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Abstract: In this paper we present an output feedback control system for dynamic
positioning of underactuated AUVs. The control objective is to maintain a desired
distance to the target while orienting the vehicle towards the target at all times.
The vehicle’s location on the sphere circumference around the target can be
arbitrary. In fact, this position is determined by current loads acting on the
vehicle. Hence, the control scheme presented is a weather-optimal system in the
sense that the vehicle automatically will orient itself towards both the target and
the current. The complete output feedback system is proven ULAS by Lyapunov
theory. Furthermore, by analyzing the inherent dynamics of the controller for the
unactuated states, it is shown that the sway and heave velocities converge to a
bounded set. A case study on the Minesniper shows satisfactory performance in
relatively harsh current conditions. Copyright(c)2006 IFAC
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1. INTRODUCTION

Subsea installations entail various demands for
survey, inspection and repair work executed by
unmanned devices such as AUVs/ROVs. A com-
mon method is to use a fully actuated ROV to
complete the various tasks. These vehicles are
usually energy demanding and they have often
poor range and speed capabilities. With a grow-
ing number of subsea installations, it is likely to
believe that properties such as low cost, fault-
tolerant, speed and range capabilities will become
more emphasized for survey and inspection mis-
sions.

The control problem addressed in this paper is
motivated by the Minesniper developed by Kongs-
berg ASA, Norway. The AUV /ROV is a low cost,
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torpedo shaped underwater vehicle designed for
rapid mine hunting and destruction. There are,
however, several additional applications that may
be suitable for this device, such as inspection and
survey. The vehicles carries a sonar and a video
camera in order to detect and visualize the target.
Since the vehicle is designed with focus on low
cost, the number of on-board sensors and actua-
tors is limited. Nevertheless, by including an ob-
server providing velocity estimates and carefully
designing the control system, a high degree of ma-
noeuvrability and tracking accuracy is obtainable.

For industrial related purposes, the control scheme
presented in this paper can be useful for sev-
eral reasons. First, regarding important proper-
ties such as reliability and fault-tolerant control.
A mission may still be completed even though
certain sensors or control actuators malfunction.
Second, utilizing this approach may reduce the
costs and the design complexity since the amount



of on-board equipment is limited. Finally, this
method minimizes the energy consumption dur-
ing the dynamic positioning (DP) operation. This
increases the endurance, which is an important
property for underwater vehicles.

Control and stabilization of underactuated AUVs
have been studied by numerous authors over the
last decade. Aguiar and Pascoal (2002) have pro-
posed a controller designed for horizontal DP and
way-point tracking of the underactuated vehicle
SIRENE in the presence of ocean currents. Expo-
nential stabilization of the position and attitude of
an underactuated AUV is presented in Pettersen
and Egeland (1999). Inspired by the weather op-
timal control system designed for surface vessels
and rigs in Fossen and Strand (2001), we pro-
pose an output feedback controller scheme for DP
of underactuated AUVs, which is proven locally
asymptotically stable. The unactuated states are
proven bounded by analyzing the inherent dynam-
ics of the controller, which method is inspired by
Fossen et al. (2003). Results indicates that the
control scheme designed based on the modified
control plant model provides satisfactory perfor-
mance. Furthermore, the target position does not
have to be fixed. Simulations show that by moving
the target location at low rates, accurate position-
ing is maintained.

2. THE CONTROL PLANT MODEL

In this section we derive the control plant model,
which the observer and controller design will be
based on. It is well known that the process plant
model of an underwater vehicle, see e.g. Fossen
(2002), exhibits highly nonlinear and coupled dy-
namics increasing the complexity in the controller
and observer design. However, for the control ob-
jective considered in this paper, there are several
valid assumptions that can be applied.

A.1: The velocities are generally small in DP op-
erations. In particular, the angular velocities are
sufficiently small such that the nonlinear Coriolis
forces and moments become negligible.

A.2: When the vehicle is within some radius of
the target, the distance and the bearing between
the target and vehicle are measured. By the use
of sonar and/or video equipment, these measure-
ments can be obtained.

A.3: The pitch angle is limited by |(t)| < 5. For
most underwater vehicles this is realistic given the
inherent restoring moments preventing the vehicle
from large pitch angles.

Based on the these assumptions, we consider the
following control plant model for DP of an under-
actuated AUV

¢(=Rv (1a)
Mv+Dw)v+g(©)=1+b (1b)
b=-T"'b+ Bn (1c)

Fig. 1. Geometrical variables used in 3 dimensional DP
of AUVs.

where ¢ = [p, 5,d,0,9]T. Figure 1 shows the kine-
matics of the strategy used in this paper, both
horizontally and vertically. The variables s [rad]
and d [rad] denote the horizontal and vertical
location on the desired circumference of the target
sphere with radius p;. M, D(v) € R%*5 are the
mass and damping matrices. These are assumed
to be diagonal since the diagonal terms are much
larger than the off-diagonal. Moreover, the damp-
ing is dominated by linear terms. Nevertheless,
for slender vehicles, nonlinear damping, in surge
in particular, may still be decisive at low speeds.
This, however, does not undermine A.1. The grav-
ity vector ¢(©) is a function of the Euler angles
© = [0,¢]T. The bias b is modelled as a Markov
process where T is a diagonal matrix of positive
time-constants. The bias model is driven by some
bounded noise n with a scaling matrix B. It is
included to compensate for unmodelled dynamics
and environmental disturbances. The velocity vec-
tor is given by v = [u, v, w, ¢,7]T, which is defined
in the body-frame. Roll is neglected assuming that
the vehicle is self-stabilizing. The transformation
matrix R yields

—cucB spu —cusB 0 0
—sucf —cp —spcB 0 0
— 0 00
R=F(pg) | 37 0 D 901
1
0 0 0 0—
cl

C() = COS(')’ S() = Sin(')v c #0
/I’ZZZ}*’% /6):9*0
F(py) =diag {1, Iox2/pt, I2x2}

Note that R is non-singular under A.3, and pro-
vided that the desired radius p; is non-zero. In this
paper we consider underactuated vehicles with the
control vector

T=[7 00 7, TT]T (3)

2.1 Preliminaries

Defining the following function d(y) £ D(y)y,
we have by using the mean value theorem that



D(z)x — D(y)y = %d(z)}Z:ZO (x —y) where z is
on the line segment joining = and y. We apply the
following assumption:

A .4: There exists a constant §,, € Ry such that

9 iz)

61 £ || 5=

> 0y >0

Z=Z0

This implies that the hydrodynamic damping in-
cludes a linear term, e.g. D(v)v = Div + Dy (v)v
where D; > 0 is the linear damping matrix.

The following property yields:

P.1: The transformation matrix satisfies the fol-
lowing ~

IRl < Rass [|RTH| < B 4)
where Rys, Ry € Ry under A.3.
We use the following notation in this paper. For
any matrix A(z) = AT (x) > 0 for all x, A,, and

Aps denote the minimum and maximum eigen-
value of A(x) respectively.

3. OBSERVER DESIGN

Since the velocity vector v is not measured, an
observer is needed to provide velocity estimates
for feedback in the controller. Inspired by Celani
(2005), we propose the following observe

(=Ri+ \LC (5a)
M+ D(0)p =7+ R+ A\2MR™' K (5b)
b= T+ kA2K,C (5¢)

where L, K, K, € R>*® are positive definite and
diagonal matrices. The constants A,k > 0 are
suitable scalars, and the error vectors yield ( = (—
é, D=v—0b= b—b. To avoid technicalities using
both the Earth and body-frame, as in (5), we make
the following change of coordinates. Let

ve=C(=Rv, b= Rb
M*=R TMR™, 5*(2) =R T6(z2)R™!

. A
Then, we define the error variables z; = 3

o~

AU A b . . .
To = %, r3 = =, which gives the following error
dynamics

.’)"Jl = )\!L‘Q — )\Lxl (6&)
By = —M*"16%(2)xy + KM*txz — NKx1(6b)
.1'33 = —T_lxg - )\Kbx‘l (6(‘,)

It is assumed that the noise n is zero since the
bias estimator is driven by estimation errors,

(Fossen, 2002).

P.2: The mass matrices M, M* are positive defi-
nite.

Let 2, = [z, 2] 2T]7 denote the complete esti-
mation error vector and x > 0 a suitable constant.

Proposition 1. The origin =, = 0 of the ob-
server error dynamics (6) is globally exponentially
stable (GES) under A.1-4 and if

22K Ly, 2 26% M*,

, AL , B < 7
Ky Ty Ky My, @

X <

Proof: Consider the following Lyapunov function
candidate

1 1 X
V, = §$1TK$1 + 533%:1@2 + 5

Differentiating (8) along the state trajectories
gives

T3 w3 (8)

Vo =aTK(\xy — ALx1) +
2L (= M*716% (2)zy + KM Lo — AKx)
i (=T zs — AKp1) (9)

Then, by completing the squares V, is upper
bounded as follows

Vo < =A(Km L — XK1 /2) 21|
— (65, /My — £/ (2M},) [|22 >
—x(1/Tar = AKypr/2) |3
Hence, if (7) holds, we have that
V, < —allz,|*, a>0 (10)

Consequently, it follows by Lyapunov theory that
the origin z, = 0 is GES (Khalil, 2002).

O

Remark 1. Note that the globalness is given
with respect to the chosen coordinate frame. It
is not topologically possible to obtain results that
are global in SO(3) using any coordinate frame of
SO(3) like Euler angles, Euler parameters, Euler-
Rodrigues parameters or similar. Due to the topo-
logical properties of SO(3) these representations
will either have one singularity or two equilibrium
points, something which precludes global results
on SO(3). The results in this section are thus
considered global in the chosen coordinate frame.

4. OUTPUT FEEDBACK CONTROL

In this section we design a nonlinear controller uti-
lizing the observer backstepping technique (Krsti¢
et al., 1995). This is carried out in two steps. First,
we design a controller assuming that the vehicle
is fully actuated. The complete control system,
consisting of the observer error dynamics and the
tracking error dynamics are then proven stable by
Lyapunov theory. Furthermore, since we are con-
sidering underactuated vehicles, we analyze the
inherent dynamics of the controller which arise
because of the unactuated states i.e. sway and
heave. It will become clear that due to hydro-
dynamic damping in all degrees of freedom, the
velocities of the unactuated states are bounded.



This approach is inspired by work presented in
Fossen et al. (2003).

The control objective is stated as

p(t) = pa(t), 0(t) — 0a(t), ¥(t) — va(t) (11)

as t — o0.

4.1 The Guidance System

The desired trajectories are generated by a ref-
erence model consisting of a 1st-order low-pass
filter cascaded with a mass-damper-spring system,
see Fossen (2002, ch.5). The reference input is
[pt,7(t), —o(t)]T, and the output are the following
continuous and bounded signals

Wd1 = [pd7 0d7 1/)d]T (12&)
wiz = [ua,qa,ra)" = R 'oq1 (12b)
Gz = liva, 4a; )" (12¢)

Note that the angles (t),o(t) are given by the
vehicle’s position relative to the target.

4.2 The Controller

We define the first error vector according to

tzl(h)dh (13)

to

A A
21 = w1 —war + K;

where & = [p,0,4]T and K; > 0. Integral
action is included to avoid steady state error.
Differentiating z; with respect to time yields

1 = R(@y —waz) + Kiz1 + Ra[0, @] + ARLC (14)

where Oy = [1, ¢, 7|7 and

100007 sp —cusf
h:[OOOIO’R2: 0 0 ]
00001 0 0
~ —cucB 0 0
R= 0 1 0 |,c0#0
0 01/ch
Next, we define the following error vector
Zo=0—« (15)
where a = [aq,...,a5]T is a vector of stabilizing

functions and 2y = [221, ...,2275]T. Inserting for
in (15) into (14) results in

41 = R(e;—waz)+ Ki21 +hReo+ Ro[o, 0] + AR LC

(16]
where a; = [ay, ay, as]T. To render (16) stable we
choose «; according to

@i = wag — RY((K; + K1)z1 + Ro[az, a3)") (17)

s

Note that R is singular for |u| = 5, [8] = §, i.e.
when the vehicle is parallel to the sphere tangent.
This is, naturally, because there are no controls
in sway and heave. Hence, we can only achieve

local stability results when employing this control
scheme. The following assumption is applied:

A.5: The initial state of the vehicle satisfies the
following:

n(to)| < 5. 18(t0)| < 5 (18)

This criteria is easy to satisfy by employing for
instance the line-of-sight guidance method prior
to the target area.

Consider then the Lyapunov function candidate
Vi = %lezl where ¢ > 0 is included in order
to increase the design freedom of the controller.

Differentiating V7 with respect to time gives

Vi=—ezl K121 + ezl (hR + RohT) 2,

+ezPARLE (19)
where r
p_[o1000
100100

Next we choose the second Lyapunov function
candidate Vo, = V| + %zg M z5, which differenti-
ating with respect to time yields

Vo=Vi+2 (-D(0)0 —g+7+
NMMRKC+b— Ma) (20)

We choose the controller as

r=D(a)a+g—NMR'KC—b+ Ma
— Koz — €(RThT + BR;)Z} (21)

which results in the following tracking error dy-
namics

AR
+[ IO o, 1T (22)

where f = e(RThT + hRY). Notice that the right
hand side of the system equations (22) includes
the variables s and d, while we consider only the
[21, 22] tracking error dynamics. We thus consider
s and d as general time-varying signals using
forward completeness as in Lorfa et al. (2000). To
this end, the following preliminary assumption is
applied:

P.A.1: The signals s and d exist for all ¢ > tg, i.e.
s,d € L.

Let ; = [zT, 2T, 2117 denote the complete error
dynamics.

Theorem 1. The origin z; = 0 of the error dy-
namics (6) and (22) is uniformly locally asymp-
totically stable (ULAS) under A.1-5, P.A.1 and if
the following conditions are satisfied

2 2K, }
TvKpn' L
(23)

e<2a/(ALy), A< min{



Proof: Consider the radially unbounded decres-
cent and positive definite Lyapunov function can-
didate V; = V, + V5. Differentiating with respect
to time gives

Vt = Vo — €z1TK121 + Ele)\hLé —
23 (8(2) + Ka)zo (24)

Using (10) and completing the squares results in

Vi < —(a—eAlar/2) 20> = (3 + Kom) [|22]?
—& (Kim — ALar/2) |21
(25)

Hence, the origin z; = 0 is ULAS if (23) is
satisfied.

O

Remark 2. The control scheme presented in this
section can be modified for AUVs with control
actuators in sway and/or heave by expanding the
desired state to e.g. wai = [pa, Sd, da,0a,Va]T.
Care should be taken for desired vertical attack
angles dg = {0,27} to avoid singularity.

4.8 Stability of the Unactuated States

Inspired by Fossen et al. (2003) we now consider
the fact that the vehicle is underactuated, re-
calling the control vector (3). This results in a
dynamic constraint in the controller for the unac-
tuated states, i.e. sway and heave. By analyzing
the dynamics of the controller we show that the
velocities in sway and are bounded.

From (21) we have that

7=D(a)a+ Mda— f(.) (26)
FOO=NMR 'K+ b+ Koz — g+
e(RTRY 4+ hRT) 2, (27)

where the bounded and converging variables are
collected in the function f(-) = f(E, ¢, 21, 22).
Furthermore, we insert (3) into (26), which leads
to the following dynamic constraint on the & £
[, a3]T-dynamics

Ma+ D(a)a = h' f(-) (28)

where M = diag{ma2, m33} and D = diag{dao, d33}.

It is clear from the Lyapunov analysis in Section
4.2 that the zo-dynamics are stable provided that
the control vector 7 satisfies equation (21). For
surge, pitch and heave, the obvious choice is to
design the stabilizing function «; rendering the
z1-dynamics stable since we can assign 7,, 7, and
7, arbitrarily. Then, [u,q,7]T — a; since zp — 0
as t — oo. This is, however, not feasible for the
unactuated states. Instead, & must satisfy the
differential equation (26), which arises since there
are no controls in sway or heave. However, the
zo-dynamics are nevertheless ULAS provided that

(21) is satisfied. Hence, we use the signals collected
in x; as input to the a-subsystem.

We proceed by showing that the a-subsystem is
input-to-state stable from f to a. This is seen
by applying for instance Vi = %&TM @ which
differentiating along the solutions of & gives

Vo = —a"D(@a+a"h’ f() (29)

This results in the following upper bound
Va < —(0m —e) llal* = efla” + llall [ f()] (30)
whf)re e > 0 is scalar. Hence, we have that V,—l <
~(6m =€) lal*, ¥llall = LI|f(-)||- Therefore, @
converges to the bounded set {a : [|al| < L || f(-)]|}.
Moreover, since z3(t) — 0 and z,(t) — 0 as

t — oo, it follows that a(t) — [v(t),w(t)]T as
t — o0.

4.4 Forward Completeness of the Overall System

In this section, we prove that the preliminary
assumption P.A.1 holds. This is carried out by
showing forward completeness of the overall sys-
tem.

Proposition 2. The time-varying vector I'(t) =

[z1, aT]T exists for all t > t.

Proof: Consider the following Lyapunov function
Vie=Vi+Va+ %bTb. Differentiating Vy. using
(24) and (29) gives Vi. < 2T ARLC + aThT f(-).
Furthermore, by employing Young’s inequality,
P.1 and using that HgH < |l and Hb’ < lao|l, it

can easily be verified that Vy. < cVy, is satisfied,
where ¢ > 0 is a constant. Hence, the overall
system is forward complete and the vector T'(t)
exists and can be continued for all ¢ > tg.

O

5. CASE STUDY: THE MINESNIPER MKII

The simulations are carried out on the Minesniper
MKIT with length 2m, width 0.17m and weight
40kg. Note that the vehicle model used to test
the derived controller is the highly nonlinear and
coupled process plant model (Refsnes et al., 2006).
The current velocity is set to 0.5m/s from South
East (300deg.). White noise is added to the state
measurements (. Figure 2 shows the horizontal
position of the Minesniper MKII performing DP
on a target at bm depth and with desired radius
pt = bm. The green square [10,0)m denotes the ini-
tial aiming target whereas the blue diamonds rep-
resent a moving target with final location [25,5]m,
denoted by the red star. It is seen from Fig. 2, that
due to the current, the vehicle orients itself to-
wards both the target and the current, illustrating
the weather optimal property. Figure 3 presents
the tracking trajectories and tracking errors. The
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Fig. 2. Horizontal position of the Minesniper MKII in DP.
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Fig. 3. Left: Desired tracking trajectories. Right: Tracking
error. Bottom: a — [v, w]T.

figure shows satisfactory tracking performance.
Moreover, the two bottom plots present the error
between the & and the actual velocities in sway
and heave, respectively.

6. CONCLUSION

An output feedback controller has been developed
for DP of an underactuated AUV. It consisted of
a nonlinear Luenberger observer and a controller
that was designed using the observer backstepping
technique. The control objective was to orient the
vehicle towards the target while keeping a fixed
distance to the target at all times. By employing
conventional Lyapunov theory, the total error
dynamics consisting of the estimation errors and

the tracking errors, were proven ULAS. Moreover,
it was shown that the velocities in sway and
heave converged to a bounded set by analyzing the
inherent dynamics of the controller that arose for
the unactuated states. Simulation results showed
that the method provided accurate positioning,
and that it was weather optimal in the sense that
the vehicle automatically converged to the stable
equilibrium position oriented towards the target
and the current.
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