
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Hermann Mørkrid

Replacing Elasticsearch in a Data
Analytics Platform

Master’s thesis in Computer Science
Supervisor: Svein Erik Bratsberg (NTNU)
Co-supervisor: Valdemar Edvard Sandal Rolfsen (Ignite)
February 2024

Hermann Mørkrid

Replacing Elasticsearch in a Data
Analytics Platform

Master’s thesis in Computer Science
Supervisor: Svein Erik Bratsberg (NTNU)
Co-supervisor: Valdemar Edvard Sandal Rolfsen (Ignite)
February 2024

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Acknowledgements

I would like to thank Valdemar Rolfsen and Erik Bøe of Ignite Procurement AS,
for their invaluable technical expertise and guidance provided throughout my
work on the thesis. I would also like to thank my supervisor from NTNU, Svein
Erik Bratsberg, for his counseling and friendly conversations.

i

Abstract
This thesis compares two analytical databases, Elasticsearch and ClickHouse,
for the use case of building a generic data analytics platform. We delve into the
design of Elasticsearch, and how it is used in the case of Ignite, a platform for
analyzing procurement data. The thesis presents a set of challenges faced by
Ignite in their use of Elasticsearch, and then explore potential alternatives to it,
choosing ClickHouse as the database to compare further.

We then set up an experiment to compare the two databases, implementing a
generic HTTP service as an abstraction layer to compare them equally. A set of
benchmarks are performed for this service, finding that ClickHouse outperforms
Elasticsearch in data ingestion, but that it performs worse at our specific query
execution, though this finding has its limitations. In addition, a set of qualitative
findings are presented, describing the challenge of achieving correctness in results
from Elasticsearch, and the issue of “object-columnar impedance mismatch” for
ClickHouse.

The thesis concludes that ClickHouse is a viable alternative to Elasticsearch for
the use case of a generic data analytics platform, but that the mixed results and
limitations of the experiment make it not the obvious choice.

ii

Sammendrag
Denne avhandlingen sammenligner to analytiske databaser, Elasticsearch og
ClickHouse, til formålet av å bygge en generisk plattform for dataanalyse. Vi gjør
et dypdykk i hvordan Elasticsearch er designet, og hvordan databasen brukes i
Ignite, en plattform for å analysere innkjøpsdata. Avhandlingen presenterer et
sett med utfordringer som Ignite har støtt på i deres erfaring med Elasticsearch,
og utforsker potensielle alternativer. ClickHouse velges som database til å
sammenligne videre.

Vi setter så opp et eksperiment for å sammenligne de to databasene, og imple-
menterer en generisk HTTP-tjeneste som et abstraksjonslag for å sammenligne
dem likt. Et sett med ytelsesmålinger blir så utført for denne tjenesten, og finner
at ClickHouse-databasen utpresterer Elasticsearch i datainntak, men at den
yter verre i utføring av vår spesifikke spørring. I tillegg presenteres et sett med
kvalitative funn, som beskriver utfordringen med å oppnå nøyaktighet i resultater
fra Elasticsearch, og utfordringen med å forene objekt-orienterte modeller med
den kolonne-orienterte strukturen til ClickHouse.

Avhandlingen konkluderer med at ClickHouse er et levedyktig alternativ til Elas-
ticsearch for en generisk dataanalyse-plattform, men at de blandede resultatene
og begrensningene i eksperimentet gjør det til et ikke åpenbart valg.

iii

Contents

1 Introduction 1
1.1 Research Goal . 2
1.2 Thesis Structure . 2

2 Background 3
2.1 Elasticsearch . 3

2.1.1 Distributed . 3
2.1.2 Document Store . 4
2.1.3 Search and Analytics . 4
2.1.4 The Elastic Stack . 5

2.2 The Ignite Data Analytics Platform 7
2.2.1 Ignite’s Elasticsearch Architecture 7
2.2.2 The Data Management System 8
2.2.3 Ignite’s Analysis Service 10

2.3 Key Challenges With Elasticsearch 14
2.3.1 Time to Index . 14
2.3.2 Incorrectness in Aggregation Results 15
2.3.3 Memory Use . 16
2.3.4 Configuration and Maintenance 16

2.4 Other Analytical Databases . 16
2.4.1 Apache Cassandra . 17
2.4.2 ScyllaDB . 18
2.4.3 Bigtable . 19
2.4.4 ClickHouse . 20

3 Design and Implementation of Experiment 22
3.1 The Choice of ClickHouse . 23
3.2 Choice of Programming Language 24
3.3 System Architecture . 26
3.4 API of the Analysis Service . 28

3.4.1 Table Schema Format . 29
3.4.2 Query Format . 30

3.5 Internal Structure of the Analysis Service 35
3.5.1 The api package . 36
3.5.2 The csv package . 36
3.5.3 The db package . 37
3.5.4 The clickhouse package 38

iv

3.5.5 The elasticsearch package 39
3.5.6 The config package . 40

3.6 Experiment Methodology . 40
3.6.1 Reproducing Benchmark Results 41

4 Results and Discussion 43
4.1 Performance . 43
4.2 Correctness . 44
4.3 Developer Ergonomics . 46

4.3.1 Object-Columnar Impedance Mismatch 46
4.3.2 Non-Descriptive Error Messages 47

4.4 Limitations of the Experiment 48

5 Conclusion 50
5.1 Further Work . 51

References 52

A Benchmark Results 56

v

Chapter 1

Introduction

In a world where companies increasingly digitalize their operations, the amount
of data available to them is ever-increasing. In this context, there is a growing
demand for tools to help companies understand and analyze their own data.
Hiring dedicated software engineers can be expensive, so to fill this demand,
“software-as-a-service” companies have emerged as general solutions to the digital
requirements of companies. But such companies face new challenges of scalability:
their service must no longer just handle the data of a single company, but of
all its customers, the combined data of which can be truly massive. This puts
further demands on the databases used by software-as-a-service platforms.

One such software-as-a-service platform is the Ignite data analytics platform,
developed by Ignite Procurement AS. It provides tools for companies and orga-
nizations to manage and analyze their data on spending, contracts, suppliers,
carbon emissions and so forth. A central part of the platform’s architecture is
the Elasticsearch database. It provides a lot of functionality for Ignite, but as we
shall see, it also presents its own set of challenges. Although the Ignite platform
handles these challenges well enough, the required workarounds are less than
ideal. Elasticsearch is only one of a multitude of different analytical databases
available today, and so it is interesting to examine if an alternative database
might better serve a data analytics platform such as Ignite.

In this thesis, we explore how Elasticsearch works as a database, how it is used
in the Ignite platform, and the landscape of alternative analytical databases.
We then go on to design an experiment comparing Elasticsearch with one such
alternative database, ClickHouse. From this experiment, we examine both
quantitative and qualitative results, to compare how the databases fit the use
case of a data analytics platform like Ignite’s.

1

1.1 Research Goal
The research goal of the thesis is to examine if an alternative analytical database
can provide similar capabilities to Elasticsearch for a data analytics platform,
while alleviating its performance and correctness challenges.

1.2 Thesis Structure
Chapter 2 covers the background for the thesis, which includes how Elasticsearch
is used both generally and by Ignite, key challenges with it, and potential alter-
natives. Chapter 3 goes on to detail how the thesis experiment was implemented,
and the reasons behind choices made. Chapter 4 then discusses both the quanti-
tative and qualitative results of the experiment, referencing benchmarks from
Appendix A. Finally, chapter 5 concludes the thesis, revisiting the research goal
and suggesting further work.

The implementation of the thesis experiment has been made open-source in
agreement with Ignite, released under the MIT license. The source code is
available at https://github.com/hermannm/analysis. Where appropriate,
the thesis links directly to source code in this repository to provide context when
discussing the implementation.

Finally, the thesis uses the term database as equivalent to a database management
system (DBMS). A distinction is typically made between these two when dis-
cussing the internals of a database system. But when developing an application
that uses a database system, it is more common to just refer to the whole system
as “the database”. The distinction between a database and DBMS has not been
relevant in this thesis, since it is more concerned with the application layer, and
thus, we just use the term database.

2

https://github.com/hermannm/analysis

Chapter 2

Background

This chapter aims to explain the background for the thesis, providing context
for the experiment detailed in the next chapter. Section 2.1 describes the
design of Elasticsearch as a database, and the context in which it is generally
used. Section 2.2 then describes the architecture of the Ignite data analytics
platform, and how Elasticsearch fits into it. Next, section 2.3 presents key
challenges faced by Ignite in their use of Elasticsearch. Finally, section 2.4
explores potential alternatives to Elasticsearch, describing what sets them apart
from other databases.

Sections 2.1, 2.2 and 2.3 are based on the specialization project prior to the
master’s thesis [1].

2.1 Elasticsearch
Elasticsearch is a distributed document store built for search and analytics
[2] [3]. The following sections aim to explain Elasticsearch by going in-depth on
each of these terms. Subsequent sections describe the broader context in which
Elasticsearch is used.

2.1.1 Distributed
Elasticsearch distributes data and query load across a cluster of nodes (i.e.
servers). The number of nodes per cluster, called the cluster capacity, is config-
urable, and may grow and shrink over the lifetime of the system. When nodes are
added or removed, Elasticsearch performs rebalancing : migrating data between
nodes to ensure continued availability and redundancy [4].

An index is the primary unit of data organization in Elasticsearch, similar to the
concept of a table in traditional databases. Each document (i.e. row) in an index
is replicated across multiple shards. These shards are distributed across different
nodes in the cluster [4]. This gives redundancy: if a node with an index’s shard
goes down, the index can get the data from a shard on a different node.

Similarly to nodes, the number of shards is also configurable, and can grow and

3

shrink while the system is running. The number of primary shards in an index
is fixed when it is created, but the number of replica shards can be changed at
any time. The size of each shard can also be configured. There are important
tradeoffs to consider here: larger shards are more expensive to move around
when rebalancing the cluster, but a larger number of smaller shards makes it
more expensive to maintain indices, as the index must replicate data in more
physical locations [4].

In addition to shard replication, Elasticsearch also offers replication of entire
clusters through cross-cluster replication. This automatically synchronizes indices
from one cluster, called the primary cluster, to a secondary cluster. Typically,
these clusters will be far physically removed from each other, so that if disaster
strikes at one cluster site, the other can take over. The secondary cluster can be
used as a hot backup in this way, but can also be used to improve geographic
colocation with users, by serving read requests of users that are physically closer
to it than the primary cluster. However, the primary cluster still handles all
write requests to its indices, which are called the active leader indices [4].

2.1.2 Document Store
Elasticsearch may be called a NoSQL database, i.e. not a traditional relational
database management system queried through SQL. It eschews rows and columns
in favor of documents, in JSON format [3]. As described in section 2.1.1, data in
Elasticsearch is organized into indices, and so the process of adding documents
is called indexing.

Documents in Elasticsearch may or may not have a defined schema. The
process of defining a schema for documents is called mapping, and has several
variations. Explicit mapping is when the user explicitly defines the data type for
each field name in the document. Dynamic mapping allows documents to be
indexed without specifying how to handle each field – instead, Elasticsearch can
automatically detect and add new fields to the index, and attempt to deduce
the field type from the data. The way in which Elasticsearch deduces data
types from documents can be configured through dynamic field mapping rules
[5].

Getting the correct data type for fields, whether through explicit or dynamic
mapping, enables Elasticsearch to do data-specific optimizations. Elasticsearch
indexes every field in documents it receives, using a data structure that depends
on the field type. For text fields, an inverted index is most efficient, but if
Elasticsearch knows that the field is numeric, it can instead use an even more
efficient BKD tree [3].

2.1.3 Search and Analytics
Although Elasticsearch is a distributed database in its own right, it was not really
built to serve as a primary database. Rather, the main use case of Elasticsearch
is to serve as an engine for search and analytics. The reason that every document
field is indexed, as described in section 2.1.2, is to optimize for fast full-text
search [3]. For example, the inverted index used for text fields allows search
queries to quickly find all documents containing a given word.

4

Search queries take different forms in Elasticsearch. Structured queries are
similar to SQL, allowing matching and sorting on specific fields. Full-text queries
instead aim to find matches to a given query string, and sort them by relevance.
Complex queries combine these two categories – for example, to find query string
matches on a specific field. A number of additional queries are available for
specific data types [6].

The main query language of Elasticsearch is the custom Query DSL [7]. Similarly
to the documents themselves, DSL queries are submitted as JSON – in fact, the
query text goes through the same analysis that documents go through during
indexing [3].

Beyond just searching, Elasticsearch also offers aggregations : summaries of data
based on given aggregation parameters. Metric aggregations calculate some
number result, such as an average, based on field values. Bucket aggregations,
meanwhile, group documents into buckets based on values. Aggregations can
also be pipelined, so the result of one aggregation can be fed into another one.
Additionally, the Query DSL allows the user to perform a query along with an
aggregation, which makes the aggregation only apply to results of the query
[8].

Apache Lucene

Elasticsearch builds on top of the Apache Lucene (hereby Lucene) search engine
library. Lucene provides a variety of different full-text search algorithms [9].
Each node in an Elasticsearch cluster runs Lucene, executing search algorithms
on stored documents when it receives queries. In this sense, Elasticsearch can be
viewed as an API and distributed architecture that wraps Lucene. The actual
search implementation is handled by Lucene, while Elasticsearch takes care of
the distribution of data and the processing of queries.

Lucene is an internal component of Elasticsearch, and so users do not directly
interact with it through the API. However, the abstraction can be seen to leak in
Kibana, which is used as a control center for managing an Elasticsearch cluster
[4]. It offers a Lucene query syntax [10] in order to utilize Lucene’s full feature
set for searches.

2.1.4 The Elastic Stack
Looking at Elasticsearch in isolation is not sufficient to fully describe how it is
used. Elasticsearch is typically used in conjunction with other tools. One set of
such tools is referred to as the Elastic Stack, which includes Beats, Logstash and
Kibana. The following sections will describe these components, to give a more
complete picture of the context in which Elasticsearch is used.

Beats

Beats is a term used in the Elastic stack for a variety of different data shippers.
Their role is to capture data, and then send it on to the rest of the stack.
Different Beats exist for different types of data: Filebeat for log files, Heartbeat
for availability data, Packetbeat for network traffic, and more. Beats can either

5

send data directly to Elasticsearch to be indexed, or through Logstash for
processing on the way.

Logstash

As described in section 2.1.3, Elasticsearch is not meant to serve as a primary
database on its own. This logically entails that the data indexed in Elasticsearch
is coming from some other data source. This could for example be another
database, or the API of some other service.

Logstash exists to serve as a middle man between Elasticsearch and sources
of data to be indexed. It does this through pipelined processing: a Logstash
instance has a number of pipelines, running in parallel, each of which process
incoming data through a series of steps. The first step is receiving or collecting
data from the ingested data source, through input plugins. This data is placed
on a queue, where it is picked up by a set of filter plugins, which parse, process
and enrich the data. Finally, the data moves to the output plugin, which formats
the data and forwards it – to Elasticsearch, when used as part of the Elastic
stack. This whole process is called ingesting data [11].

Kibana

As mentioned in section 2.1.3, Kibana is a control center for managing the cluster
in Elasticsearch. Moreover, it provides an interface for analyzing and visualizing
the data in the cluster [12]. Whereas the structured Query DSL of Elasticsearch
is great for applications, Kibana provides administrators and analysts with a
more ergonomic interface for exploring data interactively.

On the database workload scale of online transaction processing (OLTP) vs.
online analytical processing (OLAP), we can place the workloads supported by
Kibana firmly on the OLAP side. However, Elasticsearch as a whole, with its
focus on search and analytics, is also weighted towards OLAP. This illustrates
how OLTP-OLAP is a sliding scale. In a way, Kibana extends the OLAP
support of Elasticsearch to provide even better tools for detailed analysis of the
data.

The Stack

When viewed together, Elasticsearch, Beats, Logstash and Kibana can be seen
as steps in a data flow. Data is first captured by Beats, then filtered through
Logstash, then indexed and stored in Elasticsearch, then finally analyzed and
visualized with Kibana. Not all systems will use all these together, but most
systems using Elasticsearch will have a similar-looking flow: component(s) on the
ingest side which provide data to be indexed in Elasticsearch, and component(s)
on the consume side to analyze the data. Figure 2.1 shows an illustration of this
architecture.

6

Figure 2.1: Illustration of the Elastic Stack [13]

2.2 The Ignite Data Analytics Platform
Ignite Procurement (hereby “Ignite”) is a software company that develops the
Ignite Procurement platform (hereby “the Ignite platform”), which allows compa-
nies to manage and analyze their data on spending, contracts, suppliers, carbon
emissions and so forth. Elasticsearch plays a central part in the architecture of
the Ignite platform.

The findings in these sections are based on conversations with the Chief Technical
Officer (Valdemar Rolfsen, personal communication, Mar. 13, 2023) and a
software engineer from Ignite (Erik Bøe, personal communication, May 3, 2023),
as well as my own experience working as a developer of the Ignite platform for a
year.

2.2.1 Ignite’s Elasticsearch Architecture
To understand the architecture of the Ignite platform, one must first understand
microservices. Microservice architecture is defined by splitting a monolithic
server application into separate applications, running on separate servers, and
communicating with each other over the network. Ignite runs a plethora of
microservices for different modules of the platform: one for contracts, one for
suppliers, one for file management, et cetera. These services communicate over
gRPC, an efficient communication and serialization protocol. Users access the
platform through a web application, which sends all requests to a “gateway”
service, which in turn forwards requests to other services as appropriate.

One of Ignite’s microservices is the Data Management System (DMS). It is built
as an abstraction layer on top of a MongoDB database, and provides an API
for other parts of the platform to insert and manage data. This is the primary
database for users’ data – thus, the first step for new users of the Ignite platform
is to get their data into the DMS.

The DMS is also one of the components in Ignite’s architecture that connects

7

to Ignite’s Elasticsearch instance. All the data that is inserted into the DMS
is also indexed into Elasticsearch. The purpose of this is to make analytical
queries faster: when indexing data from the DMS into Elasticsearch, the data
is transformed to make analytical queries on it more efficient (more on this in
section 2.2.2). In addition, Elasticsearch’s built-in functionality around search
and aggregation provides greater support for analytical queries than that of
MongoDB.

Another one of Ignite’s microservices that interacts with Elasticsearch is the
Analysis service. Whereas the DMS takes care of inserting data into Elasticsearch,
Ignite’s Analysis service provides an API for querying this data from Elasticsearch.
It builds on the existing query API of Elasticsearch, and extends it with additional
data aggregation capabilities, primarily through Ignite’s Pivot library (further
explained in section 2.2.3).

As we take a broad look at these components interacting with Elasticsearch
in the Ignite platform, we see similarities to the Elastic Stack, as described in
section 2.1.4. To illustrate this, Figure 2.2 shows the different components in
Ignite’s architecture surrounding Elasticsearch, in the same way as Figure 2.1
did for the Elastic Stack. On the ingest side, we have the process of getting users’
data into the DMS, transforming it to optimize for analysis, and then indexing
it into Elasticsearch. On the consume side, we have the Analysis service and its
API, which is used by other services in Ignite’s microservice architecture.

Figure 2.2: Diagram of Ignite’s architecture surrounding Elasticsearch

The following sections will further explain these various components in Ignite’s
architecture.

2.2.2 The Data Management System
As previously mentioned, Ignite’s Data Management System (DMS) is respon-
sible for indexing data into Elasticsearch, placing it on the ingest side of the
architecture. This process consists of two steps: first, the DMS needs to ingest
data itself, then it can go on to index this data into Elasticsearch.

Data ingestion in the Ignite platform starts by building a data source. This
typically consists of uploading a file, with multiple different formats supported,
such as Excel spreadsheets or CSV (“comma-separated values”) files. After

8

building a data source, users next define a data table, in which users describe
the structure of their data to make it more useful in the Ignite platform. This
process can also involve intermediate transformations of the original data – for
example, renaming a field called s_no in the original data to the more descriptive
Supplier number. These transformations form a pipeline, leading from a data
source to the new data table.

Fields in the data table also have corresponding data types, i.e. text, number, et
cetera. The DMS can infer data types from values in the original data, but the
user may sometimes want to change this. For example, a number in the original
data may in fact refer to an ID in a different data set. In this case, once the
user has set up tables for the two data sets, they can mark a field in the first
table as a reference to a field in the second table, creating a relation between
the two.

Once users have ingested their data into a data source and built a data table,
the DMS can index this data into Elasticsearch. This in turn allows modules of
the platform to use the analytical query capabilities of Elasticsearch to provide
analytical views of the data. The DMS makes a number of transformations
on the data it sends to Elasticsearch, in order to optimize it for analytical
queries:

• Materialized relations. Data tables that are connected to each other
through references have the data in their corresponding related documents
fetched and stored in-place. For example, a spend table with data on
expenses, and a supplier ID reference for each expense, would fetch the
actual supplier object with that ID from the supplier table and store that.
By doing this, later analytical queries on the table and its relation do not
need to join the two tables.

• Flattening empty data. Any "null-ish" values are not indexed. Since
the DMS uses JSON as its format, such values include null, false and
empty strings.

• Keyword indexing and normalization. All text fields are indexed
with the keyword Elasticsearch mapping, and have a normalizer applied
to them. A keyword normalizer in Elasticsearch ensures that variations
in case and accents on keywords resolve to the same keyword. Ignite uses
an upper-case normalizer, which means that e.g. “Supplier, inc.” and
“supplier, INC.” both resolve to “SUPPLIER, INC.”.

The DMS – Showing the Limits of NoSQL?

With the DMS’s data sources, tables and types, we see that Ignite has essentially
built its own database paradigm on top of MongoDB. This may be indicative of
the limitations of NoSQL databases. MongoDB is a document-oriented NoSQL
database, which essentially allows the storing of any type of JSON document,
without caring for its structure. This flexibility is one of MongoDB’s strengths,
but the lack of structure and corresponding type safety can create a need to build
structure on top of it. This is in contrast to traditional relational databases,
which require data to follow a strict schema, but in turn offer more powerful
capabilities when querying and analyzing data. Thus, one may argue that the

9

lack of strict structure provided by MongoDB makes it less useful for data
analysis.

MongoDB may however be the perfect fit for Ignite’s use case, precisely because
of the duality between flexibility and structure of data. Each of Ignite’s users
brings their own data source, with its own structure, fields and types. It is
valuable to be able to ingest and store this data in its original form, as it can then
be later retrieved as-is. Here, the flexible nature of MongoDB is an advantage,
as it allows the storage of data sources in their raw form. When it comes time
to define structure for the data, Ignite’s pipeline builder provides an intuitive
interface for data transformation. If a user later decides to change a pipeline,
updating the data is simply a matter of running the original data source through
the updated pipeline. In a relational database, this would typically involve a
data migration through SQL scripts, which is error-prone and could lead to data
loss. By separating the source and structure of data, the Ignite platform thus
provides data integrity.

2.2.3 Ignite’s Analysis Service
The Analysis service is Ignite’s query interface between Elasticsearch and their
other services. Whenever some other module in the platform needs to make
an analytical query on user-provided data, it goes through the Analysis service
(note: some services still query Elasticsearch directly, but Ignite’s goal is that all
these should eventually use Analysis). One may ask why such a service would
be necessary, when Elasticsearch already provides a query API. The reasons are
twofold: first, to provide a more ergonomic and human-readable query language,
and second, to better control how Elasticsearch is queried.

10

Figure 2.3: Screenshot of a custom analysis made in the Ignite platform.

One of the modules of the Ignite platform uses the Analysis service to enable
users to build custom graphs based on their data. Figure 2.3 shows an example
of this. The graph is based on a CSV test data file, where each row represents
a hypothetical transaction made between a company and one of its suppliers.
The fields of the data, as shown on the left in the figure, include the currency
the transaction was made in, the date it was completed, the invoice number, the
name of the person responsible for the transaction, an ID for the supplier, and
the transaction’s value (i.e. how much was spent). Having built a data table
from this data source, we can now analyze it. As we see in the bottom left of
the figure, we choose the date field as columns, splitting it into quarters. We
use the supplierId field for rows, limited to 10, and then sum the value of
transactions. This gives us a graph of the top 10 suppliers for each of the last 4
quarters, by the sum of our spend for each supplier in each quarter.

The Pivot Query Format

In order to support the type of queries needed to build custom analyses like the
one in Figure 2.3, Ignite’s Analysis service has its own query format called Pivot.

11

Pivot is based on the concept of “pivot tables”, which originates from spreadsheet
software in the late 1980s [16]. A pivot table is a way to display data from a
data source – whether that be a different table, or a database – where rows of
the original data have been grouped together and aggregated. This process is
called “pivoting” [17], as it involves moving rows to columns, or columns to rows,
to view the data from different “angles”.

Similarly to Elasticsearch’s Query DSL, a Pivot query uses JSON as its format.
It consists of three fields: an array of value aggregations, an array of row splits
and an array of column splits, all of which are JSON objects. A split in this
case is similar to a GROUP BY clause in traditional SQL – a way to group data
together based on some field, before performing aggregation. One can create
“nested splits” by including multiple objects in the split arrays – for example,
doing a column split on a date field for both years and quarters.

Listing 2.1 shows the generated Pivot query for the graph in Figure 2.3. The
value aggregation, row split and column split objects correspond to the Values,
Columns and Rows sections of the graph interface, respectively. We see that each
object contains metadata about the queried fields, that the value aggregation
specifies "aggregation": "sum", and that the splits specify sort order, size
and interval.

Listing 2.1: Pivot query for the graph in Figure 2.3.
{
"value_aggregation_items": [
{
"id": 21942,
"type": "float",
"field": "data_column_248",
"aggregation": "sum",
"cumulation": null,
"window_size": null,
"script": null,
"index": 0,
"filters": [],
"visible": true,
"data_column": null,
"group_type": null,
"uuid": "db7ce857-09e1-4f60-b591-d6d7ec149e91"

}
],
"row_split_items": [
{
"filters": [],
"aggregation": "cardinality",
"id": 18804,
"direction": "row",
"index": 0,
"analysis_widget": 12328,
"largest_field_widget": null,
"supplier_source_configuration": null,

12

"procurement_lever": null,
"field": "data_column_252",
"type": "keyword",
"size": 10,
"search_size": null,
"exclude_others": true,
"interval": null,
"intervals": null,
"unique": true,
"sort_order": "desc",
"sort_agg_index": 0,
"data_column": null,
"group_type": null,
"aggregated_filters": [],
"uuid": "dc88ee25-f787-457a-b2c2-165dda2116cd"

}
],
"column_split_items": [
{
"filters": [],
"aggregation": "max",
"id": 18803,
"direction": "column",
"index": 0,
"analysis_widget": 12328,
"largest_field_widget": null,
"supplier_source_configuration": null,
"procurement_lever": null,
"field": "data_column_249",
"type": "date",
"size": 4,
"search_size": null,
"exclude_others": false,
"interval": "quarter",
"intervals": [],
"unique": true,
"sort_order": "asc",
"sort_agg_index": null,
"data_column": null,
"group_type": null,
"aggregated_filters": [],
"uuid": "3efcaf3d-5e09-4784-b947-7aa8d15390f3"

}
]

}

Another part of the query language of Ignite’s Analysis service is filters. These are
additional query objects passed alongside the Pivot query, which filter the data
before it is aggregated. Filter queries support a variety of different operations:
filtering on the presence or absence of specific field values, filtering on a range of

13

values, filtering on a search term, et cetera. These filters can be nested together
in a conditional filter, which chains filters together with either AND or OR.

Query Translation and Execution

The parsing, translation and execution of Pivot queries is done by Ignite’s Pivot
library, written in C++. When the Analysis service receives a query, it calls
Pivot, which then translates the given query to equivalent Elasticsearch queries.
A single Pivot query may produce multiple Elasticsearch queries in order to
satisfy the semantics of the original query.

The Pivot library also alleviates some of the inherent inaccuracy in results
from certain queries in Elasticsearch. Section 2.3.2 will go into more detail on
this.

2.3 Key Challenges With Elasticsearch
As we have seen, Elasticsearch plays a central part in the architecture of the
Ignite platform. However, Ignite has had multiple challenges with adapting
Elasticsearch for their use case. The following sections explore these challenges,
and how Ignite has taken measures to alleviate them.

2.3.1 Time to Index
One of the key problems with Ignite’s use of Elasticsearch is the time it takes to
re-index updated data. When a customer makes an update in some module of
the platform, that change propagates through to the Data Management System
(DMS). It updates its MongoDB database, and then triggers re-indexing of
Elasticsearch.

The issue here is that re-indexing is a heavy operation. Elasticsearch does not
support partial updates of indices – this is a fundamental part of its design – so
this process involves a lot more data than just the relevant update. This only
becomes worse with larger indices: the more documents in the index, and the
more fields on those documents, the longer it takes to re-index.

The effect of this delay is stale reads. When a user makes an update in the Ignite
web application, they may navigate to a module that uses this data. If that
module makes an analytical query that goes to Elasticsearch, and the re-indexing
process has not completed, then the user will see a previous version of the data,
without their update. This can lead to user confusion and frustration, and
diminish the usability of the platform by essentially requiring users to leave and
come back later to view their updates. Even worse, the user may not realize
that the data analysis is based on old data, and use this flawed view of the data
as the basis for a decision.

One of the ways that Ignite tries to alleviate this is by reducing the amount
of data in Elasticsearch, so there is less to re-index. We noted some of these
techniques in section 2.2.2, such as not indexing empty data, and only indexing
fields that the user has marked for data analysis. However, some of the other
techniques that Ignite employs when ingesting data into Elasticsearch, namely

14

materializing relations, work to the contrary: they increase the amount of data to
index. All in all, this is a critical challenge for the Ignite platform today.

2.3.2 Incorrectness in Aggregation Results
One of the issues that can be encountered when using Elasticsearch is the
tradeoff between performance and correctness (i.e. the accuracy of query results).
Many of Elasticsearch’s APIs do not guarantee that the returned results are
completely correct, and may only give approximations. For example, the Terms
aggregation, a type of query that places data into buckets for further aggregation,
may produce inaccurate results [18]. This is because Elasticsearch only looks
at a certain number of records on each shard to answer the query, in order to
increase performance. This can produce incorrect results, depending on how the
data is distributed across shards. Say that we want to aggregate some data for
the top 10 suppliers in some transaction data we have stored in Elasticsearch.
The size of our query will then be 10, and Elasticsearch then chooses a default
shardSize, i.e. the number of records to examine from each shard, of size
* 1.5 + 10 [18], i.e. 25. But if one of the shards contains data for a top 10
supplier that falls outside those 25 on a shard, it will not be included, which may
produce wrong aggregation results, and even the wrong suppliers being included
in the top 10.

The Ignite platform must contend with the issue of correctness, as its users
expect correctness in custom analysis results. This issue emerges in particular
for queries that combine aggregation with sorting, such as the “top 10 suppliers”
query exemplified above. For such a query, Ignite’s Pivot library first makes a
naive query against Elasticsearch to get the top 10 suppliers, but knowing that
the results may be incorrect due to records falling outside the query’s shard
size. Then, it makes another Elasticsearch query that filters on just those top
10 suppliers, to guarantee correct aggregated values for them. Now, Pivot can
compare the aggregation results for the first, inaccurate query to the results
of the second, correct query. If the difference between these values is above a
certain threshold, that indicates that there was a large error in the original query,
and that the results may in fact contain the wrong top 10 suppliers. In this case,
Pivot repeats the query, looking at the top 20 suppliers next, and if the error
margins are still too large, goes on to look at the top 30, 40 or even 50 until
the error margin is low enough. This technically does not completely guarantee
correctness, but it provides a good enough guarantee in practice.

This process of retrying queries to achieve correctness is rather complicated. It
reflects a dissonance between a data analytics platform that requires correctness,
and a database that mostly provides approximations by default. This increases
the maintenance burden of the Ignite platform, as it must essentially maintain a
“correctness layer” on top of Elasticsearch, in the form of the Pivot library. And
although Ignite’s solution performs well enough in practice, making multiple
round-trips to the database in order to increase correctness is not ideal for
performance. These issues suggest that a database that is designed for correctness
by default, while still maintaining acceptable performance, might be a better
solution.

15

2.3.3 Memory Use
Databases are heavy systems, and typically have high memory requirements.
This is especially true when they want to deliver higher performance, as it is
much more efficient to fetch data from memory than from disk. Elasticsearch
does this a lot, which gives it a high baseline memory consumption. In addition,
Elasticsearch is built in Java, running on the Java Virtual Machine (JVM), and
thus uses garbage collection instead of manual memory management. While this
is generally a safer approach, as it avoids memory safety vulnerabilities, it comes
at a significant performance overhead. Memory is not freed until the JVM’s
garbage collector has checked that it is unused, which typically happens at a
delay after it actually became unused. This further contributes to the memory
usage of Elasticsearch.

For Ignite, this high memory use comes at a cost. Their Elasticsearch instance
has a baseline memory consumption of 500 GiB in production [19]. This in turn
leads to a higher hosting bill for Ignite, which is not ideal.

2.3.4 Configuration and Maintenance
Elasticsearch is a complex system, with a lot of configuration options. Ignite has
1000’s of lines of configuration files for Elasticsearch, which can be hard to debug.
This in turn makes it harder to maintain Elasticsearch as part of the technology
stack, as it requires intimate knowledge of Elasticsearch to understand all this
configuration.

2.4 Other Analytical Databases
As we have seen, Ignite has experienced several different issues with their use
of Elasticsearch. Thus, it is useful to look at what alternative databases exist.
Such an alternative would have to fulfill certain criteria:

1. It must provide the same capabilities for analytical queries that Elastic-
search does, i.e., its query language must be just as flexible and powerful,
or at least enough to match how Ignite already uses it.

2. The database’s analytical query capabilities must also include support
for aggregate queries, and ideally give better correctness guarantees than
Elasticsearch, to avoid the need for Ignite’s current process of retrying
queries to achieve correctness (see section 2.3.2).

3. It must allow for the mass ingestion of data in an efficient manner, ideally
more performant than Elasticsearch, in order to reduce the time required
to index new data (see section 2.3.1).

4. It must be deployable in the cloud, to be able to integrate with the rest of
Ignite’s microservice architecture.

5. It should ideally be more memory efficient than Elasticsearch, to alleviate
Ignite’s issues with high memory consumption from their Elasticsearch
instance. Thus, it would be relevant to investigate alternatives written in
more memory-efficient programming languages than Java.

16

6. It should ideally require less configuration than the thousands of lines that
Ignite currently maintains for Elasticsearch (see section 2.3.4).

7. It should ideally be cheaper to run in production than Elasticsearch, or
at least in the same price range. An alternative that performs marginally
better than Elasticsearch, but costs ten times more, would not actually be
a solution for Ignite.

These criteria restrict the options that should be investigated for alternative
databases. In the following sections, we shall explore various databases designed
for analytical workloads, and their characteristics in relation to the above
criteria.

2.4.1 Apache Cassandra
Cassandra is a distributed, wide-column, NoSQL database management system,
built by Facebook in 2008 for their Inbox Search feature [20]. Its main design
goal is to ensure reliability and scalability in a massive distributed environment.
Like Elasticsearch, it is written in Java, running on the Java Virtual Machine
(JVM).

Facebook found that traditional relational database management systems did
not sufficiently meet their requirements for scalability, as they handle network
partitions (i.e. nodes in a database cluster going offline) poorly. This is the
problem described in Brewer’s conjecture, also known as the CAP theorem:
that a distributed system may only choose two of the attributes consistency,
availability and partition tolerance [21]. In Facebook’s case, traditional databases’
prioritization of consistency was insufficient for their workloads.

Data in Cassandra is organized into tables with rows and columns, though it
does not use a relational model [20]. Row keys are strings, provided by the
user when inserting data. All data is indexed on this key. Columns can be
grouped together into column families, which can be further grouped together
to form a super column family. Keys and column names are used to interact
with Cassandra’s API, which consists of the following operations:

• insert(table, key, rowMutation)

• get(table, key, columnName)

• delete(table, key, columnName)

The columnName can either be the name of a column family, a super column
family, a column within a column family (on the format column_family:column)
or a column within a super column (on the format column_family:super_-
column:column) [20, p. 36].

Read and write requests go to any node in a Cassandra cluster [20, p. 36]. The
receiving node finds the replicas that hold the data for the requested key. For
writes, the request is then forwarded to all replicas that hold data for that key,
and then a quorum is performed with all those nodes to confirm successful writes.
Reads, meanwhile, are routed to the closest replica for efficiency. Cassandra
may be configured to make reads function like writes, using a quorum with all
replicas, for a stronger consistency guarantee.

17

Data is partitioned between nodes by using consistent hashing [20, p. 36]. Each
node is given responsibility for a range of values in the possible outputs from
the hash function - this node is called the coordinator of keys in that range. It
is responsible for replicating its data across N − 1 other nodes in the cluster,
where N is a configurable replication factor. When a request is received for a
given key, that key is hashed with the same hash function to determine which
node it should be assigned to.

For local persistence on each node, Cassandra uses write-ahead-logging (WAL),
an in-memory data structure and file system disk persistence [20, p. 38]. Every
change is first written to the commit log, and if successful, the change is then
persisted in the in-memory data structure. Once this structure reaches a certain
size threshold, the data is flushed to a file on disk. When a read request is
received, it first queries the in-memory data structure, then files on disk from
newest to oldest. As time goes on, multiple files will accumulate on disk - to
alleviate this, a background process runs compaction periodically, i.e. merging
files into one.

Since the initial paper on Cassandra, several developments have been made to
the database, the most significant of which is the introduction of the Cassandra
Query Language (CQL) [22]. It provides an SQL-like syntax for data definition
and manipulation in Cassandra.

2.4.2 ScyllaDB
To understand why ScyllaDB exists, one must first understand the context of
Apache Cassandra, as Scylla was created as a response to some key challenges
with Cassandra. In their whitepaper on Cassandra’s shortcomings [23], the
creators of Scylla identify four main issues:

1. Inefficient utilization of the resources offered by modern, multi-core
computers. Production deployments of Cassandra are recommended to
limit storage capacity to 1-2 terabytes per node in a cluster [24] – which
can waste a lot of capacity when modern cloud computers offer up to 60
terabytes of storage [25].

2. Unpredictable and unbounded latency due to Cassandra being written
in Java. Java manages memory with garbage collection, which is typically
safer and more ergonomic to work with, but sacrifices some performance
that could have been gained through manual memory management.

3. Team intensive, as operating Cassandra at scale is a big task which
requires dedicated experts. This is exacerbated by issue 1, since limited
storage capacity per node leads more nodes in a cluster, which makes the
cluster harder to manage, which puts further requirements on the team to
operate it.

4. Manual tuning is often required to manage clusters, as well as the impacts
of expensive storage compaction and garbage collection. One example
of this is the balance between “background” operations, such as storage
compaction and data streaming between nodes, and “foreground” operations
that respond to queries. All these operations typically require disk I/O,
which can cause contention between them and thus impact response times.

18

To alleviate this, Cassandra allows setting a cap on background operations
– but tuning this right to your database workload is difficult to get right,
and can cause even further slow-downs if one gets it wrong.

ScyllaDB aims to solve these issues. It is the same type of database as Cassandra,
i.e. distributed and wide-column, using a NoSQL data format. In fact, Scylla
aims to be compatible with the API of Cassandra, meaning that it uses the
same Cassandra Query Language (CQL) [26]. However, Scylla does a number of
things differently from Cassandra to improve its performance [23]:

• Written in C++ – ScyllaDB is written in C++, which grants precise
control over lower-level details such as memory management. This allows
performance optimizations that are essentially impossible in Java.

• User-space I/O scheduling – Scylla implements its own disk I/O sched-
uler, instead of letting the operating system kernel handle it. This allows
Scylla to automatically prioritize and balance different types of operations
that require I/O, which avoids the challenge of having to manually tune
this (see issue 4 above).

• Unified cache – Cassandra has its own in-memory cache, but falls back
to the OS file system cache. Having multiple layers of cache is not ideal,
as they may interact in unexpected ways, and puts further pressures on
manually tuning the database. To alleviate this, Scylla implements a single,
unified cache, which automatically tunes itself to observed workloads.

The result of these techniques is that ScyllaDB can withstand 5x greater traffic
than Cassandra, with lower latency for every type of workload, both read-heavy
and write-heavy [23, p. 7]. It completes administration tasks 2.5 to 4 times faster
than Cassandra, and can achieve the same performance on a smaller cluster
that is 2.5 times less expensive. These performance gains, in addition to the
auto-tuning features of Scylla that make it easier to operate, could make it a
better alternative to Elasticsearch than Cassandra.

2.4.3 Bigtable
Bigtable is a “distributed storage system for managing structured data” [27, p.
205], built by Google. Its main design goals are wide applicability, scalability,
high performance and high availability.

Bigtable’s data model resembles that of Apache Cassandra (see section 2.4.1):
it consists of tables, which map row keys, column keys and timestamps to
uninterpreted arrays of bytes [27, p. 206]. These byte arrays may themselves
have structure, e.g. JSON blobs, though this is all left in the hands of applications.
Row and column keys are arbitrary strings. Similarly to Cassandra, column
keys are grouped together into column families, and are accessed with the same
column_family:column syntax.

The client API of Bigtable is also similar to Cassandra’s. It supports basic
operations to write or delete values in a row, look up individual row values,
or iterate over a subset of a table’s data [27, p. 207]. Additionally, Bigtable
supports the use of a scripting language developed by Google called Sawzall,
which executes on Bigtable’s servers and allows data transformation, filtering and

19

aggregation. Finally, Bigtable can also be integrated with Apache MapReduce,
a framework for big data processing.

Storage in Bigtable uses the Google File System [27, p. 207]. Data is stored
in files using Google’s SSTable format: an ordered, immutable map from keys
to values, where both are arbitrary arrays of bytes. Like Cassandra, Bigtable
uses a write-ahead commit log, and first stores writes in-memory. When the
in-memory data reaches a certain threshold, it is written to an SSTable on
disk. A background compaction process runs periodically to merge SSTable
files.

Tables are divided into tablets, which each hold a range of rows – these are
distributed across nodes in a Bigtable cluster. A master node makes periodic
health checks on other nodes in the cluster, and reassigns tablets from nodes
that go down, to ensure availability. The cluster is coordinated through the
use of the Chubby distributed lock service, which runs the Paxos algorithm to
enforce consistency between nodes.

Rows in Bigtable are sorted alphabetically by key, which allows users to optimize
for data locality, by formatting their row keys in such a way that rows which are
frequently accessed together are also stored together. In the original Bigtable
paper, they present an example table which stores data for crawled web pages,
where the row keys are reversed domains [27, p. 206] – i.e. com.google.maps
instead of maps.google.com. This places rows from similar domains together,
which improves data locality for more efficient fetching. Users of Bigtable can
also enable compression of SSTables, which is further helped by data locality,
since similar data close to each other compresses better. This allows Bigtable to
achieve up to 10-to-1 space reduction [27, p. 211].

2.4.4 ClickHouse
ClickHouse is a relatively new OLAP database, first launched in 2012, and made
open-source in 2016 [28]. It was initially developed by Yandex, an internet service
company from Russia, but the development team was spun out into its own
company in 2021 [29]. ClickHouse was made as an answer to the data processing
challenges faced by Yandex, which required exceptional performance. Thus, the
database has been designed with data processing performance in mind from the
beginning.

The main distinguishing feature of ClickHouse is its column-oriented storage [30].
This typically performs better than row-oriented storage for analytical query
workloads, which often consists of aggregating data together from columns, since
all the data needed for an aggregation is stored together. This in turn allows
for optimizations such as vectorization (i.e. SIMD instructions). Additionally,
column-oriented storage also enables better data compression, since a column
often has similar data across rows, and storing these values together allows for
better compaction. This in turn improves the scalability of the database, as
database nodes can store more data before reaching their limit and requiring
more nodes to be deployed. A further consequence of this is reduced operating
cost, as fewer nodes deployed is generally cheaper.

Another contributing factor to ClickHouse’s performance is its implementation

20

language: C++. As we have seen, Elasticsearch’s Java implementation can lead
to outsize memory consumption. A lower-level language such as C++ provides
greater control of memory use, which is critical for an analytical database that
may have to handle large amounts of data in memory.

The query language of ClickHouse is SQL. It supports most of the ANSI SQL
standard, though it is not fully compliant with all of it due to its design [31].
ClickHouse also offers additional aggregate functions beyond those found in
most other relational databases, and combinators that change how an aggregate
function processes its data [32]. Thus, ClickHouse’s SQL is its own dialect, like
most other SQL-based databases.

Finally, ClickHouse is designed to be deployed as a distributed system. Multiple
ClickHouse nodes can be deployed in a cluster, using a centralized system for
coordinating and synchronizing distributed operations between nodes. Initially,
Apache ZooKeeper was used as this central system [33]. However, the resource
efficiency of ZooKeeper’s Java implementation was found to be inadequate, so
ClickHouse developed its own solution: ClickHouse Keeper, a drop-in replacement
for ZooKeeper, but implemented in C++. This brought a 46x reduction in
memory consumption compared to ZooKeeper [33], further demonstrating the
efficiency gains that are possible with a lower-level language.

21

Chapter 3

Design and Implementation
of Experiment

As explained in section 1.1, the research goal of this thesis is examine potential
alternatives to Elasticsearch for a data analytics platform. In section 2.3, we
saw the challenges that Ignite has faced with Elasticsearch in building their own
such platform, so we now know better the issues that a potential alternative
should solve.

In order to fully evaluate an alternative database, we design an experiment that
aims to emulate the data analytics platform use case. For this, an HTTP server
has been implemented, providing a generic analytical query API to clients, which
abstracts over a backing analytical database. This implementation is adapted
to support two databases: Elasticsearch and ClickHouse. The server can be
configured to connect to either database, while the generic API stays the same.
This allows us to run test queries against the server configured for Elasticsearch,
then reconfigure it to use ClickHouse and run the exact same queries again, after
which we can compare the performance of both databases.

The name chosen for the implementation is “the Analysis service”, after the
service of the same name from the Ignite platform (see section 2.2.3). Our
implementation will be referred to as the canonical “Analysis service” (or “our
Analysis service” where appropriate to disambiguate), whereas Ignite’s will be
referred to as “Ignite’s Analysis service”. Our service fulfills much of the same
role as that of Ignite’s, providing a generic API over a backing database, though
mine takes on additional responsibilities. Mainly, our service can be seen to also
consume the role of Ignite’s Data Management System (see section 2.2.2), in
that it also provides data ingestion as part of its API. Thus, our service sits at
both the “Ingest” and “Consume” sides of the model of the Elastic Stack (see
Figure 2.1), while either Elasticsearch or ClickHouse fulfills the “Store” role.
This was done to keep the implementation limited to a single service, as a
multi-service architecture would have complicated the system for no real reason
in this case.

Although the purpose of the Analysis service is to support tests to compare

22

Elasticsearch and ClickHouse in this thesis, an attempt has been made to design
it to be generic and extensible as well. For example, while our service only
supports data ingestion from CSV files, it has defined data ingestion interfaces in
such a way that support for other formats can be added relatively easily (more
on this in section 3.5.2). The main reason for this is to make the implementation
more realistic, as one would not design a real service like this to only support a
few specific test cases.

The following sections will go into detail on the design and implementation
of the Analysis service, as well as the experiment to compare Elasticsearch
and ClickHouse. Section 3.1 will explain why ClickHouse was chosen as the
alternative database to evaluate against Elasticsearch. Section 3.2 will explain
my choice of programming language to implement the service. Section 3.3
will show the overall system architecture of the implementation, i.e. how the
different major components of the system interact. Section 3.4 will document and
explain the API of the service, which includes both data ingestion and analytical
queries. Section 3.5 will examine the internals of how the Analysis service
is implemented, by explaining the structure of the codebase and the choices
made in the implementation. Finally, section 3.6 will show the methodology
behind the experiment using the Analysis service to compare Elasticsearch and
ClickHouse.

3.1 The Choice of ClickHouse
As mentioned in the chapter introduction, the database chosen to compare with
Elasticsearch in the thesis experiment is ClickHouse. The following paragraphs
will explain the motivations for this choice.

Performance. As described in section 2.4.4, ClickHouse was designed from
the beginning with performance in mind. Its column-oriented storage model,
data compression and C++ implementation may help to solve the performance
and memory use challenges of Elasticsearch (see section 2.3). The performance
of a system is ultimately dependent on the context in which it is used, but since
ClickHouse is designed for analytical workloads, it looks at a first glance like it
should fit the use case of a data analytics platform.

Proven record. ClickHouse is already emerging as a potential viable alterna-
tive to Elasticsearch. For example, Uber (the ridesharing company) migrated its
log analytics platform from the ELK stack (Elasticsearch + Logstash + Kibana,
as described in section 2.1.4) to ClickHouse in 2021 [34]. One of the reasons cited
by Uber for this migration was hardware cost, mainly due to the overhead of
indexing fields in Elasticsearch. As described in section 2.3.1, the cost of indexing
is one of the issues Ignite has also had with Elasticsearch. Uber also describes
performance issues with aggregation queries, as Elasticsearch is “not designed
to support fast aggregations across large datasets”. Since Ignite essentially only
uses the aggregation part of Elastic’s API, this is another shared motivation for
exploring alternatives. Uber’s new ClickHouse solution “reduced the hardware
cost of the platform by more than half compared to the ELK stack”, and “the
ingestion latency is capped under one minute”. This shows that ClickHouse is a

23

promising alternative for the data analytics platform use case.

Other success stories with ClickHouse include Cloudflare, one of the biggest
content delivery networks in the world, which migrated their HTTP Analytics
service to ClickHouse in 2018 [35]. Their new solution “improved API throughput
and latency” and is “easier to operate”, both of which are relevant in solving the
challenges described in section 2.3. Sentry, a performance monitoring and error
tracking service, also built their new search infrastructure around ClickHouse
in 2019 [36]. They evaluated a number of other analytical databases, but chose
ClickHouse because it’s “operationally simple”, and “Data can be queried as soon
as it is written in real time” - i.e. mitigating the problem of stale reads described
in section 2.3.1. These cases, albeit anecdotal, further suggest ClickHouse as an
appropriate solution for analytical use cases.

SQL. Another reason for choosing ClickHouse as an alternative is its use of
SQL as its query language (see section 2.4.4). The choice of query language
does not directly affect the challenges presented in section 2.3, but it has a great
impact on the experience for the developer working with the database. A part
of the thesis experiment was to evaluate the developer ergonomics of working
with the different databases, as will be discussed in section 4.3. In this aspect, it
is interesting to compare Elasticsearch’s custom JSON-based API, to the more
traditional SQL format offered by ClickHouse. Thus, ClickHouse’s use of SQL
was another motivation for choosing it.

3.2 Choice of Programming Language
The chosen programming language for the implementation of the thesis experi-
ment is Go. Go is a relatively new language, developed by Google and released in
2009 [37]. It is a compiled, statically typed, garbage-collected language, placing
it around the same level of abstraction as Java and C#. What separates Go
from those languages is that it compiles to native machine code in a static binary,
as opposed to a bytecode format that requires an installed runtime (the JVM
for Java, or the CLR for C#). This has made Go popular in “cloud-native”
development, as it is typically easier to deploy a static binary to a web server
than an application that requires a runtime to also be installed.

The following paragraphs list the reasons why Go specifically was chosen for the
Analysis service.

Familiarity. The microservice architecture of the Ignite Platform (see sec-
tion 2.2) features multiple different programming languages, and one of the
most used ones is Go. In particular, Ignite’s Analysis service (see section 2.2.3)
is written in Go, which is the service that my own implementation is most
inspired by. When I previously worked on the Ignite platform myself, I mostly
developed microservices in Go, and so I have experience with how to structure
such services.

Although Ignite’s Analysis service is written in Go, it depends heavily on
Ignite’s Pivot library, which is written in C++ (as mentioned in section 2.2.3).
This library does most of the more complex interactions with Elasticsearch

24

in the Ignite platform, so that might argue in favor of using C++ for my
own service as well. However, my experience with C++ is minimal compared
to my experience with Go, so this would drastically slow down development
speed. Additionally, C++’s manual memory management increases the risk
of introducing security vulnerabilities (for example, it accounts for 70% of
Microsoft’s yearly vulnerabilities [38]). This risk would be compounded by my
lack of experience with the language, and so a memory-safe language such as Go
is more appropriate in this regard.

Performance. Go’s garbage collector means that it will not match the maxi-
mal performance of the likes of C and C++. However, being statically typed
and compiled to machine code makes it significantly faster than dynamic, in-
terpreted languages such as Python or JavaScript. In addition, Go’s semantics
for constructing objects on the stack, as well as the ability to keep more data
within a single allocation, can reduce pressure on the garbage collector and thus
out-perform similar languages such as Java [39].

Furthermore, Go’s native support for lightweight concurrency makes it a natural
fit for web server development. To achieve scalability, most web servers will use
multithreading in some way in order to process multiple incoming requests at the
same time. The problem with threads provided by the operating system is that
they are relatively heavy-weight: each thread is allocated around 2 megabytes of
memory for its stack [40]. This limits the amount of threads that a web server
can run simultaneously, which restricts how many requests it can serve at once.
Go’s solution to the scalability issue of OS threads is to implement its own kind
of lightweight threads in the language’s runtime, called goroutines. Go runs a
number of OS threads equal to the machine’s number of CPU cores [41], and
multiplexes goroutines onto these threads to allow for parallelism. Each goroutine
starts with just 2 kilobytes of memory for its stack [42] – 1000x less than the
default for OS threads – and whenever a goroutine makes an IO call, it yields to
the runtime so other goroutines can execute while it waits for the IO operation
to complete. This allows a server to run millions of goroutines concurrently, thus
providing the scalability that high-traffic web servers require.

Since the service implemented for the experiment is a web server designed to
be a part of a micro-service architecture, with support for high traffic, Go’s
performance characteristics and concurrency support makes the language a good
fit.

Explicit error handling. The most recognizable part of typical Go code is
its error handling. Go embraces “errors as values” as opposed to the exception
and try/catch model seen in most other modern programming languages. This
takes the form of functions returning multiple values, and if it can fail, the final
return value is an error. For example, take the GetTableSchema function from
the AnalysisDB interface (declared in db/db.go):

GetTableSchema(
ctx context.Context,
table string

) (TableSchema, error)

25

https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/db.go#L22

This function signature signals that it will either succeed and return a Ta-
bleSchema, or fail and return an error (types are placed after variable names in
Go). When calling this function, one can check the returned error to see if it
failed. For example, in api/schema.go:

schema, err := api.db.GetTableSchema(req.Context(), table)
if err != nil {

sendServerError(res, err, "failed to get table schema")
return

}

You will see this pattern repeated across the codebase of the Analysis service.
Some consider these repeated checks for if err != nil overly verbose and
tedious, but the benefit is that it makes it very clear where code may fail.
Thrown exceptions, on the other hand, make errors implicit: any function may
throw an exception, and your only way of knowing is to check its documentation,
if it exists. In implementing the Analysis service, this explicit error handling was
found to be quite helpful, as one often encounters errors when developing against
a database. This was another reason for choosing Go as the implementation
language.

3.3 System Architecture
To get an overview of how the Analysis service is implemented for the the-
sis experiment, this section will explain the overarching architecture of the
system.

The Analysis service can be configured to use either Elasticsearch or ClickHouse.
At startup, the program reads a configuration file to see which database to connect
to. It then establishes connections to the appropriate database, expecting the
database to already be running. The service then exposes an HTTP API, which
consumers can send requests to. The API is generic and independent from
the specific database the service is connected to, so it works the same whether
configured for Elasticsearch or ClickHouse. Section 3.4 details the format of this
API.

Figure 3.1 models the various components in the architecture around the Analysis
service. The “API Consumer” in the diagram can be anything making requests
to the Analysis service, but in a microservice architecture it would typically be
another application server that uses this service to store or analyze data as part
of some larger operation.

26

https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/api/schema.go#L21-L25

Figure 3.1: Deployment diagram of the Analysis service and its database con-
nections.

Figure 3.2: Sequence diagram following a request’s path from an API consumer
through the Analysis service and its connected database. DB stands for database.

27

When the Analysis service receives an API request, it parses the request body
into its expected format, and then translates it into a corresponding query for
its configured database. Once a response is received from the database, it is
then parsed into a generic response format, and passed back to the consumer. If
the request had an invalid format, or the database failed to process the query,
an error is returned instead. Figure 3.2 models a request’s path through the
Analysis service (though only looking at the happy path, assuming a valid request
and successsful processing by the database).

3.4 API of the Analysis Service
The Analysis Service interacts with the outside world by exposing an HTTP
interface. What this means in practice is that the service has a set of endpoints
defined, i.e. sub-routes for whichever URL the service is hosted on. For example,
when running the service locally on localhost:8000, the /run-query endpoint
is accessed by sending an HTTP request to localhost:8000/run-query. Each
endpoint expects input from either the request body, typically encoded as JSON,
and/or query parameters.

This type of API differs from the gRPC protocol used between microservices in
the Ignite platform (see section 2.2.1). This choice was made for practical reasons.
One of the benefits of gRPC is its reduced serialization overhead due to its binary
format. This is great when it is used to communicate between services, but not as
practical when manually interacting with the API as a human. Throughout the
development process of the service, being able to manually construct the JSON
messages sent to the API made debugging much simpler. Furthermore, Go’s
native support for this type of API reduced the need for external dependencies.
If the Analysis service were to actually be deployed as part of a microservice
architecture, it would probably be beneficial to refactor it to use gRPC, but the
current form of the API serves as a practical compromise.

The endpoints exposed by the Analysis service are as follows:

• /create-table-from-csv: This endpoint serves to let users create a new
database table with data from a CSV (“comma-separated values”) file. It
expects a request body with content type multipart form-data, which allows
the request to contain both a file upload and additional fields. In this case,
it expects a field called csvFile, containing a CSV file with the data to
ingest. It also expects a field called tableSchema, a JSON object that
names the fields of the data along with their data types (see section 3.4.1
for more detail on this format). It creates a new table in the database
with the fields from the given table schema, and then inserts the data in
bulk from the CSV into the created table. On success, it returns an empty
HTTP 200 OK response.

• /ingest-data-from-csv: This endpoint is identical to /create-table-
from-csv, except it ingests data into an existing table (given by the table
name in the table schema provided in the request).

• /deduce-csv-table-schema: The purpose of this endpoint is to let users
automatically deduce the data types and fields contained in their CSV

28

data. It also expects a multipart form-data request body, with a csvFile
field. It returns a JSON-encoded table schema with the fields and data
types deduced from the values found in the CSV, but with a blank table
name.

• /get-table-schema: This endpoint returns the table schema of a pre-
viously created table. It expects a query parameter named table, and
returns the JSON-encoded schema for that table, if found.

• /run-query: This is the main endpoint offered by the service, once data
has been ingested. It expects a query parameter named table for the table
to run a query on, and a request body with a JSON-encoded Analysis
query (see section 3.4.2 for more detail on the format) to run against the
database. It responds with a JSON-encoded Analysis result (more detail
on this also in section 3.4.2).

The general usage of this API is to send a CSV file with data to the /deduce-
csv-table-schema endpoint, then set the table name on the returned table
schema. This can then be used, along with the CSV file again, to create a table
with a request to the /create-table-from-csv endpoint. After that, one can
query the table by passing the table name and an appropriately constructed
query to the /run-query endpoint. If one later has the need to ingest more
table data, one can get the table schema again from the /get-table-schema
endpoint, and pass that along with new CSV data to the ingest-data-from-csv
endpoint.

The reason for separating the table schema deduction endpoint from the table
creation endpoint is to give more flexibility to the API consumer. The schema
deduction algorithm is not perfect, and may deduce the wrong data type for
certain fields. By separating these operations, the user has the opportunity to
fix errors in the schema before creating the table.

3.4.1 Table Schema Format
All of the endpoints of the Analysis service, except the /run-query endpoint,
either expect a table schema as input or return one as output. Thus, it is central
to the service. Its purpose is to provide a common abstraction over the schema
formats used by ClickHouse and Elasticsearch, so that clients can use the API
in the same way regardless of the backing database.

The Analysis table schema is a JSON object, with the following fields:

• tableName: A string with the name of the table. Must be unique.

• columns: An array of objects for each column in the table. The fields of
each column object are listed below.

– name: A string with the name of the column.

– dataType: Must be one of TEXT, INTEGER, FLOAT, DATETIME or UUID
(Universal Unique Identifier, a common ID format).

– optional: A boolean, representing whether unset values are allowed
for fields in the column.

29

Listing 3.1 shows an example of how a JSON-encoded table schema looks. This is
the schema for the test data that was also used for the custom analysis example
in the Ignite platform (see section 2.2.3).

When translating a table schema to a query against ClickHouse or Elasticsearch
to create the table, these data types are translated into the appropriate data
types for the database.

Listing 3.1: Example of the table schema format used by the Analysis service.
{
"tableName": "supplier_spend",
"columns": [
{
"name": "currency",
"dataType": "TEXT",
"optional": false

},
{
"name": "value",
"dataType": "INTEGER",
"optional": false

},
{
"name": "date",
"dataType": "DATETIME",
"optional": false

},
{
"name": "invoiceNumber",
"dataType": "INTEGER",
"optional": false

},
{
"name": "responsibleName",
"dataType": "TEXT",
"optional": false

},
{
"name": "supplierId",
"dataType": "UUID",
"optional": false

}
]

}

3.4.2 Query Format
The query format of the Analysis service is the expected JSON object in the
request body passed to the /run-query endpoint. It is essentially a simplified
version of the Ignite platform’s Pivot queries (see section 2.2.3).

30

The Pivot query format has the concept of value aggregations : fields to aggregate
data on, with a variety of operations supported. Furthermore, a Pivot query
has splits, i.e. fields used to partition the data before aggregating. Pivot allows
an arbitrary number of splits, in both row and column dimensions. In addition,
Ignite’s Analysis service has the concept of filters, a separate query object, with
nesting allowed, to filter data before it is queried.

In order to emulate the types of queries that the Ignite platform processes, the
query format of the thesis experiment also has splits, for both rows and columns.
However, the number of splits is limited to one in each dimension, in order
to simplify the implementation logic. Queries also only allow a single value
aggregation (just called “aggregation” in this format). Finally, our Analysis
service does not have the concept of filters, as this would further complicate the
implementation, when it’s the aggregation of Pivot that is the core of Ignite’s
queries.

The fields and sub-fields expected from the queries passed to our Analysis service
are as follows:

• aggregation

– kind: The kind of aggregation to perform. Must be one of SUM,
AVERAGE, MIN, MAX or COUNT.

– fieldName: The name of the field on which to aggregate. Must be
present in the queried table.

– dataType: The data type of the queried field. For aggregations, the
only supported data types are INTEGER and FLOAT. While this field is
not strictly necessary, as the Analysis service could query the database
for the type matching fieldName, that would require an extra round-
trip to the database before executing the query. It is assumed that
clients will typically already have the table schema when making a
query, so providing this should be trivial – and if not, they can fetch
it from the /get-table-schema endpoint. This field is also included
in Ignite’s Pivot queries.

• rowSplit

– fieldName: The name of the field to split the data on.

– dataType: The data type of the queried field. The logic for including
this in the query is the same as for the dataType field of the aggrega-
tion object. However, splits allow any of the data types (i.e. all of
TEXT, INTEGER, FLOAT, DATETIME and UUID).

– limit: The maximum number of results to include for the split. When
combined with sortOrder, this can be used to get the “top K” results
for some query, which is a common type of analytical query.

– sortOrder: The order by which to sort the returned results. Must
be either ASCENDING or DESCENDING.

– integerInterval: Optional, and only applicable to fields of the
INTEGER data type. If provided, each field value is rounded to the
nearest value in the given interval.

31

– floatInterval: Same as integerInterval, except for fields of the
FLOAT data type. It is kept in a separate field, as it makes it easier for
the implementation’s JSON parser to deserialize into the appropriate
type.

– dateInterval: Optional, and only for splits on DATETIME fields. It
must be one of YEAR, QUARTER, MONTH, WEEK or DAY.

• columnSplit: The same type of object as the rowSplit field.

Listing 3.2 shows an example of how Analysis queries look in practice. The
query here is semantically equivalent to the example used for Ignite’s Pivot query
format (see section 2.2.3): it gets the top 10 suppliers for each of the last 4
quarters, by the sum of our spend for each supplier in each quarter. Similarly to
the Pivot query, we see that each object in the query specifies the queried fields,
that the aggregation specifies its kind ("SUM"), and that the splits specify sort
order, limit and interval. The main difference between our format and Pivot is
that the top-level fields in the query are singular objects instead of arrays, since
as explained above, our implementation only allows a single aggregation and a
single split in each dimension.

Listing 3.2: Example of a JSON-encoded Analysis query.
{
"aggregation": {
"kind": "SUM",
"fieldName": "value",
"dataType": "INTEGER"

},
"rowSplit": {
"fieldName": "supplierId",
"dataType": "UUID",
"sortOrder": "DESCENDING",
"limit": 10

},
"columnSplit": {
"fieldName": "date",
"dataType": "DATETIME",
"sortOrder": "ASCENDING",
"limit": 4,
"dateInterval": "QUARTER"

}
}

The result of an Analysis query is also a JSON object, with the following
fields:

• rows: An array of objects, each representing a result for the query’s row
split, with the below specified fields. The number of objects are at most
the value of rowSplit.limit in the given query.

– fieldValue: This row result’s value for the field that was split
on (given by fieldName in the query). If the split had an inter-
val (integerInterval/floatInterval/dateInterval), the value is

32

rounded to the closest value in that interval, and includes all records
within that interval’s range.

– aggregationsByColumn: An array of values resulting from aggregat-
ing the query’s aggregation.fieldName for each column split and
this row split, aggregated according to the query’s aggregation.kind.
The array contains one aggregated value for each column split of the
query, so the first element is the aggregation for the first column split,
the second element for the second column split, et cetera.

– aggregationTotal: The sum of aggregationsByColumn.

• rowsMeta: The same object as the rowSplit field from the query. It
provides metadata that is useful to parse the returned results (such as the
data type of fieldValue).

• columns: An array of objects, each with a single field as specified below.
The array’s length is at most the value of columnSplit.limit in the given
query.

– fieldValue: Same as fieldValue from the row results, but for the
column split.

• columnsMeta: Similarly to rowsMeta, this field copies the columnSplit
object from the query, to provide metadata about the results.

• aggregationDataType: The data type of the aggregated values, useful for
parsing the results. Its value is the same as the aggregation.dataType
field from the query, i.e. INTEGER or FLOAT.

The rowsMeta, columsMeta and aggregationDataType fields are not strictly
necessary to include in the result object, as the client can get this metadata
from their original query objects. However, this requires clients to keep their
query objects around for parsing results, which makes the API less ergonomic
to use. Returning this metadata as part of the results is also more in line with
Ignite’s Pivot format on which this is based (see section 2.2.3), which indicates
that it is useful to return for this use case.

Listing 3.3 shows an example Analysis query result, in this case the result of
the query shown in Listing 3.2. We see that 10 rows are returned, as specified
in the query, sorted in descending order by the aggregation total for each row.
Furthermore, the result includes 4 columns, where each field value is the date at
the start of a quarter for that year, since we specified a dateInterval in the
query. The aggregationsByColumn field in each row has 4 elements, one for
each column – so the first aggregation value corresponds to the first quarter, the
second value to the second quarter, et cetera.

Listing 3.3: Example of a JSON-encoded Analysis query result.
{
"rows": [
{
"fieldValue": "674506db-16f2-4995-b4ab-02cf3cea5962",
"aggregationTotal": 9170496,
"aggregationsByColumn": [2308458, 1414463, 3868625, 1578950]

33

},
{
"fieldValue": "a5e2913e-8624-4ed2-b979-0c89277f3fbd",
"aggregationTotal": 8268271,
"aggregationsByColumn": [1958798, 3106917, 664589, 2537967]

},
{
"fieldValue": "cebdfd08-151c-41a2-a6e9-e9d2f0af25a0",
"aggregationTotal": 8267693,
"aggregationsByColumn": [829246, 1498596, 1760983, 4178868]

},
{
"fieldValue": "bc761473-1a5b-4b6e-a217-0b4556f2ad65",
"aggregationTotal": 8125914,
"aggregationsByColumn": [1606117, 1911257, 1481250, 3127290]

},
{
"fieldValue": "4554370b-692b-465a-9193-35e77f023288",
"aggregationTotal": 7767498,
"aggregationsByColumn": [1235287, 1816908, 2482320, 2232983]

},
{
"fieldValue": "cd01ba31-5752-47ec-bcf5-7177f55f700f",
"aggregationTotal": 7713269,
"aggregationsByColumn": [2692553, 2114652, 604948, 2301116]

},
{
"fieldValue": "00d0fb1e-6f4b-48d3-829e-b7616179318f",
"aggregationTotal": 7625860,
"aggregationsByColumn": [0, 1239843, 4757961, 1628056]

},
{
"fieldValue": "fe0757ce-9503-4ef0-9765-dd1c6f0b7e75",
"aggregationTotal": 7424424,
"aggregationsByColumn": [1712395, 2029003, 1719183, 1963843]

},
{
"fieldValue": "d9abd1f0-a9b0-4e13-ac30-00c8ce877e60",
"aggregationTotal": 7399902,
"aggregationsByColumn": [850080, 889134, 4290620, 1370068]

},
{
"fieldValue": "b30f9302-3a15-465d-a8f2-34928f8ef111",
"aggregationTotal": 7326747,
"aggregationsByColumn": [445084, 555393, 2218789, 4107481]

}
],
"rowsMeta": {
"fieldName": "supplierId",
"dataType": "UUID",

34

"limit": 10,
"sortOrder": "DESCENDING"

},
"columns": [
{ "fieldValue": "2020-01-01T00:00:00Z" },
{ "fieldValue": "2020-04-01T00:00:00Z" },
{ "fieldValue": "2020-07-01T00:00:00Z" },
{ "fieldValue": "2020-10-01T00:00:00Z" }

],
"columnsMeta": {
"fieldName": "date",
"dataType": "DATETIME",
"limit": 4,
"sortOrder": "ASCENDING",
"dateInterval": "QUARTER"

},
"aggregationDataType": "INTEGER"

}

3.5 Internal Structure of the Analysis
Service

To understand the internal structure of the Analysis service, it is first useful
to understand the structure of source files in the Go programming language.
A Go codebase is called a module, typically identified by a URL - in our case,
hermannm.dev/analysis (defined in the file go.mod), corresponding to a page
on my personal website. Every directory in a module is a package in that module.
For example, the files in the db directory comprise the db package, identified by
the full path hermannm.dev/analysis/db. When other packages want to use this
package, they import it by using the full path, and use identifiers from the package
by prefixing them with the package name – e.g. db.AnalysisQuery.

One important aspect of packages in Go is that they forbid circular dependencies,
meaning that dependencies between packages in Go only go one way. For example,
if the api package in the Analysis service imports the db package, it would be a
compilation error for the db package to then import api. Thus, a dependency
tree of Go packages is a directed acyclic graph. This affects how one structures
the codebase, as it effectively forces the developer to place code with mutual
dependencies in the same package.

To create an executable Go program, there must exist a package called main, with
a function called main within it that serves as the entry point of the program.
In the Analysis service, this package is at the top level, in the main.go file. This
orchestrates the other packages to run the service. Figure 3.3 shows the structure
of these packages, and the relationships between them. The following sections go
through each one of the Analysis service’s packages and explain their role.

35

https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/go.mod#L1
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/main.go

Figure 3.3: Package diagram of the Analysis service. Each arrow represents the
source package importing the target package.

3.5.1 The api package
The role of the api package is to set up and serve the HTTP API described in
section 3.4. It uses Go’s net/http package from the standard library to map
each API route to an HTTP handler function (in api/api.go). Each handler
function parses the HTTP request body into its expected format, and handles
it appropriately (implemented in api/analysis.go, api/ingestion.go and
api/schema.go). This package contains no database-specific logic, since it uses
the common db.AnalysisDB interface, which is further detailed below.

The file names analysis.go, ingestion.go and schema.go are reused across
packages. This is to signal that these files handle similar concerns, though at
different application layers. For example, api/analysis.go implements the
HTTP handler for running Analysis queries, db/analysis.go defines types
and utilities used for Analysis queries, and db/clickhouse/analysis.go and
db/elasticsearch/analysis.go implement translation and execution of Anal-
ysis queries for ClickHouse and Elasticsearch, respectively. ingestion.go files
handle data ingestion (i.e. bulk inserts - a common term used in contexts
such as Elasticsearch, see section 2.1.4), while schema.go files handle table
schemas.

3.5.2 The csv package
The csv package implements CSV parsing. It is a wrapper around the Go
standard library package encoding/csv, and provides some utilities on top of it.
This package is used by api in the /create-table-from-csv, /ingest-data-
from-csv and /deduce-csv-table-schema endpoints, and by the main package
in its benchmark tests (further detailed in section 3.6).

First of all, csv implements automatic field delimiter deduction. Although CSV
stands for “comma-separated values”, that separator does not in fact have to be
a comma. For example, the test data used for the experiment (see section 3.6)
is CSV delimited by semicolon. In order to accept all kinds of CSV files with
different delimiters, the Analysis service starts CSV parsing by looking at a

36

https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/api/api.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/api/analysis.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/api/ingestion.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/api/schema.go

limited number of rows in the beginning of the document, and finds the best
match for the field delimiter (implemented in csv/delimiter.go).

Secondly, the package implements table schema deduction from CSV files (in
csv/schema.go). Similarly to field delimiter deduction, it does this by looking
at a limited number of rows at the beginning of the document. It tries to parse
field values in each row to one of the service’s supported data types, falling back
to TEXT if it was not parsable to any other type.

Finally, the Reader type (defined in csv/reader.go) implements the db.Data-
Source interface. This allows the CSV reader to be passed to the db package
as a data source, without that package concerning itself with the fact that it’s
CSV. This means that if the Analysis service were to be expanded to accept
other formats than CSV, one would only have to implement the db.DataSource
interface for the new format, and it would work the same with all of db’s
functionality.

3.5.3 The db package
The db package is the central package of the service, as it is used by every
other package (except config). The most important part of the package is the
AnalysisDB interface (defined in db/db.go). It represents the abstraction over
the different databases implemented in the service. The methods of the interface
are implemented for both ClickHouse and Elasticsearch in the clickhouse and
elasticsearch packages (further detailed below). This is what allows the api
package to implement HTTP handlers that work for both databases, as the
AnalysisAPI type holds a reference to AnalysisDB, without knowing what the
underlying implementation is.

db/schema.go defines the table schema format as specified in section 3.4.1.
It also implements data type deduction from an unknown row, used by the
csv package in its schema deduction. This allows any future supported input
formats other than CSV to reuse this logic from db. Furthermore, the file
implements conversion of raw input rows to appropriate data types according to
a schema, used for the actual data ingestion into the database. Finally, it defines
a StoredTableSchema type, which is the format used for storing the schema
in ClickHouse and Elasticsearch. It turns out that it is easier to represent the
stored schema columns as a “struct-of-arrays” rather than an “array-of-structs”.
This is discussed further in section 4.3.1.

db/analysis.go defines the Analysis query and result formats as specified in
section 3.4.2. In addition, the file contains utilities for constructing query re-
sponses from generic database results, through the ResultHandle type. It allows
users to iterate over a database result set, and pass results to a ResultHandle,
which then handles all the logic of validating the results and adding them to the
full AnalysisResult. The implementations for ClickHouse and Elasticsearch
use this to share logic for result parsing, which lets them focus on only the
database-specific handling.

Two types are crucial for the generic result parsing of the db package: DBValue
(in db/db_value.go) and AggregatedValues (in db/aggregated_values.go).
These solve the problem of type casting correctly when dealing with data types

37

https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/csv/delimiter.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/csv/schema.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/csv/reader.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/db.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/api/api.go#L11
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/schema.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/schema.go#L218
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/analysis.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/analysis.go#L55
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/db_value.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/aggregated_values.go

not known at compile time. The Analysis service encounters this problem since
it accepts arbitrary table schemas, and must deal with all different schemas in
a generic manner. The solution found in the implementation was to define an
interface, i.e. DBValue, with methods that are not bound to a specific data type.
This interface is then implemented by a generic type, i.e. dbValue[T], which has
the actual underlying data type as a type parameter (generic type parameters in
Go use square brackets). When calling NewDBValue, a DBValue is constructed
through an appropriate type-parameterized implementation. This gives method
implementations access to the generic type parameter T, which makes it easier
to do type casting and generic operations. In a way, the generic implementations
act as “closures” over the type. This pattern helped to greatly reduce verbosity
and redundant repeated type-checking when parsing database results.

The remaining files in the db package define various enumerated types used in the
schema and query formats. AggregationKind (in db/aggregation_kinds.go)
defines the different kinds of aggregations offered for queries, DataType (in
db/data_types.go) defines the supported data types for columns in a schema,
DateInterval (in db/date_intervals.go) defines the possible intervals for
splits on DATETIME fields, and SortOrder (in db/sort_orders.go) defines the
available rankings for split results. These all share the same structure: a type
defined as an int8 (signed byte), the enumerated values for that type, a map of
their string representations, and methods for validation and JSON serialization.
These all use my package hermannm.dev/enumnames for mapping enumerated
values to string names – this package is separate from the Analysis service, as
it is one I use across different hobby Go projects. It allows these types to use
efficient int8s internally in the service, while using more human-readable strings
for the JSON API and debugging.

3.5.4 The clickhouse package
The key part of the clickhouse package is the ClickHouseDB type (in db/
clickhouse/clickhouse.go), which implements the db.AnalysisDB interface
for ClickHouse. It uses the official clickhouse-go database driver package [43]
to communicate with ClickHouse.

Table creation (in db/clickhouse/ingestion.go) is implemented by translating
a given schema into an appropriate CREATE TABLE SQL statement. Data ingestion
(in the same file) uses the PrepareBatch function from the ClickHouse package
in order to bulk insert from the given data source until it is read to completion.
It uses a batch size of 10 000 rows, which is within the range recommended by
ClickHouse’s documentation [44].

Storage, fetching and deletion of table schemas is implemented in db/click-
house/schema.go. The schemas are stored in a specified table created when the
server starts up (by calling CreateStoredSchemasTable), unless it already exists.
Storing and fetching converts between the db.TableSchema and db.Stored-
TableSchema types mentioned in section 3.5.3.

Analysis query execution is implemented in db/clickhouse/analysis.go. It
consists of three steps: translating the query to SQL, sending that query to
Clickhouse, and then parsing the returned result rows. As we see in parse-
AnalysisResultRows, it uses the ResultHandle type explained in section 3.5.3,

38

https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/db_value.go#L18
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/db_value.go#L32
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/aggregation_kinds.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/data_types.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/date_intervals.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/sort_orders.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/clickhouse/clickhouse.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/clickhouse/clickhouse.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/clickhouse/ingestion.go#L12
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/clickhouse/ingestion.go#L73
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/clickhouse/schema.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/clickhouse/schema.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/clickhouse/analysis.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/clickhouse/analysis.go#L80
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/clickhouse/analysis.go#L80

thus off-loading most of the result parsing logic from here.

All SQL construction in the package uses the QueryBuilder type (implemented
in db/clickhouse/query_builder.go), a wrapper around Go’s standard library
string builder. It provides methods for adding query parameters in a safe manner,
to avoid SQL injection.

3.5.5 The elasticsearch package
Like clickhouse, the elasticsearch package implements the db.AnalysisDB
interface through the ElasticsearchDB type (in db/elasticsearch/elastic-
search.go). It uses the official go-elasticsearch client package [45]. Elastic-
searchDB holds two different clients: a TypedClient and an “untyped” Client.
These provide different ways of interacting with Elasticsearch from Go. The
TypedClient is more integrated with the Go language, giving better type safety.
Client, on the other hand, gives more “raw” access to Elasticsearch, and as we
shall see, it is required for one of the APIs used in this package.

As explained in section 2.1, Elasticsearch uses slightly different terminology
from traditional databases: tables are called indices, and schemas are called
mappings. For consistency with the rest of the codebase and the generic API
of the Analysis service, the traditional terminology (i.e. tables/schemas) are
used where possible, though Elasticsearch-specific terms leaks through in the
APIs used from the go-elasticsearch package. For example, CreateTable
first translates the given generic table schema to Elasticsearch mappings, then
creates an index with the given table name and mappings.

Similarly to the ClickHouse implementation, elasticsearch implements data
ingestion through bulk insert (in db/elasticsearch/ingestion.go). It uses the
BulkIndexer type from Elastic’s esutil package, which provides a higher level
of abstraction than the clickhouse-go equivalent. Rather than the developer
choosing a batch size and sending batch-by-batch on their own, one adds all
records to the BulkIndexer, and it internally maintains a number of workers
that will flush data to Elasticsearch at certain thresholds [46]. This makes
for a more ergonomic API, though it may come at the cost of the developer’s
control of exactly how bulk insertion is executed. One less ergonomic part of
this API is that the BulkIndexer requires an elasticsearch.Client instance,
as opposed to the elasticsearch.TypedClient used elsewhere – which is why
ElasticsearchDB must hold two different client references.

Schema handling (in db/elasticsearch/schema.go) uses a dedicated index for
storing schemas, with a mapping corresponding to the StoredTableSchema type
from the db package. Store, get and delete operations then operate on this index
to persist table schemas.

Finally, Analysis query execution is implemented in db/elasticsearch/analys-
is.go. It first translates the given generic Analysis query to the equivalent
Elasticsearch format. This involves creating an aggregation, of which there are a
great variety of different types, and nesting sub-aggregations as appropriate to
construct the query. Aggregation types include operations such as sum, average,
min and max, but also bucket aggregations which essentially function like the
GROUP BY SQL clause, grouping values into “buckets” that can then be aggregated

39

https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/clickhouse/query_builder.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/elasticsearch/elasticsearch.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/elasticsearch/elasticsearch.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/elasticsearch/ingestion.go#L15
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/elasticsearch/ingestion.go#L33
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/elasticsearch/schema.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/elasticsearch/analysis.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/elasticsearch/analysis.go

separately. For example, Analysis queries that include a row/column split with a
dateInterval (see section 3.4.2) will use Elastic’s DateHistogramAggregation,
placing values within the same date interval into the same buckets.

After translating and executing the query, the next step is to parse the re-
turned JSON from Elasticsearch. The response format is defined by the
analysisQueryResponse struct, which is then translated to the generic Analy-
sisResult type using the utilities provided by the db package.

3.5.6 The config package
The config package (in config/config.go) defines the available configuration
parameters for the Analysis service, and provides a function for reading and
validating service configuration from system environment variables. It uses the
joho/godotenv package to read environment variables from a .env file, and the
caarlos0/env package to parse environment variables into structs in a declarative
manner. When starting the Analysis service (in main.go), the configuration
is passed to the api package and the clickhouse or elasticsearch package
(depending on which database is configured) for initialization.

3.6 Experiment Methodology
In order to perform a quantitative comparison between ClickHouse and Elastic-
search, the Analysis service includes a set of automated benchmarks for various
aspects of the database interfaces. These are located in the top-level main
package, in benchmark_test.go. The tests use Go’s standard library testing
package, which supports benchmarking [47].

Setup for the benchmarks is done in the TestMain function, which reads the
service’s configuration and initializes the database, much like when launching
the Analysis service normally. The difference here is that we do not serve the
API, since the benchmarks go directly to the database in order. This avoids
the added time of sending requests to the Analysis HTTP API – since this
API is the same for ClickHouse and Elasticsearch, it would only add noise to
the benchmarks. Once the database is initialized, it sets the global database
variable, so that it can be used by the benchmark tests. This variable is an
instance of the db.AnalysisDB interface, which allows our benchmarks to work
for both ClickHouse and Elasticsearch, while the underlying implementation
goes to the configured database.

The benchmarks use test data from the test-data.csv file at the root of the
Analysis service repository. This file contains 200 000 rows of hypothetical
transactions made between a company and its suppliers, and is the same data
as the one used for the custom analysis example in the Ignite platform (see sec-
tion 2.2.3). The schema of the data is defined by the testDataColumns variable,
and is equivalent to the example table schema shown in Listing 3.1.

Three different benchmarks are implemented for the Analysis service. Benchmark-
Ingestion sets up a test table and benchmarks the time used for ingesting the
test data CSV file. BenchmarkQuery tests the time taken for Analysis queries

40

https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/elasticsearch/analysis.go#L157-L172
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/elasticsearch/analysis.go#L47-L62
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/config/config.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/main.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/benchmark_test.go
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/benchmark_test.go#L36
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/benchmark_test.go#L25-L32
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/benchmark_test.go#L55
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/benchmark_test.go#L55
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/benchmark_test.go#L72

against the database, using the same query as the example shown in Listing 3.2.
Finally, BenchmarkCreateTable tests the time used for table creation.

While the benchmarks provide quantitative performance comparisons between
ClickHouse and Elasticsearch, another important part of the thesis research
goals is to examine the developer ergonomics of working with the two databases.
This requires a more qualitative approach. In the process of implementing the
Analysis service, I therefore kept a “developer diary”. I took notes of observations
I made in the development process, especially when it came to issues of data
correctness, and APIs that were particularly troublesome to work with. These
notes provided concrete examples for describing the developer ergonomics of
working with the databases, and form the basis for the qualitative findings to be
presented in chapter 4.

3.6.1 Reproducing Benchmark Results
The steps below detail how to set up and run the benchmarks for the Analysis
service, in order to reproduce the quantitative results of the thesis experi-
ment.

1. Download, install and run Docker, a tool for standardizing application
environments [48], used by the Analysis service to simplify running of
ClickHouse and Elasticsearch. One way to install it is through the Docker
Desktop application, from https://docs.docker.com/desktop/.

2. Install the Go programming language toolchain (minimum version 1.21.1)
from https://go.dev/dl/.

3. Clone the Git repository of the Analysis service:

git clone https://github.com/hermannm/analysis.git

4. Copy the .env.example file at the root of the Analysis repository to a
new file called .env. Change the DATABASE field to the database we wish
to test (clickhouse or elasticsearch).

5. Navigate into the Analysis service directory in the terminal.

6. Run the previously chosen database through Docker.

• For ClickHouse:

docker compose up clickhouse

• For Elasticsearch:

docker compose up elasticsearch

7. In a new terminal shell, navigate back to the Analysis service directory,
and run benchmarks through Go. The -benchtime flag allows ut to set
the number of iterations to run (by default, the number of iterations is
quite low due to the time taken for each iteration in these cases). We use
1000 iterations for the query benchmark, and 100 for the ingestion and
table creation tests (since they already run for minutes).

• To benchmark data ingestion:

41

https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/benchmark_test.go#L108
https://docs.docker.com/desktop/
https://go.dev/dl/

go test -bench=Ingestion -benchtime=100x

• To benchmark Analysis queries:

go test -bench=Query -benchtime=1000x

• To benchmark table creation:

go test -bench=CreateTable -benchtime=100x

8. Stop the database:

docker compose down

9. To test the other database, change the DATABASE field in the .env file
accordingly, and redo from step 6.

42

Chapter 4

Results and Discussion

This chapter will present and discuss the results of the thesis experiment. Sec-
tion 4.1 discusses the results of the benchmarks performed for various aspects of
the implementations for ClickHouse and Elasticsearch. Section 4.2 goes on to
discuss the issue of correctness in query results, and observations made regarding
it through the development process of the experiment. Then, section 4.3 discusses
the aspect of developer ergonomics from working with the different databases.
Finally, section 4.4 presents limitations of the results.

4.1 Performance
Appendix A details the results of running the benchmarks detailed in section 3.6.
One of our findings is that ClickHouse ingests data 2.9 times faster than Elastic-
search. This is a promising result for ClickHouse as a potential alternative to
Elasticsearch, since it should help to alleviate the “time to index” challenge with
Elasticsearch (see section 2.3.1).

In addition, ClickHouse performs table creation 10.7 times faster than Elas-
ticsearch. This is not as important a finding as the ingestion result, as table
creation makes up a smaller part of the overall ingestion process. Nevertheless, it
suggests that ClickHouse can perform substantially better for common database
operations.

Finally, our benchmark of Analysis queries shows that Elasticsearch in fact
performs 3.2 times faster than ClickHouse for the same type of query. This
result is surprising, as ClickHouse’s claimed performance was one of the main
reasons for examining it closer (see section 3.1). Revisiting the case of Uber
migrating their log analysis platform from Elasticsearch to ClickHouse, we see
that Elasticsearch’s poor query performance was one of their main reasons
for migrating, and that ClickHouse provided a substantial speedup [34]. This
suggests that we could expect faster query execution from ClickHouse than
Elasticsearch.

Alibaba, the Chinese e-commerce company, provides further reasons to be
surprised by our query performance results. In benchmarks performed by

43

Alibaba’s Cloud Database OLAP Product department, ClickHouse out-performs
Elasticsearch in a variety of metrics across multiple query types [49]. One crucial
difference here is that the data sets used for Alibaba’s benchmarks contain
hundreds of millions of records, as opposed to the 200 000 records used in our
experiment. It may be that ClickHouse’s performance advantages only start to
show for truly massive datasets. But the stark contrasts between our service’s
results and those of Alibaba and Uber may also suggest a flaw in our experiment.
Section 4.4 will explore some of the possible flaws of our experiment.

One possible explanation for the differences in query performance is that the
queries are run with different correctness guarantees. As discussed in section 2.3.2,
Elasticsearch queries by default make a tradeoff in favor of performance over
complete correctness. In ClickHouse, on the other hand, complete correctness is
the default, while opt-in tools are provided to trade accuracy for performance
[50]. These opt-in tools were not used in our Analysis service, and so our
ClickHouse implementation guarantees correct results, while our Elasticsearch
implementation technically could return incorrect results, if we’re unlucky with
how data is distributed across shards (see section 2.3.2). Guaranteeing correctness
for Elasticsearch may require us to implement the same logic for retrying queries
as Ignite’s Pivot library (also explained in section 2.3.2), which would involve
more round-trips to the database, degrading performance. Thus, our query
benchmarks may not be an entirely fair comparison, as Elasticsearch is allowed to
risk sacrificing correctness in order to optimize query execution, while ClickHouse
is not. As we shall see in section 4.2, correctness guarantees are an important
part of the difference between the two databases.

4.2 Correctness
The most significant qualitative observation made through the development
process of the thesis experiment was the negative impact of working with a
database with reduced correctness guarantees. As explained in section 2.3.2,
Elasticsearch sacrifices some accuracy in query results in order to improve
performance. The consequence of this tradeoff was encountered in the initial
implementation of Analysis query execution for Elasticsearch, in which a bucket
sort aggregation was used. This seemed like the correct choice for the type of
query processed by the Analysis service, since it lets us specify sort orders and
size for adjacent aggregations in the query (what Elasticsearch calls a pipeline
aggregation) [51].

This initial query implementation ran without errors, and returned results that
appeared reasonable at first glance, as the numbers seemed in line with the
results previously observed for the query in the Ignite platform and for our
ClickHouse implementation. However, after comparing the results exactly, it
became clear that the Elasticsearch query had missed some data. The query in
question was the “top 10 suppliers” query shown in Listing 3.2, and the effect of
Elasticsearch’s inaccuracy was that the results missed one of the top 10 suppliers
entirely, and returned the wrong aggregated spend values for several of them,
leading to incorrect rankings.

Once the errors in the returned results were discovered, the implementation had

44

to change. The first attempt was to change size and shardSize parameters in
the query, in order to force Elasticsearch to examine more documents and thus
improve correctness. This did change the results, but they still did not match
those from Ignite and ClickHouse. When these parameters were adjusted too
high, it caused out-of-memory errors in Elasticsearch, and so it became obvious
that they were not the solution. After more experimenting, it became clear
that it was in fact the bucket sort aggregation that was the real issue. The
way that this aggregation type interacted with the other aggregations in the
query (namely for the row and column splits) made it almost impossible for
Elasticsearch to return correct results, since it would require examining most
documents in every shard, which Elasticsearch by design tries not to do (as
explained in section 2.3.2).

The solution was to move away from the bucket sort aggregation, and instead
use “ordering by a sub-aggregation” [52]. This finally produced correct results
for our Analysis query against Elasticsearch, and also significantly improved
the performance of the query. However, this solution was not obvious. Firstly,
the documentation for this feature was buried deep in a subsection on the
documentation page for a general aggregation type. Secondly, its documentation
warned that it “generally produces incorrect ordering” [52]. This made it a less
obvious choice than the bucket sort aggregation, which had its own dedicated
documentation page [51], with examples that appeared to match the semantics
of an Analysis query. But in this case, the less obvious choice was the correct one.
This illustrates how Elasticsearch’s API can make it difficult to find the right
choice for a given query, due to the large variety of different aggregation types
that interact through nesting and pipelining. When combined with “inaccuracy-
by-default”, precious developer time may end up being spent on navigating the
API to produce correct results.

Another problem with Elasticsearch’s reduced correctness guarantees is the
issue of discoverability. As explained, the inaccuracies in the results from the
initial query implementation were only discovered after comparing them with
previous results from the same query in the Ignite platform and our ClickHouse
implementation. In other words, the errors were only discovered because we
already knew the answer to the query. If we had not already had these previous
results, the implementation might have been left as-is, and continued to return
incorrect results. This would be the normal state of affairs; most applications
do not implement their queries for multiple databases, and neither do they
typically have an existing platform such as Ignite that they can cross-reference
with semantically equivalent queries.

This issue of discoverability can cause problems of incorrectness to arise in
non-ideal ways. In a data analytics platform such as Ignite, users may use the
results of their custom analyses to make business decisions. If, for example, the
“top 10 suppliers” query exemplified in section 2.2.3 were to be used as a basis
for which of a company’s suppliers to make further deals with, incorrect results
can change the decision made, with potentially dire consequences. The user
may not know that the underlying database powering their analytics does not
in fact guarantee correctness. Ignite’s process of retrying queries to improve
correctness (see section 2.3.2) was in fact implemented in response to a user
complaint about incorrect analysis results (Erik Bøe, personal communication,

45

May 3, 2023). Such a problem being encountered by a user can weaken the
credibility of a data analytics platform, and cause other users to distrust their
data in it. Thus, correctness of query results is of great importance to this
type of platform, and as we have seen, ClickHouse provides better correctness
guarantees than Elasticsearch by default.

4.3 Developer Ergonomics
As explained in section 3.6, a developer diary was kept through the development
process of the Analysis service, to record observations on the developer ergonomics
of working with ClickHouse and Elasticsearch. The following sections present
the key observations made for this qualtitative aspect of the databases.

4.3.1 Object-Columnar Impedance Mismatch
When developing applications with traditional relational databases, a well-
known challenge is that of “object-relational impedance mismatch”, which is
the mismatch encountered between the object-oriented data model of most
application software and the relational model of a database [53]. This mismatch
requires a mapping between the object-oriented and relational models, costing
time and effort for the developer.

In the development of the ClickHouse implementation for our Analysis service,
a similar mismatch was observed between the object-oriented structures of the
Go program, and the column-oriented storage model of the database. The most
concrete example of this is the StoredTableSchema type (in db/schema.go).
This type is equivalent to the TableSchema type used in the API of the Analysis
service, except it turns the “array of structs” for the schema’s columns into a
“struct of arrays” for each field of the column. This was implemented in order to
fit in with ClickHouse’s columnar model.

Wen storing and fetching schemas (in db/clickhouse/schema.go), the appli-
cation has to convert back and forth between the stored representation of the
schema and the format used for the API. Although this mapping is not that
complex in this example, it nonetheless costs time and effort for the developer,
and thus presents a similar mismatch to the object-relational one. We call
this the “object-columnar impedance mismatch”, representing the mismatch
encountered when object-oriented applications interact with columnar databases,
such as ClickHouse. In a larger application, such as the full extent of the Ignite
platform, the time and effort required to address this mismatch could become a
greater problem than what we observe in our Analysis service.

One solution to this mismatch is to fully embrace the column-oriented model.
In the example of table schemas in the Analysis service, this would involve using
the StoredTableSchema type for the API as well. Essentially, all data that ends
up in the database would use a “struct of arrays” layout. However, exposing
this in the API of the service would require all API clients to also adopt this
model, essentially moving the mismatch along. This is not necessarily a problem
in itself, but it does present a leaky abstraction. Part of the point a service such
as Analysis is to abstract away the underlying database, and present an intuitive
API to clients. The column-oriented model is not the model that most developers

46

https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/schema.go#L218
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/schema.go#L13
https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/clickhouse/schema.go

would opt for in traditional object-oriented environments, so the columnar model
of the database that the Analysis service abstracts over would “leak” through
the API. In a microservice architecture such as that of the Ignite platform, such
a decision could permeate throughout multiple services and frontends, and thus
leak through multiple layers of the application. A developer that works multiple
layers removed from the Analysis service may encounter this object-columnar
impedance mismatch, and struggle to work with this model when the motivation
behind it is hidden multiple layers away. Thus, this impedance mismatch of
ClickHouse presents challenges with abstractions and API design for a data
analytics platform.

The object-columnar impedance mismatch may also partly explain the rela-
tively poor query performance we observed for ClickHouse in section 4.1. The
clickhouse-go client package used to interact with the database partly abstracts
away the column-oriented nature ClickHouse, in order to provide row-oriented se-
mantics that are more intuitive to the object-oriented developer [54]. Essentially,
this package pays the cost of the object-columnar impedance mismatch, so that
the application itself does not need to tackle it. However, ClickHouse also offers
the lower-level ch-go client package, which provides a real column-oriented inter-
face, avoiding the overhead of pivoting data between row- and column-oriented
formats. If the Analysis service used the ch-go client package instead of the
higher-level alternative, it might have improved performance. However, the
overhead of converting between rows and columns could still have manifested
itself, just at a different layer of the application, so it is difficult to say if this
would make a real difference. Nonetheless, it presents yet another potential issue
of the object-columnar impedance mismatch of ClickHouse.

4.3.2 Non-Descriptive Error Messages
One of the reasons for choosing Go as the implementation language for the Anal-
ysis service was its explicit error handling, which would help when encountering
errors from the database during development (see section 3.2). However, this
is less helpful when the error messages returned by the database provide very
little information themselves. This was the case for the early development of
the Elasticsearch implementation in the Analysis service. On multiple occasions,
queries against Elasticsearch failed for one reason or another, but the error
messages returned by the database gave no indication of the actual underlying
cause of the failure.

In one instance, Elasicsearch returned “all shards failed” – which is essentially
the equivalent of “something went wrong”. The actual underlying error was that
the provided mapping for an index did not actually match the ingested data. In
another case, the Elasticsearch client simply returned “EOF” (i.e. end-of-file)
when the actual error was unrelated to IO. These are just two anecdotes of
an overall trend observed in the initial development process with Elasticsearch:
that database errors encountered required a lot of manual debugging, increasing
the time taken to resolve them. This differed from the developer experience
with the ClickHouse implementation, in which the database mostly provided
useful error messages. Although database error messages cannot be perfect in all
cases, as the database does not necessarily understand the developer’s intention,
ClickHouse’s superior ergonomics in this case suggested that Elasticsearch could

47

improve in this area.

Later in the development process, it was discovered that Elasticsearch did in fact
provide a way to get more descriptive error messages. Most of Elasticsearch’s
error responses include a reason field, with a longer error message that provides
more context for the error. This drastically improved the developer experience of
debugging errors from the database, but it was not obvious how to discover this
part of the API. The reason of an error is not included in its error message by
default, and requires the developer to manually extract it. In the Analysis service,
custom logic was implemented to handle this (in db/elasticsearch/errors.go),
requiring type casting of the initial error from Elasticsearch, and inspection of
the source code of the official go-elasticsearch client package in order to see
the types of errors one could really expect. Although this greatly improved the
error messages from Elasticsearch, the poor discoverability of this feature and
the extra implementation logic required to use it is far from ideal. Compared to
ClickHouse, whose errors provided useful context without requiring additional
parsing, Elasticsearch’s developer ergonomics were poor in this regard. When
developing a complex application such as a data analytics platform, this can
increase the time taken to fix errors, and thus negatively impact users.

4.4 Limitations of the Experiment
There are multiple limitations to the thesis experiment as implemented, which
may help to explain surprising results such as ClickHouse’s relatively poor query
performance (as detailed in section 4.1). The following paragraphs present such
limitations.

Local environment. The benchmarks of the thesis experiment were run on a
personal computer (see Appendix A), with ClickHouse and Elasticsearch running
through Docker on that same computer. This does not accurately represent the
environment that this type of system would run on in the real world. For example,
the Ignite platform runs on Google Cloud, deployed with Kubernetes (a system
for managing containerized applications [55]). The benchmark results may have
differed if they were run in such an environment, as that would typically involve
the database running on a separate server from the Analysis service. This would
introduce network latency between the application and the database, which
might have affected the two databases differently due to differences in formats
used across the network. Having said that, services in a cloud architecture are
typically deployed close together in a data center, which minimizes network
latency. Nonetheless, the possible effects of the environment remain a limitation
of the thesis experiment.

Limited data set and query variety. The data set used for the benchmarks
was the single test-data.csv file, with 200 000 rows of hypothetical supplier
spend data. The first limitation of this is that it’s not real data; the test data was
adapted from a data set generated by Ignite for tests of their Data Management
System. The distribution of values in this data set may not represent how values
are distributed in data from real users. How the data is distributed may affect
how the databases perform on it, and so this may make the benchmark results

48

https://github.com/hermannm/analysis/blob/7129fdab57be2270f74af770ec15ecdfa5c2cc97/db/elasticsearch/errors.go

less applicable. A second limitation is the fact that this was the only data set
used. It may be that pecularities of this specific data set are advantageous to
one database over the other, thus affecting benchmark results.

Additionally, the query benchmarks were run for just a single type of query (the
“top 10 suppliers” query shown in Listing 3.2). Similarly to the lack of variance
in data sets, it may be that this specific query is handled better by one database
over the other. To achieve more generalizable results, multiple different kinds of
queries should be benchmarked.

49

Chapter 5

Conclusion

The research goal of this thesis was to examine whether a potential alternative
can replace Elasticsearch in a data analytics platform. The fact that we were
able to implement the same generic analytical query API for both ClickHouse
and Elasticsearch, suggests that ClickHouse is at least viable as an alternative.
Since the Analysis query format used in this experiment mimics that of Ignite’s
Pivot format, this shows that ClickHouse’s analytical query capabilities should
be sufficient to serve such a data analytics platform.

Additionally, the performance gains made by our ClickHouse implementation
in data ingestion presents it as a candidate for solving the challenge of long
indexing times with Elasticsearch, which causes stale data in the Ignite platform.
However, ClickHouse’s poorer query performance in the benchmarks is a caveat
to this, as it may be that Elasticsearch serves these types of queries better. That
being said, we have seen multiple limitations and potential problems with this
query performance finding, so further work is needed to make a conclusion on
this point.

Finally, we have seen the challenge that result correctness poses when using
Elasticsearch. First, Ignite’s need for a process of retrying queries to improve
correctness is already a sign that Elasticsearch’s guarantees are insufficient
here. Secondly, the observations made during the development process of our
Elasticsearch implementation, showing the issues of discoverability and distrust
in query results, illustrate the negative impacts of these lacking correctness
guarantees. ClickHouse’s correct-by-default model, where trading inaccuracy
for performance is opt-in, may provide a better foundation for a data analytics
platform where result correctness is a priority.

Overall, this thesis finds that ClickHouse may be a suitable alternative to Elastic-
search in a data analytics platform, though the limitations of the experiment and
ClickHouse’s own challenges mean that it is not the obvious solution.

50

5.1 Further Work
As discussed in section 4.4, the environment in which the thesis experiment was
run may make the benchmark results less valid. Thus, deploying the Analysis
service in a real production environment would be useful to see how it affects
performance. In addition, one could gather an expanded data sets and produce
a greater variety of queries to solve the limitation of the experiment’s lack of
variety in this aspect.

Next, this experiment only compares two analytical databases. As we saw in
section 2.4, there are multiple other potential alternatives. Using the modular
design and generic API of the Analysis service, one could implement adapters
for more databases for a broader set of comparisons.

Finally, the benchmarks made as part of this experiment are limited in that they
only examine the latencies of database operations. As we saw in section 2.3,
memory use is one of the key challenges that Ignite has experienced with
Elasticsearch. Thus, it would be interesting to measure the memory footprint
of the different databases when faced with various workloads. This type of
benchmark was considered for the thesis, as Docker provides tools for measuring
memory use of running containers (i.e. the databases in this case). However, this
was abandoned due to the way that Elasticsearch uses system memory, since it
reserves a large static portion of memory for its Java Virtual Machine, making it
difficult to observe the actual memory from outside a container. But tools exist
to profile memory within the JVM of Elasticsearch, so this type of benchmark
could be performed with further work.

51

References

[1] Hermann Mørkrid. Computer Science Specialization Project: Challenges
with Running Elasticsearch in Production. Norwegian University of Science
and Technology, 2023.

[2] Elastic. What is Elasticsearch? url: https://www.elastic.co/guide/
en/elasticsearch/reference/current/elasticsearch-intro.html
(visited on Jan. 30, 2023).

[3] Elastic. Data in: documents and indices. url: https://www.elastic.co/
guide/en/elasticsearch/reference/current/documents-indices.
html (visited on Jan. 30, 2023).

[4] Elastic. Scalability and resilience: clusters, nodes, and shards. url: https:
//www.elastic.co/guide/en/elasticsearch/reference/current/
scalability.html (visited on Jan. 30, 2023).

[5] Elastic. Dynamic field mapping. url: https://www.elastic.co/guide/
en / elasticsearch / reference / current / dynamic - field - mapping .
html (visited on Feb. 15, 2023).

[6] Elastic. Information out: search and analyze. url: https://www.elastic.
co/guide/en/elasticsearch/reference/current/search-analyze.
html (visited on Jan. 30, 2023).

[7] Elastic. Query DSL. url: https : / / www . elastic . co / guide / en /
elasticsearch / reference / current / query - dsl . html (visited on
Feb. 17, 2023).

[8] Elastic. Aggregations. url: https : / / www . elastic . co / guide / en /
elasticsearch/reference/current/search-aggregations.html (vis-
ited on Feb. 17, 2023).

[9] Apache Lucene. Lucene Features. url: https://lucene.apache.org/
core/ (visited on Mar. 1, 2023).

[10] Elastic. Aggregations. url: https://www.elastic.co/guide/en/kibana/
current/lucene-query.html (visited on Mar. 1, 2023).

[11] Elastic. A Practical Introduction to Logstash. url: https://www.elastic.
co/blog/a-practical-introduction-to-logstash (visited on Mar. 3,
2023).

[12] Elastic. Kibana — your window into Elastic. url: https://www.elastic.
co/guide/en/kibana/current/introduction.html (visited on Mar. 3,
2023).

52

https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/documents-indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/documents-indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/documents-indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/scalability.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/scalability.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/scalability.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/dynamic-field-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/dynamic-field-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/dynamic-field-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-analyze.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-analyze.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-analyze.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html
https://lucene.apache.org/core/
https://lucene.apache.org/core/
https://www.elastic.co/guide/en/kibana/current/lucene-query.html
https://www.elastic.co/guide/en/kibana/current/lucene-query.html
https://www.elastic.co/blog/a-practical-introduction-to-logstash
https://www.elastic.co/blog/a-practical-introduction-to-logstash
https://www.elastic.co/guide/en/kibana/current/introduction.html
https://www.elastic.co/guide/en/kibana/current/introduction.html

[13] Elastic. Learn about the Elastic Stack. url: https://www.elastic.co/
guide/index.html (visited on Mar. 7, 2023).

[16] WebPivotTable. Pivot Table. url: https://webpivottable.com/doc/
pivot-table/ (visited on May 3, 2023).

[17] Microsoft. Overview of PivotTables and PivotCharts. url: https : / /
support.microsoft.com/en-us/office/overview-of-pivottables-
and-pivotcharts-527c8fa3-02c0-445a-a2db-7794676bce96 (visited
on May 3, 2023).

[18] Elastic. Terms aggregation. url: https://www.elastic.co/guide/
en/elasticsearch/reference/8.12/search-aggregations-bucket-
terms-aggregation.html (visited on Feb. 4, 2024).

[20] Avinash Lakshman and Prashant Malik. “Cassandra — A Decentralized
Structured Storage System”. In: ACM SIGOPS Operating Systems Review
44.2 (2010), pp. 35–40.

[21] Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services”. In: ACM SIGACT
News 33.2 (2002), pp. 51–59.

[22] Apache Cassandra. The Cassandra Query Language (CQL). url: https:
//cassandra.apache.org/doc/latest/cassandra/cql/index.html
(visited on Aug. 29, 2023).

[23] ScyllaDB. Where Cassandra Falls Short, and Why. url: https://lp.
scylladb.com/cassandra-falls-short-wp-offer (visited on Aug. 31,
2023).

[24] DataStax (Apache Cassandra Enterprise Solution). DataStax Enter-
prise Capacity Policy. url: https : / / docs . datastax . com / en /
dseplanning / docs / dse - capacity - planning . html # datastax -
enterprise-capacity-policy (visited on Aug. 31, 2023).

[25] Amazon Web Services. Amazon EC2 I3en Instances. url: https://aws.
amazon.com/ec2/instance-types/i3en/ (visited on Aug. 31, 2023).

[26] Scylla Documentation. CQL - Apache Cassandra Query Language. url:
https://opensource.docs.scylladb.com/stable/cql/ (visited on
Aug. 31, 2023).

[27] Fay Chang et al. “Bigtable: A Distributed Storage System for Structured
Data”. In: 7th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 2006, pp. 205–218.

[28] ClickHouse. Our story. url: https://clickhouse.com/company/our-
story (visited on Feb. 4, 2024).

[29] Alexey Milovidov. Introducing ClickHouse, Inc. Sept. 20, 2021. url: https:
//clickhouse.com/blog/introducing-click-house-inc (visited on
Feb. 4, 2024).

[30] ClickHouse. Why is ClickHouse so fast? url: https://clickhouse.com/
docs/en/concepts/why-clickhouse-is-so-fast (visited on Feb. 4,
2024).

[31] ClickHouse. ANSI SQL Compatibility of ClickHouse SQL Dialect. url:
https://clickhouse.com/docs/en/sql-reference/ansi (visited on
Jan. 27, 2024).

53

https://www.elastic.co/guide/index.html
https://www.elastic.co/guide/index.html
https://webpivottable.com/doc/pivot-table/
https://webpivottable.com/doc/pivot-table/
https://support.microsoft.com/en-us/office/overview-of-pivottables-and-pivotcharts-527c8fa3-02c0-445a-a2db-7794676bce96
https://support.microsoft.com/en-us/office/overview-of-pivottables-and-pivotcharts-527c8fa3-02c0-445a-a2db-7794676bce96
https://support.microsoft.com/en-us/office/overview-of-pivottables-and-pivotcharts-527c8fa3-02c0-445a-a2db-7794676bce96
https://www.elastic.co/guide/en/elasticsearch/reference/8.12/search-aggregations-bucket-terms-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.12/search-aggregations-bucket-terms-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.12/search-aggregations-bucket-terms-aggregation.html
https://cassandra.apache.org/doc/latest/cassandra/cql/index.html
https://cassandra.apache.org/doc/latest/cassandra/cql/index.html
https://lp.scylladb.com/cassandra-falls-short-wp-offer
https://lp.scylladb.com/cassandra-falls-short-wp-offer
https://docs.datastax.com/en/dseplanning/docs/dse-capacity-planning.html#datastax-enterprise-capacity-policy
https://docs.datastax.com/en/dseplanning/docs/dse-capacity-planning.html#datastax-enterprise-capacity-policy
https://docs.datastax.com/en/dseplanning/docs/dse-capacity-planning.html#datastax-enterprise-capacity-policy
https://aws.amazon.com/ec2/instance-types/i3en/
https://aws.amazon.com/ec2/instance-types/i3en/
https://opensource.docs.scylladb.com/stable/cql/
https://clickhouse.com/company/our-story
https://clickhouse.com/company/our-story
https://clickhouse.com/blog/introducing-click-house-inc
https://clickhouse.com/blog/introducing-click-house-inc
https://clickhouse.com/docs/en/concepts/why-clickhouse-is-so-fast
https://clickhouse.com/docs/en/concepts/why-clickhouse-is-so-fast
https://clickhouse.com/docs/en/sql-reference/ansi

[32] ClickHouse. Aggregate Function Combinators. url: https://clickhouse.
com/docs/en/sql- reference/aggregate- functions/combinators
(visited on Feb. 4, 2024).

[33] Tom Schreiber and Derek Chia. ClickHouse Keeper: A ZooKeeper alter-
native written in C++. Sept. 27, 2023. url: https://clickhouse.com/
blog/clickhouse-keeper-a-zookeeper-alternative-written-in-
cpp (visited on Feb. 4, 2024).

[34] Uber Engineering Blog. Fast and Reliable Schema-Agnostic Log Analytics
Platform. url: https://www.uber.com/en-US/blog/logging/ (visited
on Jan. 27, 2024).

[35] The CloudFlare Blog. HTTP Analytics for 6M requests per second using
ClickHouse. url: https://blog.cloudflare.com/http- analytics-
for-6m-requests-per-second-using-clickhouse/ (visited on Jan. 27,
2024).

[36] Sentry Blog. Introducing Snuba: Sentry’s New Search Infrastructure. url:
https://blog.sentry.io/introducing-snuba-sentrys-new-search-
infrastructure/ (visited on Jan. 27, 2024).

[37] Robert Griesemer et al. Hey! Ho! Let’s Go! url: https://opensource.
googleblog.com/2009/11/hey-ho-lets-go.html (visited on Jan. 8,
2024).

[38] Microsoft Security Response Center. A proactive approach to more secure
code. url: https://msrc.microsoft.com/blog/2019/07/a-proactive-
approach-to-more-secure-code/ (visited on Jan. 16, 2024).

[39] Rob Pike. Go at Google: Language Design in the Service of Software
Engineering. url: https://go.dev/talks/2012/splash.article#TOC_
14. (visited on Jan. 16, 2024).

[40] Linux manual. pthread_create. url: https://man7.org/linux/man-
pages/man3/pthread_create.3.html#NOTES (visited on Jan. 16, 2024).

[41] Go programming language documentation. GOMAXPROCS. url: https:
//pkg.go.dev/runtime#GOMAXPROCS (visited on Jan. 18, 2024).

[42] The Go Programming Language. stack.go. url: https://github.com/
golang/go/blob/f296b7a6f045325a230f77e9bda1470b1270f817/src/
runtime/stack.go#L72 (visited on Jan. 18, 2024).

[43] ClickHouse. Golang driver for ClickHouse. url: https://github.com/
ClickHouse/clickhouse-go (visited on Feb. 2, 2024).

[44] ClickHouse. Bulk Inserts. url: https://clickhouse.com/docs/en/
cloud/bestpractices/bulk-inserts (visited on Jan. 24, 2024).

[45] Elastic. The official Go client for Elasticsearch. url: https://github.
com/elastic/go-elasticsearch (visited on Feb. 2, 2024).

[46] Elastic. go-elasticsearch: BulkIndexerConfig. url: https://github.com/
elastic/go- elasticsearch/blob/a58e89f/esutil/bulk_indexer.
go#L56 (visited on Jan. 26, 2024).

[47] Go. Standard library testing package documentation: Benchmarks. url:
https://pkg.go.dev/testing@go1.21.6#hdr-Benchmarks (visited on
Feb. 2, 2024).

54

https://clickhouse.com/docs/en/sql-reference/aggregate-functions/combinators
https://clickhouse.com/docs/en/sql-reference/aggregate-functions/combinators
https://clickhouse.com/blog/clickhouse-keeper-a-zookeeper-alternative-written-in-cpp
https://clickhouse.com/blog/clickhouse-keeper-a-zookeeper-alternative-written-in-cpp
https://clickhouse.com/blog/clickhouse-keeper-a-zookeeper-alternative-written-in-cpp
https://www.uber.com/en-US/blog/logging/
https://blog.cloudflare.com/http-analytics-for-6m-requests-per-second-using-clickhouse/
https://blog.cloudflare.com/http-analytics-for-6m-requests-per-second-using-clickhouse/
https://blog.sentry.io/introducing-snuba-sentrys-new-search-infrastructure/
https://blog.sentry.io/introducing-snuba-sentrys-new-search-infrastructure/
https://opensource.googleblog.com/2009/11/hey-ho-lets-go.html
https://opensource.googleblog.com/2009/11/hey-ho-lets-go.html
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://go.dev/talks/2012/splash.article#TOC_14.
https://go.dev/talks/2012/splash.article#TOC_14.
https://man7.org/linux/man-pages/man3/pthread_create.3.html#NOTES
https://man7.org/linux/man-pages/man3/pthread_create.3.html#NOTES
https://pkg.go.dev/runtime#GOMAXPROCS
https://pkg.go.dev/runtime#GOMAXPROCS
https://github.com/golang/go/blob/f296b7a6f045325a230f77e9bda1470b1270f817/src/runtime/stack.go#L72
https://github.com/golang/go/blob/f296b7a6f045325a230f77e9bda1470b1270f817/src/runtime/stack.go#L72
https://github.com/golang/go/blob/f296b7a6f045325a230f77e9bda1470b1270f817/src/runtime/stack.go#L72
https://github.com/ClickHouse/clickhouse-go
https://github.com/ClickHouse/clickhouse-go
https://clickhouse.com/docs/en/cloud/bestpractices/bulk-inserts
https://clickhouse.com/docs/en/cloud/bestpractices/bulk-inserts
https://github.com/elastic/go-elasticsearch
https://github.com/elastic/go-elasticsearch
https://github.com/elastic/go-elasticsearch/blob/a58e89f/esutil/bulk_indexer.go#L56
https://github.com/elastic/go-elasticsearch/blob/a58e89f/esutil/bulk_indexer.go#L56
https://github.com/elastic/go-elasticsearch/blob/a58e89f/esutil/bulk_indexer.go#L56
https://pkg.go.dev/testing@go1.21.6#hdr-Benchmarks

[48] Docker. Docker Overview. url: https : / / docs . docker . com / get -
started/overview/ (visited on Feb. 2, 2024).

[49] Alibaba Cloud Database OLAP Product Department. ClickHouse vs. Elas-
ticsearch. July 21, 2021. url: https://www.alibabacloud.com/blog/
clickhouse-vs--elasticsearch_597898 (visited on Feb. 4, 2024).

[50] ClickHouse. Support for Approximated Calculations. url: https : / /
clickhouse.com/docs/en/about-us/distinctive-features#support-
for-approximated-calculations (visited on Feb. 4, 2024).

[51] Elastic. Bucket sort aggregation. url: https://www.elastic.co/guide/
en/elasticsearch/reference/8.12/search-aggregations-pipeline-
bucket-sort-aggregation.html (visited on Feb. 5, 2024).

[52] Elastic. Terms aggregation: Ordering by a sub-aggregation. url: https://
www.elastic.co/guide/en/elasticsearch/reference/8.12/search-
aggregations-bucket-terms-aggregation.html#_ordering_by_a_
sub_aggregation (visited on Feb. 5, 2024).

[53] Christopher Ireland and David Bowers. “Exposing the Myth: Object-
Relational Impedance Mismatch is a Wicked Problem”. In: DBKDA 2015,
The Seventh International Conference on Advances in Databases, Knowl-
edge, and Data Applications (2015), pp. 21–26.

[54] ClickHouse. ClickHouse Go Client. url: https://clickhouse.com/docs/
en/integrations/go#clickhouse-go-client (visited on Feb. 5, 2024).

[55] Kubernetes. Kubernetes Documentation. url: https://kubernetes.io/
docs/home/ (visited on Feb. 5, 2024).

55

https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://www.alibabacloud.com/blog/clickhouse-vs--elasticsearch_597898
https://www.alibabacloud.com/blog/clickhouse-vs--elasticsearch_597898
https://clickhouse.com/docs/en/about-us/distinctive-features#support-for-approximated-calculations
https://clickhouse.com/docs/en/about-us/distinctive-features#support-for-approximated-calculations
https://clickhouse.com/docs/en/about-us/distinctive-features#support-for-approximated-calculations
https://www.elastic.co/guide/en/elasticsearch/reference/8.12/search-aggregations-pipeline-bucket-sort-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.12/search-aggregations-pipeline-bucket-sort-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.12/search-aggregations-pipeline-bucket-sort-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.12/search-aggregations-bucket-terms-aggregation.html#_ordering_by_a_sub_aggregation
https://www.elastic.co/guide/en/elasticsearch/reference/8.12/search-aggregations-bucket-terms-aggregation.html#_ordering_by_a_sub_aggregation
https://www.elastic.co/guide/en/elasticsearch/reference/8.12/search-aggregations-bucket-terms-aggregation.html#_ordering_by_a_sub_aggregation
https://www.elastic.co/guide/en/elasticsearch/reference/8.12/search-aggregations-bucket-terms-aggregation.html#_ordering_by_a_sub_aggregation
https://clickhouse.com/docs/en/integrations/go#clickhouse-go-client
https://clickhouse.com/docs/en/integrations/go#clickhouse-go-client
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/

Appendix A

Benchmark Results

Figures A.1, A.2, A.3, A.4, A.5 and A.6 show the results of the benchmarks
described in section 3.6. The benchmark tests were run on a laptop, with
specifications shown in the figures, following the steps from section 3.6.1. Docker,
the tool used to run the databases, was configured to run with 16 CPU cores
and 12 GB of RAM.

Comparing the benchmark results, we get the following ratios between the
benchmarks for the different databases:

• Ingestion: ClickHouse is 2794904997 ns
959848403 ns ≈ 2.9 times faster than Elastic-

search.

• Analysis queries: Elasticsearch is 18758777 ns
5927975 ns ≈ 3.2 times faster than

ClickHouse.

• Table creation: ClickHouse is 200939482 ns
18758777 ns ≈ 10.7 times faster than

Elasticsearch.

goos: linux
goarch: amd64
pkg: hermannm.dev/analysis
cpu: AMD Ryzen 7 PRO 6850U with Radeon Graphics
BenchmarkIngestion-16 100 2794904997 ns/op
PASS
ok hermannm.dev/analysis 291.557s

Figure A.1: Ingestion benchmark result for Elasticsearch.
Result: 2794904997 ns/op ≈ 2.79 s/op
Output from: go test -bench=Ingestion -benchtime=100x

56

goos: linux
goarch: amd64
pkg: hermannm.dev/analysis
cpu: AMD Ryzen 7 PRO 6850U with Radeon Graphics
BenchmarkIngestion-16 100 959848403 ns/op
PASS
ok hermannm.dev/analysis 98.968s

Figure A.2: Ingestion benchmark result for ClickHouse.
Result: 959848403 ns/op ≈ 0.96 s/op
Output from: go test -bench=Ingestion -benchtime=100x

goos: linux
goarch: amd64
pkg: hermannm.dev/analysis
cpu: AMD Ryzen 7 PRO 6850U with Radeon Graphics
BenchmarkQuery-16 1000 5927975 ns/op
PASS
ok hermannm.dev/analysis 15.195s

Figure A.3: Analysis query benchmark result for Elasticsearch.
Result: 5927975 ns/op ≈ 5.93 ms/op
Output from: go test -bench=Query -benchtime=1000x

goos: linux
goarch: amd64
pkg: hermannm.dev/analysis
cpu: AMD Ryzen 7 PRO 6850U with Radeon Graphics
BenchmarkQuery-16 1000 18758777 ns/op
PASS
ok hermannm.dev/analysis 20.650s

Figure A.4: Analysis query benchmark result for ClickHouse.
Result: 18758777 ns/op ≈ 18.76 ms/op
Output from: go test -bench=Query -benchtime=1000x

57

goos: linux
goarch: amd64
pkg: hermannm.dev/analysis
cpu: AMD Ryzen 7 PRO 6850U with Radeon Graphics
BenchmarkCreateTable-16 100 200939482 ns/op
PASS
ok hermannm.dev/analysis 24.339s

Figure A.5: Table creation benchmark result for Elasticsearch.
Result: 200939482 ns/op ≈ 200.94 ms/op
Output from: go test -bench=CreateTable -benchtime=100x

goos: linux
goarch: amd64
pkg: hermannm.dev/analysis
cpu: AMD Ryzen 7 PRO 6850U with Radeon Graphics
BenchmarkCreateTable-16 100 10549878 ns/op
PASS
ok hermannm.dev/analysis 1.238s

Figure A.6: Table creation benchmark result for ClickHouse.
Result: 10549878 ns/op ≈ 10.55 s/op
Output from: go test -bench=CreateTable -benchtime=100x

58

	Introduction
	Research Goal
	Thesis Structure

	Background
	Elasticsearch
	Distributed
	Document Store
	Search and Analytics
	The Elastic Stack

	The Ignite Data Analytics Platform
	Ignite's Elasticsearch Architecture
	The Data Management System
	Ignite's Analysis Service

	Key Challenges With Elasticsearch
	Time to Index
	Incorrectness in Aggregation Results
	Memory Use
	Configuration and Maintenance

	Other Analytical Databases
	Apache Cassandra
	ScyllaDB
	Bigtable
	ClickHouse

	Design and Implementation of Experiment
	The Choice of ClickHouse
	Choice of Programming Language
	System Architecture
	API of the Analysis Service
	Table Schema Format
	Query Format

	Internal Structure of the Analysis Service
	The api package
	The csv package
	The db package
	The clickhouse package
	The elasticsearch package
	The config package

	Experiment Methodology
	Reproducing Benchmark Results

	Results and Discussion
	Performance
	Correctness
	Developer Ergonomics
	Object-Columnar Impedance Mismatch
	Non-Descriptive Error Messages

	Limitations of the Experiment

	Conclusion
	Further Work

	References
	Benchmark Results

