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Abstract: In this paper we propose a new observer system for underwater vehicles.
The main design objective behind this strategy is to reduce the destabilizing effect
of the Coriolis and centripetal forces and moments in the observer. Especially for
low cost vehicles with limited measurement equipment, these forces and moments
represent a significant challenge for automatic control when the forward speed
is sufficiently high. However, by explicitly utilizing an estimation of the current
velocity in the observer, this paper shows that a high degree of robustness related
to environmental disturbance and measurement noise is achieved. This is related
to the estimation of the destabilizing Coriolis and centripetal forces and moments.
UGES is proven for the observer error dynamics. Furthermore, this observer
scheme has shown to be tolerant to large error in the position measurements,
which is a common occurrence in underwater navigation. Copyright c©2006 IFAC
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1. INTRODUCTION

For underwater vehicles moving with some for-
ward speed, the dynamics, which often are de-
scribed as Euler-Lagrange systems, are highly
nonlinear and coupled. This presents control chal-
lenges that have led to a considerable interest
on the tracking control performance of vehicles
such as AUVs and ROVs over the last decades.
Depending on the vehicle properties and control
objective, there have been proposed a large vari-
ety of nonlinear control schemes that are derived
using methods such as sliding mode, backstepping
or feedback linearization. A common obstacle in
many controller/observer designs has been how to
dominate the destabilizing effects of the Coriolis
forces and moments. Naturally, this problem al-
leviates as the number of sensors on board the
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vehicle and therefore feedback options in the con-
trol design increases. However, enhancing the sen-
sor equipment causes increased costs and design
complexity. Moreover, the capability of satisfac-
tory performance despite sensor malfunctions is
an attractive property in terms of reliability and
in a fault-tolerant perspective.

The problem addressed in this paper is moti-
vated by the Minesniper developed by Kongsberg
ASA. The AUV/ROV, presented in Refsnes et al.
(2005), is a low cost, torpedo shaped underwater
vehicle. The low weight compared to the relatively
high nominal speed implies that the dynamics are
speed dominant and that the nonlinear charac-
teristics of the hydrodynamics become decisive.
Moreover, since it is designed with focus on low
cost, it does not carry velocity sensors of any kind.
Hence, an observer is needed to provide velocity
estimates.



Over the last decade, observers and output feed-
back control of underwater vehicles have been
studied by numerous authors. A common method
in observer design is to simplify the system model
to some extent using valid assumptions that are
made based on the vehicle properties and the mis-
sion task. In Aguiar and Pascoal (2002), a three
DOF output feedback control system has been
designed for the Sirene AUV using a kinematic
observer for the current velocity. A three DOF
observer of the vehicle dynamics is designed in Do
et al. (2002), for the underwater vehicle ODIN,
in which environmental disturbance is not consid-
ered. With focus on robustness to measurement
noise, a six DOF global asymptotically stable
observer is designed for underwater vehicles in
Fossen and Fjellstad (1995). Inspired by this work,
we have in this paper focused on developing a
control plant model (CPM) with a corresponding
observer based on hydrodynamic properties and
robustness issues related to environmental distur-
bance, model uncertainty and measurement noise.

The main contribution of this paper is a pair of
co-working nonlinear Luenberger observers. The
observers provide global exponential stability of
the error dynamics. Furthermore, this paper elab-
orates on the modelling of the destabilizing Cori-
olis and centripetal forces and moments. Simu-
lations show that including the current velocity
in the control plant model can lead to improved
performance of the observer.

2. THE 6 DOF UNDERWATER VEHICLE
PROCESS PLANT MODEL

The process plant model of an underwater vehicle
can be described by the nonlinear model (Fossen,
2002)

η̇ = J(Θ)ν (1a)
Mν̇ + CRB(ν)ν + CA(νr)νr+

D(νr)νr + g(Θ) = τ (1b)

where η = [x, y, z, φ, θ, ψ]T denotes the Earth-
frame position and orientation described by Eu-
ler angles. M,CRB , CA,D ∈ R

6×6 represent the
mass (included added mass), rigid-body Coriolis,
added mass Coriolis and the damping matrix,
respectively. The transformation matrix J(Θ) and
the gravity vector g(Θ) are functions of the Eu-
ler angles Θ = [φ, θ, ψ]T . The velocity vector
is given by ν = [u, v, w, p, q, r]T , which is de-
fined in the body-frame. Assuming the current
to be irrotational, it can be described by the
vector νe

c = [νx, νy, νz, 01×3]T where νx, νy and
νz denote the current components in North, East
and down direction, respectively. The Earth-frame
current vector is rotated into body-frame by νc =
J−1(Θ)νe

c where νc = [uc, vc, wc, 01×3]T . Here, uc,
vc and wc represent the current velocity in surge,
sway and heave respectively. The relative velocity
vector is then given by νr = ν − νc in the body-
frame.

2.1 Modelling of the Destabilizing Munk Moment

The Munk moment: ”Any shape other than
a sphere generates a moment when inclined in an
inviscid flow. The Munk moment arises because of
the asymmetric location of the stagnation points,
where the pressure is highest on the front of the
body (decelerating flow) and lowest on the back
(accelerating flow). Due to this fact, the Munk
moment is always destabilizing in the sense that
it acts to turn the vehicle perpendicular to the
flow.” (Traiantafyllou and Hover, 2002)

A critical difference - CA(ν)ν vs. CA(νr)νr:
The effect of using the relative versus the vessel ve-
locity in the added mass Coriolis matrix can most
easily be seen by studying the Munk moment.
Excluding the relative velocity in the model gives
the following expression of the Munk moment in
yaw

NMunk(ν) = (Yv̇ −Xu̇)uv (2)
whereas

NMunk(νr) = (Yv̇ −Xu̇)urvr (3)

for models including the relative velocity. When
there are ocean currents present, the vehicle will
presumably drift with some speed in the same
direction as the current unless this is compensated
for by the controls. This applies to a large group of
underwater vehicles with no controls in sway and
heave. To underline this we use Fig. 1 where the
sway velocity v and the relative sway velocity vr,
are depicted in a simulation with the Minesniper
MkII. In this run, the vehicle moves along sev-
eral straight paths with different orientation. The
current is set to 0.5 m/s, and the forward speed
u = 2m/s. Calculating the Munk moment using
the velocities shown in the figure and given in
the properties of Minesniper where Xu̇ = −1.42,
Yv̇ = −38.4, reveals a critical difference between
(2) and (3). For the first 20 seconds of the run
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Fig. 1. Sway velocity v (dotted black) and relative sway

velocity vr (solid blue) versus time.

presented in Fig. 1, the sway velocity is approxi-
mately 0.25 m/s. Hence, the Munk moment gen-
erated by (2) is NMunk(ν) � 18.5 Nm, whereas
for (3) results in NMunk(νr) � 0 Nm. Clearly, the
Munk moment is overdimensioned when using (2).
This error may increase the risk of poor tracking
performance for tracking control schemes based on
this model. Note that there are Munk moments in
all the angular directions. We have in this section
used yaw as an illustrative example.



3. TWO SEPARATE CONTROL PLANT
MODELS

Based on the observations made in the prior
section, we propose the following observer scheme.
We divide the CPM into two separate models.

CPM 1: This is an exact copy of the process plant
model (1) except that a bias b is included.

η̇ = J(Θ)ν (4a)
Mν̇ + CRB(ν)ν + CA(νr)νr+
D(νr)νr + g(Θ) = τ + J−1(Θ)b (4b)

ḃ = −T−1b+Bbn (4c)

The bias b is modelled as a Markov process where
T is a diagonal matrix of positive time-constants.
The bias model is driven by some bounded noise n
with a scaling matrix Bb. It is included to compen-
sate for unmodelled dynamics and environmental
disturbances. The current velocity vector νc is
generated by CPM 2.

CPM 2: This is a vessel model that accounts for
the main effects of the current loads. The key task
of this model is to generate the current velocity
vector νc, which is used in CPM 1.

η̇2 = J1(Θ)ν2 (5a)

M2ν̇2 +D2(ν2)ν2 = τ2 + JT
1 (Θ)b2 (5b)

ḃ2 =−T−1
2 b2 +B2n (5c)

where ν2 = [u2, v2, w2]T represent the veloci-
ties in surge, sway and heave respectively and
η2 = [x2, y2, z2]T denotes the position in the
NED-frame. M2,D2, T2 ∈ R

3×3 are the top left
matrices of M,D and T in (1b). In this CPM, the
angular velocities are disregarded. This is clearly
a simplification of the complete model described
in (1). However, it means that we assume that
the current forces that are due to the orientation
of the vehicle are dominant to the current forces
that originate from the vehicle’s angular velocity.
Thus, this model captures the main influence of
the current. The bias b2 denotes the slowly varying
environmental disturbance. Furthermore, the rela-
tion between the current velocity and the velocity
vector ν2 is given by

uc = u2 − ud, vc = v2, wc = w2 (6)

where ud denotes the desired forward speed. The
equations for sway and heave in (6) are valid for
fully actuated and underactuated vehicles because
of thrust loss effects in sway and heave in transit
(Faltinsen, 1990).

We have thus a pair of CPMs that functions as
a basis for observer design. Some important ad-
vantages follow by this separation of the complete
model and by explicitly utilizing the current ve-
locity in the CPMs:

The hydrodynamic properties of the vehicle are
taken into account when modelling the effects of
the slowly varying environmental disturbance. In
particular, the current velocity is included when

deriving the damping and Coriolis forces and
moments.

Position measurements can be contaminated by
severe noise in underwater navigation. This may
lead to large deviations in the velocity estimates
due to large amplitudes in the output injection
terms in the observer. When utilizing an estimator
that does not include the current velocity, we
see from (2) that the surge and sway velocities
have direct influence on the calculation of the
destabilizing Munk moment NMunk(ν). Hence,
large errors in sway direction may lead to large
estimation errors in yaw velocity due to the strong
coupling generated by the Munk moment. With
the observer presented in Section 4, which is
based on the pair of CPMs (4) and (5) using
NMunk(νr), the consequences of poor position
measurements alleviates. This is because poor
position measurements mainly lead to variations
in the estimated body-fixed velocity ν̂ whereas
the estimated relative velocity ν̂r will remain
relatively unaffected and small. Hence, with this
method, the calculation of the destabilizing Munk
moment (3) is less dependent on the quality of the
position measurements. This is an advantage in
underwater vehicle applications.

4. OBSERVER DESIGN

In the following section we design a nonlinear Lu-
enberger observer to each of the CPMs presented
in the previous section. The observer design is
based on the following assumptions:

A. 1. The position and angle vector η is mea-
sured.

A. 2. The velocity vector ν is bounded by V , i.e.

V = sup
t

‖ν(t)‖ , |νi(t)| ≤ Vi ∀ i ∈ {1, .., 6}

This is a common assumption in observer design,
see e.g. Pettersen and Nijmeijer (1999).

We use the following notation in this paper. For
any matrix A(x) = AT (x) > 0 for all x, Am and
AM denote the minimum and maximum eigen-
value of A(x), respectively. Furthermore, the Eu-
ler angle symbol Θ is omitted in the following for
notational simplicity.

Defining the following function d(a) � D(a)a, we
have by using the mean value theorem D(b)b −
D(a)a = ∂

∂ed(e)
∣∣
e=e0

(b − a) where e0 is on the
line segment joining b and a. Moreover, we apply
the following assumption:

A. 3. There exists a constant δm ∈ R+ such that

‖δ(e)‖ �
∥∥∥∥∥ ∂

∂z
d(e)

∣∣∣∣
e=e0

∥∥∥∥∥ > δm > 0



This implies that the hydrodynamic damping in-
cludes a linear term, e.g. D(ν)ν = Dlν +Dnl(ν)ν
where Dl > 0 is the linear damping matrix.
The following property yields:

P. 1. The transformation matrix can be ex-
pressed as J = diag{J1, J2}, where ‖J1‖ = 1, and
JM �

∥∥J−1
2

∥∥ = 2.173.

To CPM 2, we define the following observer
˙̂η2 = J1ν̂2 + L2η̃2 (7a)

M2
˙̂ν2 +D2(ν̂2)ν̂2 = τ2 + JT

1 (b̂2 +K2η̃2) (7b)
˙̂
b2 = −T−1

2 b̂2 +Kb2η̃2 (7c)

where L2,K2,Kb2 ∈ R
3×3 are positive definite

and diagonal matrices. The estimated current
velocity vector is obtained according to (6), i.e.

ûc = û2 − ud, v̂c = v̂2, ŵc = ŵ2

Let the error vectors be defined as η̃2 � η2 −
η̂2, ν̃2 � ν2 − ν̂2 and b̃2 � b2 − b̂2. Subtracting
(7) from (5) gives the following error dynamics

˙̃η2 = J1ν̃2 − L2η̃2 (8a)

M2
˙̃ν2 = −δ2(e2)ν̃2 + JT

1 (b̃2 −K2η̃2) (8b)
˙̃
b2 = −T−1

2 b̃2 −Kb2η̃2 (8c)

where we have assumed that the noise n is zero
since the bias estimator is driven by estimation er-
rors (Pettersen and Nijmeijer, 1999). The constant
δ2 refers to δ described in A.3. Following the same
lines as for the analysis of the passive observer for
dynamic positioning of ships presented in Fossen
and Strand (1999), the origin x2 � [ηT

2 , ν
T
2 , b

T
2 ]T =

0 of the error dynamics (8), is proven UGES by
Lyapunov theory.

4.1 Vehicle Observer

In this section we derive a six-DOF nonlinear
Luenberger observer for the vehicle dynamics. The
CPM (4) is rewritten in Earth-frame coordinates
as follows

η̇ = νe = Jν (9a)
M∗ν̇e + C∗

RB(ν)νe + C∗
A(νr)νe

r+

D∗(νr)νe
r + g∗ = J−T τ + b (9b)

ḃ = −T−1b+Bbn (9c)

where νe = [ẋ, ẏ, ż, φ̇, θ̇, ψ̇]T . For more details on
the coordinate transformation, see Fossen (2002,
Ch. 3.3).

Remark 1. When expressing the dynamics in
the inertial frame (9), the matrices M∗, C∗

RB , C
∗
A

and D∗, and the vector g∗ become functions of the
transformation matrices J−1, J−T and d

dt (J
−1),

which are all well defined for Θ ∈ R
3. That is,

the use of J , which is undefined for |θ| = π
2

is omitted from the system model. Hence, when

implementing the observer using inertial coordi-
nates, global stability results in SO(3) are obtain-
able. Note that ν̂ can be obtained by ν̂ = J−1 ˙̂η.
However, when deriving a model based controller,
body-fixed coordinates are needed which implies
singularity for |θ| = π

2 when using Euler angles.

P. 2. The mass matrix M∗ is positive definite.

P. 3. The linear dependence on ν in C(ν) =
CRB(ν)+CA(ν) gives that ∀x, y ∈ R

6 and ∀α ∈ R,
we have that

C(x+ αy)z = C(x)z + αC(y)z

Furthermore, there exists a constant C∗
M > 0 such

that
‖C∗(x)‖ ≤ C∗

M ‖x‖

Inspired by Celani (2005) we propose the following
observer

˙̂η = ν̂e + λLη̃ (10a)

M∗ ˙̂νe + E∗(σV (ν̂))σV (ν̂e) + g∗ = J−T τ

+b̂+ λ2M∗Kη̃ +A∗(ν̂c)ν̂e
r +A∗(ν̂)ν̂e

c (10b)
˙̂
b = −T−1b̂+ κλ2Kbη̃ (10c)

where λ, κ > 0 are constant scalars and L,K,Kb ∈
R

6×6 are positive definite and diagonal matrices.
The error vectors yield η̃ � η − η̂, ν̃e � νe − ν̂e

and b̃ � b− b̂. Moreover, to simplify the notation,
we have defined the following matrix ∀m,n ∈ R

6

E∗(m)n � C∗(m)n+D∗(m)n

A∗(m)n � C∗
A(m)n+D∗(m)n

The function σV (·) is a component-wise saturation
function with vector saturation level V ; specifi-
cally, given Y ∈ R

6 such that Yi ≥ 0 i = 1, .., 6,
σ : R

n → R
n is defined as follows

σY (xi) =

{
xi if |xi| ≤ Yi

Yi if xi > Yi

−Yi if xi < −Yi

(11)

Subtracting (10) from (9) gives the following error
dynamics

˙̃η = ν̃e − λLη̃ (12a)

M∗ ˙̃νe + E∗(σV (ν))νe − E∗(σV (ν̂))ν̂e =

b̃− λ2M∗Kη̃ − (A∗(νc) + Ā∗(νc))ν̃e +G∗
pν̃

e
c

(12b)
˙̃
b = −T−1b̃− κλ2Kbη̃ (12c)

where we have defined the matrix Ā∗(n)m =
A∗(m)n. Moreover, the perturbation matrix G∗

p
yields

G∗
p = −A∗(ν) − Ā∗(ν) +A∗(ν̃) + Ā∗(ν̃)

+A∗(νc) + Ā∗(νc) −A∗(ν̃c) (13)

Similarly to Celani (2005), we define the follow-
ing error vectors ε1(t) � 1

λ η̃, ε2(t) � 1
λ2 ν̃

e,

ε3(t) � 1
κλ2 b̃. The nominal error dynamics, which

is the complete error dynamics (12) excluding the
perturbation term G∗

pν̃
e
c , can then be written in



the following compact form

ẋ1 = λGx1 +
[
0T
6×1 f

T (·) 0T
6×1

]T
(14)

where

G =

⎡
⎣ −L I6×6 06×6

−K 06×6 06×6

−Kb/κ 06×6 −T−1/λ

⎤
⎦ , x1 �

[
ε1
ε2
ε3

]

and

f(·) =
M∗−1

λ2
[E∗(σV (ν))νe − E∗(σV (ν̂))ν̂e

− (A∗(νc) + Ā∗(νc))ν̃e + b̃]

Since G is Hurwitz regardless of λ and κ we let S
be the solution of the Lyapunov equation GTS +
SG = −Q and propose the following Lyapunov
function candidate V1 = xT

1 Sx1. Differentiating
V1 along the state solutions yields

V̇1 = −λxT
1 Qx1 +2xT

1 S[ 0T
6×1 f

T (·) 0T
6×1]

T (15)

Then, by Shim et al. (2001, Lemma 2) and P.3 we
have that∥∥E∗(σV (ν))νe − E∗(σV (νe + λ2ε2))

∥∥ ≤ λ2B ‖ε2‖
where B > 0 under A.2. Hence, we get that

‖f(·)‖ ≤ 1
M∗

m

{(Ã∗
Vc

+B) ‖ε2‖+κ ‖ε3‖} ≤W ‖x1‖
(16)

where Ã∗
Vc

� (A∗
M+Ā∗

M )Vc,W � 1
M∗

m
(Ã∗

Vc
+B+κ)

and Vc = supt ‖νc(t)‖. Consequently, we arrive at
the following upper bound

V̇1 ≤ −‖x1‖2 (λQm − 2SMW ) (17)

By Lyapunov theory it follows that if

λ > 2SMW/Qm (18)

the origin of the nominal observer error dynamics
(14) is globally exponentially stable (GES).

We now proceed by showing stability of the overall
system, which can be written in the following
compact form

ẋ1 = f1(t, x1) + g(t, x1, x2)x2 (19a)
ẋ2 = f2(t, x2) (19b)

where ẋ1 = f1(t, x1) represents the nominal sys-
tem (14), and ẋ2 = f2(t, x2) denotes the current
estimation error dynamics (8). The perturbation
matrix yields

g(t, x1, x2) =
[

06×3 G
∗
phJ1 06×3

06×3 06×3 06×3

]T

(20)

where h = [I3×3, 03×3]T . Let the complete error
state be defined as x � [xT

1 , x
T
2 ]T . We proceed

with the main result of this paper.

Theorem 1. The origin x = 0 of the cascaded
system (19) is UGES under A.1-3 and if (18) is
satisfied.

Proof: The proof is based on Panteley et al.
(1998). The origin of the systems ẋ1 = f1(t, x1)

and ẋ2 = f2(t, x2) are shown GES and UGES,
respectively provided that (18) is satisfied. The
perturbation matrix can, by employing P.1 and
P.3, be upper bounded according to

g(t, x1, x2) ≤ (A∗
M + Ā∗

M )(V + JM ‖ν̃e‖)+
(A∗

M + Ā∗
M )Vc +A∗

M ‖ν̃c‖
under A.2. Furthermore, using that ‖ν̃2‖ ≤ ‖x2‖
and ‖ν̃e‖ ≤ ‖x1‖ and defining the following
constants

θ1 � JM (A∗
M + Ā∗

M ), θ2 � A∗
M ‖x2‖

where θ1, θ2 : R≥0 → R≥0, we have that the
perturbation vector can be upper bounded by

‖g(t, x1, x2)x2‖ ≤ θ1(‖x2‖) ‖x1‖ + θ2(‖x2‖)
Hence, the linear growth restriction on x1 in the
perturbation term is satisfied. Finally, since x2 =
0 is UGES, we have that the origin of the cascaded
system (19) is UGES.

�

5. CASE STUDY: THE MINESNIPER MKII

The simulations are carried out on the Minesniper
MkII with 0.5 m/s current with direction 90◦.
The forward speed is set to 1.5m/s. White noise
is added to the state measurements η, which
are updated at Minesniper MkII frequencies. To
test the robustness further, the observer damping
coefficients are only 80% of the actual coefficients
in the process plant model. Figure 2 shows the
estimation error.
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Fig. 2. Left: Estimation error η̃(t) in [m],[deg]. Right:
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The top left plot in Fig. 3 presents the horizontal
position for the simulated run. Furthermore, the
right plots present the estimated current velocity
and direction, which reveals a relatively large
deviation in the current estimation. In spite of
this, it is shown in the bottom plot that improved
results are obtained using this observer scheme
compared to an observer without explicit current
estimation. The bottom plot depicts the L2-norm
of the estimation error obtained in two simulations
runs with identical control inputs, environmental
conditions and observer gains/coefficients. The
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Fig. 3. Top left: Horizontal position. Top right: Estimated
Current velocity. Middle right: Estimated current
direction. Bottom: Comparison of the L2-norm.

bottom plot in Fig. 3 indicates that including
the relative velocity in the observer decreases the
estimation error. This is mainly due to the more
accurate estimation of the destabilizing Munk
moment. Although the amplitude of the norm
presented in Fig. 3 is dependent on the choice of
observer gains, we experienced similar results for
a large number of simulations.

6. CONCLUSION

An observer system for underwater vehicles has
been developed. It consists of a pair of nonlinear
and co-working Luenberger observers. The ob-
server provided accurate state estimation with the
inclusion of the nonlinear Munk-moment account-
ing for the current velocity. Furthermore, com-
paring this with an equivalent observer excluding
the current velocity indicated improved results.
These advantages give reason to describe this as
a robust model for control of underwater vehicles
in the sense that it is insensitive to environmental
disturbance and measurement noise.
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