarizing an app’s data collection practices wrt. user interaction data. We selected the
top 100 apps from popular categories on Google Play and used automatic static analysis to
extract collection evidence from their data collection implementations. Our analysis found
that a significant majority of these apps actively collected interaction data from UI types
such as View (89%), Button (76%), and Textfield (63%), highlighting the pervasiveness of
user interaction data collection. By comparing the collection evidence to the claims derived
from privacy policy analysis, we manually fact-checked the completeness and accuracy of
these claims for the top 10 apps. We found that, except for one app, they all failed to declare
all types of interaction data they collect and did not specify some of the collection techniques
used.

Keywords: Mobile apps - User interaction data collection - Transparency - Trust - Privacy.

1 Introduction

The rapid rise of mobile apps has revolutionized how we interact with technology, providing devel-
opers with a treasure trove of user interaction data through analytics services such as AppsFlyer
L Flurry 2, and Firebase Analytics 3. This data, encompassing user actions like button taps, page
scrolls, and video views, is invaluable for enhancing app functionality and user experience. How-
ever, the vague terminology often used in privacy policies, such as “user’s interaction with the
service”, raises concerns about transparency. The lack of specificity leaves users uncertain about
the extent and nature of the data being collected and its usage, potentially leading to mistrust and
diminished app usage.

Transparency in data collection is a crucial factor influencing user trust [8]. It empowers users
to make informed decisions about the data they share and its intended usage [19].

An example of this ambiguity can be found in the Yr app, Norway’s most popular weather app
developed by the Norwegian Broadcasting Corporation (NRK). Despite collecting user interaction
data to understand commonly used features, the app’s privacy policy* is vague regarding the
collection of such data, as quoted below in the blue box. Our examination of NRK’s privacy policy
revealed no explicit information about Yr’s data collection practices, leading to concerns about
user trust in both the app and NRK.

* Published at the 20th Annual International Conference on Privacy, Security € Trust (PST2023)
! https://www.appsflyer.com/

2 https://www.flurry.com/

3 https://firebase.google.com/docs/analytics

4 https:/ /hjelp.yr.no/hc/en-us/articles /3600033376 14- Privacy-policy

116

2 Feiyang Tang and Bjarte M. @stvold

Analyze tools

“We use different tools to track the use on our app and website. This information gives us
valuable information such as most popular pages and on what times Yr is being used the most.
No information that can identify persons are available for Yr.”

Our examination of NRK’s privacy policy® revealed no specific information regarding Yr’s data
collection practices. The policy mainly focuses on NRK’s news services and their “interaction with
the services” collection practices. This obscurity concerning Yr app’s data collection practices raises
concerns, as it might undermine user trust in both the app and NRK as a whole.

. . Decompiled .

App Privacy Policy ‘ Wil Ao ’ Artifact
Extract re- Identify analytics
lated text library invocation

Relevant Bytecode

Relevant Rel ¢ inf ¢
and Ul Files elevant information

Text Fragments

Standardize the Link invocation
text fragments with UI widget

Collection Evidence Standardized form

Standardized
Collection Claim

Fig. 1. Overview of the approach for analyzing collection claims and evidence in apps.

Recent research has shown that even seemingly harmless user interaction data can reveal sen-
sitive information about individuals. For instance, data like emoji usage or pages visited can be
used to infer a user’s pool preference or political orientation [13]. Moreover, mobile biometric data
related to keystrokes and touchscreen gestures can help estimate attributes like age, gender, and
operating hand [7,15]. This underscores the potential risks associated with user interaction data
collection, which, while not typically considered personal data, can be utilized to deduce sensitive
information about individual users, leading to user profiling. The lack of transparency in these
data collection practices could potentially erode user trust in the app.

Most current research on the privacy implications of analytic services has concentrated on
determining whether personally identifiable information (PII) is being collected and transmitted
to external analytics services [17,28]. Studies have also scrutinized log data to understand user
behavior [10], and high-level analyses of user behavior data collection in mobile apps have been
performed [26]. It is essential to clarify that the interaction data discussed in this study is not part
of traditionally defined PII or personal data, emphasizing the need for better transparency in data
collection practices.

® https://info-nrk-no.translate.goog/personvernerklaering/? x_tr_sl=no& x_tr_tl=en& x_tr_hl=en-US&
x_tr_pto=wapp

117

Transparency in App Analytics: Analyzing the Collection of User Interaction Data 3

1.1 Objective

The aim of this paper is to address the issue of lack of transparency in the collection of user inter-
action data in mobile apps. To achieve this, we propose a standardized collection claim template
that can be compared to collection evidence determined through static analysis.

1.2 Research Questions

To guide our investigation, we formulated the following research questions:

RQ1 What are the common practices of user interaction data collection in mobile apps?

RQ2 How are these practices reflected in apps’ privacy policies?

RQ3 What types of user interaction data do apps actually collect in their implementations, and how
is this data collected?

RQ4 To what extent do the collection claims in privacy policies align with the actual data collection
practices as observed in their implementations?

1.3 Contributions

In this paper, we make several contributions towards understanding and promoting transparency
in user interaction data collection practices:

— We propose a standardized collection claim template for user interaction data. Collection claims,
in this context, refer to the descriptions of common practices of user interaction data collec-
tion in mobile apps, as stated in privacy policies. The template reflects common phrasing
and vocabulary derived from Android documentation and popular Android analytic libraries
(Section 3).

— We present an automatic static analysis method to identify collection evidence from Android
apps, which involves analyzing data types, relevant code, and techniques of collection in layout
files and bytecode (Section 4).

— We provide an overview of user interaction data collection practices in the top 100 popular
apps on Google Play across the top 10 categories (Section 5). Our analysis reveals common
patterns and offers useful statistics for both app developers and users to better understand the
current state of data collection practices in mobile apps.

— We conduct fact-checking by manually comparing privacy policy collection claims against the
actual collection evidence found in the ten most popular apps from the top ten categories
(Section 5). Our findings reveal that none of these apps were completely accurate and complete
in their collection claims, highlighting the importance of our proposed approach in promoting
transparency and trust in user interaction data collection practices.

We believe that our proposed method addresses the problem of lack of transparency by providing
a standardized collection claim template for describing user interaction data collection practices.
The template allows app developers to offer clearer and more accurate information about their
data collection practices, which in turn can help users make informed decisions about app usage
and data sharing. Our method also enables researchers and app developers to assess the alignment
between stated data collection practices in privacy policies and the actual practices found in app
implementations, facilitating better transparency and ultimately enhancing user trust.

Fig. 1 provides a high-level overview of our method, illustrating the process of acquiring arti-
facts (privacy policies and decompiled mobile apps), deriving knowledge through text analysis and
static analysis (relevant text fragments and bytecode/Ul files), and standardizing the information
into collection claims and evidence. This systematic and transparent approach can contribute to
promoting trust and fostering greater transparency in user interaction data collection practices in
mobile apps.

118

4 Feiyang Tang and Bjarte M. @stvold

2 Motivation

The transparency of mobile app data collection practices is a critical issue that stems from several
significant factors, all of which play an essential role in the complex relationship between user trust
and app adoption. Interaction data, a key asset for understanding user behavior, can raise serious
concerns if it is collected non-transparently.

Transparency serves a dual purpose in this scenario. Firstly, it acts as an ethical commitment,
assuring users that they are informed about their interaction data’s collection and use. This princi-
ple not only respects user autonomy but also fosters an environment of openness and accountability.
Secondly, transparency plays a pivotal role in building user trust, a significant factor influencing
user satisfaction and continued app usage. When users understand and control their interaction
data, their trust in the app increases, leading to more consistent engagement. Conversely, a lack
of transparency can breed mistrust and privacy concerns, potentially causing user dissatisfaction
or even app abandonment.

The correlation between transparency and user trust is well-documented in the academic world.
Studies have consistently highlighted the positive relationship between increased transparency and
elevated levels of user trust [12]. Conversely, an absence of transparency can obstruct the success
and widespread adoption of mobile apps [27]. Thus, transparency is not merely about informing
users, but is essential for facilitating informed decisions and granting consent.

Another critical aspect to consider is the rise of analytics services like Firebase Analytics and
Flurry Analytics. These services provide developers with tools to gather data on user behavior,
engagement, and preferences. However, they have raised data protection concerns as they often
automatically collect user data, thereby creating privacy issues. Several countries, including France,
Italy, Austria, Denmark, and Norway, have explicitly stated that the use of Google Analytics
violates GDPR [23]. Android apps can utilize these services either by directly invoking third-party
APIs or by customizing their analytics service by extending these APIs. The first approach involves
calling third-party API methods directly in activities to log user engagement events. The second
approach allows developers to tailor data collection to their specific needs.

The importance of transparency is also acknowledged by mobile app developers, who have a
vested interest in prioritizing it alongside user control in their data collection practices. Research
supports this notion; for instance, Almuhimedi et al. [1], for instance, discovered that many smart-
phone users are not fully aware of the data collected by their apps. Providing users with an app
permission manager and sending notifications to increase their awareness of data collection can
enable them to better manage their privacy. Moreover, users’ concerns about data collection can
negatively impact their perception of the app, potentially leading to its uninstallation [9]. Hence,
promoting transparency and user control can foster trust, resulting in improved user experiences,
increased app engagement, and higher adoption rates.

In the following sections, we will explore the mutual benefits of transparency for both users
and app developers and illustrate how our proposed method can address the current shortcomings
in the transparency of interaction data collection practices.

3 Standardizing Data Collection Claims

To address RQ1, we analyze the common practices of user interaction data collection in mobile
apps, specifically the types of data collected and the techniques of collection. To achieve this,
we conducted an analysis of the top 20 analytic libraries for Android apps. To answer RQ2, we
examine how these practices are reflected in the privacy policies of mobile apps. We refer to the
descriptions of data collection practices in privacy policies as collection claims, which we define as
a single sentence in a standardized template using a restricted vocabulary to convey the essence of
interaction data collection.

119

Transparency in App Analytics: Analyzing the Collection of User Interaction Data 5

Table 1. The top five most frequent terms used to Table 2. The top five most frequent verbs used to
describe user interaction data in the APP-350 corpus describe such collection in the APP-350 corpus
Term Count Verb Count
interact(~ion,~ing) with service/app 1,049 collect 1,386
analytic(s) 886 track 548
us(~age, ~ing) of service/app 397 use 202
statistic(s) 315 log 86
input(s) of user 173 gather 46

3.1 Collection Vocabulary

Our restricted collection vocabulary was developed by analyzing the Android system implementa-
tion documentation, as well as the APIs of the top 20 analytic services for Android apps listed on
AppBrain [2].

Terms for Types of User Interaction Data The user interface of an Android app collects
a variety of data types, such as touch events, sensor data, and text input. Based on a manual
inspection of every single type of Android UI widget, we identified the following six types of
interaction data and named them:

— App presentation data: This data arise from the consumption of content provided by the app.
For example, the user plays a certain video for a period of time, spends minutes reading one
specific page of the news. These interactions are often recorded by a logging system to keep
track of the user’s consumption habits.

— Binary data: This data arise from discrete user actions, such as tapping on a button or icon,
or selecting a checkbox.

— Categorical data: This data arise from a selection from a set of predefined options or categories,
such as choosing a value from a dropdown menu, selecting a radio button, or rating a product.

— User input data: This data arise from user input through an on-screen keyboard or another
input method, such as entering text or numbers into a form field, or using voice input to
perform a search or command.

— Glesture data: This data arise from gesture inputs and smooth and continuous movements of
the user’s finger on the screen, such as scrolling through a list, swiping left or right, pinching
or zooming, or shaking the device.

— Composite gestures data: This data arise from a combination of multiple gestures, such as
tapping and holding, double tag, or drag and drop.

Terms for Collection Techniques We use the following terms to describe the techniques of
user interaction data collection.

— Frequency: This technique involves logging the frequency of the occurrence of a particular
interaction. For example, an app might log the number of times a user taps on a specific
button or selects a certain option from a drop-down menu.

— Duration: This technique involves tracking the time a user spends engaging in a particular
interaction. For example, an app might log the amount of time a user spends watching a
particular video or reading a specific article.

— Motion details: This technique involves monitoring the specific details of a user’s interaction,
such as the speed, direction, or angle of their finger movements on the screen. This type of
data can be collected for interactions such as scrolling, swiping, or dragging.

120

6 Feiyang Tang and Bjarte M. @stvold

3.2 From Policies to Standardized Collection Claims

In this section, we study privacy policies of publicly accessible mobile apps, aiming to identify
and standardize collection claims related to user interaction data. Utilizing the APP-350 Corpus,
a pre-trained language model, and manual checks, we extract and validate common terminologies
employed in these policies. This comprehensive process allows us to establish a standardized vo-
cabulary for user interaction data collection claims, providing a solid foundation for subsequent
analysis.

Identifying Relevant Policy Parts To distinguish sentences related to user interaction data
collection in privacy policies, we adopt a simple pre-trained language model. This model sifts
through HTML files of privacy policies and singles out sentences containing specific keywords and
their synonyms. Our focus is to ensure that our privacy policy claim vocabulary aligns with the
most common terminology used in the industry to describe user interaction data.

After processing the privacy policies, we conduct manual checks to eliminate any false positives.
The end result is a selection of common phrases used in these policies to describe the collection of
user interaction data. From the sentences identified, we isolate the most relevant verbs and nouns
to form a list of keywords.

Ezperimental Details and Validation In conducting our analysis, we use the APP-350 Corpus [24],
a set of 350 mobile app privacy policies that are annotated with privacy practices. Although the
main focus of the APP-350 Corpus is on identifying sentences related to personally identifiable
information (PII), we utilize the raw HTML files of the privacy policies for our examination.

The natural language processing is carried out using the spaCy [14] library with the en_core_web_sm
model. This model, pre-trained on web text, which includes web forums, web pages, and Wikipedia,
is capable of identifying named entities, parts of speech, dependency parsing, and more. We also
employ the WordNet module from the Natural Language Toolkit (NLTK [6]) to discover synonyms
for the extracted keywords.

To authenticate the effectiveness of the model, we manually annotate 50 randomly selected
privacy policies from the APP-350 dataset. This helps us identify sentences containing relevant
information, the verbs used to describe data collection (e.g., “collect”, “track”), and the terms
used to describe user interaction data (e.g., “usage of the app”, “interaction with the service”).

The model successfully recognized sentences related to user interaction data collection in 37 out
of the 38 files that contained such sentences, using keywords such as interaction, usage, statistics,
experience, and analytics. Identifying the verbs used to describe data collection was a more complex
task, with a recall of 92% but a precision of only 84% 6 due to the presence of similar verbs in
sentences that were not related to the context.

Upon running the model on the 350 privacy policies, we identified 1,411 sentences. The relevant
verbs and nouns from these sentences are shown in Table 1 and Table 2 and then compiled to form
the list of keywords.

Template for Standardized Collection Claims In privacy policies, it is common for apps to
use convoluted language to describe how user data is collected. To make these collection claims in
privacy policy easier to read and compare across different apps, we created a standardized template
that utilized the most frequently used verb, “collect”, and the most frequently used noun phrase,
“user interaction data”. The resulting structure is as follows:

6 Recall is calculated as TP / (TP 4 FN), while precision is calculated as TP / (TP + FP), where TP is
true positives, FN is false negatives, FP is false positives, and TN is true negatives.

121

Transparency in App Analytics: Analyzing the Collection of User Interaction Data 7

Template for Standardized Collection Claims
We collect the following types of user interaction data: (types of data collected), along with
their (techniques of collection).”

This standardized collection claim template can be combined with the collection evidence gath-
ered through static analysis to check and the accuracy of privacy policy collection claims made
by various apps. Also, the standardized language facilitates transparency and comparison between
policies. We return to the subject of fact-checking collection claims in Section 5.

4 Data Collection Evidence

In this section, we analyze mobile apps to understand the types of user interaction data collected
and the techniques employed (RQ3). We conduct static analysis of the Android application pack-
age (APK) to identify data collection methods (DCMs) and extract collection evidence, which
highlights the gap between privacy policy claims and actual practices (RQ4).

Our analysis is divided into two parts. First, we identify DCMs from the top 20 Android analytic
services and customized analytics services. Second, we extract collection evidence by focusing on
invocations to analytics services, associated Ul widgets, and the callbacks triggered by registered
listeners.

4.1 Identifying Data Collection Methods

Data collection methods (DCMs) are methods defined by analytics services, such as Firebase
Analytics, that allow app developers to log user interaction data. DCMs provide a standardized
way for app developers to collect user interaction data and track app usage in order to analyze
and understand user behavior.

For example, the Firebase Analytics API provides the logEvent () method to log user events,
such as button clicks or screen views. Suppose we have a button myButton in the app’s Ul, and we
want to track when the user clicks on it. We can do this using Firebase Analytics by adding the
following code to the button’s OnClickListener:

myButton.setOnClickListener (new View.OnClickListener () {

public void onClick(View v) {
FirebaseAnalytics.getInstance (this).

logEvent ("button_click", null); }
1

Here FirebaseAnalytics.getInstance(this) returns an instance of the Firebase Analytics
object, and logEvent ("button_click", null) collects the button click interaction data with the
string "button_click" to Firebase Analytics.

To determine how Android apps use analytics services, we identified DCMs from the top 20
Android analytic services, cf. Section 3.1. Matching the full signature of these methods in bytecode
allows us to find direct invocations to analytics services. However, some apps use customized ana-
lytics services to do a more fine-grained collection, such as collecting motion details and duration.
To do this, the apps implement their own analytics classes by extending the analytic services.

To identify customized analytics, we use static analysis to identify the classes that invoke
external DCMs. We then check whether these classes are invoked in any of the app’s declared
activities. If they are, we mark these classes as customized analytics services classes.

7 Refer to the claim vocabularies in Section 3.1

122

8 Feiyang Tang and Bjarte M. @stvold

4.2 Extracting Collection Evidence

Next, we extracted evidence of actual data collection from the APK. Specifically, we analyze
three types of information: (1) invocations to analytics services that logged user interaction data
collection, (2) associated UI widgets, and (3) the callbacks triggered by registered listeners on these
UI widgets.

We utilized static analysis with FlowDroid [3] to associate DCM invocations with callbacks,
listeners, and activities in the bytecode. We then compared the layout IDs of the associated Ul
widgets defined in the layout XML files to identify the relevant collection data types and techniques.

The relationships between different parts of the extracted collection evidence in an Android
app are shown in Fig. 2. The Ul-related parts, such as layout files and defined UI widgets, provide
information on the types of user interaction data (red section), while the bytecode provides details
on the techniques of collection (blue section)®.

App
Techniques of collection 1 1
M M

Activit; Layout files

Invocation yj [¥ j
1 1 1
* M M M

[Callback} - [Listener} 8 & [UI widgetj

User interaction data types

Fig. 2. Relationships between different parts of the extracted collection evidence in an Android app

We return to the Yr weather app, the example app from Section 1. Based on the collection
evidence extracted from Yr’s bytecode and layout files, we discovered that it collects detailed user
interaction data using various types of Ul widgets such as SearchView and Textfield. This data
collection is linked to features such as changes in location, enabling forecast summary notifications,
and opening the forecast graph. Building on this finding from static analysis, we propose the
following more specific checked standardized collection claim:

Checked Standardized Collection Claim for Yr
We collect the following types of user interaction data: app presentation, binary and categorical
interactions, and user input interactions, along with their frequency.

5 Findings

To address RQ2, we conduct a manual inspection of 1411 sentences that described user interaction
data collection in all 350 privacy policies within the APP-350 corpus, as outlined in Section 3.2.
We examine whether the sentences in a privacy policy provide clear descriptions of the types
of user interaction data collected and the techniques of collection.
We find that only 37% of the identified sentences contained clear statements on both the data
types and techniques of collection, while 41% only discussed the techniques of collection and 22%
mentioned only the data types.

8 Note: The figure notation is as follows: 1-M means one-to-many, 1-* means one-to-any (zero or more),
and 1-1 means one-to-one.

123

Transparency in App Analytics: Analyzing the Collection of User Interaction Data 9

Here are the relevant sentences from two policies in the corpus. DAMI? states: “We may work
with analytics companies to help us understand how the Applications are being used, such as the
frequency and duration of usage.” Wish' states: “We may collect different types of personal and
other information based on how you interact with our products and services. Some examples include:
Equipment, Performance, Websites Usage, Viewing and other Technical Information about your
use of our network, services, products or websites.”

DAMI’s privacy policy only discloses the techniques of collection, such as the frequency and
duration of usage, without clearly explaining which type of user interaction data is collected.
In contrast, Wish’s privacy policy does mention some specific types of data collected, such as
equipment and performance data, but it is unclear about which techniques of collection are used.

The majority of identified sentences discuss the techniques of collection rather than specific data
types, suggesting that organizations use the tactic of avoiding or minimizing disclosures about the
types of user interaction data they collect in order to collect more data than users are aware of or
comfortable with.

To investigate RQ3, we performed a static analysis on a sample of 100 free Android apps
downloaded from the top 10 most popular categories on the German Google Play store!l, as
identified by AppBrain. In cases where the same app appeared in several categories, we moved to
the next popular app in the second category to get a total of 100 distinct apps.

Table 3. Statistics of the user interaction data collection for the top 100 Android apps.

UI type (types of inter-|Top 2 techniques of col-|Top 3 app categories Percent collected |Avg # collected
action data) lection

View (Presentation) Frequency (100%), Dura-|Entertainment, Shopping, 89% 12
tion (52%) Travel

Button (Binary) Frequency (94%), Motion|Social, Utility, Gaming 76% 26
(8%)

Textfield (Input) Frequency (100%), Dura-|Social, Shopping, Utility 63% 5
tion (4%)

Checkbox & Spinner (Cat-|Frequency (97%), Motion|Shopping, Travel, Utility 32% 7

egorical) (16%)

GestureDetector (Gesture) [Motion (94%), Duration|Gaming, Entertainment, 16% 38
(40%) Social

Our analysis of the top 100 Android apps revealed that app developers placed a great deal of
emphasis on understanding how frequently users interacted with different UT elements (which may
correspond to different features or functionalities in the app), as frequency was the top techniques
of collecting user interaction data across all Ul types. We also found that the average number of
interaction data collected varied significantly across different types of UL It was also interesting to
see that the high number of interaction data collected for the button UI type (also found in 76%
of the apps), indicated that understanding button usage was a particularly important metric for
app developers.

Table 3 presents an overview of the user interaction data collection practices across various app
categories, focusing on the top UI type for each type of interaction data. We have selected the
most frequently occurring Ul types from each category for this analysis, which are listed in the
first column.

The second column indicates the top two techniques linked with each UI type. The percentages
in parentheses, for instance, 100% and 52% for the “View” UI type, represent the proportion of
apps that use a particular technique in tracking the UI type. For example, 100% of apps tracked
“View” interactions use the frequency technique, while 52% also use the duration technique.

9 https://play.google.com/store/apps/details?id=com.blappsta.damisch

10 https://play.google.com /store/apps/details?id=com.contextlogic.wish
' https://play.google.com /store/apps?gl=DE

124

10 Feiyang Tang and Bjarte M. @stvold

The “Percent collected” column indicates the proportion of the top 100 apps that collect data
related to a specific UT type. For instance, “View” data is collected by 89% of the analyzed apps.

Finally, the “Average # collected” column represents the average number of distinct DCMs
detected in each app associated with a particular UI type. For example, on average, 12 distinct
DCMs were detected for “View” data collection across the analyzed apps.

Upon comparing these user interaction data collection practices with the declarations in privacy
policies, we observe a larger mismatch in certain app categories. Gaming apps, despite their high
prevalence of Gesture data collection to optimize user experience, often lack comprehensive disclo-
sure of such practices in their privacy policies. Similarly, Entertainment, Shopping, and Travel apps
extensively collect “View” data, but their policies rarely match the extent of this data collection,
indicating a transparency gap in these visually-centric applications.

Social and Utility apps, which heavily rely on “Button” and “TextField” data, also demonstrate
a significant disparity between their actual data collection practices and policy disclosures. These
observations highlight that while app developers tailor their data collection strategies to their
specific objectives and requirements, they often fail to mirror this granularity in their privacy
policies.

This mismatch is consequential as it affects the transparency of these apps and the users’
ability to make informed decisions. Hence, addressing these discrepancies becomes crucial, and
our findings provide valuable insights for developers aiming to improve their privacy disclosures,
ultimately fostering trust and success in the app ecosystem.

To address RQ4, we manually inspected the privacy policy claims of the most popular app in
each of the 10 categories on Google Play. We generated our checked collection claims by analyzing
the actual data collection practices of each app and comparing them to the privacy policy claims
published by the app. Our checked collection claims are made by combining the evidence gathered
through static analysis and the proposed standardized claim template. The results are fact-check
collection claims presented in Table 4.

Our findings uncovered inconsistencies between the claims made in privacy policies and the
actual data types and techniques of collection used by popular apps on Google Play. Many apps
do not fully disclose the types of data collected or the techniques of collection, often using vague
language such as “collecting user interactions to improve the service”.

Notably, some apps that may be perceived as having questionable data collection practices,
such as TikTok and Amazon Prime Video, actually provided more detailed information on the
types of data collected and the techniques of collection used. TikTok and Duolingo even provided
specific examples of their data collection practices.

However, we found that some apps from less controversial categories, such as the photogra-
phy editing app Picsart and the payment platform PayPal, used opaque language in their privacy
policies, leaving a large gap between their claims and our findings. The most extreme example
was Booking.com, which extensively collects user interactions within the app, yet discloses al-
most no information in its privacy policy. These findings highlight the need for clearer and more
comprehensive disclosures in privacy policies, particularly for apps that collect sensitive user data.

5.1 Threats to Validity

Potential threats to the validity of our experiment may impact the interpretation of our findings.
A primary limitation of our experiment is the number of apps we manually fact-checked for data
collection practices. Due to the complexity of accommodating varying Ul types and callbacks into
our predefined six data types and three techniques of collection, we were only able to manually
fact-check one app in each category, totaling ten apps. This sample size, though limited, may not
encapsulate the full diversity of data collection practices across all apps.

Furthermore, measuring the recall of our analysis posed a considerable challenge, given the
absence of a comprehensive ground truth detailing all interaction data collection practices in each
app. Consequently, our findings may not wholly represent the full range of data collection practices.

125

Transparency in App Analytics: Analyzing the Collection of User Interaction Data 11

Table 4. Fact-checked data collection claims w.r.t. evidence for the most popular app from each of the

top 10 categories of Google Play.

The red text indicates types of user interaction data missing from the privacy policy/collection claims,
while the blue text indicates undisclosed techniques of collection.

Checked Collection Claim

Related Text in the Published Privacy Policy

[TikTok] We collect the following types
of user interaction data: app presenta-
tion, binary, categorical, user input, ges-
ture and composite gesture interactions,
along with their frequency, duration and
motion details.

[SHEIN] We collect the following types
of user interaction data: app presenta-
tion, binary, categorical, user input inter
actions, along with their frequency and
duration.

[Booking.com] We collect the following
types of user interaction data: app presen-
tation, binary, categorical, user input in-
teractions, along with their frequency and
duration.

[PayPal] We collect the following types
of user interaction data: app presentation,
binary, categorical, user input interactions
along with their frequency.

[Duolingo] We collect the following types
of user interaction data: app presentation,
binary, categorical, user input, gesture in-
teractions, along with their frequency and
duration.

[Amazon Prime Videos] We collect the
following types of user interaction data:
app presentation, binary, categorical, user
input, gesture interactions, along with
their frequency, duration and motion de-
tails.

[Yazio] We collect the following types
of user interaction data: binary and user
input interactions, along with their fre-
quency.

[Fasion Famous] We collect the follow-
ing types of user interaction data: app pre-
sentation, binary, user input, gesture and
composite gesture interactions, along with
their frequency, duration and motion de-
tails.

[Picsart] We collect the following types
of user interaction data: app presentation,
binary, gesture and composite gesture in-
teractions, along with their frequency, du-
ration and motion details.

[Dezor] We collect the following types
of user interaction data: app presenta-
tion, binary, categorical, user input inter-
actions, along with their frequency.

[TikTok] We collect information about how you engage with the Platform, in-
cluding information about the content you view, the duration and frequency of
your use, your engagement with other users, your search history and your set-
tings.

[SHEIN] Data about how you engage with our Services, such as browsing,
adding to your shopping cart, saving items, placing an order, and returns for
market research, statistical analysis, and the display of personalized advertising
based on your activity on our site and inferred interests; Collect your device in-
formation, and usage data on our website or app for fault analysis, troubleshoot-
ing, and system maintenance, as well as setting default options for you, such as
language and currency. The display of information you choose to post on public
areas of the Services, for example, a customer review.

[Booking.com] We collect data that identifies the device, as well as data about
your device-specific settings and characteristics, app crashes and other system
activity.

[PayPal] When you visit our Sites, use our Services, or visit a third-party web-
site for which we provide online Services, we and our business partners and
vendors may use cookies and other tracking technologies to recognize you as a
User and to customize your online experiences, the Services you use, and other
online content and advertising; measure the effectiveness of promotions and per-
form analytics; and to mitigate risk, prevent potential fraud, and promote trust
and safety across our Sites and Services.

[Duolingo] We do record the following data: Patterns, Clicks, Mouse move-
ments, Scrolling, Typing, Pages visited, Referrers, URL parameters, Session du-
ration.

[Amazon Prime Videos] We automatically collect and store certain types of
information about your use of Amazon Services including your interaction with
content and services available through Amazon Services. List of examples: search
for products or services in our stores and download, stream, view, or use content
on a device, or through a service or application on a device.

[Yazio] The Firebase Analytics service helps to determine the interactions of
App users by recording, for instance, the first time the App is opened, deinstal-
lations, updates, system crashes and how often the App is used. The service also
records and analyses certain user interests.

[Fasion Famous] Information that may be collected automatically: Data and
analytics about your use of our Services. Data we collect with cookies and similar
technologies: Data about your use of our Services, such as game interaction and
usage metrics.

[Picsart] Our servers passively keep an electronic record of your interactions
with our services, which we call “log data”. We collect and combine data about
the devices you use to access Picsart, and data about your device usage and
activity.

[Dezor] The information collected by log files include internet protocol (IP)
addresses, browser type, Internet Service Provider (ISP), date and time stamp,
referring/exit pages, and possibly the number of clicks.

126

12 Feiyang Tang and Bjarte M. @stvold

6 Related Work

The related work can be categorized into three primary themes: (1) privacy policy analysis using
NLP and policy compliance check, (2) static analysis for security and privacy in apps, and (3)
analytics services analysis.

6.1 Privacy Policy Analysis

Numerous studies have focused on analyzing and improving privacy policies in mobile apps. Re-
searchers have explored various NLP approaches to automatically process and understand privacy
policy texts, as well as to assist users in comprehending these policies more effectively [21,22, 25].
However, these studies do not specifically address the issue of user interaction data collection,
which is a significant gap that our research addresses. Tools like PrivacyFlash Pro [30] and Au-
toCog [20] have been developed to audit privacy policy compliance by comparing disclosed policies
with actual app behavior, but they primarily focus on personal data, not user interaction data. A
recent study by Bardus et al. [5] systematically mapped existing contact-tracing apps and evalu-
ated the permissions required and their privacy policies, but it did not delve into the specifics of
user interaction data collection.

6.2 Static Analysis for Security and Privacy

The static analysis approach has been used to enhance security and privacy in mobile apps. This
involves analyzing app bytecode, identifying data leaks, and detecting privacy violations [4,11,29].
Despite the progress in this field, there remains an underrepresentation of studies targeting user in-
teraction data, a type of data often overlooked in privacy policies and their corresponding analyses.
A novel system, LocationScope, was presented by Lu et al. [18] to detect and measure aggressive
location harvesting in mobile apps at scale, but it did not specifically target user interaction data.

6.3 Analytics Services Analysis

Another line of research has concentrated on the role of analytics services in capturing user data,
primarily focusing on PII. Alde [17], for example, proposed a method employing both static and
dynamic analysis to detect the key information gathered by analytics libraries, which are largely
device-level data. PAMDroid [28] takes a similar approach, identifying personal data funneled
into analytics services and treating it as a misconfiguration. The domain of user interaction data
collection, however, remains relatively untouched in these studies. A recent study by Laperdrix et
al. [16] presented a privacy analysis of free and paid games in the Android ecosystem, but it did
not specifically focus on user interaction data collection.

These studies have contributed to the understanding of privacy policies and data collection
practices in mobile apps. However, there is a lack of research specifically on the practices of user
interaction data collection and the transparency of related claims in privacy policies. Our work
extends the scope of previous research by focusing on user interaction data collection practices
and providing an analysis on comparing privacy policy disclosures with actual app behavior. This
approach aims to enhance transparency and trust in the mobile app ecosystem, addressing the
research gaps in the existing literature.

7 Conclusion and Future Work
In conclusion, our analysis of the top 100 apps uncovers the widespread collection of user interaction

data, while the detailed examination of the top 10 apps reveals that privacy policies often inade-
quately disclose such practices. To address this lack of transparency, we introduced a standardized

127

Transparency in App Analytics: Analyzing the Collection of User Interaction Data 13

collection claim template that aids app developers in accurately detailing their data collection prac-
tices. This approach fosters informed decisions by users and enhances transparency by allowing
assessments of alignment between declared and actual data collection practices for the manually
analyzed apps. Our findings lay the groundwork for improving data collection transparency in mo-
bile apps and highlight the need for automating the policy-to-claims analysis. This insight could
potentially guide future research and policy-making to foster a more secure and trustworthy app
ecosystem.

Our approach has limitations that can be addressed in future research to improve the analysis
of data collection practices. The current analysis only covers the top 20 analytics services and
is confined to Android apps. Furthermore, the manual fact-checking of the top 10 apps relies on
our interpretation of their policies. To overcome these limitations, machine learning models could
be employed to automatically identify and categorize data collection methods (DCMs) within
app code, reducing the need for manual analysis. This would involve training models to detect
DCMs and categorizing them based on the data types and collection techniques they employ.
Additionally, a more precise and fine-grained policy analysis could be developed to automatically
extract interaction data types and collection techniques from privacy policies. By combining these
advancements, we could create a fully automated approach to fact-check collection claims against
the collection evidence, thereby increasing the efficiency and accuracy of analyzing data collection
practices in mobile applications.

Another potential area for future work is the exploration of user studies to understand users’
perceptions of interaction data collection practices and their impact on users’ trust and app usage.
Extending the analysis to include other platforms and analytics services could also contribute to
a more holistic understanding of user interaction data collection practices across the mobile app
ecosystem.

Acknowledgement

We appreciate the valuable insights provided by Professor Staal Vinterbo. This work is part of the
Privacy Matters (PriMa) project. The PriMa project has received funding from European Union’s
Horizon 2020 research and innovation program under the Marie Sktodowska-Curie grant agreement
No. 860315.

References

1. Almuhimedi, H., Schaub, F., Sadeh, N., Adjerid, I., Acquisti, A., Gluck, J., Cranor, L.F., Agarwal, Y.:
Your location has been shared 5,398 times! a field study on mobile app privacy nudging. In: Proceedings
of the 33rd annual ACM conference on human factors in computing systems. pp. 787-796 (2015)

2. AppTornado: AppBrain: Android analytics libraries. https://www.appbrain.com/stats/libraries/tag/
analytics/android-analytics-libraries, (Accessed on 03/04/2023)

3. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D., McDaniel,
P.: Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for Android
apps. ACM SIGPLAN Notices 49(6), 259-269 (2014)

4. Avdiienko, V., Kuznetsov, K., Gorla, A., Zeller, A., Arzt, S., Rasthofer, S., Bodden, E.: Mining apps
for abnormal usage of sensitive data. In: 2015 IEEE/ACM 37th IEEE international conference on
software engineering. vol. 1, pp. 426-436. IEEE (2015)

5. Bardus, M., Al Daccache, M., Maalouf, N.; Al Sarih, R., Elhajj, I.H.: Data management and privacy
policy of covid-19 contact-tracing apps: Systematic review and content analysis. JMIR mHealth and
uHealth 10(7), e35195 (2022)

6. Bird, S., Klein, E., Loper, E.: Natural language processing with Python: analyzing text with the natural
language toolkit. O’Reilly Media, Inc. (2009)

7. Buriro, A., Akhtar, Z., Crispo, B., Del Frari, F.: Age, gender and operating-hand estimation on smart
mobile devices. In: 2016 International Conference of the Biometrics Special Interest Group (BIOSIG).
pp. 1-5 (2016)

128

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Feiyang Tang and Bjarte M. @stvold

. Cysneiros, L.M., Werneck, V.: An initial analysis on how software transparency and trust influence

each other. In: Workshop em Engenharia de Requisitos (2009)

. Degirmenci, K., Guhr, N., Breitner, M.: Mobile applications and access to personal information: A dis-

cussion of users’ privacy concerns. In: Proceedings of the 34th International Conference on Information
Systems (ICIS 2013). pp. 1-21. Association for Information Systems (AIS) (2013)

Dumais, S., Jeffries, R., Russell, D.M., Tang, D., Teevan, J.: Understanding user behavior through log
data and analysis. Ways of Knowing in HCI pp. 349-372 (2014)

Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth,
A.N.: Taintdroid: an information-flow tracking system for realtime privacy monitoring on smartphones.
ACM Transactions on Computer Systems (TOCS) 32(2), 1-29 (2014)

Fischer-Hiibner, S., Angulo, J., Karegar, F., Pulls, T.: Transparency, privacy and trust—technology for
tracking and controlling my data disclosures: Does this work? In: Trust Management X: 10th IFIP WG
11.11 Conference, IFIPTM 2016, Darmstadt, Germany, July 18-22, 2016, Proceedings 10. pp. 3—14.
Springer (2016)

Gadotti, A., Houssiau, F., Annamalai, M.S.M.S., de Montjoye, Y.A.: Pool inference attacks on local
differential privacy: Quantifying the privacy guarantees of apple’s count mean sketch in practice. In:
USENIX Security 22. pp. 501-518 (2022)

Honnibal, M., Montani, I.: spaCy 2: Natural language understanding with Bloom embeddings, convo-
lutional neural networks and incremental parsing (2017)

Jain, A., Kanhangad, V.: Gender recognition in smartphones using touchscreen gestures. Pattern
Recognition Letters 125, 604-611 (2019)

Laperdrix, P., Mehanna, N., Durey, A., Rudametkin, W.: The price to play: a privacy analysis of free
and paid games in the android ecosystem. In: Proceedings of the ACM Web Conference 2022. pp.
3440-3449 (2022)

Liu, X., Liu, J., Zhu, S., Wang, W., Zhang, X.: Privacy risk analysis and mitigation of analytics
libraries in the android ecosystem. IEEE Transactions on Mobile Computing 19(5), 1184-1199 (2020).
https://doi.org/10.1109/TMC.2019.2903186

Lu, H., Zhao, Q., Chen, Y., Liao, X., Lin, Z.: Detecting and measuring aggressive location harvesting
in mobile apps via data-flow path embedding. Proceedings of the ACM on Measurement and Analysis
of Computing Systems 7(1), 1-27 (2023)

Morey, T., Forbath, T., Schoop, A.: Customer data: Designing for transparency and trust. Harvard
Business Review 93(5), 96-105 (2015)

Qu, Z., Rastogi, V., Zhang, X., Chen, Y., Zhu, T., Chen, Z.: Autocog: Measuring the description-to-
permission fidelity in android applications. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. pp. 1354-1365 (2014)

Ramanath, R., Liu, F., Sadeh, N., Smith, N.A.: Unsupervised alignment of privacy policies using hidden
markov models. In: Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics. pp. 605-610 (2014)

Ravichander, A., Black, A.W., Norton, T., Wilson, S., Sadeh, N.: Breaking down walls of text: How can
nlp benefit consumer privacy? In: Proceedings of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint Conference on Natural Language Processing.
vol. 1 (2021)

Rzhevkina, A.: Several EU countries banned Google Analytics - here are some alternatives.
https://www.contentgrip.com/eu-countries-ban-google-analytics/ (September 2022), (Accessed on
03/12/2023)

Story, P., Zimmeck, S., Ravichander, A., Smullen, D., Wang, Z., Reidenberg, J., Russell, N.C., Sadeh,
N.: Natural language processing for mobile app privacy compliance. In: AAAT Spring Symposium on
Privacy-Enhancing Artificial Intelligence and Language Technologies (2019)

Tesfay, W.B., Hofmann, P., Nakamura, T., Kiyomoto, S., Serna, J.: Privacyguide: Towards an imple-
mentation of the eu gdpr on internet privacy policy evaluation. In: Proceedings of the Fourth ACM
International Workshop on Security and Privacy Analytics. p. 15-21. IWSPA ’18, Association for
Computing Machinery, New York, NY, USA (2018)

Verkasalo, H.: Analysis of smartphone user behavior. In: 2010 Ninth International Conference on Mobile
Business and 2010 Ninth Global Mobility Roundtable (ICMB-GMR). pp. 258-263. IEEE (2010)
Vorm, E., Combs, D.J.: Integrating Transparency, Trust, and Acceptance: The Intelligent Systems
Technology Acceptance Model (ISTAM). International Journal of Human-Computer Interaction
38(18-20), 1828-1845 (2022)

129

28.

29.

30.

Transparency in App Analytics: Analyzing the Collection of User Interaction Data 15

Zhang, X., Wang, X., Slavin, R., Breaux, T., Niu, J.: How does misconfiguration of analytic services
compromise mobile privacy? In: 2020 IEEE/ACM 42nd International Conference on Software Engi-
neering (ICSE). pp. 1572-1583 (2020)

Zhang, X., Wang, X., Slavin, R., Breaux, T., Niu, J.: How does misconfiguration of analytic services
compromise mobile privacy? In: Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. pp. 1572-1583 (2020)

Zimmeck, S., Goldstein, R., Baraka, D.: Privacyflash pro: Automating privacy policy generation for
mobile apps. In: NDSS (2021)

130

User Interaction Data in Apps: Comparing
Policy Claims to Implementations

Tang, F. and Ostvold, B. (2023). User Interaction Data in
Apps: Comparing Policy Claims to Implementations. Pub-

lished at the 18th IFIP Summer School on Privacy and Identity
Management 2028 (IFIPSC 2023).

131

PAPER 6

User Interaction Data in Apps:
Comparing Policy Claims to Implementations*

Feiyang Tang[OOOO—00027872076743] and Bjarte M. @Stvold[()[)[J()f(](]Ol—6922—4027]

Norwegian Computing Center
N-0314 Oslo, Norway
{feiyang,bjarte}@nr.no

Abstract. As mobile app usage continues to rise, so does the generation of extensive user
interaction data, which includes actions such as swiping, zooming, or the time spent on a
screen. Apps often collect a large amount of this data and claim to anonymize it, yet concerns
arise regarding the adequacy of these measures. In many cases, the so-called anonymized
data still has the potential to profile and, in some instances, re-identify individual users.
This situation is compounded by a lack of transparency, leading to potential breaches of user
trust.

Our work investigates the gap between privacy policies and actual app behavior, focusing
on the collection and handling of user interaction data. We analyzed the top 100 apps
across diverse categories using static analysis methods to evaluate the alignment between
policy claims and implemented data collection techniques. Our findings highlight the lack of
transparency in data collection and the associated risk of re-identification, raising concerns
about user privacy and trust. This study emphasizes the importance of clear communication
and enhanced transparency in privacy practices for mobile app development.

Keywords: Mobile Apps - Transparency - Trust - Interaction Data - Privacy Policy

1 Introduction

Mobile apps have become deeply integrated into daily life, often collecting user interaction data
like taps and swipes. While this data is typically anonymized to protect privacy, the effectiveness
of this anonymization is increasingly under scrutiny. Anonymized data, when aggregated, can still
enable user profiling and potentially lead to identification. This challenges the common practice of
labeling such data as “non-personal” to meet less stringent privacy regulations. These practices,
under the pretext of anonymization, pose significant privacy risks and can diminish user trust.

To address these issues we propose an automated method to compare privacy policy state-
ments with actual data collection practices in app code. We aim to highlight the discrepancies
between policy and practice, thereby enhancing transparency and rebuilding trust. Our focus ex-
tends beyond mere regulatory compliance to advocating for stronger data protection and a culture
of transparency in the digital domain.

This paper aims to answer the following research questions:

1. What claims do app privacy policies make concerning the collection of user interaction data?

2. What insights can be derived from analyzing app implementations in light of policy claims?

3. How can we automate the examination of the transparency of collection claims in privacy
policies based on evidence obtained by static analysis?

Our contributions extend and automate our previously work [12]:

* Published at the 18th IFIP Summer School on Privacy and Identity Management 2023 (IFIPSC 2023).

132

2 F. Tang and B.M. @stvold

1. Extending the manual analysis approach [12], we introduce an automated claim extractor
and classifier for processing privacy policies. This approach uses natural language processing
techniques, enhanced by targeted keyword searches, to automatically extract and categorize
claims about user interaction data collection.

2. We develop a static analyzer and an evidence classifier. These components automatically ex-
tract and categorize details of user interaction data collection directly from app implementa-
tions, streamlining the process.

3. By automating the comparison of labeled collection claims (extracted from privacy policies)
with the labeled collection evidence (derived from application code), our approach provides a
more efficient and objective assessment of the transparency of data collection practices.

4. Building upon the automated components, we conduct a study of 100 popular mobile apps.
This study aims to analyze and identify patterns in user interaction data collection, enhancing
the understanding of this practice and its implications for privacy and transparency.

Our two-fold approach, encompassing privacy policy analysis and application code analysis, is
depicted in Fig. 1.

policy policy

segment

Privacy
policy

Claim
classification

Claim
extraction

labeled
collection claim

Mobile app

invocation

+UI file

;bytccodc
4 API list

labeled
collection evidence

Static
analysis

Evidence
categorization

Fig. 1: Overview of the approach

2 Motivation

The capability of anonymized user interaction data to be de-anonymized and thus potentially clas-
sified as personal data under regulations such as the GDPR is an emerging concern in user privacy.
Studies, including those by Leiva et al. [6], highlight that even data devoid of explicit personal
identifiers can be subjected to user profiling and identification of users through the aggregation
of interaction data with other contextual information. This complex interplay blurs the distinc-
tion between non-personal and personal data, thus challenging the notion that anonymized data
is inherently non-sensitive or non-identifiable.

Furthermore, the work of Cretu et al. [2] suggests that stable behavioral patterns within
anonymized mobile app data can be leveraged to achieve high re-identification rates. Such findings
directly challenge the GDPR’s current classification of this data as non-personal. This misinter-
pretation of what constitutes personal data, especially in the context of user interaction, can
significantly undermine privacy risks. It also raises questions about the effectiveness of anonymiza-
tion techniques and the need for informed consent and transparent data governance, even when
data is seemingly anonymized [5].

The ambiguity in categorizing data as personal or non-personal is further complicated in mixed
datasets, where differentiating between the two becomes increasingly challenging [7]. This is par-
ticularly relevant in the context of mobile apps, where user interaction data is often collected

133

Comparing Policy Claims to Implementations 3

Table 1: Most frequent bigrams

Bigram Freq.
Your Information 3,295
Our Service 2,941
Your Data 2,892
Third Party 1,788
Help You 1,214
Improve Service 947

Automatic Collection 422
Tracking Technology 402
Interact With 346
Collect Information 281

alongside other types of data. The risk of re-identification in what is classified as non-personal
data underscores the importance of rethinking how such data is treated within legal frameworks.
As argued in existing literature, there is a growing necessity to treat non-personal data with the
same level of protection as personal data [11].

Transparency in mobile app data collection is critical for user trust and app adoption, as it
ensures user autonomy and accountability [12], especially with the rise of analytics services that
may infringe upon GDPR guidelines [10]; thus, fostering transparency and user control is imperative
for sustaining user satisfaction and promoting app engagement.

3 Analyzing Collection Claims from Privacy Policies

In an attempt to assess the transparency of data collection practices stated in privacy policies, we
developed a two-tiered approach. This strategy is specially designed to extract and classify claims
related to user interaction data collection, a facet less explored in privacy policy analysis.

This approach aims to answer three primary questions:

— Does the privacy policy mention user interaction data collection?
— If so, what types of user interaction data are claimed to be collected?
— What techniques are claimed to be used for this data collection?

3.1 Claim Extraction

The first phase of our approach identifies whether user interaction data collection is mentioned
within a privacy policy. Instead of conventional keyword-based approaches, this extractor utilizes
semantic context to accommodate the diverse ways such claims can be articulated.

The APP-350 Corpus was utilized in this stage [16]. This corpus comprises 350 Android app
privacy policies annotated for privacy practices. However, the existing annotations primarily fo-
cused on personal data collection, which didn’t coincide with our emphasis on user interaction data
collection. Therefore, we conducted our own manual annotations.

Key Findings: Our review of the 350 app privacy policies yielded several key findings that offered
insights into the disclosure practices regarding user interaction data collection.

By doing manual annotation we found that out of the 350 analyzed apps, 294 mentioned
the collection of user interaction data at varying detail levels. However, of these 294, only 57%
(169/294) of the policies provided more specifics than a mere mention of “data” or “information.”
Upon segmenting the privacy policies into sentences, we annotated 3,661 sentences as relevant

134

4 F. Tang and B.M. @stvold

Table 2: Data collection frequencies (169 apps)

Data Type Freq.
App Presentation 98%
Categorical 60%
User Input 45%
Binary 17%
Gesture/Composed Gesture 2%
Device Data * 92%

to user interaction data collection from a total of 42,797 sentences. Table 1 presents the most
frequently occurring bigrams within these annotated sentences.

Transparency about user interaction data collection varied significantly across apps. Although
294 policies referenced such data collection, the details were often obscured by general phrases
like “we collect data to improve our service.” Our bigram analysis highlighted the common use of
third-party services in the data collection process. These services, often referred to as “tracking
technology”, are employed to automatically collect data purportedly to enhance services. “Google
Analytics”, a prominent third-party analytics service, was frequently observed in our bigram anal-
ysis, underscoring its vital role in user interaction data collection.

3.2 Claim Classification

The second phase of our approach classifies the claims. This model is innovative in its ability to
categorize claims according to user interaction data types and collection techniques. Unlike tradi-
tional binary classifiers, it acknowledges that a single sentence may convey multiple types of data
and collection techniques.

Key Findings: In our examination of the 169 privacy policies that offered more explicit infor-
mation about user interaction data collection, we found that only 56 policies clearly stated the
collection techniques, such as “the times you click a page” or “the time you spend watching con-
tent”.

To standardize vocabularies and taxonomy for classification purposes, we utilized data types
and collection techniques from our previous work, known as collection vocabularies [12]. These
vocabularies included six types of interaction data and an additional category named device data,
which we observed is commonly collected alongside interaction data. The frequencies with which
of different data collection types are mentioned in the policies are shown in Table 2.

The descriptions given by the apps about their collection techniques were often vague. Of the
56 apps that vaguely mentioned the techniques used, all referred to frequency, representing 100%
of this subgroup. A substantial but smaller portion, 48% (27 out of 56), mentioned duration, using
phrases like “time spent watching” or “length of service use”. However, only a mere 1.8% (1 out
of 56) of these apps mentioned motion.

Transparency was lacking in the descriptions of user interaction data collection types and
techniques. Of the 294 apps that acknowledged data collection, a majority, 84% (248 out of 294),
categorized the collected data as “non-personal data”, without providing further details. Such
categorization seemed to be used to justify sensitive actions like “aggregation”, a method mentioned
by 43% (126 out of 294) of these apps, and “transfer to third-party services”, an action mentioned

! While not part of interaction data, it is a crucial component often collected alongside interaction data.

This includes information such as the International Mobile Equipment Identity (IMEI) number, device
model, operating system, and other device-specific identifiers.

135

Comparing Policy Claims to Implementations 5

by 68% (199 out of 294). Furthermore, almost half, 48% (141 out of 294), acknowledged using
“automatic collection” methods.

Further details on dataset analysis, along with the training and testing procedures for both the
claim extractor and claim classifier, can be found in the Appendix under Section A.

4 Analyzing Collection Evidence from Application Code

Once the collection claims from the privacy policy have been extracted, we seek to validate these
claims by investigating the application code for tangible signs of data collection. Our attention is
primarily devoted to identifying and categorizing the embedded data collection techniques within
the mobile app. The approach we adopt for static analysis explicitly targets user interface (UI)
elements and the invocations to analytics libraries from these Ul elements. Following identification,
these elements are classified based on a predefined collection vocabulary that we have introduced
in [12]. This vocabulary was generated through a meticulous examination of all Android UI widgets
and it captures a broad range of user interaction data types and collection techniques. The detailed
terms for types of user interaction data and collection techniques employed in our study are listed
in the Appendix.

The collection vocabulary not only allows for a structured classification of data collection in-
stances but also facilitates the mapping between the collection evidence found in the code and the
claims made in the privacy policy. The usage of this comprehensive vocabulary ensures that we
can conduct a granular comparison later in the fact-checking process.

Through our analysis, we aim to answer the following questions:

— Which analytics libraries are being utilized by the mobile app?
— What types of user interaction data are being collected?
— Which techniques are employed for data collection?

4.1 Analytics Library Identification

In the first stage of our code analysis, we focus on identifying the analytics libraries that are used
by the mobile apps. It is common for apps to utilize such libraries to gather and analyze user
interaction data, providing developers with valuable insights into user behavior.

To achieve this, we target a set of popular analytics libraries as our initial point of focus. These
libraries are often integral to tracking user interactions and facilitating data collection. Hence,
recognizing these libraries’ invocations serves as an efficient guide to pinpoint locations where user
interaction data collection is likely to take place.

Our analysis primarily focuses on the classes that engage with Ul elements, carefully examining
the imported analytics libraries along with their respective method invocations. We constrain our
investigation to a selected set of methods belonging to popular analytics libraries that are frequently
utilized for data collection. In this context, we adopted the list of the top 20 analytics services for
Android apps listed on AppBrain?. Prior understanding of these frequently used analytics libraries
and their APIs forms a crucial foundation for this stage of our analysis.

4.2 Categorizing Data Types and Collection Techniques

Following the identification of analytics libraries, our objective is to establish links between the UI
elements and the corresponding bytecode that manages user interactions. UI actions such as button
presses trigger specific methods within the bytecode. Thus, we delve into both XML files, which de-
fine the UI elements, and the bytecode, which dictates the actions corresponding to these elements.

2 https://www.appbrain.com/stats/libraries/tag/analytics/android-analytics-libraries

136

6 F. Tang and B.M. @stvold

Table 3: Types of user interaction data and corresponding Ul elements

Interaction Data Types Android UI Elements

App Presentation View (TextView, VideoView, WebView, etc.)

Binary Button (ImageButton, CheckBox, etc.)

Categorical AbsSpinner (Spinner), CompoundButton (RadioButton,
Switch), RatingBar

User Input TextView (EditText, AutoCompleteTextView, SearchView)

Gesture GestureDetector, ViewPager, SwipeRefreshLayout

Composite Gestures GestureDetector (ScaleGestureDetector)

The examination of these components often provides insights into the type of user interaction data
being collected.

For instance, consider a simple scenario where a Firebase Analytics library is employed in an An-
droid app. A button click in the Ul represented as <Button android:onClick="buttonClick"/>
in the XML file, would trigger a corresponding buttonClick(View view) method in the Java
code. The interaction with the analytics library within this method could look something like this:

public void buttonClick(View view) {

FirebaseAnalytics mFAnalytics = FirebaseAnalytics.getInstance(this);
Bundle params = new Bundle();

params.putString ("Button_name", "buttonl");

params.putString ("Action", "click");

mFAnalytics.logEvent ("ButtonClick", params);

Here, an invocation to the Firebase Analytics library occurs whenever the button is clicked,
recording the button’s name and the associated action. This example highlights that click data is
collected each time the button is clicked.

Though this method generally proves effective in discerning the types of user interaction data
being collected, it is important to note that some complexities in the bytecode may obscure certain
data collection events. Additionally, data collected outside of standard UI interactions, such as
device-generated data or data from non-UI sources, may not be captured by this approach. Building
upon the successful linking of UI elements to their corresponding analytics library invocations, we
categorize the extracted data based on predefined interaction data types and collection techniques.
Our initial focus is on the types of user interaction data, where we aim to classify the data according
to their corresponding UI elements. Table 3 presents a classification of interaction data types
associated with common Android Ul elements.

In the table, the main Android UI elements represent the core classes or interfaces in the
Android UT hierarchy. For instance, View is a fundamental class for UI widgets in Android, and
the various UI elements like TextView, VideoView, and WebView are its subclasses, hence included
as its subcategories.

In this process, we perform an inspection of each Ul element across the XML files, which define
the UI, and the code files that handle these UI elements. Accordingly, the type of user interaction
data is ascertained based on the functionality attributed to the UI elements.

Identification of Collection Techniques Our approach to identifying the collection techniques
for user interaction data consists of two components: rules-based identification using predefined
criteria, and criteria obtained from a detailed analysis of popular analytics libraries’ documentation.

In rules-based identification, we create a set of heuristics centered on invocations of An-
droid or Java methods, which are associated with different collection techniques. For instance,

137

Comparing Policy Claims to Implementations 7

the “frequency” technique can be inferred from the event logging invocation. Techniques like
“duration” collection can be suggested by invocations of methods from the Java Timer class or
android.os.SystemClock.elapsedRealtime (). Similarly, “motion details” collection stem from
methods in the MotionEvent class, such as getPressure(), getX(), and getY().

The second component of our approach involves using criteria obtained from the documentation
of widely-used analytics libraries, such as Firebase Analytics and Mixpanel. Once the specific API
methods used for different collection techniques in these libraries are identified, they are added to
our categorization list. For instance, Firebase Analytics’ logEvent () method, with parameters like
select_content and view_item, can log the frequency of user interactions. On the other hand,
Mixpanel uses the track() method with event names to record frequency. For recording duration,
Firebase Analytics uses the user_engagement event, capturing user engagement duration, while
Mixpanel provides the time_event () method to time events’ duration.

While this approach provides a systematic and informed means to identify collection tech-
niques, it also has limitations. For example, if an app uses a custom package without Java or
Android method invocations, or if it uses a third-party service not included in our list, our catego-
rization method may not accurately identify the collection technique used. Further details on the
performance metrics are provided in the Appendix under Section B.

5 Fact-Checking Privacy Policy Claims

Upon completing the static analysis and organizing the privacy policy collection claims, we have the
necessary foundation to perform a fact-checking analysis on these claims. The goal of this process
is to detect any inconsistencies between the data collection practices described in the policy and
the actual practices observed in the application code. The process unfolds in two stages:

5.1 Mapping Interaction Data Types and Collection Techniques

In the first stage, we create a mapping between the types of data outlined in the privacy policy
and the equivalent interaction data types pinpointed during our static analysis. A similar mapping
is constructed for each collection technique stated in the policy and the corresponding technique
identified within the application code.

For instance, suppose a privacy policy declares, “We collect the content you provide”, implying
the collection of user-input data. During our static analysis, we identify the invocation of EditText
elements in the application code, which signifies user input in Android. We then form a mapping
between the phrase “We collect the content you provide” from the privacy policy and the EditText
elements found in the code.

In another case, if the policy statement indicates, “We track how long you spend on our ser-
vices”, this suggests the usage of a duration-based collection technique. Suppose we identify the
invocation of android.os.SystemClock.elapsedRealtime () in the code, which measures elapsed
time, a mapping is established between the policy phrase “We track how long you spend on our
services”, and the this invocation in the code.

These mappings provide a basis for comparing the privacy policy’s claims to the actual evidence
in the code, allowing us to assess the consistency between policy declarations and the application
code’s actual practices.

5.2 Interaction Consistency Analysis

Having established the mappings, we can compare the data types and collection techniques from
the privacy policy to those discovered in the code. This allows us to calculate the Interaction
Consistency Rate, which measures the extent of consistency between the collection evidence

138

8 F. Tang and B.M. @stvold

identified in the static analysis (categorized by data type and collection technique) and the cor-
responding claims in the privacy policy. This rate represents the proportion of collection evidence
found in the code that is accurately claimed in the policy.

An inconsistency may arise if, for example, our static analysis uncovers EditText invocations,
but there is no mention of “user input data” in the app’s privacy policy. Note that our analysis
focuses on correlating claims made in the privacy policies with evidence gleaned from our static
analysis. This means that if data collection is linked with a UI element that falls outside the scope
of our static analysis, such collection will not be included in our investigation.

5.3 Context Consistency Analysis

The second stage of our analysis involves a context-based examination to comprehend when user
interaction data is collected. Our motivation for conducting a context-based analysis is based on
our preliminary observation from the APP-350 dataset, where 74% of the policy sentences related
to user interaction data collection also described the context, for example, “We collect information
on how you interact with our service when you are making a purchase.”

To accomplish this, we review the app’s code and identify unique contexts under which data
collection takes place. The contexts we consider here are confined to those directly linked with
identifiable criteria in the bytecode, thereby limiting our scope to certain discernible contexts.

Our approach for constructing a context catalog began with a careful selection of Android
apps. We chose a representative sample of 25 apps from five distinct categories within the Google
Play Store in Germany. 3 The categories selected were: “Social Networking”, “Health & Fitness”,
“Entertainment”, “Productivity”, and “Finance”. These categories were chosen for their popularity
and the likelihood that they would handle a decent amounts of user interaction data. Each of
these apps underwent a detailed static analysis. We scanned their bytecode for instances of user
interaction data collection, focusing on the specific contexts in which this collection occurred.

Through this process, we identified and organized recurring contexts across the different apps.
These common contexts, indicative of typical scenarios associated with user interaction data collec-
tion are developed into a generalized catalog. While not comprehensive, this catalog, as presented
in Table 4, provides an informative overview of the most common user actions and apps states
where interaction data collection is likely to occur.

Based on this catalog, we calculate the Context Consistency Rate, which measures the
degree of consistency between the data collection contexts identified in the static analysis and
those outlined in the privacy policy. This rate indicates the proportion of collection contexts found
in the code that are accurately represented in the policy.

We recognize that our catalog cannot encapsulate all possible contexts due to the complexity
and diversity of user interactions and app functionalities. Furthermore, our policy claim checks rely
on language model-assisted vocabulary matching, which might not guarantee absolute precision.
These factors should be considered when interpreting the Context Consistency Rate.

6 Experiment

In this section, we present the results of a large-scale analysis conducted on a set of 100 Android
apps. Through this comprehensive examination, we aim to gain insights into the landscape of user
interaction data collection practices as reflected in their privacy policies and underlying code. This
analysis forms the basis of our discussion on the consistencies and discrepancies between policy
claims and actual code execution.

3 The German Google Play Store was selected for its adherence to the GDPR, ensuring that the apps
included in the study would have well-constructed privacy policies. https://play.google.com/store/apps?
hl=en_US&gl=DE

139

Comparing Policy Claims to Implementations 9

Table 4: Catalog of contexts for user interaction data collection

Context Identifiable Criteria in Code

Viewing Content Invocation of certain View Ul elements (e.g., TextView/ImageView).
Making Purchase Calls to Android Google Play payment service APIs.
Location-Based Services Invocation of Android Location APIs.

Interacting with Media Calls to media-related APIs (e.g., Media Player, Media Recorder).
Search Invocation of SearchView UI elements.

Notifications Interactions with NotificationManager API.

Accessing User Profile Invocation of User Profile related APIs (e.g., AccountManager).
Sensor-based Features Use of Android Sensor APIs.

Communication Features Use of communication-related APIs (e.g., TelephonyManager).

Gameplay Interactions Calls to APIs related to gameplay, typically seen in game apps.
Customization Features Invocation of APIs related to customization (e.g., changing theme).
6.1 Setup

Our experimental analysis is based on a set of Android apps obtained from the Google Play
Store in Germany. To ensure a comprehensive and varied dataset, we selected the top 100 apps
from 10 distinct popular categories. These categories included varied domains such as “Lifestyle”,
“Education”, “Travel”, and 'Entertainment’ among others, chosen for their relevance to a broad
spectrum of users and potential data collection diversity.

We employed two key criteria for selecting these apps: (1) The categories and apps should be
disjoint to avoid overlap and redundancy in our dataset. This approach was crucial to ensure that
each app provided unique insights into user interaction data collection practices. (2) Every app
must have a corresponding English privacy policy webpage linked in its “Data Safety” section. This
criterion was essential to facilitate the analysis of privacy policies against actual app behaviors,
and to ensure that all apps adhered to the GDPR. The chosen apps represented a mix of global
popularity and regional relevance.

In this experiment, we assess the data’s consistency from privacy policies against static analysis
results using two primary metrics: the Interaction Consistency Rate and the Context Consistency
Rate, detailed in Section 5. These metrics measure the alignment of data types and collection con-
texts between policy claims and code evidence. We also introduce the Interaction Consistency
Coverage Rate and the Context Consistency Coverage Rate to determine the completeness
of our analysis, identifying any potential gaps in our static analysis method. These coverage rates
help pinpoint areas not covered by our analysis, ensuring a thorough evaluation of privacy policy
claims.

6.2 Overview of User Interaction Data Collection Practices

In our overview of 100 apps, illustrated in Fig. 2, indicate that 14% of the apps do not mention
any form of user interaction data collection in their privacy policies. Approximately a third of the
apps (29) acknowledge data collection but do not specify the type of data collected or the method
of collection. These policies often contain general statements such as, “we use statistical tools to
collect non-personal data such as usage details.” It is important to note that the more detailed
policies tend to describe the types of data collected more than the methods of collection.

Our analysis showed an Interaction Consistency Rate of 58%, indicating how often app behav-
iors matched their policy claims regarding collected data types. The Context Consistency Rate

140

10 F. Tang and B.M. Ostvold

was 32%, reflecting how well the context of data collection in the app code aligns with policy
claims. These rates reveal a clear gap in transparency, with our static analysis capturing most data
collection instances and contexts, evidenced by an Interaction Consistency Coverage Rate of 86%
and a Context Consistency Coverage Rate of 71%.

[0 Both type and technique

O Data type only
O Collection technique only
O Mention the collection only
14% O None

7%

Fig. 2: Policy claims completeness regard to interaction data collection

Gesture@17 &% of apps 2% of apps

Motion 21
Input 65
Categorical =39 Duration T 72
Binarymm—igy
Presentation! 1100 Frequency! 1100
Fig. 3: Data type distribution Fig. 4: Collection technique distribution

Figs. 3 and 4 display the distribution of interaction data types and collection techniques iden-
tified in our static analysis of the apps’ code. The analysis shows that app presentation data and
binary data, such as screen content and button clicks, are commonly collected. Moreover, the col-
lection of user input data, particularly in relation to user preferences and surveys, is a frequent
practice.

In terms of collection techniques, frequency and duration emerge as common methods. No-
tably, many apps do not disclose duration-based data collection in their privacy policies. This lack
of mention further emphasizes the transparency issues in the way apps communicate their data
collection practices.

Our analysis identified five categories of apps that most frequently engage in user interaction
data collection: social, entertainment, shopping, gaming, and lifestyle. The extent of data collection
in these categories can be attributed to two key factors. First, the intrinsic characteristics of the
category, such as social networking and entertainment, necessitate understanding user behavior
for the personalization of services. Second, the complexity of functionality in certain categories,
like gaming, often requires learning from user interactions to optimize user experiences. Likewise,
lifestyle apps might need to track user actions within the app to function effectively.

Note that almost all apps, across categories, engage in some form of user interaction data
collection. However, the level of transparency in detailing such practices in their privacy policies
varies widely. The majority of these policies lack completeness, indicating a trend of incomplete
disclosure about user interaction data collection practices. This highlights the urgent need for more
transparent and detailed communication about these practices in app privacy policies.

141

Comparing Policy Claims to Implementations 11

6.3 Case Study: In-depth Analysis of Four Popular Apps

We conducted an in-depth case study on four popular apps from the German Google Play Store
to evaluate their privacy policies against actual data collection practices. Our selection included
WetterOnline, Temu, Poe, and Plant App. Notably, except for Temu, the expected data collection
scope for these services should be minimal. Yet, our static analysis revealed discrepancies in policy
transparency, particularly in specifying data collection contexts. Table 5 provides an examination
of their policy claims alongside our fact-checking results.

The analysis showed that while Temu was fairly transparent, the other apps were vague, often
using broad terms such as “interaction with our service”, which lacks detail. WetterOnline and
Plant App were particularly limited in disclosing their data collection methods, and Poe’s policy
was almost silent on its data collection specifics. These findings highlight the critical need for
clarity in privacy policies, especially since vague policies can mask practices that might lead to
user profiling or re-identification, compromising user trust.

Moreover, the categorization of all user interaction data as non-personal and solely for com-
mercial use is concerning. The extensive behavioral data collected could, when linked with unique
identifiers, potentially be used to re-identify users. This underscores the urgent need for policies to
more accurately reflect data use, aligning with our aim to ensure user privacy and trust in mobile
apps.

7 Related Work

The analysis of mobile app privacy policies, particularly focusing on user interaction data, forms
the core of our research, extending beyond the typical scope of existing studies. While prior research
employing NLP techniques has significantly contributed to understanding privacy policies [13,9],
our work uniquely concentrates on the nuanced aspects of user interaction data collection. Tools like
PrivacyFlash Pro [15] and AutoCog [8] have laid the groundwork in aligning privacy policy claims
with app behaviors, but their focus on personal data leaves a gap in addressing user interaction
data, which our study aims to fill.

In the field of static analysis for app security and privacy [1,4,14], existing efforts have primarily
analyzed app bytecode for data leaks and privacy violations without specifically targeting user in-
teraction data. Our research contributes to this field by introducing an automated method that not
only evaluates privacy policy disclosures but also correlates them with actual app behaviors con-
cerning user interaction data. This approach not only enhances transparency but also fosters trust
in the mobile app ecosystem, addressing a critical area that has been previously overlooked. Our
work, thus, adds a dimension to the current understanding of mobile app privacy and automated
data collection practices.

8 Conclusion and Future Work

Through this research, we investigated the collection of user interaction data in mobile apps, often
claimed as anonymized but raising privacy concerns. Recent studies suggest that even anonymized
data could be re-identified, challenging the idea of complete privacy protection. We developed
a method to compare privacy policy statements with app behaviors, highlighting the need for
transparent data collection practices. Our initial results demonstrate effectiveness in identifying
the gap between stated practices and actual policy claims regarding interaction data collection, a
discrepancy that could erode user trust.

Looking forward, expanding the research to include more apps and platforms will deepen our
understanding of data collection practices. Future studies should also examine the classification of
user interaction data, typically considered non-personal, and its potential impact on user profiling
and privacy.

142

12

F. Tang and B.M. Ostvold

Table 5: Fact-checking data collection claims wrt. evidence for 4 popular apps. Red text means
types of user interaction data missing from the privacy policy/collection claims, while blue text
means undisclosed techniques of collection.

App Policy Claims Collection Evidence

The goal of usage measurement is to determine Interaction Consistency Rate: data type 3/4;

g the intensity of use, the number of uses and users collection technique 1/2.
= of our application, and their surfing behavior Context Consistency Rate: 1/6.
2 statistically. The information about the use (..., Data types: presentation, categorical, binary,
o the site visited, date and time of your visit. The user input.
.% event-driven data collection ... is triggered by ac- Collection techniques: frequency, duration.
S tivities such as installation and start of the app, Context: viewing content, location, search, noti-
..., and in-app purchases as well as the receipt, fication, sensor-based, customization.
the swipe and the opening of push-messages and
the opening and updating of the app by means
of a dynamic link. For each of these events the
number of visits, the number of users trigger-
ing the event and, if available, the value of the
events is collected.
Online activity data, such as pages or screens Interaction Consistency Rate: data type 3/5;
§ you viewed, how long you spent on a page or collection technique 3/3.
E screen, the website you visited before browsing Context Consistency Rate: 1/10.
to the Service, navigation paths between pages Data types: presentation, categorical, binary,
or screens, information about your activity on user input, gesture.
a page or screen, access times and duration of Collection techniques: frequency, duration, mo-
access, and whether you have opened our emails tion.
or clicked links within them. Context: viewing content, purchase, location,
media, search, notification, user profile, sensor-
based, communication, customization.
Our third party LLM providers and third party Interaction Consistency Rate: data type 1/3;
;U bot developers may receive details about your collection technique 0/2.
® interactions with Poe (including the contents of Context Consistency Rate: 1/6.
your chats, upvotes, etc.) to provide and gener- Data types: presentation, binary, user input.
ally improve their services, which they may pro- Collection techniques: frequency, duration.
cess in their legitimate business interests. Context: viewing content, location, search, noti-
fication, communication, customization.
During your visits, we may use software tools Interaction Consistency Rate: data type 2/5;
; such as JavaScript to measure and collect ses- collection technique 3/3.
= sion information including page response times, Context Consistency Rate: 1/8.
%> download errors, length of visits to certain Data types: presentation, categorical, binary,
kel pages, page interaction information (such as user input, gesture.

scrolling, clicks, and mouse-overs), and methods Collection techniques: frequency, duration, mo-
used to browse away from the page. tion.
Context: viewing content, purchase, location,
media, search, notification, sensor-based, cus-
tomization.

Acknowledgement This paper is an extended version of work published in [12]. This work is part
of the Privacy Matters (PriMa) project. The PriMa project has received funding from European
Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant
agreement No. 860315.

143

Comparing Policy Claims to Implementations 13

References

10.

11.

12.

13.

14.

15.

16.

. Avdiienko, V., Kuznetsov, K., Gorla, A., Zeller, A., Arzt, S., Rasthofer, S., Bodden, E.: Mining apps for

abnormal usage of sensitive data. In: The 37th IEEE international conference on software engineering.
vol. 1, pp. 426-436. IEEE (2015)

. Cretu, A.M., Monti, F., Marrone, S., Dong, X., Bronstein, M., de Montjoye, Y.A.: Interaction data

are identifiable even across long periods of time. Nature Communications 13(1), 313 (2022)

. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers

for language understanding (2019)

. Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth,

A.N.: Taintdroid: an information-flow tracking system for realtime privacy monitoring on smartphones.
ACM Transactions on Computer Systems (TOCS) 32(2), 1-29 (2014)

. Griinewald, E., Pallas, F.: TILT: A GDPR-aligned transparency information language and toolkit for

practical privacy engineering. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency. pp. 636-646 (2021)

. Leiva, L.A., Arapakis, 1., Iordanou, C.: My mouse, my rules: Privacy issues of behavioral user profiling

via mouse tracking. In: Proceedings of the 2021 Conference on Human Information Interaction and
Retrieval. pp. 51-61 (2021)

. Marda, V.: Non-personal data: the case of the Indian Data Protection Bill, definitions and assumptions

(2020), https://www.adalovelaceinstitute.org/blog/non-personal-data-indian-data-protection-bill/,
(Accessed on 28/11/2023)

. Qu, Z., Rastogi, V., Zhang, X., Chen, Y., Zhu, T., Chen, Z.: Autocog: Measuring the description-to-

permission fidelity in android applications. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. pp. 1354-1365 (2014)

. Ravichander, A., Black, A.W., Norton, T., Wilson, S., Sadeh, N.: Breaking Down Walls of Text: How

Can NLP Benefit Consumer Privacy? In: Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing. vol. 1 (2021)

Rzhevkina, A.: Several EU countries banned Google Analytics - here are some alternatives.
https://www.contentgrip.com/eu-countries-ban-google-analytics/ (September 2022), (Accessed on
03/11/2023)

Singh, A., Raghavan, M., Chugh, B., Prasad, S.: The Contours of Public Policy for
Non-Personal Data Flows in India (2019), https://www.dvara.com/research/blog/2019/09/24/
the-contours-of-public-policy-for-non-personal-data-flows-in-india/, (Accessed on 28/11/2023)

Tang, F., @stvold, B.M.: Transparency in app analytics: Analyzing the collection of user interaction
data. In: 2023 20th Annual International Conference on Privacy, Security and Trust (PST). pp. 1-10
(2023). https://doi.org/10.1109/PST58708.2023.10320181

Tesfay, W.B., Hofmann, P., Nakamura, T., Kiyomoto, S., Serna, J.: PrivacyGuide: Towards an Im-
plementation of the EU GDPR on Internet Privacy Policy Evaluation. In: Proceedings of the Fourth
ACM International Workshop on Security and Privacy Analytics. p. 15-21. IWSPA ’18 (2018)
Zhang, X., Wang, X., Slavin, R., Breaux, T., Niu, J.: How does misconfiguration of analytic services
compromise mobile privacy? In: Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. pp. 1572-1583 (2020)

Zimmeck, S., Goldstein, R., Baraka, D.: PrivacyFlash Pro: Automating Privacy Policy Generation for
Mobile Apps. In: NDSS (2021)

Zimmeck, S., Story, P.; Smullen, D., Ravichander, A., Wang, Z., Reidenberg, J.R., Russell, N.C., Sadeh,
N.: Maps: Scaling privacy compliance analysis to a million apps. Proc. Priv. Enhancing Tech. 2019,
66 (2019)

A Implementation of Claim Analysis Using BERT

We opted for BERT over GPT-3 for its bidirectional architecture, enabling a thorough contextual
understanding of privacy policies, essential for our analysis. BERT’s capacity to analyze both
left and right sentence contexts is particularly effective for interpreting complex privacy policy
language [3]. In our implementation, BERT was tailored to privacy policy language, involving

144

14 F. Tang and B.M. Ostvold

pre-processing steps like tokenization and normalization, and trained on a specialized dataset to
identify binary claims and data collection methods. We also employed bigram analysis to recognize
common word pairs, augmenting the model’s proficiency in interpreting policy language and thereby
enhancing its precision and recall.

The model achieved a precision of 95% and a recall of 98% for claim extraction. For data types
and collection methods, we observed precision and recall rates of 82% and 74%, respectively, and
for collection techniques, precision and recall stood at 92% and 78%, showcasing the model’s robust
performance.

B Code Analysis and Performance Metrics

We selected 20 popular apps from the German Google Play Store, meticulously identifying each
instance of user interaction data collection to establish a ground truth. Our static analysis method
was then evaluated against this dataset.

Our method demonstrated high accuracy (91%), precision (92%), and recall (79%), with an
overall Fl-score of 85.5%, indicating effectiveness in accurately identifying and classifying user
interaction data collection in mobile apps.

C Types of User Interaction Data & Collection Techn.s

We identified six types of user interaction data based on our analysis of Android UI widgets: App
Presentation Data, Binary Data, Categorical Data, User Input Data, Gesture Data, and Composite
Gestures Data. For a detailed explanation of these types, refer to [12]. Similarly, our study catego-
rizes collection techniques as Frequency, Duration, and Motion Details. Each technique’s specifics
are also elaborated upon in [12].

145

PAPER 7

Finding Privacy-relevant Source Code

Tang, F. and Ostvold, B. (2024). Finding Privacy-relevant
Source Code. Accepted by The 2nd International Workshop

on Mining Software Repositories Applications for Privacy and
Security (MSR4PES 2024).

146

Finding Privacy-relevant Source Code*

Feiyang Tang and Bjarte M. @stvold

Norwegian Computing Center
N-0314 Oslo, Norway
{feiyang,bjarte}@nr.no

Abstract. Privacy code review is a critical process that enables developers and legal experts
to ensure compliance with data protection regulations. However, the task is challenging due
to resource constraints. To address this, we introduce the concept of privacy-relevant methods
— specific methods in code that are directly involved in the processing of personal data. We
then present an automated approach to assist in code review by identifying and categorizing
these privacy-relevant methods in source code.

Using static analysis, we identify a set of methods based on their occurrences in 50 commonly
used libraries. We then rank these methods according to their frequency of invocation with
actual personal data in the top 30 GitHub applications. The highest-ranked methods are the
ones we designate as privacy-relevant in practice. For our evaluation, we examined 100 open-
source applications and found that our approach identifies fewer than 5% of the methods
as privacy-relevant for personal data processing. This reduces the time required for code
reviews. Case studies on Signal Desktop and Cal.com further validate the effectiveness of our
approach in aiding code reviewers to produce enhanced reports that facilitate compliance
with privacy regulations.

Keywords: Personal Data Protection - Privacy - GDPR - Static Analysis - Code Review

1 Introduction

In the realm of software development, privacy code reviews have become indispensable, especially
with the advent of stringent data protection regulations like the General Data Protection Regula-
tion (GDPR). Unlike security code reviews, which focus on existing security flaws or vulnerabilities,
privacy code reviews are concerned with the ethical and lawful handling of personal data. Although
there may be overlaps, such as in access control, the primary objectives of these two types of re-
views are distinct: security reviews aim to prevent unauthorized access, while privacy reviews aim
for compliance with data protection principles.

Privacy code reviews involve a systematic process where source code is inspected to trace the
flow of personal data. Equipped with program analysis tools, reviewers categorize these flows and
detail how personal data is processed. This analysis serves as a comprehensive guide for compliance
checks and aids Data Protection Officers (DPOs) in fulfilling their responsibilities. The process is
illustrated in Figure 1. However, the challenge arises from the complexity and sheer volume of
modern codebases, making it difficult to identify instances where personal data is processed.

Recent studies [6,7] have examined tools for identifying personal data, but less focus has been
placed on data that is dynamically changing or in active use. While categorizations exist for personal
data itself, taxonomies of the processing code are lacking. Developing a understanding of the diverse
ways data can be handled would illuminate processing activities and facilitate compliance reporting
like records of processing activities (ROPA) and data protection impact assessments (DPIA). Since
reviewing entire codebases is time-consuming, targeting reports to highlight the most relevant
aspects could better serve reviewers and streamline the compliance process. The goal should be

* Accepted by The 2nd International Workshop on Mining Software Repositories Applications for Privacy
and Security (MSRAP&S 2024).

147

2 F. Tang and B.M. @stvold

Program categorized Privacy Report DPO

Developer Code Code Reviewer !
analysis tool ~ Personal o onal data

data flows .
<> (co0) o, processing
f.sps,s_ =
[;%‘, AR 23 Ris

Fig. 1. Privacy code review process

providing clarity on key data handling activities without getting lost in an elaborate labeling
framework.

In light of these challenges, we propose an automated approach to enhance the efficiency and
effectiveness of privacy code reviews. Our approach focuses on identifying privacy-relevant methods
— specifically, Java methods or JavaScript functions commonly found in popular libraries — that
are involved in the processing of personal data. By doing so, we can pinpoint instances in real-world
applications where these privacy-relevant methods are invoked to handle personal data.

This paper addresses the following research questions:

1. How to identify privacy-relevant methods in commonly used libraries that potentially process
personal data?

2. How to categorize such privacy-relevant methods based on their actual usage in real-world
applications?

To answer these questions, we make the following contributions:

1. We present a novel static analysis technique specifically designed to identify methods in source
code that are involved in the processing of personal data. (Section 4)

2. We develop a set of labels for categorizing personal data and the methods that process them,
thereby providing a structured approach to understanding how personal data is processed in
code. (Sections 5 and 6)

3. We apply our approach to a set of popular open-source applications. Through this, we rank
privacy-relevant methods based on their frequency of occurrence, thereby identifying those that
are most critical for privacy considerations. (Section 7)

4. We provide insights to code reviewers by highlighting frequently used methods relevant to
privacy, based on our large-scale study and specific case studies. This approach streamlines the
review process, enabling a more focused and efficient identification of potential privacy risks.
(Section 8)

Our evaluation of 100 open-source applications indicates that our approach identifies fewer
than 5% of methods involved in personal data processing as privacy-relevant methods.This enables
reviewers to focus only on the identified relevant code, thereby expediting privacy code reviews.

2 Background

Code review, originally aimed at ensuring software quality by identifying bugs and performance
issues [11], has expanded to address security vulnerabilities and, more recently, privacy concerns
under data protection laws like the GDPR. Privacy-focused reviews add the complexity of ensuring
personal data is handled lawfully and ethically, a challenging task due to the often ambiguous nature
of data protection guidelines [10].

Static analysis tools are pivotal in code reviews, aiding in the identification of data flows,
security risks, and compliance issues. The effectiveness of a review is measured by its ability to
pinpoint critical problems and offer actionable solutions. Privacy code reviews, however, struggle

148

Finding Privacy-relevant Source Code 3

with identifying personal data due to unclear definitions and varied contexts, increasing reliance
on these tools despite their limitations in recognizing diverse personal data types [9].

These reviews also play a key role in creating essential compliance documents like Records of
Processing Activities (ROPA) and Data Protection Impact Assessments (DPIA). The proposed
automated approach in this paper focuses on improving the efficiency and accuracy of privacy
code reviews, specifically in categorizing personal data processing in large-scale code projects.

3 Privacy-Relevant Methods

To streamline the process of privacy code review, we introduce the concept of privacy-relevant
methods. These are specific methods that play a direct role in the processing of personal data.
Such methods can be part of standard libraries or third-party libraries, making them critical focal
points for personal data processing in software applications.

Native libraries are foundational because they offer the only pathways to device resources like
files and networks. Consequently, any operation involving data storage or transfer must go through
these native methods. Native privacy-relevant methods are those found in standard libraries of
programming languages like JavaScript and Java. These methods act as the origins (sources) for
all personal data entered by users via devices. They are also the exclusive methods that directly
transmit this data to other devices or services. We categorize these native methods into domains
such as I/O, Database, Network, Security, following the guidelines of existing research [8]. We
identify these methods through a systematic manual review that includes an examination of doc-
umentation, source code, and actual usage patterns.

To facilitate the identification and categorization of native privacy-relevant methods, we con-
ducted an in-depth analysis of key modules like java.io, java.security, and java.util for
Java, and their equivalents in JavaScript. This analysis helps us compile a complete set of native
privacy-relevant methods, denoted as Native, that are involved in personal data processing.

4 Identifying API Privacy-relevant Methods

Native privacy-relevant methods form the basis for identifying what we refer to as API privacy-
relevant methods. These are methods found in third-party libraries and frameworks that are likely
to process personal data by calling upon native privacy-relevant methods. Understanding the re-
lationship between API and native methods is crucial for a complete review of how personal data
is processed in a codebase. The identification process is iterative and takes into account the de-
pendencies between libraries and codebases, as depicted in Fig. 2. The goal is to assemble a list
of API privacy-relevant methods that have the potential to handle personal data. Understanding
the relationship and dependency hierarchy among these libraries is essential for accomplishing this
task.

Privacy-relevant Methods

[(Native Privacy-relevant Methodsj](S

~ =~

,,' invoke) : = Application Code
1

[(API Privacy- reievant Methodsj]k’ -~ invoke

Fig. 2. The relationships between privacy-relevant methods and application code

149

4 F. Tang and B.M. @stvold

4.1 Dependency Sorting and Identification of Privacy-relevant Methods

To manage library dependencies, we focus on import statements within each library’s source code.
We organize the libraries in a sequence such that each library is evaluated only after all its depen-
dencies have been assessed. This ensures a logical and efficient evaluation process.

For the identification of API privacy-relevant methods, we define a set denoted as API. This set
includes methods from our organized list of libraries that invoke native privacy-relevant methods
at some point during their execution. These methods are significant as they interact with native
methods, either directly or through a chain of calls, making them critical for privacy code review.

5 Labels for Personal Data Processing

Compliance with data protection regulations like GDPR necessitates a nuanced understanding of
how personal data is processed within code. While GDPR, outlines various processing activities such
as collection, recording, and organization, the four native privacy-relevant method categories [8]
we previously discussed (I/0, security, database, and network) lack the granularity needed for
comprehensive understanding. For instance, the security category encompasses both authentication
and encryption, warranting a more detailed labeling system.

After analyzing top labels from Maven and NPM that pertain to personal data processing,
we identified 20 labels that closely align with both GDPR’s definitions and our native privacy-
relevant method categories. This shows how libraries handle data processing in different ways. For
example, OAuth combines network and security functionalities, while Object-Relational Mapping
(ORM) bridges database and I/0 operations. These overlaps underscore the necessity for a detailed
set of labels tailored for privacy reviews. We present these labels and their alignment with GDPR
requirements in Table 1.

These labels serve a dual purpose: they categorize methods involved in data processing activ-
ities like collection, storage, and encryption, and they map these activities to GDPR compliance
requirements. This streamlined mapping simplifies the task of identifying code sections that need to
comply with legal standards. In our later approach, we use these labels to prioritize privacy-relevant
methods, enabling a focused review on areas critical for data protection.

6 Process of Identifying Personal Data

Before delving into the approach, it is crucial to differentiate between personal data and personally
identifiable information (PII). While both are subsets of information that relate to an individual,
PII is a category of data that directly identifies a person. Examples include account information,
contact details, personal IDs, and national IDs. Not all the 10 categories of personal data we
consider below fall under PII. The exposure of PII is especially concerning as it could lead to
personal or psychological harm, such as identity theft.

Our primary aim is to identify the flow of personal data within a codebase, focusing on its
cruicial implications for privacy. To achieve this, we use a pattern-matching technique inspired by
Tang et al. [?]. This technique effectively identifies data from 10 categories, including Account,
Contact, Personal ID, Location, and National ID. We employ Semgrep, a tool tailored for pattern
matching in code, to facilitate this process. Semgrep’s rules are specifically designed for Java and
JavaScript languages.

6.1 Static Analysis for Personal Data Identification

The initial phase of our approach involves using static analysis to locate code fragments that
contain personal data. We use Semgrep for this task, given its efficiency and flexibility in analyzing
large codebases. We rely on Semgrep’s support for multiple languages and its capabilities for local
data flow analysis.

150

Finding Privacy-relevant Source Code

Table 1. Alignment of the labels with GDPR requirements

Category

GDPR Alignment

Identity and Access Management (IAM):

managing users’ identities and regulating their access to resources.
It is based on the libraries that perform authentication and access
control.

Article 32: Robust measures,
including authentication.

Data Encryption and Cryptography (DEC):
cryptographic operations enhancing the security and privacy of
personal data. DEC specifically targets data encryption.

Article 32: Data
pseudonymization and
encryption.

Data Storage, Management, and Deletion (DSMD):
handling the storage, retrieval, and deletion of personal data.
DSMD extends the “database” category to incorporate data dele-
tion methods, focusing on the lifecycle management of personal
data in storage systems.

Article 5(1)(e): Data reten-
tion only as long as neces-
sary.

Data Processing and Transformation (DPT):

carry out transformations or processing on personal data, includ-
ing anonymization, aggregation, and other forms of data manip-
ulation. DPT also includes Object/Relational Mapping methods
that facilitate the conversion between incompatible type systems
in object-oriented programming languages and databases.

Article 30: Mandatory record
of processing activities under
responsibility.

Network Communication (NC):
methods that send or receive personal data over a network, focus-
ing on personal data transmission.

Article 44: Controlled data
transfer.

Logging and Monitoring (LM):

methods that handle the recording, monitoring, and retrieval of log
entries that may contain personal data. It emphasizes the tracking
and auditing activities that involve personal data.

Artical 5(1)(c): Principle of
data minimization. Article
5(1)(e): Data retention only
as long as necessary.

6.2 Defining Sources of Personal Data

In the context of our analysis, sources refer to instances where personal data appears. We identify
personal data in two ways: 1) as literal text present in the source code, and 2) as variables, based
on their name identifiers. Our identification rules are designed to support Java, JavaScript, and
TypeScript but can be extended to other languages that Semgrep supports.

6.3 Rule Crafting for Identification

To pinpoint literal personal data, we use regular expression (regex) matching. This comes into play,

for example, when identifying the format of national ID numbers. For variable sources, we maintain

a default list of identifiers that correspond to the 10 categories of personal data. These identifiers
help us formulate Semgrep rules. To reduce false positives, we impose specific conditions on these
regex rules. For instance, to capture all human names in the code, we use a regex pattern that ac-
commodates variations like first, last, and full names: (?i) . (?:first|given|full|last|sur(?!geon))
[s/(;) 1 ,=!>]name).

7 Data-based Ranking of Privacy-relevant Methods

Our data-based ranking is designed to identify and prioritize privacy-relevant methods in Java and
JavaScript applications. This ranking process comprises several stages, as depicted in Fig. 3, using

151

6 F. Tang and B.M. @stvold

Native Libraries Popular API Libraries
invok
[(Native Privacy-relevant Methodj](—l—n—v—o -2 -[(API Privacy-relevant Methodj]
T o D
1 'I
|}
9 “ ,/, 9
invoke ¥ _"invoke
A -
s{Application MethodW
R (o Personal data
rank Top Starred Application

@ Soot analysis
@ Semgrep analysis

Fig. 3. Overview of the Java ranking. The circled numbers represent different static analysis tools used for
the analysis step. Soot was applied to Java bytecode, while Semgrep was used for source code analysis.

the Java ranking as an example. By analyzing data from real-world applications, we aim to provide
a practical guide for identifying methods that are most relevant for privacy concerns.

7.1 Library Selection for Data-based Ranking

To focus our data-based ranking on the most relevant libraries, we selected the top 25 libraries from
NPM for JavaScript and Maven for Java, shown below in Table 2. Our selection criteria were based
on the libraries’ relevance to personal data processing, as aligned with our set of labels for personal
data processing activities. This selection was made through a systematic review of each library’s
documentation, specifically targeting functionalities that are related to personal data processing.

7.2 Method Invocation Analysis

We employed static analysis tools to identify method invocations and analyze data flows within
the code. For Java, we used Soot [14] to construct call graphs and trace method invocations. In the
case of JavaScript, we used ESLint ! for its capabilities in Abstract Syntax Tree (AST) analysis.
Our analysis matched these invocations to our list of native privacy-relevant methods, providing a
view of how these methods are used in practice.

7.3 Selecting Open-source Applications

To rank privacy-relevant methods, we selected 30 popular open-source GitHub projects with over
100 stars in Java and JavaScript. We focused on applications processing personal data rather than
frameworks and libraries.

The selection included 15 Java applications such as the e-commerce software Shopizer, and 15
JavaScript applications like the chat application RocketChat. We also included projects predom-
inantly in Java/JavaScript that use other languages like TypeScript for some modules. Criteria
were: popularity (applications with high stars, indicating broader relevance), data sensitivity (ap-
plications processing personal or sensitive data, highly relevant for privacy reviews), diversity
(applications from different domains and languages, showing wide applicability), and public avail-
ability (open source code enables reproducibility and transparency). The details of these selected
projects are provided in Table 4.

! https://eslint.org

152

Finding Privacy-relevant Source Code

Table 2. Selected popular libraries: 25 for each language

Category Maven Libraries (Java) NPM Libraries
(JavaScript)

Identity and Access Keycloak, Apache Hadoop Google Identity Platform,

Management (IAM) Auth, GRPC Auth, Identity @azure/identity, Passport.js,

API, CAS Server Core Au-
thentication API

jsonwebtoken, berypt.js

Data Encryption and
Cryptography (DEC)

Bouncy Castle, Jasypt,
Apache Shiro, Nimbus
JOSE+JWT, Cryptacu-
lar

scrypt-js, Beryptjs, Jsonwebto-
ken, node-rsa, openpgp

Data Storage, Man-
agement, and Deletion
(DSMD)

H2 Database Engine, Spring
Data MongoDB Core, Post-
greSQL JDBC Driver, Apache
Cassandra, MongoDB Driver

Sequelize, Mongoose, Knex.js,
nedb, pg (node-postgres)

Data Processing and
Transformation (DPT)

Hibernate, MyBatis, Apache
Spark, Spring Batch, Map-
Struct

Prisma, Ramda, Immutable.js,
async, moment

Network Communica- Netty, Apache HttpCompo- Axios, Request, Socket.IO,
tion (NC) nents, OkHttp, Retrofit, Http- node-fetch, WebRTC

Client
Logging and Monitoring Log4j, slf4j, Logback, Apache Log4js, Morgan, Winston,
(LM) Commons Logging, jboss- Bunyan, Pino

logging

7.4 Efficient Analysis of Library Imports

To make the analysis efficient, we first identified the libraries imported by each application. For
standard libraries, we assumed their presence in most applications. For API libraries, we examined
import statements and configuration files to narrow down our focus to the top 50 pre-selected
libraries, 25 each for Java and JavaScript.

7.5 Ranking Privacy-relevant Methods in Top 30 Applications

We employed Semgrep to monitor the flow of personal data into privacy-relevant methods invoked
by application code. Utilizing Semgrep’s DeepSemgrep 2 capability for cross-file analysis, we were
able to comprehensively analyze data flows across entire applications, as opposed to only examining
isolated code snippets. This provided a holistic perspective of how personal data propagates across
different components.

Using Semgrep’s taint analysis and the rules outlined in Section 6, we traced personal data
flows to privacy-relevant methods.

To assess the practical relevance of our identified privacy-relevant methods, we introduce the
following usage-based metrics, presented in Table 3:

We ranked privacy-relevant methods by analyzing their usage in the 30 popular GitHub projects
introduced above, with an average of 358 application methods processing personal data per applica-
tion. This varied by language and type: Java applications averaged 288 methods, while JavaScript
had 363. The higher average in JavaScript was likely due to its more diverse front-end processing,
reflecting the complexity and multifaceted nature of these applications.

2 https://semgrep.dev/blog/2022/introducing-deepSemgrep/

153

8 F. Tang and B.M. @stvold

Table 3. Usage-Based Metrics for Ranking Privacy-relevant Methods

Metric Description

Enumerates the overall instances a method is invoked across applications,
offering insights into its regularity of processing.

Method Occurrence

PII-Related Method
Frequency

Measures the proportion of times a method interacts with PII, highlight-
ing its involvement with sensitive data.

Captures the aggregate appearances of a particular category across ap-
plications, revealing the ubiquity of distinct processing modalities.

Category Occurrence

PII-Related Category
Frequency

Assesses the percentage of methods within a category that engage with
PII, reflecting its sensitivity quotient.

To better focus our approach, we calculated the proportion of application methods that both
invoke a privacy-relevant method and process a concrete flow of personal data (there is confirmed
personal data flow into the method). This is relative to the total number of methods in the ap-
plication. This metric indicates the level of focus in identifying privacy-relevant methods, allowing
developers to narrow their efforts to a more relevant subset of the code. In essence, our approach
aims to minimize the code sections that need scrutiny, saving both time and resources. For more
details on these proportions in selected open-source Java and JavaScript/TypeScript applications,
see Table 4.

Table 4. List of 30 selected open-source applications written in Java and JavaScript (JS)/TypeScript
(TS), along with their descriptions. And the calculated percentages of application methods that invoke
identified privacy-relevant methods and are involved in the concrete flow of personal data, relative to the

total number of methods in each application.

Lang. Project Name Description |AM]|/|Total| Prop.
Java Apache James A mail server fully written in Java. 531/18,332 2.9%
Java Apache OFBiz A product for the automation of enterprise processes. 376/10,448 3.6%
Java DSpace A turnkey institutional repository application. 141/5,769 2.4%
Java Broadleaf An eCommerce platform based on the Spring Framework. 591/11,586 5.1%
Java Shopizer A web-based Java eCommerce software. 492/10,318 4.7%
Java OpenMRS A platform that enables the design of a medical records system. 336/8,621 3.9%
Java Apache Nutch A highly extensible and scalable web crawler software project. 18/2,194 0.8%
Java JabRef An open source bibliography reference manager. 154/9,621 1.6%
Java Apache Roller A Java-based full-featured, multi-blog, multi-user server. 112/1,983 5.6%
Java Apache Camel A framework integrates systems consuming/producing data. 198/20,471 0.9%
Java Keycloak An identity and access management for apps and services. 843/17,562 4.8%
Java OpenCms A professional level website content management system. 446/13,932 3.2%
Java Waltz A web app managing the architectural landscape of enterprises. 11/2,093 0.5%
Java H20 A distributed, fast, and scalable ML and analytics platform. 20/14,231 0.1%
Java RapidMiner A data science platform with an integrated environment. 58/7,949 0.7%
JS Ghost A fully adaptable platform for building online publications. 400/6,452 6.2%
TS Jitsi Meet A WebRTC JS application for scalable video conferences. 226/3,905 5.8%
TS KeystoneJS A scalable platform and CMS to build Node.js applications. 145/1,882 7.7%
JS Reaction A commerce platform built using Node.js and GraphQL. 462/4,921 9.4%
TS Rocket.Chat A free open-source solution for team communications. 490/12,841 3.7%
JS Strapi An open-source Headless CMS Front-End. 347/6,796 5.1%
JS Gatsby A framework based on React helping build websites and apps. 241/10,042 2.4%
JS Etherpad A modern real-time collaborative document editor. 82/2,175 3.7%
TS Vue Storefront An open-source frontend for any eCommerce. 428/6,291 6.9%
TS Mattermost A platform for secure collaboration across the entire SDLC. 784/18,231 4.3%
JS Apostrophe CMS An in-context CMS built on Node.js and MongoDB. 99/1,896 5.2%
JS Expensify An app of financial collaboration centered around chat. 511/6,721 7.6%
JS Wiki.js A modern and powerful wiki app built on Node.js. 36/1,194 3.0%
TS AFFIiNE A knowledge base that enables planning, sorting and creating. 1066/12,845 8.3%
TS Boostnote A note-taking app made for programmers. 134/4,956 2.7%

154

Finding Privacy-relevant Source Code 9

7.6 Findings

Our study reveals that, on average, only 4.2% of the total codebase is made up of methods that
are privacy-relevant and involved in personal data processing. This result highlights the precision
of our approach in pinpointing privacy-relevant methods in applications.

Usage Patterns of Privacy-Relevant Methods In Java applications, we observed a more
conservative use of privacy-relevant methods, particularly those from popular Maven libraries.
Native Java methods, along with methods from Apache Commons and the Spring framework, were
frequently used for handling personal data. Libraries such as s1f4j for logging and authO for
authentication were also commonly used, indicating their importance in the flow and protection of
personal data.

In contrast, JavaScript applications exhibited a diverse range of library usage. While 1odash was
commonly used, frameworks like Angular, React, and Vue.js played a significant role in personal
data processing, particularly in front-end applications.

Table 5 presents the top five packages in both Java and JavaScript that contain methods relevant
to privacy concerns.

Table 5. Top 5 packages defining privacy-relevant methods

Java JavaScript
1 java.* lodash
2 auth0 mongoose
3 slf4j React
4 Spring (security, http) Angular
5 Hibernate axios

Categories of Privacy-relevant Methods We categorized privacy-relevant methods into types
to gain insights into their roles in personal data processing. Our analysis identified several Java
classes and categories that are frequently involved in personal data processing. For example, com-
mon Java classes like org.s1f4j.Logger and authO.client.AuthOClient are often used in op-
erations that handle personal data.

In terms of categories, Data Processing and Transformation, Network Communication, and Log-
ging Methods were most prevalent. These categories indicate areas where privacy-relevant methods
are most commonly used, suggesting that they are key to understanding how personal data is
processed in codebases (Table 6).

Identity and Access Management, Data Encryption and Cryptography, and Data Storage and
Database Management were also highly involved in personal data flows, with involvement percent-
ages of 92%, 78%, and 85%, respectively. Conversely, categories like Data Processing and Trans-
formation, Network Communication, and Logging Methods were less involved, with percentages
of 67%, 44%, and 28%. Table 7 lists Java classes that are frequently involved in personal data
processing, serving as key indicators for identifying privacy-relevant methods in applications.

8 Application to Privacy Code Review
This section outlines how our approach can be applied to privacy code reviews across a diverse set

of 100 open-source applications. We then delve into detailed case studies of two popular software
applications to illustrate the utility of our approach.

155

10 F. Tang and B.M. Ostvold

Table 6. Top 3 categories of privacy-relevant methods and PII-related privacy-relevant methods

Java LM Count JavaScript LM Count

1 DPT 1,946 DPT 2,455
2 LM 1,422 NC 1,871
3NC 860 LM 1,019

Java PII-LM Count JavaScript PII-LM Count
1 DPT 769 DPT 1,032
2 DSMD 351 DSMD 318
3NC 307 IAM 596

Table 7. Top classes in Java for personal data processing with example privacy-relevant methods

Library Top Classes Top Privacy-relevant Methods

Commons org.apache.commons.io.IOUtils I0Utils.read(InputStream i, byte[] b)

Commons org.apache.commons.io.FileUtils FileUtils.readFileToString(File f, String name)
Auth0 auth0.jwt.JWT JWT.decode ()

Auth0 auth0.client. AuthOClient AuthOClient.login()

SLF4J org.slf4j.Logger Logger.info(String format, Object... arguments)
SLF4J org.slf4j.LoggerFactory LoggerFactory.getLogger (Class<?> class)

Spring Sec *.security.core. Authentication Authentication.getPrincipal ()

Spring Sec * security.web.FilterChainProxy FilterChainProxy.doFilter ()

Spring HTTP *.http.HttpEntity HttpEntity.getBody ()

Spring HTTP *.http.client.ClientHttpRequest Factory ClientHttpRequestFactory.createRequest ()
PostgreSQL *.core.Connection Connection.createStatement ()

PostgreSQL *.jdbc.PreparedStatement PreparedStatement.executeQuery ()

8.1 Large-scale Analysis

To understand the prevalence and types of personal data processing in real-world applications, we
analyzed 100 open-source applications. These were equally divided between Java and JavaScript/TypeScript
and were selected from GitHub’s daily top-starred repositories list 3.

We selected applications that are popular (top-starred), non-trivial (over 300K lines of code),
and predominantly written in Java or JavaScript/TypeScript (constituting over 60% of the code-
base). Additionally, we ensured these applications differed from the 30 popular libraries analyzed
previously and that their primary documentation language was English for easier identification
of functionalities. This selection process resulted in a dataset that is representative of real-world
software applications and suitable for our analysis of personal data processing practices. We then
examined the proportion of methods in these applications that invoke privacy-relevant methods
and are involved in the flow of personal data and Personally Identifiable Information (PII). The
result of statistics of our findings are listed below in Table 8.

Table 8. Percentage of application methods invoking privacy-relevant methods and processing personal
data and PII

Language Personal Data PII

Java 3.6% 1.9%
JavaScript 5.1% 3.8%

Our findings indicate that our approach can make the privacy code review process more efficient.
By identifying methods that are critical for personal data and PII processing, we help reviewers
focus their efforts, enabling a more targeted review.

3 https://github.com/EvanLi/Github-Ranking (captured on 18/06/2023)

156

Finding Privacy-relevant Source Code 11

8.2 In-Depth Case Studies

We validate the effectiveness of our approach through two open-source projects: Signal Desktop?
and Cal.com®. Each offers unique insights for privacy code review.

Both projects were chosen due to their popularity, sensitivity, and public availability. Their
open codebases ensure transparency and reproducibility, making them ideal candidates to validate
our approach. By applying our approach to these carefully selected real-world projects, we provide
concrete examples that demonstrate practical value in identifying key areas to focus on during
privacy code reviews.

Signal Desktop Signal Desktop is a famous end-to-end encrypted messaging application, primar-
ily written in TypeScript (79.5%) and JavaScript (15.6%), covering about 360K lines of code. Its
reputation for enhanced security and privacy features showcases the depth of our approach. While
the application has limited use of popular libraries, our approach highlighted a minor number of
privacy-relevant methods invocations (48, approximately 0.5% of total methods) from our selected
APIs and native libraries potentially linked to personal data processing.

In our analysis, Signal stands out for using its own encryption protocol (Signal Protocol) and
message transmission services, minimally relying on external libraries. This underscores Signal’s
commitment to end-to-end encryption. Our categorization highlights the primary areas of Data
Processing and Transformation (DPT), Network Communication (NC), and Data Encryption and
Cryptography (DEC), with most encryption methods used for local encryption of profiles and
group data. Signal’s proprietary protocol, used for encrypting chats and attachments, falls outside
our analysis scope.

Our findings show that Signal rarely transmits PII directly to the internet. Instead, encrypted
system data or anonymized IDs are mainly used, reflecting Signal’s dedication to user privacy.

For privacy code reviewers examining Signal Desktop, our approach underscores Signal’s limited
use of popular libraries for PII processing, aligning with its privacy-focused design philosophy.
This categorization helps reviewers understand how Signal handles personal data, aiding in a more
streamlined review process.

Cal.com Cal.com, a scheduling application, is designed to grant users comprehensive control over
their schedules. Written entirely in TypeScript, it spans about 126K lines of code. Our method
identified 371 (approximately 3.8% of total methods) privacy-relevant methods that might engage
in personal data processing.

Applications such as Cal.com often employ diverse frameworks for specific functionalities. For
instance, Cal.com’s utilization of the popular ORM framework, Prisma, for handling user profiles
and credentials, aligns with our library list. In terms of categories, Data Processing and Trans-
formation (DPT) topped the list at 26%, followed by Identity and Access Management (IAM) at
17%, and Network Communication (NC) at 15%. Unlike Signal Desktop, Cal.com heavily lever-
ages libraries like Prisma, next-auth, and nodemailer for processing personal data, mirroring its
primary functions of user registration, email interaction, and scheduling.

Approximately 97% of privacy-relevant methods invoked by Cal.com handle PII. This attests
to the capability of our method in identifying PII processing methods and subsequently guiding
code reviewers efficiently.

Our approach highlights the extensive use of specific libraries in applications like Cal.com,
aligning with their core features. This correlation boosts reviewers’ confidence and precision. By
categorizing processing activities, it provides an overview of how the application handles personal
data, helping reviewers prioritize effectively. This makes the review process time-efficient and thor-
ough.

4 https://github.com/signalapp/Signal-Desktop
® https://github.com/calcom/cal.com

157

12 F. Tang and B.M. Ostvold

8.3 Threats to Validity

Our study’s validity may be affected by several factors. The project selection based on GitHub
trends could bias towards popular topics, potentially overlooking a broader range of applications.
The use of Semgrep for static analysis, though efficient, hasn’t been thoroughly validated for pre-
cision, which could impact the accuracy of our results. Reliance on regular expression matching
for identifying personal data risks introducing false positives and negatives, thus affecting result
reliability. Additionally, the absence of manual validation for each instance of personal data pro-
cessing identified might lead to inaccuracies. Furthermore, focusing only on the top 25 libraries for
Java and JavaScript due to resource constraints limits the generalizability of our findings, as other
privacy-relevant methods in lesser-known libraries may have been missed.

9 Related Work

Research in source code analysis for privacy is extensive, yet specific approaches for identifying
personal data processing are limited. Ullah et al. [13] introduced an approach for extracting control
and data dependencies in source code, potentially applicable for locating personal data processing
methods, but not directly designed for this purpose. Hjerppe et al. [2] proposed an annotation-
based static analysis for data protection, but its effectiveness is contingent on accurate developer
annotations, a challenge in large projects.

Dynamic analysis has been explored for sensitive data flow detection, with DAISY [15] focusing
on Android apps and ConDySTA [16] combining dynamic taint analysis with static analysis. How-
ever, these methods have limitations, such as platform specificity or the need for executing projects.
Automated assistance in code review has been explored by Li et al. [3] with their pre-trained model
CodeReviewer, but it lacks a focus on personal data processing.

SWANAssist [5] offers a semi-automated approach for identifying security-relevant Java code
methods, which could potentially be adapted for privacy purposes. Other studies, like [1,12],
attempt to align GDPR compliance with static analysis. Novikova et al. [4] provided insights into
privacy-enhancing technologies but did not focus on personal data processing in source code.

These studies mark great progress in source code analysis, yet a gap exists in automated iden-
tification and categorization of personal data processing. Our work addresses this by proposing an
automated approach for identifying personal data processing in real-world applications, enhancing
efficiency in privacy code reviews.

10 Conclusion and Future Work

In conclusion, our study introduces a method for identifying and categorizing privacy-relevant
methods in source code, focusing on personal data processing. We have successfully narrowed the
analysis scope to just 4.2% of methods across 100 popular open-source applications, offering a
practical starting point for developers, data protection officers, and reviewers. This approach not
only simplifies code reviews but also facilitates compliance with data protection regulations like
GDPR, helping organizations align their software development with legal requirements.

For future work, we aim to enhance the precision of our privacy-relevant method identification
algorithms, possibly integrating machine learning for more accurate predictions of personal data
processing activities. Expanding our approach to additional programming languages and integrat-
ing it into common development tools for real-time feedback are also key goals. These advancements
will broaden the impact and applicability of our approach. Ultimately, our research paves the way
for more focused and efficient privacy assessments in software development, contributing to the
creation of software that is efficient, robust, and respectful of user privacy.

158

Finding Privacy-relevant Source Code 13

Acknowledgement

This work is part of the Privacy Matters (PriMa) project. The PriMa project has received funding
from European Union’s Horizon 2020 research and innovation program under the Marie Sktodowska-
Curie grant agreement No. 860315.

References

10.

11.

12.

13.

14.

15.

16.

. Ferrara, P., Olivieri, L., Spoto, F.: Tailoring taint analysis to GDPR. In: Privacy Technologies and

Policy: 6th Annual Privacy Forum, APF 2018, Barcelona, Spain, June 13-14, 2018, Revised Selected
Papers 6. pp. 63—76. Springer (2018)

. Hjerppe, K., Ruohonen, J., Leppanen, V.: Annotation-based static analysis for personal data protec-

tion. In: Privacy and Identity Management. Data for Better Living: AI and Privacy, pp. 343-358.
Springer International Publishing (2020)

. Li, Z., Lu, S., Guo, D., Duan, N., Jannu, S., Jenks, G., Majumder, D., Green, J., Svyatkovskiy, A.,

Fu, S., Sundaresan, N.: Automating code review activities by large-scale pre-training (2022)

. Novikova, E., Fomichov, D., Kholod, I., Filippov, E.: Analysis of privacy-enhancing technologies in

open-source federated learning frameworks for driver activity recognition. Sensors 22(8), 2983 (2022)

. Piskachev, G., Do, L.N.Q., Johnson, O., Bodden, E.: SWANAssist: Semi-Automated Detection

of Code-Specific, Security-Relevant Methods. In: Proceedings of the 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering. p. 1094-1097. ASE’19, IEEE Press (2020).
https://doi.org/10.1109/ASE.2019.00110

. van der Plas, N.:. Detecting PII in Git commits (2022), http://resolver.tudelft.nl/uuid:

fel95c17-ecf5-4811-a987-89£238a6802f

. Ren, J., Rao, A., Lindorfer, M., Legout, A., Choffnes, D.: ReCon: Revealing and Controlling PII Leaks

in Mobile Network Traffic. In: Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services. p. 361-374. MobiSys ’16, Association for Computing Machinery,
New York, NY, USA (2016). https://doi.org/10.1145/2906388.2906392

. Tang, F., Ostvold, B.M.: Assessing Software Privacy Using the Privacy Flow-Graph. In: Proceedings of

the 1st International Workshop on Mining Software Repositories Applications for Privacy and Security.
p. 7-15. MSR4P&S 2022, Association for Computing Machinery, New York, NY, USA (2022)

. Tang., F., @stvold., B., Bruntink., M.: Identifying Personal Data Processing for Code Review. In:

Proceedings of the 9th International Conference on Information Systems Security and Privacy - ICISSP.
pp. 568-575. INSTICC, SciTePress (2023). https://doi.org/10.5220/0011725700003405

Tang, F., Ostvold, B.M., Bruntink, M.: Helping Code Reviewer Prioritize: Pinpointing Personal Data
and Its Processing. IOS Press (Sep 2023). https://doi.org/10.3233/faia230228

Thongtanunam, P., Hassan, A.E.: Review dynamics and their impact on software quality. IEEE Trans-
actions on Software Engineering 47(12), 2698-2712 (2020)

Tokas, S., Owe, O., Ramezanifarkhani, T.: Static checking of GDPR-related privacy compliance for
object-oriented distributed systems. Journal of Logical and Algebraic Methods in Programming 125,
100733 (2022)

Ullah, F., Wang, J., Jabbar, S., Al-Turjman, F., Alazab, M.: Source code authorship attribution using
hybrid approach of program dependence graph and deep learning model. IEEE Access 7, 141987—
141999 (2019)

Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot: A java bytecode
optimization framework. In: CASCON First Decade High Impact Papers, pp. 214-224 (2010)

Zhang, X., Heaps, J., Slavin, R., Niu, J., Breaux, T., Wang, X.: DAISY: Dynamic-Analysis-Induced
Source Discovery for Sensitive Data. ACM Trans. Softw. Eng. Methodol. 32(4) (May 2023)

Zhang, X., Wang, X., Slavin, R., Niu, J.: ConDySTA: Context-Aware Dynamic Supplement to
Static Taint Analysis. In: 2021 IEEE Symposium on Security and Privacy (SP). pp. 796-812 (2021).
https://doi.org/10.1109/SP40001.2021.00040

159

PAPER 8

Software Privacy and Program Analysis: In-

sights, Methods, and Opportunities

Tang, F. and Ostvold, B. (2024). Software Privacy and Pro-
gram Analysis: Insights, Methods, and Opportunities. Submit-
ted to the Springer Handbook: Privacy and Security Matters

i Brometric Technologies.

This paper is awaiting publication and is not included in NTNU Open

160

ISBN 978-82-326-7758-0 (printed ver.)
ISBN 978-82-326-7757-3 (electronic ver.)
ISSN 1503-8181 (printed ver.)

ISSN 2703-8084 (online ver.)

“ NTNU

Norwegian University of
Science and Technology

	Abstract
	List of Papers
	List of Figures
	List of Tables
	Preface
	Acknowledgments
	A Thesis Summary
	Introduction
	Motivation
	Research questions
	Contributions
	Structure of the dissertation

	Background
	Privacy
	A historical perspective
	Privacy in the big data era
	Definition of personal data

	Program analysis
	Static analysis for security and privacy
	Program analysis for different languages

	Issues with privacy policies
	Length and complexity
	Inconsistencies and contradictions
	Lack of transparency

	State of the Art
	Taint analysis for personal data flows
	Identifying data flows
	Categorizing data flows

	Policy analysis
	Tailoring approaches for front-end and back-end systems
	Evaluating transmission and storage mechanisms
	Research gaps

	Method
	Literature analysis
	Program analysis
	Machine learning
	Experiments
	Expert validation

	Summary of Papers
	Paper 1: Assessing Software Privacy using the Privacy Flow-graph
	Paper 2: PABAU: Privacy Analysis of Biometric API Usage
	Paper 3: Identifying Personal Data Processing for Code Review
	Paper 4: Helping Code Reviewer Prioritize: Pinpointing Personal Data and its Processing
	Paper 5: Transparency in App Analytics: Analyzing the Collection of User Interaction Data
	Paper 6: User Interaction Data in Apps: Comparing Policy Claims to Implementations
	Paper 7: Finding Privacy-relevant Source Code
	Paper 8: Software Privacy and Program Analysis: Insights, Methods, and Opportunities

	Discussion
	The results as a whole
	Linking results to the research questions
	Linking results to fields of research
	Linking results to social topics

	Conclusion
	Conclusion
	Future directions
	Redefining and expanding the scope of personal data
	Bridging the gap between legal and technical experts
	Real-time analysis
	Machine learning for data flow classification
	Enhanced alignment of program and policy analysis

	References

	B The Papers
	Paper 1
	Paper 2
	Paper 3
	Paper 4
	Paper 5
	Paper 6
	Paper 7
	Paper 8

	Blank Page
	Blank Page

