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Abstract: Using a single scattering theory, we derive the expression of the degree of polarization
of the light scattered from a layer exhibiting both surface and volume scattering. The expression
puts forward the intimate connection between the degree of polarization and the statistical
correlation between surface and volume disorders. It also permits a quantitative analysis of
depolarization for uncorrelated, partially correlated and perfectly correlated disorders. We show
that measuring the degree of polarization could allow one to assess the surface-volume correlation
function, and that, reciprocally, the degree of polarization could be engineered by an appropriate
design of the correlation function.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Polarimetric measurements are key elements in the toolbox for the characterization of complex
photonic structures, including thin films, metamaterials, photonic crystals, plasmonic gratings
[1–3], or disordered materials such as colloidal suspensions [4–6] and rough surfaces [7–9].
Polarization analysis is also of great interest for systems displaying both surface and volume
disorder [10,11]. In this context, depolarization measurements have shown their ability to
discriminate between surface and bulk scattering. The approach has been implemented on
highly scattering samples [12–14], where multiple scattering from the bulk is the main source of
depolarization. Interestingly, depolarization can also reveal information on weakly scattering
systems, where the interaction with light occurs chiefly through single scattering, and in which
volume and surface disorders may contribute with similar weights. It is often assumed that single
scattering does not produce depolarization, which is actually not true for systems exhibiting
(at least) two types of disorders with different polarization responses [15]. Examples of such
systems are clouds of particles of different species [16], media with depolarizing dielectric
heterogeneities [17], dielectric films with rough interfaces [18], pseudo-random overlaid gratings
[19,20], or samples with a rough surface and volume dielectric fluctuations [21,22]. Recently,
perfect depolarization has even been predicted in the single scattering regime, for a system
combining uncorrelated surface and volume disorders [15].

An open question is whether depolarization of the light scattered by a system with surface and
volume disorders can provide information on the existence of statistical correlations between
the two types of disorder. The purpose of this paper is to examine this question in the case of
weakly disordered samples, in which surface and volume disorders contribute through single
scattering. To proceed, we establish a general relation between the degree of polarization of
the scattered light and the cross-correlation function between the surface roughness and the
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dielectric fluctuations in the volume. Based on this relation, we address several issues, such as
the conditions to get full depolarization of the incident light, or the possibility to engineer the
surface-volume correlation function to produce a prescribed value of the degree of polarization
of the scattered light.

The paper is organized as follows. In section 2, we introduce the geometry and the statistical
model, focusing on the description of the cross-correlation function between the surface and
volume disorders. In section 3, we summarize the scattering theory that was described initially in
Ref. [23], and derive the expression of the degree of polarization. Based on this expression, we
examine in section 4 the general conditions to get depolarization of the scattered light. In section 5,
we analyze the behavior of the degree of polarization for correlated surface-volume scattering.
In particular, we discuss the possibility of maximizing depolarization, and of designing the
surface-volume cross-correlation function to reach a prescribed form of the degree of polarization
of the scattered light. Finally, we summarize the main results in section 6.

2. Scattering geometry and statistical model

We consider a scattering layer with average thickness L separating two semi-infinite media, and
exhibiting both surface and volume disorders [Fig. 1(a)]. We take direction x3 to be normal to the
layer which is assumed to be of infinite extent along directions x1 and x2. The layer has a rough
upper surface, described by a profile x3 = ζ(x∥

), with x
∥
= (x1, x2). Its lower interface is flat, and

coincides with the plane x3 = −L. The external upper and lower media, corresponding to the
regions x3>ζ(x∥

) and x3< − L, have real dielectric functions ε1 and ε2, respectively. The layer
also exhibits volume disorder, described by a dielectric function ε(x) = ε2 + ∆ε(x) fluctuating
around the average value ε2. The geometry is depicted in Fig. 1.

Fig. 1. (a) Cross-section of the scattering layer in the plane (x1, x3), showing both a
rough surface and volume dielectric fluctuations. (b) Schematics defining the incident and
scattering wave vectors. The incident wave vector lies in the plane (x1, x3), with an in-plane
component p0 and a direction defined by the polar angle of incidence θ0. The scattered
wave vector has an arbitrary in-plane component p, and a direction defined by the scattering
angles (θ, ϕ).

In this study we will focus on the role of statistical correlations between the rough surface
and the bulk dielectric fluctuations on depolarization. Depending on the dependence of ∆ε
with respect to the longitudinal direction x3, different types of layers can be defined. Here we
will consider dielectric fluctuations taking constant values across the layer, with ∆ε depending
only on x

∥
. This type of disorder corresponds to the picture in Fig. 1(a), and was referred to

as surface-like configuration in Ref. [23]. A real life example of dielectric layers with a rough
top free interface and quasi-two-dimensional dielectric fluctuations occurs naturally through the
phase segregation of barium borosilicate glass thin films. Upon annealing different phases appear
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and deform the top surface due to their largely different viscosity and the confining geometry for
the film [24,25].

In order to define the statistical model, we start by writing the dielectric function of the whole
system in the form

ε(x) = ε1 + H
(︂
ζ(x

∥
) − x3

)︂ (︂
ε2 − ε1 + ∆ε(x∥

)H(x3 + L)
)︂

, (1)

where H is the Heaviside step function. The surface profile ζ and the dielectric fluctuation ∆ε are
assumed to be realizations of correlated, zero mean and stationary Gaussian stochastic processes.
In these conditions, the stochastic process defining the dielectric function ε is fully characterized
by ⟨ζ(x

∥
)⟩ = 0, ⟨∆ε(x

∥
)⟩ = 0 and⟨︂

ζ(x
∥
)ζ(x′

∥
)

⟩︂
= σ2

ζ Wζ (x∥
− x′

∥
) , (2a)⟨︂

∆ε(x
∥
)∆ε(x′

∥
)

⟩︂
= σ2

ε Wε(x∥
− x′

∥
) , (2b)⟨︂

ζ(x
∥
)∆ε(x′

∥
)

⟩︂
= σζσε Wζε(x∥

− x′
∥
) , (2c)

where the angle brackets denote an ensemble average. Equations (2a) and (2b) define the surface
and dielectric autocorrelation functions Wζ and Wε , and standard deviations σζ ≥ 0 and σε ≥ 0.
Equation (2c) defines the cross-correlation function of the processes ζ and ∆ε. The full definition
of the stochastic processes requires explicit expressions for Wζ , Wε and Wζε . A convenient
model, introduced in Ref. [23], assumes Gaussian autocorrelation functions given by

Wζ (x∥
− x′

∥
) = exp

(︄
−

|︁|︁ x
∥
− x′

∥

|︁|︁2
ℓ2ζ

)︄
, (3a)

Wε(x∥
− x′

∥
) = exp

(︄
−

|︁|︁ x
∥
− x′

∥

|︁|︁2
ℓ2ε

)︄
, (3b)

where ℓζ and ℓε are the correlation lengths of the surface roughness and the dielectric volume
fluctuations, respectively. The cross-correlation function can be modeled via a power spectral
density of the form ˜︁Wζε(p) = γ(p) ˜︁W1/2

ζ (p)˜︁W1/2
ε (p) , (4)

where˜︁f (p) denotes the two-dimensional Fourier transform of a function f (x
∥
). This specific form

of the cross-spectral power density is consistent with the constraints imposed by the nature of
the covariance matrix, that has to be real, symmetric and positive definite [23]. The factor γ(p),
which will be denoted by spectral correlation modulator, has to satisfy |γ | ≤ 1 and γ(−p) = γ∗(p)
[26].

3. Degree of polarization in the single scattering regime

Our purpose is to connect the degree of polarization of the light backscattered (reflected) from
the scattering layer, upon illumination by a monochromatic plane wave with angular frequency ω
incident from medium 1. The complex amplitude of the incident plane wave is taken of the form

E0(x) =
∑︂
ν=p,s

E0,ν ê−1,ν(p0) exp[i p0 · x∥
−iα1(p0)x3] , (5)

where α1(p0) is the normal component of the wave vector, and ê−1,ν(p0) are unit vectors defining
the s and p polarizations. These vectors are defined in medium j = 1 and medium j = 2 by the
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following relations

αj(p) =
(︂
εjk2

0 − p2
)︂1/2

, Re(αj) ≥ 0, Im(αj) ≥ 0 , (6a)

ê±j,s(p) = ê3 × p̂ , (6b)

ê±j,p(p) =
±αj(p) p̂ −| p | ê3

√
εjk0

. (6c)

In these relations p̂ = p/| p |, ê3 is the unit vector along the positive x3 axis and k0 = ω/c =
2π/λ with c the speed of light in vacuum. The meaning of the different wave vectors and
polarization vectors is illustrated in Fig. 2.

Fig. 2. Definition of the wave vectors for the incident and scattered fields, and of the unit
vectors defining the s and p polarization components.

The purpose of this work is to characterize the degree of polarization of the scattered field
Es(x∥

, x3) for an observation point in reflection, i.e. for x3>ζ(x∥
). The Fourier transform of the

field with respect to x
∥

can be written in the form˜︁Es(p, x3) =
∑︂
µ=p,s

ê+1,µ(p)
∑︂
ν=p,s

Rµν(p, p0)E0,ν exp
(︂
iα1(p) x3

)︂
, (7)

where the reflection amplitude Rµν(p, p0) connects a scattered wave in state (p, µ) to an incident
wave in state (p0, ν). In the single scattering regime, the scattered field can be written as the
sum of a contribution from the rough surface and a contribution from the volume dielectric
fluctuations [23,27]. In terms of the reflection amplitude, this means that

Rµν = Rζ ,µν + Rε,µν , (8)

where Rζ ,µν and Rε,µν are the surface and volume reflection amplitudes, respectively. For a
weakly scattering layer, such that the conditions of small surface amplitude (√εjk0σ ≪ 1) and
small thickness (√εjk0L ≪ 1) are satisfied, the reflection amplitudes have analytical expressions.
They can be written as [23]

Rζ ,µν(p, p0) = s(p, p0) ρζ ,µν(p, p0) , (9a)

Rε,µν(p, p0) = v(p, p0) ρε,µν(p, p0) . (9b)
Each reflection amplitude is the product of a random contribution from the surface or the

volume and of a deterministic polarization coupling factor. The contributions from surface and
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volume disorders take the following forms

s(p, p0) =
ik2

0
2α2(p)

(ε2 − ε1)˜︁ζ(p −p0) , (10a)

v(p, p0) =
ik2

0
2α2(p)

∆˜︁ε(p −p0)L , (10b)

where ˜︁ζ and ∆˜︁ε are the Fourier transforms of the surface profile function and of the dielectric
fluctuation. The polarization coupling factors are given by

ρζ ,µν(p, p0) = t(µ)12 (p) ê+2,µ(p) ·
[︂
ê−1,ν(p0) + r(ν)21 (p0) ê+1,ν(p0)

]︂
, (11a)

ρε,µν(p, p0) = t(µ)12 (p) ê+2,µ(p) · ê−2,ν(p0) t(ν)21 (p0) , (11b)

where r(ν)ji and t(ν)ji are the Fresnel reflection and transmission amplitudes for a ν-polarized plane
wave incident on a planar surface from medium i to medium j [see for example Ref. [23],
Eq. (A4)]. The polarization coupling factors depend only on the geometry of the reference
system, namely, a planar interface between two homogeneous media with dielectric functions ε1
and ε2. Physically, they describe the polarization response of an electric dipole source radiating
in the reference medium [23,28].

The polarization coupling factors have interesting properties, that will be useful in the following.
First, it can be verified that the surface and volume factors are different only for µ = ν = p.
Second, it is also interesting to note that for normal incidence (p0 = 0) the two polarization
coupling factors in Eq. (11) are equal for all p and any pair of polarization states (µ, ν). Finally,
they are real-valued functions in the radiative region (|p|<√ε1k0). In summary, the polarization
coupling factors satisfy

ρζ ,µs(p, p0) = ρε,µs(p, p0) ≡ ρµs(p, p0) , (12a)

ρζ ,sp(p, p0) = ρε,sp(p, p0) ≡ ρsp(p, p0) , (12b)

ρζ ,µν(p, 0) = ρε,µν(p, 0) , (12c)

ρζ ,µν(p, p0) ∈ R and ρε,µν(p, p0) ∈ R for | p |, | p0 | ≤
√
ε1k0 . (12d)

We now turn to the expression for the degree of polarization of the backscattered light. For an
incident plane wave in state (p0, ν), the degree of polarization of a wave scattered in direction p
is defined as [29]

P(ν)(p, p0) =

(︄
1 − 4

det J(ν)(p, p0)[︁
Tr J(ν)(p, p0)

]︁2

)︄1/2

, (13)

where J(ν) is the Jones coherence matrix with matrix elements

J(ν)µµ′(p, p0) =
⟨︂
Rµν(p, p0)R

∗
µ′ν(p, p0)

⟩︂
. (14)

We see that the degree of polarization is directly obtained from the reflection amplitude Rµν . It
characterizes the statistical correlation between different vector components of the scattered field,
given a state of polarization of the incident field (different incident states can lead to different
degrees of polarization). Explicit expressions for the determinant and the trace of the coherence
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matrix can be obtained by inserting Eq. (9) into Eq. (14). For uncorrelated surface and volume
disorders, we would simply have

det J(ν)unco =
⟨︁
|s|2

⟩︁ ⟨︁
|v|2

⟩︁ |︁|︁ρζ ,pνρε,sν − ρε,pνρζ ,sν
|︁|︁2 , (15a)

Tr J(ν)unco =
⟨︁
|s|2

⟩︁ (︂
|ρζ ,pν |

2 + |ρζ ,sν |
2
)︂
+

⟨︁
|v|2

⟩︁ (︂
|ρε,pν |

2 + |ρε,sν |
2
)︂

. (15b)

In the presence of surface-volume correlations, additional contributions have to be taken into
account, and we find that

det J(ν) = det J(ν)unco +2Re
(︁
⟨sv∗⟩ ρζ ,sνρ

∗
ε,sν

)︁ [︂ ⟨︁
|s|2

⟩︁
|ρζ ,pν |

2 +
⟨︁
|v|2

⟩︁
|ρε,pν |

2
]︂

+ 2Re
(︂
⟨sv∗⟩ ρζ ,pνρ

∗
ε,pν

)︂ [︂ ⟨︁
|s|2

⟩︁
|ρζ ,sν |

2 +
⟨︁
|v|2

⟩︁
|ρε,sν |

2
]︂

+ 4Re
(︂
⟨sv∗⟩ ρζ ,pνρ

∗
ε,pν

)︂
Re

(︁
⟨sv∗⟩ ρζ ,sνρ

∗
ε,sν

)︁
−

[︂ ⟨︁
|s|2

⟩︁
ρζ ,pνρ

∗
ζ ,sν +

⟨︁
|v|2

⟩︁
ρε,pνρ

∗
ε,sν

]︂ [︂
⟨sv∗⟩ ρζ ,sνρ

∗
ε,pν + ⟨vs∗⟩ ρε,sνρ

∗
ζ ,pν

]︂
−

[︂ ⟨︁
|s|2

⟩︁
ρζ ,sνρ

∗
ζ ,pν +

⟨︁
|v|2

⟩︁
ρε,sνρ

∗
ε,pν

]︂ [︂
⟨sv∗⟩ ρζ ,pνρ

∗
ε,sν + ⟨vs∗⟩ ρε,pνρ

∗
ζ ,sν

]︂
−

[︂
⟨sv∗⟩ ρζ ,pνρ

∗
ε,sν + ⟨vs∗⟩ ρε,pνρ

∗
ζ ,sν

]︂ [︂
⟨sv∗⟩ ρζ ,sνρ

∗
ε,pν + ⟨vs∗⟩ ρε,sνρ

∗
ζ ,pν

]︂
,

(16a)

Tr J(ν) = Tr J(ν)unco +2Re
[︂
⟨sv∗⟩

(︁
ρζ ,pνρ

∗
ε,pν + ρζ ,sνρ

∗
ε,sν

)︁ ]︂
. (16b)

Note that the quantities
⟨︁
|s|2

⟩︁
,
⟨︁
|v|2

⟩︁
, and ⟨sv∗⟩ in Eqs. (15) and (16) are proportional to

the surface power spectrum ˜︁Wζ , the power spectrum of the dielectric fluctuation ˜︁Wε , and the
cross-power spectrum ˜︁Wζε , respectively (full expressions are given in Appendix D of Ref. [23]).

4. Conditions for depolarization

Equations (13) and (16) provide a general expression of the degree of polarization for a weakly
disordered layer in the single scattering regime. This expression allows us to analyze the
conditions for depolarization of the scattered light, given an incident polarized plane wave. From
the properties (12) of the polarization coupling factors, we easily find that for normal incidence
(p0 = 0), and independently of the incident polarization, one has P(ν)(p, 0) = 1, meaning that
the scattered waves remain perfectly polarized. This can be seen by noticing that the polarization
coupling factors in Eq. (16) are equal in this case, thus canceling det J(ν). We also find that
P(s)(p, p0) = 1, meaning that no depolarization occurs for an s-polarized incident wave. Indeed,
for an incident s-polarized wave, the field scattered by the surface and the field scattered by the
volume are produced in the same polarization state, for all realizations of the scattering medium.
Thus, independently of the scattering amplitudes s(p, p0) and v(p, p0), the total scattered field is
always perfectly polarized. These two results lead to the conclusion that depolarization in the
single scattering regime can only occur for a p-polarized incident wave at oblique incidence.

For such a wave, it is also interesting to note that substantial depolarization in the single
scattering regime can only be observed for two scattering processes (surface and volume) with
similar strengths. Indeed, if one of the processes dominates over the other, then the degree of
polarization tends to unity. Consider, for example, the extreme case ∆ε = 0 and ζ ≠ 0 where
surface scattering dominates. In this case the scattering amplitude v(p, p0) vanishes, so that
det J(p) = 0 and P(p) = 1, as can be seen from Eqs. (13) and (16). The same analysis holds
for ζ = 0 and ∆ε ≠ 0 where volume scattering dominates. This analysis is consistent with the
well-known fact that for a either surface or volume scattering, there is no depolarization in the
single scattering regime. Conversely, when surface and volume scattering occur simultaneously,
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the scattered field is the sum of a field scattered by the surface and a field scattered by the volume
weighted by random factors (the scattering amplitudes s and v). The resulting polarization state
is stochastic, and the degree of polarization can decrease. Qualitatively, to observe substantial
depolarization, we can deduce that the two scattering processes (surface and volume) must have
different polarization responses and comparable strengths.

5. Connecting the degree of polarization to surface-volume correlations

Having these considerations in mind, we will focus on the case of a p-polarized wave at oblique
incidence interacting with a layer with surface and volume disorders with equal strengths,
meaning that |ε2 − ε1 |σζ = σεL, and equal correlation lengths ℓζ = ℓε . Under theses conditions,
the correlation functions of surface and volume disorders are identical, Wζ = Wε , and the
scattering amplitudes have equal average intensities ⟨|s|2⟩ = ⟨|v|2⟩. To analyze the influence of
surface-volume correlations on depolarization, it is useful to recast the degree of polarization in
the form (see Appendix A)

P(p)(p, p0) =

⎡⎢⎢⎢⎢⎢⎣1 −
4ρ2sp(ρζ ,pp − ρε,pp)

2 (︁1 − |γ(p −p0)|
2)︁[︂

ρ2ζ ,pp + ρ
2
ε,pp + 2ρ2sp + 2Re

(︁
γ(p −p0)

)︁ (︁
ρζ ,ppρε,pp + ρ

2
sp
)︁ ]︂2

⎤⎥⎥⎥⎥⎥⎦
1/2

, (17)

where γ(p) is the spectral correlation modulator defined in Eq. (4).

5.1. Vanishing or perfect correlation

The particular case of uncorrelated surface and volume disorders, corresponding to γ(p) = 0, has
been examined in detail in Ref. [15]. It was shown that perfect depolarization can be achieved in
specific scattering directions. From Eq. (17), one immediately finds that for γ(p) = 0 the degree
of polarization vanishes when the equality

4 ρ2sp
(︂
ρζ ,pp − ρε,pp

)︂2
=

[︂
ρ2ζ ,pp + ρ

2
ε,pp + 2ρ2sp

]︂2
(18)

is satisfied. The remarkable fact is that observation directions such that ρsp = ρζ ,pp = −ρε,pp
exist, for which condition (18) holds [15]. An example of the angular distribution of the degree of
polarization for uncorrelated disorders is presented in Fig. 3(a). We observe perfect depolarization
(P(p) = 0) for two scattering directions, symmetrically positioned with respect to the plane of
incidence, for which Eq. (18) is satisfied. In these directions, the field scattered by the surface
and the field scattered by the volume are orthogonal and weighted by uncorrelated amplitudes
s and v with equal average intensities, leading to perfect depolarization [15]. Experimentally,
partial depolarization was observed by Germer et al. on steel samples exhibiting uncorrelated
surface roughness and volume heterogeneity [21].

Another extreme situation is that of perfect surface-volume correlation, corresponding to
|γ | = 1. In this case, we find that P(p) = 1, independently of the behavior of the polarization
coupling factors. This means that single scattering from two perfectly correlated random
processes does not induce any depolarization. Indeed, when the two scattering processes are
perfectly correlated, the scattering amplitudes s and v are connected by a simple (complex-
valued) multiplicative constant. Consequently, even though the polarization states for surface
and volume scattering are expected to be different, the resulting scattered field possesses a
deterministic polarization state, hence a unit degree of polarization. The phenomenon of absence
of depolarization for perfectly correlated disorders is in fact more general. For instance, this was
demonstrated theoretically and experimentally for dielectric films of SiO2 on silicon obtained
by a thermally grown oxide from an initial rough surface of a silicon substrate. The degree
of polarization was shown to be unity for a wide range of scattering angles, and the recovered
correlation factor close to one over a broad spectral range [18].
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Fig. 3. Degree of polarization P(p) versus the observation direction p̂ = (p̂1, p̂2). (a)
Uncorrelated surface and volume disorders. (b) Uniform correlation with γ(p) = 1/2. (c)
Shift correlation with γ(p) = exp

(︁
i5p̂1

)︁
/2. For all cases the angles of incidence are θ0 = 75◦

and ϕ0 = 0◦. Layer parameters: ε1 = 1, ε2 = 2.25, σε = 0.36, L = λ/20, ℓε = ℓζ = λ/2,
σζ = 1.4 × 10−2λ. The parameters are chosen such that

⟨︁
|s|2

⟩︁
=

⟨︁
|v|2

⟩︁
.

5.2. Partial correlation

In the presence of partial correlation between surface and volume disorders, we expect partial or
perfect depolarization of the scattered light but with different features compared with uncorrelated
disorders. The direct connection between the degree of polarization and the spectral correlation
modulator given by Eq. (17) allows us to study the process quantitatively. In the following we
examine a few situations of particular interest.

Uniform correlation — A uniform partial correlation is characterized by γ(p) = γ0, with
|γ0 |<1. Figure 3(b) shows the angular distribution of the degree of polarization for γ0 = 1/2.
By comparison to Fig. 3(a), we observe that the directions of perfect depolarization are shifted
compared to those of the uncorrelated case, with a shift towards larger or smaller azimuthal
angles, depending on the sign of γ0.

Shift correlation — Another particular case is the wave vector dependent correlation modulator
γ(p) = γ0 exp(i a · p) with a a constant (spatial) vector. In real space, this form of correlation
corresponds to a surface profile and dielectric fluctuations that are scaled and shifted copies of
each other, such that σεζ(x∥

− a) = ±σζ∆ε(x∥
) (for γ0 = ±1). We show in Fig. 3(c) the angular

distribution of the degree of polarization for the shift correlation with a = 5λ ê1 and γ0 = 1/2.
Since |γ(p)| = 1/2 as for the uniform correlation examined previously, the role played by the
phase term in γ(p) is directly revealed by comparison with Fig. 3(b). We observe in Fig. 3(c)
partial depolarization fringes whose positions are controlled by the real part of γ(p). These
fringes in the degree of polarization are reminiscent of similar fringes observed in the angular
distribution of the diffuse intensity [23]. In the context of pseudo-random grating layers, similar
fringes were observed in the degree of circular polarization when the top surface profile of the
overlay was shifted compared to that of the substrate and were used to deduce the spatial shift
between the two surface profiles in Refs. [19,20].

Qualitative picture for partial depolarization — We have seen that for perfectly correlated
disorders (|γ | = 1), the scattered field possesses a well-defined polarization state, leading to
P(p) = 1. Conversely, for uncorrelated surface and volume disorders, the fields scattered by the
surface and the volume are non-colinear and weighted by random uncorrelated amplitudes s and
v. The resulting field is partially polarized, as illustrated schematically in Fig. 4(a), and even
fully depolarized when the conditions illustrated in Fig. 4(b) are met. Starting from a vanishing
degree of polarization for uncorrelated processes, increasing the surface-volume correlation can
be seen as a repolarization mechanism. Indeed, even a partial correlation links the weighting
amplitudes s and v. Consequently, even for orthogonal surface and volume polarization states,
the distribution of the resulting field becomes anisotropic as illustrated in Fig. 4(c), leading to
partial repolarization for |γ |<1 and even total repolarization for |γ | = 1. Reversely, starting
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ês

êp

Eζ

Eε

(a) Partial depolarization
〈sv∗〉 = 0

ês

êp

Eζ

Eε

(b) Perfect depolarization
Eζ ⊥ Eε, 〈sv∗〉 = 0

ês

êp

Eζ

Eε

(c) Re-polarization,
Eζ ⊥ Eε, 〈sv∗〉 �= 0

Fig. 4. Schematic illustration of the conditions for (a) partial depolarization or (b) perfect
depolarization of the light scattered from uncorrelated surface and volume disorders. Partial
correlation can be seen as a repolarization mechanism, as illustrated in (c). The red and blue
arrows represent the deterministic polarization states in the (ês, êp) basis. Summing these
polarization states with random weights s and v produces the total field whose distribution is
represented by the colored area.

in the uncorrelated case from a direction for which the polarization states are not orthogonal,
correlation of the amplitudes can correct for this lack of orthogonality to make the resulting field
distribution isotropic. This is the case for the directions of perfect depolarization in Fig. 3(b) for
instance.

Engineering the degree of polarization — It is also instructive to examine the possibility of
shaping the degree of polarization P(p) by an appropriate design of the surface-volume statistical
correlation. For instance, one could seek to cancel the degree of polarization over a range of
observation directions, or to set it to some prescribed value. We first note that P(p) = 1 in the
plane of incidence (since ρsp = 0) independently of the surface-volume correlation, so that
shaping is meaningful only for observation directions outside the plane of incidence. For a given
direction of incidence p0, consider the problem of minimizing the degree of polarization given by
Eq. (17) in an observation direction p, with γ as the free parameter. We note that the minimizer
is necessarily real and satisfies |γ |<1. Indeed, by writing γ = |γ | exp(iϕ) and assuming a fixed
modulus |γ |, minimizing Eq. (17) is equivalent to minimizing

Re
(︁
γ(p −p0)

)︁ (︁
ρζ ,ppρε,pp + ρ

2
sp
)︁
= |γ(p −p0)| cos ϕ

(︁
ρζ ,ppρε,pp + ρ

2
sp
)︁

. (19)

Depending on the sign of the factor ρζ ,ppρε,pp + ρ
2
sp, we find that the minimum is reached

for ϕ = 0 or ϕ = π, forcing γ to be real. The problem of minimizing P(p) is thus reduced to a
one-dimensional problem with variable γ and is analyzed in detail in Appendix B. The minimum
is found for an optimal correlation modulator γ⋆ given by

γ⋆(p −p0) = −

2
(︂
ρζ ,ppρε,pp + ρ

2
sp

)︂
ρ2ζ ,pp + ρ

2
ε,pp + 2ρ2sp

, (20)

and the corresponding minimum value of the degree of polarization is

P
(p)
⋆ (p, p0) =

|︁|︁ρζ ,pp + ρε,pp
|︁|︁√︂(︁

ρζ ,pp + ρε,pp
)︁2
+ 4ρ2sp

. (21)

Note that these expressions are consistent with the existence of directions exhibiting perfect
depolarization for uncorrelated disorders. Indeed, in the absence of surface-volume correlation,
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Fig. 5. (a) Optimal correlation modulator γ⋆ versus the observation direction p̂ = (p̂1, p̂2)

and (b) the corresponding degree of polarization P
(p)
⋆ (p). The black or white dots indicate

the directions of perfect depolarization for γ = 0 taken from Fig. 3(a). The remaining
parameters are the same as in Fig. 3.

the directions p of perfect depolarization are characterized by the equation ρζ ,ppρε,pp + ρ
2
sp = 0

[15]. When this condition is satisfied, we immediately find from Eq. (20) that γ⋆ = 0. Since in
these directions we also have ρζ ,pp = −ρε,pp (see section 5.1), we also find that the corresponding
degree of polarization vanishes.

To get a more general picture in the presence of surface-volume correlations, we show
the optimal correlation modulator γ⋆ versus the observation direction in Fig. 5(a), and the
corresponding degree of polarization in Fig. 5(b). The two directions corresponding to perfect
depolarization for uncorrelated disorders are indicated by the black or white dots in Fig. 5, both
lying on the contours γ⋆ = 0 and P

(p)
⋆ = 0 as expected. We also see in Fig. 5(b) that the degree

of polarization vanishes on a contour indicated by the dark red color, and defining a range of
observation angles over which the scattered light is fully depolarized. To define this contour, we
can set the right-hand side of Eq. (21) to zero, which leads to the condition ρζ ,pp + ρε,pp = 0.
Recalling the definition of the polarization coupling factors in Eq. (11), we find that perfect
depolarization is obtained for observation directions p satisfying

t(p)12 (p) ê+2,p(p) ·
[︂
ê−1,p(p0) + r(p)21 (p0) ê+1,p(p0) + ê−2,p(p0) t(p)21 (p0)

]︂
= 0 . (22)

This implicit equation defines the dark red contour in Fig. 5(b).
Remarks — At this point we can make a few remarks. The discussion and equations presented

previously in this section were obtained under the assumption that the surface and volume
disorders had equal strengths and equal correlation lengths. It is difficult to establish general
results if these assumptions are not met. Nevertheless, a general trend can be identified as follows.
For a fixed direction of incidence, the expression for the degree of polarization depends on the
scattering direction. For different forms of the power spectra and equal global scattering strength
(i.e., integrated over all directions) one may have a region of scattering directions for which⟨︁
|s|2

⟩︁
>

⟨︁
|v|2

⟩︁
, a region for which

⟨︁
|s|2

⟩︁
<

⟨︁
|v|2

⟩︁
, and a contour on which

⟨︁
|s|2

⟩︁
=

⟨︁
|v|2

⟩︁
. We

may expect to observe identical depolarization on this contour as that observed in the case studied
in this section, and a degree of polarization going progressively towards unity away from the
contour. The typical width around this contour within which significant depolarization will be
observed should depend on the rate at which the two power spectra differ from one another away
from the contour

⟨︁
|s|2

⟩︁
=

⟨︁
|v|2

⟩︁
; the faster they differ the narrower this characteristic width.

Again, since depolarization will strongly depend on the forms of the power spectra
⟨︁
|s|2

⟩︁
and⟨︁

|v|2
⟩︁

and the scattering strengths, it is difficult to determine the general depolarization behavior.
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For the sake of clarity in communicating the main results of this work, we assumed a particular
class of scattering systems for which the power spectra and the strengths are the same. We leave
a discussion of the more general case for future work.

6. Conclusion

In summary, we have derived a general expression for the degree of polarization of the light
scattered from a weakly scattering layer exhibiting both surface and volume scattering. This
expression puts forward the direct connection between the degree of polarization and the cross-
correlation function of the surface and volume disorders. We have analyzed depolarization of the
backscattered light for uncorrelated, perfectly correlated and partially correlated disorders. The
analysis shows that measuring the degree of polarization could be used, in principle, to assess
the statistical correlation between the surface roughness and the bulk dielectric fluctuations. In
addition, an appropriate shaping of the correlation function could be used to shape the degree
of polarization over a range of scattering angles. Manufacturing such samples could be done
by a combination of techniques such as direct laser writing and lithography for example, or via
self-organization processes such as the recently demonstrated phase separation of thin barium
borosilicate layers [24,25]. As an alternative, engineering the cross-correlation between the
surfaces of a randomly rough film (for which the general analysis developed in this work also
holds) could potentially be simpler to achieve, either by lithography techniques [19,20] or by
successive and controlled exposure of speckle patterns onto photosensitive coatings.

A. Expression for the degree of polarization for a p-polarized incident wave

In this appendix we derive Eq. (17). For correlated surface and volume disorders, making use of
properties (12), it is easy to show that Eq. (16a) can be rewritten as

det J(p) =
⟨︁
|s|2

⟩︁ ⟨︁
|v|2

⟩︁ |︁|︁ρζ ,pp − ρε,pp
|︁|︁2 ρ2sp + 4Re

(︁
⟨sv∗⟩

)︁2
ρζ ,pp ρε,pp ρ

2
sp

−

|︁|︁|︁ρζ ,pp ⟨sv∗⟩ + ρε,pp ⟨vs∗⟩
|︁|︁|︁2ρ2sp .

(23)

From the expressions for the various covariances derived in Ref. [23] (see Eqs. (D4-D6) in
[23]) we obtain

det J(p)(p, p0) =

[︄
k4

0
4|α2(p)|2

]︄2

(ε2 − ε1)
2σ2

ζσ
2
εL2 ˜︁Wζ (p −p0)

˜︁Wε(p −p0) ρ
2
sp(p, p0)

×

[︄ |︁|︁ρζ ,pp(p, p0) − ρε,pp(p, p0)
|︁|︁2 + 4Re(γ(p −p0))

2ρζ ,pp(p, p0) ρε,pp(p, p0)

−

|︁|︁|︁ρζ ,pp(p, p0)γ(p −p0) + ρε,pp(p −p0)γ
∗(p −p0)

|︁|︁|︁2]︄
=

[︄
k4

0
4|α2(p)|2

]︄2

(ε2 − ε1)
2σ2

ζσ
2
εL2 ˜︁Wζ (p −p0)

˜︁Wε(p −p0) ρ
2
sp(p, p0)

×

[︄ |︁|︁ρζ ,pp(p, p0) − ρε,pp(p, p0)
|︁|︁2

+ ρζ ,pp(p, p0)ρε,pp(p, p0)
(︂
4Re(γ(p −p0))

2 − γ2(p −p0) − γ
∗2(p −p0)

)︂
− |γ(p −p0)|

2
(︂
ρ2ζ ,pp(p, p0) + ρ

2
ε,pp(p, p0)

)︂]︄
.

(24)
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Making use of the identity 4(Re z)2 − z2 − z∗2 = 2|z|2 valid for any complex number z, we
finally obtain

det J(p)(p, p0) =

[︄
k4

0
4|α2(p)|2

]︄2

(ε2 − ε1)
2σ2

ζσ
2
εL2 ˜︁Wζ (p −p0)

˜︁Wε(p −p0) ρ
2
sp(p, p0)

×
|︁|︁ρζ ,pp(p, p0) − ρε,pp(p, p0)

|︁|︁2 (︂
1 − |γ(p −p0)|

2
)︂

= det J(p)uncor(p, p0)
(︂
1 − |γ(p −p0)|

2
)︂

.

(25)

To complete the derivation of the degree of polarization, we need to compute the trace of the
coherence matrix, and we obtain

Tr J(p)(p, p0) =
k4

0
4|α2(p)|2

[︄
(ε2 − ε1)

2σ2
ζ
˜︁Wζ (p − p0)

(︁
ρ2ζ ,pp + ρ

2
sp
)︁
+σ2

εL2 ˜︁Wε(p −p0)
(︁
ρ2ε,pp + ρ

2
sp
)︁

+ 2Re
(︁
γ(p −p0)

)︁
(ε2 − ε1)σζ ˜︁W1/2

ζ (p −p0)σεL˜︁W1/2
ε (p −p0)

(︂
ρζ ,ppρε,pp + ρ

2
sp

)︂]︄
=Tr J(p)unco(p, p0)

+ 2Re
(︁
γ(p −p0)

)︁
(ε2 − ε1)σζ ˜︁W1/2

ζ (p −p0)σεL˜︁W1/2
ε (p −p0)

(︂
ρζ ,ppρε,pp + ρ

2
sp

)︂
.

(26)
In the conditions |ε2 − ε1 |σζ = σεL and ℓζ = ℓε , that are assumed in the main text, we obtain

after some simplifications

P(p)(p, p0) =

⎡⎢⎢⎢⎢⎢⎣1 −
4ρ2sp(ρζ ,pp − ρε,pp)

2 (︁1 − |γ(p −p0)|
2)︁[︂

ρ2ζ ,pp + ρ
2
ε,pp + 2ρ2sp + 2Re

[︁
γ(p −p0)

]︁ (︁
ρζ ,ppρε,pp + ρ

2
sp
)︁ ]︂2

⎤⎥⎥⎥⎥⎥⎦
1/2

, (27)

which is Eq. (17) in the main text.

B. Minimization of the degree of polarization

In this appendix we derive Eqs. (20) and (21). We have seen in section 5 that the degree
of polarization may be minimized with γ as a free parameter, and that the minimizer is real
valued. This means that we can search the point |γ⋆ | such that ∂P(p)/∂ |γ | = 0, or equivalently,
∂

(︁
P(p))︁2

/∂ |γ | = 0. Using the notations A = 4ρ2sp(ρζ ,pp − ρε,pp)
2, B = ρ2ζ ,pp + ρ

2
ε,pp + 2ρ2sp, and

C = 2
|︁|︁ρζ ,ppρε,pp + ρ

2
sp
|︁|︁, we can write[︂

P(p)
]︂2
= 1 −

A
(︁
1 − |γ |2

)︁[︂
B − C |γ |

]︂2 , (28)

from which we find that

∂
[︁
P(p)]︁2

∂ |γ |
= 2A

|γ |(B − C |γ |) − C(1 − |γ |2)[︂
B − C |γ |

]︂3 . (29)

The minimizer |γ⋆ | is the solution to the equation

|γ⋆ |(B − C |γ⋆ |) − C(1 − |γ⋆ |
2) = 0 , (30)
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which immediately leads to

|γ⋆ | =
C
B
=

2
|︁|︁ρζ ,ppρε,pp + ρ

2
sp
|︁|︁

ρ2ζ ,pp + ρ
2
ε,pp + 2ρ2sp

. (31)

Since sign(γ⋆) = −sign(ρζ ,ppρε,pp + ρ
2
sp), we end up with

γ⋆=−
2
(︂
ρζ ,ppρε,pp + ρ

2
sp

)︂
ρ2ζ ,pp + ρ

2
ε,pp + 2ρ2sp

. (32)

By inserting Eq. (32) into Eq. (28) we also find that[︂
P

(p)
⋆

]︂2
= 1 −

A
(︁
1 − C2

B2

)︁[︂
B − C2

B

]︂2 = 1 −
A

B2 − C2 ,

= 1 −
4ρ2sp(ρζ ,pp − ρε,pp)

2(︂
ρ2ζ ,pp + ρ

2
ε,pp + 2ρ2sp

)︂2
− 4

(︁
ρζ ,ppρε,pp + ρ

2
sp
)︁2

.

(33)

The denominator of the second term on the right-hand side can be recast as(︂
ρ2ζ ,pp + ρ

2
ε,pp + 2ρ2sp

)︂2
− 4

(︂
ρζ ,ppρε,pp + ρ

2
sp

)︂2
=(︁

ρζ ,pp − ρε,pp
)︁2

[︂ (︁
ρζ ,pp + ρε,pp

)︁2
+ 4ρ2sp

]︂
,

(34)

which finally leads to [︂
P

(p)
⋆

]︂2
=

(︁
ρζ ,pp + ρε,pp

)︁2(︁
ρζ ,pp + ρε,pp

)︁2
+ 4ρ2sp

. (35)

This completes the derivation of Eqs. (20) and (21) in the main text.
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