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A CATEGORY OF WIDE SUBCATEGORIES
ASLAK BAKKE BUAN AND ROBERT J. MARSH

ABSTRACT. An algebra is said to be 7-tilting finite provided it has only a finite number of
7-rigid objects up to isomorphism. We associate a category to each such algebra. The
objects are the wide subcategories of its category of finite dimensional modules, and the
morphisms are indexed by support 7-tilting pairs.

INTRODUCTION AND MAIN RESULT

A full subcategory B of an abelian category A is called wide if it is an exact abelian
subcategory, or equivalently it is closed under kernels, cokernels and extensions.

Let A be a finite dimensional algebra over a field k, and mod A the category of finitely
generated left A-modules. Let 7 denote the Auslander-Reiten translate in mod A. Fol-
lowing [1]], we call a A-module M with Hom(M, tM) = 0 a 7-rigid module. The algebra
A is called 7-tilting finite [ if there are only a finite number of isomorphism classes of
indecomposable 7-rigid A-modules. By [1]] this is equivalent to A having finitely many
isomorphism classes of basic 7-tilting modules, as defined in [1]]. In particular, all alge-
bras of finite representation type, as well as all preprojective algebras of Dynkin type are
7-tilting finite [10]; see [S]] for further examples.

For a module U, let U+ = {X € mod A | Hom(U, X) = 0}, and define *U similarly.
Jasso [9] proved that, if U is 7-rigid, then the subcategory J(U) = U+ N *(7U) is equiva-
lent to a module category, and by [6] we have that J(U) is a wide subcategory of mod A.
For a wide subcategory W which is equivalent to a module category, and a module V
which is 7-rigid in W, we let Jw(V) = V+ N *+(rwV) N W. Note that the AR-translations
7in mod A and 7y in W will usually be different.

Let C(A) = C(modA) be the full subcategory of the bounded derived category
D’(mod A) with objects corresponding to mod A LI (mod A)[1]. For a full subcategory
Y of mod A, we shall denote by C(Y) the full subcategory Y 11 Y[1] of C(A). As in [4],
we say U = U U P[1] is support t-rigid in C(mod A) if U, P are modules, P is pro-
jective, U is 1-rigid and Hom(P, U) = 0. Analogously, if W is a wide subcategory of
mod A equivalent to a module category, we will say that an object U = U U P[1] in
C(W), where U, P € W, the object P is projective in W, the object U is 7-rigid in W and
Hom(P, U) = 0, is support 7-rigid in C(W). We let J(U) = J(U) N P+. We then have the
following.

Theorem 0.1. Let A be a finite dimensional algebra, then the following hold.
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(a) [6, Thm. 3.28], [9, Thm. 3.8] If U is support t-rigid in C(mod A), then the
subcategory J(U) is wide, and it is equivalent to a module category of a finite
dimensional algebra.

(b) [6, Thm. 3.34] If A is t-tilting finite, then any wide subcategory of mod A is of
the form J(U) for some support t-rigid object U in C(A\).

The aim of the paper is to prove the following result.

Theorem 0.2. Assume A is t-tilting finite. Then there is a category W, whose objects
are all wide subcategories of mod A and such that the maps from W to W, are indexed
by all basic t-rigid objects T in C(W,) such that W, = Jw,(T).

Our results are inspired by a recent paper of Igusa and Todorov [7], where they defined
a similar category in the setting of hereditary finite dimensional algebras.

In Section [I] we state the main results of the paper and explain how they are used to
prove Theorem

1. KEY STEPS FOR THE PROOF OF THE MAIN RESULT

For a (skeletally small) Krull-Schmidt category X, let ind X denote the set of isomor-
phism classes of indecomposable objects in X and for any basic object X in X let 6(X)
denote the number of indecomposable direct summands of X. We generally assume all
objects are basic and we always assume subcategories are full and closed under isomor-
phism.

Firstly, we need the following, which is a generalization of [4, Propositions 5.6 and
5.10], and can be seen as a refinement of [9, Theorem 3.15]. This is crucial.

Theorem 1.1 (Theorem[B.6). Let U be a support t-rigid object in C(A). Then there are
bijections

{X € ind(C(A)) | X U U t-rigid} \ ind U
Sul T8u

{X € ind(C(J(U)) | X is support T-rigid in C(J(U))}.
The map &Eq; can be extended additively, giving the following:
Theorem 1.2 (Theorem[3.7). Let U be a support t-rigid object in C(A) with 5(U) = ¢'.

For any positive integer t < n — t', the map Eqq induces a bijection between:

(a) The set of support t-rigid objects X in C(A) such that 6(X) = t, the object XU U
is support t-rigid and add X N add U = 0, and
(b) The set of support t-rigid objects X in C(J(U)) such that 6(X) = t.

From now on we assume A is 7-tilting finite. Then, using Theorem [0.1 we obtain the
following as a direct consequence of Theorems [L.1] and .2

Corollary 1.3. Assume A is t-tilting finite, and let W be a wide subcategory of mod A.
Let U be a support t-rigid object in C(W). Then there is a bijection SYLV( Jfrom

{X € ind(C(W)) | X I U 7-rigid} \ ind U
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to
{X € ind(C(Uw(U)) | X is support T-rigid in C(Jw(U))}.
Furthermore, the map 82’, induces a bijection between:

(a) The set of support t-rigid objects X in C(W) such that X U U is support T-rigid,
with 5(X) = t and add X Nnadd U = 0, and
(b) The set of support t-rigid objects X in C(Jw(U)) with 6(X) = t.

Note that [1] always denotes the shift in D’(mod A) rather than the shift in D?(W) for
some wide subcategory W.
The next main ingredient is the following:

Theorem 1.4 (Theorem A.3). Assume A is t-tilting finite. Let U and YV be support -
rigid objects in C(A) with no common direct summands, and suppose that U 1 V is
support t-rigid. Then Eq (V) is support t-rigid in C(J(U)) and the following equation
holds:

Sy Eq(V)) = J(U LT V).
This has the following direct consequence, using Theorem

Corollary 1.5. Assume A is t-tilting finite and let W be a wide subcategory of mod A.
Let U and V be support t-rigid objects in C(W) with no common direct summands. Then
SYLV,((V ) is support t-rigid in C(Jw(U)) and the following equation holds:

T i@ EN(V)) = Jw(U T V).

For a 7-tilting finite algebra A, we can now define 2, as follows. The objects of W,
are the wide subcategories of mod A. Suppose W; and W, are two such wide subcate-
gories. If W, ¢ W,, then we set Hom(W;, W,) = 0. Suppose that W, € W,. Then we
set

T

Hom(Wy, W) = (gl

T is a basic support 7-rigid object in C(W,) }
and W2 = JW](T) ’
where g\}v‘ is a formal symbol associated to W; and 7. Thus, in general g¥ is a morphism
in W, from W to Jw(T).

Suppose that W, W, and W3 are wide subcategories of A and W3 € W, C W,. Let
a e Honl(Wl, W,) and b € Hom(W,, W5). Then there are support 7-rigid objects U in
W, and V in W, such that a = g,‘?’(‘ and b = ggz, so that W, = Jw, (U) and W3 = Jw, (V).
By Theorem [[.2] we can write V = 8,\2’,‘ (V) for some support 7-rigid object V in C(W;)
such that 7/ 11V is supportr-rigid and addV N add U = 0. Thus, we have b = g"2

Eqf (V)
By Theorem [L.5]
T (UL V) = T @(Eg) (V) = Juy (B (V) = Jw, (V) = W3,
so we may define:
boa=gew © 8y = Sury
since this is a morphism from W, to W3.
For associativity of composition in 23, we need the following theorem.
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Theorem 1.6 (Theorem [5.9). Assume A is t-tilting finite, and let U and V be support
1-rigid objects in C(A) with no common direct summands. Then

Ju
58;(3‘/)511 = Syuy
The following is then a direct consequence, using Theorem

Corollary 1.7. Assume A is t-tilting finite, and let W be a wide subcategory of mod A.
Let U and V be support t-rigid objects in C(W) with no common direct summands, and
suppose that U 1V is support t-rigid in C(W). Then

Jw(U) oW _ oW
agvyzl((rv)aﬂ - S’L(H(V
We are then in position to prove the following.

Corollary 1.8. The composition operation defined above is associative.

Proof. For a wide subcategory W of mod A and support 7-rigid object U in C(W), let
T,Z{V denote the inverse of the bijection 8)’[\’1.
Consider now maps

25/ 2y 8
W, =5 W, =5 Wi =5 W,
where W, = Jw,(U), W3 = Jw,(V) and Wy = Jw,(W). Thus U is a support 7-rigid
object in C(Wy), the object V is support 7-rigid in C(W;) and W is a support 7-rigid
object in C(W3), and W, C W3 C W, C W,.

We then have that g\> o go! = g
VooeU T Cqui )

W,

Wi W :
and g\’ o g’ = gwg:yz W' Hence it follows

that

W>

g oghogy) =g

ULF, (VUF (W)
'llLW’,u (4%]

and that

W3

(8w o8&y ogy =g =g

g v oy~ Samr e wy
It follows from Theorem [1.6] that

w Wi W
?’ 1 - T’ 1 ?’ 2
uug,@vy UV

and the claim follows. m|

Finally, we note that for each wide subcategory W, we can consider the trivial support
7-rigid object 0 in C(W) which gives rise to a map gy : W — W. It easy to check that
this satisfies the axioms required for an identity map. This completes the proof of the
main result, Theorem [0.2]

The paper is organized as follows. First, in Section 2], we give some background and
notation. In Section[3|we prove Theorem[I.Iland Theorem[L.2] while in Sectionwe deal
with Theorem[L.4l Sections[3]-[lare devoted to the proof of Theorem In Section[10]
we consider the morphisms in 23, from a wide subcategory to a subcategory of corank
1, and in Section [[T] we show how to interpret signed T-exceptional sequences in terms
of factorizations of morphisms in 2,. We conclude with an example in Section
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2. BACKGROUND AND NOTATION

Let (A) denote the full subcategory of projective objects in mod A and if X is a
subcategory of mod A, let (X) denote the full subcategory of X consisting of the Ext-
projective objects in X, i.e. the objects P in X such that Ext'(P, X) = 0 for all X € X.

For an object U in an additive category C, let add U denote the additive subcategory
of C generated by U, i.e. the full subcategory of all direct summands in direct sums of
copies of U. If A is abelian, we denote by Gen U the full subcategory of A consisting of
all objects which are factor objects of objects in add U. We assume throughout that A is
basic and denote 6(A) by n. We now recall notation and definitions of from [1].

We consider mod A as a full subcategory of D’(modA) by regarding a module
as a stalk complex concentrated in degree 0, and we consider the full subcategory
C(A) = mod A I mod A[1] of D’(mod A). For a module M, we denote by P, its mini-
mal projective presentation, considered as a two-term object in K*(P(A)) € D’(mod A).
Here, a two-term object in K is a complex of the form

050> P' 5P 5050 -
The following summarizes some facts which we will use throughout the paper.

Lemma 2.1. Let U, X be in mod A.

(a) [1, Lemma 3.4] Hom(U, 7X) = 0 if and only if Homgp(Px, Py[1]) = 0. In partic-
ular, the module U is t-rigid if and only if Homg(Py, Py[1]) = 0.

(b) [3, Theorem 5.10] Hom(U, tX) = 0 if and only if Ext'(X,Gen U) = 0

(c) Let X and Y be two-term objects in K. Then H° induces an epimorphism
Homk (X, Y) — Hom(H°(X), H'(Y)) with kernel consisting of the maps factoring
through add A[1].

We recall that if U is a 7-rigid module in mod A then, by [3, Theorem 5.8] there is
a torsion pair (Gen U, U*) in mod A. We denote the corresponding torsion functors by
ty : modA — GenU and fy : modA — U*. If U is 7-rigid in W, where W is a
wide subcategory equivalent to a module category, we denote the corresponding torsion
functors by 7}y and £} respectively.

3. BUECTION

Let U be a an arbitrary (not necessarily indecomposable) support 7-rigid object in
C(A). Then U = ULP[1], where U is a t-rigid module, P is in (A) and Hom(P, U) = 0.
In this section, we will show that there is a bijection &, from the set

{X € ind(C(A)) | X U U 7-rigid} \ ind U
to
{X € ind(C(J(U)) | X T-rigid}

Such a map has already been defined in [4) Section 4-6] for the case U is either a
7-rigid module or a shift of a projective module, so we first summarize the construction
given there.
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Definition 3.1. Let U be a support 7-rigid object in C(A) which is either a module or a
shift of a projective module. Suppose X lies in the set

{X €ind(C(A)) | X U U t-rigid} \ ind U.

Define E4,/(X) in the following way.
Case I: U = U is a module.
Case I(a): If X is in ind(mod A), X LI U is 7-rigid and X ¢ Gen U, then

EuX) = fuX).

Case I(b): If X is in ind(mod A) with X I U 7-rigid and X is in Gen U, then
Ev(X) = fu(H Ry)[1]
where the triangle
RX — PUX - PX —

arises from the completion of the minimal right add P, -approximation Py, — Px to a
triangle. We have that Ry = Pj,, for an indecomposable direct summand By of the
Bongartz complement B of U. Then we have

(i) The triangle
(1 Ppy = Pyy = Px =

where the first map is a minimal left add Py -approximation and the second map
is a minimal right add Py -approximation;
(ii) The exact sequence obtained from taking the homology of (1)):

By > Uy > X —0,
where the first map is a minimal left add U-approximation and the second map is
a minimal right add U-approximation,
and we have
Su(X) = fu(Bx[l1].
The object By is shown to be in P(+7U) and fy(By) is in P(J(U)), so Ey(X) is in
ind P(J(U))[1].

Case I(c): If X is in ind(P(A) N +U)[1], write X = Q[1], with Q in indP(A) N +U. We
have the triangle

Ppy = Py, — Q[1] —
as in case (b), where the first map is a minimal left add Py -approximation and the sec-
ond map is a minimal right add Py-approximation. Taking homology gives the exact
sequence

X

Q- Bx—>Ux—0
where the first map is a minimal left £(*(7U))-approximation and the second map is a
minimal left add U-approximation.
We set
Eu(X) = fu(BoI1].
Case II: U = P[1], where P is a projective module.
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Case Il(a): If X is 7-rigid in ind(mod A) and Hom(P, X) = 0, then set Ep1;(X) = X.
Case II(b): If X = Q[1] with Q in (ind(P(A) \ind P)[1], then set Ep1(X) = Ep)(O[1]) =
fe(QI1].

Theorem 3.2. [4], Proposition 5.6 and 5.10] Let U be a support t-rigid object in C(A).
Then we have the following.

(a) If U = U is a module, then Ey gives a bijection between

i
v {X €eindimod A) | X U U t-rigid, X ¢ Gen U}
and
{X € ind(J(U)) | X t-rigid in J(U)}.
(i1)
{X €ind(mod A) | X I U 7-rigid, X € Gen U} U {(ind P(A) N ~U)[1]}
and

{ind P(J(U))[1]}.
(b) If U = P[1] is the shift of a projective module, then Eq; gives a bijection between
({X € ind(mod A) | X t-rigid} N P+) U (ind P(A) \ ind P)[1]
and
{X € ind(J(U)) | X T-rigid} U ind(P(J(U))[1]
(noting that J(U) = P* in this case).
We now consider the general case, where U = U I P[1], for modules P, U with P
projective, is an arbitary support 7-rigid object in C(A). Note first that
{X €ind(C(A)) | X I U 7-rigid} \ ind U
is the union of the sets
({X € ind(mod A) | X I U 7-rigid} N P*) \ ind U

and
((indP(A) N*U) \ ind P)[1],
and that

{X € ind(C(J(U)) | X support T-rigid in C(J(U))}
={X € ind(J(U)) | X 7-rigid in J(U)} U ind(P(J(U))[1],
so we next analyse the behaviour of &, when applied to a module X € P*.

Lemma 3.3. Let U be a t-rigid module. Then:
(a) The map &y restricts to a bijection between
{X €ind(mod A) | X U U t-rigid, X ¢ GenU} N P+

and
(X € ind(J(U)) | X t-rigid in J(U)} N P*
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(b) The map Ey restricts to a bijection between
{X € ind(mod A) | X LI U 1-rigid, X € Gen U} N P~ U ((ind P(A) \ ind P) N ~U)[1]
and
ind(P(J(U))[1] \ ind Ey(add P[1]).
(¢c) The map &y restricts to a bijection between
({X € ind(mod A) | X U U t-rigid } N P*) U ((ind P(A) \ ind P) N *U))[1]
and
(X € ind(J(U)) | X t-rigid in J(U)} N P*) U (ind P(J(U))[1] \ ind Ey(P[1])

Proof. (a) Let X be in ind(mod A) with X II U a 7-rigid module, and such that X is not in
Gen U. Then Ey(X) = fy(X). Since Hom(P, U) = 0, we also have Hom(P, Gen U) = 0
and in particular Hom(P,7,(X)) = 0. Since P is projective, it then follows that
Hom(P, X) ~ Hom(P, fy(X)) = Hom(P, Ey(X)). Hence the claim follows, using The-

orem [3.2(a).
(b) Since Hom(P, U) = 0, we have Hom(P, Gen U) = 0, and the claim follows Theo-

rem 3.2(b).

(c) The claim follows directly from combining (a) and (b). O

If W is a wide subcategory of mod A which is equivalent to a module category, and U
is a support 7-rigid object in C(W) which is either a module or the shift of a projective ob-
ject in W, then we denote by 8(‘2’, the map corresponding to that defined in Definition [3.1]

Note that E(P[1]) = P[1], so we have the map

JU) _ oJ(U)
8P[l] - 881](1[’[1])'

Lemma 3.4. Let U be a t-rigid module. Then the set

(X € ind(J(U)) | X t-rigid in J(U)} N PX) U (ind PJUN[1] \ ind Ey(P[1])

J(U)
Sy(P1])”

Proof. Let Q in P(J(U)) be such that E;(P[1]) = Q[1]. Recall (see Definition 3.1l Case
I(c)) that Q = fy(Yp), where P — Yp is a minimal left +(7U)-approximation, and there
is an exact sequence

2) P—Yr—>Up—0

with Up in add U.
We claim that

is the domain of &

3) JU)YNP-=JU)N Q" .
It is clear by the definition of 8(13((%3,[1]) that the assertion of the lemma follows from this

claim.
In order to prove the claim, let M be in J(U) N P+ and apply the right exact functor
Hom( , M) to the sequence (2)), to obtain the exact sequence

0 - Hom(Up, M) — Hom(Yp, M) — Hom(P, M).
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We have by assumption that Hom(Up, M) = 0 = Hom(P, M), and hence also
Hom(Yp, M) = 0. It then follows that Hom(Q, M) = 0, since there is an epimorphism
Ypr — fu(Yp) = Q. So we have J(U) N P+ C J(U) N Q*.

Conversely, suppose M is in J(U) N Q. Consider the canonical sequence

0— ty(Yp) > Yp = fu(Yp)(=Q) =0

for Yp, and apply Hom( , M) to obtain the exact sequence

0 - Hom(Q, M) - Hom(Yp, M) — Hom(ty(Yp), M)
We have by assumption Hom(Q, M) = 0, and Hom(#y(Yp), M) = 0, since ty(Yp) is in
Gen U and M is in U*. Hence, also Hom(Yp, M) = 0. By Lemma[2.1l we then have
4) Hom(Py,, Py)/(add A[1]) = 0.
We have the following triangle (from the computation of &y (P[1]) = Q[1]; see Defini-
tion[3.1] Case 1(c)).
®)) Py, [-1] > P > Py, = Py,
Now leta: P — Py, be arbitrary. Since M is in J(U), we have Hom(M, 7U)= 0 and so by
Lemma 2.1l we have Hom(Py,, Py[1]) = 0. Applying Hom( , Py) to the triangle (3), we
obtain that Hom(Py,, Py;) — Hom(P, Py,) is surjective, and hence that « factors through
a map Py, — P, and hence through A[1] by (). We have Hom(P, A[1]) = 0 and hence

we obtain Hom(P, Py,) = 0. So we have J(U) N Q+ C J(U) N P+, and this finishes the
proof of the claim that J(U) N @+ = J(U) N P+, and hence the proof of the lemma. O

By Lemmas [3.3[c) and 3.4] the composition Sc{J(UIZ’[IJ)SU is a well-defined map with
domain
{X € ind(C(A)) | X UU 7-rigid} \ ind U.

We make the following definition:

Definition 3.5. Let U and P be modules such that ¢ = U 1 P[1] is a support 7-rigid
: ; . oJW)
object in C(A). We set E¢/: = 88U(P[1])8U'
We can now prove the main result of this section.
Theorem 3.6. Let U = U U P[1] be a support t-rigid object in C(\). Then the map Eqy
is a bijection between the sets

{X € ind(C(A)) | X U U t-rigid} \ ind U
and

{X € ind(C(J(U))) | X support T-rigid in C(J(U))}.

Proof. First note thatif P = 0 or U = 0, this is proved in [4, Proposition 5.6 and 5.10].
Using Lemma [3.3(c) and (@) and the fact that Ey(P[1]) = Q[1], we have that &y
restricts to a bijection between
({X € ind(mod A) | X L1 U 7-rigid} N P*) U ((ind P(A) \ ind P) N ~U)[1]

and
({X € ind(J(U)) | X 7-rigid} N Q") U (ind P(J(U)) \ ind Q)[1]}.
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. . . J(U) _ oJU) i
The target of this map is the domain of &, = &g ;- Moreover (see Case II in
Definition [3.1)), the map SJQ([[f]) gives a bijection between

{{X € ind(J(V)) | X t-rigid} N O} U (ind P(J(V))) \ ind Q[ 1]

and
{X € ind(J(U)) | X 7-rigid} U ind(P(J(U))[1].
This finishes the proof of the claim. O

Note that we have so far only defined &q¢,(X) for an object X in the set
{X €ind(C(A)) | XU U t-rigid} \ ind U.

However, we will also need to consider &¢; as a map from the set of all basic objects
X (not necessarily indecomposable) in C(A) such that X LI U is support 7-rigid and
add X Nadd U = 0, to the set of all support 7-rigid objects in C(J(U)). So for such X =
X - - -1X, where the X; are indecomposable, we define Eq¢/(X) = Equ(X)U- - -LUE(X)).

Theorem 3.7. Let U be a support T-rigid object in C(A\) with 5(U) = t'. For any positive
integert < n—t', the map Eq, induces a bijection between the set of basic support T-rigid
objects X in C(A) such that 5(X) = t, with XU U support t-rigid and add XNadd U = 0,
and the set of basic support t-rigid objects M in C(J(U)) with 6(Y) = t.

Proof. Recall that by definition &E¢; = 8<J>3(UU(;3[1]>8U’ so the result follows from [4, Prop.

6.7, Prop. 6.10]. O

Lemma 3.8. Let U be a t-rigid module, and P a projective module with Hom(P, U) = 0.
Then
tapU)yN P =n*(xU) N P,

Proof. We have

(6) L(rpU)N Pt ={Y e mod A | Ext'(U, Genp. Y) = 0} N P+
(7) ={Y e mod A | Ext!(U, GenY) = 0} n P+
=*(rU) N P,

where (6) holds by Lemma 2.1} and (7) holds since Genp. Y = Gen Y for Y in P*. O

4. COMPOSITION

The aim of this section is to prove Theorem [L.4l

If A is (a category equivalent to) a module category, we let r(A) denote the rank of the
Grothendieck group of A, that is: the number of simple objects in A up to isomorphism.
Recall that 6(X) denotes the number of indecomposable summands in a basic object X.
We always write r(mod A) = n. Recall the following important facts.

Proposition 4.1. Let U be a t-rigid object in mod A. Then the following hold.

(a) [6, Theorem 3.28] J(U) is a wide subcategory of mod A.
(b) [9, Theorem 3.8] J(U) is equivalent to a module category with rank r(J(U)) =
n—96(U).

The following results are crucial.
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Proposition 4.2. Assume that A is t-tilting finite.

(a) For each wide subcategory W of mod A, there is a support t-rigid object U in
C(A) such that W = J(U).
(b) If A is t-tilting finite, then each wide subcategory W of mod A is t-tilting finite.

Proof. (a) This is contained in Theorem 3.34 in [6].
(b) This is a direct consequence of Theorem 3.6, using (a). O

We will from now on assume A is a 7-tilting finite algebra.
In this section we prove the following (Theorem [L.4)).

Theorem 4.3. Let U and V be objects in C(A) with no common direct summands, and
suppose that U L1V is support t-rigid. Then Eq (V) is support t-rigid in C(J(U)) and
the following equation holds

Ly Ey(V)) = J(U V).

This theorem is the key for proving that composition is well-defined in the category
W, . Note first that by Theorem [3.7], we have that E¢,(V) is support 7-rigid in C(J(U)).
The remainder of this section is devoted to proving the second assertion of the Theorem.

We first make the following observation.

Lemma 4.4. In the setting of Theoremd.3lwe have
r(Jjan(Eu(V)) = r(J(U TV)).

Proof. Let r(mod A) = n. By [9] we have r(J(7)) = n — 6(7") for any support 7-rigid
object 7 in C(A). So r(J(U) = n— O6(U) and r(J(U T V)) = n — 6(U) — (V).
Furthermore r(J;1(Ey(V))) = (n — 6(U))) — (8(E(V))) = n — 6(U) — 6(V), and the
claim follows. O

Lemma 4.5. Let A be an abelian category and A" C A’ wide subcategories of A. Then
A" is a wide subcategory of A'.

Proof. This follows directly from the fact that a subcategory is wide if and only if it is
closed under kernels, cokernels and extensions. O

Proof of Theorem We first claim it is sufficient to prove
JUT V) C Jyan(Eu(V)).

If this holds then, by Lemma 4.3] we have that J(U II V) is a wide subcategory
of Jyan(Ey(V)). Then, by Proposition 4.2] there is a support 7-rigid object V’ in
C(J a0 (Eu(V))) such that

JUDLV) = Jj,0p@uv(V)

We have r(J,,,&ucv)(V") = n—8(U) — (V) — 6(V’) by Propositiond.1((b) and Theo-
rem[3.71 Hence r(V’) = 0, so V’ = 0, and we have

JUT V) = Jyan(Eu(V)).
In order to prove
(®) JULY) C Jyan(Eu(V))
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we first discuss various special cases.

Case I: Let U be 7-rigid in mod A, and V ¢ Gen U, such that V = Ey(V) is 7-rigid in
J(U). Then V = fu(V), and there is an epimorphism V — V.

Let M be in J(U 11 V). Then we have M € J(V) C V*, and since 0 — Hom(V, M) —
Hom(V, M) is exact, we also have Hom(V, M) = 0.

We next need to show Hom(M, T J(U)V) = 0. By Lemma [2.1] this is equivalent to
showing Ext'(V, Genyy M) = 0. We have GenyyyM = Gen M N J(U), and hence it
is sufficient to prove Ext'(V,Gen M N J(U)) = 0. Let M’ be in Gen M N J(U). Apply
Hom( , M’) to the canonical sequence 0 — (V) —» V — fy(V) = V - 0for V, to
obtain the exact sequence

9) Hom(ry(V), M’) — Ext'(V, M’) — Ext'(V, M").

The first term in (Q) vanishes, since (V) is in Gen U and M’ is in U+. We have
Hom(M,tV) = 0, since M is in J(V), so Hom(M’,7V) = 0, since M’ is in Gen M.
Using the AR-formula, we obtain that the third term in (9) also vanishes, and hence
also the second term vanishes. Hence we have that Ext'(V,Gen M N J(U )) = 0 and so
Hom(M, t J(U)V) =0.SoMisin J J(U)(V), and we have shown inclusion (8)) in this case.

Case II (a): Let U be 1—rigid in mod A, and V in Gen U such that E5(V) = V is in
P(J(U))[1]. Recall that V is computed as follows. We have a triangle

a b c

Pg, Py, Py

Pp,[1]

where a is a minimal left add Py-approximation and » is a minimal right addPy-
approximation, and taking homology gives the exact sequence

a b

By Uy \% 0

where a’ is a minimal left add U-approximation and 5’ is a minimal right add U-
approximation. Let QO = fy(By). Then V = Q[1].

Now suppose that M lies in J(U L V). Note that J;(Ey(V)) = J(U) N @L. Since M
is in J(U), it is sufficient to show that Hom(Q, M) = 0. Since Q is a quotient of By, it is
sufficient to show that Hom(By, M) = 0. For this let g : Pg, — P), be an arbitrary map.
By Lemma 2.1l we have that Hom(Py, Py[1]) = 0, since Hom(M, V) = 0. Hence, the
composition g o c¢[—1] : Py[-1] — P, vanishes, and there is a factorization g = ha for
some h : Py, — Py:

c[-1] a

Py[-1] - P,
| A
Py

Since Hom(U,M) = 0, we have Hom(Py,,Py)/A[l] = 0, and it follows that
Hom(Pg,, Py)/A[1] = 0, and hence by Lemma 2.1l we have Hom(By, M) = 0. Hence
we have shown inclusion (8)) in this case.

b c

Py Pp,[1]



A CATEGORY OF WIDE SUBCATEGORIES 13

Case II (b): Let U be 7-rigid in mod A, and V € (P(A) N +U)[1]. Assume V = Q[1] for
QinP(A)N-+U. _
Recall that & (V) = V is computed as follows. There is an exact sequence
O0—->By->Uy—0
where the first map is a minimal left *(7U)-approximation (or, equivalently, a minimal
left P(+(rU))-approximation), and V = fy(By)[1]; we set Q = fy(By).
Now let M be in J(U L1 V),_that is M isin J(U) and Hom(Q, M) = 0. We need to prove

that Hom(@, M) = 0. Since Q = fy(By) is a quotient of By, it is sufficient to show that
Hom(By, M) = 0. Recall that there is a triangle

Q—>PBV—>PUV—>

and consider an arbitrary map Pp, — Pj. The composition Q — P, — Py vanishes,
since Hom(Q, M) = 0 and hence Hom(Q, P),) = 0, by Lemma[2.1l Therefore, the map
Pg, — Py factors Py, — Py, — Py. Since M is in J(U) € U+, we have Hom(Uy, M) =
0, so Hom(Py,,Py)/addA[1] = 0. Hence also Hom(Pg,,Py)/add A[1] = O and
Hom(By, M) = 0 as required. Hence we have shown that the inclusion (&) holds also
in this case.

Case III: Let U = P[1] with P in P(A), and let V be 7-rigid. Then J(U) = P* and
Ey(V) = V = Vis also T w)-rigid, by [1, Lemma 2.1]. Furthermore, by Lemma[3.8 we
have

Jp(V)=P- NV N+ (ap V) =P N VNS @V)=JWU V),
which finishes the proof of case III.

Case IV: Now let U = P[1] and V = Q[1], for P,Q € P(A). Then Ey(V) = V =
(fpQ)[1]. For an object M in P+, apply Hom( , M) to the exact sequence

0—1p(Q) = Q— fr(Q) =0
to obtain the exact sequence
0 — Hom(fp(Q), M) — Hom(Q, M) — Hom(zp(Q), M)

The last term vanishes, since 7p(Q) is in Gen P, so Hom(fp(Q), M) ~ Hom(Q, M).
Hence, we have J;)(Ey(V)) = Jpo(V) = PN (fpQ)*" = P- N Q* = J(U 1 V), which
finishes the proof of case IV.

General case. Let Y = U LI P[1] and V = V I Q[1], for U, V 7-rigid modules and P, Q
in P(A). We assume that U L1 V is support 7-rigid in C(A). We proceed by induction on
the rank n = r(mod A). We therefore first assume U # 0, so r(J(U)) < n.

Then

(10) JUTV)=JUUV)NnP-NnQO*
and

Jran(Eu(V)) = Jywynp-(Eynpy(V L O[1]))
(11) = Ty Eg oy Eu(V L Q[1]))
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(12) = Jiwyne- Erpriy UV O Tiwnnp (g (pyyy Ev(QID)

Where (L)) is by definition by of E¢; = Eyupp-
Note that we have

(13) JW) N P =JU L P = Jyu)(Eu(PI1])

by case II(b).
We next compute the terms of (I2)) separately. For the first term, we obtain

(14) JJ(U)mPL(S.JgEJ%UDSU(V)) = JJJW)(SU(PU]))(atjg(ulgpm)au(v))
15) = Jyw)(Eu(P[1]) U Ey(V))

= Jyw)(Eu(PI1) N Jyw)(Eu(V))
(16) = JWU LU P[1]) N Jyun(Eu(V))

= J(U) NP~ N0 Jy0)(Eu(V))
a7 = P~ 0 Jyuy(Eu(V))

where (I4) follows from (I3), and (13) is obtained by using the induction assump-
tion for the proper subcategory J(U), while (16) holds by case II(b) and (I7) holds by
S (&u(V)) € J(U).
Similarly, for the second term in (I2)), we obtain
Tinops &g (pyEU(QID) = Ty pr) S pyiy S (@)
= Jyw)(Eu(P[1]) T Ey(Q[11))

= Jyn(Eu(PI11 T Q[1]))
= J(U I P[1] 11 Q[1])

(18) =JWU)NP-NQO*

‘We then obtain

19 TyanEuV)) = Tiwynr &4 oy vV N Tiwne- (S iy Eu(QL11)

(20) = Ly Eu(V) NP NJWU)NP-NQO*

21 =JUuav)ynP-nQ*

(22) = J(ULV)

where (19) is (I2)) and where 20) follows from combining (I7) and (I8). Furthermore
(1)) follows from Cases I and Il(a) and (22)) follows from (1Q) respectively.

So we have that the claim of the theorem holds in the general case, with the assumption
that U # 0.

Now, consider the case where U = 0.

We then have
JWUIOV)=JP11aIVUaQ[l])
(23) =JV)NnP-NnQO*
and

J1an(Eu(V)) = Jyppp(Ep(V L O[11))



A CATEGORY OF WIDE SUBCATEGORIES 15

= Jippy(Ep(V)) N I e (Eppy(QL11))

(24) = J(VLP[1]) nJ(P[1] T Q[1])

=JV)NnP-NnQO*

=JULTYV)
where for (24]), we use cases III and IV. This finishes the proof for the case U = 0, and
hence the proof of the theorem. O

5. ASSOCIATIVITY

The aim of this section is to prove that the composition operation defined in Section
] is associative. The main step is to prove Theorem We prepare for this, by giving
several useful lemmas.

Lemma 5.1. Let U, X, Y be in mod A where U is t-rigid and Hom(U, 7X) = 0. Then the
induced map a: Hom(X, Y) — Hom(fy(X), fu(Y)) is an epimorphism.

Proof. Consider the canonical sequences for X and Y,
0—=1X) =X - fulX) =0
and
0—=1t¥) =Y = fu¥)—0
Applying Hom( , fy(Y)) to the canonical sequence for X gives the exact sequence

0 — Hom(fy(X), fu(Y)) = Hom(X, fy,(Y)) — Hom(ty(X), fu(Y))

Noting that the last term vanishes, this gives that a is an isomorphism.
Applying Hom(X, ) to the canonical sequence for Y gives the exact sequence

Hom(X, Y) % Hom(X, fyy(Y)) — Ext' (X, ty(Y)).

Since Hom(U, 7X) = 0 we have by Lemma 2.1l that Ext' (X, Gen U) = 0, so in particular
Ext' (X, ty(Y)) = 0. Hence the map b is an epimorphism. The induced map @ = a~' o b is
then also an epimorphism. O

We have the following similar lemma:

Lemma 5.2. Let U, X, Y be in mod A where U is t-rigid and Hom(U, Y) = 0. Then the
induced map Hom(X, Y) — Hom(fy(X), fu(Y)) is an isomorphism.

Proof. Since Hom(U, Y) = 0, we have ty(Y) = 0, so fy(Y) ~ Y. We have the canonical
sequence for X:

0 1y(X) X fuX) —0
Applying Hom( , Y) to this we obtain the exact sequence
0 —— Hom(fy(X), Y) — Hom(X, Y) —— Hom(ty(X), ¥).

The last term vanishes since Hom(U, Y) = 0 implies that Hom(Gen U, Y) = 0. So we
have Hom(fy (X), fu(Y)) ~ Hom(fy(X),Y) ~ Hom(X, ). m

Lemma[5.1 has the following consequence in terms of approximations:
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Lemma 5.3. Let 7 be a subcategory of modA. Let U be t-rigid and assume
Hom(U,7B) = 0. If a: B — A is a left T -approximation, then fy(a): fy(B) — fu(A) is
a left fu(T)-approximation.

Proof. Let fy(T) be in fy(7), and consider a map b’: fy(B) — fy(T). By Lemma[3.1]
there is b: B — T such that f;(b) = b’. Since a: B — A is a left 7 -approximation,
there is ¢: A — T such that b = ca. It follows that f;(b) = fy(c)fu(a), which proves the
claim. O

Lemma[5.3lis used in the proof of part (b) of the following lemma.

Lemma 5.4. Let U,V be in mod A, where U 1V is t-rigid. Assume no indecomposable
summand in V lies in GenU and let V = fu(V). Let T = (U U 7V) and let T' =
Lty V) N J(U). Then the following hold.
(a) We have fy(T)=7".
(b) If B — Ais aleft T -approximation in mod A and Hom(U, 7B) = 0, then fy(B) —
fu(A) is a left T'-approximation (in mod A).

Proof. (a) We first show fy,(7) € 7. Since U is in 7, we have Gen U C 7, and clearly
7 C (rU). By [9, Theorem 3.14], we have that f;;(7) = 7 N U* is a torsion class in
J(U). So
fo(M) =T NU-=*@UUTV)NU* =*(=V)n JU),
and we want to show that f,(7) = *(rV)NJ(U) € “(t; s, V)NJU) =T".
Now let Y be in fi;(77), and consider the canonical sequence

0—-1(V)=>V—= fulV) =0
which, after applying Hom( , Gen Y N J(U)) gives rise to an exact sequence
Hom(ty(V), Gen Y N J(U)) — Ext'(V,Gen Y N J(U)) — Ext'(V,Gen Y N J(U)).

Since Y is in *(7V), we have Ext'(V,GenY) = 0 by Lemma 2.1 so in particular
Ext!(V,GenY N J(U)) = 0. Since ty(V) is in Gen U and J(U) C U*, we have that
Hom(ty(V),GenY N J(U)) = 0. Hence, we also have Ext'(V,GenY N J(U)) = 0, so
Ext'(V, Gen sy Y) = 0 which implies Hom(Y, J(U)V) = 0, by Lemma 2.1l Hence we
have that Y is in 77 = (1,1, V) N J(U), which gives f,(7) C 7.

For full subcategories X and Y of mod A, we let X * Y denote the full subcategory

{M € mod A | There is an exact sequence 0 > X - M —» Y —» O with X € X, Y € Y}

Since fy(7) € 77, we have Gen U = fy(7) € Gen U = 7. Since fy(7) =T N U+, it
follows from [9, Theorem 3.12] that Gen U * f,(7) = 7, so we have 7 C Gen U =7,
and we aim to prove equality.

We first claim that U is Ext-projective in Gen U * 7. Since Hom(U, TU) = 0, we have
Ext' (U, Gen U) = 0. We have 7’ C J(U), so Hom(7”, tU) = 0 and hence Ext'(U,7") =
0. From this we obtain that also Ext'(U,Gen U = 7”) = 0, as required.

We next claim that V is Ext-projective in Gen U * 7. Note first that by [9, Theorem
3.12] we have (GenU = 7/) N U+ = 7. Since V is Tyw)-rigid in J(U) and 77 =
L(tj0nV) N J(U), we have that V is in P(7”) by [, Theorem 2.10]. By [9, Theorem
3.15] we have P(7") = fyP(Gen U = 7), and hence there is V' in P(Gen U = 7) such
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that V = fu(V’"). We claim that V' II U is 7-rigid. Since V' is in P(Gen U * 7'), we
have Hom(V’, 7V”") = 0 by [, Proposition 1.2(c)] (noting that 7 is functorially finite in
J(U) by [1} Theorem 2.10] and therefore Gen U =7’ is functorially finite in mod A by [9,
Theorem 3.14]).

Since Ext!(V/,GenU) = 0, we have that Hom(U,7V’) = 0. We also have that
Hom(Gen U, 7U) = 0, since U is 7-rigid and since 7" € J(U) we have Hom(7",7U) = 0.
Since V’ is in Gen U = 7 we hence have Hom(V’,7U) = 0, so we have proved the claim
that V' LI U is 7-rigid. Since f;(Gen U) = 0, we may assume that V' has no direct sum-
mands in Gen U. We have V = fu(V) = fyu(V"). It follows from [4, Lemmas 5.6, 5.7]
that V is basic, since V is basic by assumption. Similarly, also V" is basic and V =~ V.
So we have proved the claim that V is in P(Gen U * 7).

Now, using that U II V is in P(Gen U * 7) in combination with [1, Proposition 2.9],
gives that Gen U « 7/ C 7 = *(zU LI 7V), and hence we obtain 7 = Gen U * 7', which
implies fy(7) = fu(GenU = 7") = 7", and this finishes the proof of (a).

Part (b) follows from part (a) and Lemma[3.3 ]

Lemma 5.5. Let U 11 V be t-rigid in mod A, let T = Gen(U U V) and let T' =
Gen fU(V) N J(U) = GenJ(U) fU(V) ThenfU(‘T) =7

Proof. Since Hom(U 11 V,tU) = 0, we have 7~ C +(7U), so we have
GenU C 7 C *(7U).

By [9) Theorem 3.15], we have that f;;(7) = 7 N U* is a torsion class in J(U).

Let Y bein fy(7) and let T € 7 be such that Y = fy(T). There is an epimorphism
ULV S T with U’ € add U and V' € add V. The canonical maps U’ LI V' 5 fu(V")
and T 4 fu(T) are also epimorphisms, and there is a commutative diagram

a

vnuav T
|
Ju(V') —— fu(T)

where b = fy(a).

Since bc = da is an epimorphism, also b must be an epimorphism, and hence ¥ =
fu(T) is in Gen fy (V). Since fy(7) € J(U), we have that Y is in J(U) and hence in
Gen fy(V)n J(U).

Conversely suppose Y is in Gen fy(V) N J(U). Since fy(V) is a factor module of V,
we have that Y is in Gen V, so Y is in 7. Since Y is in J(U) C U+, we hence have that Y
isin 7 N U* = fy(7). This finishes the proof of the lemma. O

We also need the following reformulation of Lemma[3.8]

Lemma 5.6. Let P,V be in mod A, with P p_rojective and Hom(P, V) = 0, and let V=
fpV=V.LetT =+(tV)andlet T' = *(tp. V) N P*. Then we have fp(T) =T .

Proof. This follows directly from Lemma[3.8] using that fp(7) = P+ N *(rV). O
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Finally, we need the following. Suppose that U and V are objects in C(A), with
addU N addV = 0 and such that U LI V is support 7-rigid. Note that the domain of

Euny 18:
{X €eindC(A) : XU U UV support r-rigid and add X N add(U 11 V) = 0}.
Then:

Lemma 5.7. Let U and V be objects in C(A) such that U UV is support t-rigid and
add U NaddV = 0. Then Eq; induces a bijection between the sets:

{XeindC(A) : XU UUYV support t-rigid and add X N add(U U V) = 0}.

and

{X e indC(J(U)) : XU Ey(V) support t-rigid and add X N add(Eq(V)) = 0}.
Proof. This follows from Theorem [3.7 |
Corollary 5.8. The composition Sé(;{,)v)c‘]u is a well-defined map with domain coinciding
with the domain of Eqpy.
Proof. This follows from Lemma[5.7]and the fact that target set in Lemma[5.7]is exactly
the domain of Ségffv). O

The following sections will be devoted to proving the following theorem (Thoerem L6
from Section [0.2)).

Theorem 5.9. Let U and V be support t-rigid objects in C(A) with no common direct
summands, and suppose that U 1V is support t-rigid in C(A). Then

(25) EprinEu = Eunry

Proof We assume that ¢/ = ULIP[1] and V = VI Q[1], with U, V, P, Q modules and P, QO
projective, add(U) N add(V) = 0 and U LI V support 7-rigid. In view of Corollary [5.8]
we need to show that Sé(ﬂ%({fv)c‘}u(X) = Eyny(X) for each indecomposable object X in the
domain

{X €indC(A) : XU U UV support 7-rigid and add X N add(U U V) = 0}

of each of the maps 8(4(1{7{2‘,)81, and Eqrpp.

Our strategy is to employ a case analysis, based on the properties of U, V and X, since
the maps &Eq, Ség(lr)v) and &gy are defined via cases. We will consider the following
cases for U and V.

Casel [ U=Uand V=V
Casell |U =UandV = Q[1]
Caselll |Y =P[l]andV =V
CaseIV | U = P[1] and V = Q1]

In case II, we assume that & = U lies in mod A and that V = Q[1], where Q lies in
P(A)N*U. In this case the claim that equation (23)) holds follows directly, since we have

_ _ o) _ oJU) _ oJU)
Euny = Eyupny = SSU(PUDSU - SSU(V)SU - 8611(%8"“
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where the second equality holds by definition of Eyyippr;. So it remains to consider cases
I, IIT and IV.

For each of the cases I, III and IV we will also need to further subdivide according to
the properties of X in ind C(A). We consider Case I in Section[6] Case III in Section[7land
Case IV in Section [8l Finally, we must consider the ‘mixed case’, where U and <V have
both module and shifted projective direct summands; this is considered in Section

6. Proor oF THEOREM [5.9] CaSE I

We assume that & = U and V = V for U,V in mod A where U L1 V is 7-rigid. We
divide Case I into the following subcases.
o CaseI*: U = U and V = V where U and V lie in mod A and add VNGen U = 0.
e Case I**: U = U and V = V where U and V lie in mod A and V € Gen U.

We firstly note that Case I will follow from these two cases:

Proposition 6.1. Assume that (23) holds in both cases I* and I'**. Then (23) holds in
Case L.

Proof. Write V. = V| I V,, where V; is in Gen U, and addV, N GenU = 0. Then
Eunv = Swuvpy,. If U = 0, then also V| = 0, and the result is trivial. We therefore
assume U # 0. We proceed by induction on n = r(mod A). Hence we can assume that it
holds for J(U), since r(J(U)) < n.

Note that we have Gen(U LI V;) = Gen U, so add V, N Gen(U LI V;) = 0. Hence we
have:

8UHV = S(UU\/l v,

26) - £
27) = &gy vy EU
(28) = Sty EtyginEu
2 L
(30) = acje(ul?vouau(vz)&f
3D = Sé(ulgquvz)&f

= 853(53/)811

where (26) holds by Case I*, the equations (27) and (29) hold by Case I**, and (28]
holds by Theorem 4.3l Furthermore (30) holds (in J(U)) by the induction assumption,
while (31)) holds by definition. O

For each of the subcases I* and I**, we will need to consider the following cases for
X.

(@) XeindA and X ¢ Gen(U L1 V)
(b) XeindA and X € Gen(U U V) \ Gen U
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(c) XeindA and X € Gen U
(d) X € indP(A)[1]

Case I'*: We assume that U = U and V = V where U and ‘ilie inmodA and addV N
Gen U = 0, i.e. V has no direct summands in Gen U. We set V = f;(V).

Lemma 6.2. With the above assumptions on U and V, we have that f;;(X) is not in Gen 1%
and that

f—j(U)(fU(X)) = fuuv(X)

Vv
for any X not in Gen(U L1 'V).

Proof. Consider the composition
a b
X fuX) = 27 fu(X)
We first claim that ba is a left (ULIV)*-approximation. Let c: X — Y be a map, with Y in
(UTV)*. Since Y isin U™, and a is left U*-approximation, there isamap d: fy(X) — Y
such that da = c. Applying Hom(, Y) to the canonical sequence

e b
0= £ fu(X) > fu) = £ fu(X) = 0
of fy(X) gives the exact sequence

(32) Hom(£2 fy(X), ¥) — Hom(fy(X), ¥) — Hom(z" fy/(X), Y).

We have that th)fU(X) is in Geny ) V =GenVNJU)CGenV,since V= fy(V)isa
factor module of V. Since Y is in V*, we then have that de = 0. Hence, by the sequence
(32), there is a map g: fvjw) fu(X) — Y, such that gb = d. Hence ¢ = gba, which proves
that ba is a left (U L V)*-approximation as claimed. We have that ba is minimal, since
both a and b are epimorphisms.

The canonical map X — fyny(X) is a also a minimal left (U L V)*-approximation. So
we have
(33) £ foX) = fouy(X)

v
In particular, since by assumption X is not in Gen(U LI V), we have that fvjw) fo(X) =

Sfuuv(X) in non-zero, so fy(X) is not in Gen V. |

Case I'* (a): We assume that X is indecomposable in mod A, that X I1 U 11 V is a 7-rigid
module, and that X does not lie in Gen(U 11 V).

We then have that Ey(X) = fy(X), since X dogs not lie in Gen U. Using the first claim
of Lemma[6.2] we have that f;;(X) is not in Gen V. Hence,

&3 EuX) = L2V (fu(X)).
Since X is not in Gen(U 1I V), we have Eyny(X) = fynv(X), and equation (23) now

follows from the second claim of Lemmal6.2]
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Case I'* (b): We assume that X is indecomposable in mod A, that X 1 U L1 V is a 7-rigid
module, that X is in Gen(U LI V), and that X does not lie in Gen(U).

We have Ey(X) = fy(X), since by assumption, X is not in Gen U. By Lemma[5.5] we
have that fi; Gen(U LI V) = Gen fy(V) N J(U) = Genyy)(fy(V)). Hence we have that

Ju(X) is in Gen,y(fu (V).
There is a right exact sequence

G4 Yy — ‘_/}U(X) — fu(X) — 0,

where the first map is a minimal left add U-approximation, the second map is a mini-
mal right add U-approximation, and Yy, (x, lies in P(*(t,¢)V) N J(U)). We then have
E5Ey(X) = 1V pyn)-

To compute Eyy(X), consider the right exact sequence

(35) Y, > U LUV S5X -0

where the first map is a minimal left add(U LI V)-approximation, the second map is a
minimal right add(U I V)-approximation and Y% lies in P(*(rU L 7V)). We then have

Evv(X) = funv(Yy).
We now aim to prove the following.

Claim 6.3. Applying fy to the right exact sequence (33) gives the right exact sequence

4.
To prepare for the proof of Claim[6.3] we consider first a more general set-up.

Lemma 6.4. Let (7,%) be an arbitrary torsion pair in mod A. Assume that there is
commutative diagram

A—‘“-p-t.C 0
a b
A’ B’ C’ 0

where the vertical maps are minimal left F -approximations (and hence epimorphisms),
and the upper row is a right exact sequence. Then the map b’ is an epimorphism and for
any Z in ¥, and any map t: B" — Z with ta’ = 0, there is a map u: C' — Z, such that
ub’ =t.

Proof. For the first claim, note that zb = b’y is an epimorphism, hence also b’ is an
epimorphism. We have that zba = 0, and this implies b'a’x = 0 and hence b’a’ = 0,
since x is an epimorphism. Now ta’ = 0 implies fta’x = 0, and hence tya = 0. Since
b is the cokernel of a, there is a map u’: C — Z such that ty = «’b. Since z is an F -
approximation, and by assumption Z is in ¥, there is u: C’ — Z such that ¥’ = uz. It
then follows that ty = u’b = uzb = ub’y, and since y is an epimoprhism, we have t = ub’,
as claimed. O
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Proof of Claim[6.31 Apply fy to the sequence (33)), and consider the commutative dia-
gram

0 0

ty(U' L1V L— t,(X)

’

c d
s

Y}, Uy X 0

lr p q

Fo(Vy) ——— fy(v1) —2

l

0 0 0

where the second row is sequence (33), so is exact, and the second and third columns are
the canonical sequences for U’ L1 V’ and X, respectively. Note that the map y exists since
qgac = Bpc = 0, so ac factors through d.

We first claim that all objects in the third row are in J(U). This follows from the fact
that all objects in sequence (33) are in *(7U), and hence the same hold for all objects in
the third row, since *(7U) is closed under factor objects. All objects in the third row are
by definition in U+, and hence also in J(U) = U+ N *+(zU).

We next claim that S is the cokernel of s. We have s = fy(as’) = fy(0) = 0. It
now follows from applying Lemmal6.4] with the torsion pair (Gen U, U*), and using that
J(U) € U+ that B is the cokernel of s in J(U), that is the sequence

a

4 S 7 B
(36) Ju(Yy) = fu(V) = fu(X) — 0
is exact in J(U) (and hence also an exact sequence in mog A).

We now claim that the map s is a minimal left add V-approximation. For this let
b: fy(Y},) — V' be amap with V' in add V. Let V" in add V be such that fy (V") =
V", and let g: V' - V" be the canonical epimorphism. Consider the canonical exact
sequence for V",

05tV > V'SV S0

and note that since Gen U C (U 1l 7V), all terms in the sequence are in *(7U LI 7V).
Applying Hom(Y5,, ) gives the exact sequence

Hom(Y}, V') — Hom(Y}, V') — Ext' (Y4, ty(V")).

Using that Y} is in P(*(rU LI 7V)) and that #;,(V"") € Gen U C *(rU LI V), we have that
the last term vanishes, and hence the first map is surjective, and therefore there is a map
f': Yy — V”suchthat gf” = br.

The map s’ is an add(U L1 V)-approximation, therefore there isamap f: U'LIV' — V",
such that f* = fs’. Then we have br = gf” = gfs’. Now consider the canonical sequence

(37) 05U UV)> ULV D U V) = fu(V) =0
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Note that Hom(t,(U' L1V”), V") = 0 since V is in *(+U). Applying Hom(, V") to 37),
we obtain
Hom(fy(V"), V") =~ HomU’' 1V, V").

Hence there is a map e: fy(V’) — \_/”, such that ep = gf. We then have br = gfs’ =
eps’ = esr, thatis (b — es)r = 0. Since r is an epimorphism, this implies b = es, and we
have proved the claim that s is a left add V-approximation.

We next claim that s is a left minimal map. Let

s = (f;) L fu¥) = fuV)

where s, is left minimal. Then coker(s) ~ coker(s;) LI M for some module M. Note that
X indecomposable implies that coker(s) ~ f;;(X) is indecomposable by [4, Lemma 4.6],
hence we have coker(s;) = 0 or M = 0. If coker(s;) = 0, then fy(X) is in add fy(V’).
Then there is an indecomposable direct summand V; of V, such that f;(X) =~ fy(Vp).
But then, by [4, Lemma 5.7] we have X =~ V,, but this is a contradiction, since X is by
assumption not in add V. Hence M = 0, and therefore s = s; is left minimal.

We claim that fy;(Y3) is in P(7”), where 7' = J_(TJ(U)‘_/) N J(U) is a torsion class in
J(U). For this consider the torsion class 7 = *(U 11 V) in mod A. By Lemma [5.4] we
have that f;;(7) = 7. It then follows from [9, Theorem 3.15], that f,(P(7)) = P(T),
and hence fy(Yy)is in P(7), since Yy, € P(T).

We can now apply [4, Proposition 4.7] to obtain that the sequences (34) and (36) are
isomorphic, and this concludes the proof of the claim. O

Using Claim[6.3| we obtain

ELEy(X) = X7 fu(X) = [2 V) = L2 fuYy).

Moreover, we have that Y5 is not in Gen(U L V), since Eynv(X) = fyuv(Yy) # 0.
Therefore, using Lemmal6.2] we obtain

Sunv(X) = fouv(Yy) = fVJ(U)fU(Y;’()-
This finishes the proof that equation (23)) holds in this case.

Case I* (¢): We assume that X is an indecomposable module in mod A, that X I1 U LI V
is a 7-rigid module and that X is in Gen(U).

Let7 =+*UUtV)and 7' = (1 J(U)‘_/) N J(U), and consider the exact sequence

(38) Yy > Uy > X -0,
where the first map is a minimal left add U-approximation, and the second map is a
minimal right add U-approximation. We then have that E¢(X) = Ey(X) = fu(YI1].
Note that by Theorem [3.7] the object Ey(X L1 V) = f;(Y;)[1] LI V is support 7-rigid in
C(J(U)), and hence we have that f,(Y5) is in Ly.

We have £, Eu(X) = E108(X) = f2Y{, where fy(Y}) — Y{ is a minimal left

. .((V) v
' -approximation.
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To compute Eqy1q/(X) we consider the right exact sequence
(39) Y/ - U1V, —->X—>0

where the first map is a minimal left add(U LI V)-approximation, and the second map is
a minimal right add(U I V)-approximation. Then Eqp/(X) = Synv(X) = funv(Yy').
Since Eyny(X) # 0, we have that Yy is not in Gen(U LI V). By Lemmal6.2] we hence
have that Eyuv(X) = fuuv(Y{OIT = £ fu (YOI,
It is therefore sufficient to prove that

£ = 119 fury)

The main steps are as follows:

Claim 6.5. (@) Thereis amap Yy — Ux LYY, which is a left T -approximation.
(b) The induced map fy(Yy) — fu(Yy') is a left T'-approximation.
(c) We have that Yy is a direct summand in fy(Yy")
(d) We have f2O(vy) = f29 fu(Yy).

Proof. (a): Consider the diagram
Py

X

Py

X

Py — Py[1]

Py — Puguy, — Px — Py (1]

where the rows are triangles giving rise (by taking homology) to the exact sequences (38))
and (39), respectively (see Section[3). We have that U, Yy” are in P(7"), so in particular
Hom(Yy’,7U) = 0. Hence by Lemma[2.]lwe have that Hom(Py,, Py, [1]) = 0. Therefore
(see [11}, Section 1.4]) the above diagram can be completed to a commutative diagram in
such a way that there is an induced triangle

g h
PU)’(HV)’([_l] - PY)’( - PU;(HY)’(” - PU)’(HV)’(-

Now, letk: Py, — Py beamap with7 € 7 = ~(vU LL V). Then Hom(7, 7U LI7V) = 0,
and hence by Lemma 2.1 we have Hom(PU;(HV)I(, Pr[1]) = 0. Hence we have kg = 0, so
by exactness of Hom( , P7) we have that there is map /: PU&HYQI — Pr, such that [h = k.
It then follows that the map H(k): Yy — T factors through H°(/), and by Lemma 2.1}
we have that any map Y| — T factors through Y5, — U} LI Y. This finishes the proof
of the claim.

(b): This follows directly from Lemma [5.4] using that U, Yy’ € $(7") and therefore
Hom(U, tYy’) = 0.

(c): This follows directly from (b), using that fy(Yy) — Y is a minimal left 7'-
approximation.

(d): This follows directly from (c), using that both fVJ(U) Yy and fVJ(U) Sfu(Yy’) are inde-
composable. O
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So equation (23)) is proved for this case.

Case I'* (d): We assume that X is of the form R[1], where R is an indecomposable module
in(P(A)N+U L V)).

Let7 = *(rU I tV)and let 7’ = *(1,,V) N J(U).

We first compute Eyyy(X). For this, let R — Yz be a minimal left 7 -approximation.
Then Eypyv(X) = fuuv(Yr)[1] = fVJ(U) Ju(YR)[1], where the last equation follows from
Lemmal6.2l

Similarly, we compute Ey(X) by letting R — Y}, be a minimal left 7 -approximation
and then Ey(X) = fu(Yp)I[1].

To compute SJV(U)SU(X), let fy(Yz) — Yg be a minimal 7’-approximation. Then we

have SQU)SU(X) = fVJ(U)(Y,Q')[l]-

Claim 6.6. We have that fy(Yg) = Y.

Proof. We first claim that the composition R A Yr A fu(Yr) is a left P(T7)-
approximation. Consider a map f: R — N’ with N’ in P(7”). By Lemma [5.4(b), we
have that fyP(7) = P(T"), so there is a module N in P(7") satisfying fy(N) = N’. Since
R is projective, there is a map u: R — N, such that gu = f. Since h: R — Yz is a P(7)-
approximation and N is in P(7), there is v: Yz — N such that u = vh. Note that N is in
P(T) C J(U) € U*. Since k is a left U*+-approximation, there is w: fy(Ygz) — N such
that v = wk. So, we have f = gu = gvh = gwhk. Note that N" is in P(7") € J(U) C U™.
Since k is a left U+-approximation, there is w: f;;(Yz) — N such that gv = wk. So, we
have f = gu = gvh = wkh, and hence kh is a left P(7')-approximation.
Next, we claim that the composition

RS Y5 fuVp) S vy
is a left (7 ')-approximation. Let N be in P(7), and let a: R — N be a map. Since
N isin *(tU) and b is a left *(rU)-approximation, there is a map a’: Y, — N such that
a = a’'b. Since N is in U* and c is a left U*-approximation, there is a map a”: fi,(Y3) —
N such that @’ = a”c. Since N is in 7" and d is a left 7'-approximation, there is a map
a”: Yy — N suchthata” = a"”’d. So we have a”’dcb = a”’cb = a’b = a, so dcb is a left
P(7')-approximation as claimed.

Note that both Yy and Y} are indecomposable by [4, Prop. 3.7], hence also fy(Yg) is
indecomposable, by [4, Lemma 4.6]. It then follows that both

X5 YeS fulYe)
and
X5 ¥ fulvp S vy
are minimal left 7-approximations. So we obtain fy(Yz) ~ Y. |
By Claim[6.6] we now have that
Eouwv(X) = £20 fu(Ypll] = £ = EXV8u(X)

and hence equation (23) holds also in this case.
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Case I**: We assume that ¢« = U and V = V for U, V in mod A, that U L1 V is a 7-rigid
module, and that V lies in Gen U.

Let V = Q[1], where Q is in P(J(U)). We first make the following observation.
Lemma 6.7. With the assumptions of Case I**, we have that fyny = fu.

Proof. Since V € Gen U, we have that Gen(U LI V) = Gen U. It follows that #;;1y = ty,
and then by uniqueness of canonical sequences, that also fyy = fu. O

Case I'** (a): We assume that X is an indecomposable module in mod A, that X HU IV
is a 7-rigid module, and that X does not lie in Gen(U L1 V) = Gen U.
We have that Ey(X) = fy(X), and

EXVEY(X) = EX(fu(X)) = E5(fu(X)) = fu(X).

Note that the last equation holds since @ is in P(J(U)) and we have Hom(@, fu(X) =0
since Ey(V U X) is support 7-rigid in C(J(U)) by Theorem [3.71
By Lemma[6.7] we have

Euuv(X) = fouv(X) = fu(X) = &7 Ey(X)
and the claim that equation (23) holds, is proved in this case.

Case I** (b): Since Gen(U LI V) = Gen U, this case (where X lies in ind A and X €
Gen(U LI V) \ Gen U) cannot occur.

Case I'** (¢): We assume that X is an indecomposable 7-rigid module, that X 1 U L1 V is
a 7-rigid module, and that X lies in Gen U = Gen(U L1 V).

In order to compute Ey(X), we consider the exact sequence
40) Yy o Uxy—>X—>0

where the first map is a minimal left add U-approximation, and the second map is a
minimal right add U-approximation. Then Ey(X) = fy(Yx)[1].

We have
&b EulX) = 8L 8u(X) = 1 (¥l
Next, to compute Eypy(X), we consider the exact sequence
@D Yy —» Uy lIVy — X — 0,

where the first map is a minimal left add(U I V)-approximation, and the second map is
a minimal right add(U I V)-approximation. Then Eyny(X) = fuuv(Y)[1].
By Lemmal6.7] it now follows that

SUHV(X) = fUHV(Y),()[l] = fU(Y),()[l]-
By the above, it will be sufficient to prove that

(42) £3 0 fu¥x) = fu(Yy).

The main steps in the proof are as follows:
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Claim 6.8. Let T = (U U tV) and let T' = @L N J(U). Then the following hold.
(a) We have fgw fo(T) = fl(T) =T,
(b) There is a map Yy EA Yy, U Ux which is a left T -approximation.

(¢c) The map fy(Yx) M fu(Yy) is a left T'-approximation.

£t
(d) The map ng) fu(Yx) SN fé(U) fu(Yy)is aleft ng)‘T’ = 7" -approximation.

(e) The map fgw Ju(y) is an isomorphism.
(B) We have 1) fu(Yy) = fu(Yy).
(8) We have f57 fu(Yx) = fu(Yy).

Proof. (a): Since V is in Gen U, we have by Lemmal[6.7|that f;; = fynv, and we have
fu(T) = fuuw(T) = fuuv(C@EU L V) = (UL V)" N+ (U L 1V)
=JUUV) 2 JyyEu(V) = Lin@11D) = Q0 nJU) =T

where (x) holds by Theorem 4.3l This proves the second equality. But fgw clearly acts
as the identity on objects in @L N J(U), and this proves the first equality.

(b): Consider the diagram
Py.

X

Py

X

Px Py, [1]

&

PY)’( - PU;(HV)’( — Py — IP’1/;([1]

where the rows are triangles giving rise (by taking homology) to the exact sequences
(0) and (1), respectively (see Section 2 for details). Since Y} isin 7 C *(rU), we have
Hom(Y;,7U) = 0, and hence Hom(Py,, Py}’([l]) = 0, by Lemma 2.1l Hence there are
maps Py, — Pyiuy, and Py, — Py, completing the above diagram in such a way that
there is a triangle (see [11, Section 1.4])

g h
PU;(LIV)’([_l] — Py, — PUXHY)’( - PU;(HV)’(-

Now, let k: Py, — Pr beamap with 7 in 7 = *(vU U V). Then Hom(7, 7U U7V) = 0,
and hence by Lemma 2.1l we have Hom(Py; nv; , P7[1]) = 0. Hence we have kg = 0, so
by exactness of Hom( ,P7) we have that there is map /: Puxuy)/( — P such that [h = k.
It then follows that the map H(k): Yy — T factors through H°(l), and by Lemma 2.1}
it then follows that any map Yy — T factors through Yy — Uy I Y}. This finishes the
proof of the claim.

(c): We have U € P(+(rU)) by [1, Proposition 2.9], and Yy € P(+(rU)) by construction
(see Definition 3.1l Case I(b)). Hence, in particular, Hom(U, 7Yx) = 0, since P(*+7U) is
7-rigid by [, Theorem 2.10]. Then the assertion follows from Lemma[5.3
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(d): We have that fi;(Yx) is in P(J(U)), and hence 7, fu(¥Yx) = 0. Hence, the assertion
follows from Lemma[5.3

(e): We have that the image of the map fgu) fu is in @L N J(U) = 77, so in particular

fé(U)fU(YX) isin 7. By [4, Lemma 5.6]), fé(U)fU(Y)’() is indecomposable, so the map
fgw fu(y) in (d) is left minimal. The assertion follows.

(f): This follows from fy(Y}) € fy(T)=T" =0 nJ(U).

(g): This now follows from (e) and (f). O
We have now proved that (42)) holds, and hence (23)) holds in this case.

Case I** (d): We assume that X is of the form R[1], where R is an indecomposable
module in (P(A)N+(U L V)).

Note first that we have V = @[1], where @ = fy(Yy) and where there is an exact
sequence

Yy o Uy >V —>0,
where the first map is a minimal left add U-approximation, and the second map is a
minimal right add U-approximation.
We have that Ey(X) = fy(Yr)[1], where R £> Yz is a minimal left +(zU)-
approximation. Furthermore, we have

E580(X) = E318u(X) = f fu(YR11.

We have fy = fyuv, by Lemmal6.7] We hence have that Eyuv(X) = funv(Ypl1] =
Su(Yp)l1], where R 5 Y} is a left minimal +(7U LI 7V)-approximation.
Hence, it will be sufficient to prove that

(43) 150 fuR) = fu(YVp).

The main steps in the proof are as follows.

Claim 6.9. Let T = (U U tV) and let T' = @L N J(U). Then the following hold.
(a) We have f2 fu(T) = fu(T) =T
(b) There is a map Yg 5 Y, such that fy(a) is a left fy(T)-approximation.
(¢) We have £ fu(Yy) = fu(Yp).

29 fy(a)

(d) The map fgw Ju(Yr) SLERAREN fgu) Su(Yp) is aleft ng)T’ = T -approximation.
(e) The map fé(U) fu(a) is an isomorphism.

(f) We have [ fu(Yp) = fu(Yp).

(&) We have £ fu(Ye) = fu(Yp).
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Proof. (a): See Claim[6.8)(a).
(b): Since 8: R — Yy is aleft *(rU)-approximation, and Y € 7~ C *(rU), there is a map
a: Yg — Y, such that af = a.

We claim that fy(a) is a left fy(7)-approximation. Consider a map y: fy(Yz) —
fu(T), where fy(T) is in fy(7). Since U, Yy € P(+(rU)), we have in particular that
Hom(U, tYg) = 0. It then follows from Lemma 3.1l that y = f;;(x) for some x: Yz — T.
Consider the diagram

where c¢: Y, — T such that x5 = caf exists since & = af is a left 7 -approximation. It

follows that (ca — x)B = 0. Applying Hom( , T) to the right exact sequence R LA Y IR
Uy — 0 gives the left exact sequence

0 - Hom(Ug, T) - Hom(YR, T) — Hom(R, T).

Now (ca — x)B = 0 implies that there is amap n: Uz — T, such that ca — x = nl, and so
x = ca + nl. Since fy(nl) = 0, this gives y = fy(x) = fy(c)fy(a). Hence we have that
fu(a) is a left fi,(7)-approximation as claimed.

(c): This follows directly from (a), since /U) acts as the identity on @L NJU).
y 0 y

(d,e.f,g): See Claim[6.8(d,e,f,g). O
We have now proved that (43)) holds, and hence that equation (23)) holds in this case.

7. PROOF OF THEOREM Cask 111

We have already dealt with Case II (see the end of Section [3), so we must next deal
with Case III. We assume that U = P[1], where P lies in P(A), that V = V is a 7-rigid
module satisfying Hom(P, V) = 0.

Then E¢(V) =V =V = Vis 7-rigid in J(U) = P-.

We need in this case to consider three possible cases for X:

(a) X lies in ind(A), X does not lie in Gen V, X 11 V is 7-rigid and Hom(P, X) = 0.
(b) X lies in ind(A), X lies in Gen V, X I1 V is 7-rigid and Hom(P, X) = 0.
(c) X is of the form R[1] where R lies in ind P(A) and Hom(R, V) = 0.

Case III (a): We assume that X is an indecomposable 7-rigid module in mod A, that
X 1V is 7-rigid, that Hom(P, X) = 0 and that X does not lie in Gen V.

Then E¢(X) = Ep(X) = X, and X is 7-rigid in J(U) = P*. We have

Eliyt Eu0) = EX0EL(X) = &/700 = {00 = £ 00).
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We next compute Eqyp/(X). We have E(U) = E(P[1]) = fy(Yp)[1], where P — Yp
is a left ~(rV)-approximation. We then obtain

S'LIH(V(X) = SVHP[I](X) = ag“//()p[l])SV(X) = S}IP‘(,‘(/))/P)U]SV(X) = 8;‘(,‘(/))/P)[1]fV(X) = fV(X)a

where the second equality holds by definition. The last equation holds since &y (X LI
P[1]) = fy(X) IO fy(Yp)[1] is support 7-rigid in C(J(U)) by Theorem 3.7, so fy(Yp) is in
P(J(U)) with Hom(fy(Yp), fr(X)) = 0.

We next claim that f\f X) = fv(X). For this, consider the canonical sequence of X in
mod A with respect to the torsion pair (Gen V, V*):

0= ty(X) = X = fy(X) = 0.

Since Hom(P, X) = 0 by assumption, and P is projective, we also have Hom(P, fy (X)) =
0, and clearly also Hom(P, t,(X)) = 0. We have ty(X) € GenV N P+ = Genp: V and
Sfv(X) € PN V*, so this sequence is also the canonical sequence of X in P+ with respect
to the torsion pair (Genp. V, P* N V*). Hence f;; “(X) = fy(X) and it follows that

Eunv(X) = frX) = fy (X) = & Eu(X),

and equation (23) holds also in this case.

Case III (b): We assume that X II V is a 7-rigid module in mod A such that X lies in
Gen V and Hom(P, X) = 0.

First note that E¢/(X) = Ep1)(X) = X. Consider the right exact sequence in J(U) = P+,
(44) Yr s vE S5 x50,

where the first map is a minimal left add V-approximation in P+, Yx € P(*+(rV)) and the
second map is a minimal right add V-approximation in P*.

‘We then have that
Séf({%,)Sw(X) = SQ:SW(X) =&(X) = fXrPH.

We next compute Eqq1/(X). First note that Ey(P[1]) = fy(Yp)[1], where P — Ypisa
minimal left +(7V)-approximation, and that Ey(X) = fy(Yx)[1], where there is an exact
sequence

45) Yy > Vx> X—>0

where the first map is a minimal left add V-approximation, and the second map is a
minimal right add V-approximation. Then

Eay(X) = Eppy = E oy v = frg frYll.
Hence we need to prove that
(46) 7)) = fr e fr(Yx).
We first make the following observation.

Lemma 7.1. Let P be a projective module in mod A. Then fp is a right exact functor
from mod A to P+, and fp sends projective modules to projective modules in P~+.
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Proof. Let e be an idempotent such that P ~ Ae. We first note that tp(M) = AeM, so
Jp(M) =~ M/AeM ~ A/AeA ®, M. It follows that fp is right exact.

Moreover, since A/AeA &y A =~ A/AeA, and the tensor-functor is additive, we have
that the indecomposable projective A/AeA-modules are exactly fp(T') for T indecom-
posable projective in mod A with 7' not a summand in P. O

We proceed to prove (46). The main steps in the proof are as follows.
Claim7.2.  (a) We have fp(Yy) = Y1
(b) The composition Yy 5 fr(Yx) LA f;pr(Yx) is a left J(V) N P*-approximation.
(¢c) The composition Yx 7 fr(Yyx) 2 fva((VY)p)
(d) We have f2° fo(Yx) = f11) f(Yx).

(e) We have fF"(YE") =~ f]{V((VY)P)fV(YX)-

fv(Yx) is a left J(V) N P*-approximation.

Proof. (a): Let T = “(zV) and let 77 = “(tp.V) N P*. Then we have f»7 = 7~ by
Lemma[5.6 We have that Y2 is in P* n4(zV) = P+ N Lz V).

Note that since Hom(P, X) = 0 = Hom(P, V), we have fp(X) = X and fp(Vyx) = Vy.
Hence, applying fp to the right exact sequence (43]) we obtain the right exact sequence

47) Foro) 2% v S x So.
We claim that fp(a) is a minimal left V = V-approximation in P*. Let b’: fp(Yy) —
fp(V’) = V' be amap with V/ € addV C P*. By Lemma[5.2] there isamap b: Yy —» V’
such that b* = fp(b). Since a is left add V-approximation, there is a map ¢: Vy — V’
such that b = ca. So fp(c)fp(a) = fp(b). We have that fp(a) is minimal, since otherwise
we would have X in add V.

Using now [4, Proposition 5.6], we have that fp(Yyx) = Y )’:L, and this concludes the
proof of (a).

(b): Let Zbein J(V)NP* and let g: Yx — Z be a map. Since « is a left P*--approximation
and Z is in P+, there isamap [: fp(Yx) — Z, such that la = g. Since S is a left P+ N V*-
approximation and Z is in P+ N V*, there is a map r: fVPifp(Yx) — Z, such that [ = .
Hence g = la = rBa. Since Yy is in ~(7V), we have that also fé’pr(YX) is in *(7V), and
hence f;lfp(Yx) isin PNVt Nn+(xV) = J(V) N P*-. This proves the claim that B« is a
left J(V) N P+-approximation.

(c): LetZbein J(V)NP*+andletg: Yy — Zbe amap. Since y is a left V+--approximation,
and Z is in V*, there is a map s: fy(Yx) — Z such that g = sy. Note that we have that
fv(Yp) is in P(J(V)), and so

(Fr(Yp)™ N I(V) = L (fr(Yp)1]) = Jyy(Ev(P[1])) = J(V LLP[1]) = J(V) N P*.
The map ¢ is a left (fy(Yp))" N J(V) = J(V) N P--approximation. Hence, there is a map

t: fJ{V((VY)P) fv(Yx) — Z such that s = t¢, and therefore g = sy = t¢y. This proves the claim

that ¢y is a left J(V) N P--approximation.
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(d): Since both Sa and ¢y are epimorphisms, they are both minimal left J(V) N P*-
approximations, and the claim follows.

(e): This follows directly from combining (a) and (d). O

Equation (23)) in this case now follows from (46)).

Case III (c): We assume that X = R[1], where R is an indecomposable projective module
in mod A and Hom(R, V) = 0.

We then have E4(X) = fp(R)[1], which is in P(P+)[1] and we have that
ENPEY(X) = E] (fR)[1]).

Note that V = V is 7-rigid in J(U) = P*. Therefore EL (fp(R)[1]) = £ (Yo)[1], where
fp(R) = Y, is a minimal left +(7p. V) N P+-approximation.

We have that Ey(P[1]) = fy(Yp)[1], where P — Yp is a minimal left +(7V)-
approximation and similarly Ey(X) = fy(Yg)[1], where R — Yy is a minimal left +(7V)-
approximation. It follows that

48)  Euuy(X) = Eppnuv(X) = Egy )y EvX) = EXD 1 EVD) = fr) fr(Ye)lL].

So it will be sufficient to prove that

(49) Yo = [0 fo(Ya).
The main steps in the proof of this are as follows.

Claim 7.3. (a) We have that Y, is a direct summand of fp(Yg).
(b) We have that £} (Yy) is a direct summand of f£" fp(Yx).
(¢c) The composition

Yo s foY) S £ foYe)
is a minimal left J(V) N P*+-approximation.
(d) The composition
Yol frl¥) S 19 Fu(¥e)
is a minimal left J(V) N P*--approximation.
() We have f}" fo(Yr) = f1\5) fu(Ye).

() We have £ Yo = f1\0) fr(Yr).

Proof. (a): Let 7 = *(V) and 7' = *(rp:V) N P-. Note that the map fp(R) — Y
is a minimal left 7 -approximation so, for the claim, it is sufficient to prove that
fp(R) — fp(Yg) is a left 7'-approximation. By Lemma [5.6] we have that /(7)) = 7,
so by Lemma [3.3] we have that fp(R) — fp(Yy) is a left 7’-approximation (noting that
Hom(P, 7R) = 0 as R is projective), giving the claim.

(b): This follows directly from (a).

(¢): Note first that since Y is in +(7V), also the factor module f‘f’L fp(YR) is in +(7V).
This module also lies in P+ N V* by the definition of f;7 *, so it lies in J(V) N P*.
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Let Z be in J(V) N P+, and consider a map g: Yz — Z. Since « is a left P*+-
approximation, and Z is in P+, so there is a map [: fp(Yz) — Z, such that la = g. Since
B is a left P+ N V+-approximation, and Z is in P+ N V+, there is a map r: f‘f - fr(Yr) — Z,
such that / = r8. Hence we have g = la = rBa, and this proves that B« is left J(V) N P+
approximation. Since this composition is an epimorphism, it must also be left minimal,
giving the claim.

(d): First note that fy(Yp) is in P(J(V)), and hence (fy(Yp))* NJ(V) = J;0,(fv(Yp)[1]) =
Jion(Ev(P[1])) = J(VLP[1]) = J(V)NP+. Letg: Yr — Zbe amap, with Zin J(V)NP*.
Since y is a V*-approximation, and Z is in V*, there is a map ¢: fy(Yz) — Z such that
g = ty. Since ¢ is a left (fy/(Yp))" N J(V) = J(V) N P--approximation, there is a map
u: ;V((‘QP) fv(Ygr) — Z, such that r = u¢. It follows that g = ty = u¢y. This proves that ¢y
is left J(V) N P+ approximation. Since this composition is an epimorphism, it must also
be left minimal, giving the claim.

(e): This follows directly from (c) and (d).

(f): Note that f‘f “(Yo) is indecomposable by [4], Proposition 5.6] (see the definition of Y,

above). It is a direct summand of fJ{V((VY)P) fv(Yg) which is indecomposable by @8]) and [4,

Proposition 5.6]. The claim follows. O

We have proved that (@9) holds, and (23) in this case now follows.

8. PrOOF OF THEOREM Case IV

We assume that U = P[1] and V = Q[1], where P, Q lie in P(A).
We set V = Q[1]. Then Q = fpQ lies in P(J(U)) = P(PH).
We need in this case to consider two possible cases for X:

(a) X is r-rigid, X lies in ind(A), and Hom(P I Q, X) = 0.

(b) X lies in ind P(A)[1].

Case IV (a): We assume that X is an indecomposable 7-rigid module with Hom(P LI
0,X)=0.
We have E¢(X) = Ep(X) = X, and then EE4(X) = &2 X = X, since

_ o]
Hom(Q, X) = 0 by Theorem[3.7
We also have Equv(X) = Eppug(X) = X, so the claim that equation (23] holds
follows also in this case.

Case IV (b): We assume that X is of the form R[1], where R is an indecomposable
module in P(A).
We then have that
&y EuX) = &5, Epn(X) = &5 (fr®I1D) = f§~ fo®I1].

On the other hand, we have Eq1/(X) = Eppiug(X) = fruo®)[11.
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So, it is sufficient to prove that fgl fP(R) = fpip(R). The main steps in the proof are
as follows.
Claim8.1.  (a) We have PN Q = P*n Q"
(b) The composition R 5 fr(R) LA fgL fp(R) is a (P 11 Q)*-approximation.
(c) We have f5" fo(R) = fpug(R).
Proof. (a): Note first that, for any module M, Hom(P, M) = 0 implies Hom(Gen P, M) =
0. Suppose M lies in P+ N @l. We apply Hom( , M) to the canonical sequence

0-7(Q) = Q- 0—0
for Q. We have Hom(Q, M) = 0 and also Hom(zp(Q), M) = 0, since ¢p(Q) is in Gen P.

Hence Hom(Q, M) = 0 and we have P* N @L C P+ N Q*. The reverse inclusion follows
immediately from the fact that Q is a factor of Q.

(b): By (a), we have that fg( fo(R)isin P NQ = PN Q*. Consideramapg: R — Z
with Z in (P LI Q)*. Since « is a left P--approximation and Z is in P+, there is a map
t: fp(R) = Z such that g = ta. Since fp(R) — f2" fp(R) is a left P~ 0 = (P Q)
approximation and Z is in P+ N Q*, there is a map u: fg fp(R) — Z such that t = up.
We then have g = fa = uBa. This proves the claim.

(c): This follows directly from (b), noting that both fg fp(R) and fprip(R) are indecom-
posable (since they are factors of the indecomposable projective module R). O

This finishes the proof that (23) holds in this case.

9. END OF THE PROOF OF THEOREM MIXED CASE

We have now proved that 23] holds for all of the cases I-IV. It remains to deal with the
mixed cases, where we have support 7-rigid objects U = U I P[1] and V = V 1 Q[1]
in C(A), with no common direct summands, but where we allow indecomposable direct
summands of U and V to lie both in mod A and in P(A)[1].

Let us summarize the formulas we need to proceed. By Cases I-1V, we have that the
formulas

(50) EfSu = Sy = 8L Ev
hold when we have both of the following:
e U=0o0rP=0,and
e V=0orQ=0.
Note that a particular case is when U = U and V = Q[1], where U lies in mod A and
O lies in P(A). We therefore have

(51 Evuom = &L

U
SU(PU])‘O’U :

Recall also from Section 4] that we have
(52) Sy Eu(V)) = J(U LT V),
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for any pair of support 7-rigid objects U,V in C(A).

Case A: We first discuss the case with P = 0, thatis U = U # 0, while V = VI Q[1]
is arbitrary. We work by induction on n = r(mod A). We then have

auva = 8UUVUQ[1]

_ oJuLy)
(53) = &g o Cunv

_ ouLy) J(U)
(54) = 8o Cesmnu

_ oliwvyEu (V) oJ(U)
(55) = Eguion Ceyu

(56) _ oliw@) o)

8§(53v>8u(Q[1]) Eu(V)CU

_ o)
(57) = &g, uesonnCu

_ oJ(U)
- 88U<VUQ[1D8U

_ oJ(U)
- 8811(%8"”

where equation (33) follows from (31)), while (34) and (36) follows from (3Q) and (33))
from (532). Furthermore, equation (37) follows from the induction assumption, since
r(J(U)) < n. This concludes the proof of the case with P = 0,i.e. U = U.

Case B: We next discuss the case with U = 0, thatis U = P[1] # 0, while V = VLI Q[1]
is arbitrary. We also assume V # 0, note that we have already dealt with the case V = 0
(this is Case IV). We then have:

J(U J(P[1
8()871:8([]) SP[I]

Eqy(V) Ep(VUQ[1])

= Séi’fl[]l(]&)HSP[l](Q[l])SP[l]
(58) - 2%[111}}2:[]1(]8[11> ‘JS(P][JI[JI(]‘% P
(59) = Eommadtly SemEn
(60) = &4 o Semm S
(61) = éfl[]ﬂvu(‘g[ll)ap[ﬂﬂ"
(62) = Sgi]:l[]gﬁ‘é)[l])agv‘g)[l])av
63) zgég(}iﬁgv@nn v Ev
4 _ ghmEE) gl o

aé(vv()Pnnav(Q[l]) Ey(P[1])
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_ oJV)
(65) = &g, puonn®v
(66) = Syuppiuol

= Syny

where for (38)), we use that (23)) holds in J(P[1]) by induction. For (63]), we use that the

(23)) holds in J(V) by induction. For (39) and (61)) we apply (30), for (62)), (63) and (66)
we apply (51)), while for (60) and (64) we apply (52).

The general case: We now discuss the general case with & = U U P[1] and V =
VO[]
We then have

JU J(ULIP[1
83(71 ) Su=8 o Syurp

@) Synpy(VLIQL1])

(67) = a.jsijlljlil[i[(l‘l)ug[u)aé(%[1J>8U
(68) - Séggxig)u(vugnDS(]‘?(U%UDSU
©9) B g’a(‘,[,é}iﬁziﬁljgé)zlg[m g &
(70) = acjs(,%npuamvugnh&f

= Scjs(ul&[uuvugm)g“

= 8£$?VHPUJHQU]>8U
(71) = SUHP[l]HVHQ[l]

= Suny

where (67) and (68) hold by (31I), while (69) holds by (32). For (ZQ) we note that
Ey(P[1])isin P(J(U))[1], so that we are in the situation of Case B in J(U). For equation

(1)), we apply Case A.
This concludes the proof of Theorem [5.910

10. IRREDUCIBLE MORPHISMS IN 23,

In this section we prove the following Theorem.

Theorem 10.1. Let A be a t-tilting finite algebra, and let W' C W be wide subcategories
of mod A, where r(W) — r(W’) =1 (i.e W’ is of corank 1 in W) . Then exactly one of the
following occurs:

(a) There is exactly one morphism in W, from W to W and W' = Jw(U), where U
is an indecomposable t-rigid module which is non-projective in W.

(b) There are exactly two morphisms in W, from W to W and W = Jw(P) =
Jw(P[1]), where P is an indecomposable module which is projective in W.
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The main step in the proof is to show that if U and V are indecomposable 7-rigid
A-modules satisfying J(U) = J(V),then U = V.

Definition 10.2. A morphism g in 28, is said to be irreducible if, whenever g is expressed
as a composition g; o g,, we have that either g, or g, is an identity map.

Lemma 10.3. Let W be a wide subcategory of mod A and let V be a support t-rigid
object in C(W). Then the following are equivalent.

(a) The morphism g = gXV/: W — Jw(V) is irreducible.

(b) The object V is indecomposable.

(c) The subcategory Jw(V) is of corank I in W.

Proof. Suppose first that V is indecomposable, and that g = g; o g, for maps g; and g, in
2W. Then we have g; = gzvli and g, = gzvé where U, is a support 7-rigid object in C(W,),
U, is a support T-rigid object in C(W,) and Jw,(U,) = W;. The composition is:
W _ W, W _ W»
8v =8 °8u, = g?'%('ul)H’Uz'

Hence W, = W and V = Fq,(U;) U U,. Since V is indecomposable, we have U, = 0
or Fqi,(U;) = 0. So U, =0or U, =0, and g; or g, is an identity map. It follows that g
is irreducible. This proves that (b) implies (a).

If V is decomposable, it can be written in the form V = V; I V, where V; and V,
are non-zero support 7-rigid objects in C(W). Then we have:

_ W _ W W,
8 = 8viuv, T 8gy,vy) © 8y

where W, = W and W, = Jw, (V). Since V; and &, (V) are non-zero, g(\g& VD and ngé
2
are not identity maps, so g is not irreducible. This proves that (a) implies (b).
We have that (b) and (¢) are equivalent by Proposition 4.1l O

Recall that for any 7-rigid A-module U there is a unique basic module By, known
as the Bongartz complement of U, such that add(U U By) is a t-tilting module and
add(U U By) = P(+tU). We also recall that a A module M is said to be Gen-minimal
if, whenever M = M’ & M"”, we have M"”" ¢ Gen M’ (see e.g. [2, VI.6]). We recall the
following:

Lemma 10.4. [8, Lemma 2.8] Let A be an algebra, and let T be a finitely generated
torsion class in mod A. Then T has a unique Gen-minimal generator, T ;,, consisting of
the direct sum of the indecomposable split projective objects in T .

If T is a support 7-tilting module, then we denote the unique Gen-minimal generator
of Gen T by T. Note that T is an additive generator for £(7") by [1, Thm. 2.7], so T is a
direct summand of 7', and we write T;,; for a complement, the direct sum of the non-split
projective objects in Gen T'.

If Z is a minimal direct summand of 7 such that GenZ = GenT then T, € Gen = Z,
so T is a direct summand of Z since it is split projective. Since GenT; = GenT, we
must have T = Z. In the light of this discussion, we also recall the following:

Theorem 10.5. [6, Thm. 3.34] Let A be a t-tilting finite algebra. Then there is a bijection
between the set of t-tilting pairs in mod A and the set of wide subcategories of mod A
given by mapping a t-tilting pair (T, P) to W(T, P) = J(T,;) N P*.
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Lemma 10.6. Let A be a t-tilting finite algebra. Let U be a non-projective t-rigid
module in mod A. Let By be the Bongartz complement of U, and let Ty = U U By. Then
(TU)S = By and (Ty),s = U.

Proof. By the definition of Bongartz complement, we have that add(Ty) = P(-(rU)).
By [4, Lemma 4.12], the indecomposable direct summands of By, are split projective in
L(tU). Suppose that U was also split projective in ~7U. Then we would have (Ty),s = 0
and therefore W(T;, 0) = mod A in Theorem But W(P,0) = mod A, where P is an
additive generator for P(A), so Ty = P by Theorem [10.3] and U is projective, giving a
contradiction. Hence U is not split projective in ~7U and we are done. O

Proposition 10.7. Let A be a t-tilting finite algebra. Let U and V be indecomposable
7-rigid A-modules and suppose that J(U) = J(V). Then U = V.

Proof. Let By (respectively, By) be the Bongartz complement of U (respectively, V), and
set Ty = UU By and Ty = V U By. Then, since Ty and Ty are 7-tilting modules, we
have that (T, 0) and (T, 0) are 7-tilting pairs. We have W(Ty,0) = J(Ty)ns) = J(U)
by Lemma(I0.6] and similarly W(Ty, 0) = J(V). So, by Theorem[10.3] U = V. O

We now finish the proof of Theorem [10.1l

Proof of Theorem[[0.1: By Lemma and Proposition 4.2l we have W' = Jw(U)
where U is either an indecomposable 7-rigid module or U = P[1] for an indecomposable
module P which is projective in W. The result now follows from Proposition [10.7 and
the fact that Jyw(P) = Jw(P[1]). |

11. MorpHISMS IN 23, AND SIGNED T-EXCEPTIONAL SEQUENCES

The notion of signed 7-exceptional sequence was introduced in [4)]. Such sequences
can be interpreted as factorizations of morphisms in the category W,. Our aim in this
section is to make a precise version of this statement.

Recall from [4] that an object M LI P[1] in C(A) is said to be support 7-rigid if M is a
7-rigid module in mod A, P lies in P(A) and Hom(P, M) = 0. Furthermore, a sequence

(72) S=U, U, ..., U)

of indecomposable objects in C(A) is said to be a signed t-exceptional sequence if U, is
support 7-rigid in C(A) and the subsequence (U, U>, . . ., U,-,) is a signed T-exceptional
sequence in J(U,).

Theorem 11.1. [4] Thm. 5.4] Foreacht € {1,...,n} there is a bijection ¢, from the set of

signed t-exceptional sequences of length t in C(A) to the set of ordered support T-rigid
objects of length t in C(A\).

We have the following, noting that if A is 7-tilting finite then every wide subcategory
of mod A is equivalent to a module category, by Proposition 4.2

Corollary 11.2. Suppose that A is t-tilting finite, and let W be a wide subcategory of
mod A. Then for each t € {1,...,n} there is a bijection ¢\ between the set of set of
signed T-exceptional sequences of length t in W and the set of ordered support T-rigid
objects of length t in C(W).
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Recall now the following fact from [4, Remark 5.12].

Proposition 11.3. [4] Assume that A is t-tilting finite. Let W be a wide subcategory of
mod A. Then the bijection ¢\ in Corollary[I12is given by

(U, U) > (Fy) - Ty (U, Fp - Fop (W), ..., Uy
where W, = W and W; = Jw,,,(U;.1) for all i.

To prepare for our main results in this section, we now state and prove the following
three lemmas.

Lemma 11.4. Let W be a wide subcategory of mod A, and let U,, ..., U, be indecom-
posable objects in C(W). Then the following are equivalent.

(a) The sequence (U, ..., U,) is a signed T-exceptional sequence in W;
(b) There are wide subcategories Wy, ..., W, of mod A with W, = W, and maps gzvjj

fori=1,...,t, such that the composition g\qu: X gzvli is well-defined in 2.

Proof. We prove that (a) implies (b) by induction on ¢. If + = 1 then U, is support
7-rigid in C(W), so there is a corresponding map gzvli, taking W; = W, and the result
holds for this case. Suppose the result holds for # — 1, and let (U, ..., U,) be a signed
T-exceptional sequence in W of length z. Then (U, ..., U,_;) is a signed T-exceptional
sequence of length # — 1 in J(U,). By the induction hypothesis, there are wide subcat-
egories Wy, ...,W,_; of mod A with W,_; = Jw(U,), and maps gzvl fori=1,...,t—1,
such that the composition ngJ: ngJ:: is well-defined. Since U, is support 7-rigid in
C(W), there is a map g,‘z’(t : W — Jw(U,) in W. The result follows, taking W, = W.

We prove that (b) implies (a) by induction on ¢. For ¢ = 1 the result is clear, so suppose
that the result holds for 7 — 1, and let W; and g;\'{ be as in (b). Since the composition

gzvl: e gzvﬁ is well-defined, (U, ..., U, ) is a signed T-exceptional sequence in W,_;
by the induction hypothesis. Since gzvli = g(‘z’,t is a map, U, is support 7-rigid in C(W),
and since the composition gzvl: gg: is well-defined, we have Jw, (U,) = W,_;, giving
(a). O

Let W be a wide subcategory of modA. For a signed t-exceptional sequence
U,..., U in W, we denote by @N(‘Lll,...,(l/l[) the direct sum of the entries in
‘,DYV((Lll, ey q/[[)

Lemma 11.5. Let W be a wide subcategory of mod A, and suppose that the sequence
(U, ..., U, is a signed T-exceptional sequence in W. Set W, = W and W; = Jw.,,(U;1)
foralli. Then

Wl DR W[ - Wr
Su " 8w T Sy, .ty

Proof. We prove the result by induction on z. The result is clear for t = 1, so suppose
that the result holds for # — 1. We have, using Proposition [TT.3}

Wi oW (Wi gWery oW,
g'ul gw, - g‘”l g'ur—l g(ur
Wr—l

W,
=8 8
so)’f’(‘ Uy Y
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— WM
- g —W;_
Fu, G, (U, U )IU)
— th
@ (U’
as required. O

Lemma 11.6. Let W be a wide subcategory of mod A, and let V be a support t-rigid
object in C(\W). If
wo_ W, W,
g(V_gfL(] H‘gfl/(,
is a factorization of gXV/ as a composition of t irreducible maps, then t is the number of
indecomposable direct summands of V.

Proof. By Lemma [10.3] the U; are indecomposable objects of C(W). By Lemma
we have

.....

SO
V=2"(U,....,U),

and the result follows. |
We now prove our first main result of this section.

Proposition 11.7. Let W be a wide subcategory of mod A, and let V be a support 1-
rigid object in C(W) with t indecomposable direct summands. Then there is a bijection
between:

(a) The set of T-exceptional sequences (U, . .., U,) in W such that o, (U, ..., U,) =
V;
(b) The set of factorizations of g$ into compositions of irreducible maps in 2.

Proof. Given a sequence (U, ..., U,) asin (a), set W, = Wand W, = Jy,,  (U;,,) for all

i. Then the composition gXVJ: e gz\z is well-defined by Lemma[I1.4l and equals gﬂ by the

assumption in (a) and Lemma[I1.5l By Lemmal[I0.3] each map gﬁV; is irreducible in 2.
Any factorization as in (b) must have ¢ factors by Lemma []IBLSO must have form
gzvli .- gzvli = gﬂ. Given such a factorization, each U; is indecomposable by Lemma [10.3]
and V = ¢,(U,,...,U,) by Lemma[IL.3 Furthermore, (U,,...,U,) is a T-exceptional
sequence by Lemma [IT.4l
It is clear that these two constructions are inverses of each other, and hence give bijec-
tions between the sets in (a) and (b) as required. O

Recall, from [4], that an ordered support t-tilting object in C(A) is a sequence
(Tl EARER R 771)
of indecomposable support 7-rigid objects in C(A) with the property that LI;77; is a support
tilting object.

Theorem 11.8. Let W be a wide subcategory of mod A and V a support t-rigid object in
C(W) with t indecomposable direct summands. Then the bijection ¢, induces a bijection
between the following sets:

(a) Factorisations of g$ into compositions of irreducible maps in 03;
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(b) Ordered decompositions of V into direct sums of indecomposable objects in

C(W).

Proof. By Proposition [I1.7] there is a bijection between the set in (a) and the set of 7-
exceptional sequences (U, ..., U,) in W such that EW((Lll, ..., U) = V. The result
now follows from Theorem [T1.1] O

12. ExAMPLE

In this section we consider the following example. Let Q be the quiver
2
N
| ——3

and consider the algebra A = kQ/I where I is the ideal generated by the path Sa. The
AR-quiver of mod A is

NN S
3/2 3\12/3\1
N NS

where the notation indicates which simple modules occur in the radical layers of the mod-
ule, so N = , ', 2 is a module of length 4, of radical length 2, and with top isomorphic
to the direct sum of the simple modules corresponding to vertices 1 and 2.

Figure [Il gives an illustration of the category W,. The vertices are the sets of inde-
composable objects in each wide subcategory. A non-identity morphism gVTV W - W
(so that 7 is an indecomposable support 7-rigid object in C(W) and Jw(T) = W’) is
shown as an arrow between W and W’ labelled by 7. When P is projective in W we have
Jw(P) = Jw(P[1]), and there are two corresponding maps, g and gp',, from W to Jw(P);
in this case we draw a doubled arrow labelled only by P. Wide subcategories of rank 1
have generally been shown more than once in the figure, and the corresponding vertices
should be identified.
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