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Abstract—This work proposes a data fusion approach for
quickest fault detection and localization within industrial plants
via wireless sensor networks. Two approaches are proposed, each
exploiting different network architectures. In the first approach,
multiple sensors monitor a plant section and individually report
their local decisions to a fusion center. The fusion center provides
a global decision after spatial aggregation of the local decisions.
A post-processing center subsequently processes these global
decisions in time, which performs quick detection and localization.
Alternatively, the fusion center directly performs a spatio-temporal
aggregation directed at quickest detection, together with a possible
estimation of the faulty item. Both architectures are provided
with a feedback system where the network’s highest hierarchical
level transmits parameters to the lower levels. The two proposed
approaches model the faults according to a Bayesian criterion and
exploit the knowledge of the reliability model of the plant under
monitoring. Moreover, adaptations of the well-known Shewhart
and CUSUM charts are provided to fit the different architectures
and are used for comparison purposes. Finally, the algorithms are
tested via simulation on an active Oil and Gas subsea production
system, and performances are provided.

Index Terms—Data fusion, fault detection, Industry 4.0, local-
ization, monitoring, quickest detection, reliability, wireless sensor
network.

I. INTRODUCTION

OVER the last decades, Wireless Sensor Networks (WSNs)
have surged in growth, harnessing low-cost “green”

devices for monitoring applications [2]. Fueled by the advances
in sensor technology, wireless communication protocols, and
the popularization of the Internet of Things (IoT) [3], this
expansion has ushered in a new era of data acquisition and
situation awareness. WSNs, as the sensing arm of the IoT,
play a pivotal role in this paradigm, seamlessly merging the
physical and digital realms through real-time data for diverse
inference tasks [4].

Part of this work has been presented at the 2021 24th International
Conference on Information Fusion (FUSION) [1].
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Specifically, there has been a considerable focus on the
detection and localization of adverse events, with a particular
emphasis on their application in developing safeguards for
safety-critical systems. This situation holds considerable impor-
tance in sectors like the process industry, energy production, and
manufacturing, where the malfunction of a single component
(the event under scrutiny) could jeopardize the well-being of
both employees and the environment. Consequently, this could
lead to significant environmental and societal expenses, as
well as substantial financial losses resulting from unexpected
shutdowns [5]. For that reason, the global critical infrastructure
protection market currently commands a valuation of USD 132
billion, and forecasts indicate a steady 3.4% compound annual
growth rate through 2030. In this context, IoT technologies
will play a dominant role [6]. In light of those reasons, the
exploration of event detection using Wireless Sensor Networks
(WSNs) for industrial purposes has garnered significant atten-
tion. Various architectural designs have been scrutinized and
put forth, with a specific focus on underwater applications, as
referenced in previous literature [7], [8].

A pivotal concern in this context revolves around identifying
equipment malfunctions that could potentially result in loss
of containment. This concern is particularly pronounced in
settings where inspections come at a substantial cost, such as
subsea facilities, as indicated by prior research [9], [10].

On top of that, to lower communication and processing costs
(thus prolonging the WSN lifetime and reducing monitoring
costs), the sensors are typically engineered to communicate 1-
bit decisions to a Fusion Center (FC), which gathers such
decisions and formulates a global decision regarding the
presence of the event of interest (in our case a fault on the
monitored plant) [11], [12]. Upon detecting a hostile event, the
FC generates an alarm, enabling appropriate measures (e.g.,
emergency plant maintenance) to be implemented in order to
mitigate the event’s repercussions.

It is important to highlight that the efficacy of a system for
detecting and localizing faults also depends on how well it is
integrated into a risk management framework. This integration
allows full exploitation of the amount of information available
about the surveilled system during the design stage of the fault
detection and localization system. A suitable integration can be
achieved by using the Dynamic Risk Management Framework
(DRMF), which is designed to incorporate external experiences
and early warnings, thereby allowing the assimilation of un-
known variables [13]–[16]. Enhanced risk awareness associated
with unforeseen events enables learning and understanding,
which is based on the continuous monitoring and review of
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accumulated information. DRMF involves several steps, such as
(i) horizon screening, (ii) hazard identification, (iii) assessment,
and finally (iv) decision/action. These steps are necessary for
a comprehensive evaluation of the risks connected to known
potential accident scenarios. To make the DRMF an adaptive
process, iterative updates are essential. In this context, the
fault detection and localization system serves as a warning
subsystem within a decision-support system by playing a role
in actions like plant shutdown and maintenance.

In this context, peculiar characteristics and challenges
for the problem are: (i) the finite spatial extent of the event
being monitored (i.e., some sensors may be out-of-range for
detecting a certain fault), (ii) the fault location is unknown
(viz. it may have originated from different items of interest
within the plant), (iii) each fault may be more or less probable
depending on the reliability of the item responsible for it,
(iv) efficient detection algorithms should be conceived to
detect such events as quickly as possible (viz. minimize the
permanence in a risky condition) while keeping false-alarms
under control (viz. avoid unnecessary maintenance/shutdowns),
(v) detection approaches should be coupled with (or better,
include) localization procedures to identify the faulty item (viz.
minimize the plant maintenance time/costs).

In the context of challenges (i) and (ii), various algorithms
have been proposed in the literature for detecting spatially lo-
calized events at unknown locations (such as radiation releases,
anomalous parameter fields, or non-cooperative targets) via
distributed WSNs. Initial attempts involve the straightforward
application [17], [18] or adaptations/extensions [19] (e.g., by
using ordering schemes according to most informative sensors)
of the sub-optimal Counting Rule (CR). Notably, the plain CR
has recently found application in the specific domain of subsea
oil spill detection [20], [21]. An alternative approach is explored
in [10], [22], where a modified version of the Chair-Varshney
Rule is devised. This rule is designed to partially incorporate
critical items’ locations and failure rates. Additionally, it is
coupled with localization techniques to address challenge (v).
Regrettably, these rules do not take into account the limited
extent and unknown location of the detected phenomenon by
design. This results in diminished detection performance.

Conversely, recent years have witnessed the emergence of
a range of fusion rules designed for the explicit detection
of spatially localized events with unknown locations through
distributed WSNs [12], [23], [24]. To tackle this challenge,
these approaches have harnessed methodologies such as the
Generalized Likelihood Ratio Test (GLRT), Bayesian tech-
niques, generalized score tests, or hybrid variations. While
primarily focused on detecting non-cooperative targets, these
algorithms can be adapted to address challenges (i), (ii), and
(v). However, it is essential to note that the fusion methods
mentioned are fundamentally designed in a batch fashion
(or overlook temporal dependencies) and fail to target the
rapid onset of faults, thus not fully addressing challenge (iv).
Recent advancements in this domain have made strides in
mitigating the constraints associated with batch design [25],
[26]. Nevertheless, these proposals are not able to promptly
detect events as they occur, which is crucial in addressing the
quickest detection problem.

Furthermore, to the best of our understanding, no approach
has effectively integrated data regarding the dependability of
the system being monitored when developing the detection
algorithm, i.e., challenge (iii). Vital data, encompassing the
positions, failure rates, and failure models of critical items,
represent valuable a-priori information that may be seamlessly
substantiated within a Bayesian approach. Hence, the main
contributions of this work are the following:

• We present two spatio-temporal sensor fusion approaches
designed to carry out quickest detection and localization
of faults within a system. To elaborate, a WSN collectively
observes the status of various equipment components and
communicates their decisions to two different classes of
architectures.

• The first architecture (aligning to an edge-fog-cloud
paradigm [27]) is composed of a FC which performs
spatial aggregation and an optimal per-sample decision.
These decisions are subsequently processed over time by
a Post-Processing Center (PPC). The PPC is responsible
for swiftly identifying system faults based on a Bayesian
approach and takes advantage of time-varying statistical
distributions influenced by the reliability data of system
components. Differently, the second architecture (aligning
to an edge-cloud paradigm) is composed of a FC only,
which performs a joint spatio-temporal aggregation in a
Bayesian quickest detection fashion. These architectures
are compared with baselines represented by the Shewhart
and CUSUM charts, respectively, as well as in terms of
their computational complexity.

• The outcomes of the suggested methods are examined with
a specific focus on a practical Oil and Gas configuration,
specifically the subsea production system of the Goliat
FPSO [28]. The results, encompassing both (i) detection
and localization as well as (ii) metrics emphasizing
reliability, underscore the attractiveness of the proposed
methods and the added advantage of temporal aggregation
compared to relying solely on spatial aggregation.

This study delves deeper into the application of WSNs
for fault detection and localization, incorporating reliability-
related item data into the same detection algorithm(s) as
previously introduced in [1]. Indeed, this earlier conference
work: (i) analyzed a Three-Layer architecture; (ii) provided a
comparison with a Shewhart chart; (iii) reported a preliminary
numerical analysis using only one threshold value; (v) focused
on the detection task without providing a localization algorithm.
Conversely, this work investigates and compares two relevant
fusion architectures (i.e., two- vs. three-layer) to accommodate
a larger spectrum of designer requirements using a wide number
of detection thresholds. Secondly, additional baselines are
included in the comparison (i.e., the CUSUM chart). Thirdly,
the proposed design includes fault-localization capabilities.

The paper’s remaining sections are arranged as follows.
Sec. II provides a description of the system model considered
(including failure and corresponding sensing models), whereas
Sec. III presents the design of the local detectors that is common
to all the architectures discussed in this work. Then, Sec. IV
recalls the state-of-the-art in industrial fault identification,
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whereas Secs. V and VI are devoted to introducing the
considered Three-Layer and Two-Layer fusion approaches,
respectively. Sec. VIII analyzes the proposed approaches’ pros
and cons in relation to a relevant case study concerning oil
spills in a production platform and discusses the results. Finally,
Sec. IX ends the paper with concluding remarks and a brief
prospect of future avenues of research.

Notation – vectors are indicated with bold letters; the norm
and transpose operators are represented as ∥ · ∥ and [·]T;
probability mass functions (PMFs) and probability density
functions (PDFs) are denoted as P(·) and p(·), respectively;
conditional counterparts are represented by P(·|·) and p(·|·); a
Gaussian distribution with mean µ and variance σ2 is labeled as
N
(
µ, σ2

)
; the complementary cumulative distribution function

(CCDF) of the standard normal distribution is denoted by
Q(·); an exponential distribution with rate λ is expressed
as Exp(λ); a Bernoulli distribution with parameter p is
symbolized as B(p); a Gamma distribution with shape α and
rate β is indicated by Gamma(α, β); a Poisson distribution
with parameter p is represented as Poisson(p); Ga(z) expresses
the probability-generating function of the discrete random
variable a; a+ ≜ max{a, 0} defines the positive component of
the real number a; â, E(a), and E(a|b) stand for an estimate
of the random variable a, its expected value, and conditional
expectation given the random variable b, respectively; the big
O notation is denoted by O(·).

II. SYSTEM MODEL

This work has the objective of detecting and localizing faults
within a given set of critical items associated with an industrial
plant (e.g., the subsea production system of an offshore oil
platform). The failure model associated with each of these items
is described and motivated in Sec. II-A. Possible faults are
monitored by a group of inexpensive sensor nodes (arranged in
a WSN), whose measurement model is detailed in Sec. II-B. At
each instant, the sensor computes a one-bit compression based
on a local detection logic, which is then reported for (time
and spatial) aggregation according to the considered fusion
architectures, as described in Sec. II-C.

A. Failure Model

The monitored portion of the plant is conceptualized as a
system comprising M individual items. Each item’s state at
time t is represented by the following variable:

Hm(t) =

{
0 , mth item is operational
1 , mth item is faulty

, (1)

where operational indicates that the item is functioning as
intended with no immediate action required, while faulty
signifies that the item needs maintenance. Moreover, we define
the state variable at time t for the whole system as:

H(t) = 1−
M∏

m=1

(1−Hm(t)) =

{
0 , operational system
1 , faulty system

,

(2)

implying independent failures and that the system is regarded
as faulty when at least one of its items is in such state (i.e.,

.  .  .

.  .  .

.  .  .

Fig. 1: Failure model (excluding inspection and maintenance
durations).

series system). An item retains a faulty state until maintenance
is carried out. In the present work, we assume that, when
an item becomes faulty, the sensors employed to monitor the
system measure a signal with a different statistical distribution.
Upon identifying a shift in the signal distribution, an inspection
is carried out to evaluate the overall state of the system, and
maintenance is subsequently executed on all items that have
malfunctioned.

The occurrence of a failure in the mth item is represented
as a homogeneous Poisson process characterized by a failure
rate λm (refer to Fig. 1).

Let us define Tm,j as the amount of time the mth item spends
in an operational state between the (j−1)th and the jth failures
and Sm(t) as the number of transitions to a faulty state for
the mth item at time t. It follows that Tm,j ∼ Exp(λm) for
all j ∈ N. Furthermore, we introduce T ∗

m,j ≜ Tm,j + εm,j ,
where εm,j represents the time elapsed before the failure state
is detected. At time t, we define τt as the time elapsed since
the most recent inspection. Because Poisson processes are
memoryless, maintenance can be considered as either repair
or replacement. A consequence of the failure model is the
derivation of the failure function (or failure probability) for
the mth item, as expressed by Eq. (3):

Fm(t) ≜ P(Hm(t) = 1) = 1− e−λmτt . (3)

Subsequently, the failure function for the entire system at a
given time t is determined by Eq. (4):

F (t) ≜ P(H(t) = 1) = 1−
M∏

m=1

(1− Fm(t)) . (4)
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This expression of F (t) indicates independent failures. More-
over, for sufficiently small values of λmτt (i.e., λmτt ≪ 1),
we simplify the model as:

F (t) ≈
M∑

m=1

Fm(t) = M −
M∑

m=1

e−λmτt . (5)

Such approximation (henceforth called rare events approxima-
tion) is widely used when the items forming the monitored
system have sufficiently low values of Fm(t)’s resulting in
their products becoming negligible [29].

Furthermore, according to Eq. (5), it suggests the occurrence
of disjoint failures. This implies that at any given time t, at most
one item will be faulty, a characteristic that will be considered
in the detectors’ design. The rare event approximation allows
us to define a prior probability of item failure for the mth item
labeled as φm(t):

φm(t) ≜ P(Hm(t) = 1|H(t) = 1) ≈ P(Hm(t) = 1)

P(H(t) = 1)

=
Fm(t)

F (t)
=

1− e−λmτt

M −
M∑

m=1
e−λmτt

. (6)

Such a probability can also be expressed in a time-independent
fashion. In such case, we can define a stationary prior
probability of item failure for the mth φm:

φm ≜
λm

M∑
m=1

λm

. (7)

A detailed treatment of the mathematical modeling of the
failures as Poisson processes is given in Appendix A.

Throughout the paper, the system monitoring occurs at
regular time intervals of duration ∆t, with the exception of
inspection and maintenance periods. Therefore, in order to ease
the readability of this work, we consider the nth discrete time
instant, with n0 indicating the first discrete time instant that
follows the last inspection.

B. Signal Model

The expression for the received signal yk[n] at the kth sensor
during the nth discrete time point is as follows:

yk[n] =

M∑
m=1

sm,k[n] + wk[n] , (8)

where sm,k[n] and wk[n] ∼ N (0, σ2
w,k) represent the received

signal from the mth item and the Additive White Gaussian
Noise (AWGN), respectively, at the kth sensor. More specifi-
cally, sm,k[n] is assumed to have the following shape:

sm,k[n] ≜

{
0 , if Hm[n] = 0 (active item)

ξm,k[n] g(xk,hm) , if Hm[n] = 1 (faulty item)
,

(9)

where ξm,k[n] ∼ N (0, σ2
ξ,m) represents the fluctuations in the

received signal strength at the kth sensor. ξm,k[n] and wk[n]
are assumed statistically independent thanks to the spatial

separation of the sensors with known values of σ2
ξ,m and σ2

w,k,
for all k = 1, . . . ,K and m = 1, . . . ,M . Lastly, g(xk,θm)
denotes the attenuation function, which is a function of the
distance between the location of the kth sensor (xk) and the
position of the mth item (θm).

This model is suitable for several practical industrial settings
like the acoustic signal generated by an underwater leak sensed
by hydrophones [1], [10].

It is important to note that the rare event approximation
introduced in Eq. (5) hinders the possibility of modeling more
than one item being faulty at a given time. Thus, for any
given time instance denoted as n, we can express the statistical
characteristics of the measured signal as follows (see Eq. (10)):yk[n]|H[n] = 0 ∼ N

(
0, σ2

w,k

)
yk[n]|Hm[n] = 1 ∼ N

(
0, σ2

ξ,m g2(xk,θm) + σ2
w,k

) ,

(10)

where it is important to state that the failure of the generic
mth item caused the system to be faulty.

C. Wireless Sensor Network Models

In this work, we design two fusion architectures. The
first uses an edge-fog-cloud approach where the network
can be separated into three hierarchical layers with growing
computational power as we approach the cloud layer, as it can
be seen in Fig. 2a. In contrast, the second uses two hierarchical
layers, i.e., an edge-cloud approach, as shown in Fig. 2b. Both
architectures are proposed with an integrated feedback system
that transmits updated parameters from the cloud layer to the
lower layers.

The integration of an edge-fog-cloud architecture is par-
ticularly justified in scenarios where sensors are required
to operate with minimal energy consumption. This need is
exemplified in the context of underwater WSN, where the
replacement of sensors is impractical, underscoring the critical
importance of preserving their battery life (refer to the case
study in Sec. VIII). By incorporating an underwater fog layer
(FC), energy consumption during data transmission by sensors
can be significantly reduced. Subsequently, this fog layer can
transmit compressed information to a cloud layer (PPC) for
final processing.

The proposed WSN architectures comprise a set of K
sensors responsible for monitoring the area of interest at regular
intervals of time ∆t, aiming to identify if the system is in
an operational (H[n] = 0) or a faulty state (H[n] = 1).1

The generic kth sensor is tasked with capturing and assessing
the signal yk[n]. It does so by comparing a statistic derived
from the measured signal to a threshold value that varies with
time, denoted as γk[n]. Subsequently, the sensor reaches a
local decision dk[n] = i when it declares H[n] = i. Such
a decision is then reported for further analytics. The latter
choice not only offers spectral efficiency, requiring only 1-bit
communication on the reporting channel linking the sensors
to the fusion architecture, but it also exhibits high energy

1It is important to note that the present work does not delve into the analysis
of the sampling frequency.
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Fig. 2: Proposed Wireless Sensor Network architectures (the dotted arrow constitutes the feedback system).

efficiency, especially when On-Off Keying (OOK) is utilized
for transmitting the local decisions (see [10] for more details).

1) Three-Layer Fusion Architecture: The first WSN we
propose incorporates an architecture consisting of a fusion
center (FC) and a post-processing center (PPC), performing
spatial and temporal aggregation, respectively. In this setup,
the vector of local decisions d[n] =

[
d1[n] · · · dK [n]

]T
is

gathered and processed at the FC for a global decision D[n] = i
if H[n] = i is declared.

The FC performs a Maximum Likelihood (ML) detection
based on the binary hypothesis as defined in Eq. (10), without
assuming prior knowledge about the probabilities of events
H[n] = 0 and H[n] = 1. On the other hand, the PPC collects
D[n] =

[
D[n0] · · · D[n]

]T
and incorporates information

from the failure model as well as the signal model defined in
Eqs. (8) and (10). The PPC makes a final decision Ĥ[n] through
a Bayesian posterior detection, with Ĥ[n] = 1 triggering
inspection operations.

Moreover, in the case of Ĥ[n] = 1, the PPC computes the
estimated position of the faulty item θ̂[i] = θm̂[i], where i
indicates the number of times an alarm has been raised, up
to instant n. Additionally, the PPC is responsible for ongoing
communication with the sensors, providing them with updated
values for their individual time-dependent thresholds as well as
calculating and transmitting to the FC several time-dependent
parameters necessary to perform the global detection task.

This architecture is compared with an architecture lacking
the PPC and the feedback system where the FC is the highest
hierarchical layer. As the FC computes the final decision
without temporal aggregation of the local decisions, this
solution is here named Shewhart chart [30].

2) Two-Layer Fusion Architecture: In this second archi-
tecture, the FC collects d[n0], . . . ,d[n] and directly performs
a Bayesian posterior detection, therefore incorporating the
(temporal-aggregation) functions of the PPC within the FC
itself. As a consequence, it becomes the FC’s task to provide
the estimated position of the faulty item, as well as to transmit
updated local thresholds to the respective sensors.

This architecture is compared with an architecture without

feedback system performing an adaptation of the CUSUM
chart [30].

The architectures employed for executing the Shewhart and
CUSUM charts can both be depicted as modifications of the
architecture shown in Fig. 2b. In these variations, the feedback
channel is absent, and when executing the Shewhart chart, the
FC exclusively engages in spatial aggregation.

III. LOCAL DETECTION

This section provides the description of the local detector as it
presents the same design strategy among all the presented cases.
For the sake of notation, we outline the design for systems
with no feedback mechanism (as in the architecture using
the Shewhart and CUSUM charts). The changes of notation
necessary when using a feedback mechanism are provided at
the end of the section.

The edge layer of the proposed architectures consists of the
sensors individually taking local decisions. Based on the binary
hypothesis in Eq. (10), the optimal test is a Likelihood Ratio
Test (LRT) on yk[n], indicated as Λk(yk[n]). Here, the unknown
location of the faulty item is marginalized by employing
the stationary prior probability of item failure from Eq. (7).
Precisely, for the kth sensor at the nth instant, it holds:

Λk(yk[n]) ≜
p(yk[n]|H[n] = 1)

p(yk[n]|H[n] = 0)
(11)

=

M∑
m=1

φm p(yk[n]|Hm[n] = 1)

p(yk[n]|H[n] = 0)
.

Hence, by leveraging Eq. (10), we get the ML detector:

Λk(yk[n]) =

M∑
m=1

(
φm am,k e

bm,k y2
k[n]
) dk[n]=1

≷
dk[n]=0

1 , (12)

where

am,k ≜

√
σ2
w,k

σ2
ξ,m g2(xk,θm) + σ2

w,k

, (13)



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, MONTH 2024 6

bm,k ≜
1

2

(
1

σ2
w,k

− 1

σ2
ξ,m g2(xk,θm) + σ2

w,k

)
. (14)

Since Λk(yk[n]) in Eq. (12) is monotonically increasing with
y2k[n], there exists a unique value of γk such that Λk(

√
γk) = 1.

Consequently, by the Karlin-Rubin Theorem, the test in Eq. (12)
is replaced with the following equivalent energy test [31], which
reduces the computational complexity of the local test from
O(M) to O(1):

y2k[n]
dk[n]=1

≷
dk[n]=0

γk . (15)

This equals to the determination of the value of γk that solves
Λk(

√
γk) = 1:

M∑
m=1

(
φm am,k e

bm,k γk
)
= 1 . (16)

The left-hand side exhibits smoothness, convexity, and increases
with γk. Consequently, convergence is assured, starting from
any initial value γ

(0)
k when employing the Newton-Raphson

method (see [32]):

γ
(q+1)
k = γ

(q)
k −

M∑
m=1

(
φm am,k e

bm,k γ
(q)
k

)
− 1

M∑
m=1

(
φm am,k bm,k ebm,k γ

(q)
k

) , (17)

where q denotes the iteration index.
We express the theoretical performance of the energy test

in Eq. (15), necessary when designing the higher hierarchical
layer represented by the FC. Specifically, for the kth sensor,
the probability of detection (P (m)

D,k ) associated with the failure
of the mth item and probability of false alarm (PF,k) are found
from Eq. (10) as in [33]:

P
(m)
D,k ≜ P(dk[n] = 1|Hm[n] = 1)

= P
(
y2k[n] ≥ γk

∣∣Hm[n] = 1
)

= 2Q

(√
γk

σ2
ξ,m g2(xk,θm) + σ2

w,k

)
, (18)

PF,k ≜ P(dk[n] = 1|H[n] = 0) = P
(
y2k[n] ≥ γk

∣∣H[n] = 0
)

= 2Q

(√
γk
σ2
w,k

)
. (19)

In this section, we used the static prior probabilities of
item failure φm’s obtained using Eq. (7). This causes the
local thresholds γk’s to be time-independent as well. However,
our two proposed systems use a feedback system allowing
the sensors to be designed using the time-dependent prior
probabilities of item failure φm[n]’s calculated via Eq. (6).
Its use results in time-dependent values of γk[n]’s (as the
values of φm[n]’s are used for its calculation via Eq. (17)),
P

(m)
D,k [n]’s, and PF,k[n]’s. Thus, the iterative procedure shown

in Eq. (17) must be continuously carried out by either the PPC
(in the Three-Layer WSN) or the FC (in the Two-Layer WSN),
transmitting to the kth sensor the correct value of γk[n].

There are no energy consumption issues associated with this,
as these transmissions are sent by the highest hierarchical layer

to the sensors, which only require reception without significant
energy expenditure.

IV. STATE OF PRACTICE

This section presents two WSN architectures commonly used
for detection purposes and their related localization algorithms:
(i) the Shewhart chart where the FC takes per-sample decisions
based on the spatial aggregation of the local decisions in that
instant; (ii) the CUSUM chart where, instead, the FC aggregates
the sensors’ decisions in space and time.

Unlike the proposed methods, the baseline architectures
shown in this section are not equipped with a feedback
mechanism. Moreover, they treat the failure rates λm’s as
deterministic parameters that can be obtained via literature.

A. Shewhart Chart
In this architecture, the optimal test for the FC, at the nth

instant, is to perform a LRT on the collected vector d[n] to
take a global decision Ĥ[n] [24]:

ΛFC(d[n]) ≜
P(d[n]|H[n] = 1)

P(d[n]|H[n] = 0)

=

M∑
m=1

φmP(d[n]|Hm[n] = 1)

P(d[n]|H[n] = 0)

=

M∑
m=1

(
φm

K∏
k=1

ℓm,k(dk[n])

)
Ĥ[n]=1

≷
Ĥ[n]=0

γ∗ , (20)

with γ∗ being the decision threshold and ℓm,k(dk[n]) repre-
senting the likelihood ratio of a generic local decision dk[n]
with respect to the failure of the mth item:

ℓm,k(dk[n]) ≜
P(dk[n]|Hm[n] = 1)

P(dk[n]|H[n] = 0)

=

(
P

(m)
D,k

PF,k

)dk[n](
1− P

(m)
D,k

1− PF,k

)1−dk[n]

. (21)

Similarly, for the FC, it is feasible to calculate the (FC)
probability of detection (Q(m)

D ) associated with the failure of
the mth item and the probability of false alarm (QF ):2

Q
(m)
D ≜ P

(
Ĥ[n] = 1

∣∣∣Hm[n] = 1
)

(22)

=
∑

d :ΛFC(d)≥γ∗

K∏
k=1

[(
P

(m)
D,k

)dk
(
1− P

(m)
D,k

)1−dk
]
,

QF ≜ P
(
Ĥ[n] = 1

∣∣∣H[n] = 0
)

(23)

=
∑

d: ΛFC(d)≥γ∗

K∏
k=1

[
(PF,k)

dk(1− PF,k)
1−dk

]
.

The derivation of Q(m)
D and QF can be found in Appendix B.

We can also express the likelihood ratio at instant n of the
decision D[n] with respect to the mth item, which will be
useful in the next sections:

Lm(D[n]) ≜
P(D[n]|Hm[n] = 1)

P(D[n]|H[n] = 0)

2The following definitions imply that if ΛFC(d) = γ∗, then Ĥ[n] = 1.
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=

(
Q

(m)
D

QF

)D[n](
1−Q

(m)
D

1−QF

)1−D[n]

. (24)

It is important to observe that Eqs. (22) and (23) can be
precisely computed using a finite number of operations because
the number of potential outcomes of ΛFC(d) amounts to 2K .
If Ĥ[n] = 1, the FC runs a localization algorithm to identify
the faulty item. For this algorithm, it is possible to use the
following Maximum A-Posteriori (MAP) estimator:

m̂[i] = argmax
m=1,...,M

(
φm

K∏
k=1

ℓm,k(dk[n])

)
, θ̂[i] = θm̂[i] ,

(25)

with i indicating the number of times an alarm has been raised,
up to instant n.

B. CUSUM Chart

This section describes the CUSUM algorithm to be per-
formed by the FC upon collecting the sensors’ local decisions
in time.

The CUSUM procedure has the following form:

max
n0≤j≤n

ln
P(d[n], . . . ,d[j]|H[j] = 1)

P(d[n], . . . ,d[j]|H[j] = 0)

Ĥ[n]=1

≷
Ĥ[n]=0

γ∗ . (26)

Eq. (26) implicitly estimates the instant corresponding to the
system-state change via ML estimation, with the knowledge
that the system does not self-repair when in a faulty state.
However, Eq. (26) uses the system’s state variable H[n], posing
a problem as the only available likelihoods are with respect to
the failure of the individual items, and have been explicated
in Eq. (18). Due to the finite number of items M , we can use
the Generalized CUSUM (G-CUSUM) algorithm to address
this issue. The following is the G-CUSUM rule:

C[n] ≜ max
n0≤j≤n

ln
max
m

P(d[n], . . . ,d[j]|Hm[j] = 1)

P(d[n], . . . ,d[j]|H[j] = 0)

=max
m

max
n0≤j≤n

ln
P(d[n], . . . ,d[j]|Hm[j] = 1)

P(d[n], . . . ,d[j]|H[j] = 0)

=max
m

Cm[n]
Ĥ[n]=1

≷
Ĥ[n]=0

γ∗ , (27)

which is equivalent to a joint estimation (via ML) of the failure
instant and the faulty item. Cm[n] can be expressed with a
recursive form starting from its definition and exploiting the
independence of the sensor’s decision in time:

Cm[n] ≜ max
n0≤j≤n

ln
P(d[n], . . . ,d[j]|Hm[j] = 1)

P(d[n], . . . ,d[j]|H[j] = 0)

= max
n0≤j≤n

n∑
i=j

ln
P(d[i]|Hm[j] = 1)

P(d[i]|H[j] = 0)
. (28)

For n > n0, we can extract the following recursive form:

Cm[n] =max

0, max
n0≤j≤n−1

n−1∑
i=j

ln
P(d[i]|Hm[j] = 1)

P(d[i]|H[j] = 0)


+ ln

P(d[n]|Hm[n] = 1)

P(d[n]|H[n] = 0)

=max{0, Cm[n− 1]}+ ln

K∏
k=1

ℓm,k(dk[n])

=(Cm[n− 1])
+
+

K∑
k=1

ln ℓm,k(dk[n]) . (29)

On the other hand, when n = n0, by simple applica-
tion of the definition of Cm[n], we obtain that Cm[n0] =∑K

k=1 ln ℓm,k(dk[n0]). This results in the following rule:

Cm[n] =


K∑

k=1

ln(ℓm,k(dk[n0])), if n = n0

(Cm[n− 1])
+
+

K∑
k=1

ln(ℓm,k(dk[n])), if n > n0

.

(30)

Also for the case of the CUSUM, if Ĥ[n] = 1, a localization
procedure is readily available. Such a procedure is the following
ML estimator:

m̂[i] = argmax
m

Cm[n] , θ̂[i] = θm̂[i] , (31)

with i indicating the number of times an alarm has been raised,
up to instant n.

V. THREE-LAYER FUSION ARCHITECTURE

Here, we present the Three-Layer fusion architecture, which
consists of an evolution of the simpler Shewhart chart. In this
approach, we add the PPC layer, whose task is to filter the
FC’s decisions in time using a reliability-based strategy.

A. Fusion Center Detection

In our proposed Three-Layer architecture, the FC, at the nth
instant, performs a ML detection, whose task is to fuse the
components of d[n] into a single decision D[n]:

ΛFC

n (d[n])
D[n]=1

≷
D[n]=0

1 , (32)

where ΛFC
n (d[n]) differs from the statistic in Eq. (20) due to

the presence of the feedback system that allows the PPC to
transmit parameters to the FC. This feedback allows Eq. (32) to
exploit time-dependent parameters such as φm[n]’s, P (m)

D,k [n]’s,
PF,k[n]’s, and ℓnm,k(dk[n]). The values of these parameters are
sent to the FC by the PPC.

For this case, the (FC) time-dependent probability of de-
tection (Q(m)

D [n]) associated with the failure of the mth item
and the time-dependent probability of false alarm (QF [n]) at
the nth instant can be computed. These are calculated using
Eqs. (22) and (23) where the values of ΛFC(d), P (m)

D,k ’s, and
PF,k’s are substituted with those of ΛFC

n (d), P (m)
D,k [n]’s, and

PF,k[n]’s, respectively. Consequently, the decision likelihood
will also be time-dependent (indicated with Ln

m(D[n])).
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B. Post-Processing Center Detection

The primary responsibility of the PPC is to receive D[n] and
determine if an alarm should be triggered. In contrast to local
and FC detection, the PPC incorporates the understanding
of the failure model and utilizes all D[j] values, where j =
n0, . . . , n, to enact a robust quickest fault detection strategy.
For this task, the PPC acts as a Posterior Detector performing
a test on P(H[n] = 1|D[n]), exploiting Eq. (5) which leads to
the following test:

ΛPPC

n (D[n]) ≜
M∑

m=1

P(Hm[n] = 1|D[n])

=

M∑
m=1

RPPC

m [n]
Ĥ[n]=1

≷
Ĥ[n]=0

γ∗ , (33)

where it can be seen that our approach aligns with an optimal
Bayesian perspective (treating the change point as a random
variable whose pdf derives from the reliability model discussed
in Sec. II-A). This approach corresponds to the Shiryaev
decision rule [30].

The calculation of RPPC
m [n] can be expressed recursively via

Eq. (34) as shown at the bottom of the page, requiring the
storage of only the M values of RPPC

m [n−1]’s and the value of
D[n], instead of the (n−n0+1) values contained in D[n]. Its
derivation is given in Appendix C. Eq. (34) uses λ̂m[n] since
failure rates are considered random variables whose realization
must be estimated. The description of this task is given below.

C. Post-Processing Center Localization

When Ĥ[n] = 1, the PPC localizes the faulty item for the
generic ith time by selecting the index m that maximizes the
posterior probability of item failure RPPC

m [n] resulting in the
following MAP estimator:

m̂[i] = argmax
m

RPPC

m [n] , θ̂[i] = θm̂[i] , (35)

with i indicating the number of times an alarm has been raised,
up to instant n.

D. Post-Processing Center Failure Rate Estimation

The precise failure rate of the unspecified mth item often
remains unknown, although literature may frequently offer an
estimate (referred to here as λm,0) along with its associated
variance (referred to as νm). Nonetheless, literature data is
often derived from a limited number of experiments on items
that may not be identical to those within the system (or under
the same operating conditions). Consequently, the PPC treats
each λm as a random variable in this context. This differs from
the Shewhart and CUSUM charts that see the failure rates
as deterministic parameters and exploit the literature values
λm,0’s for their calculations.

In specific terms, when the PPC raises an alarm, the system
is halted, and an inspection is conducted to assess the system’s
status. If the mth item’s jth failure is confirmed, it becomes
feasible to update the estimate of λm using Tm,j . Since Tm,j

is not directly accessible, the working assumption here is that
Tm,j ≈ T ∗

m,j , a condition met when εm,j ≪ λ−1
m (i.e., when

the time delay incurred by the system in detecting the fault is
significantly shorter than the mean lifetime of the item).

Utilizing the vector Tm[j] ≜
[
Tm,1 · · · Tm,j

]T
, the

PPC calculates the subsequent Minimum Mean Square Error
(MMSE) Estimator for the mth item:

λ̂m,j = E(λm|Tm[j]) . (36)

To compute this expectation, the PPC is required to acquire
the (posterior) pdf of λm|Tm[j]. Given that Tm,j ∼ Exp(λm),
we incorporate previous knowledge about the lifetime of the
mth item by modeling λm ∼ Gamma(αm,0, βm,0). Here,
αm,0 ≜ (λ2

m,0/νm) and βm,0 ≜ (λm,0/νm) are computed
based on existing literature values. We opt for the Gamma
distribution because it is the conjugate prior of the Exponential
distribution (see [34]). Leveraging the use of a conjugate prior,
it becomes apparent that λm|Tm[j] ∼ Gamma(αm,j , βm,j),
with the Gamma parameters calculated recursively by the PPC
as αm,j = (αm,j−1 + 1) and βm,j = (βm,j−1 + Tm,j). Once
the parameters of the (Gamma) posterior pdf of λm|Tm[j]
are determined, the corresponding MMSE estimator following
the jth failure is computed using properties of the Gamma
distribution:

λ̂m,j =
αm,j

βm,j
. (37)

At any given time n, the most recent estimate of λm corre-
sponds to λ̂m,Sm[n−1], where Sm[n− 1] denotes the count of
failures for the mth item reported up to time (n − 1). For
brevity, we will refer to this estimate as λ̂m[n].

E. Post-Processing Center Parameters Calculation and Trans-
mission

The last step of the PPC at instant n, after updating (if
needed) the estimates of the failure rates of the respective
items, consists of obtaining the values of φm[n + 1]’s via
Eq. (6) exploiting λ̂m[n+ 1]. Next, via Eq. (17), it computes
and delivers the values of the local thresholds γk[n+ 1]’s to
the respective sensors to be used for the next local detection.

Once produced the thresholds, the PPC proceeds to cal-
culate the values of P

(m)
D,k [n + 1]’s and PF,k[n + 1]’s via

Eqs. (18) and (19) and sends them to the FC alongside
the values of φm[n + 1]’s. This allows the FC to evaluate
ΛFC
n+1(d[n+ 1]) via Eq. (20).
In the final step, the PPC computes the values of Q(m)

D [n+
1]’s and QF [n+1] using Eqs. (22) and (23) to be used by the

RPPC

m [n] ≜ P(Hm[n] = 1|D[n]) =


[
1 + 1

Ln0
m (D[n0])

(
1

1−e−λ̂m[n0]∆t
− 1
)]−1

, if n = n0[
1 + 1

Ln
m(D[n])

(
1

1−e−λ̂m[n]∆t(1−RPPC
m [n−1])

− 1
)]−1

, if n > n0

(34)
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PPC itself in the recursive computation of ΛPPC
n+1(D[n+1]) via

Eqs. (33) and (34).

VI. TWO-LAYER FUSION ARCHITECTURE

This section presents the Two-Layer fusion approach con-
sisting of an evolution of the Three-Layer approach. Here, the
FC handles both the spatial and temporal fusion using the
same reliability-based strategy as in the PPC. This method is
proposed as an improvement of the CUSUM chart introduced
in Sec. IV-B. In our proposed Two-Layer architecture, the FC
performs three stages of operations that are analogous to those
made by the PPC described in Sec. V.

A. Fusion Center Detection

The FC, upon receiving d[n], establishes whether an alarm
should be raised. As with the PPC, the FC now utilizes
all d[j] values, where j = n0, . . . , n, to perform a test on
P(H[n] = 1|d[n], . . . ,d[n0]):

ΛFC

n (d[n], . . . ,d[n0]) ≜
M∑

m=1

P(Hm[n] = 1|d[n], . . . ,d[n0])

=

M∑
m=1

RFC

m [n]
Ĥ[n]=1

≷
Ĥ[n]=0

γ∗ , (38)

where it is easy to see the similarity with Eq. (33). However,
in this case, the FC processes the unfused local decisions.

Also here, RFC
m [n] can be expressed recursively via Eq. (39)

as shown at the bottom of the page allowing the FC, at the nth
instant, to store only the M values of RFC

m [n − 1]’s and the
vector d[n]. The proof of Eq. (39) is analogous to that given
in Appendix C.

B. Fusion Center Localization

Analogously to the Three-Layer architecture, the FC can
provide an estimate of the faulty item by maximizing the
posterior probability of item failure to raise the ith alarm if
Ĥ[n] = 1, resulting in the following MAP estimator:

m̂[i] = argmax
m

RFC

m [n] , θ̂[i] = θm̂[i] , (40)

with i indicating the number of times an alarm has been raised,
up to instant n.

C. Fusion Center Failure Rate Estimation

As in the Three-Layer architecture, the FC provides an
updated estimate of the failure rates λm’s by treating them as
random variables. At each time n, λ̂m[n] indicates the most
recent estimate of λm obtained by time (n− 1).

TABLE I: Computational complexity of the architectures

Architecture Layer Task Complexity

Shewhart
chart FC Detection

(including localization) O(KM)

G-CUSUM
chart FC Detection

(including localization) O(KM)

Three-Layer
Fusion

Architecture

FC Detection O(KM)

PPC

Detection (incl. loc.) O(M)
Failure Rates Update O(1) per item

φm[n+ 1]’s Calculation O(M)
γk[n+ 1]’s Calculation O(KM) per iter.

PF,k[n+ 1]’s Calculation O(K)

P
(m)
D,k [n+ 1]’s Calculation O(KM)

QF [n+ 1] Calculation O(2K)

Q
(m)
D [n+ 1]’s Calculation O(2KM)

Two-Layer
Fusion

Architecture
FC

Detection (incl. loc.) O(KM)
Failure Rates Update O(1) per item

φm[n+ 1]’s Calculation O(M)
γk[n+ 1]’s Calculation O(KM) per iter.

PF,k[n+ 1]’s Calculation O(K)

P
(m)
D,k [n+ 1]’s Calculation O(KM)

D. Fusion Center Parameters Calculation and Transmission

In the final stage of the process, the FC proceeds to update
the estimates of the failure rates and subsequently computes the
values of φm[n+1]’s using Eq. (6). Following this, it calculates
and transmits the values of γk[n+1]’s to the respective sensors
for use in the forthcoming energy test, as per Eq. (17).

After obtaining the thresholds, the FC calculates the values
of P (m)

D,k [n+1]’s and PF,k[n+1]’s based on Eqs. (18) and (19).
These values play a key role in the (recursive) computation of
ΛFC
n+1(d[n+ 1], . . . ,d[n0]) using Eqs. (38) and (39).

VII. COMPUTATIONAL COMPLEXITY

This section is focused on the computational complexity of
the tasks performed in all the architectures previously outlined.

All the architectures share the same edge-layer design in
which each sensor performs an energy test at each discrete
instant. Specifically, we were able to lower the computational
complexity of the local tests from O(M) to O(1), as previously
discussed in Sec. III.

Tab. I shows the computational complexity of each architec-
ture with a subdivision by layer (excluding the edge layer) and
the task performed. We can notice that the detection techniques
relying on the Shewhart and CUSUM charts do not differ in
computational complexity thanks to the recursive form of the
CUSUM chart shown in Eq. (30). The detection rules used by
the FC in both proposed architectures hold the same complexity.

RFC

m [n] ≜ P(Hm[n] = 1|d[n], . . . ,d[n0]) =



[
1 +

(
K∏

k=1

ℓn0

m,k(dk[n0])

)−1(
1

1−e−λ̂m[n0]∆t
− 1
)]−1

, if n = n0[
1 +

(
K∏

k=1

ℓnm,k(dk[n])

)−1(
1

1−e−λ̂m[n]∆t(1−RFC
m [n−1])

− 1
)]−1

, if n > n0

(39)
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An essential difference between the proposed and the baseline
architectures is, however, the existence of the feedback system
present in the proposed algorithms.

In the Three-Layer architecture, the PPC has a low-
complexity detection rule, as this does not perform spatial
aggregation of the local decisions. However, the feedback
system requires the PPC to obtain the parameters to be
transmitted to the sensors and the FC. The calculation of
the thresholds γk[n + 1]’s is an iterative procedure with a
complexity of O(KM) per iteration. Other calculations such
as φm[n+ 1]’s, γk[n+ 1]’s, PF,k[n+ 1]’s, and P

(m)
D,k [n+ 1]’s

have an overall computational complexity of O(KM). The
highest complexity resides in the calculation of QF [n+ 1]’s
and Q

(m)
D [n+1]’s as this is O(2KM), making the Three-Layer

architecture unsuitable when a high number of sensors is used.
On the other hand, the Two-Layer architecture transfers the

spatial aggregation from the PPC to the FC, which now has
to perform a spatio-temporal aggregation as well as the task
of obtaining the parameters to be transmitted to the sensors.
This, although it increases the absolute number of operations,
keeps the computational complexity of the operations to be
performed by the FC constant at O(KM), resulting in an
overall reduction of complexity thanks to the removal of the
operations requiring exponential time.

It is worth noticing that the localization techniques in all four
architectures do not require any extra operation and, therefore,
do not contribute to an increase in computational complexity.
The reason is that such techniques are all based on function
maximization via grid search, which has a complexity of
O(KM) (or O(M) in the Three-Layer architecture). However,
such maximization has already been obtained during the
detection step. Therefore, in order to complete the localization
task, it is simply necessary to store the index generating
the highest among the function’s values obtained during the
detection stage.

VIII. CASE STUDY

A. Simulation Setup

The Goliat FPSO is an offshore oil platform situated in the
Norwegian Barents Sea. This platform uses a subsea production
system composed of various templates placed on the seabed
for its operations.3 The challenging aspect of this setup is
that oil leaks occur in deep waters, rendering their detection
even more complex. Additionally, due to the significant depths
involved, inspections necessitate the use of remotely operated
vehicles or autonomous underwater vehicle, incurring high
costs, thus emphasizing the need to minimize false alarms [9].
Simultaneously, offshore operations are subject to stringent
environmental regulations, which demand the rapid detection
of spills to minimize the dispersion of hydrocarbons [36].
Underwater oil leaks exhibit a distinctive feature in the form
of acoustic signals that can be detected using passive acoustic
sensors [37], [38]. In this specific setup, each template is
equipped with a manifold that is under the surveillance of three
passive acoustic sensors. These sensors measure sound pressure

3For further insights into subsea production systems, please refer to [35]

Fig. 3: Attenuation function vs. distance between sensor and
faulty item.

TABLE II: Simulation input parameters

Parameter Value Note / Reference

Ref. Frequency 2.5 kHz [43]
Temperature 3.8 °C [44]

Salinity 35 ‰ [44]
Depth 350 m [39]

pH 8 [45]
ksc 1.5 [46]
lref 1 m –

Simulated time 15 yr [47]
∆t 15 min –
σ2
w,k 1 ∀k

SNRm,k 0/5/10 dB ∀m, k

as an integral component of the leak detection system [28],
[39].

A reliability analysis recognized M = 20 items of interest
assumed to be positioned at the same height as the sensors, as
shown in Fig. 4. The algorithms described earlier are assumed
to have been integrated into the existing system to assess their
performance. The attenuation function used is as follows [10]:

g(xk,θm) =

√(
lref

∥xk − θm∥

)ksc

10(lref−∥xk−θm∥)α10−4 ,

(41)

where lref and ∥xk − θm∥ are expressed in meters, α is
the seawater absorption coefficient in dB/km, and ksc is
the dimensionless spreading coefficient. The value of α was
determined using the Francois & Garrison equation [40], [41].
At the same time, the underwater speed of sound was calculated
based on the Chen & Millero equation [42], utilizing the input
parameters listed in Tab. II. The coefficients of these models
are found in [10]. Fig. 3 shows the attenuation of the signal
emitted by a faulty item with respect to its distance to a generic
sensor using the parameters in Tab. II at varying values of ksc.
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1 2

3
5 m

Fig. 4: Goliat’s template: the structural components are repre-
sented in gray, the manifold in blue, the sensors in green, the
valves in red, and the connectors in orange.

TABLE III: Literature failure rates of components in subsea
manifolds

Item Category λm,0 (in yr−1) νm (in yr−2)

Valve, process isolation 7.3000× 10−3 7.0715× 10−5

Connector 9.5812× 10−4 2.4649× 10−6

The proposed Three-Layer architecture is compared with the
WSN presented in Sec. IV-A. This is because the Three-Layer
WSN is designed to be installed over an existing architecture
where the final decision is taken by a FC via Shewhart chart
by adding a PPC and a feedback system. The Two-Layer
architecture is instead compared with the WSN described in
Sec. IV-B performing detection via the CUSUM chart. As stated
previously, the architectures used for comparison reasons lack
a feedback system. The Shewhart and CUSUM charts use the
stationary prior probabilities of item failure seen in Eq. (7),
where the values of λm’s are substituted by λm,0’s as the
former are unknown.

The numerical results were derived via simulation consisting
of 200 Monte Carlo runs using Matlab.4 In these simulations,
each run emulated the operational lifespan of the platform,
neglecting inspection and maintenance times. The simulated
time, the value of ∆t, and the diverse SNRm,k ≜ σ2

ξ,m/σ2
w,k

values can be found in Tab. II. At each run, a new set of
realizations of the M Poisson processes and their corresponding
failure rates was generated, with λm values drawn from a
Gamma distribution using central moments obtained from
Tab. III, where literature values were sourced from the OREDA
Handbook [48].

In order to summarize the main detection results, it is
necessary to introduce the following metrics:

P10 ≜ P
(
Ĥ[n] = 1

∣∣∣H[n] = 0
)
, (42)

P1 ≜ P(H[n] = 1) , (43)

ADD ≜ E(εm,j)/∆t , (44)

4Each set of 200 runs was performed for various γ∗ values to generate the
performance curves.

where P10 is the Probability of False Alarm, P1 is the Proba-
bility of Faulty State, and ADD is the Average Detection Delay.
The localization performances are instead evaluated using
the Root Mean Square Error (RMSE) between the estimated
position of the leak and its actual location. Figs. 5, 6, and 7 show
the previously introduced metrics as P10 varies in [10−3, 1],
at different values of SNR (see Tab. II). Higher values (resp.
lower values) of P10 can be obtained by decreasing (resp.
increasing) the threshold γ∗ in the highest architectural layer.
The choice of having P10 to be on the abscissa in all plots is
aimed at improving the readability of the results.

B. Detection Results

By looking at the plots in Figs. 5a, 6a, and 7a, it is
immediately visible how ADD greatly decreases as the SNR
increases regardless of the employed architecture, once P10 is
fixed. In particular, the ADD shows a decreasing trend with
respect to P10 as a consequence of the lowering of threshold γ∗,
with ADD → 0 as P10 → 1, for all the methods. Specifically,
for low values of P10, the proposed Two-Layer architecture
shows the lowest values of ADD among the four outlined
in this work. It is worth noticing that the Shewhart chart is
unable to operate at P10 < 10−2 due to the lack of temporal
integration in the FC. Such a limitation is overcome by using
the PPC with our proposed Three-Layer architecture that shows
performances equivalent to the Shewhart chart with the further
benefit of being able to work at P10 < 10−2. Moreover, at low
SNR, the Three-Layer architecture tends to perform slightly
better than the CUSUM chart, highlighting the benefits of a
Bayesian approach, especially at low SNR.

These trends in the performances are also observed when
evaluating P1 representing the fraction of time that the system
spends in a faulty state. Figs. 5b, 6b, and 7b show a similarity
in behavior between the ADD and P1, as we vary P10. This
shows the trade-off between a low P10 and a low P1, which
must be addressed when choosing the proper threshold γ∗.
As it is desirable to work at low values of P10, it is vital
to select an architecture that can limit the effect of having
a higher threshold on P1. Because of the above-mentioned
similarities, it is easy to see that, also in this case, the Two-
Layer architecture provides the best performances by reaching
the lowest values of P1, given a fixed P10.

It must be mentioned that even in the hypothetical case
of P10 = 1, we will have that P1 > 0 as no architecture
can prevent a leak from happening but can only reduce the
detection delay with the effect of minimizing P1.

C. Localization Results

The localization results displayed in Figs. 5c, 6c, and 7c
show that, for the case of the Two-Layer proposed architecture
and the CUSUM chart, as we lower P10, we simultaneously
lower the localization RMSE causing a trade-off between
localization accuracy and a quick detection. The explanation
for this behavior is that raising the detection threshold has the
double effect of increasing the ADD, which simultaneously
means that the highest hierarchical layer has collected more
inputs, therefore improving the identification of the faulty
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(a) P10 vs. ADD (b) P10 vs. P1 (c) P10 vs. RMSE

Fig. 5: Performance curves at SNRm,k = 0 dB, ∀m, k.

(a) P10 vs. ADD (b) P10 vs. P1 (c) P10 vs. RMSE

Fig. 6: Performance curves at SNRm,k = 5 dB, ∀m, k.

(a) P10 vs. ADD (b) P10 vs. P1 (c) P10 vs. RMSE

Fig. 7: Performance curves at SNRm,k = 10 dB, ∀m, k.

item. This does not apply to the Shewhart chart and the
Three-Layer architecture: the RMSE observed when employing
the Shewhart chart does not have a monotonic behavior (as
well as not being able to operate at P10 < 10−2), while the
Three-Layer architecture, as we lower P10, has a virtually null
localization improvement.

The behavior associated with the Shewhart chart is given
by the nature of its localization algorithm, which produces
estimates using only the last vector of local decisions as an
input. Such a lack of time aggregation prevents the localization
algorithm from updating its estimate as new local decisions are
collected over time, which would cause the RMSE to decrease
together with P10, like in the case of the Two-Layer architecture
and the CUSUM chart. Interestingly, we observe that in the

Shewhart chart, as P10 decreases, the behavior of the RMSE is
hard to predict. Still, in general, it tends to reach its maximum
value when P10 reaches its minimum. In fact, for a system
performing detection and localization without time aggregation,
a trade-off exists between a low P10 and localization RMSE.
The reason for this is that a lower value of P10 means that the
threshold required to trigger an alarm must be increased with
a consequent effect of triggering alarms only when a higher
number of sensors sends a positive detection. However, a low
threshold can compromise the ability of the system to localize
the faulty item, as there is a loss of correlation between the
position of the faulty item and the location of the activated
sensors. This can be brought to its limit case of a system
detecting a leak via Shewhart chart only when ΛFC(d[n]) ≥
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γ∗, with γ∗ = ΛFC

([
d1[n] = 1 · · · dK [n] = 1

]T)
(i.e., a

system that triggers an alarm only when all the sensors send
an alarm to the FC). In such a scenario, every alarm would be
accompanied by the same localization result regardless of the
position of the faulty item.

The Three-Layer architecture, as in the case of the Shewhart
chart, does not provide effective results in terms of localization
RMSE, confirming its main purpose of being a way to lower
the probability of false alarm of the Shewhart chart. Unlike the
Shewhart chart, the Three-Layer architecture performs a time
aggregation in its highest hierarchical layer (the PPC), creating
more stability in the behavior of the localization RMSE, as
P10 changes. However, such time aggregation is performed on
the FC’s decisions over time that do not contain any spatial
information regarding the sensors that contributed to such
decisions. The consequence is an almost constant value of
localization RMSE since the system tends to identify as faulty
those items that at a generic moment show the highest value
of λ̂m[n], regardless of the spatial location of the activated
sensors since this information is unknown for the PPC.

This problem is addressed by the Two-Layer architecture
and the CUSUM chart, where the FC performs both time
and spatial aggregation of the sensors’ local decisions over
time. As in the discussion of the detection performances, we
notice how the Two-Layer approach outperforms the rest of
the architectures in terms of localization RMSE.

D. Final Remarks
In conclusion, the Two-Layer architecture provides the

lowest values of ADD, especially at low values of P10, where
it guarantees a low P1, which is a critical goal for Oil
and Gas applications. On the other hand, the Three-Layer
architecture has proven to be an adequate tool to upgrade an
existing network performing the Shewhart chart, especially
when low SNR are involved where its detection performances
are comparable to those of the CUSUM chart.

As far as the localization task is concerned, it has been
observed that the best-performing architectures are those
where the highest hierarchical layer performs a spatio-temporal
aggregation of the local decisions as in the Two-Layer archi-
tecture and the CUSUM chart. Of these two, the Two-Layer
architecture is the one able to achieve the lowest RMSE.

It is crucial to emphasize that, on the detection side, the
Two-Layer architecture achieves optimality in a Bayesian sense
by relying on a posterior detector for decision-making. While
the Three-Layer detector also attains Bayesian optimality, it is
worth noting that its detection optimality is restricted by the
binary nature of the input received by the PPC from the FC.
In the proposed methods, the localization procedure can be
deemed optimal from a Bayesian perspective, given its reliance
on MAP estimation. However, at the system level, localization
faces challenges due to detection errors. This is attributed to the
fact that the triggering of a localization procedure is conditional
to a positive decision, and this decision is based on a rule that
does not prioritize the minimization of localization errors, as
done in joint detection-localization procedures (see [49], [50]).

The choice of the appropriate detection threshold in the
proposed architecture should be obtained via simulation based

on a metric to satisfy. Possible strategies for threshold selection
include: (a) selecting the threshold corresponding to the
maximum value of P10 that is tolerated; (b) select a threshold
able to guarantee a maximum value of ADD; (c) minimization
of P1; (d) the threshold is chosen using a tailored indicator
that takes into consideration all the previous parameters as well
as operational factors.

IX. CONCLUSIONS AND FUTURE WORKS

We proposed two architectures addressing the detection and
localization task via WSN within industrial plants. Specifically,
we proposed a Three-Layer and a Two-Layer Bayesian fusion
strategy relying on reliability data for improved performances.
In the Three-Layer architecture, we implement a PPC whose
task is to perform quickest detection and localization via
temporal aggregation of the outputs of a FC that carries out a
Shewhart Chart detection rule. Such a temporal aggregation
takes advantage of reliability data regarding the monitored
system. On the other hand, the Two-Layer architecture directly
performs quickest detection and localization at the FC via a
spatio-temporal combination of the local decisions taken by the
sensors capitalizing on reliability data. Both architectures are
equipped with a feedback mechanism necessary for communi-
cating updated parameters from the highest hierarchical layer to
the lowest. Two baseline methods, the Shewhart and CUSUM
charts, have been introduced. The case study of underwater oil
spills in subsea production systems is used to test the proposed
architectures, showing the improvements in terms of detection
and localization accuracy when the proposed architectures are
used. Specifically, the Three-Layer architecture demonstrated
the advantages of being able to operate at a lower Probability
of False Alarm when compared to the Shewhart chart, which
was bound to be higher than 10−2. Meanwhile, the Two-Layer
architecture outperforms the CUSUM chart in terms of both
detection and localization performance, making it the best-
performing architecture among those introduced in the study. In
particular, when fixing P10 = 10−3, the Two-Layer architecture
was able to reduce the ADD from around 10% (SNR = 10
dB) up to around 30% (SNR = 0 dB).

Future works include: (a) considering more complex
failure models; (b) the reduction of complexity via more
efficient techniques for the computation of Q

(m)
D and QF ;

(c) modeling erroneous communication channels; (d) a more
accurate statistical representation of the signal measured by
the sensors, including possible correlations between measured
samples in space and time; (e) integration of machine learning
strategies for improved detection and localization performances;
(f ) a study on the distribution of the localization errors;
(g) modeling simultaneous faults; (h) development of joint
detection and localization techniques.

APPENDIX A
POISSON PROCESS FOR FAILURE MODELING

With the knowledge that Sm(t) ∼ Poisson(λmt), we can
obtain the failure probability for the mth item Fm(t):

Fm(t) = P(Hm(t) = 1) = P
(
Tm,Sm(t−τt)+1 ≤ τt

)
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= 1− e−λmτt .

We can now obtain F (t). With the knowledge that Hm(t) ∼
B(Fm(t)), we can use the probability-generating function
parameterized by z of the variable

∑M
m=1 Hm(t):

G M∑
m=1

Hm(t)
(z) =

M∏
m=1

GHm(t)(z) =

M∏
m=1

[1 + Fm(t)(z − 1)] .

Using the last result, we can obtain P
(∑M

m=1 Hm(t) = 1
)

:

P

(
M∑

m=1

Hm(t) = 0

)
= G M∑

m=1
Hm(t)

(0) =

M∏
m=1

(1− Fm(t)) .

Thus, we can finally obtain F (t):

F (t) = P(H(t) = 1) = 1− P

(
M∑

m=1

Hm(t) = 0

)

= 1−
M∏

m=1

(1− Fm(t)) = 1−
M∏

m=1

e−λmτt .

However, at low values of λmτt’s, low detection delay, and
small ∆t, failures behave as disjoint events (rare events
approximation), therefore:

F (t) = P(H(t) = 1) ≈
M∑

m=1

P(Hm(t) = 1) =

M∑
m=1

Fm(t) .

Thanks to the rare event approximation, we can also retrieve
the value of the prior probability of item failure φm(t):

φm(t) ≜ P(Hm(t) = 1|H(t) = 1)

≈ P(Hm(t) = 1)

P(H(t) = 1)
=

Fm(t)

F (t)
,

Moreover, we can obtain the stationary prior probability of
item failure by assuming the failure model as a perfect Poisson
process. This is done by calculating the probability that, at a
certain time t, the next fault belongs to the mth process:

φm ≜P(Hm(t) = 1|H(t) = 1)

=P
(
Tm,Sm(t)+1 < Tf ̸=m,Sf ̸=m(t)+1

)
=

λm

M∑
m=1

λm

.

This result is independent of t and Sm(t).

APPENDIX B
FUSION CENTER PERFORMANCE IN THREE-LAYER WSN

The following is the proof of the performances in
Eqs. (22) and (23) of the fusion rule performed by the FC.
Regarding the probability of detection associated with the
failure of the mth item, we obtain:

Q
(m)
D ≜ P

(
Ĥ[n] = 1

∣∣∣Hm[n] = 1
)

= P(ΛFC(d[n]) ≥ γ∗|Hm[n] = 1)

=
∑

d: ΛFC(d)≥γ∗

P(d|Hm[n] = 1)

=
∑

d: ΛFC(d)≥γ∗

K∏
k=1

P(dk|Hm[n] = 1)

=
∑

d :ΛFC(d)≥γ∗

K∏
k=1

[(
P

(m)
D,k

)dk
(
1− P

(m)
D,k

)1−dk
]
.

The proof exploited the independence of the local decisions.
The same steps can be used to prove QF .

Note that, in case the WSN is provided with a feedback
system (i.e., the time-dependent prior probability of item failure
is used), the calculation of the values of Q(m)

D [n]’s and QF [n]
are analogous.

APPENDIX C
RECURSIVE FORM OF PROPOSED DETECTOR

In this appendix, we detail how the expression of RPPC
m [n] ≜

P(Hm[n] = 1|D[n]) can be updated recursively as a function
of RPPC

m [n− 1], for each m = 1, . . . ,M and n > n0.
To begin, we leverage Bayes’ Theorem and the conditional in-

dependence (i.e., given Hm[n]) of FC decisions D[1], . . . ,D[n]
over time. By doing this, we get Eq. (45) at the bottom of
the next page, in which we further simplified the expression
exploiting the following property:

P(D[n]|Hm[n],D[n− 1]) = P(D[n]|Hm[n]) ,

which is a consequence of the uninformativeness of D[n− 1]
when inferring D[n], given that Hm[n] is known.

Applying the definition of Ln
m(D[n]), and via algebraic

manipulations, we can reformulate Eq. (45) in the following
compact form:

RPPC

m [n] =[
1 +

1

Ln
m(D[n])

(
1

P(Hm[n] = 1|D[n− 1])
− 1

)]−1

.

Next, we need to obtain P(Hm[n] = 1|D[n− 1]). The next
set of equations is defined to facilitate the derivation:

P(Hm[n]|Hm[n− 1],D[n− 1]) = P(Hm[n]|Hm[n− 1]),
(46)

P(Hm[n] = 1|Hm[n− 1] = 1) = 1 , (47)

where Eq. (46) is a consequence of the uninformativeness of
D[n−1] when inferring Hm[n] given that Hm[n−1] is known,
and Eq. (47) is the impossibility for an item to repair itself.

By applying the Law of Total Probability, we get Eq. (48)
at the bottom of next the page. Eq. (48) can be reduced
by applying Eq. (46) and (47). Furthermore, exploiting the
definition of RPPC

m [n− 1], Eq. (48) can be written as reported
in Eq. (49) at the bottom of the next page.

Moreover, via Eq. (3), it is possible to prove that
Hm[n]|Hm[n− 1] = 0 ∼ B

(
1− e−λm∆t

)
, leading to Eq. (50)

at the bottom of the next page.
Finally, aggregating the previously obtained results, we

obtain the recursive expression of RPPC
m [n], for n > n0:

RPPC

m [n] =[
1 +

1

Ln
m(D[n])

(
1

1− e−λm∆t(1−RPPC
m [n− 1])

− 1

)]−1

.
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When n = n0, the problem reduces to RPPC
m [n0] =

P(Hm[n0] = 1|D[n0]). By applying Bayes’ Theorem (as we
did for the case of n > n0 in Eq. (45)), and knowing that
Hm[n0] ∼ B

(
1− e−λm∆t

)
, it becomes easy to prove the

following expression:

RPPC

m [n0] =

[
1 +

1

Ln0
m (D[n0])

(
1

1− e−λm∆t
− 1

)]−1

.
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