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Abstract

This thesis investigates distributed machine learning for emerging Internet of Things
(IoT) and Cyber-Physical Systems (CPS) applications. These applications involve
large-scale data collection from distributed, often privately owned devices, which
raises many logistical, moral, and legal issues if centralized processing is used.
Therefore, this thesis explores how to take advantage of the local processing power
of the devices and enable them to collaborate via inter-device communication to
achieve a common learning goal without explicit disclosure of local data.

Federated learning is a framework for distributed machine learning that can ad-
dress these issues. This thesis aims to develop and analyze new federated learning
algorithms that overcome some of the practical challenges of distributed machine
learning encountered in IoT and CPS settings. In particular, it tackles the following
challenges.

• The scalability of the distributed machine learning architecture with respect
to the increasing number of participating devices.

• The privacy preservation of the data owners from both external and internal
adversaries.

• The robustness and efficiency of the distributed machine learning process
under resource constraints and device failures.

• The personalization of the machine learning models for different devices
and tasks within the same network.

The main contributions of this thesis are as follows. The first contribution of this
thesis is to propose a peer-to-peer federated learning algorithm in which the par-
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ticipating devices collaborate without the need for a coordinator while preserving
their confidentiality. Secondly, we devise a robust online federated learning al-
gorithm that can handle resource-constrained devices with sporadic participation
and failures, as well as delays in a single-server architecture. Third, we develop a
multi-server federated learning algorithm that supports personalized model train-
ing for device-specific tasks while preserving the data privacy of the participants.
Finally, we advance peer-to-peer personalized federated learning with reinforce-
ment learning techniques to enhance localized personalized learning.
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Chapter 1

Introduction

As more and more devices are given sensing and communication capabilities, the
Internet of Things (IoT) is unveiling new opportunities to improve our surround-
ings and lives. It is a centerpiece of many current advancements, such as Cyber-
Physical Systems (CPS), Industry 4.0, smart healthcare, smart city, smart home,
etc., and is yet to be utilized to its full potential. More importantly, the number of
connected devices in our environment and the average device data-gathering ca-
pacity are increasing exponentially, leading to the availability of much more data
than what our current infrastructure can handle and utilize [1]. An IoT network cre-
ates added value by extracting information from the data collected by distributed
devices, a process known as learning. This information can be used for inference
and decision-making, either manual or automated. Many systems rely upon such
data-driven mechanisms, such as anomaly detection, autonomous vehicles, public
transport optimization, and weather prediction.

However, making the original device output, also called raw data, available to the
end user is neither efficient nor desirable [2]. The sheer quantity of data gathered
by modern connected devices is a strain on existing infrastructure; and for devices
equipped with cameras and microphones, for instance, the recordings can contain
private information subject to regulations such as GDPR. Given that most exist-
ing devices possess local computational power, extracting the desired information
from the data locally and sharing only its compact mathematical representation,
called a model, is preferable. This reduces the communication load and, therefore,
the strain on the digital infrastructure, and diminishes the privacy risks associated
with the information transfer. Moreover, this distributed approach presents the ad-
vantage of reducing the computational load of the device receiving the models, as
those are easier to analyze than raw data. In particular, existing servers and cloud
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2 Introduction

architecture, usually serving as aggregators, could not handle the quantity of data
generated by modern distributed devices [3].

Another challenge associated with the IoT is the diversity of participants in mod-
ern applications. While traditionally identical ad-hoc sensors would be deployed
for a specific task, recent applications rely on the voluntary participation of various
devices. Those devices may be positioned at the edge, meaning they might be in-
termittently available, suffer from resource constraints, be concurrently solicited,
or stop functioning. For instance, smartphones with varying amounts of relevant
information and battery may participate in a variety of learning tasks through ap-
plications. Alternatively, surveillance cameras with limited communication and
computation capacity may be employed to supplement the existing infrastructure
in smart city planning. In those and many other applications, device diversity and
imperfect communication channels lead to uneven participation and delays in the
exchanged messages. Statistical heterogeneity refers to the disparity of devices’
data quantity and quality, while system heterogeneity refers to the devices’ various
computational and communication capacities. Both of those pose challenges to the
effective utilization of IoT networks [4–7].

Considering these concerns, it is imperative that large-scale networks establish a
trustworthy and reliable distributed learning framework capable of learning from
heterogeneous data arising over a myriad of devices with varying capabilities while
complying with the individual privacy preferences of data holders.

Federated Learning (FL), illustrated in Fig. 1.1 on the right, is a distributed learn-
ing framework that addresses many of the abovementioned challenges and can be
extended to address many more. It has been proposed in [3] as an alternative to
centralized learning, illustrated in Fig. 1.1 on the left. In FL, numerous and varied
distributed devices, called clients, perform local learning on their own data. These
clients then transfer their models to the server or cloud for aggregation into a global
model. At this stage, a weighting mechanism may be implemented to emphasize
specific clients’ data. Subsequently, the server communicates the global model
back to the clients to replace their local model. This iterative procedure continues
for a predefined number of iteration rounds or until a pre-specified convergence
criterion is met, allowing a network of devices to learn from each other. FL can
seamlessly handle unbalanced data across large-scale networks with varying stat-
istical properties.

Unfortunately, the original definition of FL fails to scale with the exponentially
growing number of IoT devices and the ever-increasing needs of learning tasks.
In particular, the single-server architecture is strained in applications where many
devices exchange high-dimensional models. This has led to alternative architec-
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Figure 1.1: Conventional learning over distributed devices where data is moved (left) and
a typical FL implementation where models are exchanged (right).

tures such as networked FL [8] and graph FL [9] that scale efficiently with the
growing number of clients. As well as alternative FL implementations that further
reduce the communication and computation strain on the distributed devices and
server [10–12]. This latter alternative presents the advantage of making participa-
tion in the learning task more accessible.

As the size of the FL network increases, and more geographically dispersed and
diverse clients take part in the learning process, the growing diversity among the
participating devices becomes inconsistent with the single global model. Instead of
splitting the network into smaller networks and missing out on potential collabor-
ation between distant devices, it is preferable to allow the network to learn several
models [13]. Personalized FL enables FL networks to learn as many models as
there are clients or groups of similar clients, called clusters. To do so, it utilizes
intra-cluster and inter-cluster learning, referring to learning from clients with sim-
ilar and different learning tasks, respectively [14–16]. Careful weightage of intra-
and inter-cluster learning enables personalized FL to achieve great performance in
applications where device-specific behaviors are expected [17].

Many modern devices, such as autonomous vehicles [18], smart healthcare devices
[19], and augmented reality glasses, can benefit from participating in an FL pro-
cess. However, these devices are used for time-sensitive applications and cannot
repeatedly re-train models using all the available data. More so, for some of them,
such as autonomous vehicles, reacting quickly to changes in the environment is
paramount. Online FL has been developed for such applications. In online FL,
clients share models learned from the last available section of their data stream,
and the server rapidly updates and redistributes the global model on-the-fly [20].

Although raw data is not exchanged between devices in FL, the exchanged models
are learned from this data and, therefore, contain a part of its information. Ex-
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ternal eavesdroppers or honest-but-curious participants may take advantage of this
privacy hazard. Such adversaries can infer private information by reconstructing
the data from the models, so-called reconstruction attacks. As in most applications,
not all devices can be trusted; one must ensure that the clients do not jeopardize
their data privacy by participating in the learning process. To do so, it is common to
implement local privacy-preserving mechanisms that limit the clients’ information
leakage, such as differential privacy [21].

This thesis responds to the growing academic and industrial interest in FL. It takes
part in the scientific community’s endeavor to design, analyze, and evaluate FL
algorithms that overcome the real-world challenges of distributed machine learn-
ing. Since FL involves trade-offs between various constraints and performance, no
single algorithm can be optimal across a wide range of applications. This thesis
advances the field of FL by developing new solutions that address limitations in
the existing literature and meet practical needs.

1.1 Objectives
The purpose of this thesis is to design, analyze, and implement FL algorithms to
solve learning tasks that arise in the real world. In particular, we concentrate on
four key aspects: scalability, data privacy, personalization, and performance. The
objectives can be summarized as follows.

O1 To provide a learning architecture that scales with the number of participat-
ing devices and accommodates their potential resource constraints.

O2 To safeguard the data integrity and privacy of the participating devices from
external and internal adversaries.

O3 To enable the learning of personalized models while taking advantage of the
global learning process.

1.2 List of Publications
The results contained in this thesis are published in eight papers. They include four
conferences, three journals, and a magazine. Below is the list of the publications.

P1 F. Gauthier, C. Gratton, N. K. D. Venkategowda and S. Werner, "Privacy-
Preserving Distributed Learning with Nonsmooth Objective Functions", in
Proceedings of Asilomar Conference on Signals, Systems, and Computers,
November, 2020.



1.3. Structure and Contributions 5

P2 F. Gauthier, C. Gratton, N. K. D. Venkategowda and S. Werner, "Private
Networked Federated Learning for Nonsmooth Objectives", submitted to
Elsevier Signal Processing.

P3 F. Gauthier, V. C. Gogineni, S. Werner, Y. Huang, and A. Kuh, "Resource-
aware asynchronous online federated learning for nonlinear regression", in
Proceedings of IEEE International Conference on Communications, May,
2022.

P4 F. Gauthier, V. C. Gogineni, S. Werner, Y. Huang, and A. Kuh, "Asynchron-
ous Online Federated Learning with Reduced Communication Requirements",
in IEEE Internet of Things Journal.

P5 F. Gauthier, V. C. Gogineni, S. Werner, Y. Huang, and A. Kuh, "Clustered
Graph Federated Personalized Learning", in Proceedings of Asilomar Con-
ference on Signals, Systems, and Computers, October, 2022.

P6 F. Gauthier, V. C. Gogineni, S. Werner, Y. Huang, and A. Kuh, "Personalized
Graph Federated Learning with Differential Privacy", in IEEE Transactions
on Signal and Information Processing over Networks.

P7 F. Gauthier, V. C. Gogineni, and S. Werner, "Networked Personalized Fed-
erated Learning Using Reinforcement Learning", in Proceedings of IEEE
International Conference on Communications, June, 2023.

P8 V. C. Gogineni, S. Werner, F. Gauthier, Y. Huang, and A. Kuh, "Personalized
online federated learning for IoT/CPS: challenges and future directions", in
IEEE Internet of Things Magazine, December, 2022.

1.3 Structure and Contributions
The rest of this thesis is organized as follows. Chapter 2 provides an overview
of the various FL architectures and variations relevant to this thesis, as well as an
introduction to differential privacy in the context of FL. The contribution of this
thesis is divided into four chapters, each addressing the abovementioned research
objectives in a different manner.

• Chapter 3 proposes a peer-to-peer FL algorithm that does not need a cent-
ral coordinator and protects data privacy with differential privacy. It also
ensures fast convergence and handles nonsmooth objectives.
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• Chapter 4 develops an online FL algorithm dealing with resource-constrained
clients in real-time. It handles poor, unpredictable, and unreliable client par-
ticipation in an agile manner and reduces their load.

• Chapter 5 designs a multi-server FL algorithm that enables cluster-specific
model training for local tasks. It alleviates data scarcity within clusters by
using inter-cluster learning.

• Chapter 6 extends the inter-cluster learning in personalized FL to peer-to-
peer settings by using reinforcement learning to control the amount of inter-
cluster learning at each client, adapting to network topology and data distri-
bution.

Finally, Chapter 7 concludes the thesis and proposes future research directions.



Chapter 2

Federated Learning and
Differential Privacy

This chapter provides the background information required for the rest of the
thesis. Section 2.1 introduces federated learning in its conventional form, as well
as two alternative scalable architectures. Section 2.2 presents online federated
learning, an alternative federated learning framework that operates in real-time
over data streams. Section 2.3 presents personalized federated learning, an ad-
aptation of the federated learning framework in which client-specific models are
learned. Section 2.4 introduces differential privacy, its application to FL, and its
most common variations, including zero-concentrated differential privacy.

2.1 Federated Learning
Many machine learning applications involve multiple devices, each with access to
a portion of the training data. Unlike conventional centralized machine learning
approaches that consolidate all data at a single node, or processing center, distrib-
uted machine learning methods keep the training data decentralized and collaborat-
ively learn a solution. The two main advantages of such approaches are to prevent
raw data transfer, which may lead to privacy and communication challenges, and
to reduce the computational load at the processing center.

Federated learning (FL), introduced in [3], is a distributed machine learning ap-
proach that uses a server to orchestrate the collaborative learning process. It was
designed to handle systems where data distribution across devices the data is im-
balanced and not identically and independently distributed.

In FL, clients train models on their local data and share these models with the

7
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Figure 2.1: Conventional federated learning.

server. The server aggregates all received models into a global model, usually
using a weighted averaging mechanism. This global model is then shared with all
clients, allowing them to benefit from information across the network. The clients
then train their local copy of the global model on their data to form new local
models. This iterative process is repeated until a convergence criterion is met or
after a predetermined number of iterations.

Throughout the thesis, we denote the set of clients as C, where each client repres-
ents a device or node in our distributed learning system. Each client k ∈ C has
access to its own dataset Dk = (Xk,yk) consisting of a data matrix Xk and a re-
sponse vector yk. At iteration n, a client k trains the model w(n)

k using its data Dk

and the global shared model w(n−1). The FL behavior is illustrated in Fig. 2.1, and
a conventional federated learning algorithm is provided in Algorithm. 1, where µ
is the learning rate which controls how much the model changes in response to the
estimated error each time the model weights are updated. The function f repres-
ents the specific objective used to train the models on their respective datasets.

2.1.1 Graph Federated Learning

Although the FL framework offers flexibility over centralized learning, its reli-
ance on a single server to receive the local models trained by all the clients is a
significant limitation. If a given system is poorly scaled or suddenly receives in-
creased participation, the large number of clients and the high dimension of the
models to be shared would strain the communication channels and can lead to
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Algorithm 1 Conventional federated learning algorithm

1: Initialization: w(0) and w
(0)
k , k ∈ C are set to 0

2: Procedure at client k
3: for iteration n = 1, 2, . . . do
4: Receive w(n) from the server.
5: w

(n+1)
k = w(n) + µf(Dk).

6: Share w
(n+1)
k with the server.

7: end for
8: Procedure at the server
9: for iteration n = 1, 2, . . . do

10: Receive w
(n)
k from all clients k ∈ C

11: w(n+1) = 1
|C|
∑

k∈C w
(n)
k .

12: Share w(n+1) with the clients.
13: end for

blockages. Furthermore, the potentially complex aggregation mechanisms hand-
ling many local models at the server might create computational bottlenecks, thus
limiting the learning speed.

Several works have studied alternatives to the single-server FL architecture to ad-
dress this limitation. Among them, [22] proposes a graph federated learning archi-
tecture comprising several interconnected servers, each associated with its own set
of clients. In graph FL, learning is done in two stages. First, each server performs
learning with its respective clients, referred to as intra-server learning. Thereafter,
the servers, amongst themselves, perform distributed learning, referred to as inter-
server learning.

Figure 2.2 illustrates a graph federated architecture. A server s is associated with
the clients in the set Cs, maintains a local model ws, and can communicate with the
servers in its neighborhood Ns. By convention throughout the thesis, s is included
in Ns and we denote N−

s = Ns\s. At iteration n, a client k ∈ Cs uses its local
data and the model w(n−1)

s to update its local model wk, which is then shared with
server s. A server s aggregates the models received from the clients in Cs and share
this aggregate with its neighbors in Ns. It then uses the aggregates received from
its neighbors alongside its own aggregate to form the model w(n)

s , which is then
shared with the clients in Cs.
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Figure 2.2: Graph federated learning.

2.1.2 Networked Federated Learning

Networked federated learning is an alternative architecture for FL that also ad-
dresses the limitations associated with a single-server architecture. It relies on
the fully distributed learning architecture, where participating devices or nodes
communicate in a peer-to-peer manner to collaboratively achieve consensus over
a global shared model. Given the limitations of distributed devices, it is assumed
that a given client can only communicate with a limited number of other devices,
its neighbors. The resulting network forms a graph where the clients constitute
the node set, and the presence of a communication channel between two clients
forms an edge. Assuming that the graph is connected, information is transmitted
throughout the network until the clients reach a consensus.

Networked FL typically exhibits slower convergence speed than conventional and
graph FL because information dissemination throughout the network takes longer.
However, its inherent adaptability to dynamic network conditions and robustness
to device failure make it a compelling option for specific applications. In addition,
it is the de-facto architecture in scenarios where the deployment of servers is not
feasible, whether due to logistical constraints or privacy considerations.

Figure 2.3 illustrates a networked architecture. A client k ∈ C can communicate
with the clients in Nk, its neighborhood. By convention throughout the thesis, k
is not included in Nk. For instance, in Fig. 2.3, the neighborhood of client 2 is
composed of clients 1 and 4. At iteration n, a client k ∈ C receives the models
w

(n−1)
l , l ∈ Nk from its neighbors, and uses them alongside its local data Dk to
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Figure 2.3: Networked federated learning.

form its new local model, w(n)
k .

2.2 Online Federated Learning
An IoT network is a typical application where participating clients continuously
receive data. Such data streams collected by edge devices in IoT networks may be
used to perform real-time local learning and update global models. Importantly,
the underlying model is likely to evolve with time. In this regard, more emphasis
should be given to recent data during the learning process. Furthermore, in some
applications, e.g., wireless communications and networked vehicles, the real-time
responsiveness of the model is paramount. Because the traditional FL learns from
fixed data batches that are not usually timely enough, it is not appropriate for these
scenarios. Online federated learning (Online FL) [20] is a viable solution for such
applications.

In online FL, the clients receive continuous streams of data. At each iteration, they
perform local training of their models using the most recent data only, then share
their updated local models with the server. The server aggregates the local mod-
els received from the clients to build the new global model, which is then shared
with the clients and replaces their local models. This behavior makes online FL
learn from streaming data in a computationally efficient manner without requiring
periodic retraining of the model. The learning rate is especially critical in online
FL as it dictates how fast the network can adapt to underlying model change. It
must be fixed according to the expected relative relevance of older and newer data
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Figure 2.4: Online federated learning.

to compromise between accuracy and reactivity of the network.

Figure 2.4 illustrates the behavior of online FL. At iteration n, a client k ∈ C
receives a new stream of data, x(n)

k , y
(n)
k , and uses it alongside the previous server

model w(n−1) to train its local model w(n)
k , which is then shared with the server.

The server uses the received clients’ models to update its model w(n−1) into w(n),
with a carefully chosen learning rate.

2.3 Personalized Federated Learning
In many IoT and CPS applications, such as networked vehicles [18, 23] and per-
sonalized healthcare [19, 24], data from devices exhibit varying statistical prop-
erties due to their geographical dispersion or the intrinsic characteristics of the
underlying processes. The more critical aspect of these edge devices is that they
behave semi-independently and collaborate among themselves mainly to improve
their decision-making capability. Therefore, learning a single universal model for
device-specific tasks is neither reasonable nor realistic. To adequately address
these problems, it is necessary to allow each device to learn and use a local, per-
sonalized model [13, 25–27]. This model corresponds, for instance, to a networked
vehicle’s close neighborhood and a patient’s health status. In some other applica-
tions, it is convenient for groups of clients, called clusters, to share a single model,
i.e., a personalized model for a cluster instead of an individual client.

The intruiging aspect of these device-specific tasks is that they differ but may be
related [28], i.e., some similarities may exist between the tasks performed by in-
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Figure 2.5: Personalized federated learning.

dividual clients or clusters (e.g., F-similar tasks [29]). It is often necessary to
take advantage of these similarities when a limited amount of data is available at a
single client or cluster to build satisfactory personalized models [17, 28]. Promot-
ing similarities in device-specific tasks during the learning process enables every
client or cluster to build their best-customized models tailored to their local needs.
Striking the right balance between leveraging similarities and maintaining cluster
independence is complex and significantly impacts performance. For this reason,
careful control of inter-cluster learning is at the heart of many works on personal-
ized FL.

Figure 2.5 illustrates the behavior of personalized FL. The clients of a cluster q ∈
Q are grouped into the set C(q), Q being the set of clusters. The server’s model
for the clients in C(q) is denoted w(q). At iteration n, a client k ∈ C(q) uses its

local data and the server model w(n−1)
(q) to update its local model w(n)

k , which is
then shared with the server. The server aggregates for each cluster q the models
received from the clients in C(q). It then refines those aggregates with inter-cluster

learning to form the new models w(n)
(q) ,∀q ∈ Q.

2.4 Differential Privacy
One of the major concerns in IoT and CPS is that many emerging distributed sys-
tems, such as smart homes, smart cities, and autonomous vehicles, rely heavily
on data collected from private individuals. Those individuals wish to preserve the
confidentiality of their own data [30]. Most existing works assume the trustwor-
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thiness of all involved devices or of the devices having direct access to shared
sensitive data, which may not be realistic. Encrypting data before communication,
for instance, ensures privacy with respect to external agents but does not offer pro-
tection from compromised or ill-intentioned participants. Moreover, centralizing
private data can lead to potential leaks, for instance, via poor anonymization, as
was the case with Netflix’s user data [31]. A viable approach to ensure data con-
fidentiality with respect to all participants and external devices is to add noise to
the shared data.

In FL, raw data is never shared; only models trained on this data by the participants
are exchanged. Those models, however, contain information about the initial data.
Their confidentiality must, therefore, be preserved as well. Given the distributed
nature of FL, it is challenging to prevent eavesdroppers, i.e., external adversaries
listening to the exchanged messages, and honest-but-curious clients, i.e., particip-
ating clients gathering information to send to a third party, having access to the
models shared by the clients. Those adversaries may attempt to reconstruct the
initial data using the exchanged models in what is called a reconstruction attack or
model inversion attacks [32]. Therefore, mitigating information leakage by adding
noise to the exchanged models is imperative. Naturally, adding noise to the mod-
els diminishes the learning speed and accuracy. For this reason, it is preferable
to perturb the models only as much as necessary to ensure satisfactory privacy
protection.

Differential privacy (DP), introduced in [21], is a mathematical definition that en-
ables the quantification of privacy protection. It quantifies how precisely an ad-
versary may reconstruct data. Adding noise protects clients from reconstruction
attacks by ensuring minimal detectable changes in the output of a random process,
regardless of whether an individual data sample is present during the computation
[21, 33, 34]. Precisely, it corresponds to a bound on the ratio of probabilities of the
output of a random process computed on two neighboring datasets, i.e., datasets
that differ in only one data sample. This can be expressed as

P (K(D1) ∈ S)
P (K(D2) ∈ S) ⩽ eϵ, (2.1)

where K is a random process, S ⊆ range(K), and D1 and D2 are two neighboring
datasets. Note that the exact definition is P (K(D1) ∈ S) ⩽ eϵP (K(D2) ∈ S), so
that the case where both probabilities are null satisfies the property. For simplicity,
we will omit this case and use the expression in (2.1) for the rest of the thesis.
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2.4.1 Local Differential Privacy for FL

In this thesis, we use DP specifically to ensure participants’ privacy in FL al-
gorithms. This can be achieved by either perturbing the local model prior to
communication or perturbing the local objective [35]. We chose to implement
differential privacy in FL by perturbing the exchanged models. That is, if wk is
the model for client k, its perturbed model that is shared with the server or other
clients is given by

w̃k = wk + ξk. (2.2)

We then control the noise perturbation ξk to implement local DP providing satis-
factory protection.

To implement local DP, we see the learning process at the client as a random pro-
cess, where (2.2) ensures randomness even if the training process is deterministic.
The implementation comprises two steps. The first step is to quantify the impact
of an individual data sample on the model. The second step is to control the noise
perturbation to ensure satisfactory protection.

For any variation of DP, the computation of the impact of an individual data sample
on the model is identical. We consider a client k that trains a model w̃k,Dk

on its
dataset Dk. We consider a neighboring dataset D′

k and compute the model w̃k,D′
k

trained on this dataset. Further, we define the l2-norm sensitivity, which quantifies
the impact of an individual data sample on the model, as

∆k,2 = max
Dk,D′

k

||w̃k,Dk
− w̃k,D′

k
||. (2.3)

The second step in the implementation of DP is to decide how much the model
needs to be perturbed to cripple the adversaries’ ability to infer private information.
Two aspects need to be taken into account for this purpose. The first is the subject
of the next section: multiple messages are exchanged in FL, which may increase
an adversary’s ability to infer private information. The second is the subject of the
following sections: different variations of DP exist, each with its own purpose and
privacy-accuracy trade-off.

2.4.2 Privacy Composition for Iterative Processes

An FL algorithm is an iterative process in which server and clients exchange mod-
els until a certain convergence criterion is met. From a privacy standpoint, each
client repeatedly shares models containing information on its local data. In the
worst-case scenario, an adversary will aggregate all the messages a given client
sends to infer information. It is crucial to consider this fact when evaluating the
privacy leakage of a given algorithm.
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At a given iteration n, the effective privacy leakage of client k in an FL algorithm
is equal to the privacy leakage of the set {w̃(i)

k , 0 < i ⩽ n} of the models shared
by this client until the current iteration. This privacy leakage is greater than the
privacy leakage of the last shared model, w̃(n)

k , and increases with the number of
iterations.

It is possible for the privacy budget to evolve dynamically throughout the compu-
tation, leading to iteration-dependent noise perturbation. This is called dynamic
differential privacy [36], and can be illustrated as

w̃
(n)
k = w

(n)
k + ξ

(n)
k , (2.4)

where the noise sequence ξ(n)k for client k is varying. One of the most common
uses of dynamic DP in FL is to increase the privacy budget throughout the compu-
tation to increase accuracy.

Different notions of DP exist and are controlled by different parameters. For each
variation, composition theorems exist, quantifying the privacy guarantees of a ran-
dom process composed of several steps that may have different privacy budgets.
We utilize those theorems to evaluate the privacy leakage throughout the entire
computation. The following sections present the notions most relevant to this
thesis and their composition theorems.

2.4.3 (ϵ) - Differential Privacy

The (ϵ) - DP variation is the original DP definition, illustrated in (2.1) in its math-
ematical form. For a client k participating in an FL algorithm, the (ϵ) - DP of its
training process can be expressed as

P (w̃k,Dk
∈ W)

P (w̃k,D′
k
∈ W)

⩽ eϵ, (2.5)

where W is a subset of the ensemble of possible values for the model w̃k, that
is, W ⊆ Range(w̃k), and w̃k,Dk

and w̃k,D′
k

are models trained on neighboring
datasets Dk and D′

k.

Given (2.5) and the l2-norm sensitivity, one can quantify the noise perturbation
required to achieve the desired level of privacy protection at a given iteration. Fur-
ther, the composition theorem for (ϵ) - DP is available in [33, Theorem 3.15] and
can be expressed as follows.
Theorem 2.1. Let Mi be an ϵi-DP random process for i ∈ {1, . . . , n}. Then the
random process M =

(
M1, . . . ,Mn

)
is
∑n

i=1 ϵi-DP.

This result illustrates that in the event of the composition of several differentially
private random processes, the privacy loss increases in an additive manner.
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2.4.4 (ϵ, δ) - Differential Privacy

The (ϵ, δ)-DP variant is the most commonly used. In this implementation, the two
parameters ϵ and δ dictate the privacy leakage at a given iteration. In practice, this
implementation of DP ensures that at any given iteration, the difference between
two models computed from neighboring datasets is at most ϵ with probability 1−δ.
Precisely, given that the models are perturbed to implement (ϵ, δ)-DP, we have

P

(
P (w̃k,Dk

∈ W)

P (w̃k,D′
k
∈ W)

⩽ eϵ

)
> 1− δ, (2.6)

where W ⊆ Range(w), and w̃k,Dk
and w̃k,D′

k
are models trained on neigbhoring

datasets Dk and D′
k.

The effective privacy leakage increases with the number of exchanged messages.
The composition theorem for (ϵ, δ)-DP is available in [33, Theorem 3.16] and can
be expressed as follows.

Theorem 2.2. Let Mi be an (ϵi, δi)-DP random process for i ∈ {1, . . . , n}. Then
the random process M =

(
M1, . . . ,Mn

)
is
(∑n

i=1 ϵi,
∑n

i=1 δi

)
-DP.

2.4.5 Concentrated and Zero-Concentrated Differential Privacy

Concentrated differential privacy (CDP) was introduced in [37] as a relaxation of
(ϵ, δ)-DP. Its purpose is to enable better accuracy under an identical privacy budget
when several messages are exchanged, making it ideal for iterative algorithms and
the implementation of dynamic DP.

Zero-concentrated differential privacy (zCDP) was introduced in [38] as a relax-
ation of CDP. It builds upon a special case of CDP, and offers a notion easier
to analyze while offering the same benefits. The privacy protection in zCDP is
controlled by a single parameter, ϕ, and its composition theorem is given in [38,
Lemma 1.7] and can be expressed as follows.

Theorem 2.3. Let M1 and M2 be ϕ1- and ϕ2-zCDP random processes, respect-
ively. Then, the random process M =

(
M1,M2) is (ϕ1 + ϕ2)-zCDP.

This theorem is extended in [38, Lemma 2.3] to include the case where the result
of the previous iteration is an input of the following iteration. This theorem can be
expressed as follows.

Theorem 2.4. Let M1 be a ϕ1-zCDP random process, and M2 be a ϕ2-zCDP
random process with respect to its first argument. Then, the random process M =
M1(x,M2) is (ϕ1 + ϕ2)-zCDP.
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We note that Theorem 2.4 is a particular case of [38, Lemma 2.3] as we focus
on ϕ-zCDP which is equivalent to (0, ϕ)-zCDP, the latter being introduced as an
alternative definition of zCDP in [38]. Furthermore, both Theorem 2.3 and The-
orem 2.4 can naturally be extended to encompass n iterations. Finally, we note that
Theorem 2.4 is necessary for FL as the output of a client depends on the previous
global shared model, which depends on this client’s previous estimate.

2.5 Summary
This chapter presented background information to help comprehend the remainder
of the thesis and centralize the definition of concepts used in the following chapters.
In Chapter 3, we will develop a networked FL algorithm for nonsmooth objective
functions that utilize dynamic zCDP. Chapter 4 will focus on online FL in the pres-
ence of unreliable and resource-constrained clients. In Chapter 5, we implement
personalized FL in a graph federated architecture and utilize dynamic zCDP. Fi-
nally, chapter 6 studies personalized FL in a networked architecture where network
topology and data distribution affect the local needs for inter-cluster learning.



Chapter 3

Networked Federated Learning
with Differential Privacy for
Nonsmooth Objectives

This chapter summarizes the results of publication P1 and its extension P2 which
propose a novel differentially private federated learning algorithm for solving op-
timization problems with nonsmooth objective functions. The proposed algorithm
is designed for a networked architecture, where a large number of clients col-
laborate by training local models on their own data and sharing them with their
neighbors. Furthermore, the algorithm is privacy-preserving and protects the local
data of clients from leaking to potential eavesdroppers and honest-but-curious cli-
ents. To protect clients from data leakage, we use the zero-concentrated differ-
ential privacy notion (zCDP), adjusted dynamically throughout the computation.
This privacy notion is well-suited for iterative processes. The algorithm is based
on the Alternating Direction Method of Multipliers (ADMM), a popular method
for solving distributed optimization problems, which is modified to comply with
the networked setting. In addition, we employ an approximation of the augmented
Lagrangian so that convergence can be guaranteed for nonsmooth objective func-
tions. The performance of this algorithm is thoroughly studied, with theoretical
results guaranteeing its privacy protection and convergence to the optimal point
in O(1/n) iterations. Finally, numerical simulations illustrate its performance on
both nonsmooth and smooth objectives.

19
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3.1 Motivation
Networked federated learning, presented in the previous chapter, offers many ad-
vantages over alternative architectures, such as robustness to device failure as well
as communication and computation bottlenecks. In addition, it scales easily with
the number of participants. For these reasons, it is receiving a lot of interest,
and many works utilize this architecture. However, most of those works focus
on smooth objective functions or do not consider the need for data privacy. This
chapter develops a privacy-preserving networked federated learning algorithm cap-
able of handling nonsmooth objectives. Closely related to this work are the two
following ADMM-based networked algorithms: the algorithm in [39] converges
in O(1/n) iterations but is limited to smooth objectives; and the algorithm in [40]
accommodates a nonsmooth regularizer but requires the loss to be smooth and
converges in O(1/

√
n) iterations. In contrast, the proposed algorithm accommod-

ates nonsmooth loss and regularizer and converges in O(1/n) iterations. To do so,
we distribute the ADMM and utilize the first-order approximation of the objective
function. The proposed algorithm outperforms existing methods on both smooth
and nonsmooth objectives while providing identical privacy protection.

In a privacy-preserving algorithm, a compromise must be struck between con-
vergence speed and privacy protection. This is because the privacy-related noise
perturbation degrades performance. However, different privacy notions are better
suited to different assumptions and may lead to different trade-offs and conver-
gence rates. This is the main motivation for using the zero-concentrated differen-
tial privacy (zCDP) notion instead of more conventional notions, such as (ϵ, δ)-DP.
It has been shown that assuming that an adversary will aggregate all the available
messages, zCDP offers a better privacy-accuracy trade-off than (ϵ, δ)-DP [37, 38].
Moreover, we implement zCDP dynamically throughout the computation with de-
creasing noise perturbation variance, this is required to guarantee convergence to
the exact optimal solution. The decreasing mechanism is chosen so that the al-
gorithm converges in O(1/n) iterations. In contrast, typical implementations of
dynamic (ϵ, δ)-DP chose a decreasing mechanism that only enables convergence
in O(1/

√
n), as can be seen, for example, in [41]. Given a fixed number of itera-

tions, the faster decrease rate can be compensated by a higher starting value for the
perturbation noise variance. In the simulation section, we observe how dynamic
zCDP enables better accuracy than dynamic (ϵ, δ)-DP while providing identical
privacy protection throughout the computation.
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3.2 Proposed Method

3.2.1 Distributed Empirical Risk Minimization

We consider a networked architecture; it is modeled as an undirected graph G =
(C, E), where C = {1, . . . ,K} is the set of clients and E is the set of edges. That
is, (k, l) ∈ E if and only if the clients k and l are connected. The set Nk contains
the indexes of the neighbors of client k.

Each client k ∈ C has a private data set Dk := {(Xk,yk) : Xk = [xk,1, . . . ,xk,Dk
]T ∈

RDk×P , yk = [yk,1, . . . , yk,Dk
]T ∈ RDk}, where Dk is the number of data

samples and P the number of features in the data.

The centralized version of the empirical risk minimization problem is given by

min
w

K∑

k=1

(
ℓ(Xk,yk;w) +

λ

K
R(w)

)
, (3.1)

where ℓ(·) is the loss function, R(·) is the regularize function, λ > 0 is the regu-
larization parameter, and w is a global optimization variable.

In a networked setting, relying on a global optimization variable is infeasible. In-
stead, each client maintains a local estimate, and consensus is enforced with aux-
iliary variables. Therefore, we recast the above optimization problem with local
primal variables V := {wk}Kk=1 into:

min
{wk}

K∑

k=1

( 1

Dk

Dk∑

j=1

ℓ(xk,j ,yk,j ;wk) +
λ

K
R(wk)

)

s.t. wk = zlk, wl = zlk, l ∈ Nk, ∀k ∈ C,
(3.2)

where the equality constraints enforce consensus. The auxiliary variables Z :=
{zlk}l∈Nk

are only used to derive the local recursions and are eventually eliminated.
In the following, we consider the learning problem where ℓ(·) and R(·) are convex,
but not necessarily strongly convex or smooth.
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3.2.2 Approximate Augmented Lagrangian

To solve the distributed empirical risk minimization problem with the ADMM, we
employ the augmented Lagrangian associated with (3.2). It is given by

Lρ(V,M,Z) =
K∑

k=1

(ℓ(Xk,yk;wk)

Dk
+

λR(wk)

K

)

+
K∑

k=1

∑

l∈Nk

[
µlT
k (wk − zlk) + γ

lT
k (wl − zlk)

]
(3.3)

+
ρ

2

K∑

k=1

∑

l∈Nk

(
||wk − zlk||2 + ||wl − zlk||2

)

where ρ > 0 is a penalty parameter and M := {{µl
k}l∈Nk

, {γl
k}l∈Nk

}Kk=1 are the
Lagrange multipliers associated with the constraints in (3.2).

Given that the Lagrange multipliers M are initialized to zero, by using the Karush-
Kuhn-Tucker conditions of optimality for (3.2) and setting γ(n)

k = 2
∑

l∈Nk
(γl

k)
(n),

it can be shown that the Lagrange multipliers {µl
k}l∈Nk

and the auxiliary variables
Z are eliminated [42, 43].

After simplification, we obtain the following iterative steps to be computed by each
client k:

w
(n)
k = argmin

wk

[
fk(wk) +wT

k γ
(n−1)
k + ρ

∑

l∈Nk

∥∥∥∥wk −
w

(n−1)
k +w

(n−1)
l

2

∥∥∥∥
2
]

γ
(n)
k = γ

(n−1)
k +ρ

∑

l∈Nk

(
w

(n)
k −w

(n)
l

)
(3.4)

where n is the iteration index and

fk(wk) =
ℓ(Xk,yk;wk)

Dk
+

λR(wk)

K
. (3.5)

To handle nonsmooth ℓ(·) and R(·) functions, we take the first-order approxima-
tion of fk with an l2-norm prox function, denoted as f̂k. Similarly as in [41, 44],
such an approximation is given by

f̂k(wk;V(n)) =
ℓ(Xk,yk;w

(n)
k )

Dk
+

λR(w
(n)
k )

K
+

∥∥wk −w
(n)
k

∥∥2

2η
(n)
k

(3.6)

+
(
wk −w

(n)
k

)T (ℓ′(Xk,yk;w
(n)
k )

Dk
+

λR′(w(n)
k )

K

)
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where V(n) = {w(n)
k , k ∈ C} is the iteration-specific primal variable set, and η

(n)
k

is a time-varying step size.

Taking the first-order approximation of fk leads to an inexact update at a given
iteration; however, the algorithm does not need to solve the problem with high
precision at each iteration to guarantee overall accuracy [41]. In the end, consid-
ering f̂k instead of fk in the primal update makes the algorithm capable of solving
nonsmooth objectives with a minimal impact on overall accuracy.

3.2.3 Privacy Preservation

To prevent leakage of private information, we introduce local differential privacy
to the algorithm via message perturbation. For this purpose, each client k shares
at iteration n with its neighbors the perturbed estimate

w̃
(n)
k = w

(n)
k +ξ

(n)
k (3.7)

with ξ(n)k ∼ N (0, σ
2(n)
k IP ). We denote Ṽ(n) = {w̃(n)

k , k ∈ C}.

The value of the noise perturbation variance, σ2(n)
k , in (3.7) dictates the privacy

protection of the algorithm. To guarantee convergence to the optimal solution, as
opposed to a neighborhood of it, the variance must decrease with the iterations
[45]. This is made possible by using dynamic zCDP, in which the privacy protec-
tion is iteration-dependent.

The proposed zero-Concentrated Differentially Private Networked Federated Learn-
ing (zCDP-NFL) algorithm is detailed in algorithm 2. This algorithm is a net-
worked federated learning algorithm that safeguards client privacy through local
dynamic differential privacy and is capable of handling nonsmooth objective func-
tions. In the following sections, we conduct mathematical analysis to quantify the
level of privacy protection offered by zCDP-NFL and establish its convergence
guarantees..

3.3 Theoretical Results
In this section, we present the theoretical results established for the proposed
zCDP-NFL algorithm. While the detailed mathematical proofs can be found in
the manuscript at the end of this thesis, our focus here is on the various theorems
and their implications on the algorithm’s performance.

3.3.1 Privacy analysis

As developed in the previous chapter, it is first necessary to define the l2-norm
sensitivity to implement differential privacy. The l2-norm sensitivity is defined
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Algorithm 2 zCDP-NFL

Initialization: w(0)
k = 0, γ(0)

k = 0, ∀k ∈ K
– Procedure at client k –
For iteration n = 1, 2, . . .:

w
(n)
k = argmin

wk

f̂k(wk; Ṽ(n−1)) +wT
k γ

(n−1)
k + ρ

∑

l∈Nk

∥∥∥∥wk −
w̃

(n−1)
k + w̃

(n−1)
l

2

∥∥∥∥
2

(3.8)

w̃
(n)
k = w

(n)
k +ξ

(n)
k (3.9)

γ
(n)
k = γ

(n−1)
k +ρ

∑

l∈Nk

(
w̃

(n)
k −w̃

(n)
l

)
(3.10)

End For

as the maximal difference between primal variables computed using neighboring
datasets.

Definition I. The l2-norm sensitivity is given by

∆k,2 = max
Dk,D′

k

∥∥∥w(n)
k,Dk

−w
(n)
k,D′

k

∥∥∥ (3.11)

where w(n)
k,Dk

and w
(n)
k,D′

k
denote the local primal variable updates from two neigh-

boring data sets Dk and D′
k differing in only one data sample (x′

k,Dk
, y′k,Dk

), i.e.,
D′

k := {(X′
k,y

′
k) : X′

k = [xk,1,xk,2, . . . ,xk,Dk−1,x
′
k,Dk

]T ∈ RDk×P , xk,j ∈
RP , j = 1, . . . , Dk,y

′
k = [yk,1, yk,2, . . . , yk,Dk−1, y

′
k,Dk

]T ∈ RDk}.

Two parameters govern privacy protection in dynamic zCDP, namely, the initial
privacy value, ϕ

(0)
k , and the variance decrease rate, ζ. To establish a relation

between the privacy value at a given iteration, ϕ(n)
k , and the noise perturbation,

it is necessary to take the following assumption.

Assumption 1. The functions ℓk(·) have bounded gradient, that is, there exists a
constant c1 such that ||ℓ′k(·)|| ⩽ c1, ∀k ∈ C.

This assumption is common in the literature and helps to establish bounds in the
privacy and convergence analysis. We now quantify the l2-norm sensitivity in the
following result.
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Lemma I. Under Assumption 1, the l2-norm sensitivity is given by

∆k,2(n) = max
D,D′

||w(n)
k,D −w

(n)
k,D′ || ⩽

2c1

Dk(2ρ|Nk|+ 1
η(n) )

. (3.12)

Proof. See P2, Appendix A.

The l2-norm sensitivity quantifies the maximum impact a single difference in the
data set can have on the trained model, which connects to how easy it might be
for an adversary to reconstruct this element of the data. With it, we can establish
the relation between the noise perturbation in (3.9) and the privacy value ϕ

(n)
k ,

quantifying the local privacy guarantee of the algorithm in terms of zCDP.

Theorem I. Under Assumption 1, zCDP-NFL satisfies dynamic ϕ
(n)
k -zCDP with

the relation between ϕ
(n)
k and σ

2(n)
k given by

σ
2(n)
k =

∆
2(n)
k,2

2ϕ
(n)
k

. (3.13)

Proof. See P2, Appendix B.

This theorem quantifies the privacy protection of the proposed zCDP-NFL al-
gorithm in terms of zCDP. That is, given the initial client-specific privacy para-
meter ϕ(0)

k , as well as the decrease rate of the variance of the noise perturbation ζ,
the privacy protection guaranteed for a given client is known for any given iteration
number. Using the result above, it is possible to obtain the total privacy guarantee
throughout the computation in terms of (ϵ, δ)-DP using [38, Proposition 1.3]. We
establish the following.

Corollary. For any ζ ∈ (0, 1) and δ ∈ (0, 1), zCDP-NFL guarantees (ϵ, δ)-
DP throughout the computation with ϵ = max

k∈C
ϵk, where ϵk = ϕ

(1)
k

1−ζT

ζT−1−ζT
+

2
√
ϕ
(1)
k

1−ζT

ζT−1−ζT
log 1

δ , and T is the final iteration index.

Proof. See P2, Appendix C.

This corollary is especially important as it allows us to compare the convergence
properties of algorithms using the zCDP and (ϵ, δ)-DP notions for identical privacy
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protection. We note that since the result of the corollary is valid ∀δ ∈ (0, 1), any
algorithm using (ϵ, δ)-DP with δ < 1 is at an advantage in the comparison.

3.3.2 Convergence analysis

This section proves that the zCDP-NFL algorithm converges to the optimal value in
O(1/n) iterations under the assumption that the objective function f(·) is convex.
Additionally, we derive the privacy-accuracy trade-off bound of the algorithm.

3.3.3 Alternative Representation

We begin by transforming the minimization problem (3.2) into (3.14) by refor-
mulating the conditions. We denote by w = [wT

1 ,w
T
2 , ...,w

T
K ]T ∈ RKP , and

z = [(zlk)
T, (zkl )

T;∀(k, l) ∈ E ]T ∈ R2EP the vectors of the concatenated vec-
tors wk and zlk respectively. We also introduce the matrices A1,A2 ∈ R2EP×KP

composed of P × P -sized blocks. Given a couple of connected clients (k, l) ∈ E ,
their associated auxiliary variable zk,l, and its corresponding index in z, q; the
blocks

(
A1

)
q,k

and
(
A2

)
q,l

are equal to the identity matrix Id, all other blocks are
null. Finally, we set A = [A1;A2] ∈ R4EP×KP and B = [−I2EP ;−I2EP ] ∈
R4EP×2EP . Hence, we can reformulate (3.2) as

min
w

K∑

k=1

( 1

Dk

Dk∑

j=1

ℓ(xk,j ,yk,j ;wk) +
λ

K
R(wk)

)
.

s.t. Aw+Bz = 0

(3.14)

The newly introduced matrices can be used to reformulate the Lagrangian, the ob-
jective function, and the ADMM steps. The conventional augmented Lagrangian
in (3.3) can be expressed as

Lρ = f(w, Ṽ(n)) + ⟨Aw+Bz,λ⟩+ ρ

2
||Aw+Bz||2

where f(w, Ṽ(n)) =
∑K

k=1 f(wk, Ṽ(n)). Similarly, the augmented Lagrangian,
corresponding to the use of the first-order approximation of the objective function
in (3.6), can be expressed as

L̂ρ = f̂(w, Ṽ(n)) + ⟨Aw+Bz,λ⟩+ ρ

2
||Aw+Bz||2

where f̂(w, Ṽ(n)) =
∑K

k=1 f̂k(wk, Ṽ(n)) with f̂k(wk, Ṽ(n)), as defined in (3.6).

From now on, we will denote f̂(w, Ṽ(n)) and f̂k(wk, Ṽ(n)) by f̂(w) and f̂k(wk),
respectively. Further, we let w̃(n), w(n), and ξ(n) denote the concatenation of
w̃

(n)
k , w(n)

k , and ξ(n)k , respectively, such that w̃(n)
= w(n) + ξ(n).
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We introduce the diagonal matrix D(n+1) ∈ RK×K comprising the time-varying
step sizes, i.e., [D(n+1)]k,k = 1√

2η
(n+1)
k

, and reformulate f̂(w(n+1)) in matrix

form:

f̂(w(n+1)) =f(w̃
(n)

) + ||D(n+1) ⊗ IP (w(n+1) − w̃
(n)

)||2

+ (w(n+1) − w̃
(n)

)Tf ′(w̃(n)
) (3.15)

The resulting function f̂ is convex with respect to w. That is, it satisfies f̂(w̃(n)
)−

f̂(w) ⩽ ⟨w̃(n) − w, f̂ ′(w̃(n)
)⟩, where the subgradient f̂ ′(w(n+1)) ∈ RKP is

given by f̂ ′(w(n+1)) = 2D(n+1) ⊗ IP (w(n+1) − w̃
(n)

) + f ′(w̃(n)
).

The steps of the ADMM, consisting of the minimization of L̂ρ with respect to w, z
and λ alternatively, can now be reformulated with the newly introduced variables
as follows:

f̂ ′(w(n+1)) +ATλ(n) + ρAT(Aw(n+1) +Bz(n)) = 0

BTλ(n) + ρBT(Aw̃
(n+1)

+Bz(n+1)) = 0 (3.16)

λ(n+1) − λ(n) + ρ(Aw̃
(n+1)

+Bz(n+1)) = 0

We introduce the following auxiliary matrices in order to reduce (3.16) to two
steps, similarly as in [46]: H+ = AT

1 + AT
2 , H− = AT

1 − AT
2 , α = HT

−w,
L+ = 1

2H+H
T
+, L− = 1

2H−HT
− and M = 1

2(L+ + L−). We note that L+

and L− correspond to the signless Laplacian and signed Laplacian matrices of
the network, respectively. Hence, L− is positive semi-definite with the nullspace
given by Null(L−) = span{1}. Then, as derived in [46, Section II.B], (3.16)
becomes

f̂ ′(w(n+1)) +α(n) + 2ρMw(n+1) − ρL+w̃
(n)

= 0 (3.17)

α(n+1) −α(n) − ρL−w̃
(n+1)

= 0

The last reformulation step is based on the work in [47]. We introduce the mat-
rix Q =

√
L−/2, note that by construction Null(Q) = span{1}, the auxili-

ary sequence r(n) =
∑n

s=0Qw̃
(s), vector q(n) =

(
r(n)

w̃
(n)

)
, and matrix G =

(
ρI 0

0 ρL+/2

)
. Combining both equations in (3.17), as in [47, Lemma 1], and re-

formulating the result, see see [47, Lemma 2], we obtain

f̂ ′(w(n+1))

ρ
+ 2Qr(n+1) +L+(w

(n+1) − w̃
(n)

) = 2Mξ(n+1). (3.18)
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3.3.4 Convergence Theorem

We start by establishing a bound for the distance to the optimal solution, denoted
w∗, at a given iteration.

Lemma II. For any r ∈ RKP and at any iteration n, we have

f(w̃
(n)

)− f(w∗)
ρ

+ ⟨w̃(n)
, 2Qr⟩ (3.19)

⩽ 1

ρ
(||q(n−1) − q∗||2G − ||q(n) − q∗||2G)− 2⟨Qw̃

(n)
,Qw̃

(n+1)⟩ − ||w̃(n) − w̃
(n−1)||2L+

2

+ ⟨w̃(n) −w∗,L+(2w̃
(n) − w̃

(n−1) − w̃
(n+1)

)⟩+ 4(Φmax(L−)2 +Φmax(L+)
2)

Φmin(L−)
||ξ(n+1)||22

+ ⟨w̃(n) −w∗,
2

ρ
D(n+1) ⊗ IP (w̃(n) − w̃

(n+1)
)⟩

where q∗ = [rT , (w∗)T ].

Proof. See P2, Appendix D.

Following the result of Lemma II, we can establish the following theorem from
which we will derive the converge results.

Theorem II. Under Assumption 2, and given the final iteration T > 0, we can
bound the expected error of the zCDP-NFL algorithm as

E[f(ŵ(T )
)− f(w∗)] ⩽ ρ

T

T∑

n=1

(
−2⟨Qw̃

(n)
,Qw̃

(n+1)⟩ − ||w̃(n) − w̃
(n−1)||2L+

2

+ ⟨w̃(n) −w∗,
2

ρ
D(n+1) ⊗ IP (w̃(n) − w̃

(n+1)
)⟩

− ⟨w∗,L+(2w̃
(n) − w̃

(n−1) − w̃
(n+1)

)⟩+ ||w̃(n+1) − w̃
(n)||2L+

)

+
1

T

ρP4(Φmax(L−)2 +Φmax(L+)
2)
∑K

k=1 σ
2(0)
k

Φmin(L−)(1− ζ)

+
⟨w̃(1)

,L+(w̃
(1) − w̃

(0)
)⟩

T
+

ρ||Qw̃
(0)||22

T
+

ρ||w̃(0) −w∗||2L−
2

T
. (3.20)

where ŵ
(T )

= 1
T

∑T
n=1 w̃

(n), and the expectation is taken with respect to the
noise. Since w∗ is the optimal solution, E[f(ŵ(T )

)− f(w∗)] is positive.
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Proof. See P2, Appendix E.

Where Lemma II provides a bound of the difference in output for a given iteration,
Theorem II provides a bound for the expectation of the error at the end of the
computation. Although the implications of the existence of this bound are not
evident, further analysis of the result of this theorem is possible and provides us
with all the desired results.

3.3.5 Convergence Properties

We can derive three important results from Theorem II. The first is that the zCDP-
NFL algorithm converges to the exact solution of (3.2). The second is the rate of
this convergence. The third result is the privacy accuracy trade-off bound of the
algorithm. First, we define the required assumptions for convergence.

Assumption 3. We require that lim
n→+∞ η

(n)
k = 0, ∀k ∈ C. This will enforce the

asymptotic stability of the local estimates.

Theorem III. Under Assumptions 2 and 3, the zCDP-NFL algorithm defined by
the steps (3.8)-(6.6), converges to the exact solution.

Proof. See P2, Theorem III.

We now introduce the required assumption to establish the convergence rate of the
algorithm.

Assumption 4. The η
(n)
k , k ∈ C are chosen such that ||D(n+1)||22 is a convergent

series. This assumption, stronger than Assumption 3, is necessary to guarantee
the exponential stability of the local estimates.

Theorem IV. Under Assumptions 2 and 4, the zCDP-NFL algorithm converges
with a rate of O(1/n) iterations.

Proof. See P2, Theorem IV.

Remark: In practice, Assumption 4 can be relaxed in most cases.

3.3.6 Privacy Accuracy Trade-off

The last result established by Theorem II is the privacy accuracy trade-off bound.
The privacy accuracy trade-off quantifies how ensuring more privacy deteriorates
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the accuracy of the algorithm and is one of the most important parameters of a
privacy-preserving algorithm. Under Assumption 4, we can reformulate (3.20) as

E[f(ŵ(T )
)− f(w∗)] ⩽ α

T
+

αξ

T

∑K
k=1 σ

2
k(0)

1− ζ
(3.21)

where α is a constant with respect to T and the noise perturbation and αξ =
ρP4(Φmax(L−)2+Φmax(L+)2)

Φmin(L−) .

By combining this result with Theorem I, we obtain

E[f(ŵ(T )
)− f(w∗)] ⩽ α

T
+

αξ

T

∑K
k=1

∆2
k,2(0)

2ϕ
(1)
k

1− ζ
(3.22)

In the common case where the privacy parameter ϕ(1)
k is identical for all clients,

i.e., ϕ(1)
k = ϕ(1), ∀k ∈ C, we have

E[f(ŵ(T )
)− f(w∗)] ⩽ α

T
+

αξ

T

∑K
k=1∆

2
k,2(0)

2Kϕ(1)(1− ζ)
(3.23)

With this result, we see that ensuring more privacy, which can be done by de-
creasing ϕ(1) or having ζ closer to 1, would result in a less restrictive convergence
bound for the algorithm.

3.4 Numerical Results
This section presents simulation results to evaluate the performance and privacy
accuracy trade-off of the proposed zCDP-NFL. To compare the different DP im-
plementations, we introduce the (ϵ, δ)DP-NFL, identical to zCDP-NFL except for
the fact that it uses conventional (ϵ, δ)-DP rules to control the local noise perturb-
ation. On nonsmooth objective functions, we benchmark the proposed algorithm
against conventional subgradient-based networked FL, as presented in [48], mod-
ified to use zCDP and denoted zCDP-grad-NFL. On smooth objective functions,
we benchmark the proposed algorithm against the existing distributed learning al-
gorithm P-ADMM, presented in [39] that uses a networked FL architecture, zCDP,
and the ADMM, but is constrained to smooth objective functions. In the following,
we consider the elastic net, least absolute deviation, and ridge regression problems,
all presented in [49].

For a fair comparison, the algorithms are tuned to provide the same total privacy
guarantees throughout the computation - this is made possible by the corollary of
Theorem I. This corollary provides (ϵ, δ)-DP guarantees for an algorithm using
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zCDP with both ϕ(1) and ζ as parameters. Furthermore, the algorithms are tuned
to observe identical initial convergence speeds when possible.

In the following, we consider a network with a random topology comprising K =
50 nodes, where each node connects to 3 other nodes on average. Each node
k possesses Dk = 50 local noisy observations of the unknown parameter w
of dimension P = 8. The proposed simulations are performed on synthetic
data and performance is evaluated by computing the normalized error defined as∑K

k=1 ||w
(n)
k −wc||2/||wc||2, wc being the centralized solution obtained by the

CVX toolbox [50].

3.4.1 Simulations on the elastic net problem
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Figure 3.1: Learning curves (left) and privacy-accuracy trade-off (right) for the elastic net
problem.

Figure 3.1 presents results obtained on the elastic net problem, defined by a smooth
loss function ℓ(Xk,yk;wk) = ||Xkwk −yk||2 and a nonsmooth regularizer func-
tion R(wk) = λ1||wk||1 + λ2||wk||2 with λ1 = 0.001||XTy||∞, as in [49], and
λ2 = 1. Figure 3.1 (a) shows the learning curve, i.e., normalized error versus
iteration index, and Fig. 3.1 (b) shows the privacy-accuracy trade-off, i.e., normal-
ized error after 200 iterations versus total privacy loss. We observe that the pro-
posed ADMM-based algorithm significantly outperforms the subgradient-based
algorithm. Furthermore, we can see that the use of the dynamic zCDP notion
as opposed to the dynamic (ϵ, δ)-DP notion allows for better accuracy given the
same privacy budget throughout the computation. This same fact is illustrated for
various total privacy losses on the privacy-accuracy trade-off curve.
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3.4.2 Simulations on the least absolute deviation problem
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Figure 3.2: Learning curves for the least absolute deviation problem.
Figure 3.2 shows the learning curves for the algorithms under consideration for the
least absolute deviation objective, i.e., a nonsmooth loss function ℓ(Xk,yk;wk) =
||Xkwk − yk||1 and no regularizer function. We observe once again that the pro-
posed algorithm significantly outperforms its subgradient-based counterpart, as the
learning rate required for the zCDP-grad-NFL algorithm to attain a similar initial
convergence speed to the ADMM-based algorithms does not allow it to reach high
accuracy. In addition, we observe that the use of zCDP allows for better accur-
acy than (ϵ, δ)-DP. In the end, the proposed zCDP-NFL algorithm significantly
improves over existing methods on nonsmooth objectives.

3.4.3 Simulations on the ridge regression problem

The following simulations study the performance of the algorithms on the ridge
regression objective, which is a smooth and convex objective defined by

ℓ(Xk,yk;wk) = ||Xkwk − yk||2, R(wk) = ||wk||2. (3.24)

Those simulations are conducted specifically to compare the proposed CDP-ADMM
algorithm with the P-ADMM algorithm proposed in [39], which was developed for
smooth objectives.

Figure 3.3 presents results obtained on the ridge regression problem, defined by a
smooth loss function ℓ(Xk,yk;wk) = ||Xkwk − yk||2 and a smooth regularizer
function R(wk) = ||wk||2. Figure 3.3 (a) shows the learning curves, and Fig. 3.3
(b) shows the privacy-accuracy trade-off. We observe that the proposed zCDP-
NFL algorithm slightly outperforms the P-ADMM algorithm on smooth object-
ives, despite the inexact ADMM update required to handle nonsmooth objectives.
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Figure 3.3: Learning curves (left) and privacy-accuracy trade-off (right) for the ridge
regression problem.

As can be observed on the privacy-accuracy trade-off curve, this is the case for all
total privacy losses. This better performance is due to the use of the time-varying
step size η(n) in the proposed algorithm. Even though the zCPD-NFL algorithm is
designed for nonsmooth objective functions, it offers very good performances on
smooth objective functions.

3.5 Summary
This chapter investigated key challenges of networked federated learning, such
as privacy protection and objective functions properties. Its contribution was to
develop and analyze both theoretically and experimentally a privacy-preserving,
networked federated learning algorithm capable of handling nonsmooth object-
ive functions. This algorithm adapts the distributed ADMM to use a first-order
approximation of the objective function and share perturbed messages to protect
client data privacy through dynamic zCDP. This algorithm is proven to converge
to the optimal point in O(1/n) iterations and, thanks to its use of a time-varying
time-step, outperforms existing privacy-preserving networked federated learning
algorithms on both nonsmooth and smooth objectives. While the proposed al-
gorithm inherently exhibits resilience to practical communication links due to its
built-in tolerance to message perturbations, it operates under the assumption of
synchronous communication and complete client availability. In the next chapter,
we will explore additional practical scenarios where these assumptions are relaxed.
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Chapter 4

Asynchronous Online Federated
Learning with Reduced
Communication Requirements

This chapter presents the results of publication P3 and its extension P4. It proposes
an online FL solution designed to accommodate asynchronous settings. These
settings are characterized by heterogeneous client participation which can be un-
predictable, and potential message delays due to straggler clients and imperfect
communication channels. This chapter proposes an alternative implementation of
online federated learning that is tailored to these asynchronous settings, aiming
to mitigate the impact of asynchronous behaviors on accuracy, and drastically re-
duce the communication load associated with the learning task, thereby making it
more accessible and efficient. Making the learning task more efficient can alleviate
strain on resource-constrained clients, which may in turn reduce asynchronous be-
haviors in practical applications. In this chapter, a server is tasked to solve a non-
linear optimization problem using a set of unpredictable clients exhibiting high
statistical and system heterogeneity. Statistical heterogeneity refers to data be-
ing imbalanced and non-i.i.d. [5] across devices, while system heterogeneity per-
tains to their variations in computational and communication capacities. To reduce
the strain on clients and communication channels, we implement partial-sharing-
based (PS) communications, which reduce the communication load without dis-
carding potentially valuable client participation. The nonlinear model is projected
on a fixed-dimensional random Fourier feature space (RFF), which is well-suited
for decentralized learning as it does not require the exchange of dictionary ele-
ments. The proposed Partial-sharing-based Asynchronous Online Federated learn-

35
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ing (PAO-Fed) handles asynchronous settings, diminishes the communication load
with PS communications, and mitigates the impact of delayed updates on accuracy
with a weight-decreasing mechanism. We conduct first- and second-order conver-
gence analysis for the proposed PAO-Fed algorithm and obtain an expression for
its steady-state mean square deviation. Numerical simulations on synthetic and
real data show that the PAO-Fed algorithm achieves performance comparable to or
better than conventional online FL in an asynchronous environment while reducing
the communication load by 98 percent.

4.1 Motivation
Online federated learning, as presented in Chapter 2, allows clients with local
access to data streams to train a global model in real-time without sharing their
data. Most of the available literature on online FL assumes homogeneous client
computational power, as well as availability and perfect communication channels
[11, 12, 51–59]. These assumptions are not often met in practical applications.
In a realistic setting, clients have heterogeneous computational power and avail-
ability, e.g., due to varied device characteristics, resource constraints or channel
availability [6, 7, 60, 61]. Further, clients may become unresponsive for extended
periods due to factors such as malfunctioning devices or loss of server range [6, 7].
In addition, the presence of straggler clients, i.e., clients with significantly below-
average performance, and imperfect communication channels can also introduce
delays in the exchanged messages [7, 60–62]. Although each of those challenges
is tackled by existing solution, simplifying assumptions are often taken, such as
the absence of delayed updates [63], or predetermined and predictable patterns
of client availability [62]. In this chapter, we consider unpredictable and random
client participation, as well as delayed communications.

Several methods to reduce communication load are available in the literature. Cli-
ent scheduling, introduced in the classical federated averaging (FedAVG) [12],
reduces the communication load by selecting a subset of clients among the avail-
able clients to participate in each iteration. While convenient in a perfect setting,
discarding client participation in a setting where this participation might be rare
is unappealing. Compressed client updates, used in many works such as [62, 64],
reduce the communication load by allowing the clients to compress their updates
prior to communication. However, this is associated with an accuracy penalty
caused by the projection into a lower dimensional space, a potential computation
bottleneck at the server during the simultaneous unpacking of all received updates,
and an additional computational burden on the clients for performing the com-
pression. The latter is especially unappealing when the participating clients have
limited resources. PS communication, introduced in [65], reduces the communic-
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ation load by allowing the clients to send only a subset of their learning parameters
at each iteration. With appropriate tuning of the server’s aggregation mechanism,
this comes at nearly no accuracy cost. Furthermore, allowing the clients to perform
several parameter updates on their remaining parameters can potentially increase
learning speed. One particularity of PS communications that makes it especially
appealing for asynchronous settings is its inherent resilience to adversarial input
[66], which dampens the effect of delayed updates in asynchronous settings.

4.2 Proposed Method

4.2.1 Nonlinear Learning

We consider a federated network where a server is connected to a set C of K clients.
In online FL [67], data is progressively made available to the clients throughout
the learning process. The data stream available to client k ∈ C at time (or iteration)
n is of the form (y

(n)
k ,x

(n)
k ). The output y(n)k is linked to x

(n)
k by

y
(n)
k = f(x

(n)
k ) + n

(n)
k , (4.1)

where the function f(·) is nonlinear and n
(n)
k is the observation noise.

The objective is for the server and clients to learn the nonlinear function f(·) from
the streaming data without sharing this data among clients or with the server. For
this purpose, clients train local models on their local streaming data and share
these with the server, which then aggregates them. We rely on the kernel trick to
learn the nonlinear function f(·), that is, we project the models and data onto a
higher-dimensional space where the function appears linear.

Several adaptive methods can handle nonlinear model estimation problems, e.g.,
[68–71]. The conventional kernel least-mean-square (KLMS) algorithm [68] is
one of the most popular choices but suffers from a growing dimensionality problem
leading to prohibitive computation and communication requirements. Coherence-
check-based methods [69] sparsify the original dictionary by selecting the re-
gressors using a coherence measure. Although feasible, this method is not attract-
ive for online FL, especially in asynchronous settings, since each new dictionary
element must be made available throughout the network, inducing a significant
communication overhead, especially if the underlying model changes. The ran-
dom Fourier feature (RFF) space method [70, 71] approximates the kernel function
evaluation by projecting the model into a pre-selected fixed-dimensional space.
The selected RFF-space does not change throughout the computation, and, given
that the chosen dimension is large enough, the obtained linearizations can be as
precise as desired. Therefore, we use RFF-based KLMS for the nonlinear re-
gression task, as it is data-independent, resilient to model change, and does not
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require extra communication overhead, unlike conventional or coherence-check-
based KLMS.

In the following, we approximate the nonlinear model by projecting it on a d-
dimensional RFF-space, in which the function f(·) is approximated by the linear
model w∗. To estimate the global shared model using the local streaming data, we
solve the following problem:

min
w

J (w), (4.2)

where J (w) is given by:

J (w) =
1

K

∑

k∈C
Jk(w) (4.3)

Jk(w) = E[|y(n)k −w⊺z(n)k |2],

and z
(n)
k is the mapping of x(n)

k into the d-dimensional RFF-space.

4.2.2 Asynchronous Behavior Simulation

To propose an algorithm that is able to operate in practical applications success-
fully, it is necessary to model the asynchronous system behaviors in such a way
that it accounts for all potential shortcomings. We group the potential shortcom-
ings of a system into the following categories:

• Statistical heterogeneity,

• System heterogeneity,

• Straggler clients,

• Unpredictable participation,

• Delayed updates.

While statistical heterogeneity is modeled with the data, the other aspects of asyn-
chronous settings need to be modeled in the clients’ behavior. We model those
using two probabilistic mechanisms. First, we model system heterogeneity and un-
predictable participation by giving the clients participation probabilities. A client
k ∈ C has a probability p

(n)
k to participate in the learning process at iteration n. A

client’s probability dictates its quality, and assuming that p(n)k < 1, ∀k ∈ C, n ∈ N,
all clients may suffer downtimes by failing multiple Bernoulli trials. Furthermore,
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this makes client participation inherently unpredictable. Second, we model strag-
gler behavior and delayed updates in the same manner, as their impact on the
learning process is identical. Each model shared with the server has a probability
δl to be delayed for l iterations or more. We denote C(n) as the set of all clients
whose updates reach the server at iteration n. This set can be decomposed as

C(n) =
∞⋃

l=0

C(n)
l , (4.4)

where C(n)
l is the set of clients who sent an update to the server at iteration n − l,

which arrive at iteration n. The subscript l corresponds to the length of the delay.

4.2.3 Partial-Sharing-Based Communications

Many of the aforementioned asynchronous behaviors result from devices being
overburdened and communication channels being strained. Therefore, when per-
forming a learning task in asynchronous settings, it is desirable to reduce the bur-
den of the learning task on the communication channels and resource-constrained
devices [60].

To this aim, we implement partial-sharing-based (PS) communications, where cli-
ents and server share only a portion of their model. Unlike compressed updates
[56–59, 64] and client scheduling [12, 61], PS communications do not increase the
computation load or exclude any client participation.

In partial sharing, the portion to be shared is extracted prior to communication.
This operation is computationally trivial and does not delay communication. Math-
ematically, we model this extraction using a diagonal selection matrix with diag-
onal elements being 0 or 1; the locations of the latter specify the parameters to
share. We denote M

(n)
k the selection matrix for server-to-client communication; it

is used by the server to select a portion of the global model to share with client k
at iteration n. We denote S

(n)
k the selection matrix for client-to-server communic-

ation; it is used by client k to select a portion of its local model to share with the
server at iteration n+1. The number of shared parameters, denoted m, is identical
in all selection matrices. PS communications are illustrated in Fig. 4.1 for the
simple case where m = d

3 .

Two variants of partial sharing communications exist, coordinated and uncoordin-
ated. In coordinated partial sharing, used in Fig. 4.1, all clients share the same
portion of the model with the server. Doing so, this portion of the global model is
aggregated from a large number of clients, making it highly accurate. While ideal
in perfect settings, this type of coordination may degrade performances in asyn-
chronous settings as delayed updates, arriving later and updating the same portion
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Figure 4.1: Partial sharing in a simple scenario. Where µ is the learning rate, and e
(n)
k is

the error of the local model and the local data at iteration n.

of the model, partially overwrite the aggregated model. To tackle this issue, one
can use a weight-decreasing mechanism on the delayed updates, as presented in the
next subsection, or use uncoordinated partial sharing. Uncoordinated partial shar-
ing refers to any setting where different clients may share different model portions.
For instance, one can choose to spread the portions shared uniformly, leading to
an algorithm that quickly reacts to underlying model changes, but may suffer from
low accuracy, as each model parameter is learned from a small number of clients.

For every client to participate in the learning of the entire model, it is necessary for
the portion shared to change throughout the computation. For this purpose, we set
the selection matrices to evolve as follows.

diag(M(n+1)
k ) = circshift(diag(M(n)

k ),m), (4.5)

S
(n)
k = M

(n+1)
k , (4.6)

where circshift denotes a circular shift operation. Alternatively, a pseudo-random
selection process can be used in place of the circshift operator. It is crucial to set
S
(n)
k = M

(n+1)
k as opposed to S

(n)
k = M

(n)
k , as the former enable the clients to

share a portion of their model refined several times by the learning process while
the latter require them to share the last received server’s model portion refined only
once by the local learning process. For instance, in Fig. 4.1, we observe that the
client shares

S
(n)
k w

(n+1)
k = S

(n)
k (w

(n)
k + µz

(n)
k e

(n)
k ),

= S
(n)
k (w(n−2) + µz

(n−2)
k e

(n−2)
k + µz

(n−1)
k e

(n−1)
k + µz

(n)
k e

(n)
k ),

(4.7)
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if S(n)
k = M

(n+1)
k , which corresponds to a previous server’s model portion refined

thrice, as opposed to

w
(n+1)
k (0) = w(n)(0) + S

(n)
k (µz

(n)
k e

(n)
k ), (4.8)

if S(n)
k = M

(n)
k , which corresponds to the last server’s model portion refined once.

Doing so ensures that more client-specific information is gathered by the learning
process, more so as the value of m decreases. This, however, comes with the
drawback that the original server’s model portion is older.

4.2.4 Proposed Algorithm

The proposed PAO-Fed algorithm performs nonlinear learning in asynchronous
settings while reducing communication load and mitigating the impact of delayed
updates on accuracy.

At a given iteration n, the server shares a portion of its model, M(n)
k w(n), with all

the participating clients. Only available clients receive and utilize this information.
An available client k uses the received model portion and its local streaming data
to update its local model as follows,

w
(n+1)
k = M

(n)
k w(n) + (Id −M

(n)
k )w

(n)
k + µz

(n)
k e

(n)
k , (4.9)

where µ is the learning rate and e
(n)
k is the error of the local model on the local

data given by:

e
(n)
k = y

(n)
k − (M

(n)
k w(n) + (Id −M

(n)
k )w

(n)
k )⊺z(n)k . (4.10)

A portion of this local model is then extracted using the selection matrix S
(n)
k and

shared with the server. Note that it may arrive at the present iteration or be delayed.

If a client k is unavailable at iteration n, but is not malfunctioning and has access to
streaming data at this iteration, it may update its local model independently from
the server. We call this an autonomous update. That is, an unavailable client that
has access to streaming data at iteration n updates its local model autonomously
as

w
(n+1)
k = w

(n)
k + µz

(n)
k e

(n)
k , (4.11)

where e
(n)
k is, in that case, given by:

e
(n)
k = y

(n)
k −w

(n)⊺
k z

(n)
k . (4.12)
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The purpose of the autonomous update is to share better-trained model parameters
in the next communication with the server. The selection process illustrated in
(4.5) enables the algorithm to utilize autonomous updates seamlessly.

During iteration n, the server has received updates from the clients in C(n), defined
in (4.4). For each non-empty set C(n)

l , 0 ⩽ l < ∞, we define the deviation from
the current global model ∆(n)

l . It illustrates the direction suggested by the updates
received from the clients in C(n)

l and is given by

∆
(n)
l =

1

|C(n)
l |

∑

k∈C(n)
l

S
(n−l)
k (w

(n+1−l)
k −w(n)), (4.13)

with ∆
(n)
l = 0 if the set C(n)

l is empty.

Delayed updates degrade accuracy by providing outdated information to the learn-
ing process. To mitigate their negative impact, we propose the following weight-
decreasing mechanism. We introduce the weights αl ∈ [0, 1], 0 ⩽ l < ∞ to
be applied to the above deviations, and set by convention the weight α0 = 1 for
updates that are not delayed. The resulting aggregation mechanism is given by

w(n+1) = w(n) +
∞∑

l=0

αl∆
(n)
l . (4.14)

We introduce a maximum effective delay lmax; any update delayed for more than
lmax iterations is discarded. That is, αl = 0, ∀l > lmax. By doing so, we can replace
∞ by lmax in (4.4) and (4.14) without changing the meaning of the equations. The
resulting algorithm is presented in Algorithm 3.

4.3 Theoretical Results
In this section, we present the theoretical results established for the PAO-Fed al-
gorithm. This includes its first- and second-order convergence analysis and the
expression of its steady-state mean square deviation. The mathematical proofs of
the various theorem can be found in the manuscript P4.

4.3.1 First-Order Analysis

The first step of this analysis is to express the network-wide update recursions in
matrix form. To do so, we introduce the following vector,

w(n)
e =

[
w(n)⊺,w(n)⊺

1 , . . . ,w
(n)⊺
K ,w

(n)⊺
1 . . . ,w

(n)⊺
K ,w

(n−1)⊺
1 ,

. . . ,w
(n−1)⊺
K , . . . ,w

(n−lmax)⊺
1 , . . . ,w

(n−lmax)⊺
K

]⊺
, (4.15)
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Algorithm 3 PAO-Fed
Initialization: w0 and wk,0, k ∈ C set to 0
– Procedure at the server –
For iteration n = 1, 2, . . .:

Receive updates from the clients in C(n).
Compute w(n+1) as in (4.14).
Share M

(n+1)
k w(n+1) with the available clients.

End For
– Procedure at client k –
For iteration n = 1, 2, . . .:

if client k receives new data:
if client k is available:

Receive M
(n)
k w(n) from the server.

Compute w
(n+1)
k as in (4.9).

Share S
(n)
k w

(n+1)
k with the server.

else
Update wk as in (4.11).

end if
end if

End For

and matrices

A(n)
e = blockdiag{A(n), IdK , . . . , IdK},

Z(n)
e = blockdiag{Z(n),0dK×K , . . . ,0dK×K}, (4.16)

with

A(n) =




I 0d · · · 0d

a
(n)
1 M

(n)
1 I− a

(n)
1 M

(n)
1

...
... 0d

. . . 0d

a
(n)
K M

(n)
K

... I− a
(n)
K M

(n)
K



,

Z(n) = blockdiag{0d, z(n)1 , . . . , z
(n)
K }, (4.17)

where a
(n)
k = 1 if the client k is available at iteration n and 0 otherwise. The

operator blockdiag{·} represents block diagonalization. These enable us to express
the extended observation vector y(n)

e = [0, y
(n)
1 , y

(n)
2 , . . . , y

(n)
K ,0⊺K , . . . ,0⊺K ]⊺ as

y(n)
e = Z(n)⊺

e w∗
e + η

(n)
e , (4.18)
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where w∗
e = 1(K+1)lmax+1 ⊗ w∗ and the extended observation noise η(n)e =

[0, η
(n)
1 , η

(n)
2 , . . . , η

(n)
K ,0⊺K , . . . ,0⊺K ]⊺. We can then express the extended estim-

ation error vector as

e(n)e = y(n)
e − Z(n)⊺

e A(n)
e w(n)

e . (4.19)

Using the introduced notations, we can express the recursion of the extended model
vector w(n)

e . This recursion represents an iteration of the PAO-Fed algorithm in the
matrix form.

w(n+1)
e = B(n)

e (A(n)
e w(n)

e + µZ(n)
e e(n)e ), (4.20)

where

B(n)
e =




B(n) B
(n)
0 0d×dK B

(n)
1 · · · B

(n)
lmax

0d×1 IdK 0dK · · · · · · 0dK
... IdK 0dK · · · · · · 0dK
... 0dK IdK 0dK · · · 0dK
...

...
. . . . . . . . . 0dK

0d×1 0dK · · · 0dK IdK 0dK




B(n) = Id −
lmax∑

l=0

αl

∑

k∈C(n)
l

b
(n)
k,l

|C(n)
l |

S
(n−l)
k

B
(n)
l =

[
αlb

(n)
1,l

|C(n)
l |

S
(n−l)
1 , · · · ,

αlb
(n)
K,l

|C(n)
l |

S
(n−l)
K

]
. (4.21)

where b
(n)
k,l = 1 if k ∈ C(n)

l and 0 otherwise.

We introduce the following assumptions to facilitate the convergence analysis. We
note that the variables αl ∈ [0, 1] are not subject to any additional assumption,
as the convergence analysis relies on the existence of lmax to bound the impact of
delayed updates.

Assumption 1: The data vectors projected on the d-dimensional RFF space, z(n)k ,
are drawn from a WSS multivariate random sequence with correlation matrix
Rk = E[z(n)k z

(n)⊺
k ].

Assumption 2: The observation noise n
(n)
k is assumed to be zero mean white

Gaussian, and independent of all input and output data.
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Assumption 3: At each client, the model parameter vector is assumed to be inde-
pendent of the input data.

Assumption 4: The selection matrices are assumed independent from each other,
and of any other data.

Assumption 5: The learning rate µ is small enough for terms involving higher-
order powers of µ to be neglected.

Using the above assumptions, we establish the following result on the convergence
of the PAO-Fed algorithm to w∗, the projection of the nonlinear function f(·) in
the RFF space.
Theorem 4.1. Let Assumptions 1–4 hold true. Then, the proposed PAO-Fed al-
gorithm converges in mean if and only if

0 < µ <
2

max
∀k,i

λi(Rk)
. (4.22)

Proof. See P4, page 6.

4.3.2 Second-Order Analysis

To analyze the mean square deviation of the proposed algorithm, we introduce
w̃

(n)
e , the model error vector, and the following weighted norm square. For a given

positive semidefinite matrix Σ, the weighted norm-square of w̃(n)
e is given by

||w̃(n)
e ||2Σ = w̃(n)⊺

e Σw̃(n)
e . (4.23)

Using this formulation and the expression of the model error recursion derived
from (4.20), we have

E[||w̃(n+1)
e ||2Σ] = E[||w̃(n)

e ||2Σ′ ] + µ2E[η(n)⊺e Y
(n)
Σ η(n)e ], (4.24)

where the cross terms are null under Assumption 2 and the matrices Σ′ and Y
(n)
Σ

are given by

Σ′ = E[A(n)⊺
e (I− µZ(n)

e Z(n)⊺
e )B(n)⊺

e ΣB(n)
e (I− µZ(n)

e Z(n)⊺
e )A(n)

e ],

Y
(n)
Σ = Z(n)⊺

e B(n)⊺
e ΣB(n)

e Z(n)
e . (4.25)

Using the properties of the block Kronecker product and the block vectorization
operator bvec{·} [72], and under Assumption 3, we can establish a relationship
between σ = bvec{Σ} and σ′ = bvec{Σ′} as

σ′ = F⊺σ, (4.26)
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where

F = QBQA − µQB(I⊗b Re)QA − µQB(Re ⊗b I)QA,

where, under Assumption 5, the higher-order powers of µ are neglected and

QA = E[A(n)
e ⊗b A

(n)
e ],

QB = E[B(n)
e ⊗b B

(n)
e ]. (4.27)

Appendix B in P4 evaluates the matrices QA and QB, and shows that their entries
are real, non-negative, and add up to unity row-wise. Therefore, both matrices are
right-stochastic, and their spectral radius is equal to one.

We evaluate the term E[η(n)⊺e Y
(n)
Σ η

(n)
e ] under Assumption 2 and using the prop-

erties of block Kronecker product on the last line:

E[η(n)⊺e Y
(n)
Σ η(n)e ] = E[η(n)⊺e Z(n)⊺

e B(n)⊺
e ΣB(n)

e Z(n)
e η(n)e ]

= E[trace(η(n)⊺e Z(n)⊺
e B(n)⊺

e ΣB(n)
e Z(n)

e η(n)e )]

= trace(E[B(n)
e Z(n)

e E[η(n)⊺e η(n)e ]Z(n)⊺
e B(n)⊺

e ]Σ)

= trace(E[B(n)
e Φ(n)B(n)⊺

e ]Σ)

= h⊺σ, (4.28)

where

h = bvec{E[B(n)
e Φ(n)B(n)⊺

e ]}
= QBbvec{E[Φ(n)]}. (4.29)

and Φ(n) = Z
(n)
e ΛηZ

(n)⊺
e with Λη = diag{0, σ2

η,1, . . . , σ
2
η,K}, a diagonal matrix

whose diagonal contains the noise variances of all clients.

By combining (4.24), (4.26), and (4.28), we obtain the recursion of the weighted
mean square deviation of the PAO-Fed algorithm:

E[||w̃(n+1)
e ||2bvec−1{σ}] = E[||w̃(n)

e ||2bvec−1{F⊺σ}] + µ2h⊺σ, (4.30)

where bvec−1{·} represents the reverse operation of block vectorization. By doing
so, we can establish the following theorem.

Theorem 4.2. Let Assumptions 1–5 hold true. Then, the PAO-Fed algorithm ex-
hibits stable mean square deviation if and only if:

0 < µ <
1

max
∀k,i

λi(Rk)
. (4.31)
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Proof. See P4, page 7.

Another result that can be derived from the expression of the recursion of the
weighted mean square deviation of the algorithm is the steady-state mean square
deviation. For this purpose, we express the relation between E[||w̃(n+1)

e ||2bvec−1{σ}]

and E[||w̃(n)
e ||2bvec−1{σ}] as follows

E[||w̃(n+1)
e ||2bvec−1{σ}] = E[||w̃(n)

e ||2bvec−1{σ}]

+ E[||w̃(0)
e ||2bvec−1{(F⊺−I)(F⊺)nσ}]

+ µ2h⊺(F⊺)nσ. (4.32)

Using (4.32) with σ = bvec{blockdiag{Id,0, . . . ,0}}, we obtain the transient
expression for the mean square deviation of the global model at iteration n:

E[||w̃(n)||2] = E[||w̃(n)
e ||2bvec−1{σ}] (4.33)

.

Under Assumptions 1–5 and the conditions of Theorem 4.2, and by letting n → ∞
in (4.30), we obtain the expression of the steady-state mean square deviation for
the PAO-Fed algorithm:

lim
n→∞

E[||w̃(n)
e ||2bvec−1{(I−F⊺)σ}] = µ2h⊺σ. (4.34)

Setting σ = (I − F⊺)−1bvec{blockdiag{Id,0, . . . ,0}} isolates the steady-state
mean square deviation of the server’s model.

4.4 Numerical Results
This section presents numerical experiments conducted on synthetic and real data
to illustrate the performance of the proposed PAO-Fed algorithm and compare it
with existing methods. In addition to the PAO-Fed algorithm, we have simulated
Online-FedSGD, Online-Fed [12], and PSO-Fed [66].

4.4.1 Simulation Setup

We considered a federated network comprising K = 256 clients connected to
a server. Synthetic data is progressively made available to the clients in an im-
balanced and non-IID manner. For this purpose, the clients are separated into 4
data groups for which training sets are composed of 500, 1000, 1500, and 2000
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samples, respectively. A single data sample is of the form {x(n)
k , y

(n)
k }, and related

by the following nonlinear relation:

y
(n)
k =

√
x
2(n)
k [1] + sin2(πx

(n)
k [4]) + (0.8− 0.5 exp(−x

2(n)
k [2])x

(n)
k [3]) + n

(n)
k ,

(4.35)

where x(n)
k [i] denotes the ith element of vector x(n)

k = [x
(n)
k , x

(n−1)
k , x

(n−4)
k , x

(n−3)
k ].

A first-order autoregressive model is used to produce the non-IID input signal

x
(n)
k = θk x

(n−1)
k +

√
1− θ2k u

(n)
k , with u

(n)
k ∈ N (µk, σ

2
uk
), and, for a given client

k, θk ∈ U(0.2, 0.9), µk ∈ U(−0.2, 0.2), and σ2
uk

∈ U(0.2, 1.2). The observation

noise ν
(n)
k is assumed to be white Gaussian with variance σ2

νk
∈ U(0.005, 0.03).

Further, the cosine feature function is used to map x
(n)
k from dimension L = 4

into the RFF-space of dimension d = 200.

The performance of the algorithms is evaluated on a test dataset with the mean
squared error (MSE) given at iteration n by:

MSE-test =
1

MT

M∑

e=1

||ytest,e − (Ztest,e)
⊺w(n)

e ||22, (4.36)

where M is the number of Monte Carlo iterations, T is the size of the test data-
set, ytest,c and Ztest,c are the realization of the data for a given Monte Carlo iter-
ation, and w

(n)
c is the server model for the considered method. When comparing

the PAO-Fed algorithm with other methods, the learning rates were set to yield
identical initial convergence rates so that steady-state values may be compared.
Some algorithms were not able to reach this common convergence rate, but since
their steady-state error is also higher, comparison is still possible. All the learning
rates satisfy the convergence conditions obtained in Section IV for PAO-Fed, and
given in [12, 66] for Online-Fed, Online-FedSGD, and PSO-Fed. For instance, in
Fig. 4.2, 4.3, and 4.4, the step-size for the PAO-Fed algorithm is set to µ = 0.4
with max

∀k,i
λi(Rk) = 1.02.

Asynchronous settings are modeled using the client participation probabilities,
p
(n)
k , k ∈ C, and delay probabilities, δl, 0 < l < lmax. The Bernoulli trial on

p
(n)
k dictates if the client k is available or not at iteration n. This trial is performed

only if a client receives streaming data at this iteration, as a client cannot parti-
cipate without new data. Further, the clients are split into four availability groups,
dictating their participation probabilities p

(n)
k , with associated probabilities 0.25,

0.1, 0.025, and 0.005, unless stated otherwise. This distribution is independent of
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the distribution among data groups. Finally, each communication to the server has
a probability δl, 0 < l < lmax to be delayed by l iterations or more, with δ = 0.2
and lmax = 10, unless stated otherwise. The asynchronous behaviors are simulated
once per Monte-Carlo iteration and are identical for all the algorithms.

In the simulations, we implement uncoordinated partial-sharing-based communic-
ations from the server to the clients with diag(M(n)

k ) = circshift(diag(M(n)
1 ),mk)

and diag(M(n)
1 ) = circshift(diag(M1,0),mn). This, in turn, dictates the portion

of the model sent by the clients to the server, as illustrated in (4.6). Doing so,
all portions of the model are equally represented in the aggregation on average.
We recall that m is the number of model parameters shared at each iteration by
both the server and the clients, and dictates the communication savings in partial-
sharing-based communications.

4.4.2 Hyper Parameters Selection

In this section, we conduct numerical simulations to optimize the proposed PAO-
Fed algorithm. For this purpose, we simulated the following versions of PAO-Fed:

• PAO-Fed-C0 and PAO-Fed-U0 utilize coordinated and uncoordinated partial-
sharing, respectively, without employing the weight-decreasing mechanism
in (4.14), that is, αl = 1, 0 ⩽ l ⩽ lmax. Further, the clients share the last
received server model portion, refined once by the local update process.

• PAO-Fed-C1 and PAO-Fed-U1 utilize coordinated and uncoordinated partial-
sharing, respectively, without employing the weight-decreasing mechanism
in (4.14). Their selection matrices evolve as described in (4.5) and (4.6).

• PAO-Fed-C2 and PAO-Fed-U2 utilize coordinated and uncoordinated partial-
sharing, respectively, and employ the weight-decreasing mechanism in (4.14)
with αl = 0.2l, 0 ⩽ l ⩽ lmax. Their selection matrices evolve as described
in (4.5) and (4.6).

Unless explicitly specified, each PAO-Fed implementation shares m = 4 model
parameters per communication round, resulting in a 98% reduction in communic-
ation.

In the first experiments, we study the impact of the hyperparameters on the con-
vergence properties of the PAO-Fed algorithm. Specifically, we investigate the
impact of the choice of the selection matrices, the number of model parameters
shared, and the scale of the weight-decreasing mechanism for delayed updates.
The corresponding learning curves in Fig. 4.2 shows the MSE-test in dB versus
the iteration index.
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Figure 4.2: Optimization of the PAO-Fed method. (a) Utilizing local updates and co-
ordinated/uncoordinated partial-sharing, (b) Communication savings, (c) Utilizing weight-
decreasing mechanism for delayed updates.

First, we examined how the choice of the selection matrices M(n)
k and S

(n)
k impact

the convergence properties of the PAO-Fed algorithm. The versions PAO-Fed-C0
and PAO-Fed-U0 are set with S

(n)
k = M

(n)
k ; that is, the last received portion from

the server is updated once by the local learning process at the clients before being
sent back to the server. On the contrary, the versions PAO-Fed-C1 and PAO-Fed-
U1 are set as in (4.5) and (4.6); that is, the received portions from the server will be
updated several times by the local learning process to accumulate information, in a
manner similar to batch learning, before being sent back to the server. We observe
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in Fig. 4.2 (a) that the versions PAO-Fed-(C/U)1 outperform the versions PAO-
Fed-(C/U)0. For this reason, we will only consider the versions of the PAO-Fed
algorithm making full use of the local updates in the following. We also notice in
this experiment that it is best to use uncoordinated partial-sharing in asynchronous
settings, this contradicts the behavior of partial-sharing-based communications in
ideal settings, where coordinated partial-sharing performs slightly better than un-
coordinated, as explained in [66].

Second, we studied the impact of the number of model parameters m shared by
participating clients and the server during the learning process. Fig. 4.2 (b) shows
the performance of the PAO-Fed-U1 algorithm (uncoordinated, making use of
local updates) for different values of m, namely m = 1, m = 4, and m = 32.
Although sharing more model parameters increases the initial convergence speed,
we observed that it decreases the final accuracy for larger m values. This con-
tradicts previous results in the literature about the behavior of partial-sharing in
ideal settings [66]. In fact, sharing more model parameters increases the potential
negative impact of one single delayed update carrying outdated information, de-
creasing the overall accuracy. Sharing a small number of model parameters limits
the impact of a given update, providing some level of protection against outdated
information, and ensuring better model fitting [73]. We chose to set m = 4 as
a baseline, as it presents a good compromise between initial convergence speed,
steady-state accuracy, and communication reduction.

Finally, to reduce the harmful effect of delayed updates on the convergence proper-
ties of the algorithm, we introduce the weight-decreasing mechanism for delayed
updates proposed in (4.14) in the versions PAO-Fed-C2 and PAO-Fed-U2. We
set αl = 0.2l, 0 ⩽ l ⩽ lmax. In Fig. 4.2 (c), we display the performance of
these methods alongside PAO-Fed-C1 and PAO-Fed-U1. We observe that decreas-
ing the weight of the delayed updates significantly improves the performance of
the PAO-Fed algorithm on the considered asynchronous settings. The proposed
mechanism considers the relevance of delayed and potentially outdated updates
by effectively reducing their impact on the server model, especially for substan-
tial delays. By doing so, the negative effect of delayed updates is mitigated; in
particular, when using the aforementioned weight-decreasing mechanism, PAO-
Fed-C2 using coordinated partial sharing and PAO-Fed-U2 using uncoordinated
partial sharing exhibit the same performance.

4.4.3 Comparison of PAO-Fed with Existing Methods

In the following experiments, we compare the performance of the PAO-Fed al-
gorithm with existing online FL methods in the literature. Figs. 4.3 (a) and (c)
display the MSE-test in dB versus the iteration index, and Fig. 4.3 (b) displays
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Figure 4.3: Comparison of PAO-Fed with existing methods. (a) Learning curves, (b)
Steady state MSE vs. communication load, (c) Impact of straggler clients.

accuracy variation versus communication savings.

First, we compared PAO-Fed-U1 and PAO-Fed-U2 with PSO-Fed [66], Online-
Fed [12], and Online-FedSGD. The corresponding learning curves are displayed
in Fig. 4.3 (a). First, we observe that Online-Fed and PSO-Fed both perform
poorly; sub-sampling the already reduced pool of available clients is not a viable
solution to reduce communication in asynchronous settings. Then, we observe
that both PAO-Fed-U1 and PAO-Fed-U2 outperform Online-FedSGD while using
98% less communication. The reason for this very good performance is twofold.
First, using the local and autonomous local updates in the PAO-Fed algorithm al-



4.4. Numerical Results 53

lows it to extract more information from the sparsely participating clients. Second,
partial-sharing-based communication provides the PAO-Fed algorithm with an in-
nate resilience to the negative impact of delayed updates; this resilience is further
increased in the PAO-Fed-U2 algorithm with the weight-decreasing mechanism,
hence its better performance.

Second, we study the relationship between communication load and accuracy. Fig-
ure 4.3 (b) shows the steady-state mean squared error on the test dataset versus the
average communication load per iteration when the clients employ either PAO-
Fed-U1, PAO-Fed-C2, or Online-Fed algorithms. The communication load is ob-
tained by multiplying the average number of model parameters shared by a client
during a given iteration, corresponding to m for the PAO-Fed algorithms, by 32,
which is the number of bits on which a model parameter is stored. We find the MSE
reached after 2000 iterations in the previous figure by the three algorithms in this
figure for a communication load of 128 bits. Similarly, we find the MSE reached
after 2000 iterations in the previous figure by Online-FedSGD in this figure for
the Online-Fed algorithm with a communication load of 6400 bits. Further, we
observe that the higher the communication load is, the better the performance of
Online-Fed is. However, the performances of the algorithms using partial-sharing-
based communication vary very little with the communication load, as the lower
amount of communication is compensated by the use of local updates and the re-
silience to delayed communications.

Finally, to observe the impact of the straggler clients on the convergence properties
of the algorithms, we compare the performance of the algorithms in the proposed
settings (100% of clients are potential stragglers) to their performance in an ideal
setting where clients are always available when they receive new data and their
communication channels do not suffer from delays (0% of clients are potential
stragglers). The learning curves are shown in Fig. 4.3 (c). We observe that, in the
absence of straggler clients, the methods using coordinated partial-sharing achieve
greater accuracy, almost identical to methods with no communication reduction,
while the methods using uncoordinated partial-sharing have slightly worse per-
formance, this corresponds to the results obtained in [66]. Furthermore, we see
that the PAO-Fed-C2 algorithm used on straggler clients has convergence proper-
ties almost similar to the ones of algorithms in a perfect setting.

4.4.4 Performance on a Real-world Dataset

Fig. 4.4 shows the performance of the proposed PAO-Fed algorithm on the real-
world California Cooperative Oceanic Fisheries Investigations (CalCOFI) dataset
[74]. This dataset comprises oceanographic data from seawater samples collected
at various stations and contains more than 800,000 samples. Each sample contains
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Figure 4.4: Learning curves on the CalCOFI dataset.

parameters such as temperature, salinity, O2 saturation, etc. The salinity of the
water is linked in a nonlinear manner to the other available parameters, and we em-
ployed the proposed method to learn this nonlinear model relating the salinity level
in a decentralized manner. For the purpose of the experiment, we consider only
80,000 samples that we distribute progressively and unevenly to the 256 clients
throughout the learning process (to ensure non-IID and imbalanced data settings).
Further, we simulated the straggler-like behavior of the clients as mentioned above
(availability groups are 0.25, 0.1, 0.025, and 0.005; each communication to the
server will be delayed by more than l iterations with probability δl, 0 < l < lmax,
with δ = 0.2 and lmax = 10). We observe similar performance for the PAO-Fed,
Online-Fed, and Online-FedSGD algorithms to the experiments on synthetic data-
sets. The PAO-Fed-U1 algorithm is able to achieve the same accuracy as Online-
FedSGD while using 98% less communications, and the PAO-Fed-C2 algorithm,
also using 98% less communications, is able to outperform all other methods.

4.4.5 Comparison of Various Communication Reduction Methods in
Asynchronous Settings

In this simulation, we compare the performance of the proposed method with the
PSO-Fed [66], Online-Fed [12], and SignSGD [75] algorithms. The PSO-Fed
algorithm combines client scheduling and partial-sharing-based communications.
For a fair comparison, it has been tailored to reduce the overall communication
load by 98%, similar to the proposed PAO-Fed-C2 algorithms. By design, the
SignSGD drastically reduces the communication load from clients to server but
does not reduce the communication load from server to clients. Its communica-
tion load reduction is, therefore, less than 50%. For this reason, the Online-Fed
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Figure 4.5: Learning curves of PAO-Fed, PSO-Fed, Online-Fed, and SignSGD.

algorithm has been tailored to reduce the communication load by only 50%. The
learning curves are displayed in Fig. 4.5. We observe that reducing the com-
munication load via a combination of client scheduling and partial-sharing-based
communication, as in PSO-Fed, is not desirable in asynchronous settings. Fur-
thermore, we see that the SignSGD achieves significantly better performance than
Online-Fed for a similar communication load reduction, making it a viable altern-
ative to partial-sharing-based communication in asynchronous settings. However,
it would need to be complemented by server-to-client communication reduction
and a weight-decreasing mechanism to achieve the same accuracy and communic-
ation load reduction as the proposed PAO-Fed-C2.

4.4.6 Impact of the Environment on Convergence Properties

In these last experiments, we study the impact that a change in the external en-
vironment can have on the convergence properties of the proposed algorithms and
existing methods. The corresponding learning curves are shown in Fig. 4.6.

First, we studied in Fig. 4.6 (a) the importance of using partial-sharing-based
communications both at the server and at the clients. The algorithms using partial-
sharing-based communications have been altered in this simulation with M

(n)
k =

I,∀k, n; that is, the server sends its entire model to the participating clients at
each iteration. This modification can be appealing if the server is not subject to
power constraints. The clients behave normally and only send a portion of their
local model; however, unlike in the other simulations, the received global model
replaces the local model at each participant, see (4.9). In such a case, we observe
that the performance of the partial-sharing-based methods is drastically reduced.
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Figure 4.6: Learning curves in different environments. (a) Full server communication, (b)
Common delays, (c) Increased straggler behavior.

It is the information kept by the clients in the not-yet-shared portions of their local
models that allow partial-sharing-based methods to outperform Online-FedSGD.
We note that clients may choose to ignore part of the received model to avoid this
downfall.

Second, we studied the algorithm behaviors in an environment where most com-
munications are delayed, but delays cannot be too lengthy. To this aim, the delay
probability has been significantly increased and the maximum possible delay re-
duced (δ = 0.8 and lmax = 5). We observe in Fig. 4.6 (b) that the limited max-
imum delay allows Online-FedSGD to outperform PAO-Fed-U1, as the benefit of
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partial-sharing against data of poor quality does not out-weight the smaller amount
of communication available to PAO-Fed-U1. To compensate for the fact that most
incoming information is weighted down by the weight-decreasing mechanism of
PAO-Fed-C2, its learning rate has been increased to near its maximum value ob-
tained in Theorem 4.2. Despite this, the PAO-Fed-C2 algorithm reaches very low
steady-state error and significantly outperforms Online-FedSGD.

Finally, we modeled an environment where availability groups are given the prob-
abilities 0.025, 0.01, 0.0025, and 0.0005; communications to the server have a
probability δ = 0.4 to be delayed. Further, delays last for more than l iterations, l
taking the values 10i, 0 ⩽ i ⩽ 6, with probability δ

l
10 ; lmax is set to 60. This not-

ably implies that, in this environment, delayed updates have a greater probability
of arriving after a non-delayed update coming from the same client. Such an envir-
onment where clients are less likely to be available to participate, communications
are more likely to be delayed, and delays last for more iterations, is less favorable
to learning. An application relying on edge devices that are poorly available and
unreliable would evolve in an environment similar to this. Fig. 4.6 (c) presents the
learning curves of Online-Fed, Online-FedSGD, and the PAO-Fed algorithm in
this new environment to see how it may impact the convergence properties of the
algorithms. We observe that, in this environment, reducing the weight given to the
delayed updates gains importance as the accuracy difference between PAO-Fed-C2
and PAO-Fed-U1 increases. In fact, delayed updates may carry information that
is significantly outdated and, therefore, prevent the algorithms not using a weight-
decreasing mechanism for delayed updates to reach satisfactory steady-state error.
For this reason, the PAO-Fed-C2 algorithm achieves significantly better accuracy
than Online-FedSGD in this environment.

4.5 Summary
This chapter investigated the obstacles faced by federated learning in the presence
of resource-constrained devices, straggler clients, and imperfect communication
channels. It developed an online FL algorithm adapted to a realistic environment
that not only reduces the negative impact of asynchronous settings on the conver-
gence properties but also alleviates the communication load of the clients and the
communication channels to reduce the strain on the network. In practical applic-
ations, reducing the strain on the system may reduce the asynchronous behaviors
by making the learning task more accessible, but this was not simulated to ensure
fairness in the comparisons with existing methods. The mathematical analysis and
numerical results confirm that the proposed approach is ideal for extracting inform-
ation in real-time from diverse geographically dispersed devices without overload-
ing the system, making it highly desirable in IoT applications in particular. While
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this chapter has focused on learning scenarios where clients have different capa-
cities, the following chapter will focus on learning scenarios where clients have
different needs.



Chapter 5

Graph Personalized Federated
Learning

This chapter presents the results of publications P5 and P6, proposing a frame-
work that utilizes a graph federated architecture, enabling the learning of person-
alized models, and preserving the client confidentiality and privacy. This proposed
personalized graph federated learning (PGFL) framework allows distributedly con-
nected servers and their respective clients to learn client- or cluster-specific models
tailored for various learning tasks present in the network. The proposed approach
exploits similarities among different learning tasks to speed up learning and allevi-
ate data scarcity. To ensure a secure approach to collaborative learning, we modify
the PGFL framework to utilize local zCDP. We implement a privacy-preserving
PGFL algorithm as proof of concept and study its theoretical and experimental
performance. This algorithm uses the ADMM as a local learning mechanism and
is tested in a setting with diverse data distributions and disproportionate datasets.
Our mathematical analysis shows that the proposed privacy-preserving PGFL al-
gorithm converges to the optimal cluster-specific solution for each cluster in linear
time. It also shows that exploiting similarities among clusters leads to an altern-
ative solution whose distance to the optimal cluster-specific solution is bounded.
The distance can be made arbitrarily small at the cost of limited exploitation of
inter-cluster learning. Further, privacy analysis shows that the algorithm ensures
local dynamic zCDP for all clients, paving the way for striking a trade-off between
privacy and accuracy. Finally, the effectiveness of the proposed PGFL algorithm
is showcased through numerical experiments conducted in the context of regres-
sion and classification tasks using some of the National Institute of Standards and
Technology’s (NIST’s) synthetic datasets, namely, MNIST, and MedMNIST.

59
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5.1 Motivation
One of the main challenges in recent distributed machine learning applications is
their reliance on a variety of distributed devices that may exhibit significant stat-
istical heterogeneity. In many cases, the substantial differences in the underlying
statistical distributions among clients warrant the use of device-specific models in-
stead of a single global shared model [18, 19, 76]. Personalized FL, presented in
Chapter 2, is a variation of the FL framework that enables learning such device-
or cluster-specific models [25–27, 77]. Achieving satisfactory accuracy for several
models across a network requires more data than when learning a single model.
Hence, it is necessary for the successful implementation of personalized FL to ag-
gregate a large number of participants in a single network. This raises the need for
an architecture that scales easily with the number of participants; however, most
works on personalized FL restrict their study to the single-server case [28, 78–82],
in which the maximum number of clients, hence the maximum number of satis-
fyingly learned models, is bounded. For this reason, we propose to use the graph
federated architecture for personalized FL. This architecture is highly scalable with
the number of clients, making it possible to aggregate enough data to learn differ-
ent models within a single connected network, and enables faster convergence than
the networked architecture [9, 83].

The client- or cluster-specific models learned in personalized FL typically share
some similarities [28]. Leveraging those similarities can improve performance
[17, 28], a process known as inter-cluster learning, which is particularly import-
ant when some clients or clusters have insufficient data [81, 82]. Using a graph
federated architecture and inter-cluster learning, the proposed personalized graph
FL (PGFL) framework aims to enable efficient learning of personalized models
for distributed clients. Furthermore, the proposed framework aims to be generic;
therefore, we do not make any assumption about the cluster-specific distribution
of clients, as clients within a cluster may be geographically grouped in a specific
application and dispersed in another. We propose to implement this framework
using the ADMM, which is well-suited for distributed applications [84–86] and
demonstrates fast, often linear [46, 87], convergence. Task similarity is lever-
aged using the Euclidean norm, providing a simple and intuitive mechanism for
inter-cluster learning that may be replaced with custom-made solutions in prac-
tical applications. Finally, to ensure that the proposed algorithm can be used in a
wide variety of applications, we protect client data from eavesdroppers and honest-
but-curious clients with local differential privacy. Specifically, we use dynamic
zero-concentrated differential privacy (zCDP), introduced in Chapter 2.
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5.2 Proposed Method
The proposed PGFL framework solves a personalized optimization problem in a
graph federated architecture and utilizes the similarities among clusters to enhance
learning performance. For this purpose, we consider a distributed network of S
servers associated with a total of K clients. The server network is modeled as
an undirected graph G = (S, E), where S is the set of servers and E is the set
of edges so that two servers s and p can communicate if and only if (s, p) ∈
E . The set of neighbors to a server s is denoted Ns, and contains s, we denote
N−

s = Ns\s. Each server s is associated with a set of clients, denoted Cs, with⋃
s∈S Cs = C and Cs

⋂ Cp = ∅, ∀s ̸= p. Every client k ∈ C has access to a
local dataset Dk of cardinality |Dk| = Dk, which is composed of a data matrix
Xk = [xk,1 . . .xk,Dk

]⊺, where xk,i, i ∈ {1, . . . , Dk} is a vector of size d, and a
response vector yk = [yk,1, . . . , yk,Dk

]⊺ that is subject to white observation noise.
Each client k ∈ C aims to learn a personalized, client-specific model wk.

The learning task for each client is defined by the set {Dk, ℓk}, which represents its
local data and loss function. All clients connected to distributed servers, regardless
of their associated servers, are grouped into Q clusters. These clusters are formed
by clients with similar learning tasks, such as F-similar tasks [29], with the aim
of collectively learning a shared model. It is assumed that there is a degree of re-
lationship among the learning tasks across clusters, which can manifest in various
ways. For example, clusters may share the same loss and regularizer functions
while having different data distributions, or they may have the same data distri-
bution but distinct objective functions. For instance, in healthcare, clusters can
represent various patient diagnostics, independent of their respective associated
hospitals, with a hospital functioning akin to a server. We denote the set of clusters
as Q = {1, . . . , Q}. The clients belonging to a specific cluster q ∈ Q form the
set C(q) aiming to learn the model w∗

(q). Additionally, the set of clients associated
with server s within cluster q is denoted as Cs,(q), with Cs,(q) = Cs

⋂ C(q).

5.2.1 Personalized Graph Federated Learning

To address task variations, personalized (cluster) models are preferable. However,
despite these differences, the underlying relationship among tasks, or equivalently,
clusters, can still be exploited in decentralized learning. Here, we consider a
modified regularized empirical risk minimization problem to leverage similarit-
ies among the clusters. For this purpose, we introduce an additional regularizer
function that enforces similarity among the cluster-specific personalized models.
This additional regularizer function corresponds to inter-cluster learning and is
controlled by the inter-cluster learning parameter τ ∈ (0, 1). The resulting optim-
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ization problem for a cluster q is formulated as:

min
w(q)

∑

k∈C(q)

1

Dk

Dk∑

i=1

ℓk(xk,i, yk,i;w(q)) + λR(w(q))

+ τ
∑

r∈Q\q
||w(r) −w(q)||22, (5.1)

where ℓk(·), R(·), and λ denote the client loss function, the global regularizer
function, and the regularization parameter, respectively. The larger the τ value is,
the more the similarities among cluster-specific personalized models are exploited.

The centralized optimization problem above relies on the global variable w(q).
In a multi-server architecture, the servers maintain local cluster-specific models
and communicate among neighbors to reach a consensus for each cluster. The
equivalent distributed optimization problem for cluster q, is given by

min
{ws,(q)}

∑

q∈Q

( ∑

k∈Cs,(q)

1

Dk

Dk∑

i=1

ℓk(xk,i, yk,i;ws,(q)) (5.2)

+ λR(ws,(q)) + τ
∑

r∈Q\q

∑

p∈Ns

||wp,(r) −ws,(q)||22
)
,

s.t. ws,(q) = zs,p,(q),wp,(q) = zs,p,(q);∀(s, p) ∈ E , ∀q ∈ Q,

where ws,(q) denotes the model for the cluster q connected to server s and con-
sensus is enforced by the cluster-specific auxiliary variables {zs,p,(q);∀(s, p) ∈
E , ∀q ∈ Q}. From (5.2), the augmented Lagrangian with penalty parameter ρ can
be derived as

Lρ,q(Vq,M,Z) =
∑

s∈S

[ ∑

k∈Cs,(q)

ℓk(Xk,yk;ws,(q))

Dk
+ λR(ws,(q))

+ τ
∑

r∈Q\q

∑

p∈Ns

||wp,(r) −ws,(q)||22

+
∑

p∈N−
s

(
µ⊺
s,p(ws,(q) − zs,p,(q)) +ψ

⊺
s,p(wp,(q) − zs,p,(q))

)

+
ρ

2

∑

p∈N−
s

(
||ws,(q) − zs,p,(q)||22 + ||wp,(q) − zs,p,(q)||22

)]
, (5.3)

with the set of primal variables Vq = {ws,(q); s ∈ S}, Lagrange multipliers M =
({µs,p}, {ψs,p}), and auxiliary variables Z = {zs,p,(q)}. Given that the Lagrange
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multipliers are initialized to zero, using the Karush-Kuhn-Tucker conditions of
optimality and setting ψs = 2

∑
p∈N−

s
ψs,p, it can be shown that the Lagrange

multipliers µs,p and the auxiliary variables Z are eliminated [42]. From (5.3), it is
possible to derive the local update steps of the ADMM for clients and servers. For
client k ∈ Cs,(q), the primal and dual updates are given by

Client primal update:

w
(n)
k =argmin

w

1

Dk
ℓk(Xk,yk;w) +

λ

|Cs|
R(w) (5.4)

−
〈
φ

(n−1)
k ,w −w

(n−1)
s,(q)

〉
+

ρ

2
||w −w

(n−1)
s,(q) ||22,

Client dual update:

φ
(n)
k = φ

(n−1)
k + ρ(w

(n)
s,(q) −w

(n)
k ), (5.5)

where the superscript n denotes the iteration number. Further, the primal and dual
updates for a server s ∈ S are given by:

• Server primal update:

w
(n)
s,(q) =

1

1 + τ (n) + ρ|N−
s |

[
1

|Cs,(q)|
∑

k∈Cs,(q)
w

(n)
k

− 1

ρ|Cs,(q)|
∑

k∈Cs,(q)
φ

(n−1)
k

− 1

2
ψ(n−1)

q,s +
ρ

2

∑

p∈N−
s

(w
(n−1)
s,(q) −w

(n−1)
p,(q) )

+ τ (n)
1

Q− 1

1

|Ns|
∑

r∈Q\q

∑

p∈Ns

w
(n−1)
p,(r)

]
, (5.6)

• Server dual update

ψ(n)
q,s = ψ(n−1)

q,s + ρ
∑

p∈N−
s

(
w

(n)
p,(q) −w

(n)
s,(q)

)
, (5.7)

where τ (n), the inter-cluster learning parameter, is iteration-dependent. Since
inter-cluster learning may degrade performance toward the end of the computa-
tion, it may be necessary for τ (n) to follow a decreasing sequence.
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The computation in (5.6) performs local aggregation (first two lines), inter-server
aggregation (third line), and inter-cluster learning (fourth line) in a single step.
This presents the major drawback of using the models of the previous iteration
for inter-server aggregation, i.e., w(n−1)

p,(q) , and inter-cluster learning, i.e., w(n−1)
p,(r)

[14, 15]. A multi-step mechanism addresses this issue by replacing the primal and
dual updates of the server as follows:

• Server aggregation

w̃
(n)
s,(q) =

1

|Cs,(q)|
∑

k∈Cs,(q)
w

(n)
k − 1

ρ|Cs,(q)|
∑

k∈Cs,(q)
φ

(n−1)
k . (5.8)

• Inter-server aggregation

ŵ
(n)
s,(q) =

1

|Ns|
∑

p∈Ns

w̃
(n)
p,(q). (5.9)

• Inter-cluster learning

w
(n)
s,(q) =

(
1− τ (n)

)
ŵ

(n)
s,(q) +

τ (n)

Q− 1

∑

r∈Q\q
ŵ

(n)
s,(r). (5.10)

The above multi-step mechanism has two main advantages. First, performing
server aggregation prior to inter-server aggregation enables the servers to main-
tain models composed of the last available client estimates. Second, the fact that
inter-cluster learning is performed at the end of the multi-step mechanism ensures
that model similarities are leveraged evenly; that is, the same weight is given to
any two clients’ estimates within the server neighborhood. The resulting PGFL
algorithm is summarized in Algorithm 4.

5.2.2 Privacy Preservation in PGFL

This section presents a privacy-preserving variant of the PGFL algorithm that uses
dynamic zero-concentrated differential privacy to protect the participants’ data.

The motivation for choosing zCDP over conventional (ϵ, δ)-DP is that, like CDP,
it offers improved accuracy for identical privacy loss in the worst-case scenario,
where an eavesdropper aggregates all the exchanged messages [37, 38]. We have
the option to use either CDP or zCDP to preserve privacy in the proposed al-
gorithm, but for simplicity, we choose to use zCDP.

Since the proposed PGFL algorithm is iterative in nature, it is crucial to control
privacy protection at every iteration and consider the privacy leakage for the entire
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Algorithm 4 PGFL

Initialization: w(0)
k = 0 and w

(0)
s,(q) = 0, ∀k, q, s

– Procedure at server s –
For iteration n = 1, 2, . . .

Receive {w̃(n)
k ,φ

(n−1)
k ;∀k ∈ Cs}

Update w̃
(n)
s,(q) as in (5.8)

Share w̃
(n)
s,(q), ∀q with each server p in N−

s

Receive w̃
(n)
p,(q),∀q from each server p in N−

s

Aggregate ŵ
(n)
s,(q) as in (5.9)

Compute w
(n)
s,(q) as in (5.10)

Share w
(n)
s,(q) with clients in Cs

EndFor
– Procedure at client k ∈ Cs –
For iteration n = 1, 2, . . .

Update w
(n)
k as in (5.4)

Share w
(n)
k and φ(n−1)

k with server s
Receive w

(n)
s,(q) from server s

Update φ(n)
k as in (5.5)

EndFor

learning process. For this purpose, we adjust the privacy protection dynamically
per iteration, as developed in [36], to control the total privacy leakage of the al-
gorithm throughout the computation. In practice, instead of sharing the exact local
estimate w(n)

k , a client k shares with its server at iteration n the perturbed estimate
w̃

(n)
k , given by

w̃
(n)
k = w

(n)
k + ξ

(n)
k , (5.11)

where the perturbation noise follows a Gaussian mechanism, ξ(n)k ∼ N (0, δ
2(n)
k I),

with δ
2(n)
k being the variance of the perturbation noise at iteration n.

As seen previously in the thesis, the privacy protection in dynamic zCDP is gov-
erned by ϕ

(0)
k , the initial privacy value, and ζ ∈ (0, 1), the exponential decay

factor of the perturbation noise variance that adjusts the iteration-specific privacy
protection dynamically.

Here, for each client, k ∈ C, the initial noise perturbation variance δ
2(0)
k is fixed,



66 Graph Personalized Federated Learning

Algorithm 5 Privacy-preserving PGFL

Initialization: w(0)
k = 0 and w

(0)
s,(q) = 0,∀k, q, s

– Procedure at server s –
For iteration n = 1, 2, . . .

Receive {w̃(n)
k ,φ

(n−1)
k ; ∀k ∈ Cs}

Update w̃
(n)
s,(q) as in (5.12)

Share w̃
(n)
s,(q),∀q with each server p in N−

s

Receive w̃
(n)
p,(q),∀q from each server p in N−

s

Aggregate ŵ
(n)
s,(q) as in (5.9)

Compute w
(n)
s,(q) as in (5.10)

Share w
(n)
s,(q) with clients in Cs

EndFor
– Procedure at client k ∈ Cs –
For iteration n = 1, 2, . . .

Update w
(n)
k as in (5.4)

Perturb w
(n)
k into w̃

(n)
k as in (5.11)

Share w̃
(n)
k and φ(n−1)

k with server s
Receive w

(n)
s,(q) from server s

Update φ(n)
k as in (5.5) using w̃

(n)
s,(q) and w̃

(n)
k .

EndFor

and subsequently, the variance at iteration n is updated according to the relation-
ship δ

2(n)
k = ζδ

2(n−1)
k . This recursive update ensures a decreasing privacy protec-

tion as the algorithm progresses.

The server aggregation (5.8) and client dual update (5.5) are affected by the noise
perturbation (5.11). The server aggregation becomes

w̃
(n)
s,(q) =

1

|Cs,(q)|
∑

k∈Cs,(q)
w̃

(n)
k − 1

ρ|Cs,(q)|
∑

k∈Cs,(q)
φ

(n−1)
k , (5.12)

and in the client dual update, we substitute w(n)
s,(q) with w̃

(n)
s,(q) and w

(n)
k with w̃

(n)
k .

The resulting privacy-preserving algorithm is summarized in Algorithm. 5. In
the following sections, we provide a detailed study of the privacy protection and
convergence properties of the proposed privacy-preserving PGFL algorithm.
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5.3 Theoretical Results

5.3.1 Convergence Analysis

This section studies the convergence behavior of the proposed privacy-preserving
PGFL algorithm. Section 5.3.1 studies the algorithm without inter-cluster learning
and shows that it converges to the optimal solution of (5.2) with τ = 0 in linear
time. Section 5.3.2 then shows the impact of inter-cluster learning. In particular,
we show that although inter-cluster learning leads to a different convergence point
than intra-cluster learning, the distance between these two points is bounded by a
function of the task dissimilarity and the inter-cluster learning parameter sequence.
Moreover, we show that this bound can be used to design the inter-cluster learning
parameter sequence to achieve a desired convergence point under mild assump-
tions on cluster similarity, allowing for greater accuracy control in personalized
learning while leveraging the task similarity for faster convergence and improved
performance.

Problem Reformulation

We consider the server update steps with τ (n) = 0. Then, the minimization prob-
lem solved at a client k ∈ Cs,(q) becomes

min
wk

1

Dk
ℓk(Xk,yk;wk) +

λ

|Cs|
R(wk)

s.t. wk = ŵs,(q), (5.13)

where ŵs,(q) is the result of inter-server aggregation (5.9), defined as the average
model for cluster q in Ns. To simplify the analysis, we reformulate (5.13) as

min
wk

fk(wk)

s.t. wk = ek,l,wl = ek,l,∀l ∈
∑

p∈Ns

Cp,(q), (5.14)

where fk(wk) is given by

fk(wk) =
1

Dk
ℓk(Xk,yk;wk) +

λ

|Cs|
R(wk), (5.15)
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and the auxiliary variables {ek,l}, ∀k, l ∈ ∑
p∈Ns

Cp,(q) enforce consensus. To
reformulate (5.14) further, we introduce the following:

w = [w⊺
1 , . . . ,w

⊺
k , . . .w

⊺
K ]⊺,

w̃ = [w̃⊺
1 , . . . , w̃

⊺
k , . . . w̃

⊺
K ]⊺ = w + ξ

φ = [φ⊺
1 , . . . ,φ

⊺
k , . . . ,φ

⊺
K ]⊺,

F (w) =
∑

k∈C
fk(wk), (5.16)

where ξ is the concatenation of the noise added to the local models to ensure
privacy. In addition, we introduce the vector e ∈ R2Md concatenating the vectors
ek,l, el,k,∀(k, l) ∈ {1, . . . ,K} : k ̸= l, where d is the dimension of the models
and M is the number of constraints in (5.14). We can then reformulate (5.14) as

min
w

F (w)

s.t. Aw +Be = 0. (5.17)

where A = [A1,A2] and B = [−I2Md,−I2Md]. The matrices A1,A2 ∈ R2Md×Kd

are composed of d × d-sized blocks. Given a couple of connected clients (k, l),
their associated auxiliary variable ek,l, and its corresponding index in e, q; the
blocks

(
A1

)
q,k

and
(
A2

)
q,l

are equal to the identity matrix Id, all other blocks are
null.

From the above definitions, one can express
∑

ek,l∈e ∥wk − ek,l∥2+∥wl − ek,l∥2 =
∥Aw +Be∥2 and, forλ ∈ R4Md,

∑
k∈C

∑
l∈Nk

(⟨wk−ek,l,λq⟩+⟨wl−ek,l,λ2e+q⟩) =
⟨Aw +Be,λ⟩.
Therefore, the Lagrangian can be rewritten as

Lρ(Vq,M) = F (w) + ⟨Aw +Be,λ⟩+ ρ

2
∥Aw +Be∥2 . (5.18)

Convergence Proof

We make the following assumptions to continue the analysis.

Assumption 1. The functions fk(·), k ∈ {1, . . . ,K}, are convex and smooth.

Using (5.18), and under Assumption 1, the steps of the PGFL algorithm without
inter-cluster learning can be expressed as follows:



5.3. Theoretical Results 69

∇F (w(n+1)) +ATλ(n) + ρAT
(
Aw(n+1) +Be(n)

)
= 0,

BTλ(n) + ρBT
(
Aw̃(n+1) +Be(n+1)

)
= 0,

λ(n+1) − λ(n) + ρ
(
Aw̃(n+1) +Be(n+1)

)
= 0. (5.19)

Similarly to [46], we introduce the following to simplify (5.19):

H+ = AT
1 +AT

2 ,

L+ =
1

2
H+H

T
+,

α = HT
−w,

H− = AT
1 −AT

2 ,

L− =
1

2
H−HT

−,

M =
1

2
(L+ + L−).

Then, as derived in [46, Section II.B], (5.19) becomes

∇F (w(n+1)) +α(n) + 2ρMw(n+1) − ρL+w̃
(n) = 0,

α(n+1) −α(n) − ρL−w̃(n+1) = 0. (5.20)

As in [47, Lemma 1], the equations in (5.20) can be combined to obtain

w(n+1) =
M−1∇F (w(n+1))

2ρ
+

M−1L+w̃
(n)

2

− M−1L−
2

n∑

s=0

w̃(s). (5.21)

Similarly to [47], by introducing the following:

Q =
√
L−/2,

q(n) =

(
r(n)

w̃(n)

)
,

r(n) =
n∑

s=0

Qw̃(s),

G =

[
ρI 0
0 ρL+/2

]
,

(5.21) can be reformulated using [47, Lemma 2] as

∇F (w(n+1))

ρ
+ 2Qr(n+1) + L+

(
w(n+1) − w̃(n)

)
= 2Mξ(t+1). (5.22)

Theorem 5.1. Let Assumption 1 hold true, if τ (n) = τ = 0, ∀n, the proposed
PGFL algorithm converges to the optimal solution of (5.2) in linear time for each
cluster.



70 Graph Personalized Federated Learning

Proof. Under Assumption 1, F (w) is convex and smooth by composition and,
therefore, differentiable. Using [39, Lemma 6] and [39, Theorem V] with a con-
vex and smooth function F (w) demonstrates that the proposed PGFL algorithm,
without inter-cluster learning (τ = 0 ), converges to the optimal solution of (5.2)
in linear time for any given cluster.

5.3.2 Inter-cluster learning Analysis

In situations with limited data, as demonstrated in Section V, employing inter-
cluster learning (τ ̸= 0) can enhance performance compared to τ = 0. This
section establishes an upper bound on the disparity between the resulting cluster-
specific personalized models obtained in scenarios with and without inter-cluster
learning. It is worth noting that this bound can be controlled by properly choosing
the sequence τ(n).

To do so, it is necessary to reformulate the client primal update using Assumption
1. The primal update for client k ∈ Cs,(q) is expressed as follows:

w
(n+1)
k =argmin

w
fk(w)−

〈
φ

(n)
k ,w −w

(n)
s,(q)

〉
+

ρ

2
||w −w

(n)
s,(q)||

2, (5.23)

which, under Assumption 1, is equivalent to

∇fk(w
(n+1)
k )−φ(n)

k + ρ
(
w

(n+1)
k −w

(n)
s,(q)

)
= 0. (5.24)

Further reformulation leads to the following:

w
(n+1)
k = w

(n)
s,(q) +

1

ρ
φ

(n)
k − 1

ρ
∇fk(w

(n+1)
k ). (5.25)

By replacing w
(n+1)
k with (5.25) in (5.8), we obtain

ŵ
(n)
s,(q) =

1

|Ns|
∑

p∈Ns

1

|Cp,(q)|
∑

k∈Cp,(q)

(
w

(n−1)
p,(q) − 1

ρ
∇fk(w

(n)
k )
)
. (5.26)

Next, we investigate the effect of inter-cluster learning by comparing the per-
formance of models obtained using the PGFL algorithm with and without inter-
cluster learning. We shall prove that the difference between the resulting models
is bounded and depends on both the inter-cluster learning parameter and the simil-
arity of models between clusters.
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Theorem 5.2. Given a sufficiently large penalty parameter ρ, for all iterations,
server s ∈ S and cluster q ∈ Q, the impact of inter-cluster learning after n itera-
tions is bounded by

E
[
||w̄(n)

s,(q) −w
(n)
s,(q)||

2
2

]
⩽

n∑

i=1

( n∏

j=i+1

(
1− τ (j)

))
τ (i)η, (5.27)

where the expectation is taken with respect to the privacy-related noise added in
(5.11) and the data observation noise, w̄(n)

s,(q) denotes the model obtained by the
algorithm without inter-cluster learning, and η is the maximum cluster model dis-
tance, defined as:

η = max
q,r∈Q

∥∥∥w∗
(q) −w∗

(r)

∥∥∥
2

2
, (5.28)

with the models w∗
(q), q ∈ Q being the cluster-specific solutions of (5.2) with

τ = 0.

Proof. See P5, page 6.

Corollary. If τ (i) = 0,∀i < n and τ (n) ̸= 0, the impact of a single iteration of
inter-cluster learning is bounded by

E||w̄(n)
s,(q) −w

(n)
s,(q)||

2
2 ⩽ τ (n)η, (5.29)

where w̄
(n)
s,(q) denotes a model obtained without inter-cluster learning, η is as

defined in Theorem 5.2, and the expectation is taken with respect to the privacy-
related and observation noises.

Theorem 5.2 bounds the difference in the resulting models with and without inter-
cluster learning. Combining Theorems 5.1 and 5.2, the resulting models obtained
by the algorithms are guaranteed to reside within a neighborhood of the optimal
solution of (5.2) with τ = 0. The size of this neighborhood can be adjusted by se-
lecting the sequence τ (n). When ample data is available, the algorithm converges
to a satisfactory solution within this neighborhood. However, in cases of limited
data, the solution of (5.2) with τ = 0 may be inadequate. In such situations,
inter-cluster learning becomes crucial, allowing the proposed algorithm to achieve
higher accuracy, as demonstrated in Section V. By exploiting inter-cluster learn-
ing, the algorithm effectively overcomes the limitations imposed by scarce data,
leading to improved performance.
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5.3.3 Privacy Analysis

This section focuses on quantifying the local privacy protection provided by the
proposed PGFL algorithm. To achieve this, we begin by calculating the l2-norm
sensitivity, which quantifies the variation in output resulting from a change in an
individual data sample. Once we have established the l2-norm sensitivity, we pro-
ceed to adjust the noise variance added to the primal variables, ensuring satisfact-
ory protection.

Definition 1. The l2-norm sensitivity is defined by

∆
(n)
k,2 = max

Dk,Dl

∥∥∥w(n)
k,Dk

−w
(n)
k,Dl

∥∥∥ (5.30)

where w(n)
k,Dk

and w
(n)
k,Dl

denote the local primal variables obtained from two neigh-
boring data sets Dk and Dl, which differ in only one data sample.

Assumption 3. The functions ℓk(·), k ∈ C, have bounded gradients. That is, for
k ∈ C there exists a constant Ck such that ||∇ℓk(·)|| ⩽ Ck.

Lemma 5.1. Let Assumption 3 hold true, the l2-norm sensitivity for a client k is
given by

∆
(n)
k,2 = max

Dk,Dl

||w(n)
k,Dk

−w
(n)
k,Dl

|| = 2Ck

ρDk
. (5.31)

Proof. See P5, page 7.

With the l2-norm sensitivity, we can establish the relation between the noise vari-
ance added in (5.11) and the privacy parameter ϕ(n)

k as well as prove the privacy
guarantee of the algorithm in terms of zCDP.

Theorem 5.3. Let Assumption 3 hold true, the Privacy-preserving PGFL algorithm
satisfies dynamic ϕ

(n)
k -zCDP with the relation between the privacy parameter and

the perturbation noise variance given by

δ
2(n)
k =

∆
(n)2
k,2

2ϕ
(n)
k

. (5.32)

Proof. See P5, page 8.

Theorem 5.3 gives the relationship between the noise perturbation variance and the
privacy protection at a given iteration. Since the proposed algorithm is iterative



5.4. Numerical Results 73

in nature and models are exchanged several times with the servers, one should
consider the total privacy loss throughout the learning process. To this aim, we
establish the following theorem.

Theorem 5.4. Let Assumption 3 hold true, for a final iteration N , the PGFL al-
gorithm satisfies ϕtotal

k -zCDP throughout the entire computation for each client k,
with ϕtotal

k given by

ϕtotal
k =

N∑

n=1

ϕ
(n)
k . (5.33)

Proof. See P5, page 8.

5.4 Numerical Results
This section illustrates the performance of the proposed PGFL algorithm for solv-
ing regression and classification tasks.

5.4.1 Experiments for Regression

We consider a graph federated network consisting of |S| = 10 servers, each hav-
ing access to |Cs| = 15 clients, for a total of K = 150 clients. The set of servers
and their communication channels form a random connected graph where the av-
erage node degree is three. Each client has access to a random number of noisy
data samples between Dk = 2 and Dk = 9, each composed of a vector xk,i of
dimension d = 60 and a response scalar yk,i. Doing so, each cluster is globally
observable but not locally at any given client or set Cs, s ∈ S. The servers im-
plement random scheduling of clients to reduce the communication load [12]. In
particular, at every global iteration, each server randomly selected a subset of three
clients to participate in the learning process.

The clients of the network are randomly split between Q = 3 clusters. Clients
of a given cluster solve the ridge regression problem with data generated from an
original model w∗

(q), obtained with w∗
(q) = w∗

0 + γw∗
0 with γ ∼ U(−0.15, 0.15),

where w∗
0 is a base model. In doing so, the learning tasks of the different clusters

share the same objective functions but have different, related data distributions.
The loss and regularizer functions are given by

ℓk(Xk,yk;wk) = ||yk −Xkwk||2, R(wk) = ||wk||2. (5.34)

Performance is evaluated by computing the normalized mean squared deviation
(NMSD) of the local models with respect to the corresponding cluster-specific
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original model used to generate the data, w∗
(q) for k ∈ C(q). It is given by:

γ(n) =
1

K

|Q|∑

q=1

∑

k∈C(q)

∥∥∥w(n)
k −w∗

(q)

∥∥∥
2

2∥∥∥w∗
(q)

∥∥∥
2

2

, (5.35)

where the result is averaged over several Monte Carlo iterations. The proposed
algorithm is compared with various existing algorithms. The ClusterFL algorithm,
defined in [88], implements conventional personalized FL with inter-cluster learn-
ing. For a fair comparison, the ClusterFL algorithm has been modified to leverage
similarity among tasks in the same manner as the PGFL algorithm. The GFL al-
gorithm, defined in [9], implements single-task graph FL in a privacy-preserving
manner. To ensure a fair comparison, the ClusterFL and GFL algorithms have been
modified to ensure privacy in the same manner as the PGFL algorithm. Further-
more, the algorithms are set to observe the same initial convergence rate whenever
possible. For most experiments, the learning curves are displayed as plots of the
NMSD versus the iteration index.

We first consider an ideal setting wherein all algorithms are evaluated without pri-
vacy considerations (ξ(n) = 0, ∀n)) and client scheduling. In this scenario, the
inter-cluster parameter τ (n) of the PGFL algorithm was kept fixed throughout the
learning, specifically, τ (n) = 0 and τ (n) = 0.4. Figure 5.1 (a) shows the learning
curves for the GFL, ClusterFL, and PGFL algorithms. The results illustrate the
superiority of the proposed PGFL algorithm over GFL, as cluster-specific learning
tasks benefit significantly from personalized models tailored to each cluster. We
also see that incorporating inter-cluster learning results in improved convergence
speed and steady-state accuracy. Furthermore, the performance of the ClusterFL
algorithm is notably poor in this setting, emphasizing the importance of using the
graph federated architecture when data is scarce. Leveraging the model similar-
ities improves learning speed and accuracy by compensating for data scarcity. In
addition, isolated servers whose clients lack sufficient data to achieve satisfactory
accuracy independently reinforce the necessity of the graph federated architecture.

Next, we modify the setting to incorporate client scheduling and evaluate the afore-
mentioned algorithms with reduced communication load. Figure 5.1 (b) shows the
learning curves for the GFL, ClusterFL, and PGFL algorithms with client schedul-
ing. In this figure and the ones below, 3 clients out of 15 are randomly selected
to participate by each server at every iteration, reducing the communication load
by 80% for every algorithm. We observe that the PGFL algorithm exhibits slower
convergence and higher steady-state NMSD when utilizing client scheduling. And
we note that GFL performs better with client scheduling. The performance de-
gradation for the PGFL algorithm is due to the lower client participation resulting
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Figure 5.1: Learning curves of the PGFL algorithm with a fixed inter-cluster learning
parameter. (a) without client scheduling or privacy, (b) with client scheduling without
privacy, (c) with client scheduling and privacy.

in a smaller quantity of data being utilized. The better performance of GFL in this
setting is due to the imbalance of cluster representation in the universal model,
which benefits the participating clients on average.

Finally, we evaluate the aforementioned algorithms in a setting with client schedul-
ing and privacy protection. All of the algorithms utilize zCDP with the noise
perturbation presented in (5.11) and the parameters ϕ

(0)
k = 0.001, ∀k and ζ =

0.99. Hence, all the algorithms satisfy ϕfinal
k -zCDP throughout the computation

with ϕfinal
k = 0.095, ∀k. Figure 5.1 (c) shows the learning curves for the GFL,
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Figure 5.2: NMSD after 200 iterations vs. fixed inter-cluster learning parameter τ (n)

values for the PGFL algorithm with client scheduling and privacy .

ClusterFL, and PGFL algorithms with client scheduling and privacy. We observe
that the noise perturbation associated with differential privacy significantly reduces
the convergence speed of all the simulated algorithms. However, we note that the
NMSD after 300 iterations is nearly identical to the one in Fig. 5.1 (b). This
behavior is explained by the use of zCDP, in which the variance of the noise per-
turbation starts high and decreases linearly throughout the learning process.

Further, we illustrate the importance of carefully choosing the value of the inter-
cluster learning parameter. In Fig. 5.2, we simulated the proposed PGFL algorithm
for various fixed τ (n) values and displayed the NMSD after 200 iterations. For
instance, the NMSD for τ (n) = 0.4 corresponds to the result obtained in Fig. 5.1
(c). This figure confirms that inter-cluster learning has the potential to increase
learning performance by alleviating data scarcity, as the PGFL algorithm achieves
lower NMSD with τ (n) ∈ (0.1, 0.5) than with τ (n) = 0. It also shows that the
inter-cluster learning parameter must be carefully selected, as a value too large for
the setting leads to performance degradation.

We then illustrate an alternative use of inter-cluster learning. For this experi-
ment, the difference between the data distribution of the different clusters has been
increased. Precisely, the datasets were simulated with the models obtained by
w(q) = w0 + γw0 with γ ∼ U(−0.5, 0.5). The learning curves are presented in
Fig. 5.3. We observed that, because of the higher cluster dissimilarity, inter-cluster
learning degrades steady-state NMSD; this is observed in the learning curves for
PGFL with τ (n) = 0 and τ (n) = 0.4. However, by mitigating data scarcity within
a cluster, inter-cluster learning improves the initial convergence rate. To bene-
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Figure 5.3: Learning curves of the PGFL algorithm with fixed and time-varying inter-
cluster learning parameter τ (n) in a setting with low cluster similarity, considering client
scheduling and privacy.

fit from an improved initial convergence rate and avoid steady-state performance
degradation, it is possible to reduce the inter-cluster learning parameter progress-
ively. Doing so, the PGFL algorithm with time-varying τ (n) = 0.4 × 0.98n has
the same initial convergence rate as the PGFL algorithm with fixed τ = 0.4 and
attains near-identical steady-state NMSD as the PGFL algorithm with fixed τ = 0.
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Figure 5.4: Privacy-accuracy trade-off of the PGFL algorithm with a fixed inter-cluster
learning parameter, considering client scheduling. (a) for various ζ, (b) for various ϕ(0).

Finally, we study the impact of privacy protection on the steady-state NMSD of
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the PGFL algorithm. Fig. 5.4 (a) shows the NMSD after 200 iterations versus the
initial value of the privacy parameter ϕ0 for a decaying rate of ζ = 0.99. Note that,
as seen in Theorem III, a lower value of ϕ0 ensures more privacy. We observe that
for smaller values of ϕ0, the steady-state NMSE of the PGFL algorithm is higher.
In fact, a lower total privacy loss bound leads to higher perturbation noise variance
and diminishes the learning performance of the algorithm. Similarly, Fig. 5.4 (b)
shows the NMSD after 200 iterations versus the variance decrease rate ζ for an
initial privacy value of ϕ0 = 0.001. The lower the decrease rate, the faster the
privacy protection weakens, and the lower the steady-state NMSE of the algorithm
as more information is exchanged among clients. On the other hand, a decrease
rate close to 1 ensures better privacy protection but comes at the cost of lower
accuracy.

5.4.2 Experiments for Classification on the MNIST Dataset

The following experiments were conducted on the MNIST handwritten digits data-
set [89]. In those experiments, the learning tasks of the clients associated with dif-
ferent clusters share the same data but have different, related, objective functions.
The structure of the server network, as well as the number of clients per server,
are identical to the experiments for regression. In the following experiments, the
clients of a given cluster use the ADMM for logistic regression to differentiate
between two classes. The loss function for the logistic regression is given by

log[ℓk(Xk,yk;wk)] =
−1

Dk

Dk∑

i=1

(
yk,i log[y

′
k,i]

+ (1− yk,i) log[1− y′k,i]
)
, (5.36)

with

y′k,i =
1

1 + exp(−w⊺
kxk,i)

. (5.37)

We simulated the PGFL algorithm in the context of classification with client schedul-
ing, privacy, a fixed inter-cluster learning parameter τ (n) = τ = 0.4, and without
inter-cluster learning τ (n) = 0. Figure 5.5 (a) shows the test accuracy versus it-
eration index in a setting the clients of a given cluster must differentiate between
two classes composed of a single digit. Each client receives between Dk = 2 and
Dk = 4 data samples composed of two MNIST images. The clients of cluster 1
have access to images of the digits {1} and {8}. The clients of clusters 2 and 3
have access to images of the digits {1} and {9}, and {7} and {8}, respectively.
Given that the clients of different clusters must differentiate between different di-
gits, the similarity between the learning task is limited. Nevertheless, we observe
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Figure 5.5: Performance of the PGFL algorithm in the MNIST classification task, con-
sidering client scheduling and privacy. Test accuracy curves with and without inter-cluster
learning (a) with low task similarity, (b) with high task similarity, and (c) accuracy after
100 iterations as a function of τ (n).

that inter-cluster learning does improve the accuracy of the PGFL algorithm in this
setting.

Further, we modified the setting so that the clusters exhibit more similarity. Figure
5.5 (b) shows the test accuracy versus iteration index in a setting where the clients
of a given cluster must differentiate between two classes composed of triplets of
digits. Each client receives between Dk = 6 and Dk = 12 data samples, each
composed of two triplets of MNIST images. The clients of cluster 1 must differ-
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entiate between the classes {1, 2, 3} and {6, 7, 8}, the clients of cluster 2 between
{1, 2, 3} and {7, 8, 9}, and the clients of cluster 3 between {1, 2, 3} and {6, 8, 9}.
We observe that, in this setting, inter-cluster learning significantly improves the
accuracy of the PGFL algorithm.

Finally, we utilize the previous setting and evaluate the impact of the value of
the inter-cluster learning parameter τ (n) on the accuracy achieved by the PGFL
algorithm in the context of classification. Figure 5.5 (c) displays the accuracy
achieved by the PGFL algorithm after 100 iterations versus the value of the inter-
cluster learning parameter in the context of the classification task of Fig. 5.5 (b).
We observe that, in this setting where the similarity among the learning tasks is
high, medium and large fixed values for τ (n) lead to significant accuracy improve-
ment. However, very large values lead to performance degradation, similar to Fig.
5.2.

5.4.3 Experiments for Classification on the MedMNIST Dataset

To demonstrate the proposed method of utilizing inter-cluster learning to palli-
ate data scarcity and improve learning performance in real-life applications, two
experiments are conducted on the OrganAMNIST dataset, part of the biomedical
MedMNIST dataset [90]. The OrganAMNIST dataset contains lightweight images
of 11 different organs labeled by type. It comprises more than 58000 data samples
split into training, validation, and testing data. We use the proposed method to
improve classification accuracy in the following setting. The server network and
the loss function are identical to previous experiments; however, only three clients
are associated with each server, each client having access to two data samples. In
both experiments, clients of a given cluster are tasked with differentiating between
two types of organs. Different clusters are associated with different pairs of or-
gans, and inter-cluster learning is utilized to improve classification accuracy by
leveraging the similarity between some of the organs.

In the first experiment, the three clusters are given similar learning tasks. In partic-
ular, one of the elements of each pair of organs is identical. Cluster 1 differentiates
between the right lung and the left lung, cluster 2 between the liver and the left
lung, and cluster 3 between the right kidney and the left lung. Figure 5.6 (a)
shows the test accuracy versus iteration index. We observe that a large amount
of inter-cluster learning leads to significantly improved performances, increasing
classification accuracy by about 5%.

In the next experiment, the learning tasks associated with each cluster are less
similar than in the previous experiment. They share only the vague shape of the
classified organs. Cluster 1 differentiates between the spleen and the left lung,
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Figure 5.6: Test accuracy curve of the PGFL algorithm with a fixed inter-cluster learning
parameter on MedMNIST, considering privacy. (a) with high cluster similarity, (b) with
low cluster similarity.

cluster 2 between the left kidney and the bladder, and cluster 3 between the right
kidney and the right lung. Due to the lower cluster similarity, we utilize a de-
caying inter-cluster learning parameter to preserve steady-state accuracy. Figure
5.6 (b) shows the test accuracy versus iteration index. We observe that a medium
decay rate of the inter-cluster learning parameter can improve the learning speed,
boosting classification accuracy by about 2%.

5.5 Summary
This chapter presented the PGFL framework and its privacy-preserving imple-
mentation. The purpose of the PGFL framework is to enable large-scale per-
sonalized FL by removing the arbitrary limitation on the number of clients and,
therefore, the number of models learned caused by the use of a single-server ar-
chitecture. In PGFL, distributedly connected servers collaborate with each other
and their associated clients to learn cluster-specific personalized models. Further-
more, the similarities among clusters are leveraged to improve learning speed and
alleviate data scarcity. The presented algorithm utilizes zCDP to propose a secure
and ready-to-use implementation of PGFL. Its mathematical analysis showed that
this algorithm converges to the exact optimal solution for each cluster in linear
time and that utilizing inter-cluster learning leads to an alternative output whose
distance to the original solution is bounded by a value that can be adjusted with the
inter-cluster learning parameter sequence. Finally, numerical simulations showed
that the proposed method is capable of leveraging the graph federated architec-
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ture and the similarity between the clusters learning tasks to improve learning per-
formance. We have observed that the inter-cluster learning parameter sequence is
essential for analytical and numerical performances. For this reason, ensuring its
value is as close to the optimum as possible is key. This is the purpose of the next
chapter.



Chapter 6

Networked Federated Learning
with Reinforcement Learning
Based Personalization

This chapter, which presents the results of publication P7, addresses personalized
FL in a networked architecture by using reinforcement learning. In personalized
federated learning, each client or group of clients learns a client- or cluster-specific
model personalized for their local needs. A single client or cluster often does
not possess sufficient data to learn a satisfactory model, leading to performance
degradation. As seen previously, it is possible to leverage the similarities often
present between the various learning tasks to alleviate data scarcity and enhance
learning performance. While this can be done among clusters as a whole in most
architectures, the use of a networked architecture presents additional challenges. In
fact, given a distributed network of devices performing various learning tasks, both
the data distribution and the cluster representation are likely to be uneven. Without
a central coordinator, clients must rely on their direct neighborhood to perform
their learning tasks, which may or may not include sufficient cluster-specific data.
Therefore, uncontrolled inter-cluster learning may lead to performance degrada-
tion due to over- or under-usage of local task similarity. In light of this issue, an
intelligent mechanism that performs inter-cluster learning based on client-specific
needs is required. This chapter introduces such a mechanism, using reinforcement
learning principles to control device-specific inter-cluster learning in real-time.

83
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6.1 Motivation
Inter-cluster learning is frequently used in personalized learning as it enables the
learning of task-specific personalized models despite the lack of data associated
with these specific tasks [14, 15]. In addition, when enough data is available,
it can be used to increase learning speed [17]. However, the fundamental beha-
vior of inter-cluster learning is to enforce similarity across models designed for
non-identical tasks. Therefore, inter-cluster learning can degrade accuracy if not
adequately tuned and controlled over time. For instance, as observed in the previ-
ous chapter, it may be necessary to progressively reduce the inter-cluster learning
parameter to avoid steady-state performance degradation when used to increase
learning speed. In a distributed network, both data and clusters may be unevenly
distributed, leading to widely varying amounts of cluster-relevant information be-
ing available within a client’s neighborhood. Furthermore, clients must rely solely
on their neighborhood to complete their learning tasks. For this reason, two cli-
ents of the same cluster may require different degrees of inter-cluster learning.
Therefore, in the networked architecture, inter-cluster learning must be controlled
in space as well as in time. This raises the need for an intelligent mechanism that
controls client-specific inter-cluster learning parameters in real-time throughout
the computation so that it is only used when it improves performance.

The work in [17] proposes a rule to disable inter-cluster learning if it becomes
detrimental rather than scaling it according to client requirements. For this pur-
pose, every model received from neighbors belonging to a different cluster is tested
against the local training dataset. This process results in a substantial compu-
tational cost that grows with the network density, thus prohibitive for practical
usage. In contrast, this chapter introduces a reinforcement learning-based mech-
anism that locally controls the inter-cluster learning parameter according to the
client’s real-time requirements to maximize the added value of inter-cluster learn-
ing. The inter-cluster learning parameter is modified on-the-fly as the computation
takes place to cater to the time-evolving needs of the clients. Each client’s para-
meter is controlled locally and independently from other clients’ parameters to
ensure that it is adapted to this client’s neighborhood and data availability. Finally,
the reinforcement learning policies used to control the inter-cluster learning para-
meters are computationally inexpensive not to slow down the learning process.
This chapter will illustrate how this mechanism can greatly increase learning ac-
curacy in a distributed network composed of clients with various tasks and data
availability by providing them with personalized and time-adapting inter-cluster
learning parameters.
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6.2 Proposed Method

6.2.1 Networked Personalized Federated Learning

We consider a networked architecture modeled as an undirected graph G = (C, E),
where C is the set of clients and E is the set of edges such that (k, l) ∈ E if and
only if the clients k and l are neighbors. A client can only communicate with its
neighbors, we denote Nk the set of the neighbors of client k. Further, clients are
grouped into Q clusters, and the clients grouped in a cluster q, denoted by C(q),
for q ∈ {1, . . . , Q}, solve the same learning task, i.e., they aim to learn the same
model. For r ̸= q, (r, q) ∈ {1, . . . , Q}, the tasks associated with cluster q and r
are different, but exhibit similarities.

Each client k ∈ C has access to a local dataset (Xk,yk) composed of a matrix
Xk = [xk,1, . . . ,xk,Dk

]T and a response vector yk = [yk,1, . . . , yk,Dk
]T, where

Dk is the number of data samples available to client k. The objective is to estimate
each cluster-specific model as accurately as possible without moving the data. This
leads to the following optimization problem for a given cluster q:

min
w(q)

∑

k∈C(q)

( 1

Dk

Dk∑

i=1

ℓk(xk,i, yk,i;w(q))
)
+ λR(w(q))

+
τ

Q− 1

∑

r∈{1,...,Q}\q

∥∥w(r) −w(q)

∥∥2 , (6.1)

where ℓk denotes the loss function of the task performed by client k, R denotes
the regularizer function, and λ > 0 is the regularization parameter. The term on
the second line corresponds to the enforcement of similarity between the cluster-
specific models, it is controlled by the global parameter τ . A larger τ enforces
more similarity, leading to more similar cluster-specific models.

The above optimization problem is centralized and uses a global model w(q) for
each cluster. In a networked architecture, the learning process relies on the clients’
models and enforces consensus among these models. To do so, the auxiliary vari-
ables zlk,∀(k, l) ∈ E are introduced. The distributed optimization problem for a
given client k belonging to cluster q is then given by

min
wk,(q)

1

Dk

Dk∑

i=1

ℓk(xk,i, yk,i;wk,(q)) + λR(wk,(q))

+
τk

Q− 1

∑

r∈{1,...,Q}\q

∥∥ŵk,(r) −wk,(q)

∥∥2 ,

s.t. wk,(q) = zlk,wl,(q) = zlk;∀l ∈ Nk

⋂
C(q), (6.2)
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where wk,(q) denotes the model of client k belonging to cluster q, and the con-
straints enforce intra-cluster consensus. The global parameter τ is replaced by
client-specific parameters τk that control inter-cluster learning locally. The vector
ŵk,(r) denotes the best available estimate of the model for cluster r available at
client k. This corresponds to the average of the models of the neighboring clients
from the cluster in question, given by

ŵk,(r) =
1

|Nk
⋂ C(r)|

∑

l∈Nk
⋂ C(r)

wl,(r). (6.3)

It is possible to derive the augmented Lagrangian for a given cluster q with the set
of primal variables Vq = {wk,(q)}, Lagrange multipliers M = ({µl

k}, {γl
k}), and

auxiliary variables Z = {zlk} as

Lρ,q(Vq,M,Z) =

∑

k∈C(q)

(
1

Dk

Dk∑

i=1

ℓk(xk,i, yk,i;wk,(q)) +
λ

|C(q)|
R(wk,(q))

+
∥∥∥ τk
Q− 1

∑

r∈{1,...,Q}\q

(ŵk,(r) −wk,(q))
∥∥∥
2
)

+
∑

k∈C(q)

∑

l∈Nk
⋂ C(q)

(
µlT
k (wk,(q) − zlk) + γ

lT
k (wl,(q) − zlk)

)

+
ρ

2

∑

k∈C(q)

∑

l∈Nk
⋂ C(q)

(
∥wk,(q) − zlk∥2 + ∥wl,(q) − zlk∥2

)
, (6.4)

where ρ is the penalty parameter. Given that the Lagrange multipliers are initial-
ized to zero, by using the Karush-Kuhn-Tucker conditions of optimality and setting
γk = 2

∑
l∈Nk

⋂ C(q) γ
l
k, it can be shown that the Lagrange multipliers µl

k and the
auxiliary variables Z are eliminated [42]. From the Lagrangian, the local update
steps of the ADMM for a given client k belonging to cluster q can be derived as:
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• Primal update

w
(n)
k,(q) = argmin

w

1

Dk
ℓk(Xk,yk;w) +

λ

|C(q)|
R(w)

+
∥∥∥ τk
Q− 1

∑

r∈{1,...,Q}\q

(
ŵ

(n−1)
k,(r) −w

)∥∥∥
2

+wTγ
(n−1)
k,(q)

+ ρ
∑

l∈Nk
⋂ C(q)

∥∥∥w −
w

(n−1)
k,(q) +w

(n−1)
l,(q)

2

∥∥∥
2
, (6.5)

• Dual update

γ
(n)
k,(q) = γ

(n−1)
k,(q) + ρ

∑

l∈Nk
⋂ C(q)

(w
(n)
l,(q) −w

(n)
k,(q)), (6.6)

where the superscript (n) denotes the iteration number.

The choice of the inter-cluster learning parameters τk will greatly impact the per-
formance of the proposed solution. A common and fixed value would fail to ac-
commodate the heterogeneous local data and neighborhood quality within the net-
work and would not remain relevant throughout the various learning stages of the
clients. To address this, we adopt the principles of reinforcement learning to con-
trol time-varying and client-specific inter-cluster learning parameters τ

(n)
k in the

next section.

6.2.2 Controlled Inter-Cluster Learning

Obtaining the optimal values for all the times series τ (n)k would require prior know-
ledge of the network topology and data distribution as well as extensive compu-
tational power, neither of which is available in a realistic scenario. Instead, we
use computationally inexpensive reinforcement learning to leverage the informa-
tion available within a client’s neighborhood with the purpose of improving the
value of the inter-cluster learning parameters. Each client k controls the real-time
evolution of the parameter τ

(n)
k using local data and information received from

neighbors.

At any given moment, the state of the reinforcement learning process, at a client
k in cluster q, is given by the primal variable, w(n)

k,(q). The action a corresponds

to the modification of the local inter-cluster learning parameter τ (n)k . We denote
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w
(n)
k,(q)(·), the function taking a value for the inter-cluster learning parameter as

input and giving the corresponding alternative primal variable as output. The ori-
ginal primal variable in (6.5) corresponds to w

(n)
k,(q) = w

(n)
k,(q)(τ

(n)
k ). For an action

a, the corresponding alternative primal variable is given by w
(n)
k,(q)(a).

The state- and action-value functions correspond to the error on the local test data-
set of the initial and alternative primal variables, respectively. For instance, the
state-value function is given by

Vt

(
w

(n)
k,(q)

)
=

1

Dk
ℓk

(
Xk,t,yk,t;w

(n)
k,(q)

)
+

λ

|C(q)|
R
(
w

(n)
k,(q)

)
, (6.7)

where (Xk,t,yk,t) denotes the test dataset. To avoid over-fitting, it is preferable
not to use the test dataset in the reinforcement learning process. Instead, estim-
ates of the state- and action-value functions are computed on a validation dataset
(Xk,v,yk,v). The estimate of the state-value function is given by Vv(w

(n)
k,(q)), and

the estimate of the action-value function by Vv(w
(n)
k,(q)(a)).

Policy gradient [91, 92] and deterministic policy gradient [93] are among the most
popular policies for continuous action reinforcement learning. They propose a
gradient ascent alternative to the greedy maximization of the action-value function
given by

τ
(n+1)
k = argmax

a
Vv

(
w

(n)
k,(q)(a)

)
. (6.8)

In its simplest form, deterministic policy gradient relies on the gradient of the
policy reward with respect to the policy parameter at the current state. In the pro-
posed setting, this corresponds to the derivative of Vv(w

(n)
k,(q)(a)) with respect to

a taken at τ (n)k , where the sign of the gradient is inverted since the reward corres-
ponds to the error. The policy parameter update is given by

τ
(n+1)
k − τ

(n)
k ∝

∂Vv

(
w

(n)
k,(q)(a)

)

∂a
, (6.9)

where ∝ denotes proportionality. Given the primal update (6.5), the computation
of this derivative is impossible in the general case. However, it can be possible
when the loss and regularizer functions are known.

The second proposed policy is a stochastic actor-critic mechanism that takes a ran-
dom action and compares the action-value function with the state-value function
to decide on the next value of the policy parameter. This policy offers better policy
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parameter exploration than the deterministic policy gradient [94]. First, the policy
proposes a random direction α ∼ U [−νSAC

2 , νSAC
2 ] for the policy parameter τ (n)k so

that a = τ
(n)
k + α. U(·) denotes the uniform distribution, and νSAC is a hyper-

parameter for the policy. The alternative primal variable w
(n)
k,(q)(a) is computed so

that the action-value function can be compared with the state-value function. The
policy parameter update is given by

τ
(n+1)
k − τ

(n)
k ∝ −sign

(
Vv

(
w

(n)
k,(q)(a)

)
− Vv

(
w

(n)
k,(q)

))
α.

Both of the aforementioned policies can be modified to implement batch rein-
forcement learning [95]. In batch reinforcement learning, the policies take several
successive actions per iteration step to better refine the policy parameter. However,
this requires the computation of several gradients for the policy gradient and sev-
eral action-value functions for the actor-critic policy, increasing the computational
load associated with the reinforcement learning process.

6.3 Numerical Results
As a proof of concept, we use the proposed framework to solve the ridge regression
problem. In ridge regression, the loss and regularizer functions used in (6.2) are
given by

ℓ(Xk,yk,w) = ∥yk −Xkw∥2 , R(w) = ∥w∥2 . (6.10)

The primal variable update for ridge regression is obtained by substituting ℓ(Xk,yk,w)
and R(w) with their above values in equation (6.5). Doing so, it is possible to com-
pute the gradient of the term in the argmin with respect to the primal variable w,
and, setting it to zero, we obtain

w
(n)
k,(q)(τ

(n)
k ) =

(
XT

kXk

Dk
+
( λ

|C(q)|
+ τ

(n)
k + ρ|Nk|

)
I

)−1

(
XT

kyk

Dk

τ
(n)
k

(Q− 1)

∑

r∈{1,...,Q}\q

ŵ
(n−1)
k,(r)

+
ρ

2

∑

l∈Nk
⋂ C(q)

(
w

(n−1)
k,(q) +w

(n−1)
l,(q)

)
−
γ
(n−1)
k,(q)

2

)
. (6.11)

The alternative primal variable w
(n)
k,(q)(a) for an action a can be computed in the

same manner, by replacing τ
(n)
k with a in (6.11). Using this alternative primal
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variable and the values of the loss and regularizer function for ridge regression in
(6.10), the action-value function can be expressed as

Vv

(
w

(n)
k,(q)(a)

)
=

1

Dk

∥∥∥yk,v −Xk,vw
(n)
k,(q)(a)

∥∥∥
2
+

λ

|C(q)|
∥∥∥w(n)

k,(q)(a)
∥∥∥
2
. (6.12)

Using the expression for the primal variable (6.11) and the action-value function
specific to ridge regression in (6.12), it is possible to compute the derivative of
the policy reward with respect to the policy parameter ∂Vv(w

(n)
k,(q)(τ

(n)
k ))/∂τ

(n)
k .

Given that the action-value function is to be minimized, the policy parameter up-
date step for the deterministic policy gradient, which we refer to as (DPG), is given
by:

τ
(n+1)
k = τ

(n)
k − δDPG

∂Vv

(
w

(n)
k,(q)(a)

)

∂a
, (6.13)

where δDPG is the learning rate.

For a random direction α and corresponding action a = τ
(n)
k + α, using (6.12) for

the action- and state-value functions, the update step of the policy parameter for
the stochastic actor-critic policy, which we refer to as (SAC), is given by

τ
(n+1)
k = τ

(n)
k − δSACsign

(
Vv

(
w

(n)
k,(q)(a)

)
− Vv

(
w

(n)
k,(q)

))
α,

(6.14)

where the sign is negated to minimize the action-value function and δSAC is the
learning rate.

The resulting algorithms, referred to as Networked Personalized Federated learn-
ing using Reinforcement Learning (NPFL-RL) are summarized in Algorithm 6.

We considered a distributed network composed of K = 30 clients with an average
of 6 neighbors per client. The clients are randomly grouped into Q = 3 clusters.
The goal is to estimate cluster-specific tasks given by wq = w0 + δqw0, with
δq ∼ U(−0.5, 0.5). U denotes the uniform distribution, and w0 is a randomly
chosen base model. Each client k possesses a training dataset (Xk,yk) where
Xk ∈ RDk×60 and yk ∈ RDk×1 with Dk ∼ U(5, 35), as well as identically
distributed testing and validation datasets. The data is generated as yk = Xkwq +
nk, with nk ∼ N (0, ηk), where ηk is the client-specific noise variance and wq is
its cluster model. Finally, the Lagrangian penalty parameter is set to ρ = 3. We
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Algorithm 6 NPFL-RL for ridge regression

Initialization: w
(0)
k,(q) and γ(0)

k,(q), k ∈ C are set to 0, the parameters τ (0)k are
set to a given value within (0, 1).
– Procedure at client k –
For n = 1, 2, . . . , N

if n > 1

(DPG) τk is updated as in (6.13).
(SAC) τk is updated as in (6.14).

end if
Primal update: w(n)

k,(q) takes the value in (6.11).

Client k shares w(n)
k,(q) with its neighbors in Nk.

Dual update:
γ
(n)
k,(q) = γ

(n−1)
k,(q) + ρ

∑
l∈Nk

⋂ C(q)(w
(n)
l,(q) −w

(n)
k,(q)).

End For

considered the normalized mean squared error on the testing data set (Test MSE)
as the performance metric for comparison of the algorithms. It is given by

Test MSE =
1

K

∑

q∈Q

∑

k∈Cq

∥∥wk,(q) −w(q)

∥∥2
2∥∥w(q)

∥∥ , (6.15)

where {wk,(q), k ∈ C(q), q ∈ Q} are the models of the considered method. The
simulation results presented in the following are obtained by averaging the results
of 10 independent experiments. To ensure a fair comparison, the algorithms are
tuned to have the same initial convergence rate in Fig. (6.2).

The first experiment studied the impact of the inter-cluster learning parameter τ on
the learning behavior of conventional networked FL algorithms. For this purpose,
we simulated the following algorithms:

• NFL: is the traditional networked FL that learns one universal model for the
whole network.

• NPFL: is conventional personalized networked FL that learns cluster-specific
models. The global parameter τ is fixed throughout the learning process, so
that ∀k ∈ C, n > 0; τk = τ . Inter-cluster learning is absent when τ = 0.

The learning curves (i.e., Test MSE in dB vs. iteration index n) of the above al-
gorithms are presented in Fig. 6.1. The figure shows that the NFL algorithm does
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Figure 6.1: Learning curves of the NFL and NPFL algorithms for various values of τ .

not achieve satisfactory accuracy since it tries to learn a single universal model
that cannot accommodate client-specific tasks. NPFL with τ = 0 implies that
each cluster independently builds its own model by relying solely on the cooper-
ation among cluster members. Its performance can, therefore, be regarded as a
benchmark for networked personalized federated learning. As the value of τ in-
creases (e.g., τ = 0.05), the NPFL performance improves, as it enforces similar-
ity between the cluster-specific models. However, as more similarity is enforced
between models for non-identical tasks, the steady-state accuracy decreases, as can
be seen with NPFL τ = 0.1, τ = 0.2, and τ = 0.4. This confirms that inter-cluster
learning can be beneficial but leads to performance degradation when over-used.

In the second experiment, we demonstrated the effectiveness of the proposed NPFL-
RL in the learning of personalized models. For this purpose, we simulated the
following algorithms:

• NPFL-RL (DPG): uses the deterministic policy gradient in (6.13) with
δDPG = 0.001.

• NPFL-BRL (DPG): uses the deterministic policy gradient and batch rein-
forcement learning with 3 epochs and δDPG = 0.003.

• NPFL-RL (SAC): uses the stochastic actor-critic policy in (6.14) with νSAC =
0.05 and δSAC = 0.1.

• NPFL-BRL (SAC): uses the stochastic actor-critic policy and batch rein-
forcement learning with 3 epochs, νSAC = 0.05 and δSAC = 0.04.

The learning curves of these algorithms are presented in Fig. 6.2. For compar-
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Figure 6.2: Learning curves of the NPFL-RL and NPFL-BRL with different policies.
Also plotted is the learning curve of NPFL for τ = 0.05.

ison purposes, the learning curve of NPFL with τ = 0.05 is also displayed. We
see that all the versions of NPFL-RL exhibit better performance in initial learning
speed and steady-state accuracy compared to NPFL operating with a fixed τ value.
Since the clients have device-specific requirements, usage of a fixed universal τ is
impractical. Whereas the proposed NFL-RL controls the amount of inter-cluster
learning locally by learning the device-specific parameters τ (n)k in real time. Fur-
ther, we also see that NPFL-RL (SAC) exhibites enhanced accuracy over NPFL-
RL (DPG). The reason for this is that the stochastic nature of NPFL-RL (SAC)
ensures sufficient exploration of the policy parameters τk, which is not the case
for NPFL-RL (DPG). This stochastic nature also leads to extensive randomness in
the convergence of NPFL-RL (SAC), batch reinforcement learning attenuates this
issue as can be seen with NPFL-BRL (SAC). In the case of deterministic policy
gradient, batch reinforcement learning increases the learning accuracy. It is im-
portant to note that batch reinforcement learning comes with a computational cost
proportional to the number of epochs performed.

Finally, we illustrate the evolution of the inter/cluster learning parameters τ (n)k for
NPFL-RL (SAC) and NPFL-RL (DPG) in Fig. 6.3. We selected three clients 22,
3, 30, having access to large, moderate, and small amounts of data, respectively.
Therefore, these clients have different local requirements for inter-cluster learning.
From Fig. 6.3, we observe that the evolution of τ (n)k is very smooth when using
NPFL-RL (DPG) but fails to quickly adapt. On the other hand, the NPFL-RL
(SAC) algorithm provides sufficient exploration of the policy parameter, ensuring
that the τ

(n)
k parameters evolve quickly at the cost of extensive randomness (BRL

helps to overcome this issue). Furthermore, we also see that τ (n)k evolves according
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Figure 6.3: Evolution of τ (n)k for the 3rd, 22nd, and 30th clients.

to the needs of clients. Since client 30 has access to a small amount of data, τ (n)30

increases linearly at first to enforce higher inter-cluster learning. After reaching
near-convergence, the τ

(n)
30 value decreases to reduce the amount of inter-cluster

learning to avoid its harmful effect. In contrast, since client 22 has access to a large
amount of data, the τ

(n)
22 parameter decreases almost immediately and stabilizes

around 0 as inter-cluster learning is not valuable for this client. Finally, client
3 has access to an average amount of data. τ

(n)
3 increases at first as similarity

enforcement allows for faster initial convergence, but decreases afterwards and
stabilizes around 0 to avoid performance degradation.

6.4 Summary
Personalized federated learning suffers from data scarcity within clusters; this can
be alleviated by leveraging the similarity between the learning tasks. How much
these similarities are utilized is controlled by the inter-cluster learning parameter.
Optimizing the temporal sequence of inter-cluster learning parameters is hard, es-
pecially in a networked setting where the network topology and data distribution
impact how much each specific client needs to rely on inter-cluster learning. This
chapter introduced a networked personalized FL algorithm that uses reinforcement
learning to control client-specific evolving inter-cluster learning parameters. In
this algorithm, each local parameter is controlled in real-time by the reinforcement
learning process in a computationally inexpensive manner to accommodate the cli-
ents’ varied and evolving needs, ensuring that model similarity is enforced only as
much as what is beneficial for local learning. Numerical simulations showed that
the proposed method successfully controls device-specific parameters and offers
better learning performance than existing solutions.



Chapter 7

Conclusions and Future Work

This thesis developed solutions for various application scenarios with the purpose
of enabling the artificial intelligence of distributed devices. Through those applic-
ations, various challenges faced when implementing distributed machine learning
have been tackled. In particular, we have studied how to utilize an architecture
that scales with the growing number of participating devices, how to preserve the
participants’ confidentiality, how to handle straggler devices, and how to improve
performance by carefully leveraging both global and local data.

Chapter 2 provided an overview of federated learning, its alternative architectures
that can scale with a large number of participants, and its particular implementa-
tions for real-time and personalized learning. In addition, it introduced the notion
of differential privacy and illustrated how it can be used in an iterative process such
as federated learning to protect the client data.

Chapter 3 presented a networked federated learning algorithm where clients col-
laborate in a peer-to-peer manner to reach a consensus on the best solution to a
learning problem. As not all devices may be trusted, this algorithm protects cli-
ent confidentiality and privacy by incorporating differential privacy, ensuring that
private data is not compromised during the learning process. Finally, this algorithm
can be used on smooth and nonsmooth objectives, increasing the range of learning
problems it can tackle.

In Chapter 4, we focused on resource-constrained devices in federated learning.
For this purpose, nonlinear learning was considered as it often necessitates the
exchange of large-dimensional models, increasing the network strain. In addi-
tion, we considered an online FL setting, where timely learning is paramount, and
developed an algorithm capable of handling unpredictable participation and mitig-
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ating the adverse effect of delayed updates on accuracy using a weight-decreasing
mechanism. Additionally, the proposed algorithm reduces the communication load
by implementing partial-sharing-based communications, which presents the addi-
tional advantage of reducing the negative impact of delayed updates on accuracy.

Chapter 5 developed the personalized graph federated learning framework. The
graph federated architecture scales easily with the growing number of participants
while maintaining a fast learning rate, making it appealing in most applications.
The proposed method uses intra- and inter-cluster learning within and across serv-
ers to ensure fast and accurate learning of personalized models. Finally, this frame-
work is implemented in a privacy-preserving manner to provide a secure approach
to scalable and personalized learning.

In Chapter 6, we further explored inter-cluster learning in personalized FL. To this
aim, we considered a networked architecture in which the network topology and
data distribution affect the clients’ local need for inter-cluster learning. In such
an architecture, global control of inter-cluster learning is inadequate, while local
optimization is prohibitively expensive. To address this challenge, we used com-
putationally inexpensive reinforcement learning to control inter-cluster learning
locally and in real-time.

While the second half of this thesis focused on enabling and optimizing the use of
both inter- and intra-cluster learning, it assumed that the client distribution among
clusters was known. Detecting the initial and/or evolving distribution of clients
among clusters in personalized learning would enable its use in many applications
where this information cannot be known beforehand. In particular, the proposed
reinforcement learning mechanism used in Chapter 6 could be adapted to behave
without a priori cluster information on the neighbors and classify those according
to the value of the inter-cluster learning parameter.
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[65] R. Arablouei, K. Doğançay, S. Werner, and Y.-F. Huang, “Adaptive distrib-
uted estimation based on recursive least-squares and partial diffusion,” IEEE
Trans. Signal Process., vol. 62, pp. 3510–3522, Jul. 2014.

[66] V. C. Gogineni, S. Werner, Y.-F. Huang, and A. Kuh, “Communication-
efficient online federated learning framework for nonlinear regression,” IEEE
Int. Conf. Acoust., Speech and Signal Process., May 2022.

[67] O. Dekel, P. M. Long, and Y. Singer, “Online multitask learning,” in Int.
Conf. Comput. Learn. Theory, pp. 453–467, 2006.

[68] W. Liu, P. P. Pokharel, and J. C. Principe, “The kernel least-mean-square
algorithm,” IEEE Trans. Signal Process., vol. 56, pp. 543–554, Jan. 2008.



BIBLIOGRAPHY 103

[69] V. C. Gogineni, V. R. Elias, W. A. Martins, and S. Werner, “Graph diffusion
kernel LMS using random Fourier features,” in Proc. 54th Asilomar Conf.
Signals, Syst., Computers, pp. 1528–1532, Nov. 2020.

[70] A. Rahimi, B. Recht, et al., “Random features for large-scale kernel ma-
chines.,” in Proc. Conf. on Neural Inf. Proc. Syst., vol. 3, pp. 1–5, Dec. 2007.

[71] P. Bouboulis, S. Pougkakiotis, and S. Theodoridis, “Efficient KLMS and
KRLS algorithms: a random Fourier feature perspective,” in Proc. IEEE Stat.
Signal Process. Workshop, pp. 1–5, Jun. 2016.

[72] R. H. Koning, H. Neudecker, and T. Wansbeek, “Block Kronecker products
and the vecb operator,” Linear algebra and its applications, vol. 149,
pp. 165–184, Apr. 1991.

[73] V. C. Gogineni, S. Werner, Y.-F. Huang, and A. Kuh, “Communication-
efficient online federated learning strategies for kernel regression,” IEEE In-
ternet Things J., pp. 1–1, Nov. 2022.

[74] S. Dane, “CalCOFI, Over 60 years of oceanographic data.” Available at:
https://www.kaggle.com/sohier/calcofi?select=bottle.csv.

[75] R. Jin, Y. Huang, X. He, H. Dai, and T. Wu, “Stochastic-sign SGD for feder-
ated learning with theoretical guarantees,” arXiv preprint arXiv:2002.10940,
Feb. 2020.

[76] L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in federated
learning,” Computers & Ind. Eng., vol. 149, p. 106854, 2020.

[77] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized federated
learning,” IEEE Trans. Neural Netw. Learn. Sys., Mar. 2022.

[78] F. Sattler, K.-R. Müller, and W. Samek, “Clustered federated learn-
ing: Model-agnostic distributed multitask optimization under privacy con-
straints,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, pp. 3710–3722,
Aug. 2020.

[79] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated multi-
task learning,” Adv. neural inf. process. syst., vol. 30, . 2017.

[80] R. Li, F. Ma, W. Jiang, and J. Gao, “Online federated multitask learning,” in
Proc. IEEE Int. Conf. Big Data, pp. 215–220, Dec. 2019.



104 BIBLIOGRAPHY

[81] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient frame-
work for clustered federated learning,” Adv. Neural Info. Pro. Syst., vol. 33,
pp. 19586–19597, 2020.

[82] D. Caldarola, M. Mancini, F. Galasso, M. Ciccone, E. Rodolà, and B. Cap-
uto, “Cluster-driven graph federated learning over multiple domains,” in
Proc.IEEE Conf. Comput. Vision Pattern Recognit., pp. 2749–2758, 2021.

[83] V. C. Gogineni, S. Werner, Y.-F. Huang, and A. Kuh, “Decentralized graph
federated multitask learning for streaming data,” in Proc. Annu. Conf. Inf.
Sciences Sys., pp. 101–106, Mar. 2022.

[84] S. Zhou and G. Y. Li, “Federated learning via inexact ADMM,” IEEE Trans.
Pattern Anal. Machine Intell., Feb. 2023.

[85] Y. Chen, R. S. Blum, and B. M. Sadler, “Communication efficient federated
learning via ordered ADMM in a fully decentralized setting,” Conf. Inf. Sci-
ences Syst., pp. 96–100, Mar. 2022.

[86] S. Yue, J. Ren, J. Xin, S. Lin, and J. Zhang, “Inexact-ADMM based feder-
ated meta-learning for fast and continual edge learning,” in Proc. Int. Symp.
Theory Algorithmic Found. Protocol Des. Mobile Netw. Mobile Comput.,
p. 91–100, Assoc. Comput. Mach., Jul. 2021.

[87] J. Ding, X. Zhang, M. Chen, K. Xue, C. Zhang, and M. Pan, “Differentially
Private Robust ADMM for Distributed Machine Learning,” in 2019 IEEE Int.
Conf. Big Data, pp. 1302–1311, Dec. 2019.

[88] X. Ouyang, Z. Xie, J. Zhou, J. Huang, and G. Xing, “ClusterFL: A similarity-
aware federated learning system for human activity recognition,” Proc. 19th
Annu. Int. Conf. Mobile Syst. Applications Services, pp. 54–66, Jun. 2021.

[89] L. Deng, “The MNIST database of handwritten digit images for machine
learning research,” IEEE Signal Process. Mag., vol. 29, no. 6, pp. 141–142,
2012.

[90] J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and B. Ni, “MedM-
NIST v2-A large-scale lightweight benchmark for 2D and 3D biomedical
image classification,” Scientific Data, vol. 10, no. 1, p. 41, 2023.

[91] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,” Adv.
Neural Inf. Process. Syst., vol. 12, 1999.



BIBLIOGRAPHY 105

[92] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” arXiv preprint arXiv:1707.06347, Jul. 2017.

[93] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proc. Int. Conf. Mach. Learn.,
pp. 387–395, Jan. 2014.

[94] H. Wang, T. Zariphopoulou, and X. Y. Zhou, “Reinforcement learning in
continuous time and space: a stochastic control approach,” J. Mach. Learn.
Res., vol. 21, pp. 1–34, Jan. 2020.

[95] S. Lange, T. Gabel, and M. Riedmiller, “Batch reinforcement learning,” Re-
inforcement Learn., pp. 45–73, Springer, 2012.



106 BIBLIOGRAPHY



Appendix A

Publication 1

P1 F. Gauthier, C. Gratton, N. K. D. Venkategowda and S. Werner, "Privacy-
Preserving Distributed Learning with Nonsmooth Objective Functions", in
Proceedings of Asilomar Conference on Signals, Systems, and Computers,
November, 2020.

In reference to IEEE copyrighted material which is used with permission in this 
thesis, the IEEE does not endorse any of NTNU’s products or services. Internal or 
personal use of this material is permitted. If interested in reprinting/republishing 
IEEE copyrighted material for advertising or promotional purposes or for creating 
new collective works for resale or redistribution, please go to http://www.ieee.org

This paper is not included in NTNU Open available at https://doi.org/ 10.1109/
IEEECONF51394.2020.9443287 and https://hdl.handle.net/11250/2984077

107



Appendix B

Publication 2

P2 F. Gauthier, C. Gratton, N. K. D. Venkategowda and S. Werner, "Private
Networked Federated Learning for Nonsmooth Objectives", submitted to
Elsevier Signal Processing.

The following is the submitted manuscript.

113



Private Networked Federated Learning

for Nonsmooth Objectives

François Gauthiera, Cristiano Grattona, Naveen K. D. Venkategowdab, Stefan
Wernera

aDepartment of Electronic Systems, NTNU, Norway
bDepartment of Science and Technology, Linköping University, Sweden

Abstract

This paper develops a networked federated learning algorithm to solve nonsmooth

objective functions. To guarantee the confidentiality of the participants with re-

spect to each other and potential eavesdroppers, we use the zero-concentrated dif-

ferential privacy notion (zCDP). Privacy is achieved by perturbing the outcome of

the computation at each client with a variance-decreasing Gaussian noise. ZCDP

allows for better accuracy than the conventional (ϵ, δ)-DP and stronger guaran-

tees than the more recent Rényi-DP by assuming adversaries aggregate all the

exchanged messages. The proposed algorithm relies on the distributed Alternat-

ing Direction Method of Multipliers (ADMM) and uses the approximation of the

augmented Lagrangian to handle nonsmooth objective functions. The developed

private networked federated learning algorithm has a competitive privacy accu-

racy trade-off and handles nonsmooth and non-strongly convex problems. We

provide complete theoretical proof for the privacy guarantees and the algorithm’s

convergence to the exact solution. We also prove under additional assumptions

that the algorithm converges in O(1/n) ADMM iterations. Finally, we observe

the performance of the algorithm in a series of numerical simulations.

Keywords: Federated Learning, Networked Architecture, Differential Privacy,

Nonsmooth Objective Functions.
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1. Introduction

Federated learning (FL) [1] has garnered significant research attention recently

because of its capacity to process massive amounts of data over a network of clients

[2, 3]. It has many applications, such as smart healthcare [4], autonomous vehicles

[5] and drones [6], and industrial engineering [7]. Networked FL [8], also called

decentralized FL, proposes a collaborative approach to FL in which the problem is

decomposed into many sub-problems that network clients solve by interacting with

their immediate neighbors in a peer-to-peer fashion without involving a central

coordinator. [9–11]. Networked FL is receiving growing interest as it resolves the

limitations of using a single server in FL, such as communication and computation

bottlenecks, while maintaining its advantages [12].

In many applications, the data held by clients is sensitive, and adversaries may

try to extract private information from the information exchanged between the

clients in the network. Therefore, it is imperative to mitigate information leak-

age during the client-interaction process in FL [13]. In this context, differential

privacy (DP) [14] provides a mechanism that protects individual privacy by ensur-

ing minimal changes in the algorithm output, regardless of whether an individual

data sample is present during the computation [15, 16]. Local DP protects the

data of the clients with respect to each other and external eavesdroppers. This

presents the advantage of protecting clients from honest-but-curious clients who

form part of the network but share the information available to them with a third

party. However, achieving good accuracy while providing high privacy guaran-

tees in privacy-preserving FL is challenging, especially when several messages are

exchanged.

To meet the demand for better privacy accuracy trade-off, concentrated dif-

ferential privacy (CDP) was introduced in [17] as a relaxation of the conventional

(ϵ, δ)-DP. Its purpose is to enable higher accuracy while maintaining identical pri-
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vacy protection under the assumption that an adversary may aggregate all the

exchanged messages [18, 19]. CDP was relaxed into zero-concentrated differential

privacy (zCDP) in [20], which is easier to use and offers similar benefits. Finally,

dynamic-DP, introduced in [21] can be used with zCDP to better suit iterative

processes such as an ADMM algorithm. It enables iteration-specific privacy bud-

gets. More recently, CDP has been relaxed into Rényi-DP [22], which concentrates

on a single moment of a privacy loss variable. In contrast, CDP and zCDP pro-

vide a linear bound on all positive moments and, therefore, a stronger privacy

guarantee. In this work, we use dynamic zCDP.

Existing networked FL and distributed learning solutions mainly comprise

(sub)gradient-based and ADMM-based algorithms. The former typically converge

at a rate of O(1/
√
n) [23], and the latter usually converge at a rate of O(1/n)

[24]. Although networked FL is recent, privacy-preserving distributed learning

has been thoroughly studied [21, 24–29]. Among these works, we can classify two

relevant groups to the problem at hand. The first group comprises solutions that

use a networked architecture and assume the objective functions to be smooth

and convex [21, 24–28], which may not be a valid assumption in practice. In fact,

many compelling objectives cannot be accurately modeled in this way [30, 31].

Among the above works, [24] offers a convergence rate of O(1/n) and, in [29], the

regularizer function can be nonsmooth, but the loss function is assumed smooth

and differentiable. In addition, the convergence rate of the algorithm in [29]

is O(1/
√
n). The second group comprises solutions relying on a single server

and handling nonsmooth and non-strongly convex objectives [32–36]. We note

that the works in [32–34] do not consider privacy, and the work in [36] can only

accommodate nonsmooth regularizer functions. The solution proposed in [35]

handles nonsmooth and non-strongly convex objectives but converges in O(1/
√
n)

and relies on a server to aggregate the local models.
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This paper proposes a privacy-preserving networked FL algorithm that han-

dles nonsmooth and non-strongly convex objective functions. Furthermore, the

proposed algorithm is proven to converge to the exact solution with a rate of

O(1/n). We consider a distributed network of clients that solve an optimization

problem collaboratively. Each client iteratively updates its local model using its

local data and the models received from its neighbors. To ensure the confiden-

tiality of its local data, a client perturbs its model before communication with

white Gaussian noise. The variance of the noise added to the models is such that

the total privacy leakage of the clients throughout the computation is bounded

under the zCDP metric. The ADMM used to solve the optimization problem is

distributed to comply with the networked setting. Further, the clients’ primal

updates use an approximation of the augmented Lagrangian obtained by taking

the first-order approximation of the objective function. This enables the proposed

method to handle nonsmooth objective functions. Mathematical analysis shows

that the proposed algorithm converges to the optimal point in O(1/n). Numer-

ical simulations compare the proposed algorithm with the most closely related

distributed learning solutions.

The rest of the manuscript is organized as follows. Section II introduces the

proposed zero-Concentrated Differentially Private Networked Federated Learning

(zCDP-NFL) algorithm. Sections III and IV contain the mathematical analysis

of the privacy guarantees and convergence properties of the proposed algorithm,

respectively. Section V compares zCDP-NFL with existing methods in a series of

numerical simulations.

Mathematical notations: Matrices, column vectors, and scalars will be respec-

tively denoted by bold uppercase, bold lowercase, and lowercase letters. The set

of natural integers is denoted by N and the set of real numbers by R. The opera-

tors (·)T denotes the transpose of a matrix. || · || represents the Euclidean norm,
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|| · ||1 the L1 norm, and ||x||2G = ⟨x,Gx⟩ for any couple of vector x and matrix

G. The inner product between two vectors a and b is denoted by ⟨a, b⟩. The

statistical expectation operator is represented by E[·] and N (µ,Σ) denotes the

normal distribution with mean µ and covariance matrix Σ. If a random variable

A follows the law B, we will write A ∼ B. The identity matrix in Rn×n is denoted

by In and subgradient of a function g(·) is denoted by g′(·). The nonzero smallest

and largest singular values of a semidefinite matrix A are denoted by Φmin(A)

and Φmax(A).

2. Approximated Private Networked Federated Learning

2.1. Distributed Empirical Risk Minimization

We consider a connected network of clients modeled as an undirected graph

G(C, E) where vertex set C = {1, . . . , K} corresponds to the clients and edge set

E contains the |E| = E undirected communication links. The set Nk contains the

indexes of the neighbors of client k.

Each client k ∈ C has a private data setDk := {(Xk,yk) : Xk = [xk,1, . . . ,xk,Mk
]T ∈

RMk×P , yk = [yk,1, . . . , yk,Mk
]T ∈ RMk}, where Mk is the number of data samples

and P the number of features in the data.

To fit with the networked architecture, we consider the distributed empirical

risk minimization problem with local primal variables V := {wk}Kk=1:

min
{wk}

K∑

k=1

( 1

Mk

Mk∑

j=1

ℓ(xk,j,yk,j;wk) +
λ

K
R(wk)

)

s.t. wk = zlk, wl = zlk, l ∈ Nk, ∀k ∈ C,
(1)

where ℓ : RP → R is the loss function, R : RP → R is the regularizer function, λ >

0 is the regularization parameter, and the equality constraints enforce consensus.

The auxiliary variables Z := {zlk}l∈Nk
are only used to derive the local recursions

and are eventually eliminated. In the following, we consider the learning problem

where ℓ(·) and R(·) are convex, but not necessarily strongly convex or smooth.
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2.2. Approximate Augmented Lagrangian

The augmented Lagrangian associated with (1) is given by

Lρ(V ,M,Z) =
K∑

k=1

(ℓ(Xk,yk;wk)

Mk

+
λR(wk)

K

)

+
K∑

k=1

∑

l∈Nk

[
µlT

k (wk − zlk) + γ
lT
k (wl − zlk)

]
(2)

+
ρ

2

K∑

k=1

∑

l∈Nk

(
||wk − zlk||2 + ||wl − zlk||2

)

where ρ > 0 is a penalty parameter and M := {{µl
k}l∈Nk

, {γ l
k}l∈Nk

}Kk=1 are the

Lagrange multipliers associated with the constraints in (1).

Given that the Lagrange multipliers M are initialized to zero, by using the

Karush-Kuhn-Tucker conditions of optimality for (1) and setting γ
(n)
k = 2

∑
l∈Nk

(γ l
k)

(n),

it can be shown that the Lagrange multipliers {µl
k}l∈Nk

and the auxiliary vari-

ables Z are eliminated [37, 38]. The resulting algorithm reduces to the following

iterative steps at client k.

w
(n)
k = argmin

wk

[
fk(wk) +wT

kγ
(n−1)
k + ρ

∑

l∈Nk

∥∥∥∥wk −
w

(n−1)
k +w

(n−1)
l

2

∥∥∥∥
2
]

γ
(n)
k = γ

(n−1)
k +ρ

∑

l∈Nk

(
w

(n)
k −w

(n)
l

)
(3)

where n is the iteration index and

fk(wk) =
ℓ(Xk,yk;wk)

Mk

+
λR(wk)

K
. (4)

To handle nonsmooth ℓ(·) and R(·) functions, we take the first-order approxi-
mation of fk with an l2-norm prox function, denoted as f̂k. Similarly as in [35, 39],

such an approximation is given by

f̂k(wk;V(n)) =
ℓ(Xk,yk;w

(n)
k )

Mk

+
λR(w

(n)
k )

K
+

∥∥wk −w
(n)
k

∥∥2

2η
(n+1)
k

(5)

+
(
wk −w

(n)
k

)T (ℓ′(Xk,yk;w
(n)
k )

Mk

+
λR′(w(n)

k )

K

)
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where V(n) = {w(n)
k , k ∈ C}, and η

(n)
k is a time-varying step size.

Taking the first-order approximation of fk leads to an inexact update at a

given iteration; however, the algorithm does not need to solve the problem with

high precision at each iteration to guarantee overall accuracy [35]. In the end,

considering f̂k instead of fk in the primal update makes the algorithm capable of

solving nonsmooth objectives with a minimal impact on overall accuracy. Unlike

the method used in [23] to deal with nonsmooth objective functions, the approach

taken here is compatible with the algorithm’s convergence to the exact objective

value.

2.3. Privacy Preservation

To prevent the leakage of private information, we introduce local differential

privacy to the algorithm via message perturbation. For this purpose, each client

k shares at iteration n with its neighbors the perturbed estimate

w̃
(n)
k = w

(n)
k +ξ

(n)
k (6)

with ξ
(n)
k ∼ N (0, σ2

k(n)IP ). We denote Ṽ(n) = {w̃(n)
k , k ∈ C}.

The value of the noise perturbation variance, σ2
k(n), in (6) dictates the privacy

protection of the algorithm. To guarantee convergence to the optimal solution, as

opposed to a neighborhood of it, the variance must decrease with the iterations

[40]. This is made possible by using dynamic zCDP, where the privacy budget is

iteration-specific.

The proposed zero-Concentrated Differentially Private Networked Federated

Learning (zCDP-NFL) algorithm is developed in algorithm 1. It is a networked

federated learning algorithm that protects the privacy of the clients with local

dynamic differential privacy and can handle nonsmooth objective functions. In

the following sections, we conduct mathematical analysis to quantify its privacy

protection and establish convergence guarantees.
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Algorithm 1 zCDP-NFL

Initialization: w
(0)
k = 0, γ

(0)
k = 0, ∀k ∈ K

– Procedure at client k –

For iteration n = 1, 2, . . .:

w
(n)
k = argmin

wk

f̂k(wk; Ṽ(n−1)) +wT
kγ

(n−1)
k + ρ

∑

l∈Nk

∥∥∥∥wk −
w̃

(n−1)
k + w̃

(n−1)
l

2

∥∥∥∥
2

(7)

w̃
(n)
k = w

(n)
k +ξ

(n)
k (8)

γ
(n)
k = γ

(n−1)
k +ρ

∑

l∈Nk

(
w̃

(n)
k −w̃

(n)
l

)
(9)

End For

3. Privacy Analysis

The first step in the quantification of differential privacy is to measure the

impact of an individual data sample on the output of the local training process.

For this purpose, we define the l2-norm sensitivity as follows.

Definition I. The l2-norm sensitivity is given by

∆k,2 = max
Dk,D′

k

∥∥∥w(n)
k,Dk

−w
(n)

k,D′
k

∥∥∥ (10)

where w
(n)
k,Dk

and w
(n)

k,D′
k
denote the local primal variable updates from two neigh-

boring data sets Dk and D′
k differing in only one data sample (x′

k,Mk
, y′k,Mk

), i.e.,

D′
k := {(X′

k,y
′
k) : X

′
k = [xk,1,xk,2, . . . ,xk,Mk−1,x

′
k,Mk

]T ∈ RMk×P , xk,j ∈ RP , j =

1, . . . ,Mk,y
′
k = [yk,1, yk,2, . . . , yk,Mk−1, y

′
k,Mk

]T ∈ RMk}.
Two parameters govern privacy protection in dynamic zCDP. The initial pri-

vacy value, φ
(0)
k , and the variance decrease rate, τ . To establish a relation between

the privacy value at a given iteration, φ
(n)
k , and the noise perturbation, it is nec-

essary to take the following assumption.

8



Assumption 1. The functions ℓk(·) have bounded gradient, that is, there exists

a constant c1 such that ||ℓ′k(·)|| ⩽ c1,∀k ∈ C.
We now quantify the l2-norm sensitivity in the following result.

Lemma I. Under Assumption 1, the l2-norm sensitivity is given by

∆k,2(n) = max
D,D′

||w(n)
k,D −w

(n)
k,D′|| ⩽ 2c1

Mk(2ρ|Nk|+ 1
η(n) )

. (11)

Proof. See Appendix A.

With the l2-norm sensitivity, we can establish the relation between the noise

perturbation in (8) and the privacy value φ
(n)
k , quantifying the local privacy guar-

antee of the algorithm in terms of zCDP.

Theorem I. Under Assumption 1, zCDP-NFL satisfies dynamic φ
(n)
k -zCDP with

the relation between φ
(n)
k and σ2

k(n) given by

σ2
k(n) =

∆2
k,2(n)

2φ
(n)
k

. (12)

Proof. See Appendix B.

Using the result above, it is possible to obtain the total privacy guarantee

throughout the computation in terms of (ϵ, δ)-DP using [20, Lemma 1.7]. We

establish the following.

Corollary. For any τ ∈ (0, 1) and δ ∈ (0, 1), zCDP-NFL guarantees (ϵ, δ)-

DP throughout the computation with ϵ = max
k∈C

ϵk, where ϵk = φ
(1)
k

1−τT

τT−1−τT
+

2
√

φ
(1)
k

1−τT

τT−1−τT
log 1

δ
, and T is the final iteration index.

Proof. See Appendix C.

4. Convergence Analysis

This section proves that the zCDP-NFL algorithm converges to the optimal

value in O(1/n) iterations under the following assumption that the objective func-

9



tion f(·) is convex. Additionally, we derive the privacy-accuracy trade-off bound

of the algorithm.

Assumption 2. The objective function f(·) is convex.

4.1. Alternative Representation

We begin by transforming the minimization problem (1) into (13) by refor-

mulating the conditions. We denote by w = [wT
1 ,w

T
2 , ...,w

T
K ]

T ∈ RKP , and

z = [(zlk)
T, (zkl )

T;∀(k, l) ∈ E ]T ∈ R2EP the vectors of the concatenated vectors

wk and zlk respectively. We also introduce the matrices A1,A2 ∈ R2EP×KP com-

posed of P × P -sized blocks. Given a couple of connected clients (k, l) ∈ E , their
associated auxiliary variable zk,l, and its corresponding index in z, q; the blocks
(
A1

)
q,k

and
(
A2

)
q,l

are equal to the identity matrix Id, all other blocks are null.

Finally, we set A = [A1;A2] ∈ R4EP×KP and B = [−I2EP ;−I2EP ] ∈ R4EP×2EP .

Hence, we can reformulate (1) as

min
w

K∑

k=1

( 1

Mk

Mk∑

j=1

ℓ(xk,j,yk,j;wk) +
λ

K
R(wk)

)
.

s.t. Aw+Bz = 0

(13)

The newly introduced matrices can be used to reformulate the Lagrangian,

the objective function, and the ADMM steps. The conventional augmented La-

grangian in (2) can be expressed as

Lρ = f(w, Ṽ(n)) + ⟨Aw+Bz,λ⟩+ ρ

2
||Aw+Bz||2

where f(w, Ṽ(n)) =
∑K

k=1 f(wk, Ṽ(n)). Similarly, the augmented Lagrangian, cor-

responding to the use of the first-order approximation of the objective function in

(5), can be expressed as

L̂ρ = f̂(w, Ṽ(n)) + ⟨Aw+Bz,λ⟩+ ρ

2
||Aw+Bz||2

10



where f̂(w, Ṽ(n)) =
∑K

k=1 f̂k(wk, Ṽ(n)) with f̂k(wk, Ṽ(n)), as defined in (5).

From now on, we will denote f̂(w, Ṽ(n)) and f̂k(wk, Ṽ(n)) by f̂(w) and f̂k(wk),

respectively. Further, we let w̃
(n)

, w(n), and ξ(n) denote the concatenation of w̃
(n)
k ,

w
(n)
k , and ξ

(n)
k , respectively, such that w̃

(n)
= w(n) + ξ(n).

We introduce the diagonal matrixD(n+1) ∈ RK×K comprising the time-varying

step sizes, i.e., [D(n+1)]k,k =
1√

2η
(n+1)
k

, and reformulate f̂(w(n+1)) in matrix form:

f̂(w(n+1)) =f(w̃
(n)

) + ||D(n+1) ⊗ IP (w(n+1) − w̃
(n)

)||2

+ (w(n+1) − w̃
(n)

)Tf ′(w̃
(n)

) (14)

The resulting function f̂ is convex with respect tow. That is, it satisfies f̂(w̃
(n)

)−
f̂(w) ⩽ ⟨w̃(n) − w, f̂ ′(w̃

(n)
)⟩, where the subgradient f̂ ′(w(n+1)) ∈ RKP is given

by f̂ ′(w(n+1)) = 2D(n+1) ⊗ IP (w(n+1) − w̃
(n)

) + f ′(w̃
(n)

).

The steps of the ADMM, consisting of the minimization of L̂ρ with respect

to w, z and λ alternatively, can now be reformulated with the newly introduced

variables as follows:

f̂ ′(w(n+1)) +ATλ(n) + ρAT(Aw(n+1) +Bz(n)) = 0

BTλ(n) + ρBT(Aw̃
(n+1)

+Bz(n+1)) = 0 (15)

λ(n+1) − λ(n) + ρ(Aw̃
(n+1)

+Bz(n+1)) = 0

We introduce the following auxiliary matrices in order to reduce (15) to two

steps, similarly as in [41]: H+ = AT
1 + AT

2 , H− = AT
1 − AT

2 , α = HT
−w,

L+ = 1
2
H+H

T
+, L− = 1

2
H−H

T
− and M = 1

2
(L+ + L−). We note that L+

and L− correspond to the signless Laplacian and signed Laplacian matrices of the

network, respectively. Hence, L− is positive semi-definite with the nullspace given

by Null(L−) = span{1}. Then, as derived in [41, Section II.B], (15) becomes

f̂ ′(w(n+1)) +α(n) + 2ρMw(n+1) − ρL+w̃
(n)

= 0 (16)

α(n+1) −α(n) − ρL−w̃
(n+1)

= 0

11



The last reformulation step is based on the work in [42]. We introduce the matrix

Q =
√
L−/2, note that by construction Null(Q) = span{1}, the auxiliary se-

quence r(n) =
∑n

s=0Qw̃
(s)
, vector q(n) =

(
r(n)

w̃
(n)

)
, and matrix G =

(
ρI 0

0 ρL+/2

)
.

Combining both equations in (16), as in [42, Lemma 1], and reformulating the

result, see see [42, Lemma 2], we obtain

f̂ ′(w(n+1))

ρ
+ 2Qr(n+1) +L+(w

(n+1) − w̃
(n)

) = 2Mξ(n+1). (17)

4.2. Convergence Proof

We start by establishing a bound for the distance to the optimal solution,

denoted w∗, at a given iteration.

Lemma II. For any r ∈ RKP and at any iteration n, we have

f(w̃
(n)

)− f(w∗)

ρ
+ ⟨w̃(n)

, 2Qr⟩ (18)

⩽ 1

ρ
(||q(n−1) − q∗||2G − ||q(n) − q∗||2G)− 2⟨Qw̃

(n)
,Qw̃

(n+1)⟩ − ||w̃(n) − w̃
(n−1)||2L+

2

+ ⟨w̃(n) −w∗,L+(2w̃
(n) − w̃

(n−1) − w̃
(n+1)

)⟩+ 4(Φmax(L−)2 + Φmax(L+)
2)

Φmin(L−)
||ξ(n+1)||22

+ ⟨w̃(n) −w∗,
2

ρ
D(n+1) ⊗ IP (w̃(n) − w̃

(n+1)
)⟩

where q∗ = [rT , (w∗)T ].

Proof. See Appendix D.

Following the result of Lemma II, we can establish the following theorem from

which we will derive the converge results.

Theorem II. Under Assumption 2, and given the final iteration T > 0, we can

12



bound the expected error of the zCDP-NFL algorithm as

E[f(ŵ(T )
)− f(w∗)] ⩽ ρ

T

T∑

n=1

(
−2⟨Qw̃

(n)
,Qw̃

(n+1)⟩ − ||w̃(n) − w̃
(n−1)||2L+

2

+ ⟨w̃(n) −w∗,
2

ρ
D(n+1) ⊗ IP (w̃(n) − w̃

(n+1)
)⟩

− ⟨w∗,L+(2w̃
(n) − w̃

(n−1) − w̃
(n+1)

)⟩+ ||w̃(n+1) − w̃
(n)||2L+

)

+
1

T

ρP4(Φmax(L−)2 + Φmax(L+)
2)
∑K

k=1 σ
2(0)
k

Φmin(L−)(1− τ)

+
⟨w̃(1)

,L+(w̃
(1) − w̃

(0)
)⟩

T
+

ρ||Qw̃
(0)||22

T
+

ρ||w̃(0) −w∗||2L−
2

T
. (19)

where ŵ
(T )

= 1
T

∑T
n=1 w̃

(n)
, and the expectation is taken with respect to the noise.

Since w∗ is the optimal solution, E[f(ŵ(T )
)− f(w∗)] is positive.

Proof. See Appendix E.

4.3. Convergence Properties

We can derive three important results from Theorem II. The first is that the

zCDP-NFL algorithm converges to the exact solution of (1). The second is the

rate of this convergence. The third result is the privacy accuracy trade-off bound

of the algorithm. First, we define the required assumptions for convergence.

Assumption 3. We require that lim
n→+∞ η

(n)
k = 0,∀k ∈ C. This will enforce the

asymptotic stability of the local estimates.

Theorem III. Under Assumptions 2 and 3, the zCDP-NFL algorithm defined by

the steps (7)-(9), converges to the exact solution.

13



Proof. We can simplify the result of Theorem II into the following:

E[f(ŵ(T )
)− f(w∗)] ⩽ ρ

T

T∑

n=1

(
−2⟨Qw̃

(n)
,Qw̃

(n+1)⟩

+ ⟨w̃(n) −w∗,
2

ρ
D(n+1) ⊗ IP (w̃(n) − w̃

(n+1)
)⟩+ ||w̃(n+1) − w̃

(n)||2L+

)

+
1

T

ρP4(Φmax(L−)2 + Φmax(L+)
2)
∑K

k=1 σ
2(0)
k

Φmin(L−)(1− τ)

+
⟨w̃(1)

,L+(w̃
(1) − w̃

(0)
)⟩

T
+

ρ||Qw̃
(0)||22

T
+

ρ||w̃(0) −w∗||2L−
2

T
. (20)

We will consider the terms separately in their order of appearance. We first prove

that lim
n→+∞

ρ
∑T

n=1 −2⟨Qw̃
(n)

,Qw̃
(n+1)⟩

T
= 0.

We can now note that

− 2⟨Qw̃
(n)

,Qw̃
(n+1)⟩ = −⟨Qw̃

(n)
,Qw̃

(n)⟩ − ⟨Qw̃
(n)

,Q(w̃
(n+1) − w̃

(n)
)⟩

− ⟨Qw̃
(n+1)

,Qw̃
(n+1)⟩ − ⟨Q(w̃

(n) − w̃
(n+1)

),Qw̃
(n+1)⟩

= −||Qw̃
(n)||22 − ||Qw̃

(n+1)||22 + ||Q(w̃
(n+1) − w̃

(n)
)||22

⩽ −||Qw̃
(n)||22 − ||Qw̃

(n+1)||22 + ||Q||22||w̃
(n+1) − w̃

(n)||22. (21)

As seen in (7), w(n+1) minimizes a function where all terms are bounded except

the term

∥∥w−w̃
(n)
∥∥2

2η
(n+1)
k

. Therefore, under Assumption 3, lim
n→+∞ ||w(n+1) − w̃

(n)||22 = 0.

Since w̃
(n+1)

is defined as w̃
(n+1)

= w(n+1) + ξ(n+1) with lim
n→+∞ ||ξ(n+1)|| = 0, we

have lim
n→+∞ ||w̃(n+1) − w̃

(n)||22 = 0.

This implies that −2⟨Qw̃
(n)

,Qw̃
(n+1)⟩ is bounded by a series converging to 0.

Therefore, since E[f̂(ŵ(T )
)− f̂(w∗)] is positive, ρ

∑T
n=1 −2⟨Qw̃

(n)
,Qw̃

(n+1)⟩
T

converges

to 0.

Next, under Assumption 3, we have lim
n→+∞

ρ
∑T

n=1⟨w̃
(n)−w∗, 2

ρ
D(n+1)⊗IP (w̃

(n)−w̃
(n+1)

)⟩
T

=

0 since [D(n+1)]k,k =
1√

2η
(n+1)
k

. We now consider ρ
T

∑T
n=1 ||w̃

(n+1)−w̃
(n)||2L+

. As we

have shown that lim
n→+∞ ||w̃(n+1)−w̃

(n)||22 = 0, we have lim
n→+∞ ||w̃(n+1)−w̃

(n)||2L+
= 0,
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and therefore, the sum
∑T

n=1 ||w̃
(n+1) − w̃

(n)||2L+
is a Cauchy sequence. Hence we

have lim
n→+∞

ρ
T

∑T
n=1 ||w̃

(n+1) − w̃
(n)||2L+

= 0.

Finally, the terms outside of the summation trivially converge to 0 as T → +∞.

This concludes the proof.

We now introduce the required assumption to establish the convergence rate

of the algorithm.

Assumption 4. The η
(n)
k , k ∈ C are chosen such that ||D(n+1)||22 is a convergent

series. This assumption, stronger than Assumption 3, is necessary to guarantee

the exponential stability of the local estimates.

Theorem IV. Under Assumptions 2 and 4, the zCDP-NFL algorithm converges

with a rate of O(1/n) iterations.

Proof. In the following, we assume that the optimal solution w∗ ̸= 0. If w∗ = 0,

one could add a nonzero artificial dimension and proceed.

In order to prove this result, we will show that the expectation of the error is

bounded by a bounded term divided by T . Notably, we will show that the sum in

(20) converges. We consider the terms in their order of appearance in Theorem II.

We will also use the result of Theorem III, lim
n→+∞ w̃

(n)
= w∗, for which Assumption

3 is satisfied by Assumption 4.

To begin, we consider ρ
T

∑T
n=1

(
−2⟨Qw̃

(n)
,Qw̃

(n+1)⟩ − ||w̃(n) − w̃
(n−1)||2L+

2

)
.

Since w̃
(n)

converges to w̃
∗
, −2⟨Qw̃

(n)
,Qw̃

(n+1)⟩ converges to −2||Qw∗||22 that

is strictly negative. Therefore, there exist an iteration n0 after which all terms

−2⟨Qw̃
(n)

,Qw̃
(n+1)⟩ are negative. Hence, ρ

T

∑T
n=1

(
−2⟨Qw̃

(n)
,Qw̃

(n+1)⟩−||w̃(n)−
w̃

(n−1)||2L+
2

)
⩽ ρ

T

∑n0

n=1−2⟨Qw̃
(n)

,Qw̃
(n+1)⟩.

Next, we can bound ⟨w̃(n) − w∗, 2
ρ
D(n+1) ⊗ IP (w̃(n) − w̃

(n+1)
)⟩ by ||w̃(n) −

w∗||22 2
ρ
||D(n+1)||22||IP ||22||w̃

(n) − w̃
(n+1)||22 and thus ρ

∑T
n=1⟨w̃

(n) −w∗, 2
ρ
D(n+1) ⊗

IP (w̃
(n) − w̃

(n+1)
)⟩ by 2

∑T
n=1 ||w̃

(n) −w∗||22||D(n+1)||22||w̃
(n) − w̃

(n+1)||22. Using
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lim
n→+∞ w̃

(n)
= w∗, there exist constants α0 and α1 such that ∀n ∈ N, ||w̃(n)−w∗||22 ⩽

α0 and ||w̃(n)−w̃
(n+1)||22 ⩽ α1. This leads to 2

∑T
n=1 ||w̃

(n)−w∗||22||D(n+1)||22||w̃
(n)−

w̃
(n+1)||22 ⩽ 2α0α1

∑T
n=1 ||D(n+1)||22, which is a convergent series under Assump-

tion 4. Therefore, ρ
T

∑T
n=1⟨w̃

(n)−w∗, 2
ρ
D(n+1)⊗ IP (w̃(n)− w̃

(n+1)
)⟩ converges to

zero in O(1/n).

We can bound ⟨w∗,L+(2w̃
(n)−w̃

(n−1)−w̃
(n+1)

)⟩ by 2||w∗||22||L+||22(||w̃
(n+1)−

w̃
(n)||22 + ||w̃(n) − w̃

(n−1)||22). Using lim
n→+∞ w̃

(n)
= w∗, the series

∑∞
n=1 ||w̃

(n+1) −
w̃

(n)||22 and
∑∞

n=1 ||w̃
(n+1) − w̃

(n)||2L+
converge to values that we denote α2 and

α3, respectively. We have
∑T

n=1(−⟨w∗,L+(2w̃
(n)−w̃

(n−1)−w̃
(n+1)

)⟩+ ||w̃(n+1)−
w̃

(n)||2L+
) ⩽ 4||w∗||22||L+||22α2 + α3.

Finally, we prove that all terms outside of the sum are bounded by a constant

with respect to T . The only one requiring further analysis is ⟨w̃(1)
,L+(w̃

(1) −
w̃

(0)
)⟩ and it can be bounded by ||w̃(1)||22||L+(w̃

(1) − w̃
(0)
)||22.

Each term has either been bounded by a constant with respect to T , divided

by T ; this concludes the proof.

Remark: In practice, Assumption 4 can be relaxed in most cases.

4.4. Privacy Accuracy Trade-off

The last result established by Theorem II is the privacy accuracy trade-off

bound. The privacy accuracy trade-off quantifies how ensuring more privacy de-

teriorates the accuracy of the algorithm and is one of the most important param-

eters of a privacy-preserving algorithm. Under Assumption 4, we can reformulate

(19) as

E[f(ŵ(T )
)− f(w∗)] ⩽ α

T
+

αξ

T

∑K
k=1 σ

2
k(0)

1− τ
(22)

where α is a constant with respect to T and the noise perturbation and αξ =

ρP4(Φmax(L−)2+Φmax(L+)2)
Φmin(L−)

.

16



By combining this result with Theorem I, we obtain

E[f(ŵ(T )
)− f(w∗)] ⩽ α

T
+

αξ

T

∑K
k=1

∆2
k,2(0)

2φ
(1)
k

1− τ
(23)

In the common case where the privacy parameter φ
(1)
k is identical for all clients,

i.e., φ
(1)
k = φ(1),∀k ∈ C, we have

E[f(ŵ(T )
)− f(w∗)] ⩽ α

T
+

αξ

T

∑K
k=1∆

2
k,2(0)

2Kφ(1)(1− τ)
(24)

With this result, we see that ensuring more privacy, which can be done by de-

creasing φ(1) or having τ closer to 1, would result in a less restrictive convergence

bound for the algorithm.

5. Numerical Simulations

This section presents simulation results to evaluate the performance and pri-

vacy accuracy trade-off of the proposed zCDP-NFL. To compare the different DP

implementations, we introduce the (ϵ, δ)DP-NFL, identical to zCDP-NFL except

for the fact that it uses conventional (ϵ, δ)-DP rules to control the local noise

perturbation. On nonsmooth objective functions, we benchmark the proposed

algorithm against conventional subgradient-based networked FL, as presented in

[23], modified to use zCDP and denoted zCDP-grad-NFL. On smooth objective

functions, we benchmark the proposed algorithm against the existing distributed

learning algorithm P-ADMM, presented in [24] that uses a networked FL archi-

tecture, zCDP, and the ADMM, but is constrained to smooth objective functions.

In the following, we consider the elastic net, least absolute deviation, and ridge

regression problems, all presented in [43].

For a fair comparison, the algorithms are tuned to provide the same total pri-

vacy guarantees throughout the computation - this is made possible by the corol-

lary of Theorem I. This corollary provides (ϵ, δ)-DP guarantees for an algorithm
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Figure 1: Learning curves (left) and privacy-accuracy trade-off (right) on the elastic net problem.

using zCDP with both φ(1) and τ as parameters. Furthermore, the algorithms are

tuned to observe identical initial convergence speeds when possible.

In the following, we consider a network with a random topology comprising

K = 50 nodes, where each node connects to 3 other nodes on average. Each

node k possesses Mk = 50 local noisy observations of the unknown parameter

w of dimension P = 8. The proposed simulations are performed on synthetic

data and performance is evaluated by computing the normalized error defined

as
∑K

k=1 ||w
(n)
k −wc||2/||wc||2, wc being the centralized solution obtained by the

CVX toolbox [44].

Figure 1 contains the learning curve, i.e., normalized error versus iteration

index, and privacy-accuracy trade-off, i.e., normalized error after 200 iterations

versus total privacy loss, on the elastic net problem, defined by a smooth loss

function ℓ(Xk,yk;wk) = ||Xkwk − yk||2 and a nonsmooth regularizer function

R(wk) = λ1||wk||1 + λ2||wk||2 with λ1 = 0.001||XTy||∞, as in [43], and λ2 = 1.

We observe that the proposed ADMM-based algorithm significantly outperforms

the subgradient-based algorithm. Furthermore, we can see that the use of the

zCDP notion as opposed to the (ϵ, δ)-DP notion allows for better accuracy given
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Figure 2: Learning curve on the least absolute deviation problem.

the same privacy budget throughout the computation. This same fact is illustrated

for various total privacy losses on the privacy-accuracy trade-off curve.

Figure 2 contains the learning curve on the least absolute deviation problem,

solely composed of a nonsmooth loss ℓ(Xk,yk;wk) = ||Xkwk − yk||1. We observe

once again that the proposed algorithm significantly outperforms its subgradient-

based counterpart, as the learning rate required for the zCDP-grad-NFL algorithm

to attain a similar initial convergence speed to the ADMM-based algorithms does

not allow it to reach high accuracy. In addition, we observe that the use of zCDP

allows for better accuracy than (ϵ, δ)-DP. In the end, the proposed zCDP-NFL

algorithm significantly improves over existing methods on nonsmooth objectives.

Figure 3 contains the learning curve and privacy-accuracy trade-off on the

ridge regression problem, defined by a smooth loss function ℓ(Xk,yk;wk) =

||Xkwk − yk||2 and a smooth regularizer function R(wk) = ||wk||2. Since this

objective is smooth, we can present the performance of the P-ADMM algorithm.

We observe that the proposed zCDP-NFL algorithm slightly outperforms the

P-ADMM algorithm on smooth objectives, despite the inexact ADMM update

required to handle nonsmooth objectives. As can be observed on the privacy-
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Figure 3: Learning curves (left) and privacy-accuracy trade-off (right) on the smooth ridge

regression problem.

accuracy trade-off curve, this is the case for all total privacy losses. This better

performance is due to the use of the time-varying step size η in the proposed

algorithm. Even though the zCPD-NFL algorithm is designed for nonsmooth ob-

jective functions, it offers very good performances on smooth objective functions.

6. Conclusions and Future Directions

The proposed zCDP-NFL algorithm is a networked, privacy-preserving algo-

rithm that accommodates nonsmooth and non-strongly convex objective func-

tions. Each client is protected by local differential privacy with guarantees pro-

vided in terms of zCDP. We provided mathematical proofs of the privacy guar-

antee and convergence to the optimal point in O(1/n), as well as an analysis of

the privacy-accuracy trade-off to quantify the accuracy loss caused by increased

privacy. Numerical simulations show that the proposed zCDP-NFL algorithm

significantly outperforms existing networked algorithms on nonsmooth objectives

while offering very good performances on smooth objectives. Future work includes

communication efficient implementations and robustness to model poisoning.
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Appendix A. Proof of Lemma I

Proof. We consider two neighboring data setsD andD′ and their respective primal

updates for the client k whose data set contains the difference. We will denote

Dk and D′
k the local data set of client k corresponding to the use of D and D′,

respectively. Moreover, we will denote w
(n)
k,Dk

and w
(n)

k,D′
k
the estimates computed

by client k using the data sets Dk and D′
k, respectively. These can be computed

as

w
(n)
k,Dk

=
1

2ρ|Nk|+ 1
η(n)

(w̃(n−1)
k

η(n)
+

ρ

2

∑

i∈Nk

(w̃
(n−1)
k − w̃

(n−1)
i )

+
γ
(n−1)
k

2
−

Mk∑

j=1

ℓ′(xk,j, yk,j; w̃k)

Mk

− λR′(wk)

K

)
, (A.1)

w
(n)

k,D′
k
=

1

2ρ|Nk|+ 1
η(n)

(w̃(n−1)
k

η(n)
+

ρ

2

∑

i∈Nk

(w̃
(n−1)
k − w̃

(n−1)
i ) +

γ
(n−1)
k

2

−
Mk−1∑

j=1

ℓ′(xk,j, yk,j; w̃k)

Mk

−
ℓ′(x′

k,Mk
, y′k,Mk

; w̃k)

Mk

− λR′(wk)

K

)
. (A.2)

We notice that the primal updates corresponding with D and D′ differ only

for the ℓ-update, where for the index Mk, the vector xk,Mk
and the scalar yk,Mk

are different from x′
k,Mk

and y′k,Mk
. Thus, for any neighboring data set D and D′,

the following holds:

||w(n)
k,D −w

(n)
k,D′ || =

∣∣∣
∣∣∣ 1

2ρ|Nk|+ 1
η(n)

1

Mk

(A.3)

(
ℓ′(xk,Mk

, yk,Mk
, w̃

(n−1)
k )− ℓ′(x′

k,Mk
, y′k,Mk

, w̃
(n−1)
k )

)∣∣∣
∣∣∣.

Since we assumed that ||ℓ′(·)|| is bounded by c1, the l2-norm sensitivity is given

by

max
D,D′

||w(n)
k,D −w

(n)
k,D′|| ⩽ 2c1

Mk(2ρ|Nk|+ 1
η(n) )

.
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Appendix B. Proof of Theorem I

Proof. For any client k, at any step t, we add to the primal update a white Gaus-

sian noise of variance σ2
k(n)IP , that is equivalent to w̃

(n)
k ∼ N (w

(n)
k , σ2

k(n)IP ).

Hence, for two neighboring data sets D and D′, we have w̃(n)
k,D ∼ N (w

(n)
k,D, σ

2
k(n)IP )

and w̃
(n)
k,D′ ∼ N (w

(n)
k,D′ , σ2

k(n)IP ).

Therefore, using [20, Lemma 17], which states thatDα(N(µ, σ2Id)||N(ν, σ2Id)) =

α||µ−ν||22
2σ2 , ∀α ∈ [1,∞); we obtain, ∀α ∈ [1,∞), the following Rényi divergence and

simplification using Lemma I:

Dα(w̃
(n)
k,D||w̃

(n)
k,D′) =

α||w(n)
k,D −w

(n)
k,D′||22

2σ2
k(n)

⩽ α∆2
k(n)

2σ2
k(n)

. (B.1)

We now consider the privacy loss of w̃
(n)
k at output λ:

z
(n)
k (w̃

(n)
k,D||w̃

(n)
k,D′) = log

P (w̃
(n)
k,D = λ)

P (w̃
(n)
k,D′ = λ)

. (B.2)

As Dα(·) ⩽ ϵ+ ρα ⇐⇒ E(e(α−1)Z(·)) ⩽ e(α−1)(ϵ+ρα), we have:

E(e(α−1)z
(n)
k (λ)) ⩽ e

(α−1)
α∆2

k(n)

2σ2
k
(n) .

Thus, the zCDP-NFL algorithm satisfies the dynamic φ
(n)
k -zCDP with φ

(n)
k =

∆2
k(n)

2σ2
k(n)

.

Appendix C. Proof of Corollary

Proof. Using [20, Lemma 7] and Theorem I, each client k of the network has

zCDP with φ parameter
∑

0<n<T φ
(n)
k , T being the final iteration index.

Since φ
(n+1)
k = φ

(n)
k /τ , we have

∑

0<n<T

φ
(n)
k = φ

(1)
k

1− τT

τT−1 − τT
.
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Using [20, Prop. 3], zCDP-NFL provides, ∀δ ∈ (0, 1), each client k with

(ϵk, δ)-DP, where ϵk = φ
(1)
k

1−τT

τT−1−τT
+ 2
√

φ
(1)
k

1−τT

τT−1−τT
log 1

δ
. Thus, the total privacy

of the algorithm can be given in the DP metric with parameters (ϵ, δ), ∀δ ∈ (0, 1),

ϵ = maxk∈C ϵk.

Appendix D. Proof of Lemma II

Proof. Using the convexity of f(·) we have:

f(w̃
(n)

)− f(w∗) ⩽ ⟨w̃(n) −w∗, f ′(w̃
(n)

)⟩. And since f̂ ′(w̃
(n+1)

) = 2D(n+1) ⊗
IP (w̃

(n+1)−w̃
(n)

)+f ′(w̃
(n)

), we have f ′(w̃
(n)

) = f̂ ′(w̃
(n+1)

)−2D(n+1)⊗IP (w̃(n+1)−
w̃

(n)
).

Combining both equations we obtain:

f(w̃
(n)

)− f(w∗) ⩽ ⟨w̃(n) −w∗, f̂ ′(w̃
(n+1)

)− 2D(n+1) ⊗ IP (w̃(n+1) − w̃
(n)

)⟩.
(D.1)

Employing (17) in (D.1), followed by some algebraic manipulations, yields

f(w̃
(n)

)− f(w∗)

ρ
+ ⟨w̃(n)

, 2Qr⟩

⩽ ⟨w̃(n)
, 2Qr⟩+ ⟨w̃(n) −w∗, 2Mξ(n+1) − 2Qr(n+1)

−L+(w̃
(n+1) − w̃

(n)
)− 2

ρ
D(n+1) ⊗ IP (w̃(n+1) − w̃

(n)
)⟩,

⩽ ⟨w̃(n) −w∗, 2Q(r − r(n+1)) +L+(w̃
(n) −w(n+1))

+L−(w̃
(n+1) −w(n+1))− 2

ρ
D(n+1) ⊗ IP (w̃(n+1) − w̃

(n)
)⟩. (D.2)

It follows that

||q(n) − q∗||2G =

〈
 r(n) − r
w̃

(n) −w∗


 ,


 ρ(r(n) − r)

ρL+

2
(w̃

(n) −w∗)



〉

= ρ||r(n) − r||22 + ||w̃(n) −w∗||2ρL+
2

.
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In particular, we obtain the equality:

1

ρ
(||q(n−1) − q∗||2G − ||q(n) − q∗||2G − ||q(n) − q(n−1)||2G)

= ⟨w̃(n) −w∗, 2Q(r − r(n))⟩+ ⟨w̃(n) −w∗,L+(w̃
(n−1) − w̃

(n)
)⟩. (D.3)

Which we use to reformulate the second term of (D.2), after which it is com-

bined with (D.3). Using the fact that Qw̃
(n+1)

= r(n+1) − r(n), we obtain:

f(w̃
(n)

)− f(w∗)

ρ
+ ⟨w̃(n)

, 2Qr⟩ ⩽ 1

ρ
(||q(n−1) − q∗||2G − ||q(n) − q∗||2G)

− Φmin(L−)

2
||w̃(n) −w∗||22 − ||w̃(n) − w̃
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2

− 2⟨Qw̃
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,Qw̃
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2

ρ
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Using the inequality ||a||||b|| ⩽ m||a||+ 1
m
||b|| for m > 0 with m = Φmin(L−),

it can be established that

f(w̃
(n)

)− f(w∗)

ρ
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Appendix E. Proof of Theorem II

Proof. We first take the sum of the result of Lemma II from n = 1 to n = T to

obtain a bound given by

1

ρ
(

T∑

n=1

f(w̃
(n)

)− f(w∗)) + ⟨2r,
T∑

n=1

Qw̃
(n)⟩ (E.1)
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+
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ρ
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After setting r = 0 and performing some algebraic manipulations, we obtain:
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Using Jensen’s inequality on the expectation of (E.2), we obtain:

E[f(ŵ(T )
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Abstract—Online federated learning (FL) enables geographi-
cally distributed devices to learn a global shared model from
locally available streaming data. Most online FL literature
considers a best-case scenario regarding the participating clients
and the communication channels. However, these assumptions are
often not met in real-world applications. Asynchronous settings
can reflect a more realistic environment, such as heterogeneous
client participation due to available computational power and
battery constraints, as well as delays caused by communication
channels or straggler devices. Further, in most applications,
energy efficiency must be taken into consideration. Using the
principles of partial-sharing-based communications, we propose a
communication-efficient asynchronous online federated learning
(PAO-Fed) strategy. By reducing the communication load of the
participants, the proposed method renders participation more
accessible and efficient. In addition, the proposed aggregation
mechanism accounts for random participation, handles delayed
updates and mitigates their effect on accuracy. We study the
first and second-order convergence of the proposed PAO-Fed
method and obtain an expression for its steady-state mean square
deviation. Finally, we conduct comprehensive simulations to study
the performance of the proposed method on both synthetic and
real-life datasets. The simulations reveal that in asynchronous
settings, the proposed PAO-Fed is able to achieve the same
convergence properties as that of the online federated stochastic
gradient while reducing the communication by 98 percent.
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The current paper significantly advances and expands upon the conference
precursor [1], offering a more comprehensive treatment of the subject matter
with a greatly expanded scope, analysis, and simulation examples. Specifically,
it comprehensively illustrates and further develops the behavior of partial-
sharing-based communication, presents rigorous second-order mathematical
analysis, and substantially extends the numerical simulations. The latter
includes hyperparameter selection analysis, communication reduction compar-
ison, simulations on a real-world IoT dataset, and comparisons with existing
communication-efficient algorithms.

I. INTRODUCTION

A myriad of intelligent devices, such as smartphones, smart-
watches, and smart home appliances, are becoming an integral
part of our daily lives, and an enormous amount of data is
available on those devices. Unfortunately, this data is primarily
unused, and we need to develop tools that can process this data
to extract information that can improve our daily lives while,
at the same time, ensuring our privacy. Federated learning
(FL) [2] provides an adaptive large-scale collaborative learning
framework suitable for this task. In FL, a server aggregates
information received from distributed devices referred to as
clients to train a global shared model; the clients do not
share any private data with the server, only their local model
parameters or gradients learned from this data [2], [3]. When
data becomes progressively available to clients, it is possible
to perform decentralized learning in real-time (implementing,
e.g., online FL [4]) for applications that include environmental
monitoring and condition monitoring using sensor networks
[5], internet-of-medical-things (IoMT) based healthcare appli-
cations [6] (e.g., cardio rhythm monitoring), and autonomous
vehicles [7]. In online FL, the server aggregates the local
models learned on the streaming data of the clients [8].
However, in many applications, the participating clients might
have heterogeneous energy supply and limited communication
capacity that can be intermittently unavailable or subject to
failure. Therefore, such edge devices cannot participate in
typical federated learning implementations.

In most real-world implementations of FL, it is essential
to consider statistical heterogeneity, system heterogeneity, and
imperfect communication channels between clients and the
server. Statistical heterogeneity implies that data are imbal-
anced and not independent and identically distributed (non-
i.i.d.) [9] across devices, while system heterogeneity refers
to their various computational and communication capaci-
ties. Finally, imperfect communication channels cause delays
in the exchanged messages. Although many FL approaches
can handle statistical heterogeneity, there is relatively little
research addressing the remaining complications above. In
particular, existing FL methods commonly assume a best-case
scenario concerning the client availability and performance as
well as perfect channel conditions [2], [10]–[19]. However,
several additional aspects need attention for efficient FL in
a realistic setting. First, clients cannot be expected to have
the same participation frequency, e.g., due to diverse resource
constraints, channel availability, or concurrent solicitations
[20]–[23]. Furthermore, clients may become unavailable for
a certain period during the learning process, i.e., some clients
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are malfunctioning or not reachable by the server [20], [21].
In addition, physical constraints such as distance or overload
introduce delays in the communication between the clients
and the server, making their contribution arrive later than
expected [21]–[24]. These constraints, frequently occurring in
practice, impair the efficiency of FL and complicate the design
of methods tailored for asynchronous settings [20]–[26].

Energy efficiency is an essential aspect of distributed ma-
chine learning algorithms and one of the original motivations
for FL [27]. The communication of high-dimensional models
is energy-onerous for distributed devices. For this reason, it
is crucial to cut the communication cost for clients [15],
[19]. Further, such reduction can facilitate more frequent
participation of resource-constrained devices, or stragglers, in
the learning process. In addition, in asynchronous settings,
where power and communication are restricted, ensuring com-
munication efficiency reduces the risk of bottlenecks in the
communication channels or power-related shutdown of clients
due to excessive resource usage.

We can find a considerable amount of research in the
literature on communication-efficient FL [14]–[19], [28]–
[31] and asynchronous FL [20]–[26], [32]–[40]; however,
only a few works consider both aspects within the same
framework. The classical federated averaging (FedAvg) [19],
developed for ideal conditions, reduces the communication
cost by selecting a subset of the clients to participate at
each iteration. In a perfect setting, this allows clients to
space out their participation while maintaining a consistent
participation rate. In asynchronous settings, however, clients
may already participate sporadically because of their inherent
limitations. Hence, subsampling comes with an increased risk
of discarding valuable information. The work of [35] proposes
a smart selection system to address this issue, but this is
associated with an additional computational burden on the
server, and only lessens the information loss associated with
client scheduling. The works in [24], [29] reduce communi-
cation in uplink via compressed client updates. Aside from
the accuracy penalty associated with the sparsification and
projection used, the resulting extra computational burden on
the clients of these non-trivial operations is not appealing
for resource-constrained clients. Moreover, the work in [29]
did not consider asynchronous settings. Although the work
in [24] considers various participation frequencies for the
clients, it assumes they are constant throughout the learning
process. The works in [25], [40] reduce the communication
load of clients in asynchronous settings; however, they are
specific to neural networks and lack mathematical analysis. In
addition, the considered asynchronous settings do not include
communication delays. We note that structure and sketch
update methods suffer the same accuracy cost and additional
computational burden as compressed updates; and in all three,
the simultaneous unpacking of all the received updates at the
server can form a computational bottleneck. Another option
explored recently for distributed learning is the partial-sharing
of model parameters [41]. The partial-sharing-based online FL
(PSO-Fed) algorithm [28] features reduced communications in
FL, but only in ideal settings.

This paper proposes a partial-sharing-based asynchronous

online federated learning (PAO-Fed) algorithm for nonlinear
regression in asynchronous settings. The proposed approach
reduces communication significantly while retaining fast con-
vergence. In order to perform nonlinear regression, we use
random Fourier feature space (RFF) [42], [43], where in-
ner products in a fixed-dimensional space approximate the
nonlinear relationship between the input and output data.
Consequently, given the constant communication and compu-
tational load, RFF is more suitable for decentralized learning
than traditional dictionary-based solutions whose model order
depends on the sample size. In addition, RFF presents the
advantage of being resilient to model change during the
learning process, which is key in online FL. Further, we
implement partial-sharing-based communications to reduce the
communication load of the algorithm. Compared to the other
available methods, partial-sharing does not incur an additional
computational load and only transfers a fraction of the model
parameters between clients and the server. This allows clients
to participate more frequently while maintaining minimal
communication without additional computational burden. The
proposed aggregation mechanism handles delayed updates and
calibrates their contribution to the global shared model. We
provide first- and second-order convergence analyses of the
PAO-Fed algorithm in a setting where client participation is
random, and communication links suffer delays. Finally, we
conducted simulation studies using synthetic and real-life data
to examine and compare the proposed algorithm with existing
methods.

The paper is organized as follows. Section II introduces FL
for nonlinear regression as well as partial-sharing-based com-
munications. Section III defines the considered asynchronous
settings and introduces the proposed method. Section IV
provides the first and second-order convergence analysis of
the PAO-Fed algorithm. Section V presents numerical results
for the proposed method and compares it with existing ones.
Finally, Section VI concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

This section presents the nonlinear regression problem in the
context of FL. Further, a brief overview of the most closely
related existing algorithms is proposed. Finally, the behavior
of partial-sharing-based communications is presented.

A. Online Federated Learning for Nonlinear Regression

We consider a federated network where a server is con-
nected to a set K of |K| = K geographically distributed
devices, referred to as clients. In the online FL setting [4], used
when real-time computation is desirable, the entire dataset of a
client is not immediately available. Instead, it is made available
to the client progressively throughout the learning process. We
denote the continuous streaming data appearing at client k ∈ K
at iteration n by xk,n ∈ RL, the corresponding output yk,n is
given by:

yk,n = f(xk,n) + ηk,n, (1)

where f(·) : RL −→ R is a nonlinear model and ηk,n is the
observation noise. The objective is that the server and clients
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learn a global shared nonlinear model from the data available
at each client, without this data being shared amongst clients
or with the server. To this aim, the clients periodically share
with the server their local model, learned from local data, and
the server shares its global model with the clients.

Several adaptive methods can be used to handle nonlinear
model estimation problems, e.g., [42]–[45]. The conventional
kernel least-mean-square (KLMS) algorithm [44] is one of the
most popular choices but suffers from a growing dimensional-
ity problem, leading to prohibitive computation and commu-
nication requirements. Coherence-check-based methods [45]
sparsify the original dictionary by selecting the regressors
using a coherence measure. Although feasible, this method
is not attractive for online FL, especially in asynchronous
settings, since it requires that each new dictionary element be
made available throughout the network, inducing a significant
communication overhead, especially if the underlying model
changes. The random Fourier feature (RFF) space method
[42], [43] approximates the kernel function evaluation by
projecting the model into a pre-selected fixed-dimensional
space. The selected RFF space does not change throughout
the computation, and, given that the chosen dimension is
large enough, the obtained linearizations can be as precise as
desired. Therefore, we use RFF-based KLMS for the nonlinear
regression task, as it is data-independent, resilient to model
change, and does not require extra communication overhead,
unlike conventional or coherence-check-based KLMS.

In the following, we approximate the nonlinear model by
projecting it on a D-dimensional RFF-space, in which the
function f(·) is approximated by the linear model w∗. To
estimate the global shared model using the local streaming
data, we solve the following problem:

min
w

J (w), (2)

where J (w) is given by:

J (w) =
1

K

∑

k∈K
Jk(w) (3)

Jk(w) = E[|yk,n −wTzk,n|2],

and zk,n is the mapping of xk,n into the D-dimentional RFF-
space.

B. Existing Algorithms

The Online-Fed algorithm, an online FL version of the con-
ventional FedAvg algorithm [19] solves the above estimation
problem as follows. At each iteration, n, the server selects a
subset of the clients Kn ⊆ K to participate in the learning
task and shares the global shared model wn with them. Then
the selected clients in Kn perform the local learning process
on their local estimates wk,n as

wk,n+1 = wn + µzk,nek,n, (4)

where µ is the learning rate and ek,n is the a priori error of
the global model on the local data given by

ek,n = yk,n −wT
nzk,n. (5)

Fig. 1: Partial sharing in a simple scenario.

The clients then share their updated models with the server,
which aggregates them as

wn+1 =
1

|Kn|
∑

k∈Kn

wk,n+1, (6)

where |Kn| denotes the cardinality of Kn. In the particular
case where ∀n,Kn = K, i.e., all the clients participate at each
iteration, we denote the algorithm Online-FedSGD.

The PSO-Fed algorithm proposed in [28] uses partial-
sharing-based communications to reduce further the commu-
nication load of the Online-Fed algorithm. Additionally, PSO-
Fed allows clients who are not participating in the current
iteration to perform local learning on their new data. By doing
so, this algorithm drastically reduces communication without
compromising the convergence speed.

C. Partial-sharing-based Communications

In partial-sharing-based communications, as defined in [41],
the server and the clients exchange only a portion of their
respective models instead of the entire model. The portion
is extracted prior to communication by multiplication with a
diagonal selection matrix with main diagonal elements being
either 0 or 1, where the locations of the latter specify the model
parameters to share. This operation is computationally trivial
and, therefore, does not induce delay on the communication,
unlike compressed update methods, e.g., [24], [29]. Here,
m denotes the number of nonzero elements in the selection
matrices; this is the number of model parameters shared at
each iteration. The selection matrix Mk,n is used for server-
to-client communication at time n and the selection matrix
Sk,n for client k’s response, as can be seen on Fig. 1 where
the simple case where m = D/3 is illustrated.

The usual aggregation step in (6) cannot be used
with partial-sharing-based communications, and needs to be
adapted. The expression of wn+1 in Fig. 1 is the aggregation
step for coordinated partial-sharing in perfect settings. Coordi-
nated partial-sharing is the special case where all clients send
the same portion of the model at a given iteration.
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For the clients to participate in the learning of the whole
model, and to ensure consistency across models, it is necessary
that the selection matrices evolve. To this aim, we set:

diag(Mk,n+1) = circshift(diag(Mk,n),m) (7)
Sk,n = Mk,n+1 (8)

where circshift denotes a circular shift operator. Sk,n is set
to be equal to Mk,n+1 rather than Mk,n in order to share
a portion of the client’s model further refined by the local
learning process. As can be seen in Fig. 1, wk,n+1(0) contains
information from a single local learning step of client k, while
wk,n+1(1) contains information from three (since it is equal
to wn−2(1) refined thrice by the local learning process). For
smaller values of m, the additional information is greater, but
the original value of the portion is also older.

D. Motivation

The above-mentioned algorithms offer significant commu-
nication savings but do not consider practical network en-
vironments and client resources. When performing federated
learning in real-world applications, clients may be unavailable
for various reasons, message exchanges may be delayed or
blocked, and straggler clients may be present. For this reason,
it is essential to tailor the developed algorithms to asyn-
chronous settings. Those environments impact the algorithm
design and optimization. For instance, we will see that many
choices made for the PSO-Fed algorithm in an ideal setting
are unsuitable for asynchronous settings.

III. PROPOSED METHOD

This section presents the proposed communication-efficient
Partial-sharing-based Asynchronous Online Federated Learn-
ing (PAO-Fed) algorithm and the asynchronous settings for
which it is developed.

A. Asynchronous Settings

The following features are necessary for an online FL
method to operate successfully in realistic environments.

• The capability to handle non-IID and unevenly distributed
data.

• The capability to handle heterogeneous, time-varying,
and unpredictable client participation, including possible
downtimes. In most real-world applications, the com-
putation and communication capacity of a specific task
are heterogeneous and time-varying. In addition, clients
are unreliable as they may experience many issues (low
battery, software failure, physical threat, etc.). Moreover,
when dealing with many clients, an infrequently occur-
ring failure is likely experienced at least once. Lastly, it is
unlikely for the server to know in advance when a client
will be unavailable or suffer a failure, so even the most
reliable clients may suffer downtimes.

• The capability to weigh the importance of delayed mes-
sages. Model parameters with the same timestamp may
arrive at different instants at the server. In practice, com-
munication channels are unreliable, and although most

messages arrive within a short window, some may take
longer, especially when the communication channels are
strained. In addition, straggler clients may not be able to
complete the learning task in the given time frame, and
although their update may not be delayed, it will arrive
late at the server. Therefore, the developed method must
be robust to a delay spread in the received parameters.

• The capability to reduce the likelihood of straggler-
like behavior. Resource-constrained devices may induce
latency or run out of power, resulting in reduced infor-
mation sharing. It is, therefore, not sufficient to consider
stragglers-like behavior [22]; it is preferable to improve
their operational environments, e.g., by reducing their
computation and communication load.

The first step to address those challenges is to model
the presented behaviors properly. To this aim, the clients’
participation is modeled by participation probabilities. At an
iteration n, the Bernoulli trial on the probability pk,n dictates
if client k is able to participate. The use of probabilities for
participation allows the model to address all the behaviors
presented in the second point, unlike the commonly used tier-
based model for participation (e.g., [24]), where each tier is
expected to behave optimally given a tailored frequency. In
fact, heterogeneity and time-dependency are handled by giving
clients various evolving probabilities pk,n, and unpredictability
and downtimes are naturally present when ensuring that all
probabilities are lower than one. In addition, any communica-
tion sent by a client to the server may be delayed by one or
several iterations.

With the proposed model, the limitations of real-world
applications and the heterogeneity of the computational power
and communication capacity of the available devices are taken
into consideration. Those asynchronous settings diminish the
potential performance of an FL method, especially in the
online setting, where data not shared in time is lost. The
proposed method ensures communication efficiency and, in
turn, some extend energy efficiency in order, notably, to
avoid downward cycles in the asynchronous behavior of the
participating clients. For instance, a weaker device may take
longer to perform the learning process, struggle to send a long
message, and need time to save enough power to participate
again. Therefore, performing less computation and exchanging
shorter messages will reduce the burden on the clients and
the communication channels, making further complications or
delays less likely. For this reason, a communication-efficient
method tailored for the asynchronous settings can perform
above its expectations in a real-life scenario.

B. Delayed Updates

The consequence of the introduced delays is that not all
updates sent by clients participating at a given iteration will
arrive at the server simultaneously. Precisely, we denote Kn

the set of all the clients who sent an update that arrived at the
server at iteration n. This set can be decomposed as:

Kn =

∞⋃

l=0

Kn,l (9)
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where Kn,l denotes the set of the clients who sent an up-
date at iteration n − l which reached the server at iteration
n, the subscript l corresponds to the number of iterations
during which the update was delayed. A delayed update will
naturally lose value the longer it is delayed, as it becomes
outdated. To improve the learning accuracy of the proposed
algorithm, we propose a weight-decreasing mechanism that
weights down delayed updates. By doing so, we diminish the
negative impact of outdated data on the convergence. This
mechanism is different from age of update mechanisms found
in [46]–[48] where weights are dictated by the amount of
data, independently from communication delays. We denote
αl ∈ [0, 1] the weight given to the updates sent by the
clients in Kn,l. This work only considers potential delays in
client-to-server communications. Although delays in server-
to-client communications also affect performance, they do not
require further modification of the aggregation mechanism.
Additionally, such delays are less likely to occur in IoT/CPS
applications, where the server is typically a powerful device
that broadcasts messages to resource-constrained clients.

C. PAO-Fed

The proposed PAO-Fed algorithm is tailored to the asyn-
chronous settings; notably, its novel aggregation step is de-
signed to handle delayed updates. PAO-Fed makes use of
all the available clients at a given iteration. To reduce the
amount of communication associated with the learning, it uses
partial-sharing-based communications, which is well adapted
to the asynchronous settings as it does not lay any additional
computational burden on the participating clients. Further, the
aggregation step is refined with a weight-decreasing mecha-
nism to diminish the negative impact of delayed updates on
convergence. The algorithm is as follows.

During iteration n, the server shares a portion of the global
shared model, i.e., Mk,nwn, to all the available clients. The
selection matrix Mk,n dictates which portion of the model is
sent to client k. The available client k receives its portion of
the global shared model, and uses it to update its local model,
the new local model is given by Mk,nwn + (I−Mk,n)wk,n.
Afterward, the available client k refines its local model by
performing the process of local learning on its newly available
data as follows.

wk,n+1 = Mk,nwn + (I−Mk,n)wk,n + µzk,nek,n, (10)

where ek,n is the a priori error of the local model on the local
data given by:

ek,n = yk,n − (Mk,nwn + (I−Mk,n)wk,n)
Tzk,n. (11)

When a client is unavailable at a given iteration but receives
new data and is not malfunctioning, it refines its local model
autonomously. For example, this can be a case where a client
is well functioning but does not have communication capacity
at the time. This local update step, identical to the one used
in [28], is performed as

wk,n+1 = wk,n + µzk,nek,n, (12)

where ek,n in that case is given by

ek,n = yk,n −wT
k,nzk,n. (13)

This update is computationally trivial for most devices and
does not involve communication. Its purpose is for the client
to share better-refined model parameters during the next par-
ticipation. Naturally, this additional information only reaches
the server if the model parameters are not overwritten before
being communicated, further motivating the choice of selection
matrices made in (8).

After this local update step, all available clients communi-
cate a portion of their updated local models to the server. A
client k communicates the portion of the model dictated by
the selection matrix Sk,n, that is, Sk,nwk,n+1. Those updates
may arrive at the present iteration or at a later one if they are
delayed.

At the server, we consider the previously introduced set Kn

consisting of the clients whose updates arrive at the current
iteration. This set comprises the sets Kn,l, 0 6 l < ∞ that
consist of the clients whose update was sent at iteration n− l
and arrives at the current iteration. The set Kn,0 consists of
the available clients at the current iteration whose updates have
not been delayed. Note that a client may appear twice in the
set Kn if two of its updates arrive at the same iteration. The
deviation from the current global model engendered by the
updates received from a non-empty set Kn,l is given by

∆n,l =
1

|Kn,l|
∑

k∈Kn,l

Sk,n−l(wk,n+1−l −wn). (14)

If a set Kn,l is empty, we set by convention ∆n,l = 0
The aggregation step of the proposed algorithm uses a

weight-decreasing mechanism for delayed updates. A client’s
participation that has been delayed for l iterations will be given
the weight αl ∈ [0, 1]. By convention, we set the weight of
the updates that are not delayed to α0 = 1. The resulting
aggregation mechanism is given by:

wn+1 = wn +

∞∑

l=0

αl∆n,l. (15)

When l > lmax, the maximum effective delay, the aggregation
mechanism discards the corresponding updates by setting
αl = 0, l > lmax. It is possible to replace ∞ by lmax in (15)
without changing the aggregation mechanism. Note that in the
eventuality where several updates from clients in Kn update
the same model parameter, only the most recent updates are
considered, the selection matrices of the remaining updates are
adjusted accordingly prior to computing (15). The resulting
algorithm is presented in Algorithm 1.

D. Partial-sharing in Asynchronous Settings

In coordinated partial sharing, all participating clients share
the same portion of the model so that the server’s model is
aggregated from a large number of clients, thus improving
accuracy. For this reason, coordinated partial-sharing is used
in most algorithms assuming perfect settings. In practice,
however, delayed updates partially overwrite the previously
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Algorithm 1 PAO-Fed

1: Initialization: w0 and wk,0, k ∈ K set to 0
2: Procedure at Local client k
3: for iteration n = 1, 2, . . . , N do
4: if Client k receives new data at time n then
5: if k is available then
6: Receive Mk,nwn from the server.
7: Compute wk,n+1 as in (10).
8: Share Sk,nwk,n+1 with the server.
9: else

10: Update wk as in (12).
11: end if
12: end if
13: end for
14: Procedure at Central Server
15: for iteration n = 1, 2, . . . , N do
16: Receive client updates from subset Kn ⊂ K.
17: Compute wn+1 as in (15).
18: Share Mk,n+1wn+1 with the available clients.
19: end for

aggregated portion, as can be seen in (15), thus negating the
added value of coordination.

To tackle this issue, one can either use a weight-decreasing
mechanism such as the one presented above or use uncoordi-
nated partial sharing. Besides, uncoordinated partial-sharing
is ideal when dealing with underlying model changes, as
the server’s model uniformly steers towards its new steady-
state value, instead of doing so portion by portion as with
coordinated partial-sharing.

IV. CONVERGENCE ANALYSIS

In this section, we examine the convergence behavior of the
proposed PAO-Fed algorithm that uses partial-sharing-based
communications and evolves in asynchronous settings such as
the ones presented in Section III. We prove mathematically
that the proposed PAO-Fed algorithm converges to the exact
model in the RFF space and exhibits stable extended mean
square displacement under certain general assumptions.

Before proceeding to the analysis, we introduce auxiliary
matrices to express an entire iteration of the algorithm in the
matrix form. Similar to [49], we define the extended model
vector we,n, local update matrix Ae,n, and mapping of the
data into the RFF-space Ze,n as

we,n = col{wn,w1,n, . . . ,wK,n,w1,n . . . ,wK,n,w1,n−1,

. . . ,wK,n−1, . . . ,w1,n−lmax , . . . ,wK,n−lmax},
Ae,n = blockdiag{An, IDK , . . . , IDK},
Ze,n = blockdiag{Zn,0DK×K , . . . ,0DK×K}, (16)

with

An =




I 0D · · · 0D

a1,nM1,n I− a1,nM1,n

...
... 0D

. . . 0D

aK,nMK,n

... I− aK,nMK,n



,

Zn = blockdiag{0D, z1,n, . . . , zK,n}, (17)

where ak,n = 1 if the client k is available at iteration n
and 0 otherwise, col{·} and blockdiag{·} represent column-
wise stacking and block diagonalization operators, respec-
tively. We can now express the extended observation vector
ye,n = col{0, y1,n, y2,n, . . . , yK,n,0K×1, . . . ,0K×1} as

ye,n = ZT
e,nw

∗
e + ηe,n, (18)

where w∗
e = 1(K+1)lmax+1 ⊗w∗ and the extended observation

noise ηe,n = col{0, η1,n, η2,n, . . . , ηK,n,0K×1, . . . ,0K×1}.
We then can express the extended estimation error vector as

ee,n = ye,n − ZT
e,nAe,nwe,n. (19)

Therefore, the recursion of the extended model vector we,n

is given by

we,n+1 = Be,n(Ae,nwe,n + µZe,nee,n), (20)

with

Be,n =




Bn B0,n 0D×DK B1,n · · · Blmax,n

0D×1 IDK 0DK · · · · · · 0DK

... IDK 0DK · · · · · · 0DK

... 0DK IDK 0DK · · · 0DK

...
...

. . . . . . . . . 0DK

0D×1 0DK · · · 0DK IDK 0DK




Bn = I−
lmax∑

l=0

αl

∑

k∈Kn,l

bk,n,l
|Kn,l|

Sk,n−l

Bl,n = [
αlb1,n,l
|Kn,l|

S1,n−l, · · · ,
αlbK,n,1

|Kn,l|
SK,n−l]. (21)

where bk,n,l = 1 if k ∈ Kn,l and 0 otherwise.
In the following, we present a detailed convergence analysis

of the PAO-Fed algorithm both in mean and mean-square
senses. To this end, we make the following assumptions:
Assumption 1: The mapped data vectors zk,n are drawn at
each time step from a WSS multivariate random sequence with
correlation matrix Rk = E[zk,nzTk,n].
Assumption 2: The observation noise ηk,n is assumed to be
zero mean white Gaussian, and independent of all input and
output data.
Assumption 3: At each client, the model parameter vector is
assumed to be independent of the input data.
Assumption 4: The selection matrices are assumed indepen-
dent from each other, and of any other data.
Assumption 5: The learning rate µ is small enough for terms
involving higher-order powers of µ to be neglected.
It is important to note that no assumption is taken on the αl

variables because lmax is a fixed value in our analysis.
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A. First-order Analysis

This subsection examines the mean convergence of the
proposed PAO-Fed algorithm.

Theorem 1. Let Assumptions 1–4 hold true. Then, The
proposed PAO-Fed converges in mean if and only if

0 < µ <
2

max
∀k,i

λi(Rk)
. (22)

Proof: Denoting the model error vector w̃e,n = w∗
e −

we,n, and using the fact that w∗
e = Be,nAe,nw

∗
e (by con-

struction, all rows in Be,n and Ae,n sum to 1), from (20), we
can recursively express w̃e,n as

w̃e,n+1 = w∗
e −we,n+1

= w∗
e −Be,nAe,nwe,n −Be,nµZe,nee,n

= Be,nAe,nw̃e,n −Be,nµZe,nηe,n

−Be,nµZe,nZ
T
e,n(w

∗
e −Ae,nwe,n)

= Be,n(I− µZe,nZ
T
e,n)Ae,nw̃e,n

− µBe,nZe,nηe,n. (23)

Taking the statistical expectation E[·] on both sides of (23)
and using Assumptions 1–4, we obtain

E[w̃e,n+1] = E[Be,n]E[I− µZe,nZ
T
e,n]E[Ae,n]E[w̃e,n]

= E[Be,n](I− µRe)E[Ae,n]E[w̃e,n], (24)

where Re = blockdiag{0D,R1,R1, · · · ,RK ,0DKlmax}. The
quantities E[Ae,n] and E[Be,n] are evaluated in Appendix A.

Further, we consider the vectors and matrices reduced to the
subspace between the index D+1 and D(K +1). We denote
the reduction of x by x|sel. Using the reduced definitions, (24)
becomes: E[w̃e,n+1|sel] = (I− µRe|sel)E[Ae,n|sel]E[w̃e,n|sel],
where the block w̃e,n|sel is defined as a linear sequence of
order 1 in a normed algebra. To prove the convergence of
E[w̃e,n|sel], we use the properties of the block maximum norm
[50]. From Appendix A, we have ||E[Ae,n|sel]||b,∞ = 1. Then
the convergence condition reduces to ||I − µRe|sel||b,∞ < 1,
equivalently, |1 − µλi(Rk)| < 1, ∀k, i, where λi(·) is the
ith eigenvalue of the argument matrix. This leads to the
convergence condition given by (22).

B. Second-order Analysis

In this subsection, we present the second-order analysis
of the proposed PAO-Fed algorithm. For the given arbitrary
positive semidefinite matrix Σ, the weighted norm-square of
w̃e,n is given by ||w̃e,n||2Σ = w̃T

e,nΣw̃e,n. From (23), we can
obtain

E[||w̃e,n+1||2Σ] = E[||w̃e,n||2Σ′ ] + µ2E[ηT
e,nY

Σ
n ηe,n], (25)

where the cross terms are null under Assumption 2 and the
matrices Σ′ and YΣ are given by

Σ′ = E[AT
e,n(I− µZe,nZ

T
e,n)B

T
e,n Σ (26)

Be,n(I− µZe,nZ
T
e,n)Ae,n],

YΣ
n = ZT

e,nB
T
e,nΣBe,nZe,n. (27)

Using Assumption 3 and the properties of the block Kro-
necker product, and the block vectorization operator bvec{·}
[51], we can establish a relationship between σ = bvec{Σ}
and σ′ = bvec{Σ′} as

σ′ = FTσ, (28)

where

F = QBQA − µQB(I⊗b Re)QA − µQB(Re ⊗b I)QA,

where the higher-order powers of µ are neglected under
Assumption 5. In the above

QA = E[Ae,n ⊗b Ae,n],

QB = E[Be,n ⊗b Be,n]. (29)

In Appendix B, we evaluate the matrices QA and QB, and
prove that all their entries are real, non-negative, and add up
to unity on each row. This implies that both matrices are right-
stochastic, and thus, their spectral radius is equal to one.

We will now evaluate the term E[ηT
e,nY

Σ
n ηe,n] as follows:

E[ηT
e,nY

Σ
n ηe,n] = E[ηT

e,nZ
T
e,nB

T
e,nΣBe,nZe,nηe,n]

= E[trace(ηT
e,nZ

T
e,nB

T
e,nΣBe,nZe,nηe,n)]

= trace(E[Be,nZe,nE[ηT
e,nηe,n]Z

T
e,nB

T
e,n]Σ)

= trace(E[Be,nΦnB
T
e,n]Σ), (30)

with Φn = Ze,nΛηZ
T
e,n, where Λη = E[ηT

e,nηe,n] is a
diagonal matrix having the noise variances of all clients on
its main diagonal. Note that we used Assumption 2 in the
last line of (30). Finally, using the properties of the block
Kronecker product, we have

trace(E[Be,nΦnB
T
e,n]Σ) = hTσ, (31)

with

h = bvec{E[Be,nΦnB
T
e,n]}

= QBbvec{E[Φn]}. (32)

Combining (25), (28), and (30), we can write the recursion
for the weighted extended mean square displacement of the
PAO-Fed algorithm as:

E[||w̃e,n+1||2bvec−1{σ}] = E[||w̃e,n||2bvec−1{FTσ}] + µ2hTσ,

(33)

where bvec−1{·} represents the reverse operation of block
vectorization.

Theorem 2. Let Assumptions 1–5 hold true. Then, the PAO-
Fed algorithm exhibits stable mean square displacement if and
only if:

0 < µ <
1

max
∀k,i

λi(Rk)
. (34)

Proof: Iterating (33) backwards to n = 0, we get

E[||w̃e,n+1||2bvec−1{σ}] =E[||w̃e,0||2bvec−1{(FT)n+1σ}]

+ µ2hT(I+
n∑

j=1

(FT)j)σ. (35)
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To prove the convergence of E[||w̃e,n||2Σ] =
E[||w̃e,n+1||2bvec−1{σ}], we need to prove that the spectral
radius of F is less than one, i.e. ρ(F) < 1. Using the
properties of the block maximum norm [50], we have

ρ(F) 6 ||QB(I− µ(I⊗b Re)− µ(Re ⊗b I))QA||b,∞,

6 ||QB||b,∞||QA||b,∞
||(I− µ(I⊗b Re)− µ(Re ⊗b I))||b,∞. (36)

Since the matrices QA and QB are right stochastic, we
have ||QA||b,∞ = ||QB||b,∞ = 1. Therefore the condition
||(I− µ(I⊗b Re)− µ(Re ⊗b I))||b,∞ < 1, equivalently, |1−
µ(λi(Re) + λj(Re))| < 1, ∀i, j, is sufficient to guarantee
the convergence of ||w̃e,n||2Σ. This simplification leads to the
convergence condition in (34).

C. Transient and Steady-state Mean Square Deviation

From (33), we can express the relation between
E[||w̃e,n+1||2bvec−1{σ}] and E[||w̃e,n||2bvec−1{σ}] as

E[||w̃e,n+1||2bvec−1{σ}] = E[||w̃e,n||2bvec−1{σ}]

+ E[||w̃e,0||2bvec−1{(FT−I)(FT)nσ}]

+ µ2hT(FT)nσ. (37)

If we set σ = bvec{blockdiag{ID,0, . . . ,0}}, we obtain the
transient expression for the mean square deviation of the global
model at iteration n: E[||w̃n||2] = E[||w̃e,n||2bvec−1{σ}].

Under (34), by letting n → ∞ in (33), we obtain the
expression of the steady-state mean square deviation (MSD)
for the PAO-Fed algorithm.

lim
n→∞

E[||w̃e,n||2bvec−1{(I−FT)σ}] = µ2hTσ. (38)

By setting σ = (I − FT)−1bvec{blockdiag{ID,0, . . . ,0}},
the steady-state MSD expression of the global model can be
obtained.

V. NUMERICAL SIMULATIONS

This section demonstrates the performance of the proposed
PAO-Fed algorithm through a series of numerical experi-
ments. In these experiments, we compare the performance
of the PAO-Fed algorithm with existing methods, specifically,
Online-FedSGD, Online-Fed [19], and PSO-Fed [28].

A. Simulation Setup

We considered a federated network comprising K = 256
clients connected to a server. Synthetic data is progressively
made available to the clients in an imbalanced and non-IID
manner. For this purpose, the clients are separated into 4 data
groups for which training sets are composed of 500, 1000,
1500, and 2000 samples, respectively. A single data sample
is of the form {xk,n, yk,n}, and related by the following
nonlinear relation R4 −→ R:

yk,n =
√

x2
k,n[1] + sin2(πxk,n[4]) (39)

+ (0.8− 0.5 exp(−x2
k,n[2])xk,n[3]) + ηk,n,

where xk,n[i] denotes the ith element of vector xk,n =
[xk,n, xk,n−1, xk,n−4, xk,n−3]. A first-order autoregressive
model is used to produce the non-IID input signal xk,n =
θk xk,n−1 +

√
1− θ2k uk,n, with uk,n ∈ N (µk, σ

2
uk
), and, for

a given client k, θk ∈ U(0.2, 0.9), µk ∈ U(−0.2, 0.2), and
σ2
uk

∈ U(0.2, 1.2). The observation noise νk,n is assumed
to be white Gaussian with variance σ2

νk
∈ U(0.005, 0.03).

Further, the cosine feature function is used to map xk,n from
dimension L = 4 into the RFF space of dimension D = 200.

As discussed in Section III.A, client participation is mod-
eled using the probabilities pk,n, k ∈ K. Note that a client
can only participate in an iteration if it receives new data;
otherwise, the probability is set to 0. The clients of each data
group are further separated into 4 availability groups, dictating
their probability pk,n of participating at each iteration. The
Bernoulli trial on pk,n dictates if a client is available or not
at a given iteration. Unless stated otherwise, the participation
probabilities given to the four availability groups are 0.25, 0.1,
0.025, and 0.005. Finally, each communication to the server
will be delayed by more than l iterations with probability
δl, 0 < l < lmax, with, unless stated otherwise, δ = 0.2 and
lmax = 10. This probability is assumed to be the same for all
clients.

The performance of the algorithms is evaluated on a test
dataset with the mean squared error (MSE) given at iteration
n by:

MSE-test =
1

MC

MC∑

e=1

||ye
test − (Ze

test)
Twe

n||22
T

, (40)

where MC is the number of Monte Carlo iterations, T is the
size of the test dataset, ye

test and Ze
test are the realization of the

data for a given Monte Carlo iteration, and we
n is the server’s

model vector for the considered method. When comparing
the PAO-Fed algorithm with other methods, the learning rates
were set to yield identical initial convergence rates so that
steady-state values may be compared. Some algorithms were
not able to reach this common convergence rate, but since their
steady-state accuracy is lower, comparison is still possible. All
the learning rates satisfy the convergence conditions obtained
in Section IV for PAO-Fed, and are available in [19], [28] for
Online-Fed, Online-FedSGD, and PSO-Fed. For instance, in
Fig. 2, 3, and 4, the step-size for the PAO-Fed algorithm is
set to µ = 0.4 with max

∀k,i
λi(Rk) = 1.02.

In the simulations, we implement uncoordinated partial-
sharing-based communications from the server to the
clients with diag(Mk,n) = circshift(diag(M1,n),mk) and
diag(M1,n) = circshift(diag(M1,0),mn). This, in turn, dic-
tates the portion of the model sent by the clients to the server
(see Section II C) so that, on average, all portions are equally
represented in the aggregation. We recall that m is the number
of model parameters shared at each iteration by both the server
and the clients, and dictates the communication savings in
partial-sharing-based communications.

We consider different versions of the PAO-Fed algorithm.
• PAO-Fed-C0 and PAO-Fed-U0 utilize coordinated and

uncoordinated partial-sharing, respectively, without em-
ploying the weight-decreasing mechanism in (15), that
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Fig. 2: Optimization of the PAO-Fed method. (a) Utilizing local updates and coordinated/uncoordinated partial-sharing, (b)
Communication savings, (c) Utilizing a weight-decreasing mechanism for delayed updates.

is, αl = 1, 0 6 l 6 lmax. Further, the clients share the last
received server model portion, refined once by the local
update process.

• PAO-Fed-C1 and PAO-Fed-U1 utilize coordinated and
uncoordinated partial-sharing, respectively, without em-
ploying the weight-decreasing mechanism in (15). Their
selection matrices evolve as described in Section II C.

• PAO-Fed-C2 and PAO-Fed-U2 utilize coordinated and
uncoordinated partial-sharing, respectively, and employ
the weight-decreasing mechanism in (15) with αl =
0.2l, 0 6 l 6 lmax. Their selection matrices evolve as
described in Section II C.

Unless explicitly specified, each PAO-Fed implementation
shares m = 4 model parameters per communication round,
resulting in a 98% reduction in communication.

B. Hyper Parameters Selection

In the first experiments, we study the impact of the hy-
perparameters on the convergence properties of the PAO-Fed
algorithm. Specifically, we investigate the impact of the choice
of the selection matrices, the number of model parameters
shared, and the scale of the weight-decreasing mechanism for
delayed updates. The corresponding learning curves in Fig. 2
display the MSE-test in dB versus the iteration index.

First, we examined how the choice of the selection matrices
Mk,n and Sk,n impact the convergence properties of the
PAO-Fed algorithm. These matrices select the model portion
to be shared between the server and clients (see Section II
C). The versions PAO-Fed-C0 and PAO-Fed-U0 are set with
Sk,n = Mk,n; that is, the last received portion from the
server is updated once by the local learning process at the
clients before being sent back to the server. On the contrary,
the versions PAO-Fed-C1 and PAO-Fed-U1 are set as in (7)
and (8); that is, the received portions from the server will
be updated several times by the local learning process to
accumulate information, in a manner similar to batch learning,
before being sent back to the server. We observe in Fig. 2
(a) that the versions PAO-Fed-(C/U)1 outperform the versions
PAO-Fed-(C/U)0. For this reason, we will only consider the

versions of the PAO-Fed algorithm making full use of the local
updates in the following. We also notice in this experiment that
it is best to use uncoordinated partial-sharing in asynchronous
settings, this contradicts the behavior of partial-sharing-based
communications in ideal settings, where coordinated partial-
sharing performs slightly better than uncoordinated, as ex-
plained in [28].

Second, we studied the impact of the number of model
parameters m shared by participating clients and the server
during the learning process. Fig. 2 (b) shows the performance
of the PAO-Fed-U1 algorithm (uncoordinated, making use of
local updates) for different values of m, namely m = 1,
m = 4, and m = 32. Although sharing more model parameters
increases the initial convergence speed, we observed that it de-
creases the final accuracy for larger m values. This contradicts
previous results in the literature about the behavior of partial-
sharing in ideal settings [28]. In fact, sharing more model pa-
rameters increases the potential negative impact of one single
delayed update carrying outdated information, decreasing the
overall accuracy. Sharing a small number of model parameters
limits the impact of a given update, providing some level of
protection against outdated information, and ensuring better
model fitting [52]. We chose to set m = 4 as a baseline, as
it presents a good compromise between initial convergence
speed, steady-state accuracy, and communication reduction.

Finally, to reduce the harmful effect of delayed updates on
the convergence properties of the algorithm, we introduce the
weight-decreasing mechanism for delayed updates proposed
in (15) in the versions PAO-Fed-C2 and PAO-Fed-U2. We
set αl = 0.2l, 0 6 l 6 lmax. In Fig. 2 (c), we display
the performance of these methods alongside PAO-Fed-C1 and
PAO-Fed-U1. We observe that decreasing the weight of the
delayed updates significantly improves the performance of the
PAO-Fed algorithm on the considered asynchronous settings.
The proposed mechanism considers the relevance of delayed
and potentially outdated updates by effectively reducing their
impact on the server model, especially for substantial delays.
By doing so, the negative effect of delayed updates is miti-
gated; in particular, when using the aforementioned weight-
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Fig. 3: Comparison of PAO-Fed with existing methods. (a) Learning curves, (b) Steady-state MSE vs. communication load,
(c) Impact of straggler clients.

decreasing mechanism, PAO-Fed-C2 using coordinated partial
sharing and PAO-Fed-U2 using uncoordinated partial sharing
exhibit the same performance.

C. Comparison of PAO-Fed with Existing Algorithms

In the following experiments, we compare the performance
of the PAO-Fed algorithm with existing online FL methods
in the literature. Figs. 3 (a) and (c) display the MSE-test in
dB versus the iteration index, and Fig. 3 (b) displays accuracy
variation versus communication savings.

First, we compared PAO-Fed-U1 and PAO-Fed-U2 with
Online-Fed [19], and Online-FedSGD. Fig. 3 (a) displays the
corresponding learning curves. First, we observe that Online-
Fed performs poorly; sub-sampling the already reduced pool
of available clients is not a viable solution to reduce commu-
nication in asynchronous settings. Then, we observe that both
PAO-Fed-U1 and PAO-Fed-U2 outperform Online-FedSGD
while using 98% less communication. The reason for this
very good performance is twofold. First, using the local and
autonomous local updates in the PAO-Fed algorithm allows
it to extract more information from the sparsely participating
clients. Second, partial-sharing-based communication provides
the PAO-Fed algorithm with an innate resilience to the negative
impact of delayed updates; this resilience is further increased
in the PAO-Fed-U2 algorithm with the weight-decreasing
mechanism, hence its better performance.

Second, we study the relationship between communication
load and accuracy. Figure 3 (b) shows the steady-state mean
squared error on the test dataset versus the average commu-
nication load per iteration when the clients employ either
PAO-Fed-U1, PAO-Fed-C2, or Online-Fed algorithms. The
communication load is obtained by multiplying the average
number of model parameters shared by a client during a given
iteration, corresponding to m for the PAO-Fed algorithms, by
32, which is the number of bits on which a model parameter
is stored. We find the MSE reached after 2000 iterations in
the previous figure by the three algorithms in this figure for
a communication load of 128 bits. Similarly, we find the
MSE reached after 2000 iterations in the previous figure by

Online-FedSGD in this figure for the Online-Fed algorithm
with a communication load of 6400 bits. Further, we observe
that the higher the communication load is, the better the
performance of Online-Fed is. However, the performances
of the algorithms using partial-sharing-based communication
vary very little with the communication load, as the lower
amount of communication is compensated by the use of local
updates and the resilience to delayed communications.

Finally, to observe the impact of the straggler clients on
the convergence properties of the algorithms, we compare the
performance of the algorithms in the proposed settings (100%
of clients are potential stragglers) to their performance in an
ideal setting where clients are always available when they
receive new data and their communication channels do not
suffer from delays (0% of clients are potential stragglers).
The learning curves are shown in Fig. 3 (c). We observe
that, in the absence of straggler clients, the methods using
coordinated partial-sharing achieve greater accuracy, almost
identical to methods with no communication reduction, while
the methods using uncoordinated partial-sharing have slightly
worse performance, this corresponds to the results obtained
in [28]. Furthermore, we see that the PAO-Fed-C2 algorithm
used on straggler clients has convergence properties almost
similar to the ones of algorithms in a perfect setting.

D. Performance on a Real-world Dataset

Fig. 4 shows the performance of the proposed PAO-Fed
algorithm on the real-world California Cooperative Oceanic
Fisheries Investigations (CalCOFI) dataset [53]. This dataset
comprises oceanographic data from seawater samples collected
at various stations and contains more than 800,000 samples.
Each sample contains parameters such as temperature, salinity,
O2 saturation, etc. The salinity of the water is linked in a
nonlinear manner to the other available parameters, and we
employed the proposed method to learn this nonlinear model
relating the salinity level in a decentralized manner. For the
purpose of the experiment, we consider only 80,000 samples
that we distribute progressively and unevenly to the 256
clients throughout the learning process (to ensure non-IID and
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Fig. 4: Learning curves on the CalCOFI dataset.

imbalanced data settings). Further, we simulated the straggler-
like behavior of the clients as mentioned above (availability
groups are 0.25, 0.1, 0.025, and 0.005; each communication
to the server will be delayed by more than l iterations with
probability δl, 0 < l < lmax, with δ = 0.2 and lmax = 10).
We observe similar performance for the PAO-Fed, Online-
Fed, and Online-FedSGD algorithms to the experiments on
synthetic datasets. The PAO-Fed-U1 algorithm is able to
achieve the same accuracy as Online-FedSGD while using
98% less communications, and the PAO-Fed-C2 algorithm,
also using 98% less communications, is able to outperform
all other methods.

E. Comparison of Various Communication Reduction Methods
in Asynchronous Settings

In this simulation, we compare the performance of the
proposed method with the PSO-Fed [28], Online-Fed [19], and
SignSGD [54] algorithms. The PSO-Fed algorithm combines
client scheduling and partial-sharing-based communications.
For a fair comparison, it has been tailored to reduce the
overall communication load by 98%, similar to the proposed
PAO-Fed-C2 algorithms. By design, the SignSGD drastically
reduces the communication load from clients to server but does
not reduce the communication load from server to clients. Its
communication load reduction is, therefore, less than 50%.
For this reason, the Online-Fed algorithm has been tailored
to reduce the communication load by only 50%. The learning
curves are displayed in Fig. 5. We observe that reducing the
communication load via a combination of client scheduling
and partial-sharing-based communication, as in PSO-Fed, is
not desirable in asynchronous settings. Furthermore, we see
that the SignSGD achieves significantly better performance
than Online-Fed for a similar communication load reduction,
making it a viable alternative to partial-sharing-based commu-
nication in asynchronous settings. However, it would need to
be complemented by server-to-client communication reduction
and a weight-decreasing mechanism to achieve the same
accuracy and communication load reduction as the proposed
PAO-Fed-C2.

0 500 1000 1500 2000
-12

-10

-8

-6

-4

-2

0

SignSGD

Online-Fed

PSO-Fed

PAO-Fed-C2

Fig. 5: Learning curves of PAO-Fed, PSO-Fed, Online-Fed,
and SignSGD.

F. Impact of the Environment on Convergence Properties

In these last experiments, we study the impact that a change
in the external environment can have on the convergence
properties of the proposed algorithms and existing methods.
The corresponding learning curves are shown in Fig. 6.

First, we studied in Fig. 6 (a) the importance of using
partial-sharing-based communications both at the server and
at the clients. The algorithms using partial-sharing-based
communications have been altered in this simulation with
Mk,n = I, ∀k, n; that is, the server sends its entire model to
the participating clients at each iteration. This modification can
be appealing if the server is not subject to power constraints.
The clients behave normally and only send a portion of
their local model; however, unlike in the other simulations,
the received global model replaces the local model at each
participant, see (10). In such a case, we observe that the
performance of the partial-sharing-based methods is drastically
reduced. It is the information kept by the clients in the not-
yet-shared portions of their local models that allows partial-
sharing-based methods to outperform Online-FedSGD. We
note that clients may choose to ignore part of the received
model to avoid this downfall.

Second, we studied the algorithm behaviors in an environ-
ment where most communications are delayed, but delays
cannot be too lengthy. To this aim, the delay probability
has been significantly increased, and the maximum possible
delay reduced (δ = 0.8 and lmax = 5). We observe in
Fig. 6 (b) that the limited maximum delay allows Online-
FedSGD to outperform PAO-Fed-U1, as the benefit of partial-
sharing against data of poor quality does not out-weight the
smaller amount of communication available to PAO-Fed-U1.
To compensate for the fact that most incoming information
is weighted down by the weight-decreasing mechanism of
PAO-Fed-C2, its learning rate has been increased to near its
maximum value obtained in Theorem 2. Despite this, the
PAO-Fed-C2 algorithm reaches very low steady-state error and
significantly outperforms Online-FedSGD.

Finally, we modeled an environment where availability
groups are given the probabilities 0.025, 0.01, 0.0025, and
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Fig. 6: Learning curves in different environments. (a) Full server communication, (b) Common delays, (c) Increased straggler
behavior.

0.0005; communications to the server have a probability
δ = 0.4 to be delayed. Further, delays last for more than l
iterations, l taking the values 10i, 0 6 i 6 6, with probability
δ

l
10 ; lmax is set to 60. This notably implies that, in this environ-

ment, delayed updates have a greater probability of arriving
after a non-delayed update coming from the same client. Such
an environment where clients are less likely to be available to
participate, communications are more likely to be delayed, and
delays last for more iterations, is less favorable to learning. An
application relying on edge devices that are poorly available
and unreliable would evolve in an environment similar to this.
Fig. 6 (c) presents the learning curves of Online-Fed, Online-
FedSGD, and the PAO-Fed algorithm in this new environment
to see how it may impact the convergence properties of the
algorithms. We observe that, in this environment, reducing the
weight given to the delayed updates gains importance as the
accuracy difference between PAO-Fed-C2 and PAO-Fed-U1
increases. In fact, delayed updates may carry information that
is significantly outdated and, therefore, prevent the algorithms
not using a weight-decreasing mechanism for delayed updates
to reach satisfactory steady-state error. For this reason, the
PAO-Fed-C2 algorithm achieves significantly better accuracy
than Online-FedSGD in this environment.

VI. CONCLUSIONS

This paper proposed a communication-efficient FL algo-
rithm adapted to a realistic environment. The proposed FL
algorithm operates with significantly reduced communication
requirements and can cope with an unevenly distributed system
with poor client availability, potential failures, and communi-
cation delays. The proposed partial sharing mechanism reduces
the communication overhead and diminishes the negative
impact of delayed updates on accuracy. We further proposed
a weight-decreasing aggregation mechanism that emphasizes
more recent updates to improve performance in environ-
ments suffering from substantial delays, poor participation,
and straggler devices. Our numerical results showed that the
proposed algorithm outperforms standard FL methods in an
asynchronous environment while reducing the communication

overhead by 98 percent. The proposed approach is ideal for ex-
tracting information in real-time from diverse geographically
dispersed devices without overloading the system, making it
highly desirable in IoT applications in particular. Future works
include expanding the proposed algorithm to a multi-server
or networked architecture to alleviate the strain on the single
server in applications with many clients.

APPENDIX A
EVALUATION OF E[Ae,n] AND E[Be,n]

The matrix Ae,n is composed of D×D-sized blocks Ai,j,n,
given by:

Ai,j,n =





ID if i = j ∧ (i = 1 ∨ i > K + 1),

ak,nMk,n if i ∈ [|2, . . . ,K + 1|] ∧ j = 1,

ID − ak,nMk,n if i ∈ [2, . . . ,K + 1] ∧ i = j,

0D otherwise,

where k = i− 1.
We note that E[ak,nMk,n] = pk,npmID, with pk,n being

the probability that client k participates at iteration n, and pm
being the probability that a given model parameter is selected
by the selection matrix (i.e., the density of the selection: m

D ).
Since 0 6 pk,npm 6 1, and given the above decomposition,
matrix E[Ae,n] is right stochastic.

Further, we note that by construction, (ak,nMk,n)
2 =

ak,nMk,n; therefore, under Assumption 3, we have

E[ak,nMk,nak′,n′Mk′,n′ ]

=

{
pk,npmID if k = k′ ∧ n = n′,

pk,npk′,n′p2mID otherwise.
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Similarly, we decompose the matrix Be,n in D ×D-sized
blocks Bi,j,n as follows:

Bi,j,n =





Bn if i = j = 1,

B
(j−1)
0,n if i = 1 ∧ j ∈ [2,K + 1],

B
(j−1 mod K)

⌈ j−1
K ⌉−3,n

if i = 1 ∧ j ∈
[|3K + 2, . . . , (lmax + 3)K + 1|],

ID if i ∈ [|1, 2|] ∧ j = 2,

ID if i > 3 ∧ j > 2 ∧ i = j + 1,

0D otherwise.

,

The blocks are given by:

Bn = I−
lmax∑

l=0

αl

∑

k∈Kn,l

bk,n,l
|Kn,l|

Sk,n−l,

B
(k)
l,n = Bl,n[k],

Bl,n =

[
αlb1,n,l
|Kn,l|

S1,n−l, · · · ,
αlbK,n,1

|Kn,l|
SK,n−l

]
.

We note that by construction,

Bn +

lmax∑

l=1

K∑

k=1

B
(k)
l,n = I,

hence, the matrix E[Be,n] is right stochastic as well.

APPENDIX B
EVALUATION OF QA AND QB

We decompose matrix QA into D × D-sized blocks and
prove the property by computing the Kronecker product
Ae,n ⊗b Ae,n before taking the expectation. In particular, we
have

QA = [E[Ai,j,n ⊗b Ae,n], (i, j) ∈ [|1, . . . ,K(lmax + 1) + 1|]2],
and we note that QA can be proven to be right stochastic one
block-row at a time, considering sets of D rows indexed by i
in the above equation.

The property is easy to prove on the block-rows i = 1 and
i > K + 1. On those block-rows, we have

Ai,j,n =

{
ID if i = j

0D otherwise
,

therefore, since E[Ae,n] satisfies the property, it is satisfied on
those block-rows.

We now consider the remaining block-rows. For this pur-
pose, let i ∈ [|2, . . . ,K + 1|]. According to the decompo-
sition of the left-hand side Ae,n, the block-row i of QA

reduces to only two non-zero elements, E[Ai,1,n⊗bAe,n] and
E[Ai,i,n ⊗b Ae,n]. Hence we can compute:

E[Ai,1,n ⊗b Ae,n] + E[Ai,i,n ⊗b Ae,n]

= E[ai−1,nMi−1,n ⊗b Ae,n]

+ E[(ID − ai−1,nMi−1,n)⊗b Ae,n]

= E[ID ⊗b Ae,n],

and conclude that the block-row i satisfies the property.

Similarly, we decompose the matrix QB into D×D-sized
blocks and prove that it is right stochastic by computing the
Kronecker product Be,n⊗bBe,n before taking the expectation.

QB = [E[Bi,j,n ⊗b Be,n], (i, j) ∈ [1, . . . ,K(lmax + 1) + 1]2].

The evaluation is trivial for the block-rows i ∈
[2, . . . ,K(lmax + 1) + 1], where the decomposition of the
left-hand side Be,n reduces to only one non-zero element:
I. Therefore, since Be,n satisfies the property, it is satisfied
on those block-rows.

We now consider the block-row i = 1 and compute the sum
of the elements as:

E[Bn ⊗b Be,n +

lmax∑

l=1

K∑

k=1

B
(k)
l,n ⊗b Be,n]

= E[ID ⊗b Be,n],

by construction of the B
(k)
l,n matrices. We conclude that the

block-row i = 1 satisfies the property as well.
We have proven that both QA and QB are right stochastic

matrices.
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Therefore, the Lagrangian can be rewritten as

Lρ(Vq,M) = F (w) + ⟨Aw +Be,λ⟩+ ρ

2
∥Aw +Be∥2 .

(19)

B. Convergence Proof
We make the following assumptions to continue the analysis.
Assumption 1. The functions fk(·), k ∈ {1, . . . ,K}, are
convex and smooth.

Using (19), and under Assumption 1, the steps of the PGFL
algorithm without inter-cluster learning can be expressed as
follows:

∇F (w(n+1)) +ATλ(n) + ρAT
(
Aw(n+1) +Be(n)

)
= 0,

BTλ(n) + ρBT
(
Aw̃(n+1) +Be(n+1)

)
= 0,

λ(n+1) − λ(n) + ρ
(
Aw̃(n+1) +Be(n+1)

)
= 0.

(20)

Similarly to [41], we introduce the following to simplify (20):

H+ = AT
1 +AT

2 ,

L+ =
1

2
H+H

T
+,

α = HT
−w,

H− = AT
1 −AT

2 ,

L− =
1

2
H−H

T
−,

M =
1

2
(L+ + L−).

Then, as derived in [41, Section II.B], (20) becomes

∇F (w(n+1)) +α(n) + 2ρMw(n+1) − ρL+w̃
(n) = 0,

α(n+1) −α(n) − ρL−w̃
(n+1) = 0. (21)

As in [47, Lemma 1], the equations in (21) can be combined
to obtain

w(n+1) =
M−1∇F (w(n+1))

2ρ
+

M−1L+w̃
(n)

2

− M−1L−
2

n∑

s=0

w̃(s). (22)

Similarly to [47], by introducing the following:

Q =
√

L−/2,

q(n) =

(
r(n)

w̃(n)

)
,

r(n) =
n∑

s=0

Qw̃(s),

G =

[
ρI 0
0 ρL+/2

]
,

(22) can be reformulated using [47, Lemma 2] as

∇F (w(n+1))

ρ
+ 2Qr(n+1) + L+

(
w(n+1) − w̃(n)

)
= 2Mξ(t+1).

(23)

Theorem I. Under Assumption 1, if τ (n) = τ = 0,∀n, the
proposed PGFL algorithm converges to the optimal solution
of (2) in linear time for each cluster.

Proof. Under Assumption 1, F (w) is convex and smooth by
composition and, therefore, differentiable. Using [48, Lemma
6] and [48, Theorem V] with a convex and smooth function
F (w) demonstrates that the proposed PGFL algorithm, with-
out inter-cluster learning (τ = 0 ), converges to the optimal
solution of (2) in linear time for any given cluster.

C. Impact of Inter-Cluster Learning
In situations with limited data, as demonstrated in Section

V, employing inter-cluster learning (τ ̸= 0) can enhance
performance compared to τ = 0. This section establishes an
upper bound on the disparity between the resulting cluster-
specific personalized models obtained in scenarios with and
without inter-cluster learning. It is worth noting that this bound
can be controlled by properly choosing the sequence τ(n).

To do so, it is necessary to reformulate the client primal
update using Assumption 1. The primal update for client k ∈
Cs,(q) is expressed as follows:

w
(n+1)
k =argmin

w
fk(w)−

〈
φ

(n)
k ,w −w

(n)
s,(q)

〉

+
ρ

2
||w −w

(n)
s,(q)||2, (24)

which, under Assumption 1, is equivalent to

∇fk(w
(n+1)
k )−φ(n)

k + ρ
(
w

(n+1)
k −w

(n)
s,(q)

)
= 0. (25)

Further reformulation leads to the following:

w
(n+1)
k = w

(n)
s,(q) +

1

ρ
φ

(n)
k − 1

ρ
∇fk(w

(n+1)
k ). (26)

By replacing w
(n+1)
k with (26) in (8), we obtain

ŵ
(n)
s,(q) =

1

|Ns|
∑

p∈Ns

1

|Cp,(q)|
∑

k∈Cp,(q)

(
w

(n−1)
p,(q) − 1

ρ
∇fk(w

(n)
k )
)
.

(27)
Next, we investigate the effect of inter-cluster learning by

comparing the performance of models obtained using the
PGFL algorithm with and without inter-cluster learning. We
shall prove that the difference between the resulting models
is bounded and depends on both the inter-cluster learning
parameter and the similarity of models between clusters.
Theorem II. Given a sufficiently large penalty parameter ρ,
for all iterations, server s ∈ S and cluster q ∈ Q, the impact
of inter-cluster learning after n iterations is bounded by

E
[
||w̄(n)

s,(q) −w
(n)
s,(q)||22

]
⩽

n∑

i=1

( n∏

j=i+1

(
1− τ (j)

))
τ (i)η, (28)

where the expectation is taken with respect to the privacy-
related noise added in (12) and the data observation noise,
w̄

(n)
s,(q) denotes the model obtained by the algorithm without

inter-cluster learning, and η is the maximum cluster model
distance, defined as:

η = max
q,r∈Q

∥∥∥w∗
(q) −w∗

(r)

∥∥∥
2

2
, (29)

with the models w∗
(q), q ∈ Q being the cluster-specific solu-

tions of (2) with τ = 0.

Proof. We prove this theorem by induction. With initial values
w

(0)
s,(q) = 0 and w̄

(0)
s,(q) = 0, one can write.

w
(1)
s,(q) =

(
1− τ (1)

)
ŵ

(1)
s,(q) +

τ (1)

Q− 1

∑

r∈Q\q
ŵ

(1)
s,(r),

w̄
(1)
s,(q) =

1

|Ns|
∑

p∈Ns

1

|Cp,(q)|
∑

k∈Cp,(q)

(
w̄

(0)
p,(q) −

1

ρ
∇fk(w̄

(1)
k )
)
,

(30)
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where, given that w̄(0)
p,(q) = w

(0)
p,(q) and w̄

(0)
k = w

(0)
k , and using

(27), we have ŵ
(1)
s,(q) = w̄

(1)
s,(q). Hence,

w̄
(1)
s,(q) −w

(1)
s,(q) =

τ (1)

Q− 1

∑

r∈Q\q

(
w̄

(1)
s,(q) − ŵ

(1)
s,(r)

)
. (31)

Taking the expectation with respect to the privacy-related
and observation noises, we can express this difference as
a function of the inter-cluster learning parameter and the
maximum cluster model distance.

E[||w̄(1)
s,(q) −w

(1)
s,(q)||22] ⩽ τ (1)η. (32)

Further, we assume that (28) is satisfied for all iterations up
to iteration n− 1. For iteration n, we have

w
(n)
s,(q) =

(
1− τ (n)

)
ŵ

(n)
s,(q) +

τ (n)

Q− 1

∑

r∈Q\q
ŵ

(n)
s,(r),

w̄
(n)
s,(q) =

1

|Ns|
∑

p∈Ns

1

|Cp,(q)|
∑

k∈Cp,(q)

(
w̄

(n−1)
p,(q) − 1

ρ
∇fk(w̄

(n)
k )
)
,

(33)

where ŵ
(n)
s,(q) ̸= w̄

(n)
s,(q) since

ŵ
(n)
s,(q) =

1

|Ns|
∑

p∈Ns

1

|Cp,(q)|
∑

k∈Cp,(q)

(
w

(n−1)
p,(q) − 1

ρ
∇fk(w

(n)
k )
)
.

(34)

The difference is given by

w̄
(n)
s,(q)−w

(n)
s,(q) =

(
1− τ (n)

)(
w̄

(n)
s,(q) − ŵ

(n)
s,(q)

)

+
τ (n)

Q− 1

∑

r∈Q\q

(
w̄

(n)
s,(q) − ŵ

(n)
s,(r)

)
, (35)

with

w̄
(n)
s,(q) − ŵ

(n)
s,(q) =

1

|Ns|
∑

p∈Ns

1

|Cp,(q)|
∑

k∈Cp,(q)

(
w̄

(n−1)
p,(q)

−w
(n−1)
p,(q) − 1

ρ
∇fk(w̄

(n)
k ) +

1

ρ
∇fk(w

(n)
k )
)
.

(36)

We note that the expectation of ||w̄(n−1)
p,(q) − w

(n−1)
p,(q) ||22 with

respect to the privacy-related and observation noises is iden-
tical for all servers. Therefore, since (28) is satisfied for
iteration n−1 for all servers, given a sufficiently large penalty
parameter ρ, and taking the expectation with respect to the
privacy-related and observation noises, we have

E||w̄(n)
s,(q) − ŵ

(n)
s,(q)||22 ⩽ E||w̄(n−1)

s,(q) −w
(n−1)
s,(q) ||22. (37)

Combining (35) and (37), we will have

E||w̄(n)
s,(q) −w

(n)
s,(q)||22 ⩽ (1− τ (n))E||w̄(n−1)

s,(q) −w
(n−1)
s,(q) ||22

+
τ (n)

Q− 1

∑

r∈Q\q
E||w̄(n)

s,(q) − ŵ
(n)
s,(r)||22,

(38)

which, using the maximum cluster model distance, yields

E||w̄(n)
s,(q) −w

(n)
s,(q)||22 ⩽

(
1− τ (n)

)
E||w̄(n−1)

s,(q) −w
(n−1)
s,(q) ||22

+ τ (n)η. (39)

Given (28) for iteration n− 1, we have

E||w̄(n)
s,(q) −w

(n)
s,(q)||22 ⩽

(
1− τ (n)

) n−1∑

i=1

( n−1∏

j=i+1

(1− τ (j))
)
τ (i)η

+ τ (n)η,

⩽
n∑

i=1

( n∏

j=i+1

(1− τ (j))
)
τ (i)η. (40)

That is, (28) is satisfied for iteration n.
By the principle of induction, (28) is satisfied for all

iterations, server s ∈ S and cluster q ∈ Q.

Corollary. If τ (i) = 0,∀i < n and τ (n) ̸= 0, the impact of a
single iteration of inter-cluster learning is bounded by

E||w̄(n)
s,(q) −w

(n)
s,(q)||22 ⩽ τ (n)η, (41)

where w̄
(n)
s,(q) denotes a model obtained without inter-cluster

learning, η is as defined in Theorem II, and the expectation
is taken with respect to the privacy-related and observation
noises.

Theorem II bounds the difference in the resulting models
with and without inter-cluster learning. Combining Theorems
I and II, the resulting models obtained by the algorithms are
guaranteed to reside within a neighborhood of the optimal
solution of (2) with τ = 0. The size of this neighborhood can
be adjusted by selecting the sequence τ (n). When ample data
is available, the algorithm converges to a satisfactory solution
within this neighborhood. However, in cases of limited data,
the solution of (2) with τ = 0 may be inadequate. In such
situations, inter-cluster learning becomes crucial, allowing the
proposed algorithm to achieve higher accuracy, as demon-
strated in Section V. By exploiting inter-cluster learning, the
algorithm effectively overcomes the limitations imposed by
scarce data, leading to improved performance.

IV. PRIVACY ANALYSIS

This section focuses on quantifying the local privacy
protection provided by the proposed PGFL algorithm. To
achieve this, we begin by calculating the l2-norm sensitivity,
which quantifies the variation in output resulting from a
change in an individual data sample. Once we have established
the l2-norm sensitivity, we proceed to adjust the noise variance
added to the primal variables, ensuring satisfactory protection.

Definition. The l2-norm sensitivity is defined by

∆
(n)
k,2 = max

Dk,Dl

∥∥∥w(n)
k,Dk

−w
(n)
k,Dl

∥∥∥ (42)

where w
(n)
k,Dk

and w
(n)
k,Dl

denote the local primal variables
obtained from two neighboring data sets Dk and Dl, which
differ in only one data sample.
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Assumption 3. The functions ℓk(·), k ∈ C, have bounded
gradients. That is, for k ∈ C there exists a constant Ck such
that ||∇ℓk(·)|| ⩽ Ck.
Lemma 1. Under Assumption 3, the l2-norm sensitivity for a
client k is given by

∆
(n)
k,2 = max

Dk,Dl

||w(n)
k,Dk

−w
(n)
k,Dl

|| = 2Ck

ρDk
. (43)

Proof. We consider two neighboring data sets for a client k,
Dk and Dl, both of cardinality Dk. For simplicity, we assume
that they differ on the last data sample. We denote w

(n)
k,Dk

the
model obtained using the initial data set, and w

(n)
k,Dl

the model
obtained using the alternative data set. Those are obtained,
according to (4), by:

w
(n)
k,Dk

= argmin
w

1

Dk

Dk∑

i=1

ℓk(xk,i, yk,i;w) +
λ

|Cs|
R(w)

−
〈
φ

(n−1)
k ,w −w

(n−1)
s,(q)

〉
+

ρ

2
||w −w

(n−1)
s,(q) ||2,

w
(n)
k,Dl

=argmin
w

λ

|Cs|
R(w)

+
1

Dk

(Dk−1∑

i=1

ℓk(xk,i, yk,i;w) + ℓk(x
′
k,Dk

, y′k,Dk
;w)

)

−
〈
φ

(n−1)
k ,w −w

(n−1)
s,(q)

〉
+

ρ

2
||w −w

(n−1)
s,(q) ||2.

Using (26), that we recall:

w
(n)
k = w

(n−1)
s,(q) +

1

ρ
φ

(n−1)
k − 1

ρ
∇fk(w

(n)
k ), (44)

we can derive:

||w(n)
k,Dk

−w
(n)
k,Dl

|| = (45)∥∥∥∥
1

ρDk
(∇ℓk(xk,Dk

, yk,Dk
;wk)−∇ℓk(x

′
k,Dk

, y′k,Dk
;wk))

∥∥∥∥ ,

which, under Assumption 3, provides a value for the l2-norm
sensitivity:

max
Dk,Dl

||w(n)
k,Dk

−w
(n)
k,Dl

|| = 2Ck

ρDk
. (46)

With the l2-norm sensitivity, we can establish the relation
between the noise variance added in (12) and the privacy
parameter ϕ

(n)
k as well as prove the privacy guarantee of the

algorithm in terms of zCDP.

Theorem III. Under Assumption 3, PGFL satisfies dynamic
ϕ
(n)
k -zCDP with the relation between the privacy parameter

and the perturbation noise variance given by

δ
2(n)
k =

∆
2(n)
k,2

2ϕ
(n)
k

. (47)

Proof. For any client k and iteration n, the perturbed primal
update is obtained with (12). That is, it is equivalent to w̃

(n)
k ∼

N (w
(n)
k , δ

2(n)
k I). The result in [36, Proposition 6], states that a

sensitivity-∆ query q releasing an output N (q(x), δ2) from an
input x satisfies (∆2/2δ2)−zCDP . Thus, the PGFL algorithm

satisfies the dynamic ϕ
(n)
k -zCDP with ϕ

(n)
k =

∆
2(n)
k,2

2δ
2(n)
k

.

Theorem III gives the relationship between the noise
perturbation variance and the privacy protection at a given
iteration. Since the proposed algorithm is iterative in nature
and models are exchanged several times with the servers, one
should consider the total privacy loss throughout the learning
process. To this aim, we establish the following theorem.

Theorem IV. Under Assumption 3 and for a final iteration
N , the PGFL algorithm satisfies ϕtotal

k -zCDP throughout the
entire computation for each client k, with ϕtotal

k given by

ϕtotal
k =

N∑

n=1

ϕ
(n)
k . (48)

Proof. This theorem results from the use of [36, Lemma 7]
N times over.

V. NUMERICAL SIMULATIONS

This section illustrates the performance of the proposed
PGFL algorithm for solving regression and classification tasks.

A. Experiments for Regression
We consider a graph federated network consisting of |S| =

10 servers, each having access to |Cs| = 15 clients, for
a total of |C| = 150 clients. The set of servers and their
communication channels form a random connected graph
where the average node degree is three. Each client has access
to a random number of noisy data samples between Dk = 2
and Dk = 9, each composed of a vector xk,i of dimension
d = 60 and a response scalar yk,i. Doing so, each cluster
is globally observable but not locally at any given client or
set Cs, s ∈ S . The servers implement random scheduling of
clients to reduce the communication load [49]. In particular,
at every global iteration, each server randomly selects a subset
of three clients to participate in the learning process.

The clients of the network are randomly split between Q =
3 clusters. Clients of a given cluster solve the ridge regression
problem with data generated from an original model w∗

(q),
obtained with w∗

(q) = w∗
0 + γw∗

0 with γ ∼ U(−0.15, 0.15),
where w∗

0 is a base model. In doing so, the learning tasks
of different clusters share the same objective functions but
have different, albeit related, data distributions. The loss and
regularizer functions are given by

ℓk(Xk,yk;wk) = ||yk −Xkwk||2,
R(wk) = ||wk||2. (49)

Performance is evaluated by computing the normalized
mean squared deviation (NMSD) of the local models with
respect to the corresponding cluster-specific original model
used to generate the data, w∗

(q) for k ∈ C(q). It is given by:

γ(n) =
1

|C|

|Q|∑

q=1

∑

k∈C(q)

∥∥∥w(n)
k −w∗

(q)

∥∥∥
2

2∥∥∥w∗
(q)

∥∥∥
2

2

, (50)
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where the result is averaged over several Monte Carlo it-
erations. The proposed algorithm is compared with various
existing algorithms. The ClusterFL algorithm, defined in [50],
implements conventional personalized FL with inter-cluster
learning. For a fair comparison, the ClusterFL algorithm
has been modified to leverage similarity among tasks in the
same manner as the PGFL algorithm. The GFL algorithm,
defined in [5], implements single-task graph FL in a privacy-
preserving manner. To ensure a fair comparison, the ClusterFL
and GFL algorithms have been modified to ensure privacy in
the same manner as the PGFL algorithm. Furthermore, the
algorithms are set to observe the same initial convergence rate
whenever possible. For most experiments, the learning curves
are displayed as plots of the NMSD versus the iteration index.

We first consider an ideal setting wherein all algorithms are
evaluated without privacy considerations (ξ(n) = 0, ∀n)) and
client scheduling. In this scenario, the inter-cluster parameter
τ (n) of the PGFL algorithm was kept fixed throughout the
learning, specifically, τ (n) = 0 and τ (n) = 0.4. Figure 1
shows the learning curves for the GFL, ClusterFL, and PGFL
algorithms. The results illustrate the superiority of the pro-
posed PGFL algorithm over GFL, as cluster-specific learning
tasks benefit significantly from personalized models tailored
to each cluster. We also see that incorporating inter-cluster
learning results in improved convergence speed and steady-
state accuracy. Furthermore, the performance of the ClusterFL
algorithm is notably poor in this setting, emphasizing the
importance of using the graph federated architecture when
data is scarce. Leveraging the model similarities improves
learning speed and accuracy by compensating for data scarcity.
In addition, isolated servers whose clients lack sufficient data
to achieve satisfactory accuracy independently reinforce the
necessity of the graph federated architecture.

Next, we modify the setting to incorporate client scheduling
and evaluate the aforementioned algorithms with reduced
communication load. Figure 2 shows the learning curves
for the GFL, ClusterFL, and PGFL algorithms with client
scheduling. In this figure and the ones below, 3 clients out
of 15 are randomly selected to participate by each server at
every iteration, reducing the communication load by 80% for
every algorithm. We observe that the PGFL algorithm exhibits
slower convergence and higher steady-state NMSD when
utilizing client scheduling. And we note that GFL performs
better with client scheduling. The performance degradation
for the PGFL algorithm is due to the lower client participation
resulting in a smaller quantity of data being utilized. The better
performance of GFL in this setting is due to the imbalance of
cluster representation in the universal model, which benefits
the participating clients on average.

Finally, we evaluate the aforementioned algorithms in a
setting with client scheduling and privacy protection. All of the
algorithms utilize zCDP with the noise perturbation presented
in (12) and the parameters ϕ

(0)
k = 0.001,∀k and ζ = 0.99.

Hence, all the algorithms satisfy ϕfinal
k -zCDP throughout the

computation with ϕfinal
k = 0.095,∀k. Figure 3 shows the

learning curves for the GFL, ClusterFL, and PGFL algorithms
with client scheduling and privacy. We observe that the noise
perturbation associated with differential privacy significantly
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Fig. 1: Learning curves of the PGFL algorithm with a fixed
inter-cluster learning parameter and the FedAvg algorithm,
without client scheduling or privacy.
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Fig. 2: Learning curves of the PGFL algorithm with a fixed
inter-cluster learning parameter and the FedAvg algorithm,
considering client scheduling and without privacy.
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Fig. 3: Learning curves of the PGFL algorithm with a fixed
inter-cluster learning parameter and the FedAvg algorithm,
considering client scheduling and privacy.
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reduces the convergence speed of all the simulated algorithms.
However, we note that the NMSD after 300 iterations is nearly
identical to the one in Fig. 2. This behavior is explained by the
use of zCDP, in which the variance of the noise perturbation
starts high and decreases linearly throughout the learning
process.

Further, we illustrate the importance of carefully choosing
the value of the inter-cluster learning parameter. In Fig. 4,
we simulated the proposed PGFL algorithm for various fixed
τ (n) values and displayed the NMSD after 200 iterations.
For instance, the NMSD for τ (n) = 0.4 corresponds to the
result obtained in Fig. 3. This figure confirms that inter-cluster
learning has the potential to increase learning performance
by alleviating data scarcity, as the PGFL algorithm achieves
lower NMSD with τ (n) ∈ (0.1, 0.5) than with τ (n) = 0. It
also shows that the inter-cluster learning parameter must be
carefully selected, as a value too large for the setting leads to
performance degradation.

We then illustrate an alternative use of inter-cluster learning.
For this experiment, the difference between the data distribu-
tion of the different clusters has been increased. Precisely,
the datasets were simulated with the models obtained by
w(q) = w0 + γw0 with γ ∼ U(−0.5, 0.5). The learning
curves are presented in Fig. 5. We observed that, because of
the higher cluster dissimilarity, inter-cluster learning degrades
steady-state NMSD; this is observed in the learning curves for
PGFL with τ (n) = 0 and τ (n) = 0.4. However, by mitigating
data scarcity within a cluster, inter-cluster learning improves
the initial convergence rate. To benefit from an improved
initial convergence rate and avoid steady-state performance
degradation, it is possible to reduce the inter-cluster learn-
ing parameter progressively. Doing so, the PGFL algorithm
with time-varying τ (n) = 0.4 × 0.98n has the same initial
convergence rate as the PGFL algorithm with fixed τ = 0.4
and attains near-identical steady-state NMSD as the PGFL
algorithm with fixed τ = 0.

Finally, we study the impact of privacy protection on the
steady-state NMSD of the PGFL algorithm. Fig. 6 shows
the NMSD after 200 iterations versus the initial value of the
privacy parameter ϕ0 for a decaying rate of ζ = 0.99. Note
that, as seen in Theorem III, a lower value of ϕ0 ensures
more privacy. We observe that for smaller values of ϕ0, the
steady-state NMSE of the PGFL algorithm is higher. In fact,
a lower total privacy loss bound leads to higher perturbation
noise variance and diminishes the learning performance of
the algorithm. Similarly, Fig. 7 shows the NMSD after 200
iterations versus the variance decrease rate ζ for an initial
privacy value of ϕ0 = 0.001. The lower the decrease rate,
the faster the privacy protection weakens, and the lower the
steady-state NMSE of the algorithm as more information is
exchanged among clients. On the other hand, a decrease rate
close to 1 ensures better privacy protection but comes at the
cost of lower accuracy.

B. Experiments for Classification on the MNIST Dataset

The following experiments were conducted on the MNIST
handwritten digits dataset [51]. In those experiments, the
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Fig. 4: NMSD after 200 iterations vs. fixed inter-cluster
learning parameter τ (n) values for the PGFL algorithm with
client scheduling and privacy .
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learning tasks of the clients associated with different clusters
share the same data but have different, related, objective
functions. The structure of the server network, as well as the
number of clients per server, are identical to the experiments
for regression. In the following experiments, the clients of
a given cluster use the ADMM for logistic regression to
differentiate between two classes. The loss function for the
logistic regression is given by

log[ℓk(Xk,yk;wk)] =
−1

Dk

Dk∑

i=1

(
yk,i log[y

′
k,i]

+ (1− yk,i) log[1− y′k,i]
)
, (51)

with

y′k,i =
1

1 + exp(−w⊺
kxk,i)

. (52)

We simulated the PGFL algorithm in the context of clas-
sification with client scheduling, privacy, a fixed inter-cluster
learning parameter τ (n) = τ = 0.4, and without inter-cluster
learning τ (n) = 0. Figure 8 shows the test accuracy versus
iteration index in a setting where the clients of a given cluster
must differentiate between two classes composed of a single
digit. Each client receives between Dk = 2 and Dk = 4
data samples composed of two MNIST images. The clients of
cluster 1 have access to images of the digits {1} and {8}.
The clients of clusters 2 and 3 have access to images of
the digits {1} and {9}, and {7} and {8}, respectively. Given
that the clients of different clusters must differentiate between
different digits, the similarity between the learning task is
limited. Nevertheless, we observe that inter-cluster learning
does improve the accuracy of the PGFL algorithm in this
setting.

Further, we modified the setting so that the clusters exhibit
more similarity. Figure 9 shows the test accuracy versus
iteration index in a setting where the clients of a given cluster
must differentiate between two classes composed of triplets of
digits. Each client receives between Dk = 6 and Dk = 12 data
samples, each composed of two triplets of MNIST images.
The clients of cluster 1 must differentiate between the classes
{1, 2, 3} and {6, 7, 8}, the clients of cluster 2 between {1, 2, 3}
and {7, 8, 9}, and the clients of cluster 3 between {1, 2, 3} and
{6, 8, 9}. We observe that, in this setting, inter-cluster learning
significantly improves the accuracy of the PGFL algorithm.

Finally, we utilize the previous setting and evaluate the
impact of the value of the inter-cluster learning parameter τ (n)

on the accuracy achieved by the PGFL algorithm in the context
of classification. Figure 10 displays the accuracy achieved
by the PGFL algorithm after 100 iterations versus the value
of the inter-cluster learning parameter in the context of the
classification task of Fig. 9. We observe that, in this setting
where the similarity among the learning tasks is high, medium
and large fixed values for τ (n) lead to significant accuracy
improvement. However, very large values lead to performance
degradation, similar to Fig. 4.

0.98 0.985 0.99 0.995 1
-49

-48

-47

-46

-45

-44

-43

-42

-41

-40

PGFL - 
(n)

 = 0.4

Fig. 7: Privacy-accuracy trade-off of the PGFL algorithm for ζ
with a fixed inter-cluster learning parameter, considering client
scheduling.
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C. Experiments for Classification on the MedMNIST Dataset

To demonstrate the proposed method of utilizing inter-
cluster learning to palliate data scarcity and improve learning
performance in real-life applications, two experiments are con-
ducted on the OrganAMNIST dataset, part of the biomedical
MedMNIST dataset [52]. The OrganAMNIST dataset contains
lightweight images of 11 different organs labeled by type. It
comprises more than 58000 data samples split into training,
validation, and testing data. We use the proposed method to
improve classification accuracy in the following setting. The
server network and the loss function are identical to previous
experiments; however, only three clients are associated with
each server, each client having access to two data samples.
In both experiments, clients of a given cluster are tasked
with differentiating between two types of organs. Different
clusters are associated with different pairs of organs, and inter-
cluster learning is utilized to improve classification accuracy
by leveraging the similarity between some of the organs.

In the first experiment, the three clusters are given similar
learning tasks. In particular, one of the elements of each pair
of organs is identical. Cluster 1 differentiates between the right
lung and the left lung, cluster 2 between the liver and the left
lung, and cluster 3 between the right kidney and the left lung.
Figure 11 shows the test accuracy versus iteration index. We
observe that a large amount of inter-cluster learning leads to
significantly improved performances, increasing classification
accuracy by about 5%.

In the next experiment, the learning tasks associated with
each cluster are less similar than in the previous experiment.
They share only the vague shape of the classified organs.
Cluster 1 differentiates between the spleen and the left lung,
cluster 2 between the left kidney and the bladder, and cluster 3
between the right kidney and the right lung. Due to the lower
cluster similarity, we utilize a decaying inter-cluster learning
parameter to preserve steady-state accuracy. Figure 12 shows
the test accuracy versus iteration index. We observe that a
medium decay rate of the inter-cluster learning parameter can
improve the learning speed, boosting classification accuracy
by about 2%.

VI. CONCLUSIONS

This paper proposed a framework for personalized graph
federated learning in which distributed servers collaborate with
each other and their respective clients to learn cluster-specific
personalized models. The proposed framework leverages the
similarities among clusters to improve learning speed and
alleviate data scarcity. Further, this framework is implemented
with the ADMM as a local learning process and with local
zero-concentrated differential privacy to protect the partici-
pants’ data from eavesdroppers. Our mathematical analysis
showed that this algorithm converges to the exact optimal
solution for each cluster in linear time and that utilizing inter-
cluster learning leads to an alternative output whose distance to
the original solution is bounded by a value that can be adjusted
with the inter-cluster learning parameter sequence. Finally,
numerical simulations showed that the proposed method is
capable of leveraging the graph federated architecture and
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Fig. 10: Test accuracy of the PGFL algorithm on MNIST after
100 iterations vs. fixed inter-cluster learning parameter τ (n),
considering client scheduling and privacy..

Fig. 11: Test accuracy curve of the PGFL algorithm with a
fixed inter-cluster learning parameter on MedMNIST, consid-
ering privacy, with high cluster similarity.

the similarity between the clusters’ learning tasks to improve
learning performance.
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Abstract—Personalized federated learning enables every edge
device or group of edge devices within the distributed network
to learn a device- or cluster-specific model tailored to their local
needs. Data scarcity, however, makes it difficult to learn such
individual models, resulting in performance degradation. Since
the device- or cluster-specific tasks are distinct but often related,
leveraging these similarities through inter-cluster learning allevi-
ates data shortage and enhances learning performance. Although
inter-cluster learning can boost performance, uncontrolled inter-
cluster learning may lead to performance degradation due to
over- or under-usage of local similarity enforcement. In light of
this issue, an intelligent mechanism that performs inter-cluster
learning based on device-specific needs is required. To this end,
this paper proposes adopting reinforcement learning principles
to control device-specific inter-cluster learning in real-time. We
propose networked personalized federated learning using rein-
forcement learning (NPFed-RL) as a general framework and then
demonstrate its feasibility by applying it to the ridge regression
problem. We conduct numerical experiments to compare the
proposed method with the state-of-the-art. The proposed method
successfully controls device-specific parameters and offers better
learning performance than existing solutions.

Index Terms—Personalized federated learning, networked fed-
erated learning, distributed learning, inter-cluster learning.

I. INTRODUCTION

Federated learning (FL) is a distributed learning paradigm
that enables geographically dispersed edge devices, often
called clients, to learn a global shared model on their locally
stored data without revealing it [1]. FL received enormous
attention due to the ability to handle system and statistical
heterogeneity. System heterogeneity refers to the various com-
putational and communication capacities of the participating
devices [2]. Statistical heterogeneity implies that data are im-
balanced and non-i.i.d. across devices [3]. Several challenges
associated with the practical implementation of FL, such as
communication efficiency [4], privacy preservation [5], byzan-
tine attacks [6], and asynchronous behavior of devices and
communication links [7], have been studied extensively in the
literature. In contrast to single-server methodologies, multi-
server architectures [8], [9] and fully distributed architectures
[10] have also been studied recently. This paper deals with a
fully distributed architecture.

In many practical applications, a network of clients must
learn more than one model. Those models might be different,
yet they exhibit similarities [11]. For instance, networked
vehicles need to learn and maintain customized models of
surrounding environments to plan trajectories [12]. Likewise,
patient-specific models in healthcare are required for better

diagnosis and treatment [13]. Personalized federated learning
fulfills the requirements of these applications by allowing each
client, or a group of clients (referred to as a cluster), to learn
client- or cluster-specific models [14], [15]. Building person-
alized models for clusters is challenging, as they often have
access to limited data. Inter-cluster learning, i.e., cooperation
across the clusters, can alleviate data scarcity [16].

Although inter-cluster learning can improve learning accu-
racy and speed by exploiting similarities across personalized
models, it can also have the opposite effects if not adequately
controlled [17]. In particular, a fixed regularization parameter
cannot effectively control inter-cluster learning for all clients
since system heterogeneity and network topology affect local
sensitivity to data shortages. For example, clients will benefit
more from inter-cluster learning if neighbors, and clients
within a few hops, mainly belong to different clusters, slowing
down the propagation of cluster-specific information through
the network. However, as consensus is reached within a group
of clients from a given cluster, the need for inter-cluster
learning diminishes. For these reasons, there is a need for an
intelligent mechanism that controls client-specific inter-cluster
learning parameters in real-time so that it is only used when it
improves performance [18]. To that end, this paper develops a
reinforcement learning-based mechanism that locally controls
client-specific inter-cluster learning parameters on-the-fly.

Personalized distributed learning algorithms use a fixed
inter-cluster learning parameter and suffer from the above-
mentioned limitations [16], [17]. In [18], an ad-hoc rule has
been proposed to disable inter-cluster learning if it becomes
detrimental rather than adapting its impact according to client
requirements. For this purpose, every model received from
neighbors belonging to a different cluster is tested against
the local training dataset. This process results in a substantial
computational cost that grows with the network density, thus
prohibitive for practical usage. Reinforcement learning has
been used in distributed single-task learning [19], [20] and
multi-task learning [21]–[23], but they have yet to focus on
inter-cluster learning. In the field of evolutionary computing,
reinforcement learning has been proven effective for parame-
ter control [24], suggesting its potential for real-time control
of inter-cluster learning parameters in personalized FL.

This paper proposes the NPFed-RL algorithm, where clients
use the alternating direction method of multipliers (ADMM)
and interact with neighbors to learn cluster-specific models.
Inter-cluster learning is used to improve those models further.



Each client uses reinforcement learning to adapt its inter-
cluster learning parameter on-the-fly so that task similarity
with neighboring clients is only leveraged when it is beneficial
for local learning. Two reinforcement learning policies are
developed and studied: a deterministic policy gradient and
a stochastic actor-critic policy based on an estimate of the
action-value function. The proposed policies are computa-
tionally inexpensive and improve the convergence properties
of networked personalized federated learning. The proposed
NPFed-RL will first be derived as a framework and then used
to solve the ridge regression problem as proof of concept. Fi-
nally, numerical simulations will be conducted to demonstrate
the performance of the proposed NPFed-RL and to observe
the evolution of the inter-cluster learning parameters in the
proposed method.

II. NETWORKED PERSONALIZED FEDERATED LEARNING

We consider a fully distributed network modeled as an
undirected graph G = (C, E), where C is the set of clients
and E is the set of edges such that E(k, l) = 1 if the clients
k and l are neighbors and 0 otherwise. A client can only
communicate with its neighbors, we denote Nk the set of
the neighbors of client k. Further, clients are grouped into Q
clusters, and the clients grouped in a cluster q, denoted by
Cq , for q ∈ {1, . . . , Q}, carry out the same task, i.e., they
aim to learn the same model. For r ̸= q, (r, q) ∈ {1, . . . , Q},
the tasks associated with cluster q and r are different, but
similar. To warrant the use of inter-cluster learning, we take
the following assumption on task similarity, where w∗

q denotes
the optimal model for cluster q.
Assumption 1.

∥∥w∗
q −w∗

r

∥∥2
2
⩽ η,∀q, r ∈ {1, . . . , Q}

Each client k ∈ C has access to a proprietary dataset
(Xk,yk) composed of a matrix Xk = [xk,1, . . . ,xk,Dk

]T and
a response vector yk = [yk,1, . . . , yk,Dk

]T, where Dk is the
number of data samples available to client k. The objective
is to estimate each cluster-specific model as accurately as
possible without leaking data. This leads to the following
optimization problem for a given cluster q:

min
wq

∑

k∈Cq

( 1

Dk

Dk∑

i=1

ℓk(xk,i, yk,i;wq)
)
+ λR(wq)

+
τ

Q− 1

∑

r∈{1,...,Q}\q

∥wr −wq∥2 , (1)

where ℓk denotes the loss function of the task performed by
client k, R denotes the regularizer function, and λ > 0 is
the regularization parameter. The term on the second line
corresponds to the enforcement of similarity between the
cluster-specific models, it is controlled by the global parameter
τ . A larger τ enforces more similarity, leading to more similar
cluster-specific models. This optimization problem uses a
global model wq for each cluster, this is not feasible in the
proposed setting.

To circumvent this difficulty, the learning process must rely
on the clients’ models and enforce consensus among these
models. To do so, the auxiliary variables zlk,∀(k, l) ∈ Cq :

E(k, l) = 1 are introduced. The optimization problem for a
given client k belonging to cluster q is then given by

min
wk,q

1

Dk

Dk∑

i=1

ℓk(xk,i, yk,i;wk,q) + λR(wk,q)

+
τk

Q− 1

∑

r∈{1,...,Q}\q

∥ŵk,r −wk,q∥2 ,

s.t. wk,q = zlk,wl,q = zlk;∀(k, l) ∈ Cq : E(k, l) = 1, (2)

where wk,q denotes the model of client k belonging to cluster
q, and the constraints enforce intra-cluster consensus. The
global parameter τ is replaced by client-specific parameters
τk that control inter-cluster learning locally. ŵk,r denotes the
best available estimate of the model for cluster r available at
client k. This corresponds to the average of the models of the
neighboring clients from the cluster in question, given by

ŵk,r =
1

|Nk

⋂ Cr|
∑

l∈Nk

⋂ Cr

wl,r. (3)

It is possible to derive the augmented Lagrangian for a
given cluster q with the set of primal variables Vq = {wk,q},
Lagrange multipliers M = ({µl

k}, {γl
k}), and auxiliary

variables Z = {zlk} as

Lρ,q(Vq,M,Z) =

∑

k∈Cq

(
1

Dk

Dk∑

i=1

ℓk(xk,i, yk,i;wk,q) +
λ

|Cq|
R(wk,q)

+
∥∥∥ τk
Q− 1

∑

r∈{1,...,Q}\q

(ŵk,r −wk,q)
∥∥∥
2
)

+
∑

k∈Cq

∑

l∈Nk

⋂ Cq

(
µlT

k (wk,q − zlk) + γ
lT
k (wl,q − zlk)

)

+
ρ

2

∑

k∈Cq

∑

l∈Nk

⋂ Cq

(
∥wk,q − zlk∥2 + ∥wl,q − zlk∥2

)
, (4)

where ρ is the penalty parameter. Given that the Lagrange
multipliers are initialized to zero, by using the Karush-
Kuhn-Tucker conditions of optimality and setting γk =
2
∑

l∈Nk

⋂ Cq
γl
k, it can be shown that the Lagrange multi-

pliers µl
k and the auxiliary variables Z are eliminated [25].

From the Lagrangian, the local update steps of the ADMM
for a given client k belonging to cluster q can be derived as:

• Primal update

w
(n)
k,q = argmin

w

1

Dk
ℓk(Xk,yk;w) +

λ

|Cq|
R(w)

+
∥∥∥ τk
Q− 1

∑

r∈{1,...,Q}\q

(ŵ
(n−1)
k,r −w)

∥∥∥
2

+wTγ
(n−1)
k,q

+ ρ
∑

l∈Nk

⋂ Cq

∥∥∥w −
w

(n−1)
k,q +w

(n−1)
l,q

2

∥∥∥
2

, (5)



• Dual update

γ
(n)
k,q = γ

(n−1)
k,q + ρ

∑

l∈Nk

⋂ Cq

(w
(n)
l,q −w

(n)
k,q ), (6)

where the superscript (n) denotes the iteration number.
The choice of the inter-cluster learning parameters τk will

greatly impact the performance of the proposed solution. A
common and fixed value would fail to accommodate the
heterogeneous data distribution and would not remain relevant
throughout the various learning stages of the clients. To
address this, we adopt in the next section the principles of
reinforcement learning to control time-varying and client-
specific inter-cluster learning parameters τ

(n)
k .

III. CONTROLLED INTER-CLUSTER LEARNING USING
REINFORCEMENT LEARNING

Obtaining the optimal values for all τ (n)k would require prior
knowledge of the network topology and data distribution as
well as extensive computational power. Instead, each client
k controls the real time evolution of the parameter τ

(n)
k

using local data and information received from neighbors.
Computationally inexpensive reinforcement learning is used
for this purpose.

At any given moment, the state of the reinforcement learn-
ing process, at a client k in cluster q, is given by the primal
variable, w(n)

k,q . The action a corresponds to the modification
of the local inter-cluster learning parameter τ

(n)
k . We denote

w
(n)
k,q (·) the function taking a value for the inter-cluster learn-

ing parameter and giving the corresponding alternative primal
variable. The original primal variable in (5) corresponds to
w

(n)
k,q = w

(n)
k,q (τ

(n)
k ). For an action a, the corresponding

alternative primal variable is given by w
(n)
k,q (a).

The state- and action-value functions correspond to the error
on the local test dataset of the initial and alternative primal
variables, respectively. For instance, the state-value function
is given by

Vt(w
(n)
k,q ) =

1

Dk
ℓk(Xk,t,yk,t;w

(n)
k,q ) +

λ

|Cq|
R(w

(n)
k,q ), (7)

where (Xk,t,yk,t) denotes the test dataset. To avoid over-
fitting, it is preferable not to use the test dataset in the
reinforcement learning process. Instead, estimates of the state-
and action-value functions are computed on a validation
dataset (Xk,v,yk,v). The estimate of the state-value function
is given by Vv(w

(n)
k,q ), and the estimate of the action-value

function by Vv(w
(n)
k,q (a)).

Policy gradient [26], [27] and deterministic policy gradient
[28] are among the most popular policies for continuous
action reinforcement learning. They propose a gradient ascent
alternative to the greedy maximization of the action-value
function given by

τ
(n+1)
k = argmax

a
Vv(w

(n)
k,q (a)). (8)

In its simplest form, deterministic policy gradient relies on
the gradient of the policy reward with respect to the policy

parameter at the current state. In the proposed setting, this
corresponds to the derivative of Vv(w

(n)
k,q (a)) with respect to

a taken at τ (n)k , where the sign of the gradient is inverted since
the reward corresponds to the error. The policy parameter
update is given by

τ
(n+1)
k − τ

(n)
k ∝

∂Vv(w
(n)
k,q (a))

∂a
, (9)

where ∝ denotes proportionality. Given the primal update (5),
the computation of this derivative is impossible in the general
case. However, it can be possible when the loss and regularizer
functions are known.

The second proposed policy is a stochastic actor-critic
mechanism that takes a random action and compares the
action-value function with the state-value function to decide
on the next value of the policy parameter. This policy offers
better policy parameter exploration than the deterministic
policy gradient [29]. First, the policy proposes a random
direction α ∼ U [−νSAC

2 , νSAC
2 ] for the policy parameter τ

(n)
k

so that a = τ
(n)
k + α. U(·) denotes the uniform distribution,

and νSAC is a hyper-parameter for the policy. The alternative
primal variable w

(n)
k,q (a) is computed so that the action-value

function can be compared with the state-value function. The
policy parameter update is given by

τ
(n+1)
k − τ

(n)
k ∝ −sign

(
Vv(w

(n)
k,q (a))− Vv(w

(n)
k,q )
)
α.

IV. NPFED-RL FOR RIDGE REGRESSION

As a proof of concept, we use the proposed framework to
solve the ridge regression problem. In ridge regression, the
loss and regularizer functions used in (2) are given by

ℓ(Xk,yk,w) = ∥yk −Xkw∥2 ,
R(w) = ∥w∥2 . (10)

The primal variable update for ridge regression is obtained
by substituting ℓ(Xk,yk,w) and R(w) with their above
values in equation (5). Doing so, it is possible to compute
the gradient of the term in the argmin with respect to the
primal variable w, and, setting it to zero, we obtain

w
(n)
k,q (τ

(n)
k ) =

(XT
kXk

Dk
+ (

λ

|Cq|
+ τ

(n)
k + ρ|Nk|)I

)−1

(XT
kyk

Dk

τ
(n)
k

(Q− 1)

∑

r∈{1,...,Q}\q

ŵ
(n−1)
k,r

+
ρ

2

∑

l∈Nk

⋂ Cq

(w
(n−1)
k,q +w

(n−1)
l,q )−

γ
(n−1)
k,q

2

)
.

(11)

The alternative primal variable w
(n)
k,q (a) for an action a can

be computed in the same manner, by replacing τ
(n)
k with a in

(11). Using this alternative primal variable and the values of



Algorithm 1 NPFed-RL for ridge regression

Initialization: w
(0)
k,q and γ(0)

k,q, k ∈ C are set to 0, the
parameters τ

(0)
k are set to a given value within (0, 1).

Procedure at client k:
For n = 1, 2, . . . , N

If n > 1

(DPG) τk is updated as in (13).
(SAC) τk is updated as in (14).

end If
Primal update: w(n)

k,q takes the value in (11).

Client k shares w
(n)
k,q with its neighbors in Nk.

Dual update:
γ
(n)
k,q = γ

(n−1)
k,q + ρ

∑
l∈Nk

⋂ Cq
(w

(n)
l,q −w

(n)
k,q ).

the loss and regularizer function for ridge regression in (10),
the action-value function can be expressed as

Vv(w
(n)
k,q (a)) =

1

Dk

∥∥∥yk,v −Xk,vw
(n)
k,q (a)

∥∥∥
2

+
λ

|Cq|
∥∥∥w(n)

k,q (a)
∥∥∥
2

. (12)

Using the expression for the primal variable (11) and the
action-value function specific to ridge regression in (12), it is
possible to compute the derivative of the policy reward with
respect to the policy parameter ∂Vv(w

(n)
k,q (τ

(n)
k ))/∂τ

(n)
k . The

explicit derivation is not included because of space constraints.
Given that the action-value function is to be minimized,
the policy parameter update step for the deterministic policy
gradient, which we refer to as (DPG), is given by:

τ
(n+1)
k = τ

(n)
k − δDPG

∂Vv(w
(n)
k,q (a))

∂a
, (13)

where δDPG is the learning rate.
For a random direction α and corresponding action a =

τ
(n)
k +α, using (12) for the action- and state-value functions,

the update step of the policy parameter for the stochastic
actor-critic policy, which we refer to as (SAC), is given by

τ
(n+1)
k = τ

(n)
k − δSACsign

(
Vv(w

(n)
k,q (a))− Vv(w

(n)
k,q )
)
α,

(14)

where the sign is negated to minimize the action-value func-
tion and δSAC is the learning rate.

The resulting algorithms, referred to as Networked Per-
sonalized Federated learning using Reinforcement Learning
(NPFed-RL) are summarized in Algorithm 1.

V. NUMERICAL SIMULATIONS

We considered a distributed network composed of |C| = 30
clients with an average of 6 neighbors per client. The clients
are randomly grouped into Q = 3 clusters. The goal is to
estimate cluster-specific tasks given by wq = w0+δqw0, with
δq ∼ U(−0.5, 0.5). U denotes the uniform distribution, and
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NPFed =0.4

Fig. 1: Learning curves of the NFed and NPFed algorithms
for various values of τ .

w0 is a randomly chosen base model. Each client k possesses
a training dataset (Xk,yk) where Xk ∈ RDk×60 and yk ∈
RDk×1 with Dk ∼ U(5, 35), as well as identically distributed
testing and validation datasets. The data is generated as yk =
Xkwq + nk, with nk ∼ N (0, ηk), where ηk is the client-
specific noise variance and wq is its cluster model. Finally, the
Lagrangian penalty parameter is set to ρ = 3. We considered
the mean squared error on the testing data set (Test MSE) as
the performance metric for comparison of the algorithms. It
is given by

Test MSE =
1

|C|

|C|∑

k=1

∥wk,q − w̄q∥22
∥w̄q∥

, (15)

where {wk,q, k ∈ Cq, q ∈ {1, . . . , Q}} are the models of the
considered method and w̄q is the optimal model for the cluster.
The simulation results presented in the following are obtained
by averaging the results of 10 independent experiments. To
ensure a fair comparison, the algorithms are tuned to have the
same initial convergence rate in Fig. (2).

The first experiment studied the impact of the inter-cluster
learning parameter τ on the learning behavior of conventional
networked FL algorithms. For this purpose, we simulated the
following algorithms:

• NFed: is the traditional networked FL that learns one
universal model for the whole network.

• NPFed: is conventional personalized networked FL that
learns cluster-specific models. The global parameter τ
is fixed throughout the learning process, so that ∀k ∈
C, n > 0; τk = τ . Inter-cluster learning is absent when
τ = 0.

The learning curves (i.e., Test MSE in dB vs. iteration index
n) of the above algorithms are presented in Fig. 1. The figure
shows that the NFed algorithm does not achieve satisfactory
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Fig. 2: Learning curves of the NPFed-RL and NPFed-BRL
with different policies. Also plotted is the learning curve of
NPFed for τ = 0.05.

accuracy since it tries to learn a single universal model that
cannot accommodate client-specific tasks. NPFed with τ = 0
implies that each cluster independently builds its own model
by relying solely on the cooperation among cluster members.
Its performance can, therefore, be regarded as a benchmark for
networked personalized federated learning. As the value of τ
increases (e.g., τ = 0.05), the NPFed performance improves,
as it enforces similarity between the cluster-specific models.
However, as more similarity is enforced between models for
non-identical tasks, the steady-state accuracy decreases, as can
be seen with NPFed τ = 0.1, τ = 0.2, and τ = 0.4. This
confirms that inter-cluster learning can be beneficial but leads
to performance degradation when over-used.

In the second experiment, we demonstrated the effective-
ness of the proposed NPFed-RL in the learning of person-
alized models. For this purpose, we simulated the following
algorithms:

• NPFed-RL (DPG): is the proposed NPFed-RL using the
deterministic policy gradient method. The policy hyper-
parameter was set to δDPG = 0.001, and its policy
parameter update step is given in (13).

• NPFed-BRL (DPG): is the NPFed-RL using the policy
gradient and batch reinforcement learning [30] with 3
epochs and δDPG = 0.003.

• NPFed-RL (SAC): is the proposed NPFed-RL using
the stochastic actor-critic policy. The policy hyper-
parameters were set to νSAC = 0.05 and δSAC = 0.1.
The policy parameter update step is given in (14).

• NPFed-BRL (SAC): is the NPFed-RL using the stochas-
tic actor-critic policy and batch reinforcement learning
[30] with 3 epochs, νSAC = 0.05 and δSAC = 0.04.

The learning curves of these algorithms are presented in
Fig. 2. For comparison purposes, the learning curve of NPFed
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Fig. 3: Evolution of τ (n)k for the 3rd, 22nd, and 30th clients.

with τ = 0.05 is also displayed. We see that all the versions
of NPFed-RL exhibit better performance in initial learning
speed and steady-state accuracy compared to NPFed operating
with a fixed τ value. Since the clients have device-specific
requirements, usage of a fixed universal τ is impractical.
Whereas the proposed NFed-RL controls the amount of inter-
cluster learning locally by learning the device-specific param-
eters τ

(n)
k in real time. Further, we also see that NPFed-RL

(SAC) exhibites enhanced accuracy over NPFed-RL (DPG).
The reason for this is that the stochastic nature of NPFed-RL
(SAC) ensures sufficient exploration of the policy parameters
τk, which is not the case for NPFed-RL (DPG). This stochastic
nature also leads to extensive randomness in the convergence
of NPFed-RL (SAC), batch reinforcement learning attenuates
this issue as can be seen with NPFed-BRL (SAC). In the case
of deterministic policy gradient, batch reinforcement learning
increases the learning accuracy. It is important to note that
batch reinforcement learning comes with a computational cost
proportional to the number of epochs performed.

Finally, we illustrate the evolution of the inter/cluster
learning parameters τ

(n)
k for NPFed-RL (SAC) and NPFed-

RL (DPG) in Fig. 3. We selected three clients 22, 3, 30,
having access to large, moderate, and small amounts of data,
respectively. Therefore, these clients have different local re-
quirements for inter-cluster learning. From Fig. 3, we observe
that the evolution of τ (n)k is very smooth when using NPFed-
RL (DPG) but fails to quickly adapt. On the other hand, the
NPFed-RL (SAC) algorithm provides sufficient exploration
of the policy parameter, ensuring that the τ

(n)
k parameters

evolve quickly at the cost of extensive randomness (BRL helps
to overcome this issue). Furthermore, we also see that τ

(n)
k

evolves according to the needs of clients. Since client 30 has
access to a small amount of data, τ (n)30 increases linearly at first
to enforce higher inter-cluster learning. After reaching near-
convergence, the τ

(n)
30 value decreases to reduce the amount of



inter-cluster learning to avoid its harmful effect. In contrast,
since client 22 has access to a large amount of data, the
τ
(n)
22 parameter decreases almost immediately and stabilizes

around 0 as inter-cluster learning is not valuable for this client.
Finally, client 3 has access to an average amount of data. τ (n)3

increases at first as similarity enforcement allows for faster
initial convergence, but decreases afterwards and stabilizes
around 0 to avoid performance degradation.

VI. CONCLUSIONS

Personalized federated learning suffers from data scarcity
within clusters, this is alleviated by leveraging the similarity
between the learning tasks. However, how much a specific
client needs to rely on inter-cluster learning depends on
its local data and the network topology. To accommodate
the varied needs of the clients, we propose a networked
personalized federated learning algorithm using reinforcement
learning to control evolving client-specific inter-cluster learn-
ing parameters. Each local parameter is updated on-the-fly
by the reinforcement learning process in a computationally
inexpensive manner so that model similarity is enforced only
as much as what is beneficial for local learning. Numerical
simulations show that the proposed method has better learning
performances than the state-of-the-art.
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