
ar
X

iv
:1

80
2.

03
81

2v
1 

 [
m

at
h.

R
T

] 
 1

1 
Fe

b 
20

18

A CATEGORY OF WIDE SUBCATEGORIES

ASLAK BAKKE BUAN AND ROBERT J. MARSH

Abstract. An algebra is said to be τ-tilting finite provided it has only a finite number of

τ-rigid objects up to isomorphism. We associate a category to each such algebra. The

objects are the wide subcategories of its category of finite dimensional modules, and the

morphisms are indexed by support τ-tilting pairs.

Introduction and main result

A full subcategory B of an abelian category A is called wide if it is an exact abelian

subcategory, or equivalently it is closed under kernels, cokernels and extensions.

Let Λ be a finite dimensional algebra over a field k, and modΛ the category of finitely

generated left Λ-modules. Let τ denote the Auslander-Reiten translate in modΛ. Fol-

lowing [1], we call a Λ-module M with Hom(M, τM) = 0 a τ-rigid module. The algebra

Λ is called τ-tilting finite [5] if there are only a finite number of isomorphism classes of

indecomposable τ-rigid Λ-modules. By [1] this is equivalent to Λ having finitely many

isomorphism classes of basic τ-tilting modules, as defined in [1]. In particular, all alge-

bras of finite representation type, as well as all preprojective algebras of Dynkin type are

τ-tilting finite [10]; see [5] for further examples.

For a module U, let U⊥ = {X ∈ modΛ | Hom(U, X) = 0}, and define ⊥U similarly.

Jasso [9] proved that, if U is τ-rigid, then the subcategory J(U) = U⊥ ∩ ⊥(τU) is equiva-

lent to a module category, and by [6] we have that J(U) is a wide subcategory of modΛ.

For a wide subcategory W which is equivalent to a module category, and a module V

which is τ-rigid in W, we let JW(V) = V⊥ ∩ ⊥(τWV) ∩W. Note that the AR-translations

τ in modΛ and τW in W will usually be different.

Let C(Λ) = C(modΛ) be the full subcategory of the bounded derived category

Db(modΛ) with objects corresponding to modΛ ∐ (modΛ)[1]. For a full subcategory

Y of modΛ, we shall denote by C(Y) the full subcategoryY∐Y[1] of C(Λ). As in [4],

we say U = U ∐ P[1] is support τ-rigid in C(modΛ) if U, P are modules, P is pro-

jective, U is τ-rigid and Hom(P,U) = 0. Analogously, if W is a wide subcategory of

modΛ equivalent to a module category, we will say that an object U = U ∐ P[1] in

C(W), where U, P ∈ W, the object P is projective in W, the object U is τ-rigid in W and

Hom(P,U) = 0, is support τ-rigid in C(W). We let J(U) = J(U) ∩ P⊥. We then have the

following.

Theorem 0.1. Let Λ be a finite dimensional algebra, then the following hold.
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2 BUAN AND MARSH

(a) [6, Thm. 3.28], [9, Thm. 3.8] If U is support τ-rigid in C(modΛ), then the

subcategory J(U) is wide, and it is equivalent to a module category of a finite

dimensional algebra.

(b) [6, Thm. 3.34] If Λ is τ-tilting finite, then any wide subcategory of modΛ is of

the form J(U) for some support τ-rigid objectU in C(Λ).

The aim of the paper is to prove the following result.

Theorem 0.2. Assume Λ is τ-tilting finite. Then there is a category WΛ whose objects

are all wide subcategories of modΛ and such that the maps from W1 to W2 are indexed

by all basic τ-rigid objects T in C(W1) such that W2 = JW1
(T ).

Our results are inspired by a recent paper of Igusa and Todorov [7], where they defined

a similar category in the setting of hereditary finite dimensional algebras.

In Section 1 we state the main results of the paper and explain how they are used to

prove Theorem 0.2.

1. Key steps for the proof of the main result

For a (skeletally small) Krull-Schmidt category X, let ind X denote the set of isomor-

phism classes of indecomposable objects in X and for any basic object X in X let δ(X)

denote the number of indecomposable direct summands of X. We generally assume all

objects are basic and we always assume subcategories are full and closed under isomor-

phism.

Firstly, we need the following, which is a generalization of [4, Propositions 5.6 and

5.10], and can be seen as a refinement of [9, Theorem 3.15]. This is crucial.

Theorem 1.1 (Theorem 3.6). LetU be a support τ-rigid object in C(Λ). Then there are

bijections

{X ∈ ind(C(Λ)) | X ∐ U τ-rigid} \ indU

EU ↓ ↑ EU

{X ∈ ind(C(J(U)) | X is support τ-rigid in C(J(U))}.

The map EU can be extended additively, giving the following:

Theorem 1.2 (Theorem 3.7). LetU be a support τ-rigid object in C(Λ) with δ(U) = t′.

For any positive integer t ≤ n − t′, the map EU induces a bijection between:

(a) The set of support τ-rigid objects X in C(Λ) such that δ(X) = t, the object X∐U

is support τ-rigid and addX ∩ addU = 0, and

(b) The set of support τ-rigid objects X in C(J(U)) such that δ(X) = t.

From now on we assume Λ is τ-tilting finite. Then, using Theorem 0.1, we obtain the

following as a direct consequence of Theorems 1.1 and 1.2.

Corollary 1.3. Assume Λ is τ-tilting finite, and let W be a wide subcategory of modΛ.

LetU be a support τ-rigid object in C(W). Then there is a bijection EW

U
from

{X ∈ ind(C(W)) | X ∐U τ-rigid} \ indU
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to

{X ∈ ind(C(JW(U)) | X is support τ-rigid in C(JW(U))}.

Furthermore, the map EW

U
induces a bijection between:

(a) The set of support τ-rigid objects X in C(W) such that X∐U is support τ-rigid,

with δ(X) = t and addX ∩ addU = 0, and

(b) The set of support τ-rigid objects X in C(JW(U)) with δ(X) = t.

Note that [1] always denotes the shift in Db(modΛ) rather than the shift in Db(W) for

some wide subcategory W.

The next main ingredient is the following:

Theorem 1.4 (Theorem 4.3). Assume Λ is τ-tilting finite. Let U and V be support τ-

rigid objects in C(Λ) with no common direct summands, and suppose that U ∐ V is

support τ-rigid. Then EU(V) is support τ-rigid in C(J(U)) and the following equation

holds:

JJ(U)(EU(V)) = J(U ∐V).

This has the following direct consequence, using Theorem 0.1.

Corollary 1.5. Assume Λ is τ-tilting finite and let W be a wide subcategory of modΛ.

LetU andV be support τ-rigid objects in C(W) with no common direct summands. Then

EW

U
(V) is support τ-rigid in C(JW(U)) and the following equation holds:

JJW(U)(E
W

U(V)) = JW(U ∐V).

For a τ-tilting finite algebra Λ, we can now defineWΛ as follows. The objects ofWΛ
are the wide subcategories of modΛ. Suppose W1 and W2 are two such wide subcate-

gories. If W2 * W1, then we set Hom(W1,W2) = ∅. Suppose that W2 ⊆ W1. Then we

set

Hom(W1,W2) =

{

g
W1

T

∣

∣

∣

∣

∣

T is a basic support τ-rigid object in C(W1)

and W2 = JW1
(T )

}

,

where g
W1

T
is a formal symbol associated to W1 and T . Thus, in general gW

T
is a morphism

inWΛ from W to JW(T ).

Suppose that W1, W2 and W3 are wide subcategories of Λ and W3 ⊆ W2 ⊆ W1. Let

a ∈ Hom(W1,W2) and b ∈ Hom(W2,W3). Then there are support τ-rigid objects U in

W1 andV in W2 such that a = g
W1

U
and b = g

W2

V
, so that W2 = JW1

(U) and W3 = JW2
(V).

By Theorem 1.2, we can writeV = EW1

U
(V) for some support τ-rigid objectV in C(W1)

such thatU ∐V is supportτ-rigid and addV ∩ addU = 0. Thus, we have b = g
W2

E
W1
U

(V)
.

By Theorem 1.5,

JW1
(U ∐V) = JJW1

(U)(E
W1

U
(V)) = JW2

(EW1

U
(V)) = JW2

(V) = W3,

so we may define:

b ◦ a = g
W2

EU(V)
◦ g

W1

U
= g

W1

U∐V
,

since this is a morphism from W1 to W3.

For associativity of composition inWΛ we need the following theorem.
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Theorem 1.6 (Theorem 5.9). Assume Λ is τ-tilting finite, and let U and V be support

τ-rigid objects in C(Λ) with no common direct summands. Then

E
J(U)

EU(V)
EU = EU∐V

The following is then a direct consequence, using Theorem 0.1.

Corollary 1.7. Assume Λ is τ-tilting finite, and let W be a wide subcategory of modΛ.

LetU andV be support τ-rigid objects in C(W) with no common direct summands, and

suppose thatU ∐V is support τ-rigid in C(W). Then

E
JW(U)

EW

U
(V)
EW

U = E
W

U∐V

We are then in position to prove the following.

Corollary 1.8. The composition operation defined above is associative.

Proof. For a wide subcategory W of modΛ and support τ-rigid object U in C(W), let

F W

U
denote the inverse of the bijection EW

U
.

Consider now maps

W1

g
W1
U

−−→ W2

g
W2
V

−−→ W3

g
W3
W

−−→ W4

where W2 = JW1
(U), W3 = JW2

(V) and W4 = JW3
(W). Thus U is a support τ-rigid

object in C(W1), the object V is support τ-rigid in C(W2) and W is a support τ-rigid

object in C(W3), and W4 ⊆ W3 ⊆ W2 ⊆ W1.

We then have that g
W2

V
◦ g

W1

U
= g

W1

U∐F
W1
U

(V)
and g

W3

W
◦ g

W2

V
= g

W2

V∐F
W2
V

(W)
. Hence it follows

that

g
W3

W
◦ (gW2

V
◦ g

W1

U
) = g

W1

U∐F
W1
U

(V)∐F
W1

U∐F
W1
U

(V)

(W)

and that

(g
W3

W
◦ g

W2

V
) ◦ g

W1

U
= g

W1

U∐F
W1
U

(V∐F
W2
V

(W))
= g

W1

U∐F
W1
U

(V)∐F
W1
U
F

W2
V

(W)
.

It follows from Theorem 1.6 that

F
W1

U∐F
W1
U

(V)
= F

W1

U
F

W2

V

and the claim follows. �

Finally, we note that for each wide subcategory W, we can consider the trivial support

τ-rigid object 0 in C(W) which gives rise to a map gW

0 : W → W. It easy to check that

this satisfies the axioms required for an identity map. This completes the proof of the

main result, Theorem 0.2.

The paper is organized as follows. First, in Section 2, we give some background and

notation. In Section 3 we prove Theorem 1.1 and Theorem 1.2, while in Section 4 we deal

with Theorem 1.4. Sections 5 - 9 are devoted to the proof of Theorem 1.6. In Section 10,

we consider the morphisms in WΛ from a wide subcategory to a subcategory of corank

1, and in Section 11 we show how to interpret signed τ-exceptional sequences in terms

of factorizations of morphisms inWΛ. We conclude with an example in Section 12.
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2. Background and notation

Let P(Λ) denote the full subcategory of projective objects in modΛ and if X is a

subcategory of modΛ, let P(X) denote the full subcategory of X consisting of the Ext-

projective objects in X, i.e. the objects P in X such that Ext1(P, X) = 0 for all X ∈ X.

For an object U in an additive category C, let add U denote the additive subcategory

of C generated by U, i.e. the full subcategory of all direct summands in direct sums of

copies of U. If A is abelian, we denote by Gen U the full subcategory of A consisting of

all objects which are factor objects of objects in add U. We assume throughout that Λ is

basic and denote δ(Λ) by n. We now recall notation and definitions of from [1].

We consider modΛ as a full subcategory of Db(modΛ) by regarding a module

as a stalk complex concentrated in degree 0, and we consider the full subcategory

C(Λ) = modΛ ∐ modΛ[1] of Db(modΛ). For a module M, we denote by PM its mini-

mal projective presentation, considered as a two-term object in Kb(P(Λ)) ⊆ Db(modΛ).

Here, a two-term object in K is a complex of the form

· · · 0→ 0→ P−1 → P0 → 0→ 0→ · · ·

The following summarizes some facts which we will use throughout the paper.

Lemma 2.1. Let U, X be in modΛ.

(a) [1, Lemma 3.4] Hom(U, τX) = 0 if and only if HomD(PX, PU[1]) = 0. In partic-

ular, the module U is τ-rigid if and only if HomD(PU , PU[1]) = 0.

(b) [3, Theorem 5.10] Hom(U, τX) = 0 if and only if Ext1(X,Gen U) = 0

(c) Let X and Y be two-term objects in K. Then H0 induces an epimorphism

HomK(X,Y)→ Hom(H0(X),H0(Y)) with kernel consisting of the maps factoring

through addΛ[1].

We recall that if U is a τ-rigid module in modΛ then, by [3, Theorem 5.8] there is

a torsion pair (Gen U,U⊥) in modΛ. We denote the corresponding torsion functors by

tU : modΛ → Gen U and fU : modΛ → U⊥. If U is τ-rigid in W, where W is a

wide subcategory equivalent to a module category, we denote the corresponding torsion

functors by tW

U
and f W

U
respectively.

3. Bijection

Let U be a an arbitrary (not necessarily indecomposable) support τ-rigid object in

C(Λ). ThenU = U∐P[1], where U is a τ-rigid module, P is inP(Λ) and Hom(P,U) = 0.

In this section, we will show that there is a bijection EU from the set

{X ∈ ind(C(Λ)) | X ∐ U τ-rigid} \ indU

to

{X ∈ ind(C(J(U)) | X τ-rigid}

Such a map has already been defined in [4, Section 4-6] for the case U is either a

τ-rigid module or a shift of a projective module, so we first summarize the construction

given there.
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Definition 3.1. Let U be a support τ-rigid object in C(Λ) which is either a module or a

shift of a projective module. Suppose X lies in the set

{X ∈ ind(C(Λ)) | X ∐U τ-rigid} \ indU.

Define EU(X) in the following way.

Case I:U = U is a module.

Case I(a): If X is in ind(modΛ), X ∐ U is τ-rigid and X < Gen U, then

EU(X) = fU(X).

Case I(b): If X is in ind(modΛ) with X ∐U τ-rigid and X is in Gen U, then

EU(X) = fU(H0(RX)[1]

where the triangle

RX → PUX
→ PX →

arises from the completion of the minimal right addPU-approximation PUX
→ PX to a

triangle. We have that RX = PBX
, for an indecomposable direct summand BX of the

Bongartz complement B of U. Then we have

(i) The triangle

(1) PBX
→ PUX

→ PX →

where the first map is a minimal left add PU-approximation and the second map

is a minimal right add PU-approximation;

(ii) The exact sequence obtained from taking the homology of (1):

BX → UX → X → 0,

where the first map is a minimal left add U-approximation and the second map is

a minimal right add U-approximation,

and we have

EU(X) = fU(BX)[1].

The object BX is shown to be in P(⊥τU) and fU(BX) is in P(J(U)), so EU(X) is in

indP(J(U))[1].

Case I(c): If X is in ind(P(Λ) ∩ ⊥U)[1], write X = Q[1], with Q in indP(Λ) ∩ ⊥U. We

have the triangle

PBX
→ PUX

→ Q[1] →

as in case (b), where the first map is a minimal left add PU-approximation and the sec-

ond map is a minimal right addPU-approximation. Taking homology gives the exact

sequence

Q→ BX → UX → 0

where the first map is a minimal left P(⊥(τU))-approximation and the second map is a

minimal left add U-approximation.

We set

EU(X) = fU(BX)[1].

Case II:U = P[1], where P is a projective module.
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Case II(a): If X is τ-rigid in ind(modΛ) and Hom(P, X) = 0, then set EP[1](X) = X.

Case II(b): If X = Q[1] with Q in (ind(P(Λ)\ ind P)[1], then set EP[1](X) = EP[1](Q[1]) =

fP(Q)[1].

Theorem 3.2. [4, Proposition 5.6 and 5.10] Let U be a support τ-rigid object in C(Λ).

Then we have the following.

(a) IfU = U is a module, then EU gives a bijection between

(i)

{X ∈ ind(modΛ) | X ∐ U τ-rigid, X < Gen U}

and

{X ∈ ind(J(U)) | X τ-rigid in J(U)}.

(ii)

{X ∈ ind(modΛ) | X ∐ U τ-rigid, X ∈ Gen U} ∪ {(indP(Λ) ∩ ⊥U)[1]}

and

{indP(J(U))[1]}.

(b) IfU = P[1] is the shift of a projective module, then EU gives a bijection between

({X ∈ ind(modΛ) | X τ-rigid} ∩ P⊥) ∪ (indP(Λ) \ ind P)[1]

and

{X ∈ ind(J(U)) | X τ-rigid} ∪ ind(P(J(U))[1]

(noting that J(U) = P⊥ in this case).

We now consider the general case, where U = U ∐ P[1], for modules P,U with P

projective, is an arbitary support τ-rigid object in C(Λ). Note first that

{X ∈ ind(C(Λ)) | X ∐ U τ-rigid} \ indU

is the union of the sets

({X ∈ ind(modΛ) | X ∐ U τ-rigid} ∩ P⊥) \ ind U

and

((indP(Λ) ∩ ⊥U) \ ind P)[1],

and that

{X ∈ ind(C(J(U)) | X support τ-rigid in C(J(U))}

= {X ∈ ind(J(U)) | X τ-rigid in J(U)} ∪ ind(P(J(U))[1],

so we next analyse the behaviour of EU when applied to a module X ∈ P⊥.

Lemma 3.3. Let U be a τ-rigid module. Then:

(a) The map EU restricts to a bijection between

{X ∈ ind(modΛ) | X ∐ U τ-rigid, X < Gen U} ∩ P⊥

and

{X ∈ ind(J(U)) | X τ-rigid in J(U)} ∩ P⊥
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(b) The map EU restricts to a bijection between

{X ∈ ind(modΛ) | X ∐ U τ-rigid, X ∈ Gen U} ∩ P⊥ ∪ ((indP(Λ) \ ind P) ∩ ⊥U)[1]

and

ind(P(J(U)))[1] \ indEU(add P[1]).

(c) The map EU restricts to a bijection between

({X ∈ ind(modΛ) | X ∐U τ-rigid } ∩ P⊥) ∪ ((indP(Λ) \ ind P) ∩ ⊥U))[1]

and

({X ∈ ind(J(U)) | X τ-rigid in J(U)} ∩ P⊥) ∪ (indP(J(U))[1] \ indEU(P[1])

Proof. (a) Let X be in ind(modΛ) with X∐U a τ-rigid module, and such that X is not in

Gen U. Then EU(X) = fU(X). Since Hom(P,U) = 0, we also have Hom(P,Gen U) = 0

and in particular Hom(P, tU(X)) = 0. Since P is projective, it then follows that

Hom(P, X) ≃ Hom(P, fU(X)) = Hom(P,EU(X)). Hence the claim follows, using The-

orem 3.2(a).

(b) Since Hom(P,U) = 0, we have Hom(P,Gen U) = 0, and the claim follows Theo-

rem 3.2(b).

(c) The claim follows directly from combining (a) and (b). �

If W is a wide subcategory of modΛ which is equivalent to a module category, andU

is a support τ-rigid object in C(W) which is either a module or the shift of a projective ob-

ject in W, then we denote by EW

U
the map corresponding to that defined in Definition 3.1.

Note that EU(P[1]) = P[1], so we have the map

E
J(U)

P[1]
= E

J(U)

EU (P[1])
.

Lemma 3.4. Let U be a τ-rigid module. Then the set

({X ∈ ind(J(U)) | X τ-rigid in J(U)} ∩ P⊥) ∪ (indP(J(U))[1] \ indEU(P[1])

is the domain of E
J(U)

EU (P[1])
.

Proof. Let Q in P(J(U)) be such that EU(P[1]) = Q[1]. Recall (see Definition 3.1, Case

I(c)) that Q = fU(YP), where P → YP is a minimal left ⊥(τU)-approximation, and there

is an exact sequence

(2) P→ YP → UP → 0

with UP in add U.

We claim that

(3) J(U) ∩ P⊥ = J(U) ∩ Q⊥.

It is clear by the definition of E
J(U)

EU (P[1])
that the assertion of the lemma follows from this

claim.

In order to prove the claim, let M be in J(U) ∩ P⊥ and apply the right exact functor

Hom( ,M) to the sequence (2), to obtain the exact sequence

0→ Hom(UP,M)→ Hom(YP,M)→ Hom(P,M).
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We have by assumption that Hom(UP,M) = 0 = Hom(P,M), and hence also

Hom(YP,M) = 0. It then follows that Hom(Q,M) = 0, since there is an epimorphism

YP → fU(YP) = Q. So we have J(U) ∩ P⊥ ⊆ J(U) ∩ Q⊥.

Conversely, suppose M is in J(U) ∩ Q⊥. Consider the canonical sequence

0→ tU(YP)→ YP → fU(YP)(= Q) → 0

for YP, and apply Hom( ,M) to obtain the exact sequence

0→ Hom(Q,M)→ Hom(YP,M)→ Hom(tU(YP),M)

We have by assumption Hom(Q,M) = 0, and Hom(tU(YP),M) = 0, since tU(YP) is in

Gen U and M is in U⊥. Hence, also Hom(YP,M) = 0. By Lemma 2.1, we then have

(4) Hom(PYP
, PM)/(addΛ[1]) = 0.

We have the following triangle (from the computation of EU(P[1]) = Q[1]; see Defini-

tion 3.1, Case I(c)).

(5) PUP
[−1]→ P→ PYP

→ PUP

Now let α : P→ PM be arbitrary. Since M is in J(U), we have Hom(M, τU)= 0 and so by

Lemma 2.1, we have Hom(PUP
, PM[1]) = 0. Applying Hom( , PM) to the triangle (5), we

obtain that Hom(PYP
, PM) → Hom(P, PM) is surjective, and hence that α factors through

a map PYP
→ PM and hence through Λ[1] by (4). We have Hom(P,Λ[1]) = 0 and hence

we obtain Hom(P, PM) = 0. So we have J(U) ∩ Q⊥ ⊆ J(U) ∩ P⊥, and this finishes the

proof of the claim that J(U) ∩ Q⊥ = J(U) ∩ P⊥, and hence the proof of the lemma. �

By Lemmas 3.3(c) and 3.4, the composition E
J(U)

EU (P[1])
EU is a well-defined map with

domain

{X ∈ ind(C(Λ)) | X ∐U τ-rigid} \ indU.

We make the following definition:

Definition 3.5. Let U and P be modules such that U = U ∐ P[1] is a support τ-rigid

object in C(Λ). We set EU : = E
J(U)

EU (P[1])
EU .

We can now prove the main result of this section.

Theorem 3.6. LetU = U ∐ P[1] be a support τ-rigid object in C(Λ). Then the map EU
is a bijection between the sets

{X ∈ ind(C(Λ)) | X ∐ U τ-rigid} \ indU

and

{X ∈ ind(C(J(U))) | X support τ-rigid in C(J(U))}.

Proof. First note that if P = 0 or U = 0, this is proved in [4, Proposition 5.6 and 5.10].

Using Lemma 3.3(c) and (3) and the fact that EU(P[1]) = Q[1], we have that EU

restricts to a bijection between

({X ∈ ind(modΛ) | X ∐U τ-rigid} ∩ P⊥) ∪ ((indP(Λ) \ ind P) ∩ ⊥U)[1]

and

({X ∈ ind(J(U)) | X τ-rigid} ∩ Q⊥) ∪ (indP(J(U)) \ ind Q)[1]}.
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The target of this map is the domain of E
J(U)

Q[1]
= E

J(U)

EU (P[1])
. Moreover (see Case II in

Definition 3.1), the map E
J(U)

Q[1]
gives a bijection between

{{X ∈ ind(J(U)) | X τ-rigid} ∩ Q⊥} ∪ (indP(J(U))) \ ind Q[1]

and

{X ∈ ind(J(U)) | X τ-rigid} ∪ ind(P(J(U))[1].

This finishes the proof of the claim. �

Note that we have so far only defined EU(X) for an object X in the set

{X ∈ ind(C(Λ)) | X ∐U τ-rigid} \ indU.

However, we will also need to consider EU as a map from the set of all basic objects

X (not necessarily indecomposable) in C(Λ) such that X ∐ U is support τ-rigid and

addX ∩ addU = 0, to the set of all support τ-rigid objects in C(J(U)). So for such X =

X1∐· · ·∐Xt where theXi are indecomposable, we define EU(X) = EU(X1)∐· · ·∐EU(Xt).

Theorem 3.7. LetU be a support τ-rigid object in C(Λ) with δ(U) = t′. For any positive

integer t ≤ n− t′, the map EU induces a bijection between the set of basic support τ-rigid

objectsX in C(Λ) such that δ(X) = t, with X∐U support τ-rigid and addX∩addU = 0,

and the set of basic support τ-rigid objects Y in C(J(U)) with δ(Y) = t.

Proof. Recall that by definition EU = E
J(U)

EU (P[1])
EU , so the result follows from [4, Prop.

6.7, Prop. 6.10]. �

Lemma 3.8. Let U be a τ-rigid module, and P a projective module with Hom(P,U) = 0.

Then
⊥(τP⊥U) ∩ P⊥ = ∩⊥(τU) ∩ P⊥.

Proof. We have

⊥(τP⊥U) ∩ P⊥ = {Y ∈ modΛ | Ext1(U,GenP⊥ Y) = 0} ∩ P⊥(6)

= {Y ∈ modΛ | Ext1(U,Gen Y) = 0} ∩ P⊥(7)

=
⊥(τU) ∩ P⊥,

where (6) holds by Lemma 2.1, and (7) holds since GenP⊥ Y = Gen Y for Y in P⊥. �

4. Composition

The aim of this section is to prove Theorem 1.4.

If A is (a category equivalent to) a module category, we let r(A) denote the rank of the

Grothendieck group of A, that is: the number of simple objects in A up to isomorphism.

Recall that δ(X) denotes the number of indecomposable summands in a basic object X.

We always write r(modΛ) = n. Recall the following important facts.

Proposition 4.1. LetU be a τ-rigid object in modΛ. Then the following hold.

(a) [6, Theorem 3.28] J(U) is a wide subcategory of modΛ.

(b) [9, Theorem 3.8] J(U) is equivalent to a module category with rank r(J(U)) =

n − δ(U).

The following results are crucial.
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Proposition 4.2. Assume that Λ is τ-tilting finite.

(a) For each wide subcategory W of modΛ, there is a support τ-rigid object U in

C(Λ) such that W = J(U).

(b) If Λ is τ-tilting finite, then each wide subcategory W of modΛ is τ-tilting finite.

Proof. (a) This is contained in Theorem 3.34 in [6].

(b) This is a direct consequence of Theorem 3.6, using (a). �

We will from now on assume Λ is a τ-tilting finite algebra.

In this section we prove the following (Theorem 1.4).

Theorem 4.3. Let U andV be objects in C(Λ) with no common direct summands, and

suppose thatU ∐V is support τ-rigid. Then EU(V) is support τ-rigid in C(J(U)) and

the following equation holds

JJ(U)(EU(V)) = J(U ∐V).

This theorem is the key for proving that composition is well-defined in the category

WΛ. Note first that by Theorem 3.7, we have that EU(V) is support τ-rigid in C(J(U)).

The remainder of this section is devoted to proving the second assertion of the Theorem.

We first make the following observation.

Lemma 4.4. In the setting of Theorem 4.3 we have

r(JJ(U)(EU(V))) = r(J(U ∐V)).

Proof. Let r(modΛ) = n. By [9] we have r(J(T )) = n − δ(T ) for any support τ-rigid

object T in C(Λ). So r(J(U) = n − δ(U) and r(J(U ∐ V)) = n − δ(U) − δ(V).

Furthermore r(JJ(U)(EU(V))) = (n − δ(U))) − (δ(EU(V))) = n − δ(U) − δ(V), and the

claim follows. �

Lemma 4.5. Let A be an abelian category and A
′′ ⊆ A

′ wide subcategories of A. Then

A
′′ is a wide subcategory of A

′.

Proof. This follows directly from the fact that a subcategory is wide if and only if it is

closed under kernels, cokernels and extensions. �

Proof of Theorem 4.3. We first claim it is sufficient to prove

J(U ∐V) ⊆ JJ(U)(EU(V)).

If this holds then, by Lemma 4.5, we have that J(U ∐ V) is a wide subcategory

of JJ(U)(EU(V)). Then, by Proposition 4.2, there is a support τ-rigid object V′ in

C(JJ(U)(EU(V))) such that

J(U ∐V) = JJJ(U)(EU (V))(V
′)

We have r(JJJ(U)(EU(V))(V
′)) = n − δ(U) − δ(V) − δ(V′) by Proposition 4.1(b) and Theo-

rem 3.7. Hence r(V′) = 0, soV′ = 0, and we have

J(U ∐V) = JJ(U)(EU(V)).

In order to prove

(8) J(U ∐V) ⊆ JJ(U)(EU(V))
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we first discuss various special cases.

Case I: Let U be τ-rigid in modΛ, and V < Gen U, such that V = EU(V) is τ-rigid in

J(U). Then V = fU(V), and there is an epimorphism V → V.

Let M be in J(U ∐ V). Then we have M ∈ J(V) ⊆ V⊥, and since 0 → Hom(V ,M) →

Hom(V,M) is exact, we also have Hom(V,M) = 0.

We next need to show Hom(M, τJ(U)V) = 0. By Lemma 2.1, this is equivalent to

showing Ext1(V,GenJ(U) M) = 0. We have GenJ(U) M = Gen M ∩ J(U), and hence it

is sufficient to prove Ext1(V ,Gen M ∩ J(U)) = 0. Let M′ be in Gen M ∩ J(U). Apply

Hom( ,M′) to the canonical sequence 0 → tU(V) → V → fU(V) = V → 0 for V , to

obtain the exact sequence

(9) Hom(tU(V),M′)→ Ext1(V ,M′)→ Ext1(V,M′).

The first term in (9) vanishes, since tU(V) is in Gen U and M′ is in U⊥. We have

Hom(M, τV) = 0, since M is in J(V), so Hom(M′, τV) = 0, since M′ is in Gen M.

Using the AR-formula, we obtain that the third term in (9) also vanishes, and hence

also the second term vanishes. Hence we have that Ext1(V ,Gen M ∩ J(U)) = 0 and so

Hom(M, τJ(U)V) = 0. So M is in JJ(U)(V), and we have shown inclusion (8) in this case.

Case II (a): Let U be τ-rigid in modΛ, and V in Gen U such that EU(V) = V is in

P(J(U))[1]. Recall that V is computed as follows. We have a triangle

PBV

a // PUV

b // PV
c // PBV

[1]

where a is a minimal left addPU-approximation and b is a minimal right add PU-

approximation, and taking homology gives the exact sequence

BV
a′ // UV

b′ // V // 0

where a′ is a minimal left add U-approximation and b′ is a minimal right add U-

approximation. Let Q = fU(BV). Then V = Q[1].

Now suppose that M lies in J(U ∐ V). Note that JJ(U)(EU(V)) = J(U) ∩ Q
⊥

. Since M

is in J(U), it is sufficient to show that Hom(Q,M) = 0. Since Q is a quotient of BV , it is

sufficient to show that Hom(BV ,M) = 0. For this let g : PBV
→ PM be an arbitrary map.

By Lemma 2.1, we have that Hom(PV , PM[1]) = 0, since Hom(M, τV) = 0. Hence, the

composition g ◦ c[−1] : PV[−1] → PM vanishes, and there is a factorization g = ha for

some h : PUV
→ PM:

PV[−1]
c[−1] // PBV

g

��

a // PUV

h}}③③
③③
③③
③③

b // PV
c // PBV

[1]

PM

Since Hom(U,M) = 0, we have Hom(PUV
, PM)/Λ[1] = 0, and it follows that

Hom(PBV
, PM)/Λ[1] = 0, and hence by Lemma 2.1, we have Hom(BV ,M) = 0. Hence

we have shown inclusion (8) in this case.
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Case II (b): Let U be τ-rigid in modΛ, and V ∈ (P(Λ) ∩ ⊥U)[1]. Assume V = Q[1] for

Q in P(Λ) ∩ ⊥U.

Recall that EU(V) = V is computed as follows. There is an exact sequence

Q→ BV → UV → 0

where the first map is a minimal left ⊥(τU)-approximation (or, equivalently, a minimal

left P(⊥(τU))-approximation), and V = fU(BV)[1]; we set Q = fU(BV).

Now let M be in J(U∐V), that is M is in J(U) and Hom(Q,M) = 0. We need to prove

that Hom(Q,M) = 0. Since Q = fU(BV) is a quotient of BV , it is sufficient to show that

Hom(BV ,M) = 0. Recall that there is a triangle

Q→ PBV
→ PUV

→

and consider an arbitrary map PBV
→ PM . The composition Q → PBV

→ PM vanishes,

since Hom(Q,M) = 0 and hence Hom(Q, PM) = 0, by Lemma 2.1. Therefore, the map

PBV
→ PM factors PBV

→ PUV
→ PM . Since M is in J(U) ⊆ U⊥, we have Hom(UV ,M) =

0, so Hom(PUV
, PM)/ addΛ[1] = 0. Hence also Hom(PBV

, PM)/ addΛ[1] = 0 and

Hom(BV ,M) = 0 as required. Hence we have shown that the inclusion (8) holds also

in this case.

Case III: Let U = P[1] with P in P(Λ), and let V be τ-rigid. Then J(U) = P⊥ and

EU(V) = V = V is also τJ(U)-rigid, by [1, Lemma 2.1]. Furthermore, by Lemma 3.8 we

have

JP⊥(V) = P⊥ ∩ V⊥ ∩ ⊥(τP⊥V) = P⊥ ∩ V⊥ ∩ ⊥(τV) = J(U ∐ V),

which finishes the proof of case III.

Case IV: Now let U = P[1] and V = Q[1], for P,Q ∈ P(Λ). Then EU(V) = V =

( fPQ)[1]. For an object M in P⊥, apply Hom( ,M) to the exact sequence

0→ tP(Q)→ Q→ fP(Q)→ 0

to obtain the exact sequence

0→ Hom( fP(Q),M)→ Hom(Q,M)→ Hom(tP(Q),M)

The last term vanishes, since tP(Q) is in Gen P, so Hom( fP(Q),M) ≃ Hom(Q,M).

Hence, we have JJ(U)(EU(V)) = JP⊥(V) = P⊥ ∩ ( fPQ)⊥ = P⊥ ∩ Q⊥ = J(U ∐ V), which

finishes the proof of case IV.

General case. LetU = U ∐ P[1] andV = V ∐ Q[1], for U,V τ-rigid modules and P,Q

in P(Λ). We assume thatU∐V is support τ-rigid in C(Λ). We proceed by induction on

the rank n = r(modΛ). We therefore first assume U , 0, so r(J(U)) < n.

Then

(10) J(U ∐V) = J(U ∐ V) ∩ P⊥ ∩ Q⊥

and

JJ(U)(EU(V)) = JJ(U)∩P⊥(EU∐P[1](V ∐ Q[1]))

= JJ(U)∩P⊥(E
J(U)

EU (P[1])
EU(V ∐ Q[1]))(11)
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= JJ(U)∩P⊥(E
J(U)

EU (P[1])
EU(V)) ∩ JJ(U)∩P⊥(E

J(U)

EU (P[1])
EU(Q[1]))(12)

Where (11) is by definition by of EU = EU∐P[1].

Note that we have

(13) J(U) ∩ P⊥ = J(U ∐ P[1]) = JJ(U)(EU(P[1]))

by case II(b).

We next compute the terms of (12) separately. For the first term, we obtain

JJ(U)∩P⊥(E
J(U)

EU (P[1])
EU(V)) = JJJ(U) (EU (P[1]))(E

J(U)

EU (P[1])
EU(V))(14)

= JJ(U)(EU(P[1]) ∐ EU(V))(15)

= JJ(U)(EU(P[1])) ∩ JJ(U)(EU(V))

= J(U ∐ P[1]) ∩ JJ(U)(EU(V))(16)

= J(U) ∩ P⊥ ∩ JJ(U)(EU(V))

= P⊥ ∩ JJ(U)(EU(V))(17)

where (14) follows from (13), and (15) is obtained by using the induction assump-

tion for the proper subcategory J(U), while (16) holds by case II(b) and (17) holds by

JJ(U)(EU(V)) ⊆ J(U).

Similarly, for the second term in (12), we obtain

JJ(U)∩P⊥(E
J(U)

EU (P[1])
EU(Q[1])) = JJJ(U) (EU (P[1]))(E

J(U)

EU (P[1])
EU(Q[1]))

= JJ(U)(EU(P[1]) ∐ EU(Q[1]))

= JJ(U)(EU(P[1] ∐ Q[1]))

= J(U ∐ P[1] ∐ Q[1])

= J(U) ∩ P⊥ ∩ Q⊥(18)

We then obtain

JJ(U)(EU(V)) = JJ(U)∩P⊥(E
J(U)

EU (P[1])
EU(V)) ∩ JJ(U)∩P⊥(E

J(U)

EU (P[1])
EU(Q[1]))(19)

= JJ(U)(EU(V)) ∩ P⊥ ∩ J(U) ∩ P⊥ ∩ Q⊥(20)

= J(U ∐ V) ∩ P⊥ ∩ Q⊥(21)

= J(U ∐V)(22)

where (19) is (12) and where (20) follows from combining (17) and (18). Furthermore

(21) follows from Cases I and II(a) and (22) follows from (10) respectively.

So we have that the claim of the theorem holds in the general case, with the assumption

that U , 0.

Now, consider the case where U = 0.

We then have

J(U ∐V) = J(P[1] ∐ V ∐ Q[1])

= J(V) ∩ P⊥ ∩ Q⊥(23)

and

JJ(U)(EU(V)) = JJ(P[1])(EP[1](V ∐ Q[1]))
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= JJ(P[1])(EP[1](V)) ∩ JJ(P[1])(EP[1](Q[1]))

= J(V ∐ P[1]) ∩ J(P[1] ∐ Q[1])(24)

= J(V) ∩ P⊥ ∩ Q⊥

= J(U ∐V)

where for (24), we use cases III and IV. This finishes the proof for the case U = 0, and

hence the proof of the theorem. �

5. Associativity

The aim of this section is to prove that the composition operation defined in Section

4 is associative. The main step is to prove Theorem 1.6. We prepare for this, by giving

several useful lemmas.

Lemma 5.1. Let U, X, Y be in modΛ where U is τ-rigid and Hom(U, τX) = 0. Then the

induced map α : Hom(X, Y)→ Hom( fU(X), fU(Y)) is an epimorphism.

Proof. Consider the canonical sequences for X and Y ,

0→ tU(X) → X → fU(X) → 0

and

0→ tU(Y)→ Y → fU(Y)→ 0

Applying Hom( , fU(Y)) to the canonical sequence for X gives the exact sequence

0→ Hom( fU(X), fU(Y))
a
−→ Hom(X, fU(Y))→ Hom(tU(X), fU(Y))

Noting that the last term vanishes, this gives that a is an isomorphism.

Applying Hom(X, ) to the canonical sequence for Y gives the exact sequence

Hom(X, Y)
b
−→ Hom(X, fU(Y)) → Ext1(X, tU(Y)).

Since Hom(U, τX) = 0 we have by Lemma 2.1 that Ext1(X,Gen U) = 0, so in particular

Ext1(X, tU(Y)) = 0. Hence the map b is an epimorphism. The induced map α = a−1 ◦ b is

then also an epimorphism. �

We have the following similar lemma:

Lemma 5.2. Let U, X, Y be in modΛ where U is τ-rigid and Hom(U, Y) = 0. Then the

induced map Hom(X, Y)→ Hom( fU(X), fU(Y)) is an isomorphism.

Proof. Since Hom(U, Y) = 0, we have tU(Y) = 0, so fU(Y) ≃ Y . We have the canonical

sequence for X:

0 // tU(X) // X // fU(X) // 0

Applying Hom( , Y) to this we obtain the exact sequence

0 // Hom( fU(X), Y) // Hom(X, Y) // Hom(tU(X), Y).

The last term vanishes since Hom(U, Y) = 0 implies that Hom(Gen U, Y) = 0. So we

have Hom( fU(X), fU(Y)) ≃ Hom( fU(X), Y) ≃ Hom(X, Y). �

Lemma 5.1 has the following consequence in terms of approximations:
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Lemma 5.3. Let T be a subcategory of modΛ. Let U be τ-rigid and assume

Hom(U, τB) = 0. If a : B → A is a left T -approximation, then fU(a) : fU(B) → fU(A) is

a left fU(T )-approximation.

Proof. Let fU(T ) be in fU(T ), and consider a map b′ : fU(B) → fU(T ). By Lemma 5.1,

there is b : B → T such that fU(b) = b′. Since a : B → A is a left T -approximation,

there is c : A→ T such that b = ca. It follows that fU(b) = fU(c) fU(a), which proves the

claim. �

Lemma 5.3 is used in the proof of part (b) of the following lemma.

Lemma 5.4. Let U,V be in modΛ, where U ∐ V is τ-rigid. Assume no indecomposable

summand in V lies in Gen U and let V = fU(V). Let T = ⊥(τU ∐ τV) and let T ′ =
⊥(τJ(U)V) ∩ J(U). Then the following hold.

(a) We have fU(T ) = T ′.

(b) If B→ A is a left T -approximation in modΛ and Hom(U, τB) = 0, then fU(B)→

fU(A) is a left T ′-approximation (in modΛ).

Proof. (a) We first show fU(T ) ⊆ T ′. Since U is in T , we have Gen U ⊆ T , and clearly

T ⊆ ⊥(τU). By [9, Theorem 3.14], we have that fU(T ) = T ∩ U⊥ is a torsion class in

J(U). So

fU(T ) = T ∩ U⊥ = ⊥(τU ∐ τV) ∩ U⊥ = ⊥(τV) ∩ J(U),

and we want to show that fU(T ) = ⊥(τV) ∩ J(U) ⊆ ⊥(τJ(U)V) ∩ J(U) = T ′.

Now let Y be in fU(T ), and consider the canonical sequence

0→ tU(V)→ V → fU(V)→ 0

which, after applying Hom( ,Gen Y ∩ J(U)) gives rise to an exact sequence

Hom(tU(V),Gen Y ∩ J(U)) → Ext1(V ,Gen Y ∩ J(U))→ Ext1(V,Gen Y ∩ J(U)).

Since Y is in ⊥(τV), we have Ext1(V,Gen Y) = 0 by Lemma 2.1, so in particular

Ext1(V,Gen Y ∩ J(U)) = 0. Since tU(V) is in Gen U and J(U) ⊆ U⊥, we have that

Hom(tU(V),Gen Y ∩ J(U)) = 0. Hence, we also have Ext1(V ,Gen Y ∩ J(U)) = 0, so

Ext1(V ,GenJ(U) Y) = 0 which implies Hom(Y, τJ(U)V) = 0, by Lemma 2.1. Hence we

have that Y is in T ′ = ⊥(τJ(U)V) ∩ J(U), which gives fU(T ) ⊆ T ′.

For full subcategories X and Y of modΛ, we let X ∗ Y denote the full subcategory

{M ∈ modΛ | There is an exact sequence 0→ X → M → Y → 0 with X ∈ X, Y ∈ Y}.

Since fU(T ) ⊆ T ′, we have Gen U ∗ fU(T ) ⊆ Gen U ∗ T ′. Since fU(T ) = T ∩ U⊥, it

follows from [9, Theorem 3.12] that Gen U ∗ fU(T ) = T , so we have T ⊆ Gen U ∗ T ′,

and we aim to prove equality.

We first claim that U is Ext-projective in Gen U ∗T ′. Since Hom(U, τU) = 0, we have

Ext1(U,Gen U) = 0. We have T ′ ⊆ J(U), so Hom(T ′, τU) = 0 and hence Ext1(U,T ′) =

0. From this we obtain that also Ext1(U,Gen U ∗ T ′) = 0, as required.

We next claim that V is Ext-projective in Gen U ∗ T ′. Note first that by [9, Theorem

3.12] we have (Gen U ∗ T ′) ∩ U⊥ = T ′. Since V is τJ(U)-rigid in J(U) and T ′ =
⊥(τJ(U)V) ∩ J(U), we have that V is in P(T ′) by [1, Theorem 2.10]. By [9, Theorem

3.15] we have P(T ′) = fUP(Gen U ∗ T ′), and hence there is V ′ in P(Gen U ∗ T ′) such
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that V = fU(V ′). We claim that V ′ ∐ U is τ-rigid. Since V ′ is in P(Gen U ∗ T ′), we

have Hom(V ′, τV ′) = 0 by [1, Proposition 1.2(c)] (noting that T ′ is functorially finite in

J(U) by [1, Theorem 2.10] and therefore Gen U ∗T ′ is functorially finite in modΛ by [9,

Theorem 3.14]).

Since Ext1(V ′,Gen U) = 0, we have that Hom(U, τV ′) = 0. We also have that

Hom(Gen U, τU) = 0, since U is τ-rigid and sinceT ′ ⊆ J(U) we have Hom(T ′, τU) = 0.

Since V ′ is in Gen U ∗ T ′ we hence have Hom(V ′, τU) = 0, so we have proved the claim

that V ′ ∐ U is τ-rigid. Since fU(Gen U) = 0, we may assume that V ′ has no direct sum-

mands in Gen U. We have V = fU(V) = fU(V ′). It follows from [4, Lemmas 5.6, 5.7]

that V is basic, since V is basic by assumption. Similarly, also V ′ is basic and V ≃ V ′.

So we have proved the claim that V is in P(Gen U ∗ T ′).

Now, using that U ∐ V is in P(Gen U ∗ T ′) in combination with [1, Proposition 2.9],

gives that Gen U ∗ T ′ ⊆ T = ⊥(τU ∐ τV), and hence we obtain T = Gen U ∗ T ′, which

implies fU(T ) = fU(Gen U ∗ T ′) = T ′, and this finishes the proof of (a).

Part (b) follows from part (a) and Lemma 5.3. �

Lemma 5.5. Let U ∐ V be τ-rigid in modΛ, let T = Gen(U ∐ V) and let T ′ =

Gen fU(V) ∩ J(U) = GenJ(U) fU(V). Then fU(T ) = T ′.

Proof. Since Hom(U ∐ V, τU) = 0, we have T ⊆ ⊥(τU), so we have

Gen U ⊆ T ⊆ ⊥(τU).

By [9, Theorem 3.15], we have that fU(T ) = T ∩ U⊥ is a torsion class in J(U).

Let Y be in fU(T ) and let T ∈ T be such that Y = fU(T ). There is an epimorphism

U′ ∐ V ′
a
−→ T with U′ ∈ add U and V ′ ∈ add V . The canonical maps U′ ∐ V ′

c
−→ fU(V ′)

and T
d
−→ fU(T ) are also epimorphisms, and there is a commutative diagram

U′ ∐ V ′

c

��

a // T

d

��
fU(V ′)

b // fU(T )

where b = fU(a).

Since bc = da is an epimorphism, also b must be an epimorphism, and hence Y =

fU(T ) is in Gen fU(V). Since fU(T ) ⊆ J(U), we have that Y is in J(U) and hence in

Gen fU(V) ∩ J(U).

Conversely suppose Y is in Gen fU(V) ∩ J(U). Since fU(V) is a factor module of V ,

we have that Y is in Gen V , so Y is in T . Since Y is in J(U) ⊆ U⊥, we hence have that Y

is in T ∩ U⊥ = fU(T ). This finishes the proof of the lemma. �

We also need the following reformulation of Lemma 3.8.

Lemma 5.6. Let P,V be in modΛ, with P projective and Hom(P,V) = 0, and let V =

fPV = V. Let T = ⊥(τV) and let T ′ = ⊥(τP⊥V) ∩ P⊥. Then we have fP(T ) = T ′.

Proof. This follows directly from Lemma 3.8, using that fP(T ) = P⊥ ∩ ⊥(τV). �
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Finally, we need the following. Suppose that U and V are objects in C(Λ), with

addU ∩ addV = 0 and such that U ∐ V is support τ-rigid. Note that the domain of

EU∐V is:

{X ∈ indC(Λ) : X∐U ∐V support τ-rigid and addX ∩ add(U ∐V) = 0}.

Then:

Lemma 5.7. Let U and V be objects in C(Λ) such that U ∐V is support τ-rigid and

addU ∩ addV = 0. Then EU induces a bijection between the sets:

{X ∈ indC(Λ) : X ∐U ∐V support τ-rigid and addX ∩ add(U ∐V) = 0}.

and

{X ∈ indC(J(U)) : X∐ EU(V) support τ-rigid and addX ∩ add(EU(V)) = 0}.

Proof. This follows from Theorem 3.7. �

Corollary 5.8. The composition E
J(U)

EU(V)
EU is a well-defined map with domain coinciding

with the domain of EU∐V.

Proof. This follows from Lemma 5.7 and the fact that target set in Lemma 5.7 is exactly

the domain of E
J(U)

EU(V)
. �

The following sections will be devoted to proving the following theorem (Thoerem 1.6

from Section 0.2).

Theorem 5.9. Let U and V be support τ-rigid objects in C(Λ) with no common direct

summands, and suppose thatU ∐V is support τ-rigid in C(Λ). Then

(25) E
J(U)

EU(V)
EU = EU∐V

Proof We assume thatU = U∐P[1] andV = V∐Q[1], with U,V, P,Q modules and P,Q

projective, add(U) ∩ add(V) = 0 andU ∐V support τ-rigid. In view of Corollary 5.8,

we need to show that E
J(U)

EU(V)
EU(X) = EU∐V(X) for each indecomposable object X in the

domain

{X ∈ indC(Λ) : X ∐U ∐V support τ-rigid and add X ∩ add(U ∐V) = 0}

of each of the maps E
J(U)

EU(V)
EU and EU∐V.

Our strategy is to employ a case analysis, based on the properties ofU,V and X, since

the maps EU, E
J(U)

EU(V)
and EU∐V are defined via cases. We will consider the following

cases forU andV.

Case I U = U andV = V

Case II U = U andV = Q[1]

Case III U = P[1] andV = V

Case IV U = P[1] andV = Q[1]

In case II, we assume that U = U lies in modΛ and that V = Q[1], where Q lies in

P(Λ)∩⊥U. In this case the claim that equation (25) holds follows directly, since we have

EU∐V = EU∐P[1] = E
J(U)

EU (P[1])
EU = E

J(U)

EU (V)
EU = E

J(U)

EU(V)
EU
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where the second equality holds by definition of EU∐P[1]. So it remains to consider cases

I, III and IV.

For each of the cases I, III and IV we will also need to further subdivide according to

the properties of X in indC(Λ). We consider Case I in Section 6, Case III in Section 7 and

Case IV in Section 8. Finally, we must consider the ‘mixed case’, whereU andV have

both module and shifted projective direct summands; this is considered in Section 9.

6. Proof of Theorem 5.9, Case I

We assume that U = U and V = V for U,V in modΛ where U ∐ V is τ-rigid. We

divide Case I into the following subcases.

• Case I*: U = U andV = V where U and V lie in modΛ and add V∩Gen U = 0.

• Case I**: U = U andV = V where U and V lie in modΛ andV ∈ Gen U.

We firstly note that Case I will follow from these two cases:

Proposition 6.1. Assume that (25) holds in both cases I* and I**. Then (25) holds in

Case I.

Proof. Write V = V1 ∐ V2, where V1 is in Gen U, and add V2 ∩ Gen U = 0. Then

EU∐V = E(U∐V1)∐V2
. If U = 0, then also V1 = 0, and the result is trivial. We therefore

assume U , 0. We proceed by induction on n = r(modΛ). Hence we can assume that it

holds for J(U), since r(J(U)) < n.

Note that we have Gen(U ∐ V1) = Gen U, so add V2 ∩ Gen(U ∐ V1) = 0. Hence we

have:

EU∐V = E(U∐V1)∐V2

= E
J(U∐V1)

EU∐V1
(V2)
EU∐V1

(26)

= E
J(U∐V1)

EU∐V1
(V2)
E

J(U)

EU (V1)
EU(27)

= E
JJ(U)(EU (V1))

EU∐V1
(V2)

E
J(U)

EU (V1)
EU(28)

= E
JJ(U)(EU (V1))

E
J(U)

EU (V1)
(EU (V2))

E
J(U)

EU (V1)
EU(29)

= E
J(U)

EU (V1)∐EU (V2)
EU(30)

= E
J(U)

EU (V1∐V2)
EU(31)

= E
J(U)

EU (V)
EU

where (26) holds by Case I*, the equations (27) and (29) hold by Case I**, and (28)

holds by Theorem 4.3. Furthermore (30) holds (in J(U)) by the induction assumption,

while (31) holds by definition. �

For each of the subcases I* and I**, we will need to consider the following cases for

X.

(a) X ∈ indΛ and X < Gen(U ∐ V)

(b) X ∈ indΛ and X ∈ Gen(U ∐ V) \ Gen U



20 BUAN AND MARSH

(c) X ∈ indΛ and X ∈ Gen U

(d) X ∈ indP(Λ)[1]

Case I*: We assume that U = U andV = V where U and V lie in modΛ and add V ∩

Gen U = 0, i.e. V has no direct summands in Gen U. We set V = fU(V).

Lemma 6.2. With the above assumptions on U and V, we have that fU(X) is not in Gen V

and that

f
J(U)

V
( fU(X)) ≃ fU∐V(X)

for any X not in Gen(U ∐ V).

Proof. Consider the composition

X
a
−→ fU(X)

b
−→ f

J(U)

V
fU(X)

We first claim that ba is a left (U∐V)⊥-approximation. Let c : X → Y be a map, with Y in

(U∐V)⊥. Since Y is in U⊥, and a is left U⊥-approximation, there is a map d : fU(X) → Y

such that da = c. Applying Hom( , Y) to the canonical sequence

0→ t
J(U)

V
fU(X)

e
−→ fU(X)

b
−→ f

J(U)

V
fU(X) → 0

of fU(X) gives the exact sequence

(32) Hom( f
J(U)

V
fU(X), Y) → Hom( fU(X), Y) → Hom(t

J(U)

V
fU(X), Y).

We have that t
J(U)

V
fU(X) is in GenJ(U) V = Gen V ∩ J(U) ⊆ Gen V , since V = fU(V) is a

factor module of V . Since Y is in V⊥, we then have that de = 0. Hence, by the sequence

(32), there is a map g : f
J(U)

V
fU(X) → Y , such that gb = d. Hence c = gba, which proves

that ba is a left (U ∐ V)⊥-approximation as claimed. We have that ba is minimal, since

both a and b are epimorphisms.

The canonical map X → fU∐V(X) is a also a minimal left (U ∐V)⊥-approximation. So

we have

(33) f
J(U)

V
fU(X) ≃ fU∐V(X)

In particular, since by assumption X is not in Gen(U ∐ V), we have that f
J(U)

V
fU(X) ≃

fU∐V(X) in non-zero, so fU(X) is not in Gen V . �

Case I* (a): We assume that X is indecomposable in modΛ, that X ∐U ∐ V is a τ-rigid

module, and that X does not lie in Gen(U ∐ V).

We then have that EU(X) = fU(X), since X does not lie in Gen U. Using the first claim

of Lemma 6.2 we have that fU(X) is not in Gen V. Hence,

E
J(U)

V
(EU X) = f

J(U)

V
( fU(X)).

Since X is not in Gen(U ∐ V), we have EU∐V(X) = fU∐V(X), and equation (25) now

follows from the second claim of Lemma 6.2.
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Case I* (b): We assume that X is indecomposable in modΛ, that X ∐U ∐ V is a τ-rigid

module, that X is in Gen(U ∐ V), and that X does not lie in Gen(U).

We have EU(X) = fU(X), since by assumption, X is not in Gen U. By Lemma 5.5, we

have that fU Gen(U ∐ V) = Gen fU(V) ∩ J(U) = GenJ(U)( fU(V)). Hence we have that

fU(X) is in GenJ(U)( fU(V)).

There is a right exact sequence

(34) Y fU (X) → V
′

fU (X) → fU(X) → 0,

where the first map is a minimal left add U-approximation, the second map is a mini-

mal right add U-approximation, and Y fU (X) lies in P(⊥(τJ(U)V) ∩ J(U)). We then have

E
J(U)

V
EU(X) = f

J(U)

V
(Y fU (X)).

To compute EU∐V(X), consider the right exact sequence

(35) Y ′X → U′ ∐ V ′
α
−→ X → 0

where the first map is a minimal left add(U ∐ V)-approximation, the second map is a

minimal right add(U ∐ V)-approximation and Y ′X lies in P(⊥(τU ∐ τV)). We then have

EU∐V(X) = fU∐V(Y ′
X
).

We now aim to prove the following.

Claim 6.3. Applying fU to the right exact sequence (35) gives the right exact sequence

(34).

To prepare for the proof of Claim 6.3, we consider first a more general set-up.

Lemma 6.4. Let (T ,F ) be an arbitrary torsion pair in modΛ. Assume that there is

commutative diagram

A
a //

x

��

B
b //

y

��

C

z

��

// 0

A′
a′ // B′

b′ // C′ // 0

where the vertical maps are minimal left F -approximations (and hence epimorphisms),

and the upper row is a right exact sequence. Then the map b′ is an epimorphism and for

any Z in F , and any map t : B′ → Z with ta′ = 0, there is a map u : C′ → Z, such that

ub′ = t.

Proof. For the first claim, note that zb = b′y is an epimorphism, hence also b′ is an

epimorphism. We have that zba = 0, and this implies b′a′x = 0 and hence b′a′ = 0,

since x is an epimorphism. Now ta′ = 0 implies ta′x = 0, and hence tya = 0. Since

b is the cokernel of a, there is a map u′ : C → Z such that ty = u′b. Since z is an F -

approximation, and by assumption Z is in F , there is u : C′ → Z such that u′ = uz. It

then follows that ty = u′b = uzb = ub′y, and since y is an epimoprhism, we have t = ub′,

as claimed. �
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Proof of Claim 6.3. Apply fU to the sequence (35), and consider the commutative dia-

gram

0

��

0

��
tU(U′ ∐ V ′)

γ //

c

��

tU(X)

d

��
Y ′X

s′ //

r

��

U′ ∐ V ′
α //

p

��

X

q

��

// 0

fU(Y ′
X
)

s //

��

fU(V ′)
β //

��

fU(X) //

��

0

0 0 0

where the second row is sequence (35), so is exact, and the second and third columns are

the canonical sequences for U′∐V ′ and X, respectively. Note that the map γ exists since

qαc = βpc = 0, so αc factors through d.

We first claim that all objects in the third row are in J(U). This follows from the fact

that all objects in sequence (35) are in ⊥(τU), and hence the same hold for all objects in

the third row, since ⊥(τU) is closed under factor objects. All objects in the third row are

by definition in U⊥, and hence also in J(U) = U⊥ ∩ ⊥(τU).

We next claim that β is the cokernel of s. We have βs = fU(αs′) = fU(0) = 0. It

now follows from applying Lemma 6.4, with the torsion pair (Gen U,U⊥), and using that

J(U) ⊆ U⊥ that β is the cokernel of s in J(U), that is the sequence

(36) fU(Y ′X)
s
−→ fU(V ′)

β
−→ fU(X)→ 0

is exact in J(U) (and hence also an exact sequence in modΛ).

We now claim that the map s is a minimal left add V-approximation. For this let

b : fU(Y ′
X
) → V

′′
be a map with V

′′
in add V. Let V ′′ in add V be such that fU(V ′′) =

V
′′

, and let g : V ′′ → V
′′

be the canonical epimorphism. Consider the canonical exact

sequence for V ′′,

0→ tU(V ′′)→ V ′′
g
−→ V

′′
→ 0

and note that since Gen U ⊆ ⊥(τU ∐ τV), all terms in the sequence are in ⊥(τU ∐ τV).

Applying Hom(Y ′
X
, ) gives the exact sequence

Hom(Y ′X,V
′′)→ Hom(Y ′X,V

′′
)→ Ext1(Y ′X, tU(V ′′)).

Using that Y ′
X

is in P(⊥(τU ∐ τV)) and that tU(V ′′) ∈ Gen U ⊆ ⊥(τU ∐ τV), we have that

the last term vanishes, and hence the first map is surjective, and therefore there is a map

f ′ : Y ′X → V ′′ such that g f ′ = br.

The map s′ is an add(U∐V)-approximation, therefore there is a map f : U′∐V ′ → V ′′,

such that f ′ = f s′. Then we have br = g f ′ = g f s′. Now consider the canonical sequence

(37) 0→ tU(U′ ∐ V ′)→ U′ ∐ V ′
p
−→ fU(U′ ∐ V ′) = fU(V ′)→ 0
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Note that Hom(tU(U′∐V ′),V
′′

) = 0 since V is in ⊥(τU). Applying Hom( ,V
′′

) to (37),

we obtain

Hom( fU(V ′),V
′′

) ≃ Hom(U′ ∐ V ′,V
′′

).

Hence there is a map e : fU(V ′) → V
′′

, such that ep = g f . We then have br = g f s′ =

eps′ = esr, that is (b − es)r = 0. Since r is an epimorphism, this implies b = es, and we

have proved the claim that s is a left add V-approximation.

We next claim that s is a left minimal map. Let

s =

(

s1

0

)

: fU(Y ′X)→ fU(V ′)

where s1 is left minimal. Then coker(s) ≃ coker(s1) ∐ M for some module M. Note that

X indecomposable implies that coker(s) ≃ fU(X) is indecomposable by [4, Lemma 4.6],

hence we have coker(s1) = 0 or M = 0. If coker(s1) = 0, then fU(X) is in add fU(V ′).

Then there is an indecomposable direct summand V0 of V , such that fU(X) ≃ fU(V0).

But then, by [4, Lemma 5.7] we have X ≃ V0, but this is a contradiction, since X is by

assumption not in add V . Hence M = 0, and therefore s = s1 is left minimal.

We claim that fU(Y ′X) is in P(T ′), where T ′ = ⊥(τJ(U)V) ∩ J(U) is a torsion class in

J(U). For this consider the torsion class T = ⊥(τU ∐ τV) in modΛ. By Lemma 5.4 we

have that fU(T ) = T ′. It then follows from [9, Theorem 3.15], that fU(P(T )) = P(T ′),

and hence fU(Y ′
X
) is in P(T ′), since Y ′

X
∈ P(T ).

We can now apply [4, Proposition 4.7] to obtain that the sequences (34) and (36) are

isomorphic, and this concludes the proof of the claim. �

Using Claim 6.3 we obtain

E
J(U)

V
EU(X) = E

J(U)

V
fU(X) = f

J(U)

V
(Y fU (X)) = f

J(U)

V
fU(Y ′X).

Moreover, we have that Y ′X is not in Gen(U ∐ V), since EU∐V(X) = fU∐V(Y ′X) , 0.

Therefore, using Lemma 6.2, we obtain

EU∐V(X) = fU∐V(Y ′X) ≃ f
J(U)

V
fU(Y ′X).

This finishes the proof that equation (25) holds in this case.

Case I* (c): We assume that X is an indecomposable module in modΛ, that X ∐ U ∐ V

is a τ-rigid module and that X is in Gen(U).

Let T = ⊥(τU ∐ τV) and T ′ = ⊥(τJ(U)V) ∩ J(U), and consider the exact sequence

(38) Y ′X → UX → X → 0,

where the first map is a minimal left add U-approximation, and the second map is a

minimal right add U-approximation. We then have that EU(X) = EU(X) = fU(Y ′
X
)[1].

Note that by Theorem 3.7 the object EU(X ∐ V) = fU(Y ′
X
)[1] ∐ V is support τ-rigid in

C(J(U)), and hence we have that fU(Y ′
X
) is in ⊥V .

We have E
J(U)

EU(V)
EU(X) = E

J(U)

V
EU(X) = f

J(U)

V
Y ′′

X
, where fU(Y ′

X
)→ Y ′′

X
is a minimal left

T ′-approximation.
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To compute EU∐V(X) we consider the right exact sequence

(39) Y ′′′X → U′X ∐ V ′X → X → 0

where the first map is a minimal left add(U ∐ V)-approximation, and the second map is

a minimal right add(U ∐ V)-approximation. Then EU∐V(X) = EU∐V(X) = fU∐V(Y ′′′
X

).

Since EU∐V(X) , 0, we have that Y ′′′
X

is not in Gen(U ∐ V). By Lemma 6.2, we hence

have that EU∐V(X) = fU∐V(Y ′′′X )[1] = f
J(U)

V
fU(Y ′′′X )[1].

It is therefore sufficient to prove that

f
J(U)

V
(Y ′′X ) ≃ f

J(U)

V
fU(Y ′′′X )

The main steps are as follows:

Claim 6.5. (a) There is a map Y ′X → UX ∐ Y ′′′X , which is a left T -approximation.

(b) The induced map fU(Y ′
X
)→ fU(Y ′′′

X
) is a left T ′-approximation.

(c) We have that Y ′′
X

is a direct summand in fU(Y ′′′
X

)

(d) We have f
J(U)

V
(Y ′′

X
) ≃ f

J(U)

V
fU(Y ′′′

X
).

Proof. (a): Consider the diagram

PY′
X

// PUX
// PX

//

=

��

PY′
X
[1]

PY′′′
X

// PU′
X
∐V ′

X

// PX
// PY′′′

X
[1]

where the rows are triangles giving rise (by taking homology) to the exact sequences (38)

and (39), respectively (see Section 3). We have that U, Y ′′′X are in P(T ), so in particular

Hom(Y ′′′
X
, τU) = 0. Hence by Lemma 2.1 we have that Hom(PUX

, PY′′′
X

[1]) = 0. Therefore

(see [11, Section 1.4]) the above diagram can be completed to a commutative diagram in

such a way that there is an induced triangle

PU′
X
∐V ′

X
[−1]

g
−→ PY′

X

h
−→ PU′

X
∐Y′′′

X
→ PU′

X
∐V ′

X
.

Now, let k : PY′
X
→ PT be a map with T ∈ T = ⊥(τU ∐ τV). Then Hom(T, τU ∐ τV) = 0,

and hence by Lemma 2.1, we have Hom(PU′
X
∐V ′

X
, PT [1]) = 0. Hence we have kg = 0, so

by exactness of Hom( , PT ) we have that there is map l : PU′
X
∐Y′′′

X
→ PT , such that lh = k.

It then follows that the map H0(k) : YX → T factors through H0(l), and by Lemma 2.1,

we have that any map Y ′X → T factors through Y ′X → U′X ∐ Y ′′′X . This finishes the proof

of the claim.

(b): This follows directly from Lemma 5.4, using that U, Y ′′′X ∈ P(T ) and therefore

Hom(U, τY ′′′
X

) = 0.

(c): This follows directly from (b), using that fU(Y ′X) → Y ′′X is a minimal left T ′-

approximation.

(d): This follows directly from (c), using that both f
J(U)

V
Y ′′

X
and f

J(U)

V
fU(Y ′′′

X
) are inde-

composable. �
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So equation (25) is proved for this case.

Case I* (d): We assume that X is of the form R[1], where R is an indecomposable module

in (P(Λ) ∩ ⊥(U ∐ V)).

Let T = ⊥(τU ∐ τV) and let T ′ = ⊥(τJ(U)V) ∩ J(U).

We first compute EU∐V(X). For this, let R → YR be a minimal left T -approximation.

Then EU∐V(X) = fU∐V(YR)[1] = f
J(U)

V
fU(YR)[1], where the last equation follows from

Lemma 6.2.

Similarly, we compute EU(X) by letting R → Y ′
R

be a minimal left T -approximation

and then EU(X) = fU(Y ′R)[1].

To compute E
J(U)

V
EU(X), let fU(Y ′R) → Y ′′R be a minimal T ′-approximation. Then we

have E
J(U)

V
EU(X) = f

J(U)

V
(Y ′′R )[1].

Claim 6.6. We have that fU(YR) ≃ Y ′′R .

Proof. We first claim that the composition R
h
−→ YR

k
−→ fU(YR) is a left P(T ′)-

approximation. Consider a map f : R → N′ with N′ in P(T ′). By Lemma 5.4(b), we

have that fUP(T ) = P(T ′), so there is a module N in P(T ) satisfying fU(N) = N′. Since

R is projective, there is a map u : R→ N, such that gu = f . Since h : R→ YR is a P(T )-

approximation and N is in P(T ), there is v : YR → N such that u = vh. Note that N is in

P(T ) ⊆ J(U) ⊆ U⊥. Since k is a left U⊥-approximation, there is w : fU(YR) → N such

that v = wk. So, we have f = gu = gvh = gwhk. Note that N′ is in P(T ′) ⊆ J(U) ⊆ U⊥.

Since k is a left U⊥-approximation, there is w : fU(YR) → N such that gv = wk. So, we

have f = gu = gvh = wkh, and hence kh is a left P(T ′)-approximation.

Next, we claim that the composition

R
b
−→ Y ′R

c
−→ fU(Y ′R)

d
−→ Y ′′R

is a left P(T ′)-approximation. Let N be in P(T ′), and let a : R → N be a map. Since

N is in ⊥(τU) and b is a left ⊥(τU)-approximation, there is a map a′ : Y ′R → N such that

a = a′b. Since N is in U⊥ and c is a left U⊥-approximation, there is a map a′′ : fU(Y ′
R
)→

N such that a′ = a′′c. Since N is in T ′ and d is a left T ′-approximation, there is a map

a′′′ : Y ′′R → N such that a′′ = a′′′d. So we have a′′′dcb = a′′cb = a′b = a, so dcb is a left

P(T ′)-approximation as claimed.

Note that both YR and Y ′′
R

are indecomposable by [4, Prop. 3.7], hence also fU(YR) is

indecomposable, by [4, Lemma 4.6]. It then follows that both

X
h
−→ YR

k
−→ fU(YR)

and

X
b
−→ Y ′R

c
−→ fU(Y ′R)

d
−→ Y ′′R

are minimal left T ′-approximations. So we obtain fU(YR) ≃ Y ′′
R

. �

By Claim 6.6 we now have that

EU∐V(X) = f
J(U)

V
fU(YR)[1] = f

J(U)

V
(Y ′′R )[1] = E

J(U)

V
EU(X)

and hence equation (25) holds also in this case.
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Case I**: We assume thatU = U andV = V for U,V in modΛ, that U ∐ V is a τ-rigid

module, and that V lies in Gen U.

Let V = Q[1], where Q is in P(J(U)). We first make the following observation.

Lemma 6.7. With the assumptions of Case I**, we have that fU∐V = fU .

Proof. Since V ∈ Gen U, we have that Gen(U ∐ V) = Gen U. It follows that tU∐V = tU ,

and then by uniqueness of canonical sequences, that also fU∐V = fU . �

Case I** (a): We assume that X is an indecomposable module in modΛ, that X∐U ∐V

is a τ-rigid module, and that X does not lie in Gen(U ∐ V) = Gen U.

We have that EU(X) = fU(X), and

E
J(U)

V
EU(X) = E

J(U)

V
( fU(X)) = E

J(U)

Q[1]
( fU(X)) = fU(X).

Note that the last equation holds since Q is in P(J(U)) and we have Hom(Q, fU(X)) = 0

since EU(V ∐ X) is support τ-rigid in C(J(U)) by Theorem 3.7.

By Lemma 6.7 we have

EU∐V(X) = fU∐V(X) = fU(X) = E
J(U)

V
EU(X)

and the claim that equation (25) holds, is proved in this case.

Case I** (b): Since Gen(U ∐ V) = Gen U, this case (where X lies in indΛ and X ∈

Gen(U ∐ V) \ Gen U) cannot occur.

Case I** (c): We assume that X is an indecomposable τ-rigid module, that X ∐U ∐V is

a τ-rigid module, and that X lies in Gen U = Gen(U ∐ V).

In order to compute EU(X), we consider the exact sequence

(40) YX → UX → X → 0

where the first map is a minimal left add U-approximation, and the second map is a

minimal right add U-approximation. Then EU(X) = fU(YX)[1].

We have

E
J(U)

EU(V)
EU(X) = E

J(U)

E
V

EU(X) = f
J(U)

Q
fU(YX)[1].

Next, to compute EU∐V(X), we consider the exact sequence

(41) Y ′X → U′X ∐ V ′X → X → 0,

where the first map is a minimal left add(U ∐ V)-approximation, and the second map is

a minimal right add(U ∐ V)-approximation. Then EU∐V(X) = fU∐V(Y ′X)[1].

By Lemma 6.7, it now follows that

EU∐V(X) = fU∐V(Y ′X)[1] = fU(Y ′X)[1].

By the above, it will be sufficient to prove that

(42) f
J(U)

Q
fU(YX) ≃ fU(Y ′X).

The main steps in the proof are as follows:
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Claim 6.8. Let T = ⊥(τU ∐ τV) and let T ′ = Q
⊥
∩ J(U). Then the following hold.

(a) We have f
J(U)

Q
fU(T ) = fU(T ) = T ′.

(b) There is a map YX

γ
−→ Y ′X ∐UX which is a left T -approximation.

(c) The map fU(YX)
fU (γ)
−−−→ fU(Y ′X) is a left T ′-approximation.

(d) The map f
J(U)

Q
fU(YX)

f
J(U)

Q
fU (γ)

−−−−−−−→ f
J(U)

Q
fU(Y ′

X
) is a left f

J(U)

Q
T ′ = T ′ -approximation.

(e) The map f
J(U)

Q
fU(γ) is an isomorphism.

(f) We have f
J(U)

Q
fU(Y ′

X
) ≃ fU(Y ′

X
).

(g) We have f
J(U)

Q
fU(YX) ≃ fU(Y ′X).

Proof. (a): Since V is in Gen U, we have by Lemma 6.7 that fU = fU∐V , and we have

fU(T ) = fU∐V(T ) = fU∐V(⊥(τU ∐ τV)) = (U ∐ V)⊥ ∩ ⊥(τU ∐ τV)

= J(U ∐ V)
(∗)
= JJ(U)(EU(V)) = JJ(U)(Q[1]) = Q

⊥
∩ J(U) = T ′

where (∗) holds by Theorem 4.3. This proves the second equality. But f
J(U)

Q
clearly acts

as the identity on objects in Q
⊥
∩ J(U), and this proves the first equality.

(b): Consider the diagram

PYX
// PUX

// PX
//

=

��

PYX
[1]

PY′
X

// PU′
X
∐V ′

X

// PX
// PY′

X
[1]

where the rows are triangles giving rise (by taking homology) to the exact sequences

(40) and (41), respectively (see Section 2 for details). Since Y ′X is in T ⊆ ⊥(τU), we have

Hom(Y ′
X
, τU) = 0, and hence Hom(PUX

, PY′
X
[1]) = 0, by Lemma 2.1. Hence there are

maps PUX
→ PU′

X
∐V ′

X
and PYX

→ PY′
X

completing the above diagram in such a way that

there is a triangle (see [11, Section 1.4])

PU′
X
∐V ′

X
[−1]

g
−→ PYX

h
−→ PUX∐Y′

X
→ PU′

X
∐V ′

X
.

Now, let k : PYX
→ PT be a map with T in T = ⊥(τU ∐ τV). Then Hom(T, τU∐τV) = 0,

and hence by Lemma 2.1, we have Hom(PU′
X
∐V ′

X
, PT [1]) = 0. Hence we have kg = 0, so

by exactness of Hom( , PT ) we have that there is map l : PUX∐Y′
X
→ PT such that lh = k.

It then follows that the map H0(k) : YX → T factors through H0(l), and by Lemma 2.1,

it then follows that any map YX → T factors through YX → UX ∐ Y ′X. This finishes the

proof of the claim.

(c): We have U ∈ P(⊥(τU)) by [1, Proposition 2.9], and YX ∈ P(⊥(τU)) by construction

(see Definition 3.1, Case I(b)). Hence, in particular, Hom(U, τYX) = 0, since P(⊥τU) is

τ-rigid by [1, Theorem 2.10]. Then the assertion follows from Lemma 5.3.
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(d): We have that fU(YX) is in P(J(U)), and hence τJ(U) fU(YX) = 0. Hence, the assertion

follows from Lemma 5.3.

(e): We have that the image of the map f
J(U)

Q
fU is in Q

⊥
∩ J(U) = T ′, so in particular

f
J(U)

Q
fU(YX) is in T ′. By [4, Lemma 5.6]), f

J(U)

Q
fU(Y ′X) is indecomposable, so the map

f
J(U)

Q
fU(γ) in (d) is left minimal. The assertion follows.

(f): This follows from fU(Y ′
X
) ∈ fU(T ) = T ′ = Q

⊥
∩ J(U).

(g): This now follows from (e) and (f). �

We have now proved that (42) holds, and hence (25) holds in this case.

Case I** (d): We assume that X is of the form R[1], where R is an indecomposable

module in (P(Λ) ∩ ⊥(U ∐ V)).

Note first that we have V = Q[1], where Q = fU(YV) and where there is an exact

sequence

YV → UV → V → 0,

where the first map is a minimal left add U-approximation, and the second map is a

minimal right add U-approximation.

We have that EU(X) = fU(YR)[1], where R
β
−→ YR is a minimal left ⊥(τU)-

approximation. Furthermore, we have

E
J(U)

V
EU(X) = E

J(U)

Q[1]
EU(X) = f

J(U)

Q
fU(YR)[1].

We have fU = fU∐V , by Lemma 6.7. We hence have that EU∐V(X) = fU∐V(Y ′R)[1] =

fU(Y ′R)[1], where R
α
−→ Y ′R is a left minimal ⊥(τU ∐ τV)-approximation.

Hence, it will be sufficient to prove that

(43) f
J(U)

Q
fU(YR) ≃ fU(Y ′R).

The main steps in the proof are as follows.

Claim 6.9. Let T = ⊥(τU ∐ τV) and let T ′ = Q
⊥
∩ J(U). Then the following hold.

(a) We have f
J(U)

Q
fU(T ) = fU(T ) = T ′.

(b) There is a map YR

a
−→ Y ′

R
such that fU(a) is a left fU(T )-approximation.

(c) We have f
J(U)

Q
fU(Y ′R) ≃ fU(Y ′R).

(d) The map f
J(U)

Q
fU(YR)

f
J(U)

Q
fU (a)

−−−−−−−→ f
J(U)

Q
fU(Y ′

R
) is a left f

J(U)

Q
T ′ = T ′ -approximation.

(e) The map f
J(U)

Q
fU(a) is an isomorphism.

(f) We have f
J(U)

Q
fU(Y ′

R
) ≃ fU(Y ′

R
).

(g) We have f
J(U)

Q
fU(YR) ≃ fU(Y ′

R
).
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Proof. (a): See Claim 6.8(a).

(b): Since β : R→ YR is a left ⊥(τU)-approximation, and Y ′
R
∈ T ⊆ ⊥(τU), there is a map

a : YR → Y ′
R
, such that aβ = α.

We claim that fU(a) is a left fU(T )-approximation. Consider a map y : fU(YR) →

fU(T ), where fU(T ) is in fU(T ). Since U, YR ∈ P(⊥(τU)), we have in particular that

Hom(U, τYR) = 0. It then follows from Lemma 5.1 that y = fU(x) for some x : YR → T .

Consider the diagram

R

α

##β //

xβ

��❄
❄❄

❄❄
❄❄

❄ YR
a //

x

��

Y ′R

c
~~

T

where c : Y ′
R
→ T such that xβ = caβ exists since α = aβ is a left T -approximation. It

follows that (ca − x)β = 0. Applying Hom( , T ) to the right exact sequence R
β
−→ YR

l
−→

UR → 0 gives the left exact sequence

0→ Hom(UR, T )→ Hom(YR, T )→ Hom(R, T ).

Now (ca − x)β = 0 implies that there is a map n : UR → T , such that ca − x = nl, and so

x = ca + nl. Since fU(nl) = 0, this gives y = fU(x) = fU(c) fU(a). Hence we have that

fU(a) is a left fU(T )-approximation as claimed.

(c): This follows directly from (a), since f
J(U)

Q
acts as the identity on Q

⊥
∩ J(U).

(d,e,f,g): See Claim 6.8(d,e,f,g). �

We have now proved that (43) holds, and hence that equation (25) holds in this case.

7. Proof of Theorem 5.9, Case III

We have already dealt with Case II (see the end of Section 5), so we must next deal

with Case III. We assume that U = P[1], where P lies in P(Λ), that V = V is a τ-rigid

module satisfying Hom(P,V) = 0.

Then EU(V) = V = V = V is τ-rigid in J(U) = P⊥.

We need in this case to consider three possible cases for X:

(a) X lies in ind(Λ), X does not lie in Gen V , X ∐ V is τ-rigid and Hom(P, X) = 0.

(b) X lies in ind(Λ), X lies in Gen V , X ∐ V is τ-rigid and Hom(P, X) = 0.

(c) X is of the form R[1] where R lies in indP(Λ) and Hom(R,V) = 0.

Case III (a): We assume that X is an indecomposable τ-rigid module in modΛ, that

X ∐ V is τ-rigid, that Hom(P, X) = 0 and that X does not lie in Gen V .

Then EU(X) = EP[1](X) = X, and X is τ-rigid in J(U) = P⊥. We have

E
J(U)

EU(V)
EU(X) = E

J(U)

V
EU(X) = E

J(U)

V
(X) = f

J(P[1])

V
(X) = f P⊥

V (X).
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We next compute EU∐V(X). We have EV(U) = EV(P[1]) = fV(YP)[1], where P→ YP

is a left ⊥(τV)-approximation. We then obtain

EU∐V(X) = EV∐P[1](X) = E
J(V)

EV(P[1])
EV(X) = E

J(V)

fV (YP)[1]
EV(X) = E

J(V)

fV (YP)[1]
fV(X) = fV(X),

where the second equality holds by definition. The last equation holds since EV(X ∐

P[1]) = fV(X) ∐ fV(YP)[1] is support τ-rigid in C(J(U)) by Theorem 3.7, so fV(YP) is in

P(J(U)) with Hom( fV(YP), fV(X)) = 0.

We next claim that f P⊥

V
(X) = fV(X). For this, consider the canonical sequence of X in

modΛ with respect to the torsion pair (Gen V,V⊥):

0→ tV(X) → X → fV(X)→ 0.

Since Hom(P, X) = 0 by assumption, and P is projective, we also have Hom(P, fV(X)) =

0, and clearly also Hom(P, tV(X)) = 0. We have tV(X) ∈ Gen V ∩ P⊥ = GenP⊥ V and

fV(X) ∈ P⊥ ∩V⊥, so this sequence is also the canonical sequence of X in P⊥ with respect

to the torsion pair (GenP⊥ V, P⊥ ∩ V⊥). Hence f P⊥

V
(X) = fV(X) and it follows that

EU∐V(X) = fV(X) = f P⊥

V (X) = E
J(U)

V
EU(X),

and equation (25) holds also in this case.

Case III (b): We assume that X ∐ V is a τ-rigid module in modΛ such that X lies in

Gen V and Hom(P, X) = 0.

First note that EU(X) = EP[1](X) = X. Consider the right exact sequence in J(U) = P⊥,

(44) YP⊥

X → VP⊥

X → X → 0,

where the first map is a minimal left add V-approximation in P⊥, YX ∈ P(⊥(τV)) and the

second map is a minimal right add V-approximation in P⊥.

We then have that

E
J(U)

EU(V)
EU(X) = EP⊥

V
EU(X) = EP⊥

V (X) = f P⊥

V (YP⊥

X )[1].

We next compute EU∐V(X). First note that EV(P[1]) = fV(YP)[1], where P → YP is a

minimal left ⊥(τV)-approximation, and that EV(X) = fV(YX)[1], where there is an exact

sequence

(45) YX → VX → X → 0

where the first map is a minimal left add V-approximation, and the second map is a

minimal right add V-approximation. Then

EU∐V(X) = EP[1]∐V = E
J(V)

EV (P[1])
EV(X) = f

J(V)

fV (YP)
fV(YX)[1].

Hence we need to prove that

(46) f P⊥

V (YP⊥

X ) ≃ f
J(V)

fV (YP)
fV(YX).

We first make the following observation.

Lemma 7.1. Let P be a projective module in modΛ. Then fP is a right exact functor

from modΛ to P⊥, and fP sends projective modules to projective modules in P⊥.
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Proof. Let e be an idempotent such that P ≃ Λe. We first note that tP(M) = ΛeM, so

fP(M) ≃ M/ΛeM ≃ Λ/ΛeΛ ⊗Λ M. It follows that fP is right exact.

Moreover, since Λ/ΛeΛ ⊗Λ Λ ≃ Λ/ΛeΛ, and the tensor-functor is additive, we have

that the indecomposable projective Λ/ΛeΛ-modules are exactly fP(T ) for T indecom-

posable projective in modΛ with T not a summand in P. �

We proceed to prove (46). The main steps in the proof are as follows.

Claim 7.2. (a) We have fP(YX) ≃ YP⊥

X
.

(b) The composition YX

α
−→ fP(YX)

β
−→ f P⊥

V
fP(YX) is a left J(V) ∩ P⊥-approximation.

(c) The composition YX

γ
−→ fV(YX)

φ
−→ f

J(V)

fV (YP)
fV(YX) is a left J(V)∩P⊥-approximation.

(d) We have f P⊥

V
fP(YX) ≃ f

J(V)

fV (YP)
fV(YX).

(e) We have f P⊥

V
(YP⊥

X
) ≃ f

J(V)

fV (YP)
fV(YX).

Proof. (a): Let T = ⊥(τV) and let T ′ = ⊥(τP⊥V) ∩ P⊥. Then we have fPT = T
′ by

Lemma 5.6. We have that YP⊥

X
is in P⊥ ∩ ⊥(τV) = P⊥ ∩ ⊥(τV).

Note that since Hom(P, X) = 0 = Hom(P,VX), we have fP(X) = X and fP(VX) = VX.

Hence, applying fP to the right exact sequence (45) we obtain the right exact sequence

(47) fP(YX)
fP(a)
−−−→ VX → X → 0.

We claim that fP(a) is a minimal left V = V-approximation in P⊥. Let b′ : fP(YX) →

fP(V ′) = V ′ be a map with V ′ ∈ add V ⊆ P⊥. By Lemma 5.2, there is a map b : YX → V ′

such that b′ = fP(b). Since a is left add V-approximation, there is a map c : VX → V ′

such that b = ca. So fP(c) fP(a) = fP(b). We have that fP(a) is minimal, since otherwise

we would have X in add V .

Using now [4, Proposition 5.6], we have that fP(YX) ≃ YP⊥

X , and this concludes the

proof of (a).

(b): Let Z be in J(V)∩P⊥ and let g : YX → Z be a map. Since α is a left P⊥-approximation

and Z is in P⊥, there is a map l : fP(YX)→ Z, such that lα = g. Since β is a left P⊥ ∩ V⊥-

approximation and Z is in P⊥ ∩ V⊥, there is a map r : f P⊥

V
fP(YX) → Z, such that l = rβ.

Hence g = lα = rβα. Since YX is in ⊥(τV), we have that also f P⊥

V
fP(YX) is in ⊥(τV), and

hence f P⊥

V
fP(YX) is in P⊥ ∩ V⊥ ∩ ⊥(τV) = J(V) ∩ P⊥. This proves the claim that βα is a

left J(V) ∩ P⊥-approximation.

(c): Let Z be in J(V)∩P⊥ and let g : YX → Z be a map. Since γ is a left V⊥-approximation,

and Z is in V⊥, there is a map s : fV(YX) → Z such that g = sγ. Note that we have that

fV(YP) is in P(J(V)), and so

( fV(YP))⊥ ∩ J(V) = JJ(V)( fV(YP)[1]) = JJ(V)(EV(P[1])) = J(V ∐ P[1]) = J(V) ∩ P⊥.

The map φ is a left ( fV(YP))⊥ ∩ J(V) = J(V) ∩ P⊥-approximation. Hence, there is a map

t : f
J(V)

fV (YP)
fV(YX) → Z such that s = tφ, and therefore g = sγ = tφγ. This proves the claim

that φγ is a left J(V) ∩ P⊥-approximation.
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(d): Since both βα and φγ are epimorphisms, they are both minimal left J(V) ∩ P⊥-

approximations, and the claim follows.

(e): This follows directly from combining (a) and (d). �

Equation (25) in this case now follows from (46).

Case III (c): We assume that X = R[1], where R is an indecomposable projective module

in modΛ and Hom(R,V) = 0.

We then have EU(X) = fP(R)[1], which is in P(P⊥)[1] and we have that

E
J(U)

V
EU(X) = EP⊥

V ( fP(R)[1]).

Note that V = V is τ-rigid in J(U) = P⊥. Therefore EP⊥

V ( fP(R)[1]) = f P⊥

V (Y0)[1], where

fP(R)→ Y0 is a minimal left ⊥(τP⊥V) ∩ P⊥-approximation.

We have that EV(P[1]) = fV(YP)[1], where P → YP is a minimal left ⊥(τV)-

approximation and similarly EV(X) = fV(YR)[1], where R → YR is a minimal left ⊥(τV)-

approximation. It follows that

(48) EU∐V(X) = EP[1]∐V(X) = E
J(V)

EV (P[1])
EV(X) = E

J(V)

fV (YP)[1]
EV(X) = f

J(V)

fV (YP)
fV(YR)[1].

So it will be sufficient to prove that

(49) f P⊥

V Y0 ≃ f
J(V)

fV (YP)
fV(YR).

The main steps in the proof of this are as follows.

Claim 7.3. (a) We have that Y0 is a direct summand of fP(YR).

(b) We have that f P⊥

V
(Y0) is a direct summand of f P⊥

V
fP(YR).

(c) The composition

YR

α
−→ fP(YR)

β
−→ f P⊥

V fP(YR)

is a minimal left J(V) ∩ P⊥-approximation.

(d) The composition

YR

γ
−→ fV(YR)

φ
−→ f

J(V)

fV (YP)
fV(YR)

is a minimal left J(V) ∩ P⊥-approximation.

(e) We have f P⊥

V fP(YR) ≃ f
J(V)

fV (YP)
fV(YR).

(f) We have f P⊥

V
Y0 ≃ f

J(P)

fV (YP)
fV(YR).

Proof. (a): Let T = ⊥(τV) and T ′ = ⊥(τP⊥V) ∩ P⊥. Note that the map fP(R) → Y0

is a minimal left T ′-approximation so, for the claim, it is sufficient to prove that

fP(R) → fP(YR) is a left T ′-approximation. By Lemma 5.6, we have that fP(T ) = T ′,

so by Lemma 5.3 we have that fP(R) → fP(YR) is a left T ′-approximation (noting that

Hom(P, τR) = 0 as R is projective), giving the claim.

(b): This follows directly from (a).

(c): Note first that since YR is in ⊥(τV), also the factor module f P⊥

V fP(YR) is in ⊥(τV).

This module also lies in P⊥ ∩ V⊥ by the definition of f P⊥

V , so it lies in J(V) ∩ P⊥.
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Let Z be in J(V) ∩ P⊥, and consider a map g : YR → Z. Since α is a left P⊥-

approximation, and Z is in P⊥, so there is a map l : fP(YR) → Z, such that lα = g. Since

β is a left P⊥∩V⊥-approximation, and Z is in P⊥∩V⊥, there is a map r : f P⊥

V fP(YR)→ Z,

such that l = rβ. Hence we have g = lα = rβα, and this proves that βα is left J(V) ∩ P⊥

approximation. Since this composition is an epimorphism, it must also be left minimal,

giving the claim.

(d): First note that fV(YP) is in P(J(V)), and hence ( fV(YP))⊥∩ J(V) = JJ(V)( fV(YP)[1]) =

JJ(V)(EV(P[1])) = J(V∐P[1]) = J(V)∩P⊥. Let g : YR → Z be a map, with Z in J(V)∩P⊥.

Since γ is a V⊥-approximation, and Z is in V⊥, there is a map t : fV(YR) → Z such that

g = tγ. Since φ is a left ( fV(YP))⊥ ∩ J(V) = J(V) ∩ P⊥-approximation, there is a map

u : f
J(V)

fV (YP)
fV(YR)→ Z, such that t = uφ. It follows that g = tγ = uφγ. This proves that φγ

is left J(V) ∩ P⊥ approximation. Since this composition is an epimorphism, it must also

be left minimal, giving the claim.

(e): This follows directly from (c) and (d).

(f): Note that f P⊥

V (Y0) is indecomposable by [4, Proposition 5.6] (see the definition of Y0

above). It is a direct summand of f
J(V)

fV (YP)
fV(YR) which is indecomposable by (48) and [4,

Proposition 5.6]. The claim follows. �

We have proved that (49) holds, and (25) in this case now follows.

8. Proof of Theorem 5.9, Case IV

We assume thatU = P[1] andV = Q[1], where P,Q lie in P(Λ).

We set V = Q[1]. Then Q = fPQ lies in P(J(U)) = P(P⊥).

We need in this case to consider two possible cases for X:

(a) X is τ-rigid, X lies in ind(Λ), and Hom(P ∐ Q, X) = 0.

(b) X lies in indP(Λ)[1].

Case IV (a): We assume that X is an indecomposable τ-rigid module with Hom(P ∐

Q, X) = 0.

We have EU(X) = EP[1](X) = X, and then E
J(U)

V
EU(X) = EP⊥

Q[1]
X = X, since

Hom(Q, X) = 0 by Theorem 3.7.

We also have EU∐V(X) = EP[1]∐Q[1](X) = X, so the claim that equation (25) holds

follows also in this case.

Case IV (b): We assume that X is of the form R[1], where R is an indecomposable

module in P(Λ).

We then have that

E
J(U)

V
EU(X) = EP⊥

Q[1]
EP[1](X) = EP⊥

Q[1]
( fP(R)[1]) = f P⊥

Q fP(R)[1].

On the other hand, we have EU∐V(X) = EP[1]∐Q[1](X) = fP∐Q(R)[1].
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So, it is sufficient to prove that f P⊥

Q fP(R) ≃ fP∐Q(R). The main steps in the proof are

as follows.

Claim 8.1. (a) We have P⊥ ∩ Q
⊥
= P⊥ ∩ Q⊥.

(b) The composition R
α
−→ fP(R)

β
−→ f P⊥

Q
fP(R) is a (P ∐ Q)⊥-approximation.

(c) We have f P⊥

Q
fP(R) ≃ fP∐Q(R).

Proof. (a): Note first that, for any module M, Hom(P,M) = 0 implies Hom(Gen P,M) =

0. Suppose M lies in P⊥ ∩ Q
⊥

. We apply Hom( ,M) to the canonical sequence

0→ tP(Q) → Q→ Q→ 0

for Q. We have Hom(Q,M) = 0 and also Hom(tP(Q),M) = 0, since tP(Q) is in Gen P.

Hence Hom(Q,M) = 0 and we have P⊥ ∩ Q
⊥
⊆ P⊥ ∩ Q⊥. The reverse inclusion follows

immediately from the fact that Q is a factor of Q.

(b): By (a), we have that f P⊥

Q
( fP(R)) is in P⊥∩Q

⊥
= P⊥∩Q⊥. Consider a map g : R→ Z

with Z in (P ∐ Q)⊥. Since α is a left P⊥-approximation and Z is in P⊥, there is a map

t : fP(R) → Z such that g = tα. Since fP(R) → f P⊥

Q
fP(R) is a left P⊥ ∩ Q

⊥
= (P ∐ Q)⊥-

approximation and Z is in P⊥ ∩ Q⊥, there is a map u : f P⊥

Q
fP(R) → Z such that t = uβ.

We then have g = tα = uβα. This proves the claim.

(c): This follows directly from (b), noting that both f P⊥

Q
fP(R) and fP∐Q(R) are indecom-

posable (since they are factors of the indecomposable projective module R). �

This finishes the proof that (25) holds in this case.

9. End of the proof of Theorem 5.9: Mixed case

We have now proved that 25 holds for all of the cases I-IV. It remains to deal with the

mixed cases, where we have support τ-rigid objects U = U ∐ P[1] and V = V ∐ Q[1]

in C(Λ), with no common direct summands, but where we allow indecomposable direct

summands ofU andV to lie both in modΛ and in P(Λ)[1].

Let us summarize the formulas we need to proceed. By Cases I-IV, we have that the

formulas

(50) E
J(U)

EU(V)
EU = EU∐V = E

J(V)

EV(U)
EV

hold when we have both of the following:

• U = 0 or P = 0, and

• V = 0 or Q = 0.

Note that a particular case is whenU = U andV = Q[1], where U lies in modΛ and

Q lies in P(Λ). We therefore have

(51) EU∐Q[1] = E
J(U)

EU (P[1])
EU .

Recall also from Section 4 that we have

(52) JJ(U)(EU(V)) = J(U ∐V),
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for any pair of support τ-rigid objectsU,V in C(Λ).

Case A: We first discuss the case with P = 0, that is U = U , 0, whileV = V ∐ Q[1]

is arbitrary. We work by induction on n = r(modΛ). We then have

EU∐V = EU∐V∐Q[1]

= E
J(U∐V)

EU∐V (Q[1])
EU∐V(53)

= E
J(U∐V)

EU∐V (Q[1])
E

J(U)

EU (V)
EU(54)

= E
JJ(U)(EU (V))

EU∐V (Q[1])
E

J(U)

EU (V)
EU(55)

= E
JJ(U)(EU (V))

E
J(U)

EU (V)
EU (Q[1])

E
J(U)

EU (V)
EU(56)

= E
J(U)

EU (V)∐EU (Q[1])
EU(57)

= E
J(U)

EU (V∐Q[1])
EU

= E
J(U)

EU(V)
EU

where equation (53) follows from (51), while (54) and (56) follows from (50) and (55)

from (52). Furthermore, equation (57) follows from the induction assumption, since

r(J(U)) < n. This concludes the proof of the case with P = 0, i.e. U = U.

Case B: We next discuss the case with U = 0, that isU = P[1] , 0, whileV = V∐Q[1]

is arbitrary. We also assume V , 0, note that we have already dealt with the case V = 0

(this is Case IV). We then have:

E
J(U)

EU(V)
EU = E

J(P[1])

EP[1](V∐Q[1])
EP[1]

= E
J(P[1])

EP[1](V)∐EP[1](Q[1])
EP[1]

= E
JJ(P[1])(EP[1](V))

E
J(P[1])

EP[1](V)
EP[1](Q[1])

E
J(P[1])

EP[1](V)
EP[1](58)

= E
JJ(P[1])(EP[1](V))

EP[1]∐V (Q[1])
E

J(P[1])

EP[1](V)
EP[1](59)

= E
J(P[1]∐V)

EP[1]∐V (Q[1])
E

J(P[1])

EP[1](V)
EP[1](60)

= E
J(P[1]∐V)

EP[1]∐V (Q[1])
EP[1]∐V(61)

= E
J(P[1]∐V)

EP[1]∐V (Q[1])
E

J(V)

EV (P[1])
EV(62)

= E
J(P[1]∐V)

E
J(V)

EV (P[1])
EV (Q[1])

E
J(V)

EV (P[1])
EV(63)

= E
JJ(V)(EV (P[1]))

E
J(V)

EV (P[1])
EV (Q[1])

E
J(V)

EV (P[1])
EV(64)
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= E
J(V)

EV (P[1]∐Q[1])
EV(65)

= EV∐P[1]∐Q[1](66)

= EU∐V

where for (58), we use that (25) holds in J(P[1]) by induction. For (65), we use that the

(25) holds in J(V) by induction. For (59) and (61) we apply (50), for (62), (63) and (66)

we apply (51), while for (60) and (64) we apply (52).

The general case: We now discuss the general case with U = U ∐ P[1] and V =

V ∐ Q[1].

We then have

E
J(U)

EU (V)
EU = E

J(U∐P[1])

EU∐P[1](V∐Q[1])
EU∐P[1]

= E
J(U∐P[1])

EU∐P[1](V∐Q[1])
E

J(U)

EU (P[1])
EU(67)

= E
J(U∐P[1])

E
J(U)

EU (P[1])
EU (V∐Q[1])

E
J(U)

EU (P[1])
EU(68)

= E
JJ(U) (EU (P[1]))

E
J(U)

EU (P[1])
EU (V∐Q[1])

E
J(U)

EU (P[1])
EU(69)

= E
J(U)

EU (P[1])∐EU (V∐Q[1])
EU(70)

= E
J(U)

EU (P[1]∐V∐Q[1])
EU

= E
J(U)

EU (V∐P[1]∐Q[1])
EU

= EU∐P[1]∐V∐Q[1](71)

= EU∐V

where (67) and (68) hold by (51), while (69) holds by (52). For (70) we note that

EU(P[1]) is inP(J(U))[1], so that we are in the situation of Case B in J(U). For equation

(71), we apply Case A.

This concludes the proof of Theorem 5.9.�

10. Irreducible morphisms inWΛ

In this section we prove the following Theorem.

Theorem 10.1. Let Λ be a τ-tilting finite algebra, and let W
′ ⊆ W be wide subcategories

of modΛ, where r(W) − r(W′) = 1 (i.e W
′ is of corank 1 in W) . Then exactly one of the

following occurs:

(a) There is exactly one morphism in WΛ from W to W
′ and W

′
= JW(U), where U

is an indecomposable τ-rigid module which is non-projective in W.

(b) There are exactly two morphisms in WΛ from W to W
′ and W

′
= JW(P) =

JW(P[1]), where P is an indecomposable module which is projective in W.
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The main step in the proof is to show that if U and V are indecomposable τ-rigid

Λ-modules satisfying J(U) = J(V), then U = V .

Definition 10.2. A morphism g inWΛ is said to be irreducible if, whenever g is expressed

as a composition g1 ◦ g2, we have that either g1 or g2 is an identity map.

Lemma 10.3. Let W be a wide subcategory of modΛ and let V be a support τ-rigid

object in C(W). Then the following are equivalent.

(a) The morphism g = gW

V
: W→ JW(V) is irreducible.

(b) The objectV is indecomposable.

(c) The subcategory JW(V) is of corank 1 in W.

Proof. Suppose first thatV is indecomposable, and that g = g1 ◦g2 for maps g1 and g2 in

W. Then we have g1 = g
W1

U1
and g2 = g

W2

U2
whereU1 is a support τ-rigid object in C(W1),

U2 is a support τ-rigid object in C(W2) and JW2
(U2) = W1. The composition is:

gW

V = g
W1

U1
◦ g

W2

U2
= g

W2

FU2
(U1)∐U2

.

Hence W2 = W andV = FU2
(U1) ∐U2. Since V is indecomposable, we haveU2 = 0

or FU2
(U1) = 0. SoU1 = 0 orU2 = 0, and g1 or g2 is an identity map. It follows that g

is irreducible. This proves that (b) implies (a).

If V is decomposable, it can be written in the formV = V1 ∐V2 where V1 and V2

are non-zero support τ-rigid objects in C(W). Then we have:

g = gW

V1∐V2
= g

W1

EV2
(V1)
◦ g

W2

V2
,

where W2 = W and W1 = JW2
(V2). SinceV1 and EV2

(V1) are non-zero, g
W1

EV2
(V1)

and g
W2

V2

are not identity maps, so g is not irreducible. This proves that (a) implies (b).

We have that (b) and (c) are equivalent by Proposition 4.1. �

Recall that for any τ-rigid Λ-module U there is a unique basic module BU , known

as the Bongartz complement of U, such that add(U ∐ BU) is a τ-tilting module and

add(U ∐ BU) = P(⊥τU). We also recall that a Λ module M is said to be Gen-minimal

if, whenever M = M′ ⊕ M′′, we have M′′ < Gen M′ (see e.g. [2, VI.6]). We recall the

following:

Lemma 10.4. [8, Lemma 2.8] Let Λ be an algebra, and let T be a finitely generated

torsion class in modΛ. Then T has a unique Gen-minimal generator, Tmin, consisting of

the direct sum of the indecomposable split projective objects in T .

If T is a support τ-tilting module, then we denote the unique Gen-minimal generator

of Gen T by Ts. Note that T is an additive generator for P(T ) by [1, Thm. 2.7], so Ts is a

direct summand of T , and we write Tns for a complement, the direct sum of the non-split

projective objects in Gen T .

If Z is a minimal direct summand of T such that Gen Z = Gen T then Ts ∈ Gen = Z,

so Ts is a direct summand of Z since it is split projective. Since Gen Ts = Gen T , we

must have Ts = Z. In the light of this discussion, we also recall the following:

Theorem 10.5. [6, Thm. 3.34] LetΛ be a τ-tilting finite algebra. Then there is a bijection

between the set of τ-tilting pairs in modΛ and the set of wide subcategories of modΛ

given by mapping a τ-tilting pair (T, P) to W(T, P) = J(Tns) ∩ P⊥.
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Lemma 10.6. Let Λ be a τ-tilting finite algebra. Let U be a non-projective τ-rigid

module in modΛ. Let BU be the Bongartz complement of U, and let TU = U ∐ BU . Then

(TU )s = BU and (TU)ns = U.

Proof. By the definition of Bongartz complement, we have that add(TU ) = P(⊥(τU)).

By [4, Lemma 4.12], the indecomposable direct summands of BU are split projective in
⊥(τU). Suppose that U was also split projective in ⊥τU. Then we would have (TU)ns = 0

and therefore W(TU , 0) = modΛ in Theorem 10.5. But W(P, 0) = modΛ, where P is an

additive generator for P(Λ), so TU = P by Theorem 10.5, and U is projective, giving a

contradiction. Hence U is not split projective in ⊥τU and we are done. �

Proposition 10.7. Let Λ be a τ-tilting finite algebra. Let U and V be indecomposable

τ-rigid Λ-modules and suppose that J(U) = J(V). Then U = V.

Proof. Let BU (respectively, BV) be the Bongartz complement of U (respectively, V), and

set TU = U ∐ BU and TV = V ∐ BV . Then, since TU and TV are τ-tilting modules, we

have that (TU , 0) and (TV , 0) are τ-tilting pairs. We have W(TU , 0) = J((TU)ns) = J(U)

by Lemma 10.6, and similarly W(TV , 0) = J(V). So, by Theorem 10.5, U = V . �

We now finish the proof of Theorem 10.1.

Proof of Theorem 10.1: By Lemma 10.3 and Proposition 4.2, we have W
′
= JW(U)

whereU is either an indecomposable τ-rigid module orU = P[1] for an indecomposable

module P which is projective in W. The result now follows from Proposition 10.7 and

the fact that JW(P) = JW(P[1]). �

11. Morphisms inWΛ and signed τ-exceptional sequences

The notion of signed τ-exceptional sequence was introduced in [4]. Such sequences

can be interpreted as factorizations of morphisms in the category WΛ. Our aim in this

section is to make a precise version of this statement.

Recall from [4] that an object M ∐ P[1] in C(Λ) is said to be support τ-rigid if M is a

τ-rigid module in modΛ, P lies in P(Λ) and Hom(P,M) = 0. Furthermore, a sequence

(72) S = (U1,U2, . . . ,Ut)

of indecomposable objects in C(Λ) is said to be a signed τ-exceptional sequence ifUt is

support τ-rigid in C(Λ) and the subsequence (U1,U2, . . . ,Ut−1) is a signed τ-exceptional

sequence in J(Ut).

Theorem 11.1. [4, Thm. 5.4] For each t ∈ {1, . . . , n} there is a bijection ϕt from the set of

signed τ-exceptional sequences of length t in C(Λ) to the set of ordered support τ-rigid

objects of length t in C(Λ).

We have the following, noting that if Λ is τ-tilting finite then every wide subcategory

of modΛ is equivalent to a module category, by Proposition 4.2.

Corollary 11.2. Suppose that Λ is τ-tilting finite, and let W be a wide subcategory of

modΛ. Then for each t ∈ {1, . . . , n} there is a bijection ϕW

t between the set of set of

signed τ-exceptional sequences of length t in W and the set of ordered support τ-rigid

objects of length t in C(W).
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Recall now the following fact from [4, Remark 5.12].

Proposition 11.3. [4] Assume that Λ is τ-tilting finite. Let W be a wide subcategory of

modΛ. Then the bijection ϕW

t in Corollary 11.2 is given by

(U1, . . . ,Ut) 7→ (F
Wt

Ut
· · · F

W2

U2
(U1),F

Wt

Ut
· · · F

W3

U3
(U2), . . . ,Ut)

where Wt = W and Wi = JWi+1
(Ui+1) for all i.

To prepare for our main results in this section, we now state and prove the following

three lemmas.

Lemma 11.4. Let W be a wide subcategory of modΛ, and let U1, . . . ,Ut be indecom-

posable objects in C(W). Then the following are equivalent.

(a) The sequence (U1, . . . ,Ut) is a signed τ-exceptional sequence in W;

(b) There are wide subcategories W1, . . . ,Wt of modΛ with Wt = W, and maps g
Wi

Ui

for i = 1, . . . , t, such that the composition g
W1

U1
· · · g

Wt

Ut
is well-defined inW.

Proof. We prove that (a) implies (b) by induction on t. If t = 1 then U1 is support

τ-rigid in C(W), so there is a corresponding map g
W1

U1
, taking W1 = W, and the result

holds for this case. Suppose the result holds for t − 1, and let (U1, . . . ,Ut) be a signed

τ-exceptional sequence in W of length t. Then (U1, . . . ,Ut−1) is a signed τ-exceptional

sequence of length t − 1 in J(Ut). By the induction hypothesis, there are wide subcat-

egories W1, . . . ,Wt−1 of modΛ with Wt−1 = JW(Ut), and maps g
Wi

Ui
for i = 1, . . . , t − 1,

such that the composition g
W1

U1
· · · g

Wt−1

Ut−1
is well-defined. Since Ut is support τ-rigid in

C(W), there is a map gW

Ut
: W→ JW(Ut) inW. The result follows, taking Wt = W.

We prove that (b) implies (a) by induction on t. For t = 1 the result is clear, so suppose

that the result holds for t − 1, and let Wi and g
Wi

Ui
be as in (b). Since the composition

g
W1

U1
· · · g

Wt−1

Ut−1
is well-defined, (U1, . . . ,Ut−1) is a signed τ-exceptional sequence in Wt−1

by the induction hypothesis. Since g
Wt

Ut
= gW

Ut
is a map, Ut is support τ-rigid in C(W),

and since the composition g
W1

U1
· · · g

Wt

Ut
is well-defined, we have JWt

(Ut) = Wt−1, giving

(a). �

Let W be a wide subcategory of modΛ. For a signed τ-exceptional sequence

U1, . . . ,Ut in W, we denote by ϕ
W

t (U1, . . . ,Ut) the direct sum of the entries in

ϕW

t (U1, . . . ,Ut).

Lemma 11.5. Let W be a wide subcategory of modΛ, and suppose that the sequence

(U1, . . . ,Ut) is a signed τ-exceptional sequence in W. Set Wt = W and Wi = JWi+1
(Ui+1)

for all i. Then

g
W1

U1
· · · g

Wt

Ut
= g

Wt

ϕWt (U1,...,Ut)
.

Proof. We prove the result by induction on t. The result is clear for t = 1, so suppose

that the result holds for t − 1. We have, using Proposition 11.3:

g
W1

U1
· · · g

Wt

Ut
= (gW1

U1
· · · g

Wt−1

Ut−1
)gWt

Ut

= g
Wt−1

ϕ
Wt−1
t−1

(U1,...,Ut−1)
g

Wt

Ut
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= g
Wt

FUt (ϕ
Wt−1
t−1

(U1,...,Ut−1)∐Ut)

= g
Wt

ϕ
Wt
t (U1,...,Ut)

,

as required. �

Lemma 11.6. Let W be a wide subcategory of modΛ, and let V be a support τ-rigid

object in C(W). If

gW

V = g
W1

U1
· · · g

Wt

Ut

is a factorization of gW

V
as a composition of t irreducible maps, then t is the number of

indecomposable direct summands ofV.

Proof. By Lemma 10.3, the Ui are indecomposable objects of C(W). By Lemma 11.5,

we have

gW

V = g
Wt

ϕWt (U1,...,Ut)
,

so

V = ϕ
Wt(U1, . . . ,Ut),

and the result follows. �

We now prove our first main result of this section.

Proposition 11.7. Let W be a wide subcategory of modΛ, and let V be a support τ-

rigid object in C(W) with t indecomposable direct summands. Then there is a bijection

between:

(a) The set of τ-exceptional sequences (U1, . . . ,Ut) in W such that ϕt(U1, . . . ,Ut) =

V;

(b) The set of factorizations of gW

V
into compositions of irreducible maps inW.

Proof. Given a sequence (U1, . . . ,Ut) as in (a), set Wt = W and Wi = JWi+1
(Ui+1) for all

i. Then the composition g
W1

U1
· · · g

Wt

Ut
is well-defined by Lemma 11.4 and equals gW

V
by the

assumption in (a) and Lemma 11.5. By Lemma 10.3, each map g
Wi

Ui
is irreducible inW.

Any factorization as in (b) must have t factors by Lemma 11.6,so must have form

g
W1

U1
· · · g

Wt

Ut
= gW

V
. Given such a factorization, eachUi is indecomposable by Lemma 10.3

and V = ϕt(U1, . . . ,Ut) by Lemma 11.5. Furthermore, (U1, . . . ,Ut) is a τ-exceptional

sequence by Lemma 11.4.

It is clear that these two constructions are inverses of each other, and hence give bijec-

tions between the sets in (a) and (b) as required. �

Recall, from [4], that an ordered support τ-tilting object in C(Λ) is a sequence

(T1, . . . ,Tn)

of indecomposable support τ-rigid objects inC(Λ) with the property that∐iTi is a support

tilting object.

Theorem 11.8. Let W be a wide subcategory of modΛ andV a support τ-rigid object in

C(W) with t indecomposable direct summands. Then the bijection ϕt induces a bijection

between the following sets:

(a) Factorisations of gW

V
into compositions of irreducible maps inW;



A CATEGORY OF WIDE SUBCATEGORIES 41

(b) Ordered decompositions of V into direct sums of indecomposable objects in

C(W).

Proof. By Proposition 11.7, there is a bijection between the set in (a) and the set of τ-

exceptional sequences (U1, . . . ,Ut) in W such that ϕt
W

(U1, . . . ,Ut) = V. The result

now follows from Theorem 11.1. �

12. Example

In this section we consider the following example. Let Q be the quiver

2
β

��❂
❂❂

❂❂

1

α
@@✁✁✁✁✁

γ
// 3

and consider the algebra Λ = kQ/I where I is the ideal generated by the path βα. The

AR-quiver of modΛ is

2

  ❆
❆❆

❆❆
1
3

$$■
■■

■■
■ 2

1
2 3

::✉✉✉✉✉✉

$$■■
■■

■

1 2
3

>>⑥⑥⑥⑥⑥

  ❆
❆❆

❆❆

3

>>⑥⑥⑥⑥⑥

  ❆
❆❆

❆❆
❆

1 2
2 3

::✉✉✉✉✉

$$■
■■

■■
■

1

2
3

::✉✉✉✉✉✉
1
2

>>⑥⑥⑥⑥⑥⑥

where the notation indicates which simple modules occur in the radical layers of the mod-

ule, so N = 1 2
2 3 is a module of length 4, of radical length 2, and with top isomorphic

to the direct sum of the simple modules corresponding to vertices 1 and 2.

Figure 1 gives an illustration of the category WΛ. The vertices are the sets of inde-

composable objects in each wide subcategory. A non-identity morphism gW

T
: W → W

′

(so that T is an indecomposable support τ-rigid object in C(W) and JW(T ) = W
′) is

shown as an arrow between W and W
′ labelled by T . When P is projective in W we have

JW(P) = JW(P[1]), and there are two corresponding maps, gW

P and gW

P[1] from W to JW(P);

in this case we draw a doubled arrow labelled only by P. Wide subcategories of rank 1

have generally been shown more than once in the figure, and the corresponding vertices

should be identified.
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