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A B S T R A C T   

This study presents a new data mining strategy to discover the performance and operational patterns of a shared 
energy recovery (SER) system with a data centre and a district heating network. Multidimensional clustering 
incorporated with a composite performance metric was first used to evaluate the typical performance of the 
system and reveal the interactions among different performance indicators. Decision tree analysis was then used 
to identify distinct system performances under different external conditions. Temporal clustering analysis was 
lastly used to identify the impact of recovered waste heat on the variations in heat supply from the district 
heating substation. The strategy was evaluated through a case study SER system at a university campus located in 
Norway. It was found that the most frequent performance accounted for 34 % of the total operational period with 
the instantaneous waste heat recovery rate of 572.9 kW, the temperature of waste heat of 57.2 ◦C, and the 
coefficient of performance of the heat pumps of 2.0. The outdoor air temperature and supply water temperature 
from the main district heating substation to the campus buildings showed a significant impact on the SER system 
performance. Moreover, the results showed that the SER system can help reduce the energy use of the district 
heating networks while increasing the fluctuations of heat supply from the main district heating substation.   

1. Introduction 

According to the 2020 United Nations Global Status Report, the 
operation and construction of buildings generated 38 % of total CO2 
emissions and consumed 35 % of global end-energy use [1]. To address 
these concerns, the United Nations established the Sustainable Devel-
opment Goals (SDGs) to guide global development efforts with a focus 
on achieving sustainable cities and communities that prioritize energy 
conservation and renewable energy usage, and reduce greenhouse gas 
emissions [2]. Consequently, assessing the performance of energy sys-
tems used in buildings becomes essential to improve their energy effi-
ciency, reduce energy use, and minimize greenhouse gas emissions to 
achieve sustainable development [3]. 

There is growing interest in shared energy recovery (SER) systems as 
a technology solution to assist with achieving the SDGs. As shown in 
Fig. 1, such a system can capture waste thermal energy from one or more 
sources, such as data centres, ice rinks, or industrial processes, and 
redistribute the captured waste energy to nearby users for heating, 
cooling, electricity generation, and/or other purposes. The SER system is 

a promising way to improve energy efficiency and reduce greenhouse 
gas emissions, as it can reuse the waste thermal energy that would 
otherwise be wasted. 

The potential benefits of the SER system have been demonstrated in 
several recent studies [4]. Abdalla et al. [5], for example, connected a 
small cluster of buildings, including an ice hockey arena, a library with 
an IT server, and recreation centres with a swimming pool and recrea-
tion activities, with a low-temperature network for space heating and 
cooling, which can effectively allow thermal energy to be shared among 
the facilities with minimum thermal energy losses. The results showed 
that this SER system could cover 48 % of the total heating demand and 
could further cover an additional 12 % of thermal energy when 
short-term thermal storage was used, leading to a 74 % reduction in total 
greenhouse gas emissions. Wirtz et al. [6] presented an optimal design 
approach based on Linear Programming to design bidirectional 
low-temperature networks that incorporate various cooling and heating 
sources, such as chillers, pumps, heat exchangers, boilers, hot and cold 
thermal energy storage systems, and batteries, as well as renewable 
energy resources such as solar photovoltaics. By optimizing the selection 
and size of system components, it was found that the optimized system 
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could reduce annual costs and carbon emissions by 42 % and 56 % 
respectively, as compared to stand-alone Heating, Ventilation and Air 
Conditioning (HVAC) systems. In Ref. [7], heat pumps were used to 
capture waste heat from the cooling system of a data centre that requires 
year-round cooling, and the recovered waste heat was shared with a 
multi-unit residential building located in a cold climate. The results 
showed that energy sharing reduced the heating requirements of the 
building by 55 % and greenhouse gas emissions by 53 %. Meanwhile, it 
reduced the cooling requirements and greenhouse gas emissions of the 
data centre by 50 % and 51 %, respectively. 

Data centres have the potential to generate a significant amount of 
waste heat and can be used as a valuable heat resource in an SER system 
[8]. One common application is to feed the heat recovered into district 
heating (DH) networks [9]. For example, reusing waste heat from a 3.5 
MW data centre as part of DH networks in London could lead to over 
4000 tonnes of CO2 reduction and nearly £1 million in annual cost 
savings [10]. The impact of reusing waste heat in DH networks was 
quantified through simulations by Wahlroos et al. [11]. It was found that 
0.6–7.3 % of operational costs could be saved when the amount of waste 
heat ranging from 20 to 60 MW was provided by the data centres for the 
DH network. However, a potential challenge is a mismatch between the 

thermal energy supplied by the data centres and the heating re-
quirements of the DH consumers on a daily and seasonal basis [9,12]. To 
address this issue, Li et al. [13] introduced two types of thermal energy 
storage, including a water tank for short-term storage and a borehole 
thermal energy storage system for long-term storage. For short-term 
storage, the water tank can shave the peak load by 31 % and reduce 
the annual energy cost by 5 %. For long-term storage, the borehole 
system can increase the rate of waste heat utilization from 77 % to 96 % 
and reduce CO2 emissions by 8 % annually. These findings highlighted 
the potential of SER systems integrated with data centres to increase 
energy efficiency and flexibility, reduce carbon emissions, and enhance 
sustainability in various applications. 

In addition to providing waste heat to DH systems, waste heat from 
data centres can also be used to power thermally driven air conditioning 
systems or generate electricity based on the Organic Rankine cycle 
(ORC) [14]. For example, the performance of a silica gel-water 
adsorption chiller driven by thermal energy shared from a data centre 
was studied by Pan et al. [15]. The experimental results showed that the 
coefficient of performance (COP) of this system was in the range of 
0.283–0.477, which was relatively low compared to that of traditional 
adsorption chillers. Araya et al. [16] studied a lab-scale ORC driven by 
low-grade waste heat from a server rack (40–85 ◦C) through experi-
mental and theoretical analysis and it was shown that thermal effi-
ciencies varied from 1.9 % at 43 ◦C to 4.6 % at 81 ◦C. These studies 
indicated the potential of using waste heat from data centres to power 
thermally driven systems and generate electricity, thereby contributing 
to a more sustainable energy mix. 

Based on the above analysis, it can be concluded that SER systems 
showed great promise for achieving building energy efficiency and 
sustainability. However, the majority of the existing studies used sim-
ulations, which often cannot consider practical dynamics and con-
straints in the real-time operation of such integrated systems. To the best 
of our knowledge, very limited studies used field-measured data to 
analyze the performance of SER systems. Data mining has shown great 
potential to discover useful information from large datasets [17–21] and 
has not previously been used to explore energy performance charac-
teristics and energy-saving opportunities of SER systems integrated with 
data centres and DH systems. 

To this end, this paper presents a new data mining strategy that le-
verages real-world data to evaluate the performance of an SER system. 
The proposed strategy employs data mining algorithms to identify key 
performance patterns of the SER system, quantify its relationship with 
external variables, and assess the impact of the recovered heat on the 
heat supply from the main DH substation. The novelties of this study 
include 1) development of a two-step clustering analysis using multi-
dimensional clustering and temporal clustering techniques to reveal 
system behaviors and their impact on building energy usage, allowing 
for a deep understanding of system performance and potential areas for 
improvement; 2) development of a new performance metric that con-
siders the interactions among different indicators to provide a holistic 
approach to evaluating the performance of the SER system; and 3) 
quantification of external factors on various performance patterns of 
SER systems using a classification and regression trees (CART) model to 
discover the reasons for performance variation and identify energy 
saving opportunities for further performance improvement. The study 
provides a strategy that combines unsupervised data mining (clustering 
analysis) and supervised data mining (CART analysis) to reveal the 
operational characteristics and performance of the SER system. The 
findings of the study can serve as a valuable reference for the develop-
ment of integrated energy systems to enable efficient integration of 
waste heat or renewable energy for increased energy flexibility and 
reduced carbon emissions. 

Nomenclature 

Greek letters 
α Average value 
β Ratio of the average value to the maximum value 
μ A set of cluster centres 

Abbreviations 
CART Classification and regression trees 
COP Coefficient of performance 
DH District heating 
HE Heat exchanger 
HP Heat pump 
HVAC Heating, Ventilation and Air Conditioning 
ORC Organic Rankine cycle 
PAR Peak-to-average ratio 
SER Shared energy recovery 
SDG Sustainable Development Goals  

Fig. 1. Schematic of an SER system.  
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2. A new data mining strategy for performance assessment of 
shared energy recovery systems 

2.1. Outline of the strategy 

A new data mining strategy for evaluating the performance of SER 
systems is presented in Fig. 2. This strategy consists of four steps. In the 
first step, the measured time-series data from the SER system and the 
corresponding weather data are collected. The data needs to be first 
processed to remove outliers and deal with missing data [22]. In this 
study, the three-sigma rules were used to detect and remove outliers, 
and linear interpolation was used to fill a small proportion of the missing 
data [23]. In the second step, a K-means algorithm is employed to 
perform multidimensional clustering and temporal clustering. Multidi-
mensional clustering is applied to the three performance indicators to 
identify the typical performance of the SER system. Temporal clustering 
is applied to daily energy profiles, such as thermal energy demand from 
buildings and thermal energy provided by the SER system, to identify 
representative thermal energy use and thermal energy generation pat-
terns. In the third step, based on the multidimensional clustering results, 

the CART model is used to generate a decision tree to further quantify 
the influential external variables on the system performance and 
investigate the reasons for performance variation. Lastly, the influence 
of the SER system on the thermal energy supply from other heat sources, 
such as the main DH substation, is studied based on temporal clustering 
results. This includes the identification of operational patterns, deter-
mination of energy savings of the main DH system using recovered heat, 
and assessment of the variability of daily energy supply from the main 
DH substation. 

The essential steps included in this strategy are detailed in the 
following sections. Sections 2.2 and 2.3 explain the process for identi-
fying significant indicators of SER system performance, along with the 
application of the K-means algorithm for multi-dimensional and tem-
poral clustering. Section 2.4 discusses the association of system perfor-
mance clusters with external variables by employing a CART model. 
Lastly, Section 2.5 identifies operational patterns and evaluates the 
impact of SER systems on the operation of the DH substation. 

Fig. 2. Outline of the data mining strategy for evaluating the performance of SER systems.  

Fig. 3. Illustration of three indicators proposed for performance evaluation of SER systems integrated with data centres.  
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2.2. Indicators for performance assessment of SER systems 

Based on the collected data and domain knowledge, three key in-
dicators of the quality of waste heat supplied by the SER system, the 
quantity of waste heat shared from the data centre, and the COP of the 
heat pumps are used to characterize the system performance. The 
quality of waste heat plays a crucial role in determining the most 
effective solution to reuse waste heat recovered from data centres to 
improve energy efficiency. In this particular study, the temperature level 
of the waste heat was chosen as the quality indicator. The quantity of 
waste heat (i.e. the instantaneous waste heat recovery rate) from the 
data centre can represent the amount of waste heat that can be collected 
from the data centre, which is measured by the heat flow rate, i.e. the 
amount of waste heat generated per unit of time in this study. 
Furthermore, COP is used to indicate the efficiency of heat pumps and it 
represents the ratio of useful heat output to the electricity use of the heat 
pumps. It is noted that the electricity use of the circulation pumps was 
not considered in the COP calculation as constant-speed water pumps 
were used in this study. 

Fig. 3 illustrates the interconnection of these three indicators in an 
SER system, in which heat pumps play an essential role in sharing 
thermal energy, wherein one side is connected to the cooling system of 
the data centre and the other side is connected to the consumers (e.g. DH 
networks) to reuse the waste heat collected. The blue triangle on the left 
side is the ideal performance of the SER system, where the maximum 
value of each indicator is one. The orange triangle represents the real 
performance of the system. The data for each vertex is the ratio of the 
average value to the maximum value of each indicator, as described in 
Eq. (1). 

βi =
αi

αmax
(1)  

where αi indicates the average value of each indicator in that cluster, 
αmax denotes the maximum value of each indicator in the same cluster, 
and βi presents the ratio of the average value to the maximum value of 
each indicator. 

2.3. K-means clustering 

In this study, the K-means algorithm [24] is utilized to group motifs 
of the SER performance based on the indicators used, and to cluster daily 
energy profiles of building demand and waste heat collected from the 
SER system. 

K-means clustering is an iterative process that can minimize the 
intra-cluster inertia criterion as defined by Eq. (2). 

C(P, μ)=
∑n

i=1

∑

Xi∈Pk

‖Xi-μk‖
2 (2)  

where P––(P1, P2, …, Pk) is the set of clusters, μ = (μ1, μ2, …, μk) is the set 
of cluster centres, and ||⋅|| is the L2 norm associated with the distance 
metric. 

After randomly selecting initial centroids, the Euclidean distance 
between each data point and the nearest centroid is calculated, by 
assigning each point to its closest cluster centre. The centroids are then 
updated with new values. This iterative process continues until the 
centroids are not changed anymore [25]. The motifs of the SER system 
performance (three indicators) were identified through multidimen-
sional clustering, while the daily energy profiles (building thermal en-
ergy demand and heat supply from the SER system) were determined 
through temporal clustering. They both are briefly presented in the 
following sections. 

2.3.1. Multidimensional clustering for identifying performance motifs of the 
SER system 

Multidimensional clustering is a technique used to group data points 

based on the similarity across multiple dimensions or features [26,27]. 
In this method, each data point is represented as a vector, where each 
dimension corresponds to a specific feature or attribute. By analyzing 
the similarity of data points across all dimensions, multidimensional 
clustering can identify clusters of data points that share similar char-
acteristics. In this study, this clustering method was utilized to distin-
guish various performance patterns of the SER system. 

2.3.2. Temporal clustering for identifying daily energy profiles of the SER 
system and building thermal energy demand 

Temporal clustering is a form of clustering analysis that concentrates 
on data with a time-related aspect to group similar data points based on 
their temporal characteristics or attributes [28]. This analysis can 
identify patterns and relationships in the data over time, which can then 
be used for prediction and forecast generation, and to develop a deep 
understanding of the underlying temporal structures in the data [29]. 

In the context of clustering analysis, the choice of evaluation indices 
is crucial for determining the optimal number of clusters. In this study, 
three evaluation indices namely the Silhouette coefficient index, 
Calinski-Harabasz, and Davies-Bouldin [30], were used to select the 
optimal number of clusters in a K-means clustering analysis for the 
identification of representative building energy use patterns and energy 
provision patterns of the SER system. These indices assessed the dis-
tances between data points within clusters (intra-cluster distances) and 
the distances between data points belonging to different clusters 
(inter-cluster distances). Low intra-cluster distances and high 
inter-cluster distances indicated the presence of distinct clusters. The 
optimal number was selected based on the combination of the clustering 
analysis and domain expertise, ensuring that the chosen number was 
appropriate for the specific context. 

2.4. Quantification of external variables for the SER system performance 

Except for the three indicators used to evaluate the system perfor-
mance, the results from the previous studies [31,32] showed that 
external variables such as weather temperature and days of the week (i. 
e. Monday to Sunday) greatly impact the performance of DH networks. 
The supply water temperature from the main substation of the DH sys-
tem to the buildings also impacts the overall performance of the SER 
system. Therefore, the influence of these three external variables on the 
SER system was analyzed to capture the SER system characteristics and 
discover system performance variations by using a CART model [33]. 
The CART model is well-suited for dealing with continuous features and 
allows for quantifying the influence of each variable on system perfor-
mance [34]. This model can classify the target variable into multiple 
groups according to the explanatory variables by employing a recursive 
binary data splitting method [35]. In this study, the outdoor tempera-
tures, the days of the week, and the supply water temperature were 
considered as the explanatory variables, while SER system performance 
defined by the three selected indicators was used as the target variables 
for the CART model training. The model was visually represented to 
illustrate the relationship between external variables and the perfor-
mance of the SER system. 

2.5. Impact of the SER system on the heat supply from the main DH 
substation 

When the SER system is integrated with DH systems, the amount of 
waste heat collected, and the quality of the waste heat will impact the 
operation of the DH systems. The potential impact of the SER system on 
the operational performance of the heat supply from DH systems is 
therefore analyzed and quantified in this study based on the results from 
the temporal clustering analysis. Two indicators are introduced to 
evaluate the above-mentioned impact, namely the daily energy reduc-
tion ratio and peak-to-average ratio (PAR) of heat supply, in which the 
energy reduction ratio measures energy saving potential, while the PAR 
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evaluates the variability of the heat supplied by the main DH substation 
to the campus buildings. 

The temporal clustering can result in x clusters of building demand 
patterns, and y clusters of waste heat patterns from the SER system. This 
formulated a total number of x × y possible operational patterns for 
integrating the SER system with DH networks throughout the period of 
investigation. It is worth noting that building demand in this study refers 
to building thermal energy demand. Using Fig. 4 as an example, the 
black line represented a typical cluster of building demand, the red line 

showed a representative cluster of heat provided by the SER system, and 
the blue line depicted the thermal energy supplied by the main DH 
substation. As shown in Fig. 4, the building demand increased from 6 a. 
m. to 8 a.m. and peaked at approximately 7000 kW at around 8 a.m., and 
then decreased gradually. The variation in building demand appeared to 
closely align with the heat supply from the main DH substation, while 
the thermal energy supplied by the SER system was very stable and 
slightly decreased between 6 and 10 a.m. 

3. Results and discussion 

3.1. Description of the case study 

The performance of the proposed strategy was tested and evaluated 
using a case study located on a university campus in Norway. The total 
building area studied is 300,000 m2, and the main functions of these 
buildings are teaching buildings, offices, laboratories, and sports centres 
[36]. Fig. 5 shows the topology of the campus DH networks integrated 
with a data centre. The campus DH system is connected to the city DH 
system through a main DH substation. The main DH substation supplies 
thermal energy for heating and hot water in the campus buildings. A 
fraction of heat is supplied by the low-grade thermal energy harvested 
from the data centre of the university. 

Fig. 6 illustrates the configuration of the SER system integrated with 
a data centre and DH network. The entire system includes a data centre, 
two heat pumps with a design capacity of 680 kW each (serial connec-
tion), two water pumps, a main DH substation, and a campus DH 
network. The two heat pump units were connected in series to increase 

Fig. 4. Example of one operational pattern of building demand and heat supply 
from the SER system and the main DH substation. 

Fig. 5. Topology of the campus DH network integrated with waste heat from a 
data centre [13]. 

Fig. 6. Configuration of the SER system integrated with a data centre and 
district heating, where HP indicates heat pump, and HE indicates 
heat exchanger. 

Fig. 7. Building demand, and thermal energy supplied by the SER system and 
by the main DH substation. 
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the temperature of the waste heat recovered from the data centre. The 
main DH substation consisted of two heat exchangers and two water 
pumps. Both the SER system and the main DH substation are used to 
supply thermal energy to buildings. It is noteworthy that the DH 

network in this study refers to a campus DH system, rather than the 
whole city heating network. 

The data recorded included the supply and return water tempera-
tures and water flow rates of both sides of the heat pumps, the amount of 
waste heat collected from the data centre and the amount of thermal 
energy supplied by the SER system to the DH system, the electricity use 
of the heat pump units, and the outdoor air temperature. The data 
collected from June 2017 to May 2018 with a time interval of 10 min 
was used in this analysis. 

Fig. 7 presents the recorded data of the amount of thermal energy 
generated by the SER system, the heat supply from the main DH sub-
station, and the demand of the campus buildings during the data 
collection period. It is worth noting that the demand for campus 
buildings encompassed both hot water and heating. The non-heating 
season was between June and October, while the remaining days were 
among the heating days. During non-heating months, the thermal en-
ergy generated by the SER system can cover the majority of building 
demand (i.e. hot water), while during the heating months, only around 
10 % of building demand was provided by the SER system. 

3.2. Performance evaluation of the SER system 

3.2.1. Multidimensional clustering for identification of performance motifs 
of the SER system 

The Silhouette coefficient was used to evaluate the quality of the 
clustering to determine the optimal cluster number and the results are 

Fig. 8. Determination of the optimum number of clusters.  

Fig. 9. Typical performance patterns of the SER system and the respective proportion of the operational period in each pattern.  
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shown in Fig. 8. The optimal number of clusters was determined to be 
five, which was determined based on the largest Silhouette coefficient 
score. This indicated that the SER system exhibited five distinct per-
formance patterns during this operational period. The performance 
patterns were then ranked according to the proportion of the operational 
period in that pattern to the total operational time of concern and were 
labeled as patterns 1 to 5, from the highest proportion to the lowest one. 

The purpose of clustering was to identify the similar quality of waste 
heat, COP of the heat pump units, and quantity of waste heat as a cluster 
to represent the typical performance patterns of the system throughout 
the period. Fig. 9 depicts the five distinct performance patterns of the 
SER system throughout the operational period. Each cluster was repre-
sented by color-coded triangles, which indicated the distinct perfor-
mance of the system. The green percentages indicated the proportion of 
time in each pattern during the entire operational period. The data for 
each vertex of the triangle was expressed as the average value relative to 
the maximum value in each performance indicator. It was noted that the 
maximum values observed for the quality of waste heat, heat pump COP, 
and the quantity of waste heat during the operational period were 
80.5 ◦C, 4.0, and 924 kW, respectively, which corresponded to the ideal 
maximum value of 1 in Fig. 9. 

By comparing these five clusters, it can be seen that the top three 
clusters accounted for nearly 80 % of the total operational time, repre-
senting the typical operational performance. In these top three clusters, 
the average quality of the waste heat of the system was 55.7 ◦C, and the 
quantity of waste heat supplied by the data centre ranged from 573 kW 
to 720 kW. Although the average temperature might be lower than that 
of the consumer need, this waste heat was still useful as a stable and 
reliable heat source for pre-heating the DH network or for other lower 
temperature heating purposes such as hot water supply. The heat pumps 

achieved an average COP of 2.2, which was even lower than an air 
source heat pump under similar working conditions [37], indicating the 
opportunity for improving heat pump operations. The last two clusters 
only accounted for 20 % of the total operational period. 

As mentioned before, the three performance indicators interact with 
each other and it is hard to achieve their maximum values simulta-
neously for all the performance indicators used in each cluster. For 
example, cluster 1 showed the most prevalent performance during the 
operational period of concern, accounting for 34 % of the total time. The 
average quality and quantity of waste heat and COP of the heat pumps 
were 57.2 ◦C (corresponding to 0.71 in Fig. 9), 572.9 kW, and 2.0, 
respectively. The average values were deemed acceptable as no in-
dicators were excessively low compared to other clusters, indicating that 
the overall system performance under this cluster was satisfactory. 

In contrast, cluster 5 was the least frequently occurring pattern 
during the operational period of interest, representing only 7 % of the 
total operational time. The COP of the heat pumps in this cluster was 2.7, 
but the amount of waste heat generated was relatively low, i.e. 
approximately 50 % of the maximum value. Additionally, the temper-
ature of the waste heat supply from the SER system was only 47.5 ◦C. 
This is because only one heat pump was in operation during this period. 
Therefore, the quality of waste heat could not be raised to a higher level, 
and there was limited waste heat available to be shared with the end 
users, although the heat pump showed a higher COP. 

Combining cluster 2 and cluster 3 with the characteristics observed 
in cluster 4, it can be concluded that there was a notable inverse rela-
tionship between COP and the quality of waste heat. This exhibited the 
requirement for system optimization to balance different performance 
indicators. Fig. 10 is the heat map showing the distribution of five 
performance patterns during the operational period. Although the per-
formance patterns remained relatively stable without significant alter-
nation between different clusters in a 24-h time frame, periodic 
occurrences of each performance pattern were observed in different 
months. The distribution of these different performance patterns 
appeared to be related to the non-heating season and the heating season. 
For example, cluster 3 more commonly occurred during the non-heating 
season. This was because the characteristics of cluster 3 aligned with the 
conditions of the non-heating season by providing hot water to the end 
users. Cluster 1 was primarily observed during the heating season when 
the waste heat collected from the SER system was supplied to the DH 
system and also used for hot water purposes. The overall performance of 
cluster 1 was lower than that of cluster 3. This highlighted the potential 
impact of the DH system on the SER system due to a higher return water 
temperature to the heat pumps caused by the return-to-return 

Fig. 10. Heat map of five performance patterns.  

Fig. 11. Impact of external variables on the performance indicators used.  
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connection of the waste heat [38] and the higher supply temperature of 
the DH system in the heating season. Moreover, cluster 5 had the lowest 
occurrence during the operational period and was consistently observed 
in October, which possibly resulted from equipment failure or human 
intervention. 

3.2.2. Quantitative analysis of external variables in terms of different 
performance patterns of the SER system 

As demonstrated in Fig. 9, the SER system exhibits various system 
performance patterns. Therefore, it is necessary to identify the under-
lying causes of these differences and the variables that have an impact 
on the SER system performance. Quantitative analysis can help inves-
tigate how external parameters impact different system performance 
patterns. This information can further be used to optimize the system 
design and operation to achieve optimal performance under different 
operating conditions. 

In this study, three external variables, outdoor air temperature, 
supply water temperature from the main DH substation to the buildings, 
and days of the week, were considered to quantify their impact on the 
performance of the SER system and the results are shown in Fig. 11. It 
was noted that in this figure, the term “outdoor temperature” referred to 
outdoor air temperature (oC) and “supply temperature” represented the 
temperature (oC) of the supply water from the main DH substation to 
campus buildings. 

It can be seen that among the external variables, the temperature of 
supply water from the main DH substation to the buildings significantly 
affected the SER system performance. Additionally, the outdoor air 
temperature played a critical role in shaping the overall system perfor-
mance. In contrast, the days of the week showed a relatively minor 
impact on the various system performance indicators. Hence, the days of 
the week were not considered in the following analysis. 

Table 1 summarizes the results of the quantitative analysis to 
demonstrate how the external variables, including the temperature of 
supply water from the main DH substation to buildings, and outdoor air 
temperature, impacted system performance patterns. When the supply 
water temperature from the main DH substation to the buildings was 
below 45.5 ◦C, the SER system mainly operated in the performance 
pattern of cluster 3, with an average waste heat quality of 50.0 ◦C. 
Combining this with the aforementioned heat map analysis, it can be 
concluded that during the non-heating season, the SER system was used 
as a major heat source to supply hot water to the buildings. 

When the supply temperature was in the range of 45.5–54.1 ◦C and 
the outdoor air temperature was below 7.1 ◦C, the SER system operated 
in performance pattern 5. After checking the original data and the 
performance characteristics depicted in Fig. 10, it was evident that only 
one heat pump was in operation throughout this specific pattern. 
Notably, this pattern lasted for approximately two weeks, making it 
different from the other operational periods. Consequently, the under-
lying cause of this distinct phenomenon warrants further investigation. 

When the outdoor air temperature was above 7.1 ◦C and the supply 
temperature ranged from 45.5 to 54.1 ◦C, or the supply temperature 
exceeded 54.1 ◦C but was lower than 63.4 ◦C, the performance of the 
SER system was under performance pattern 2. One possible explanation 
for this was that the end-users required less heating energy to stay warm 
due to the relatively high outdoor air temperature or supply water 
temperature. 

When the supply temperature ranged from 63.4 ◦C to 83.7 ◦C, the 
SER system was operated under performance pattern 1 if the outdoor air 
temperature was below 2.4 ◦C, and it was operated under performance 
pattern 4 if the outdoor temperature was above 2.4 ◦C. The system was 
also operated under performance pattern 4 when the supply tempera-
ture exceeded 83.7 ◦C. This occurrence was likely attributable to an 
excess of thermal energy supplied to the buildings, potentially leading to 
overheating issues. To address this issue, some actions could be 
considered, such as incorporating heating demand flexibility or imple-
menting predictive load adjustment to accurately provide thermal en-
ergy in real time and achieve energy savings while maintaining indoor 
comfort levels. 

In summary, the SER system performance is strongly affected by the 
supply water temperature from the main DH substation to buildings and 
the outdoor air temperature. A higher water temperature from the main 
substation can increase the quality of the waste heat, while it can 

Table 1 
Quantitative analysis of two external variables under different system 
performances.  

Supply water 
temperature from the 
main DH substation to 
buildings 

Outdoor air 
temperature 

Performance difference 

≤45.5  

45.5–54.1 ≤7.1 

45.5–54.1 >7.1 
54.1–63.4  

63.4–83.7 ≤2.4 

63.4–83.7 >2.4 
>83.7   
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decrease the COP of the system. To enhance the energy efficiency of the 
heat pumps and optimize the quality of waste heat produced, it is 
important to optimize the supply water temperature from the main 
substations. 

Based on the results, it was found that this strategy effectively 
enabled the generation and comparison of various performance patterns 
of SER systems and elucidated the interrelationships among different 
performance indicators. This valuable insight can empower operators to 
understand and enhance the operational performance of the SER system. 

3.3. Identification of operational patterns and assessment of the impact of 
the SER system on the heat supply from the main DH substation 

3.3.1. Temporal clustering analysis 
Due to the substantial differences in building demand between the 

heating and non-heating seasons, the demand patterns during the 
heating season and those during the non-heating season were respec-
tively characterized. The building demand during the non-heating sea-
son was categorized into one group as it was very stable as shown in 
Fig. 7, while that during the heating season was clustered using the K- 
means method and the Calinski-Harabasz index to determine the 
optimal cluster number (Fig. 12). It can be seen that the optimal cluster 
number was three, as evidenced by the highest value of the Calinski- 

Harabasz index. Therefore, there were a total of four clusters 
throughout the entire operational period of concern, including the one 
during the non-heating season. 

As illustrated in Fig. 13, distinct patterns can be observed. Clusters 1, 
2, and 3 were characterized by fluctuations with the highest load 
occurring at around 8 a.m., whereas cluster 4 was comparatively stable. 
These first three clusters corresponded to the demand during the heating 
season, while the red pattern (cluster 4) corresponded to the demand 
during the non-heating season. 

The Davies-Bouldin index was used to identify the optimal cluster 
number of thermal energy provided by the SER system, which was 
determined based on trial and error tests of different indexes. The 
optimal number of clusters for the thermal energy provided by the SER 
system was also three based on the lowest value of the Davies-Bouldin 
index, as illustrated in Fig. 14. 

Fig. 15 illustrates the various clusters of thermal energy provided by 
the SER system. The thermal energy output of the SER system was found 
to be consistent and stable throughout the whole period of concern. 
Clusters A and B exhibited similar and stable trends, while cluster C 
showed slightly more fluctuations. Specifically, cluster A exhibited the 
highest thermal energy output, reaching approximately 1100 kW. 

Fig. 12. Optimal number of clusters for building demand.  

Fig. 13. Four clusters of the building demand.  

Fig. 14. Optimal number of clusters for thermal energy supplied by the 
SER system. 

Fig. 15. Three clusters of thermal energy supplied from the SER system.  
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Meanwhile, cluster C demonstrated the lowest thermal energy genera-
tion, ranging from 600 kW to 700 kW. Furthermore, there was a 
decrease in thermal energy output from the system between 6 a.m. and 9 
a.m. This reduction in thermal energy was likely to be caused by the 
external heat source, e.g. the main DH substation. 

3.3.2. Operational pattern identification of the SER system integrated with 
data centres and DH networks 

Based on the above results, the clustering analysis of building de-
mand and thermal energy provided by the SER system resulted in 4 
clusters of building demand and 3 clusters of thermal energy. This re-
sults in the formation of 12 operational patterns, as shown in Fig. 16. 

As demonstrated in Fig. 16, each operational pattern showed unique 
operational characteristics. Operational patterns 1 to 9 corresponded to 
the heating season, while operational patterns 10 to 12 represented the 
non-heating season. During the heating season, the main DH substation 
served as the primary source of thermal energy for buildings. In contrast, 
during the non-heating season, the data centre and heat pumps, 
collectively referred to as the SER system, provided the majority of 
thermal energy for building operations. Operational patterns 1, 6, 9, and 
12 accounted for less than 5 % of the total operational time and can be 
ignored. All operational patterns involving two heat sources exhibited a 
mutual impact on the heat output of each other. Specifically, the heat 
output from the main DH substation tended to increase when that from 

Fig. 16. A total of 12 operational patterns during the operating period.  
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the SER system tended to decrease. 
Fig. 17 shows the distribution of each operational pattern throughout 

the year. During the non-heating season, operational patterns 10 and 11 
alternated in their occurrence. This was due to the primary contribution 
of the SER system in providing thermal energy, leading to a high energy- 
saving potential. Operational patterns 1 to 9 occurred during the heating 
season with operational pattern 7 being the most frequent. 

Considering the characteristics of the operational patterns, it was 
concluded that operational patterns 10 and 11 occurred alternatively. 
This suggested that when the SER system provided more thermal energy, 
the main DH substation provided less thermal energy, as the building 
demand remained stable. Operational pattern 3 occurred on certain days 
only. 

3.3.3. Impact of the SER system on the heat supply from the main DH 
substation 

Based on the above results, two scenarios were designed. In Scenario 
1, the main DH substation solely covered the building demand. In Sce-
nario 2, the building demand was met by a combination of the SER 
system and the main DH substation. Two indicators were developed to 
evaluate heat supply from the main DH substation in the proposed 
scenarios, namely the energy reduction ratio and PAR of heat supply 
from the DH substation. The results are presented in Table 2. 

Scenario 2 resulted in a significant energy use reduction compared to 
Scenario 1. During the heating season, the energy-saving potential 
ranged from 7 % to 35 %. In contrast, during the non-heating season, the 
energy-saving potential was more than 50 %. This indicated that during 
the heating season, the main DH substation was the primary heat source, 
while during the non-heating season, the SER system provided the ma-
jority of thermal energy for building demand. Additionally, operational 
patterns 10 and 11 demonstrated higher energy-saving potential, while 

operational pattern 6 showed the lowest energy-saving potential of only 
7 %. 

Regarding the PAR, Scenario 1 outperformed Scenario 2, as the heat 
supply variability from the main DH substation was lower than that of 
Scenario 2. Additionally, it can be observed that the main DH substation 
had less energy variability during the heating season compared to the 
non-heating season, likely due to the more stable load profile of the main 
DH substation during the heating season, and the ability to rely on the 
SER system to cover building demand during the non-heating season. 

Compared to Scenario 1, the use of the SER system in Scenario 2 
resulted in a significant increase (>55 %) in the PAR of heat supply from 
the heating substation during most non-heating season operations. This 
highlighted the need to consider the trade-off between energy con-
sumption reduction and variability increase in the daily energy profile. 
While waste heat recovery from data centres and heat pumps can lead to 
increased daily energy profile variability for the main substation, the 
implementation of appropriate thermal storage and demand flexibility 
measures can be explored to mitigate this impact. 

4. Conclusions 

This study proposed a new data mining strategy that utilized 
multidimensional clustering, temporal clustering, and Classification and 
Regression Tree model to evaluate the performance of an SER system 
integrated with a data centre and a district heating system at a university 
campus. The main findings are as follows. The multidimensional clus-
tering effectively discovered both distinct and predominant perfor-
mance patterns of the SER system, which exhibited variability attributed 
to external factors such as outdoor temperature and supply water tem-
perature of the district heating substation. The average Coefficient of 
Performance for the heat pumps employed within the SER system was 

Fig. 17. Heat map of different operational patterns throughout the period.  

Table 2 
Energy use reduction and variability assessment.  

Operational patterns Average hourly energy use of the main DH substation 
(kWh)  

Peak average ratio of energy use of the main DH 
substation  

Scenario 1 Scenario 2 Energy reduction Scenario 1 Scenario 2 Difference 

OP 1 3075.0 2196.3 28.6 % (↓) 1.38 1.55 12.33 % (↑) 
OP 2 3075.0 2009.9 34.6 % (↓) 1.38 1.60 16.11 % (↑) 
OP 3 3075.0 2458.4 20.1 % (↓) 1.38 1.49 8.05 % (↑) 
OP 4 8844.2 7965.5 9.9 % (↓) 1.22 1.25 2.33 % (↑) 
OP 5 8844.2 7779.1 12.0 % (↓) 1.22 1.25 2.79 % (↑) 
OP 6 8844.2 8227.7 7.0 % (↓) 1.22 1.24 1.73 % (↑) 
OP 7 5908.0 5029.2 14.9 % (↓) 1.19 1.23 3.38 % (↑) 
OP 8 5908.0 4842.8 18.0 % (↓) 1.19 1.24 4.13 % (↑) 
OP 9 5908.0 5291.4 10.4 % (↓) 1.19 1.22 2.41 % (↑) 
OP 10 1203.8 325.1 73.0 % (↓) 1.20 1.85 54.88 % (↑) 
OP 11 1203.8 138.7 88.5 % (↓) 1.20 2.99 149.56 % (↑) 
OP 12 1203.8 587.2 51.2 % (↓) 1.20 1.47 22.68 % (↑)  
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around 2.2, slightly lower than those utilized for space air conditioning. 
However, these heat pumps effectively recovered waste thermal energy 
from data centres and distributed it to district heating users. The tem-
poral clustering analysis showed that building demand exhibited its 
peak at around 8 a.m., while the heat supply from the SER system 
remained stable with a minor decrease from 6 a.m. to 10 a.m. These 
profiles offered insights into demand flexibility management. Waste 
heat from the SER system reduced district heating energy use by up to 
35 % during heating seasons and over 50 % during non-heating seasons, 
while it increased variability in heat supply from the district heating 
substation, with an increase of the peak-to-average ratio by over 55 % 
during non-heating seasons. 

This proposed data mining strategy can also be utilized for the per-
formance evaluation of integrated energy systems. However, the data- 
driven models used in the strategy should be trained using the data 
from the target systems, along with the identification of significant 
performance indicators of the target system. In addition, the effective-
ness of the data-driven strategy highly depends on the quantity and 
quality of the data collected. 
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[12] Köfinger M, Schmidt RR, Basciotti D, Terreros O, Baldvinsson I, Mayrhofer J, et al. 
Simulation based evaluation of large scale waste heat utilization in urban district 
heating networks: optimized integration and operation of a seasonal storage. 
Energy 2018;159:1161–74. 

[13] Li H, Hou J, Hong T, Ding Y, Nord N. Energy, economic, and environmental 
analysis of integration of thermal energy storage into district heating systems using 
waste heat from data centres. Energy 2021:219. 

[14] Wahlroos M, Pärssinen M, Rinne S, Syri S, Manner J. Future views on waste heat 
utilization – case of data centers in Northern Europe. Renew Sustain Energy Rev 
2018;82:1749–64. 

[15] Pan Q, Peng J, Wang R. Experimental study of an adsorption chiller for extra low 
temperature waste heat utilization. Appl Therm Eng 2019;163. 

[16] Araya S, Wemhoff AP, Jones GF, Fleischer AS. Study of a lab-scale organic rankine 
cycle for the ultra-low-temperature waste heat recovery associated with data 
centers. J Electron Packag 2021;143(2). 

[17] Calikus E, Nowaczyk S, Sant’Anna A, Gadd H, Werner S. A data-driven approach 
for discovering heat load patterns in district heating. Appl Energy 2019;252: 
113409. 

[18] Zhang C, Xue X, Zhao Y, Zhang X, Li T. An improved association rule mining-based 
method for revealing operational problems of building heating, ventilation and air 
conditioning (HVAC) systems. Appl Energy 2019;253:113492. 

[19] Huang K, Yuan J, Zhou Z, Zheng X. Analysis and evaluation of heat source data of 
large-scale heating system based on descriptive data mining techniques. Energy 
2022;251:123834. 

[20] Jani HK, Kachhwaha SS, Nagababu G, Das A. Temporal and spatial simultaneity 
assessment of wind-solar energy resources in India by statistical analysis and 
machine learning clustering approach. Energy 2022;248:123586. 

[21] Zhou X, Lin W, Cui P, Ma Z, Huang T. An unsupervised data mining strategy for 
performance evaluation of ground source heat pump systems. Sustain Energy 
Technol Assessments 2021;46. 

[22] Zhang S, Zhang L, Zhang X. Clustering based on dynamic time warping to extract 
typical daily patterns from long-term operation data of a ground source heat pump 
system. Energy 2022;249:123767. 

[23] Khan ZA, Adil M, Javaid N, Saqib MN, Shafiq M, Choi J-G. Electricity theft 
detection using supervised learning techniques on smart meter data. Sustainability 
2020;12(19):8023. 

[24] Gianniou P, Liu X, Heller A, Nielsen PS, Rode C. Clustering-based analysis for 
residential district heating data. Energy Convers Manag 2018;165:840–50. 

[25] Lumbreras M, Diarce G, Martin K, Garay-Martinez R, Arregi B. Unsupervised 
recognition and prediction of daily patterns in heating loads in buildings. J Build 
Eng 2023;65:105732. 

[26] Boone-Heinonen J, Gordon-Larsen P, Adair LS. Obesogenic clusters: 
multidimensional adolescent obesity-related behaviors in the US. Ann Behav Med 
2008;36(3):217–30. 

[27] Spengler S, Mess F, Mewes N, Mensink GB, Woll A. A cluster-analytic approach 
towards multidimensional health-related behaviors in adolescents: the MoMo- 
Study. BMC Publ Health 2012;12:1–8. 

[28] Lin W, Orgun MA, Williams GJ. An overview of temporal data mining. AusDM 
2002:83–90. 

[29] Afzalan M, Jazizadeh F, Eldardiry H. Two-stage clustering of household electricity 
load shapes for improved temporal pattern representation. IEEE Access 2021;9: 
151667–80. 

[30] Katarya R, Saini R. Enhancing the wine tasting experience using greedy clustering 
wine recommender system. Multimed Tool Appl 2022;81(1):807–40. 

[31] Wojdyga K. An influence of weather conditions on heat demand in district heating 
systems. Energy Build 2008;40(11):2009–14. 

[32] Chicherin S, Zhuikov A, Kolosov M, Junussova L, Aliyarova M, Yelemanova A. 
Optimizing building heat consumption: weekday and weekend profiles. Energy Rep 
2021;7:166–70. 

[33] Zhou H, Zhang J, Zhou Y, Guo X, Ma Y. A feature selection algorithm of decision 
tree based on feature weight. Expert Syst Appl 2021:164. 

[34] Zhou X, Du H, Sun Y, Ren H, Cui P, Ma Z. A new framework integrating 
reinforcement learning, a rule-based expert system, and decision tree analysis to 
improve building energy flexibility. J Build Eng 2023;71:106536. 

[35] Wang Z, Wang Y, Srinivasan RS. A novel ensemble learning approach to support 
building energy use prediction. Energy Build 2018;159:109–22. 

[36] Guan J, Nord N, Chen S. Energy planning of university campus building complex: 
energy usage and coincidental analysis of individual buildings with a case study. 
Energy Build 2016;124:99–111. 

[37] Song M, Mao N, Xu Y, Deng S. Challenges in, and the development of, building 
energy saving techniques, illustrated with the example of an air source heat pump. 
Therm Sci Eng Prog 2019;10:337–56. 

[38] Nord N, Shakerin M, Tereshchenko T, Verda V, Borchiellini R. Data informed 
physical models for district heating grids with distributed heat sources to 
understand thermal and hydraulic aspects. Energy 2021;222:119965. 

H. Du et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0360-5442(23)02907-9/sref1
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref1
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref2
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref2
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref2
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref3
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref3
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref3
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref4
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref4
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref4
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref5
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref5
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref5
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref6
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref6
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref7
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref7
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref7
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref8
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref8
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref8
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref9
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref9
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref9
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref10
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref10
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref11
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref11
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref11
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref12
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref12
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref12
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref12
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref13
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref13
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref13
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref14
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref14
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref14
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref15
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref15
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref16
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref16
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref16
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref17
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref17
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref17
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref18
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref18
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref18
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref19
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref19
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref19
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref20
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref20
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref20
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref21
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref21
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref21
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref22
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref22
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref22
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref23
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref23
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref23
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref24
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref24
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref25
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref25
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref25
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref26
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref26
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref26
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref27
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref27
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref27
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref28
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref28
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref29
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref29
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref29
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref30
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref30
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref31
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref31
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref32
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref32
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref32
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref33
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref33
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref34
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref34
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref34
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref35
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref35
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref36
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref36
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref36
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref37
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref37
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref37
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref38
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref38
http://refhub.elsevier.com/S0360-5442(23)02907-9/sref38

	A new data mining strategy for performance evaluation of a shared energy recovery system integrated with data centres and d ...
	1 Introduction
	2 A new data mining strategy for performance assessment of shared energy recovery systems
	2.1 Outline of the strategy
	2.2 Indicators for performance assessment of SER systems
	2.3 K-means clustering
	2.3.1 Multidimensional clustering for identifying performance motifs of the SER system
	2.3.2 Temporal clustering for identifying daily energy profiles of the SER system and building thermal energy demand

	2.4 Quantification of external variables for the SER system performance
	2.5 Impact of the SER system on the heat supply from the main DH substation

	3 Results and discussion
	3.1 Description of the case study
	3.2 Performance evaluation of the SER system
	3.2.1 Multidimensional clustering for identification of performance motifs of the SER system
	3.2.2 Quantitative analysis of external variables in terms of different performance patterns of the SER system

	3.3 Identification of operational patterns and assessment of the impact of the SER system on the heat supply from the main  ...
	3.3.1 Temporal clustering analysis
	3.3.2 Operational pattern identification of the SER system integrated with data centres and DH networks
	3.3.3 Impact of the SER system on the heat supply from the main DH substation


	4 Conclusions
	Credit author statement
	Declaration of competing interest
	Data availability
	References


