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Abstract

The development of renewable energy sources is steadily increasing, but further progress is
necessary. The discovery of new methods for producing eco-friendly fuels and energy sources
is imperative, with hydrogen being a such promising option. However, conventional methods
for producing hydrogen result in significant environmental damage due to the large amount
of CO2 produced as a by-product. Blue hydrogen is produced by steam-reforming natural
gas with carbon capture and storage and therefore is considered as a low-carbon-emitting
method for producing hydrogen. Currently, most blue hydrogen is produced onshore, which
necessitates significant transport of gases to and from the natural gas source and the offshore
storage site. Moving the production process offshore to a platform or ship would dramatically
reduce transport needs, as the hydrogen product would be the sole item requiring transport
back to shore. However, modifications to the production process would be necessary due
to weight and space constraints when operating offshore. The objective of this project is
to develop a model that accurately reflects the process, set up an economic optimization
problem, a control structure that can reject disturbances, and study the economic feasibility
of the process.

The goal of the optimization problem is to maximize the profit of the process by finding an
optimal amount of hydrogen produced and energy required for compressing CO2, which is
dependent on the amount of CO2 produced in the process. The profit is maximized subject
to operational constraints and the physics of the plant model. Important variables in the
process have been chosen, which are called input variables, and the optimization results are
studied to see which variables can be controlled by manipulating the input variables. By
studying how the system behaves when the input variables and disturbance variables change,
a control structure has been formed by using the “self-optimizing control” method. Different
control structures have been implemented and compared to validate their performance by
studying the loss of optimality.

The resulting profit from the nominal case has shown a profit of 1268.2 $/h, which corre-
sponds to approximately 11 million USD annually, assuming that the facility is operating
continuously. Due to this low income, in addition to the neglected costs in the process, such
as oxygen costs, PSA operating costs, purifying costs, and hydrogen transport costs, this
project is concluded to be infeasible. The demand for hydrogen is also too low for a hydrogen
price to make this process feasible. Supplying the facility with self-generated electricity can
be a step closer to feasibility, in addition to a carbon tax or higher hydrogen prices. Con-
trol structures showed constraint infeasibility in some cases due to the disturbance changes
being too high. Some control structures showed good performance with approximately zero
loss of optimality, which indicates that control structures from the “self-optimizing control”
method show effective disturbance rejection, assuming that the linear assumption holds for
all disturbance changes. Further work may include further model development, analysis of
different economic scenarios, and studying alternatives to PSA unit for H2/CO2 separation,
generating electricity, and methods to produce oxygen stream.
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Sammendrag

Utviklingen av fornybare energikilder øker stadig, men ytterligere fremgang er nødvendig.
Oppdagelsen av nye metoder for å produsere miljøvennlig drivstoff og energikilder er avgjørende,
med hydrogen som et lovende alternativ. Konvensjonelle metoder for å produsere hydrogen
resulterer imidlertid i betydelig miljøskade på grunn av den store mengden CO2 som pro-
duseres som et biprodukt. Blått hydrogen regnes som en lavkarbon-utslippsmetode for å
produsere hydrogen der hydrogenet produseres ved dampreformerende naturgass med kar-
bonfangst og -lagring. Dagen blå hydrogenproduksjon er basert på land, noe som krever en
del transport av gasser til og fra naturgasskilden til anlegget tilbake til karbonlagringsstedet
i havet. Flytting av produksjonsprosessen offshore til en plattform eller et skip vil drama-
tisk redusere transportbehovet, ettersom hydrogenproduktet vil være det eneste elementet
som krever transport tilbake til land. Samtidig vil modifikasjoner av produksjonsprosessen
være nødvendig på grunn av vekt- og plassbegrensninger ved drift offshore. Målet med dette
prosjektet er å utvikle en modell som nøyaktig gjenspeiler prosessen, sette opp et økonomisk
optimaliseringsproblem, en kontrollstruktur som kan avvise forstyrrelser, og studere den
økonomiske gjennomførbarheten av prosessen.

Målet med optimeringsproblemet er å maksimere fortjenesten av prosessen ved å finne en
optimal mengde hydrogen produsert med en optimal mengde energi som kreves for å kom-
primere CO2, som er avhengig av mengden CO2 som produseres i prosessen. Fortjenesten
maksimeres avhengig av operasjonelle begrensninger og fysikken bak modellen. Viktige vari-
abler i prosessen er valgt, som kalles inputvariabler og optimaliseringsresultatene studeres for
å se hvilke variabler som kan bli kontrollert ved å manipulere inputvariablene. Ved å studere
hvordan systemet oppfører seg når inputvariablene og forstyrrelsesvariablene endres, er det
dannet en kontrollstruktur ved å bruke “self-optimizing control” metoden. Ulike kontroll-
strukturer har blitt implementert og sammenlignet for å validere deres ytelse ved å studere
tap av optimalitet.

Resultatet fra det nominelle tilfellet har vist et overskudd på 1268.2 $/time, som tilsvarer
ca. 11 millioner USD årlig, forutsatt at anlegget er i drift kontinuerlig. På grunn av denne
lave inntekten, i tillegg til de neglisjerte kostnadene i prosessen, som oksygenkostnader, PSA-
driftskostnader, rensekostnader og hydrogentransportkostnader, konkluderes dette prosjektet
med å være ugjennomførbart. Etterspørselen etter hydrogen er også for lav til en hydrogen-
pris til å gjøre denne prosessen gjennomførbar. Å forsyne anlegget med egenprodusert strøm
kan også være et skritt nærmere for at prosessanlegget er gjennomførbart, i tillegg til kar-
bonavgift eller høyere hydrogenpriser. Kontrollstrukturer viste i noen tilfeller umulighet av
begrensning på grunn av at forstyrrelsesendringene var for høye. Noen kontrollstrukturer
viste god ytelse med tilnærmet null tap av optimalitet, noe som viser at kontrollstruk-
turer fra “self-optimizing control”-metoden viser effektiv forstyrrelsesavvisning, forutsatt at
den lineære antakelsen gjelder for alle forstyrrelsesendringer. Videre arbeid kan omfatte
videre modellutvikling, analyse av ulike økonomiske scenarier og å studere alternativer til
PSA-enhet for H2/CO2-separasjon, generering av elektrisitet og metoder for å produsere
oksygenstrøm.
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On Sum of remaining taylor expansion term of power n

Q Any invertible matrix

u Manipulated/input variable

ū Near-optimal input

Wd Diagonal scaling matrix for disturbance noise

Wn Diagonal scaling matrix for measurement noise

x States/decision variables

y Output variable

y0 Non-disturbed output variable

ym Measured output variable

ys Setpoint of output variable y

z Loss variable

List of process model variables

Ai, Bi, Ci Antoine parameters

cp Heat capacity at constant pressure

cv Heat capacity at constant volume

E Total energy

Ek Kinetic energy

Ep Potential energy

F Flow/Feed stream

γ Specific heat ratio

H Enthalpy

HHV Higher heating value

h Specific enthalpy

K(T ) Temperature-dependent equilibrium constant

KV LE Vapor-liquid equilibrium constant

ψ Vapor/feed stream ratio

L Liquid stream
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m Mass stream

n Mole stream

ν Stoichiometric coefficient

p Pressure

psat Saturated partial pressure

Pel Electricity cost

PH2 Hydrogen price

Q Heat in the process

R Ideal gas constant

T Temperature

t Split ratio

U Internal energy

V Volume/Vapor stream

W Work

Wflow Flow work

W rev
s Reversible shaft work

ξ Extent of reaction

x Liquid stream mole fraction

y Vapor stream mole fraction

z Feed stream mole fraction

Convention

∆ Deviation of a variable from the nominal point

(·)nom Variable at its nominal point

(·)opt Variable at its optimal point

|| · ||n n-th norm

σ̄(·) Largest singular value

(·)j Variable for reaction j

(·)i Variable for stream i



Yoonsik Oh Convention

(·)in Inlet variable

(·)out Outlet variable

(·)gen Generated/consumed variable

+(·) Positive perturbation

−(·) Negative perturbation
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1 Introduction

1.1 Motivation

The International Energy Agency published a report stating that bringing the global energy-
related carbon dioxide emissions to net zero by 2050 might give hope to limit the global
temperature rise of 1.5 ◦C [1]. Following this, the European Union has set a climate-neutral
goal by 2050. In addition, since the Paris Agreement in 2015, the participating countries
have devoted to reduce greenhouse gas emissions. United Nations’ Intergovernmental Panel
on Climate Change indicates that if a threshold of 1.5 ◦C in global average temperature is
crossed, irreversible climate changes will impact the world. To limit the temperature below
the threshold, greenhouse emissions are required to subside before 2025 at the latest and
decline by 43% by 2030 [2]. With a steady pace of growth of global energy demand, large
efforts within all sectors around the world must be made. A study showed that since 1900,
the energy demand has risen by 2.8% with a growth of 2.2% in the 21st century [3]. It is
unsurprising that emissions from the oil and gas industry are responsible for a considerable
amount in some countries. In 2020, the United States were responsible for yearly emissions
of 316 Mt CO2eq [4] and while the United Kingdom were responsible for 16 Mt CO2

[5], which
is equivalent to approximately 5% of the total emission in their respective country [6] [7]. In
Norway, the oil and gas sector was responsible for 27% of the country’s overall emissions,
where the actual amount of emission was 13.3 Mt CO2eq [8]. A statistical review from BP
showed that over 83% of the world’s energy consumption derives from fossil fuel sources,
and shows hows the global infrastructure today is dependent on energy generated on CO2

emitting sources [9]. In other words, the problem is that the world is in need of more energy
in the future, but today’s energy source is heavily dependent on greenhouse gas emitting
sources, which all sectors around the world are making efforts to reduce.

The consequences of this problem have led to an increase in media attention and capital in-
vestments in renewable energy sources, such as windmills, solar panels, and hydropower. In
2018, wind and solar energy sources produced an approximate annual amount of 1850TWh
with a peak growth of around 130-140 TWh annually. These numbers show that the devel-
opment rate is not enough to reach the 2050 goal set by many global organizations, and it
shows that with the same rate, it would take approximately 180 years to meet only 50% of
the global energy demand in 2050 [3]. In addition, such renewable energy sources have many
obstacles, such as storage, location, investment, and these sources might not always meet
the demand as the natural resources such as wind current or access to sunlight can fluctuate.
The oil and gas sectors have also implemented several methods to reduce emissions, such as
carbon capture and storage (CCS), energy efficiency measures, limiting flaring, and alterna-
tive power sources, such as offshore windmills. It is important to note that the oil and gas
industry will not shut down immediately, as it would cause a major economic loss and will
affect the global market tremendously. Instead, it is wise to phase out the oil and gas slowly,
until the global infrastructure is ready for such change. Research on how to reduce emissions
and reach future global energy needs is becoming more important and has gained a lot of
attention in the latest decades. Among important research and development for solving this
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problem, hydrogen is one of the promising alternatives.

Hydrogen works excellently as an energy carrier and can be considered a completely carbon-
free fuel. Hydrogen addresses three major global energy crisis issues [10]. The first issue is to
replace emission-emitting fuels with non-emitting fuel that meets the demand for liquid and
gaseous fuels and electricity. Hydrogen addresses this problem well, as the only emission is
water in a fuel cell or combustion for gas turbines. The second issue is to increase energy
utilization efficiency for fuels and electricity production. Hydrogen fuel cells are shown to
have 40-60% energy efficiency, compared to a traditional combustion engine in a vehicle
that has approximately 25% efficiency [11], as a major part of the combustion is converted to
thermal energy that is not being utilized. The third is to tackle the issue of pollutants and
the link between energy utilization and greenhouse gas emission in end-use systems [10].

But unlike other fuels like natural gas, only traces of hydrogen generally exist in a reservoir
that can be mined and instead must be produced through chemical processes. Therefore,
even though hydrogen itself is emission-free, due to the production process, it is indirectly
connected to environmental effects and CO2 emissions. The most common way to produce
hydrogen is through steam-methane reforming and coal gasification, which accounts for al-
most 96% of all hydrogen production globally. In steam-methane reforming, methane gas is
reformed by reacting with high-heated steam under 3-25 bar pressure with catalysts, where
hydrogen atoms are separated from methane [12]. Hydrogen produced from steam-methane
reforming is better known as “grey hydrogen”. In coal gasification, hydrogen gas or syngas
is produced by partial oxidation with enough heat and pressure to break down coal into its
basic chemical components. Hydrogen produced from this method is either called “black
hydrogen” or “brown hydrogen”.

Low carbon hydrogen, such as “blue hydrogen” or “ ‘green hydrogen”, can also be produced
through steam-methane reforming with carbon capture and storage, or electrolysis of water,
respectively. It is worth noting that even though the process of electrolysis does not emit any
CO2, the electricity required for the process is often associated with CO2 emitting sources.
Both methods for producing low-carbon methods are relatively new concepts, where a lot of
research in the field is ongoing, and few full-scale productions are implemented worldwide.
As of 2021, only two blue hydrogen facilities operate at a commercial scale in North America,
where both facilities are based onshore [13]. In an area such as North America, where most
natural gas is extracted onshore, it makes sense to operate the plant onshore as well. But in
a country like Norway, where natural gas is extracted from the seabed, this implementation
comes with additional challenges. Natural gas needs to be transported onshore through a long
pipeline, then processed to hydrogen, and the captured CO2 gas needs to be compressed and
transported back to an offshore facility, where the CO2 is stored. To solve the transportation
problem, an offshore blue hydrogen facility is considered and studied with an economic
objective, and control structures are investigated to determine its feasibility.

1.2 Project background

This Master’s Thesis is a continuation of the specialization thesis that finalized the steady-
state model for the offshore blue hydrogen plant [14] and is a part of the SUBPRO Zero
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Blue Hydrogen Project. SUBPRO is a center in Research-based innovation (SFI) within
subsea production and processing and has connections with different oil and gas sectors in
Norway [15]. This project is a new concept and therefore needs a lot of research before it
can be operated at a pilot scale, and then finally at a commercial scale. The results of this
thesis will hopefully be used to further study the feasibility of the process and other offshore
hydrogen production-related projects.

The present project will look at different control structure designs for an offshore blue hy-
drogen plant facility, such as a platform or a ship. Natural gas will be extracted from the
reservoir in the seabed, and instead of a traditional furnace used in a steam-methane reform-
ing process, the process will use two reactors, a gas-heated reformer, and an autothermal
reformer will be used, to reduce the requirement for space, weight, and capital cost [16]. A
pressure swing adsorption is used to split the final stream mainly consisting of H2 and CO2

into a hydrogen-rich product stream. Hydrogen is being transported back onshore as a
product and CO2 gas along with other impurities in the process is being compressed and
transported back onshore in the same reservoir as the extracted natural gas used in the
process.

To study the feasibility of this process, an economic optimization problem was formed, where
the objective is to maximize profit. The resulting objective value is the hourly profit and is
used to study the feasibility of an offshore blue hydrogen facility in Norway. To analyze the
possibility of different control structures, control structures from the “self-optimizing control”
strategy are implemented and investigated, where important variables in the system are set to
a constant setpoint with minimal loss in optimality with disturbance rejection. Suppose such
a plant is feasible, with a control structure that can operate despite different disturbances,
such as fluctuating hydrogen prices and electricity prices, where low carbon hydrogen can
be produced, such a plant can play an important role in the “green change” and in meeting
the future global energy demand.

1.3 Scope of the project

In this section, the scope and the focus areas of the project are presented. The present
project is a continuation of the specialization thesis where the model and the optimization
problem for the plant were finalized and tested its robustness through a sensitivity analysis,
where the model was proven to be solved. To summarize, the objectives of this Master’s
thesis are:

1. Set up an economic optimization problem where profit is maximized.

2. Develop different control structures from the “self-optimizing control” control strategy.

3. Investigate the performance of the control strategies.

4. Study and evaluate the economic performance of the process.

The most important assumption in the present project is the steady-state assumption as
it is generally sufficient when studying the economics of a process. With the steady-state
assumption, the model is linearized to assume a linear model. It is also assumed that the
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only revenue from the process is the hydrogen-rich product stream, and the only cost in the
process is the electricity cost for compressing the CO2 gas for injection into the reservoir. The
heating required in the process is assumed to be satisfied by combusting either the natural
gas feed stream or the hydrogen product stream as fuel, such that the only external energy
required is the electricity imported from onshore for compressing the gas for injection. This
fuel switch aspect is handled by the heater unit. The cost for CO2 injection is considered to
be the energy required for compressing the gas to a sufficient pressure, where compression
work is assumed to be ideal. The electricity is assumed to be transferred onshore by undersea
cables. For the “self-optimizing control” strategy, there will only be considered local methods
for comparing loss for different control structures. It is assumed that the active constraint
set in the optimization problem remains the same when inputs and disturbances change.

Other costs like transporting hydrogen onshore, and operating the plant and injection unit
will not be considered in the economic objective. The cost of separating sea water for
heating up steam to saturate the process with steam is also not considered. The oxygen
stream required in the autothermal reformer unit will also not be considered and is assumed
that a highly effective membrane with minimal costs is used where the small amount of
nitrogen from the air separation will not affect the process. The PSA unit is modeled as
a stream splitter, and extensive modeling of the adsorption process will not be considered.
The model will not take the physics and complexity behind transporting product stream and
CO2.

1.4 Organization

In the present thesis, there are 7 sections and 2 appendices.

Section 1 contains the motivation behind this project, project background, scope, and the
present subsection explaining the structure of the present thesis.

Section 2 contains the necessary technical background. An introduction to general opti-
mization and flowsheet optimization is presented. In addition, first principle laws such as
conservation laws are presented. Control theory is then presented, followed by hierarchical-
and plantwide control. Lastly, self-optimizing control theory is presented, with problem
formulation, local methods, how to evaluate the control structures with different loss eval-
uations, and problems with self-optimizing control, e.g. measurement subset selection and
active set changes during operation.

Section 3 describes the process choice behind the present project and a brief description and
theory behind the chosen process units, with a flowsheet over the entire process. The chemical
reactions taking place in the different units, parameters such as operating temperatures, split
ratio, and pressures from studies are also presented.

Section 4 explains the strategy for modeling the process, the new process flowsheet when
modeling, and how the model strategy is implemented in JuMP Julia is explained. The
economic objective is also presented in this section. Control structure development strategies,
with variable selection, degrees of freedom analysis, and measurement subset selection are
also shown here.
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Section 5 contains the results of the present project. In the results, the economic loss in
optimality that comes from implementing the control aspect for different control structures
for the model for different disturbance changes, including the resulting gain- and Hessian ma-
trices, other matrices necessary for the local methods, and choices behind the measurement
subset selection in “self-optimizing control” is presented.

Section 6 discusses the results of this project by comparing the performance of the different
control structures and the feasibility of the offshore blue hydrogen plant.

Section 7 concludes the project with a summary of the control strategies and the feasibility
of the project as an overall and the future of hydrogen, with suggestions for improvements
for further developments and projects in the future.

Appendix A contains the resulting matrices that were too long to include in the main report,
as the tables consisted of over 184 rows. The resulting nominal values, gain matrices, and
optimal sensitivity matrix are presented in this appendix.

Appendix B contains the code that was developed and used in this project, both for modeling
and calculation purposes. All files contain a brief explanation of the functions in the different
Julia code files.
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2 Theory

2.1 Introduction to optimization

Optimization is a powerful mathematical tool that can be used for simulating and studying a
system. In an optimization problem, an objective function is either minimized or maximized
subject to the constraints of the problem. A typical objective function for a chemical process
system can be minimizing the energy required or maximizing profit. The constraints are then
the equations in the model describing the system, such as mass and energy balances and
chemical reactions. The constraints can either be an equality constraint or an inequality
constraint. Since the optimization problem needs constraints to be held, the constraints
limit the optimal value of the objective function, thus the constraints create the set the
objective can be in. A typical optimization problem can be defined as:

max
x∈Rn

f(x, p) (2.1.1)

s.t. ci(x, p) = 0, i ∈ E (2.1.2)
ci(x, p) ≤ 0, i ∈ I, (2.1.3)

where max denotes that the objective function is being maximized, but the problem can
also be minimized by switching the sign of the objective function and vice versa. x is
the states or the decision variables of the system of n-dimensions, p are parameters in the
system that influences the objective and the constraints, f(x, p) is the objective function,
ci(x, p) are the constraints functions and E and I are the sets of indices for equality and
inequality constraints, respectively. To find the solution to the optimization problem, a
correct algorithm needs to be chosen. There is not a universal algorithm that is most suited
for all cases, but there is a collection of algorithms that are tailored to be most suitable for
different problems. Choosing the correct algorithm for the given problem is important as it
will affect the solving time drastically and whether the solution can be found or not [17]. When
the correct algorithm is chosen for the problem and a solution is found, the solution will then
give the optimal values of the state of the system for either maximizing or minimizing the
objective function. Studying the objective value will also be important when performing
self-optimizing control, explained in section 2.7.

2.2 Flowsheet optimization

Flowsheet optimization is about optimizing a chemical process by using different techniques,
and in chemical process engineering, flowsheet optimization has been an important tool in
many aspects. These aspects can for example be the improvement of the process, sensitivity
analysis, the feasibility of the plant, simulations, proposed control strategies, and many more.
Usually, when optimizing a flowsheet, a mathematical model is involved for studying the
process’ behavior when certain parameters are changed. The mathematical models usually
are based on first principles, such as mass balances, energy balances, and even component
mole balances [18]. Some equations can also be based on collected data from other external
simulations, such as equilibrium constant, or heat capacity.
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When defining a flowsheet optimization problem, the model consists of an objective function
and constraints, and the algorithm chosen for the problem will find the optimal solution for
the objective function subject to the constraints. Typical objective functions for a chemical
process can be to maximize production, profit, product yield, or quality, while it can also
minimize energy consumption or waste production. Process safety could also be the main
focus. The constraints are the equations in the model and can either be equality or inequality
constraints that must be satisfied. In addition to the model equations, the constraint can
also be connection constraints, where it connects different submodels together by requiring
the output of the previous submodel to equal the input of the next submodel. Overall,
flowsheet modeling is used to construct a process diagram, which can be used to simulate
and study the behavior of the system under different conditions and operating parameters.

There are mainly two strategies when setting up a flowsheet model; the sequential approach
and the simultaneous approach. The sequential approach is when the submodels are con-
nected, but each submodel is solved on its own and passes output information as input for
the next submodel in a specified sequence. While the simultaneous approach has the same
connections between the submodels through connection equations, the solver will solve all
the submodels simultaneously as a larger model.

The advantage of the sequential approach is that the implementation is easier as each sub-
model is modeled individually, and the appropriate solver can be chosen for each submodel
such that it is computationally efficient. The sequential approach is often used when finding
steady-state solutions or nominal points of the process and is therefore useful for simulations.
This approach may be an easier method for identifying potential errors in the model, such as
numerical errors or model mismatches, as each submodel is solved individually. However, as
the submodels are connected in a specific sequence, where one submodel passes information
to the other, this approach may not capture all of the interactions in the system and can
lead to inconsistencies and inaccuracies due to the issues with recycle loops when modeling.
In addition, a sequential approach usually only provides the variables in the system and not
the gradients as some efficient first and second-order optimization solvers require.

The advantage of the simultaneous approach is that it provides a more detailed and accurate
model as it can also solve a system that has recycle-loops or submodels that are exchang-
ing energy with each other, whereas a sequential approach may lead to non-convergence.
However, when modeling in a simultaneous approach, compared to a sequential approach,
it requires more information about the model, is more computationally heavy, and is often
more challenging to implement. In addition, as all of the submodels are solved simultane-
ously as a larger model, it can be harder to identify potential errors in the model and it is
harder to initialize the model as it may require good initial values to find the solution. The
main difference between both approaches is the access to gradients and all units converging
together when using a simultaneous approach, which is beneficial for optimization.

There are both strengths and weaknesses with both approaches and the selection of the best
approach will depend on the modeling goal, system, and the information available. Choosing
the appropriate approach will be important to minimize inaccuracies and achieve dependable
results.
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2.3 Conservation laws

When studying certain systems, such as a chemical process system, quantities or variables
in the system are of interest. Such quantities can for example be the mass, the mole of each
component, or the energy in the system. To study the quantities, a balance equation can be
used to factor in all the input, output, and generation or consumption of the said quantities.
This also ensures that physical laws are upheld throughout the process, and every quantity
can be studied both the system as a whole and in more detail. The general balance equation
can be explained as:

Accumulation = Input − Output + Generation (2.3.1)

But as the present project looks at a steady-state process system, accumulation becomes
zero as d

dt
= 0. In other words, the left side of Equation (2.3.1) becomes 0. The general

steady-state balance equation can then be described mathematically as:

0 =
∑

xin −
∑

xout +
∑

xgen, (2.3.2)

where x is the quantity that is being balanced,
∑
xin is the sum of all input of the quantity,∑

xout is the sum of all output of the quantity, and
∑
xgen is the sum of all terms that

explains the quantity being either generated or consumed, for example, a chemical reaction
in a mole balance.

2.3.1 Mass balance

The law of conservation of mass states that mass can neither be created nor destroyed.
Even though there have been theories that mass can be converted into energy, but it will
be assumed that there is no such conversion, and the total mass is conserved in the system.
By replacing x in Equation (2.3.2) and with the steady-state assumption and the fact that
there is no generation or consumption of mass, the general steady-state can be described as:

0 =
∑

min −
∑

mout + 0, (2.3.3)

where
∑
min is the sum of all mass inlet streams in the system and

∑
mout is the sum of all

mass outlet streams. Note that the left-hand side of the equation and the xgen term is zero,
due to the assumptions made. By rewriting Equation (2.3.3), the final mass balance is:

∑
min =

∑
mout. (2.3.4)

Equation (2.3.4) can be interpreted as all inlet mass streams in the systems need to be equal
to all outlet mass stream out of the system, and it is important that this relation holds for all
parts of the process, both the whole process system and in detail as it can ensure that there
is no model match. Some deviations are to be expected when looking at the mass balance of
a larger system, as there are more calculations that are solved by a computer and can give
machine precision and small numerical errors.
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2.3.2 Component balance

As a total mass balance equation in the system can be used to study the mass in the
system and the inlet and outlet flow as a whole, a component balance can be used to
study each component of the system in more detail. This can be done by introducing
mole balances for each component in the system. Unlike mass, the amount of mole of a
component can be converted into another component, so in a component mole balance, the
generation/consumption term plays an important role. By using Equation (2.3.2), with the
steady-state assumption, the general steady-state component balance is defined as:

0 =
∑

ni,in −
∑

ni,out +Gi, (2.3.5)

where i is the component that is being balanced,
∑
ni,in is the sum of all inlet mole streams

of component i,
∑
ni,out is the sum of all outlet mole streams of component i and Gi is the

amount of mole of component i that is being either generated or consumed by for example,
a chemical reaction. By rewriting Equation (2.3.5) into:

∑
ni,out =

∑
ni,in +Gi, (2.3.6)

the general steady-state component balance can be interpreted as the sum of all outlet mole
streams of component i needing to be equal to the amount of the component that is being
introduced in the system by a molar flow addition to generation or consumption of component
i. Note that the Gi term does not have a summation notation, and that is because it can be
rewritten as another summation. The generated/consumed amount of mole of component i
can be described as:

Gi =
∑
j

νi,jξj, (2.3.7)

where i is the component that is being balanced, j is the reaction j, νi,j is the stoichiometric
coefficient of component i in reaction j and ξj is the extent of reaction j [19]. As Gi is a sum
of all reactions in the system or the control volume that is being studied, it accounts for
all the generation and consumption of the component i that might happen in each of the
reactions happening. If there is a reaction where the component i is inert, the stoichiometric
coefficient simply becomes zero and has no effect on Gi. By combining Equation (2.3.6) and
Equation (2.3.7), the final general steady-state component balance becomes:

∑
ni,in =

∑
ni,out +

∑
j

νi,jξj (2.3.8)

2.3.3 Energy balance

Identical to the law of conservation of mass, the law of conservation of energy states that
energy cannot be created nor destroyed, but unlike mass, it can be transferred into different
forms. For example, thermal energy can be used to heat up steam for a turbine to generate



Yoonsik Oh 2 Theory

electricity. However, the total energy of the system remains constant. The general steady-
state energy balance is given as:

0 =
∑

Ein −
∑

Eout +
∑

Q+
∑

W, (2.3.9)

where the left-hand side of the equation is zero due to the steady-state assumption,
∑
Ein

and
∑
Eout is the sum of all energy inlet and outlet streams, respectively, usually in the form

of enthalpy from the mass streams,
∑
Q and

∑
W is the sum of all heat or all work added

or removed in the system from the environment, respectively. The total energy, E, can be
defined as the sum of internal energy, U , kinetic energy, Ek and potential energy, Ep:

E = U + Ek + Ep. (2.3.10)

In a typical process, the last two terms, Ek and Ep can be neglected [20], and the total energy
can then be defined as:

E = U. (2.3.11)
By combining Equation (2.3.9) and Equation (2.3.11), the steady-state energy balance then
becomes:

0 =
∑

Uin −
∑

Uout +
∑

Q+
∑

W. (2.3.12)

The term,
∑
W , is the sum of different factors such as electrical work, mechanical work, or

flow work, but in this process, only flow work will be taken into account, and the rest of the
work terms are assumed to have no influence on the system. By using the definition of flow
work, Wflow = pV , the sum of work can be defined as:∑

W =
∑

Wflow =
∑

Win,flow −
∑

Wout,flow (2.3.13)

=
∑

pinVin −
∑

poutVout, (2.3.14)

where pin and pout are the pressure of the inlet and outlet flows, respectively, and Vin and Vout
are the volume of the inlet and outlet flows, respectively. By combining Equation (2.3.12)
and Equation (2.3.14), the steady-state energy balance is defined as:

0 =
∑

Uin −
∑

Uout +
∑

Q+
∑

pinVin −
∑

poutVout. (2.3.15)

Now introducing the definition of enthalpy as:

H = U + pV, (2.3.16)

which states that enthalpy is the sum of internal energy and flow work. Equation (2.3.15)
can be rewritten as:∑

Uout +
∑

poutVout =
∑

Uin +
∑

pinVin +
∑

Q. (2.3.17)

By combining Equation (2.3.17) and the definition of enthalpy shown in Equation (2.3.16),
the final steady-state energy balance becomes:∑

Hout =
∑

Hin +
∑

Q, (2.3.18)

where
∑
Hin and

∑
Hout are the sum of all inlet and outlet enthalpy flows, respectively.

The sum of heat,
∑
Q, is usually reaction enthalpy gained or lost from a chemical reaction

or heat gained or lost from a heat exchanger, such as a heater or a cooler.
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2.4 Introduction to control theory

When studying a real-life system, such as a chemical process plant, the system’s components
and interactions are of interest. To study this, a model through variables (components) and
equations (interactions) can simulate and analyze the system’s behavior. However, some
variables are outside an engineer’s control in the system, called disturbances. To achieve a
stable system that operates at a desired level, the system needs a new element to counteract
the disturbances. By measuring relevant components and interactions in the system, a
controller can use variables that can be manipulated to drive the wanted variables in the
system to their desired level. A general control system block diagram with feedback is shown
in Figure 1 to illustrate how the controller can affect the model,

Figure 1: Generalized simple feedback control system.

where ys is the setpoint which is the desired values of the relevant output variables of the
system, ym is the observed/measured output which is a feedback loop to combine with ys to
calculate the error, e, which is formulated as the difference between the setpoint value and
the measured output value. The controller, C, then uses this error to calculate new inputs to
the system, which are called manipulated variables, u. With new input and disturbances in
the system, the system will then give new resulting output variables or controlled variables.
This process is repeated until the error is at an acceptable level; in other words, the resulting
output of the system is identical to the setpoint given.

Generally, a control design problem is about formulating a correct controller, C, that gives
the system signals u to keep the output close to the setpoint with the disturbances. When
formulating such a problem, it needs information about what variables in the system are
manipulated, controlled, or disturbances. There are also many different configurations for
the controller, such as PID or MPC. However, as mentioned in section 1.3, the scope of this
project is not to design a controller, but to select certain controlled variables and keep them
at a constant setpoint to achieve near-optimal operation. Such control structure is called
“self-optimizing control” and will be explained in detail in section 2.7.
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2.5 Hierarchical control

In many control areas, such as chemical processes, the control structures in these areas
have complex dynamic behaviors which require advanced process control techniques. One
of these techniques is a multi-layered framework developed by Lefkowitz in 1966 [21] and is
called “Hierarchical control”. In hierarchical control theory, the control structures are divided
into layers horizontally, where each layer hold responsible for specific aspects of a control
structure. The layers higher up have higher priority, influence, and authority than the lower
layers. A typical hierarchical control structure proposed by Skogestad in 2000 [22] is shown
in Figure 2.

Figure 2: A typical hierarchical structure in chemical process plant [22].

As it can be observed from Figure 2, a typical hierarchical structure can be divided into
5 major layers; scheduling, site-wide optimization, local optimization, supervisory control,
and regulatory control, whereas the last two layers can be referred to as the control layer.
When considering plantwide control, which will be discussed in more detail in section 2.6,
only three lower layers will be considered. The local optimization layer recalculates the
optimal setpoints for given disturbances in the process to the supervisory layer by solving
a steady-state real-time optimization (RTO) problem. The local optimization layer is also
often called the RTO layer. Briefly explained, whenever the supervisory control layer detects
that the process is steady-state, the steady-state states are given back to the RTO and it
will solve a new optimal setpoint for the next layer. The supervisory layer is the advanced
controller such as an MPC and works as the master controller that gives setpoints to the
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regulatory layer. Controllers in the regulatory layer are the controllers that focus on the
stability of the process and have fast dynamics. Examples of controllers in the regulatory
controllers are PID controllers.

When applying hierarchical control to a chemical process plant, it is assumed that different
layers have different time scales, and these layers are connected by the variables in the process
that are of interest, or in other words, the controlled variables (CVs). Since there is a time
scale separation between the layers, it can be assumed that the lower layer will immediately
react to the CV setpoints given by the upper layer. This allows the optimization and control
objectives to be decoupled. Hierarchical control is often preferred over a centralized controller
as it is often more robust. If one of the decentralized controllers in a hierarchical control
structure shut down, the system does not shut down. It is also more robust since it can
handle the disturbances well, due to the time scales between the layers. Another advantage
of hierarchical control is that it can combine different control techniques such as optimization,
fast local control, and MPC. A further and more detailed explanation of the importance of
dividing the control structure into multiple layers and how this can apply to “self-optimizing
control” control strategy advantageously is explained in section 2.6 and section 2.7.

2.6 Plantwide control

Plantwide control is referred to as a control strategy where the goal is to achieve a control
structure that can operate the whole chemical process plant at a stable and optimum level
when the disturbances in the process are in effect and when the objective of the plant
changes such as switching from maximizing profits to minimizing energy cost. Plantwide
control procedures for operational objectives for achieving short-term stability and long-
term economic profitability suggested by Skogestad [23] are:

I. Top-down analysis

Step 1. Define optimal operation in terms of a scalar cost function to be minimized and a
set of constraints to be satisfied.

Step 2. Identify steady-state degrees of freedom and determine the steady-state optimal
operating point for nominal operation, including active constraints.

Step 3. Identify measurement candidates and select primarily controlled variables for the
supervisory control layer based on the principles of self-optimizing control.

Step 4. Select the location of the throughput manipulator (TPM), which will determine
where to set the production rate and the structure of the remaining inventory control
system.

II. Bottom-down analysis

Step 5. Select secondary controlled variables for the regulatory (stabilizing) control layer
and determine the pairing with the manipulated variables.

Step 6. Select the structure of the supervisory control layer (decentralized or multivariable
control).
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Step 7. Determine the need for an optimization layer (RTO). Validation through nonlinear
dynamic simulation.

The top-down analysis focuses on the economics of the plant. When the plant is at steady-
state, it can primarily give the economics of the plant, and therefore, a steady-state model
is sufficient when performing a top-down analysis. The bottom-down analysis focuses on
the robustness and stability of the plant. This project will mainly focus on the top-down
analysis where a steady-state model of the process plant is built. The goal of the project
is then to select certain control variables and setpoints to achieve near-optimal operation,
which will be discussed more in section 2.7.

2.7 Self-optimizing control

A hierarchical control structure model is powerful when handling the complexity of a large
multivariable system, such as a chemical process plant. But due to the time-scale separation
between the optimization layer and the control layer, the hierarchical control structure comes
with a loss when compared to a centralized optimizing controller. This loss comes mainly
from the disturbances that influence the plant economics between setpoint updates, and
where these changes are not optimally rejected by the lower control layer until the next
update. This is due to the slower time-scale setpoint that is updated at low-frequency time
intervals in the optimization layer. This loss of optimality depends heavily on the selected
controlled variables in the system and is an important decision for the overall profitability of
the process plant. One of the first researchers that recognized this problem was Foss (1973),
which stated that the most important problem encountered by designers of chemical process
control systems is choosing which variables should be measured, which inputs should be
manipulated, and what links should be made between these two sets [24].

Furthermore, important research efforts have laid the groundwork for the concept of “self-
optimizing control”, presented by Skogestad [22]. One of these important research papers is
“Studies in the synthesis of control structures for chemical processes” by Morari [25], which
introduced the concepts of “feedback optimizing control”. He stated that finding a function c
of the process variables will automatically lead to the optimal adjustment when held constant,
which ultimately leads to the optimal operating conditions. The main idea was to not solve
the optimization problem online but through feedback control of optimal variants such as
process variables that remain constant whenever the process is operated optimally when
the goal is to achieve optimal operation. The “self-optimizing control” concept formulated
by Skogestad resembles the work of Morari. The idea is to achieve near-optimal operation
and minimize loss from time-scale separation by selecting controlled variables with optimal
setpoints that are near-insensitive to measurement noise and disturbances. In other words,
self-optimizing control is when an acceptable loss is achieved with constant setpoint values
for the controlled variables is achieved without the need to reoptimize when disturbances
occur [22].

In summary, by incorporating self-optimizing control principles when designing the control
layer, it can reject the disturbances economically, and achieve near-optimal conditions on
a fast time scale, without the need to wait for the real-time optimizer to update the set-
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points. In addition, the upper optimization layer can still rectify plant-model mismatched
or unmodeled disturbances, but on a slower time scale.

2.7.1 Optimal operation problem formulation

Morari stated in his paper about the goal of designing a control structure that the main
objective is to translate the economic objective into process control objectives [25]. In other
words, process control will always be used for achieving the best performance in terms of eco-
nomics for given operational conditions and constraints [26], such that the optimal operation
problem can be expressed mathematically as an optimization problem.

As disturbances in most continuous processes stay constant long enough to make the short-
term economic effects negligible, a quasi-steady-state assumption is made and the problem
of optimal operation can be formulated as a static optimization problem where parametric
model uncertainties are represented as disturbances:

min
ū

J(ū, x, d)

s.t. f(ū, x, d)
g(ū, x, d),

(2.7.1)

where x ∈ Rnx are the state variables, d ∈ Rnd are the disturbances, u ∈ Rnu are the
manipulated variables in the system. The manipulated variables can also be called the
steady-state degrees of freedom. The variables, x, d, and ū affect the steady state objective
function J : Rnx × Rnd × Rnū ↣ R, which is a scalar function and sets the goal of the
optimization, such as maximizing revenue or minimizing energy cost. The function f : Rnx ×
Rnd ×Rnū ↣ Rnf are the model equations, such as the component and energy balances, and
g : Rnx ×Rnd ×Rnū ↣ Rng are the operational constraints, such as operating temperatures
for the reactors.

When operating the plant, the objective function should be either maximized or minimized
depending on the objective goal, while satisfying the operational and plant constraints.
Ideally, if the model is completely correct and all the states, x, and the disturbances, d, in
the system are known, the objective value can be calculated from a given set of optimal
inputs, ū, which will result in optimal operation. In reality, as the plant is nearly and not
perfectly at steady-state, and the exact information about the states and the disturbances
are not available, this strategy is not implementable. However, this project assumes optimal
operation, which means that the model is assumed to be correct and states and disturbances
are known. Mathematically, to achieve optimal operation, the necessary conditions need
to be satisfied, in other words, the reduced gradient of the objective function with respect
to the manipulated variables needs to be zero, Ju = 0. In self-optimizing control, the
manipulated variable is used to carefully drive the selected controlled variables, c, to their
constant setpoints, cs. Despite measurement noise and disturbances, by monitoring the
appropriate variables, a feedback controller can be used to drive the system towards the
optimal operating point, in other words, the manipulated variables, ū, will approach uopt.

Ju is an excellent self-optimizing controlled variable, as it is not controlling the objective func-
tion directly, but controls the gradient to a constant setpoint of zero. Many problems arise
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when the objective function is controlled directly, explained in more detail in section 2.7.3.
As mentioned previously, there are problems when finding the exact states of the process,
and thus is challenging to find the direct evaluation of the gradient. Instead, information
about the states of the process is typically available from measurements, and therefore the
available plant measurement is assumed to be used for a model:

y0 = m(ū, x, d), (2.7.2)

where the function m : Rnx×Rnd×Rnū ↣ Rny , describes the relationship between the input,
states, and disturbances, and y ∈ Rny as the model output. However, in a real process plant,
the measured signals, y, are disturbed by measurement noise, ny ∈ Rny , such that:

y = y0 + ny. (2.7.3)

Generally, the controlled variables can be expressed as a function of the measurements, y,
where the controller drives the controlled variables to their setpoints given by the real-time
optimizer [26]. The controlled variables that are functions of the measurements are given as:

c = h(y), (2.7.4)

where c is the controlled variables and h(y) is a function of measurements. h(y) can be any
function but is often chosen to be linear, such that:

c = Hy, (2.7.5)

where H ∈ Rnc×ny is a constant matrix called a selection or combination matrix. When a
good set of controlled variables are selected, controlling c = Hy at its setpoint will indirectly
result in the corresponding near-optimal inputs, ū, thus the RTO does not require setpoint
updates for every operating condition and disturbance changes. Such a control structure is
referred to as a self-optimizing control structure. To decide which controlled variables are
“good”, Skogestad has proposed requirements for good CVs [27]:

1. The CV should be easy to control, that is, the input u should have a significant effect
(gain) on c.

2. The optimal value of c should be insensitive to disturbances.

3. The CV should be insensitive to noise.

4. In the case of several CVs, the variables should not be closely correlated.

It is shown from research that controlling the combination of measurements can improve
the economic performance of the control strategy, and in addition, lead to lower steady-
state losses [27] [28]. A general block diagram for a typical hierarchical control structure with
self-optimizing control implemented is shown in Figure 3.

From Figure 3, it can be seen that the constant setpoints are calculated by the real-time
optimizer and are passed down to the controller where it adjusts the inputs such that the
controlled variables, c = Hy tracks the setpoint closely.
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Figure 3: A general hierarchical control structure with self-optimizing control where the
figure is taken from a self-optimizing control review article by Jäschke [26].

To evaluate how well the control structure has performed, the economic loss can be used and
is defined as the difference between the cost from the control structure and the cost from
the true optimal operation. This can be mathematically expressed as:

L = J(ū, x, d)− J(uopt, x, d)

= J(ū, x, d)− Jopt(d),
(2.7.6)

where L is the evaluated economic loss, and Jopt(x, d) is the true optimal objective value for
given disturbances. This economic loss will be used to compare the performance of different
control structures, even if the control structure is a self-optimizing control structure.

To summarize, the main issue in self-optimizing control is to select appropriate controlled
variables, c = Hy, and setpoints. In other words, for a given set of disturbances, d, and
measurement noise, ny, the goal for self-optimizing control is to find an optimal combination
matrix, H, and find the correct setpoints which minimize the average or worst-case economic
loss for the operating region. Different methods for solving this problem have been reported,
and the following section will explain the methods in more detail, such as the local methods,
exact local method, and nullspace method.

2.7.2 Local methods

The idea behind local methods is to reduce the number of controlled variables to consider
and exclude controlled variables that are poorly chosen when designing the control structure.
For a controlled variable to be valid for selection, it needs to perform sufficiently well around
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the nominal operating point where the process is mostly expected to be. Variables are
tested around the nominal operating point to check if it is valid. Such variables will be used
for further examination and used for the whole operating range of the process plant. The
resulting control structure will be compared against the original nonlinear model for the
whole operating region.

Local approximation of the loss

To locally approximate the cost function, the steady-state problem formulation shown in
Equation (2.7.1) is used. The model equations, f(ū, x, d) = 0, are used to eliminate the states
in the optimization problem, and the new reduced optimization problem then becomes:

min
ū
J(ū, d) = 0

s.t. g(x, d) ≤ 0.
(2.7.7)

The set of active constraints, g(x, d) are assumed to not be changing during the operation,
and the active constraints will be controlled to their setpoints. Therefore, the set of ac-
tive constraints is eliminated from the problem formulation and leads to the unconstrained
optimization:

min
u
J(u, d), (2.7.8)

where J is the cost function of the unconstrained optimization problem, and u is the remain-
ing steady-state degrees of freedom after controlling the active constraints. u will then be
used for controlling the self-optimizing controlled variables. The cost function is then approx-
imated locally by a second-order Taylor expansion around the nominally optimal operating
point (∆uopt,∆d), and is expressed mathematically for given disturbances as:

J(∆u,∆d) = J(∆uopt,∆d)+JT
u (∆u−∆uopt)+

1

2
(∆u−∆uopt)TJuu(∆u−∆uopt)+O3, (2.7.9)

where Ju and Juu are the Jacobian and the Hessian matrices of the cost function around the
nominal operating point, respectively, ∆u = u − unom and ∆d = d − dnom By substituting
Equation (2.7.9) into Equation (2.7.6), where J(∆uopt,∆d) are eliminated from both sides
and taking consideration that the Jacobian of the objective value is zero at the optimum,
JT
u (u− uopt), the new approximation of loss is formulated as:

L ≈ 1

2
(∆u−∆uopt)TJuu(∆u−∆uopt). (2.7.10)

The loss can then be expressed as:
L = ||z||22, (2.7.11)

where || · ||22 denotes the two-norm and z is the loss variable and is defined as:

z = J1/2
uu (∆u−∆uopt). (2.7.12)
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Local approximation of the plant and linear measurement combination

To locally approximate the plant, the measurement model shown in Equation (2.7.3) is
linearized around the nominal operating point, expressed as:

∆y = Gy∆u+Gy
d∆d+ ny, (2.7.13)

where ∆y = y−yopt, ∆u = u−unom and ∆d = d−dnom. Gy and Gd
y are the gain of the output

from inputs and disturbances, respectively, and are defined as the partial derivatives of y
with respect to their respective variable around the nominal optimal point. The Jacobian
matrices, Gy and Gd

y are defined as:

Gy =
∂y

∂u
(2.7.14)

Gd
y =

∂y

∂d
. (2.7.15)

As the linear combinations of measurements, shown in Equation (2.7.5), are linear, ∆y can
be substituted and the linear combination of measurements can be formulated as:

∆c = H∆y, (2.7.16)

where ∆c = c − copt By substituting Equation (2.7.13) into Equation (2.7.16), the linear
combinations of measurements is formulated as:

∆c = HGy∆u+HGy
d∆d+Hny, (2.7.17)

where the matrix, HGy, needs to fulfill full rank, rank(HGy) = nu. This criterion is necessary
when obtaining a linearly independent set of CVs that fully specify the system. As long as
this criterion is achieved, the elements of the H matrix can take any arbitrary values.

Exact local method

Halvorsen developed a method for evaluating loss for a given control structure, called the
exact local method [29]. Exact local method evaluated loss by assuming perfect control despite
the disturbances, in other words, c = cnom, which leads to ∆c = 0. Substituting ∆c = 0 into
Equation (2.7.17), and expressing for ∆u gives:

∆u = (HGy)−1(∆c−HGy
d∆d−Hny)

= (HGy)−1(−HGy
d∆d−Hny)

= −(HGy)−1H(Gy
d∆d+ ny).

(2.7.18)

Defining the optimal input, ∆uopt as

∆uopt = −J−1
uu Jud∆d, (2.7.19)

which is derived from differentiating Equation (2.7.9) with respect to u, equating the expres-
sion to zero since the approximation of the function is around the nominal optimal point, such
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that Ju = 0, then solving for uopt. By substituting ∆uopt, shown in Equation (2.7.19), and the
input, ∆u, derived in Equation (2.7.18) into the loss variable, z, defined in Equation (2.7.12).
The loss variable, z, for a given set of disturbances and measurement combination matrix,
H, becomes [29]:

z = J1/2
uu

[
∆u−∆uopt

]
= J1/2

uu

[
(−(HGy)−1H(Gy

d∆d+ ny))− (−J−1
uu Jud∆d)

]
= −J1/2

uu ((HGy)−1)
[
(H(Gy

d∆d+ ny)) + ((HGy)J−1
uu Jud∆d)

]
= −J1/2

uu ((HGy)−1)H
[
Gy

d∆d+ ny +GyJ−1
uu Jud∆d

]
= −J1/2

uu ((HGy)−1)H
[
(Gy

d +GyJ−1
uu Jud)∆d+ ny

]
= −J1/2

uu ((HGy)−1)H
[
F∆d+ ny

]
,

(2.7.20)

where the optimal sensitivity matrix, F , is defined as:

F = Gy
d −GyJ−1

uu Jud, (2.7.21)

and represents the matrix of sensitivities of the optimal measurement values with respect to
the disturbances [26]:

F =
∂yopt

∂d
. (2.7.22)

There are many different ways to obtain the optimal sensitivity matrix, F , such as re-
optimization, nonlinear programming sensitivity based on the inverse function theorem, or
by using the definition shown in Equation (2.7.21), if all Hessian matrices and gain matrices
are available. Furthermore, diagonal scaling matrices are defined for the disturbances and
measurement noise, Wd and Wn, respectively.

∆d = Wdd
′ (2.7.23)

∆ny = Wnn
′, (2.7.24)

where d′ and n′ are the scaled disturbances and measurement noise, respectively. It is worth
noting that the disturbances are scaled to have a magnitude of 1. The scaling of the variables
can be used to evaluate the performance of the chosen set of CVs, as it allows to determine
the loss for a given set of disturbances and measurement noise. By using the scaled variables,
loss defined in Equation (2.7.11) is formulated as:

L =
1

2

∣∣∣∣∣∣∣∣J1/2
uu (HGy)−1HF̃

[
d′

n′

]∣∣∣∣∣∣∣∣2
2

, (2.7.25)

where F̃ is the augmented matrix and is defined as:

F̃ ≈
[
FWd Wn

]
. (2.7.26)
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By introducing the loss matrix, M , as:

M = J1/2
uu (HGy)−1HY, (2.7.27)

the loss matrix defined in Equation (2.7.25) can be simplified to:

L =
1

2

∣∣∣∣∣∣∣∣M [
d′

n′

]∣∣∣∣∣∣∣∣2
2

. (2.7.28)

As the loss matrix, M , has the property of remaining constant when multiplied by any
invertible matrix, Q, the steady-state loss will be independent of the scaling from the chosen
set of CVs. Jäschke showed this by first considering that the set of CVs is rescaled using the
scaling matrix, Q, such that [26]:

∆c̃ = Q∆c

= Q(H∆y)

= H̃∆y,

(2.7.29)

where H̃ is the rescaled selection matrix, and to further prove that scaling the set of CVs
will generally not affect the loss at steady state, it can also be seen that this is true for the
loss matrix, M , such that [26]:

M = J1/2
uu (H̃Gy)−1H̃Y

= J1/2
uu (QHGy)−1QHY

= J1/2
uu (HGy)−1Q−1QHY

= J1/2
uu (HGy)−1HY.

(2.7.30)

The following paragraphs show how local expressions are derived for the average and the
worst-case loss under different assumptions on disturbance and measurement noise distri-
butions, and how these expressions can be used for deriving minimum loss method and the
nullspace method suggested by Skogestad [27].

Worst-case loss

Halvorsen stated that the worst-case loss can be derived from the two-norm bounded distur-
bance and measurement noise under the assumption that the disturbance and measurement
noise are independent and uniformly distributed over the set, such that [29]:

DN2 =
{
(d′, n′)

∣∣∣ ∣∣∣∣∣∣[d′ n′]T ∣∣∣∣∣∣
2
≤ 1
}
, (2.7.31)

where DN 2 is the two-norm bounded disturbance and measurement noise set that contains
all the allowable disturbance and measurement noise values. By using the loss expressed in
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Equation (2.7.28), the worst-case loss can be expressed as [29]:

Lw = max∣∣∣∣∣∣
∣∣∣∣∣∣
d′
n′

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤1

1

2

∣∣∣∣∣∣∣∣M [
d′

n′

]∣∣∣∣∣∣∣∣2
2

=
1

2
||M ||22

=
1

2
σ̄2(M),

(2.7.32)

where σ̄(·) represents the largest singular value.

Average loss

Kariwala stated that the average loss can be derived from the infinity-norm bounded dis-
turbance and measurement noise under the assumption that d′ and n′ are independent and
uniformly distributed over the set, such that [30]:

DN∞ =
{
(d′, n′)

∣∣∣ ∣∣∣∣∣∣[d′ n′]T ∣∣∣∣∣∣
∞

≤ 1
}
, (2.7.33)

where DN∞ is the infinity-norm bounded disturbance and measurement noise set. Identically
to the derivation of the worst-case loss, Equation (2.7.28) can be used to derive the average
loss, and is formulated as [30]:

Lavg = E
d′,n′∈DN∞

[
1

2

∣∣∣∣∣∣∣∣M [
d′

n′

]∣∣∣∣∣∣∣∣2
2

]
=

1

6
||M ||2F ,

(2.7.34)

where E[·] is the expectation operator.

Kariwala also derived expressions for average loss by normally distributing the disturbance
and measurement noise under the assumption that the variables are normally distributed
with zero mean and unit variance, such that [30]:

DNN = {d′ ∼ N (0, I), n′ ∼ N (0, I)}, (2.7.35)

where DNN is the normally distributed disturbance and measurement noise, with the same
method as previous derivations of loss, the average loss becomes:

Lavg = E
d′,n′∈DNN

[
1

2
M

[
d′

n′

]]
=

1

2
||M ||2F ,

(2.7.36)

where the worst-case loss results unbounded (Lw = ∞), as the disturbance and measurement
noise can become large.



Yoonsik Oh 2 Theory

Minimum loss method

For a given control structure represented by the optimal combination matrix, H, the worst-
case and average loss can be calculated using the methods formulated earlier. For finding
a measurement combination, ∆c = H∆y, that minimizes the average loss for normally
distributed disturbance and measurement noise, the loss can be formulated as [26]:

min
H

L =
1

2

∣∣∣∣J1/2
uu (HGy)−1HY

∣∣∣∣2
F
, (2.7.37)

where HGy is invertible, and J
1/2
uu (HGy)−1HY is the loss matrix, M . This formulation can

be challenging to solve as it is often non-convex, and nonlinear and the assumption of exact
measurements are not valid in practice. To solve this, Alstad presented a reformulation of
this non-convex optimization problem, called the minimum loss method, where the non-
uniqueness property of the combination matrix, H, was used to derive a formulation where
the optimization problem is convex [31]:

min
H

||HY ||F

s.t. HGy = J1/2
uu ,

(2.7.38)

where an invertible matrix, Q, is chosen to make HGy = J
1/2
uu , as it is proven earlier that

multiplying the combination matrix, H, would not change the value of the loss matrix.
This results in canceling the nonlinearity in the formulation shown in Equation (2.7.38),
which now is a convex problem, and by solving this, the combination matrix, H, can be
found. Furthermore, Alstad formulated an analytical solution to this problem [31] and was
later simplified by Yelchuru and Skogestad [32], such that:

H = (Gy)T (F̃ F̃ T )−1, (2.7.39)

where this combination gives the locally best measurement combination for a given set of
measurements, where the matrix (F̃ F̃ T )−1 is always invertible as long as the measurements
are affected by noise. It is worth noting that to evaluate loss from the combination matrix,
shown in Equation (2.7.39), the expressions derived for worst-case and average loss must be
used.

Nullspace method

Alstad and Skogestad used the minimum loss method under the assumption of no measure-
ment noise to formulate the nullspace method to find the optimal combination matrix, H [33].
In the formulation, it is also shown that as long as the number of measurements is equal or
greater than the sum of the number of inputs and disturbances, ny ≥ nu + nd, it is always
possible to find a combination matrix, H, by selecting H as the nullspace of F , such that:

HF = 0, (2.7.40)

which results in no loss, both for the cases of average and worst-case. In a real plant, this
will not give optimal results, as there will always be measurement noise in practice. This
method also requires a large number of measurements to fulfill the condition ny ≥ nu + nd,
which often is the case, but a necessary condition nonetheless.
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Measurement subset selection

Using all measurements is neither desired nor required, and a control structure that controls
only a subset of the measurements leads to a simpler control structure with a usually insignif-
icant increase in loss [28] [30]. Thus, it is important to select an optimal subset of measurements
and find the optimal trade-off between implementing more sensors in the system, which leads
to better disturbance rejection and less corruption from measurement noise, and increased
investments and control complexity that comes with implementing more sensors. Kariwala
showed that by plotting the average loss against the number of measurements selected, the
trend follows a Pareto frontier [34], and is shown in Figure 4.

Figure 4: Average loss plotted against the number of measurements, with a Pareto frontier
trend representing the optimal set of measurements, where the figure is taken from a self-
optimizing control review article by Jäschke [35].

In Figure 4, it can be seen that after a certain threshold, an increasing number of measure-
ments have an insignificant increase in loss and new sensors can be implemented where it
affects the investment cost and control structure complexity by an inconsiderable amount.

The problem of selecting the best subset of measurements from the total amount of measure-
ments leads to a combinatorial optimization problem, where the loss is evaluated individually
for each CV. This can lead to a large number of possible combinations, and therefore, two
approaches have been developed for finding the optimal subset of measurements. The first
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approach is developed by Cao and Kariwala and solves the problem of finding the optimal
subset of measurements by developing a tailor-made branch and bound algorithms [30] [34] [36].
The second approach is developed by Yelchuru and Skogestad, where the problem of selection
is formulated as a mixed integer quadratic optimization problem (MIQP) and uses standard
MIQP to achieve the optimal subset of measurement set [32]. However, in this project, a
branch and bound algorithm developed by Yi Cao will be used to select the best measure-
ment subset selection [37], in addition, good engineering judgment to find the best subset of
measurements will also be used. The comprehensive MIQP approach will not be used. This
is further elaborated in section 4.3.4.

2.7.3 Active set changes

When defining inequality constraints in the model, it is important to note the difference
between active constraints and inactive constraints. When finding an optimal solution, the
inequality constraints may or not be at their bound. If it is at their bound, it is an active
constraint and it will affect the optimal solution, as the bounds will “limit” the solution
space of the solution. When these active constraints either change or are removed, the
optimal solution will also change. In general, the set of active constraints may change
during operation due to the disturbances, where an illustration of this situation is shown
in Figure 5, where for disturbance, d1, the optimum lies within the constraint and there
lies within the feasible region, g. For disturbance, d2, the optimum is unconstrained and
therefore outside of the feasible region. Another important note is the fact that all degrees

Figure 5: Illustration of how the disturbances can affect the active constraint set [38], where
objective function J is a function of the input, u and disturbances, d.
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of freedom are used when a control structure is implemented in the system (∆c = H∆y).
That means that if an additional constraint becomes active, this needs to be controlled, but
since there are no degrees of freedom available, this will lead to constraint violation and
infeasibility. On the other hand, if an active constraint becomes inactive, this will result in
economic performance loss. There are approaches to handle the problem of active constraint
set changes, however, these approaches are not considered in this work.

The first approach is the multi-parametric programming approach developed by Manum and
Skogestad [39]. In this approach, a self-optimizing control structure is designed by decompos-
ing the disturbance space into different active set regions, where specific switching laws to
change between control structures are implemented. As the number of potential active set
regions increases exponentially with the number of constraints, this is well suited for large
problems. Another approach is developed by Hu, where the goal is to find a single feasible
control structure that minimized the average loss for all disturbances [40]. A cascade approach
can be used for the case where it is predicted that the active set will not change frequently,
and the number of constraints is less than the number of CVs [41]. The problem of handling
active set changes is still not quite solved and is one of the problems in self-optimizing control
that is open for further research [26].
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3 Process description

Today’s blue hydrogen production is based onshore, but when designing and studying an
offshore process, there are several factors that take effect, such as limiting constraints for
weight and space, and higher establishment costs. A typical blue hydrogen plant uses a large
furnace to perform the reforming part of the process, where methane converts to hydrogen
and CO2. When designing an offshore plant, such a furnace would have increased the need
for special requirements drastically. Instead of utilizing a furnace, this process will take the
basis of a method that the company Johnson Matthey (JM) has designed. In this method,
the furnace for reforming is replaced with a gas-heated reformer (GHR) and an autothermal
reformer (ATR), both of which are columns and do not require as much space as a furnace.
The downside of this process is the requirement of pure oxygen in the ATR unit, which can
be challenging to obtain in an offshore process. However, this process has reported high
hydrogen purity products (>99.9 mol%) with low carbon emission with 97% CO2 capture
rate [16], where a pressure swing adsorption unit is the final separation unit.

A more detailed description of the process is presented in section 3.1. A simplified figure
of the offshore process is shown in Figure 6, where natural gas is extracted from the gas
reservoir under the seabed to the process and there will be mainly two components before
the last separation unit, which is hydrogen and CO2. Hydrogen will be separated and
transported back onshore, where it will be sold as a product while CO2 and a small amount
of other components such as H2O and CO will be injected back into the gas reservoir. This is
beneficial both for production and the environment as the carbon extracted from the seabed
returns back to where it was, so that the net amount of carbon in the atmosphere remains
the same, and at the same time, the pressure in the gas reservoir is held at a desired pressure
level. This is beneficial as usually when oil and gas are extracted from a reservoir, not all
resources can be extracted due to pressure drop in the reservoir. This process of injection of
CO2 for extracting more oil and gas is also called Enhanced Oil Recovery (EOR).

Figure 6: A simplified figure of the offshore blue hydrogen process.
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3.1 Flowsheet

The flowsheet in the present thesis was developed in the specialization project [14]. The flow-
sheet is nearly identical, but unlike in the specialization project, this project has implemented
a fuel-switching heater unit and a compressor for compressing the injection gas. The inlet
stream and the product stream are therefore split as fuel for the heater unit. Lastly, the
process condensate unit is modeled as a flash tank instead of assuming ideal split factors.

A complete flowsheet of the process is shown in Figure 7. The flow rate and the composition
of the extracted natural gas are based on the Troll platform in the North Sea. This natural
gas is assumed to be purified from sulphuric compounds before entering the process as the
initial stream. Then the purified natural gas mixes with H2O to a certain steam-to-carbon
ratio and enters a heater to achieve the operating temperature of the pre-reformer before
entering it. After the pre-reformer, the stream is heated up again, but now to the operating
temperature of the gas-heated reformer. The outflow of the gas-heated reformer enters the
autothermal reformer, where pure oxygen is fed into the unit and gives off large amounts
of heat. This highly heated stream is returned to the gas-heated reformer unit where it
exchanges heat with the inlet stream of the gas-heated reformer in a cross-counter flow
direction. After the GHR and ATR reforming part, it enters the isothermal shift reactor. In
all reactors, the operating temperatures have been set to achieve near equilibrium and it is
assumed in this project that all reactors are at equilibrium. This is a good assumption as
the process is assumed to be at steady state. Finally, it enters the first separator unit, the
process condensate, where water is removed after cooling down the stream, and the remaining
components, CO2 and hydrogen are separated at the PSA unit. Hydrogen is transported
back onshore to be sold, while CO2 is being injected back into the reservoir below the seabed
after being compressed to the proper pressure level. In addition, to supply the process with
its required amount of heat, a small fraction of the natural gas stream and the hydrogen
product stream are used for combustion in a heater.

3.1.1 Natural gas feed stream

The initial flow or stream 1 in the process, is the purified natural gas feed stream, which
is based on the Troll platform in the North Sea. The flow rate of the initial flow is based
on the average amount of natural gas that the Troll platform extracts annually, while the
composition is set as the average composition of natural gas from North Sea gas reservoirs [42].
A table of the average composition of natural gas in the North Sea is shown in Table 1.

As mentioned, the initial feed is assumed to be purified, where all sulphuric and nitric
compounds are purified and the initial flow mainly consists of CH4, CO2, and other heavier
hydrocarbons like ethane and propane. The assumption that all heavier hydrocarbons than
pentane will be treated as pentane has been made for this project. Sulphuric compounds
are treated by adding hydrogen to the natural gas stream to convert it to H2S and remove
it. Although there are only traces of sulphuric compounds, these compounds damage the
catalyst in the reactors and can lead to significant economic losses and lower yield. In
addition, it is worth noting that a small part of the natural gas stream will be used for
combustion to achieve the required amount of heat in the process. This optimal amount of
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Figure 7: A complete flowsheet of the blue hydrogen process.

Table 1: Average composition of natural gas in the North Sea [42].

Compound mol%

CH4 78.27
C2H6 6.10
C3H8 6.70

n-C4H10 2.48
i-C4H10 1.41
C5H12 3.70
H2O ≈ 0
H2 ≈ 0
CO ≈ 0
CO2 1.34
H2S ≈ 0

natural gas used for combustion will be decided by the optimization solver.

3.1.2 Pre-reformer

A small part of stream 1 will be used as fuel for combustion in the heater (stream 18), which
will be explained in section 3.1.7. The purified natural gas, stream 2, mixes with a stream of
pure H2O with a specific steam-to-carbon ratio, where carbon is the sum of all hydrocarbons
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in stream 2. In this project, a steam-to-carbon ratio has been set to 2.5. After the mixer,
stream 4 will enter a heater to heat up stream 4 to the operating temperature of the pre-
former unit. This amount of heat will be supplied from the heater, which is explained in
more detail in section 3.1.7. The purpose of the pre-reformer unit is to convert all heavier
hydrocarbons than methane into CH4. This is beneficial as it will be easier to operate and
select the correct catalysts in the later reforming stage. In the pre-reformer, the following
equilibrium takes place:

CnHm + nH2O −−⇀↽−− nCO + (n +
m

2
)H2, ∆H > 0 (3.1.1)

CH4 +H2O −−⇀↽−− CO+ 3H2, ∆H > 0 (3.1.2)

where the two equilibrium equations are also called the steam reforming equations [43]. To
ensure that the equilibrium is shifted as desired, a desirable operating temperature is chosen.
A study by Christensen reported that 693.0K is a good operating temperature [44] for the
pre-reformer unit for achieving equilibrium, and this project will make the same assump-
tion. Due to the conditions, the first equilibrium, shown in Equation (3.1.1), will be shifted
heavily towards the right so that all heavier hydrocarbons are converted to CO and H2. The
second equilibrium, shown in Equation (3.1.2), is shifted to the left so that the converted
hydrocarbons will convert to CH4. In summary, in the pre-reformer unit, all hydrocarbons
that are heavier than methane in the entering stream will be converted to CO and H2 and
then converted to CH4 and H2 again.

3.1.3 Gas-heated reformer and autothermal reformer

After the pre-former step, the next step in the process is the main reforming part, which will
happen in the gas-heated reformer and the autothermal reformer part. However, before this
step, the outlet of the pre-reformer (stream 6) enters another heater to heat up the stream
to 753.0K. Although a temperature range of 923K to 1023K is reported to be a good
operating temperature to achieve near equilibrium [43], a temperature of 753.0K is assumed
to be sufficient, as the chemical reactions happening in the reformer units are strongly
exothermic. In addition, heat from the autothermal unit will also heat up the gas-heated
reformer unit, which will be explained in section 3.1.7. This required amount of heat in the
heat exchanger before the gas-heated reformer will also be supplied by the heater, identical
to the heat exchanger before the pre-reformer unit.

The heated stream 7, will then enter the gas-heated reformer (GHR), where it will pass
through a number of catalyst-filled pipelines and two reactions will take place. The first
reaction will convert CH4 and H2 into CO and H2, and the second reaction will convert CO
and H2 into CO2 and H2 and is shown in Equation (3.1.2) and Equation (3.1.3), respectively.

CO+H2O −−⇀↽−− CO2 +H2, ∆H < 0, (3.1.3)

where Equation (3.1.3) is also called the water-gas shift reaction. After the stream has
passed the pipelines in the GHR unit, the outlet stream of GHR will enter the autothermal
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reformer (ATR) unit where pure oxygen is fed into the reactor. The oxygen combusts with
either H2 or CH4 to give a high amount of heat. A study by Mukherjee et al. has shown that
the combustion of H2 happens almost 10 times as fast as CH4, and it will be assumed that
oxygen mainly combusts with H2

[45]. This high amount of heat from combusting oxygen will
shift Equation (3.1.2) heavily towards the right, as the reaction is endothermic, such that
most of the CH4 is converted to CO and H2.

The outlet stream of the ATR unit will return back to the GHR unit, only now, instead
of entering the pipelines in the GHR, the outlet stream will pass outside of the pipeline,
but still in the GHR unit, to exchange heat to the initial inlet stream of the GHR. This
is beneficial as the conversion of CH4 in the pipelines in the GHR unit will increase as it
shifts the equilibrium to the right. This exchange of heat is similar to a tube and shell heat
exchanger, where counter-flow heat exchange is taking place. Stream 10, which is the outlet
stream of the GHR and ATR process, will now mainly consist of CO, CO2, H2, and H2.

3.1.4 Isothermal shift reactor

After the GHR and ATR process, stream 10 will enter the isothermal shift reactor unit
(ITSR). The purpose of this unit is to convert the remaining CO into CO2 and H2 and is
the last reactor unit of the process. Due to the reactor conditions and the catalysts in the
reactor, only the water-gas shift reaction, shown in Equation (3.1.3), will take place. It is
worth noting that since the temperature is set to be constant in the ISTR, heat is recovered,
as the reaction is exothermic. In addition, it is assumed that a cooler takes place in the
ISTR unit to cool down the outlet stream from the GHR and ATR process to the operating
temperature of the ITSR. A typical operating temperature of ITSR is reported to be in a
range of 473.0K to 623.0K from a study by Appl [46]. The outlet stream of the ITSR process
consists mainly of CO2, H2, and H2O.

3.1.5 Process condensate

After the ITSR process, stream 10 will enter the process condensate unit. The process
condensate’s role is to remove most of H2O in the stream and is done by first cooling down
stream 11 to 313.0K. The cooled stream will then enter the process of condensate where
a vapor-liquid separation will take place. This unit is also one of the simpler and cheaper
options for post-combustion separation [47]. This step is also important for the next step, as
liquid H2O cannot exist in the next separation unit, which is the pressure swing adsorption
unit. The outlet stream of the process condensate process will now mainly consist of CO2

and H2, and the removed liquid H2O can be recycled for earlier stages of the process by
heating it up to steam and adjoining with stream 3.

3.1.6 Pressure swing adsorption

The last separation unit of the process is the pressure swing adsorption (PSA) unit. The
purpose of this unit is to separate H2 from the rest of the components in the stream, mainly
CO2. It is also assumed that all components in the stream after the PSA unit, except H2
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and CO2, will be treated as CO2. The PSA unit consists of two or more tanks, which are
filled with particles that CO2 adsorbs on when operating at high pressure, so that H2 can
pass through. When a tank filled with particles is saturated with CO2, the pressure lowers,
and the CO2 desorbs from the particles. This process is similar to a batch process, where a
tank has high pressure and adsorbs the CO2, while another tank has low pressure to desorb
the CO2 to achieve a streamlined, continuous process [48].

This process has been reported to achieve a high-purity hydrogen stream with a purity rate
of 99.9 mol% with a high CO2 capture rate of 97 mol% [49], that will be transported back
onshore where it can be sold as a product (stream 17). A part of the product stream of H2

(stream 16) will also be used for combustion for the heater to achieve the required amount
of heat that the process requires. An optimization solver will find the optimal amount
of burning the product stream and the optimal amount of natural gas to combust while
maximizing profit. The purge stream from the PSA unit, consisting mainly of CO2 (stream
14) and other unreacted components will adjoin the purge stream from the heater (stream
19), where it will be compressed for injection to the gas reservoir to complete the enhanced
oil recovery part of the process [50].

3.1.7 Heater

As mentioned in the previous sections, two heaters take place in the process to heat up the
pre-reformer unit’s and the gas-heated reformer’s inlet stream to their respective operating
temperature. To achieve this required amount of heat from the two heaters, an additional
heater unit that suffices the system with heat has been implemented in the process. The
heater combusts a part of the natural gas feed stream (stream 18), and the hydrogen-rich
product stream (stream 16) until a desired amount of heat is achieved. Both methods
will results in a loss of revenue as using a part of stream 1, less hydrogen in the form of
hydrocarbons will enter the system, and combusting hydrocarbons leads to more CO2 gas
that has to be compressed and injected and using a part of the hydrogen-rich product stream
leads to less product being sold. The optimization solver will find the optimal amount of
natural gas or hydrogen to combust to achieve the required amount of heat in the process
while maximizing profit.

The amount of CO2 generated from combusting hydrocarbons in the natural gas feed stream
can be calculated from the combustion reaction shown in Equation (3.1.4).

CnHm + (n +
m

4
)O2 −−→ nCO2 +

m

2
H2O. (3.1.4)

When supplying the combustion with oxygen, unlike the ATR unit which used pure oxygen,
it is assumed that air, containing 21% O2 and 79% N2, of a satisfying amount is sufficient
to achieve complete combustion. To calculate how much N2 that comes from the air that
is being used for combustion to inject, the equation shown in Equation (3.1.5) will be used,
where it uses the molar ratio between O2 and N2 and the molar ratio between a general
hydrocarbon, CnHm , and O2, where n and m is the number of carbons and hydrogen atoms
in the hydrocarbon that is being combusted, respectively.
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FN2,inj =
0.21 ∗ ·FNG,heat

2 ∗ 0.79
, (3.1.5)

where FN2,inj is the amount of N2 that is generated from combustion that is being injected
and FNG,heat is the amount of natural gas feed stream that is being combusted for generating
the required amount of heat in the process. As there are mostly CH4 in the natural gas, n
and m are assumed to be 1 and 4, respectively, for all combustion of natural gas.

3.1.8 Compression

To inject the CO2 gas from the PSA unit and combustion, the gas needs to be compressed to
a pressure level higher than the reservoir. A study by Zhang et al. showed that injecting gas
into a reservoir at the Sleipner gas field needed to compress to a pressure level of 106 bar [51].
The Sleipner gas field is approximately 2300 meters below sea level [52], while the Troll gas
field, which this project is based on, is approximately 1300-1600 meters below sea level [53].
A deeper-positioned gas field requires the gas to be injected to be compressed to a higher
pressure. It is therefore assumed that for this project, a pressure level of 100 bars will be
sufficient for injecting the CO2 to the reservoir to complete the enhanced oil recovery.

Firstly, it is assumed that the CO2 gas from the PSA unit and combustion has 1 bar as
initial pressure. To compress this gas to 100 bar there will be two compressors that perform
an isentropic adiabatic compression with a cooler in between the compressors. The reason
behind the choice of a two-way compression with a cooler in between is because when com-
pressing gas from 1 bar to 100 bar, the required compression work is much higher compared
to compressing it once, cooling down the stream and then compressing it again. Even though
increasing the number of compressors will reduce the total compression work, when oper-
ating offshore, fewer units are an important factor to consider as it can be more expensive
and complicated when operating with many units. Note that the first compression and the
second compression compress the gas with the same compression factor of 10.
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4 Model description

Several assumptions were made to model the process, in addition to the assumptions that
were made in the previous sections. When modeling the offshore blue hydrogen plant, no
dynamics were implemented. In other words, the model is assumed to be at steady-state.
As mentioned in section 2.6, a steady-state model is sufficient when performing a top-down
analysis to analyze the economics of the plant. The optimization problem is an economic
objective function that maximizes profit and constraints formulated as nonlinear algebraic
equations and is explained in more detail in section 4.2 and section 4.1, respectively. To
estimate the flow rate of the initial natural gas stream in the process plant model, stream
data from Norsk Petroleum were used, where the platform Troll in the North Sea was chosen
as it extracted most natural gas annually in the last decade [54]. It was assumed from the
stream data that the platform produced an amount of 35 million Sm3 annually, which is
calculated to an hourly rate of approximately 4000 Sm3 of natural gas, assuming that the
platform is operating without interruption. The density of the natural gas is assumed to be
0.829 kg/Sm3. Finally, by using the natural gas density to convert the natural gas stream
data to kg, and using the natural gas composition found in Table 1, the initial natural gas
stream used in the model was calculated to be approximate 145.4 kmol h−1.

Figure 8: Flowsheet of the process plant model.

The flowsheet that the model is based on is a modified version of the initial flowsheet that was
shown in Figure 7. The modification comes from implementing the heat exchange between
the catalyst-filled pipelines in the GHR unit and the heated outlet from the ATR unit. Even
though the GHR unit is adiabatic, a new dummy variable, QGHR, has been introduced,
which represents the amount of heat that the pipelines in the GHR unit receive from the
outlet of the ATR unit. Instead of the ATR outlet entering the GHR unit, it enters a cooler
which cools down the ATR outlet stream to the same temperature as stream 10 shown in
Figure 7. The heat released from the cooler after the ATR unit is then QpostATR, and has
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the same amount of energy as QGHR but with the opposite sign. A further explanation
of the GHR and ATR part of the model is explained in section 4.2.2. Otherwise, the new
flowsheet is identical to the one shown in Figure 7, but only with new stream numbers as
the new implementation created an additional stream. The new flowsheet that the model is
based on is shown in Figure 8. All code that has been used for building the model, submodel,
calculation functions, printing functions, simulation functions, and testing functions is shown
in appendix B with descriptions.

4.1 JuMP Julia model structure

There were created 12 submodels in JuMP Julia, which represent different control volumes
of the process and were assembled into a larger model at the end. To connect the submod-
els, connectivity constraints were implemented. In other words, constraints requiring the
output stream of one submodel to be equal to the input stream of the next submodel were
implemented. The larger assembled JuMP Julia model was then solved in a simultaneous
approach. To study the process in an easier way, a function that prints out mole, compo-
sition, temperature, and pressure in a stream table was created. In addition, the function
also prints out other relevant variables in the process and a mass stream table to ensure that
mass is conserved at all points of the process.

To solve the model, an interior point method, Ipopt, interfaced by JuMP in Julia was
used [55] [56]. It is worth noting that the submodel that models the heater unit in the process
does not have its own Julia model, but is implemented directly into the larger model file
where other submodels were assembled. In each submodel, component mole balance defined
in Equation (2.3.6), is implemented. The extent of reaction term simply becomes zero if there
are no reactions taking place, such as mixers, heat exchangers, and splitters. The variables
are first defined in each submodel and then assigned their initial value for optimizing, where
the initial value is the calculated steady-state nominal value [14]. Energy balance defined in
Equation (2.3.17) is also implemented for each submodel, where the Q term becomes zero
if there is no heat gained or lost, such as mixer, pre-reformer, process condensate, or PSA
unit.

In addition, a function that prints out the active constraints has been made, where it takes
in the variables of the optimized model and checks if certain specific freed-up constraints are
active or not. To calculate the enthalpy for the energy balance, a function that calculates
a vector of enthalpy for each component in the stream for a given temperature has been
created. To calculate and estimate the enthalpy for each component, the equation shown
in Equation (4.1.1) has been used to estimate the heat capacity, where the constants in
the equation are from Smith et al [57]. The estimated heat capacity is then integrated from
T0 = 298K to the temperature of the stream i, Ti, to achieve a term for enthalpy for a
specific temperature, Ti. The final term for enthalpy, Hi, is shown in Equation (4.1.1)

Cp

R
= A+B · T + C · T 2, (4.1.1)
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∫ Ti

T0=298K

Cp

R
= A+B · T + C · T 2 (4.1.2)

Hi = R ·
[
A · T +

B

2
· T 2 +

C

3
· T 3

]Ti

T0=298K

. (4.1.3)

A summary of the description of each submodel with each input and output to clarify which
control volume each submodel represents is shown in Table 2, where ni is the respective
mole stream for stream i. In the end, there were 192 variables with 184 constraints: 182
equality constraints and 2 inequality constraints. The objective function for the optimization
problem is an economic objective function and is explained more in detail in section 4.2.

Table 2: Summary of the description of all models.

Submodel Inlet Outlet Control Volume

1Mix.jl n1, n2 n3

Mixer for streams 1 and 2 and calculate the
required amount of steam

2PrePR.jl n3 n4 Heater before pre reformer

3PR.jl n4 n5 Pre reformer

4PreGHR.jl n5 n6 Heater before GHR

5GHR.jl n6 n7 Gas heated reformer

6ATR.jl n7 n8 Autothermal reformer

7PostATR.jl n8 n9 Cooler after ATR

8ITSR.jl n9 n10 Isothermal shift reactor

9PreCondensate.jl n10 n11 Cooler before process condensate

10Condensate.jl n11 n12, n13 Process condensate

11PSA.jl n12 n14, n15 Pressure swing adsorption

- n12 n12 Heater

4.2 Objective function

The optimization objective function in this project will be to maximize revenue from hy-
drogen while minimizing production costs such as electrical work from compressing gas for
injection. The primary and only source of income will be the hydrogen product, and the
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price will be estimated from an external source. The main costs in the model are the cost
of injecting flue gas and the removed CO2 gas back into the oil reservoir, which is also
estimated, and the required heating achieved by combusting a combination of the natural
gas feed stream and the hydrogen product stream. The equation for the objective function,
which is being maximized, is shown in Equation (4.2.1).

max J = FH2,prod · PH2 −W rev
s,tot · Pel, (4.2.1)

where FH2,prod is the hydrogen product stream that is being sold, PH2 is the selling price of
hydrogen, W rev

s,tot is the total compression work for compressing the injection gas to a sufficient
enough high pressure for injection, formulated in section 4.2.7, and Pel is the electricity cost.
A table of these prices is shown in Table 3,

Table 3: Estimated prices of hydrogen and electricity.

Variable Price Unit

PH2 3.347 $/kgH2

Pel 0.14 $/Kwh

where the price of hydrogen, PH2 , was estimated from a study that did a comparative as-
sessment for different blue hydrogen plants [58] and the price of injecting the purge stream,
Pel, was estimated from Statistics Norway [59], which reported the average electricity cost
for a non-electric intensive industry. It is worth noting that these two prices will affect the
optimization and the objective function value, and is considered as a disturbance for the
process, which will be used for the self-optimizing control later, explained in section 4.3.2.

4.2.1 Pre-reformer model

The model equations for the pre-reformer unit are derived from the component balances and
energy balances, shown in Equation (2.3.8) and Equation (2.3.18), respectively. And it is
worth noting that as mentioned earlier, it is assumed that all hydrocarbons heavier than
pentane will be considered as pentane. The equilibrium reaction equations taking place in
the pre-reformer are then:

CH4 +H2O −−⇀↽−− CO+ 3H2 (4.2.2)
C2H6 + 2H2O −−⇀↽−− 2CO + 5H2 (4.2.3)
C3H8 + 3H2O −−⇀↽−− 3CO + 7H2 (4.2.4)

i-C4H10 + 4H2O −−⇀↽−− 4CO + 9H2 (4.2.5)
n-C4H10 + 4H2O −−⇀↽−− 4CO + 9H2 (4.2.6)
C5H12 + 5H2O −−⇀↽−− 5CO + 11H2 (4.2.7)

CO+H2O −−⇀↽−− CO2 +H2. (4.2.8)



Yoonsik Oh 4 Model description

Due to the reactor conditions such as temperature and catalysts in the pre-reformer, it
is assumed that all equilibrium reactions that are heavier than methane is shifted heavily
towards the right, such that the extent of the reaction for these reactions can be calculated
from the inlet mole stream since the outlet mole stream will become 0. For the equilibrium
reaction for ethane, the component balance for ethane can be formulated as:

nC2H6 = n0,C2H6 − ξ1,pr, (4.2.9)

where n0,C2H6 and nC2H6 is the inlet and outlet mole stream of ethane, respectively, and ξ1,pr
is the extent of reaction for Equation (4.2.3). As it is assumed that the equilibrium reaction
is shifted heavily towards the right, the outlet mole stream of ethane becomes zero. The
component balance for ethane then becomes:

0 = n0,C2H6 − ξ1,pr (4.2.10)
ξ1,pr = n0,C2H6 . (4.2.11)

By using the same logic for the rest of the hydrocarbons heavier than methane, the extent
of reactions in the pre-reformer becomes:

ξ2,pr = n0,C3H8 (4.2.12)
ξ3,pr = n0,i-C4H10 (4.2.13)
ξ4,pr = n0,n-C4H10 (4.2.14)
ξ5,pr = n0,C5H12 . (4.2.15)

The remaining extent of reactions of the pre-reformer equilibrium reaction equations can
then be calculated from the component balance of CH4 and CO2, respectively.

nCH4 = n0,CH4 − ξ6,pr (4.2.16)
nCO2 = n0,CO2 + ξ7,pr, (4.2.17)

where Equation (4.2.16) and Equation (4.2.17) is the component balance for CH4 and CO2

in the pre-reformer, respectively. By rearranging the component balances, the remaining
extent of reactions of Equation (4.2.2) and Equation (4.2.8), can then be formulated as:

ξ6,pr = n0,CH4 − nCH4 (4.2.18)
ξ7,pr = nCO2 − n0,CO2 . (4.2.19)

When defining the extent of reactions in the model for the solver, the equations are defined
as explicit expressions in the model and not a variable that is being optimized directly. The
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remaining component balances for H2O, H2 and CO is derived from Equation (2.3.8), and is
formulated as:

nH2O = n0,H2O − 2ξ1,pr − 3ξ2,pr − 4ξ3,pr − 4ξ4,pr − 5ξ5,pr − ξ6,pr − ξ7,pr (4.2.20)
nH2 = n0,H2 + 5ξ1,pr + 7ξ2,pr + 9ξ3,pr + 9ξ4,pr + 11ξ5,pr + 3ξ6,pr + ξ7,pr (4.2.21)
nCO = n0,CO + 2ξ1,pr + 3ξ2,pr + 4ξ3,pr + 4ξ4,pr + 5ξ5,pr + ξ6,pr − ξ7,pr. (4.2.22)

The steam-methane reforming and water-gas shift reactions, shown in Equation (4.2.2) and
Equation (4.2.8), respectively, are not assumed to be shifted towards the right, but in equi-
librium. The ratio between the reactant and product moles is given from an equilibrium
constant and is dependent on temperature. A general equation for the equilibrium constant
is shown in Equation (4.2.23).

K(T ) =
∏
i

xνii . (4.2.23)

where K(T ) is the temperature dependent equilibrium constant for the equation, xi is the
mole fraction component i, and the definition of mole fraction is shown in Equation (4.2.24).
And lastly, νi is the stoichiometric coefficient of component i.

xi =
ni

ntot

. (4.2.24)

By using Equation (4.2.23) for the reactions shown in Equation (4.2.2) and Equation (4.2.8),
the equations for equilibrium constants can be formulated as:

KSMR(T ) =
xCO · x3H2

xCH4 · xH2O

(4.2.25)

KWGSR(T ) =
xCO2 · xH2

xCO · xH2O

, (4.2.26)

where KSMR(T ) and KWGSR(T ) are the temperature-dependent equilibrium constants for
the steam-methane reforming and water-gas shift reactions, respectively. To estimate the
function for the actual equilibrium constants, a GHR reactor was simulated for a tempera-
ture range of 700−1400K in the flow simulation software, Aspen HYSYS. A linear regression
was then performed to estimate the functions for equilibrium constants. The resulting re-
gression plot is shown in Figure 9, and the estimated equilibrium constant equations for the
steam-methane reforming and water-gas shift reactions are shown in Equation (4.2.27) and
Equation (4.2.28), respectively.

KSMR(T ) = exp (−1.52 · 10−5T 2 + 4.80 · 10−2T − 29.19) (4.2.27)
KWGSR(T ) = exp (−2.95 · 10−6T 2 − 8.47 · 10−3T − 4.99). (4.2.28)

Lastly, the energy balance of the pre-reformer unit was derived from Equation (2.3.18),
where enthalpy is defined as the mole stream of the component multiplied by the specific
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Figure 9: The linear regression for estimating the equations Equation (4.2.27) and Equa-
tion (4.2.28) for the equilibrium constants KSMR and KWGSR, respectively [14].

enthalpy of the component for a given temperature. The formulated energy balance is shown
in Equation (4.2.29).

0 =
∑
i

ni,in · hi(Tin)−
∑
i

ni,out · hi(Tout) +QPR, (4.2.29)

where QPR is the heat gained or required in the pre-reformer unit. In summary, with the
component balances, energy balance, and the equilibrium constants, the equations of the
pre-reformer models are:

0 = n0,H2O − nH2O − 2ξ1,pr − 3ξ2,pr − 4ξ3,pr − 4ξ4,pr − 5ξ5,pr − ξ6,pr − ξ7,pr (4.2.30)
0 = n0,H2 − nH2 + 5ξ1,pr + 7ξ2,pr + 9ξ3,pr + 9ξ4,pr + 11ξ5,pr + 3ξ6,pr + ξ7,pr (4.2.31)
0 = n0,CO − nCO + 2ξ1,pr + 3ξ2,pr + 4ξ3,pr + 4ξ4,pr + 5ξ5,pr + ξ6,pr − ξ7,pr (4.2.32)
0 = KSMR(TPR)(xCH4 · xH2O)− (xCO · x3H2

) (4.2.33)
0 = KWGSR(TPR)(xCO · xH2O)− (xCO2 · xH2) (4.2.34)
0 = n0,C2H6 − nC2H6 − ξ1,pr (4.2.35)
0 = n0,C3H8 − nC3H8 − ξ2,pr (4.2.36)
0 = n0,i-C4H10 − ni-C4H10 − ξ3,pr (4.2.37)
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0 = n0,n-C4H10 − nn-C4H10 − ξ4,pr (4.2.38)
0 = n0,C5H12 − nC5H12 − ξ5,pr (4.2.39)

0 =
∑
i

ni,in · hi(Tin)−
∑
i

ni,out · hi(Tout) +QPR. (4.2.40)

4.2.2 GHR and ATR model

As mentioned in section 4, to model the shell-and-tube-like connectivity between the GHR
and ATR, a new slack variable, QGHR, has been introduced. This is the required amount of
heat that the catalyst-filled pipelines in the GHR unit receive from the high-heated outlet
stream from the ATR unit. Instead of the original cross-connection between the two reactors,
a cooler has been introduced, and the duty of this cooler is given as QpostATR. QpostATR should
be same as QGHR, only with opposite signs. The new constraint in the model that ensures
this connectivity is formulated as:

QGHR +QpostATR = 0. (4.2.41)

To ensure that the exiting hot stream has a higher temperature than the entering cold
stream in the heat exchanging process, 2 additional inequality constraints have been imple-
mented in the model, with an approach temperature of 25 ◦C. The constraints are shown
in Equation (4.2.42) and Equation (4.2.43), and are the only inequality constraints in the
model.

TATR,out − TGHR,out ≥ 25 (4.2.42)
TpostATR,out − TGHR,in ≥ 25. (4.2.43)

The constraints can be explained by first introducing the original heat transfer heat connec-
tivity between the GHR and the ATR unit. A simplified figure of the original connectivity
is shown in Figure 10, and the modified version where an additional cooler is added is shown
in Figure 11.

From Figure 10, it can be seen that the inlet cold stream is GHR_in, the outlet cold stream
is GHR_out, inlet hot stream is GHR_in2 and the outlet hot stream is GHR_out2. For
the model with the new connectivity, it can be seen from Figure 11, that the inlet and outlet
cold stream remains the same, but the inlet hot stream is now ATR_out and the outlet hot
stream is postATR_out, which is the stream after the cooler after ATR gave heat to the
GHR unit. To visualize how the cold and hot streams change in temperature over a length
x, a figure has been made with the corresponding variable names from Figure 11, shown in
Figure 12

It can be seen from the Figure 12 that the heat exchange at the outer bounds of x is between
ATR_out and GHR_out, and postATR_out and GHR_in. To ensure that ATR_out and
postATR_out have always a higher temperature than GHR_out and GHR_in, respectively,
an arbitrary value of 25 ◦C has been set as their difference, shown in Equation (4.2.42) and
Equation (4.2.43).
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Figure 10: Simplified figure of the connectivity between GHR and ATR.

Figure 11: The modified version of GHR and ATR model.

Figure 12: Heat exchanger temperature plot in the GHR.

The component balances and energy balances for the GHR unit are identical to the balances
made for the pre-reformer unit, explained in section 4.2.1. But instead of 7 equilibrium
reactions, there are only two, the steam-methane reforming and the water-gas shift reac-
tions, shown in Equation (3.1.2) and Equation (3.1.3), respectively. The same method for
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calculating the extent of reactions for the pre-reformer unit is used for the GHR unit and is
formulated as:

ξ1,ghr = n0,CH4 − nCH4 (4.2.44)
ξ2,ghr = nCO2 − n0,CO2 . (4.2.45)

The remaining component balances for H2O, H2 and CO is then:

nH2O = n0,H2O − ξ1,ghr − ξ2,ghr (4.2.46)
nH2 = n0,H2 + 3ξ1,ghr + ξ2,ghr (4.2.47)
nCO = n0,CO + ξ1,ghr − ξ2,ghr. (4.2.48)

With the same method as the pre-reformer unit for formulating the equilibrium constant
and energy balance, the equations for the GHR model can be summarized as:

0 = KSMR(TGHR)(xCH4 · xH2O)− (xCO · x3H2
) (4.2.49)

0 = KWGSR(TGHR)(xCO · xH2O)− (xCO2 · xH2) (4.2.50)
0 = nH2O − n0,H2O + ξ1,ghr + ξ2,ghr (4.2.51)
0 = nH2 − n0,H2 − 3ξ1,ghr − ξ2,ghr (4.2.52)
0 = nCO − n0,CO − ξ1,ghr + ξ2,ghr (4.2.53)

0 =
∑
i

ni,in · hi(Tin)−
∑
i

ni,out · hi(Tout) +QGHR. (4.2.54)

The component balance and energy balance equations for the ATR unit are identical to
the equations, but in addition, there is a combustion reaction of pure O2 and H2, shown in
Equation (4.2.55):

2H2 +O2 −−→ 2H2O. (4.2.55)
Since all oxygen is being combusted, the extent of reaction for the reaction shown in Equa-
tion (4.2.55) can be calculated from the component balance of oxygen:

nO2 = n0,O2 + ξatr,1 (4.2.56)
ξatr,1 = nO2 − n0,O2 . (4.2.57)

The equations for the ATR model can then be summarized as:

0 = KSMR(TATR)(xCH4 · xH2O)− (xCO · x3H2
) (4.2.58)

0 = KWGSR(TATR)(xCO · xH2O)− (xCO2 · xH2) (4.2.59)
0 = nH2O − n0,H2O − 2ξ1,atr + ξ2,atr + ξ3,atr (4.2.60)
0 = nH2 − n0,H2 + 2ξ1,atr − 3ξ2,atr − ξ3,atr (4.2.61)
0 = nCO − n0,CO − ξ2,atr + ξ3,atr (4.2.62)

0 =
∑
i

ni,in · hi(Tin)−
∑
i

ni,out · hi(Tout), (4.2.63)

where ξ2,atr and ξ3,atr are the extent of reactions of the steam-methane reforming and water-
gas shift reactions, respectively. It is worth noting that the outlet enthalpy summation in
the energy balance, shown in Equation (4.2.63), also has a term for enthalpy change given
by the oxygen feed.
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4.2.3 Isothermal shift reactor model

In the isothermal shift reactor, due to the reactor conditions and the catalysts, there is only
1 equilibrium reaction happening in the reactor, which is the water-gas shift reaction. The
reasoning behind this is to remove as much of CO as possible in the process into H2 and CO2

by reacting CO with H2O. The extent of reaction in the reactor can be calculated from the
component balance of H2O2, and with the same method as the previous reactors, the extent
of reaction is formulated as:

ξitsr = n0,H2O − nH2O. (4.2.64)

As the water-gas shift reaction is exothermic, heat is recovered in this reactor. In addition,
an internal cooler that cools down the inlet stream to the operating temperature of the
reactor is also implemented, such that even more heat is recovered. With the identical
component balance and energy balance equations as the previous reactors, the equations for
the isothermal shift reactor model can be summarized as:

0 = n0,CH4 − nCH4 (4.2.65)
0 = KWGSR(TITSR)(xCO · xH2O)− (xCO2 · xH2) (4.2.66)
0 = nH2 − n0,H2 − ξ1,itsr (4.2.67)
0 = nCO − n0,CO + ξ1,itsr (4.2.68)
0 = nCO2 − n0,CO2 − ξ1,itsr (4.2.69)

0 =
∑
i

ni,in · hi(Tin)−
∑
i

ni,out · hi(Tout) +QITSR. (4.2.70)

4.2.4 Process condensate model

In the process condensate unit, there are no reactions happening. Instead, a flash tank model
has been used to calculate the split ratio of the components based on vapor-liquid separation
principles. Firstly, it is assumed that the feed stream, F , is separated into a vapor and liquid
stream, V and L, respectively, where a phase equilibrium assumption has been made. The
component balance for the process condensate model can then be formulated as:

Fzi = V yi + Lxi, (4.2.71)

where zi, yi and xi are mole fractions of the respective phases. Furthermore, an assumption
that the vapor-liquid equilibrium can be described by a K-value:

yi = KV LE,ixi, (4.2.72)

where KV LE,i can be calculated from Raoult’s law. It is therefore assumed that Raoult’s
law is applicable in the process. Then KV LE,i can be assumed to be dependent on only
temperature and total pressure:

KV LE,i = psati (T )/p, (4.2.73)
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where p is the total pressure and psati is the saturated partial pressure of component i. The
saturated partial pressure is then assumed by the Antoine equation:

log10(p
sat
i ) = Ai −

Bi

T + Ci

, (4.2.74)

where Ai, Bi and Ci are Antoine parameters for component i. As there were difficulties in
finding a source that contained all of the parameters for the relevant components since most
of the components are in the gas phase for the temperature that the process condensate
is operating in, the only calculated saturated partial pressure is H2O. The rest of the
components are assumed to have a sufficiently high KV LE,i value (1e6), which assumes that
the components are in a gas phase in the operating temperature. The parameters data for
H2O is from Gubkov et al.(1964) [60].

Since the flash tank is isothermic and the temperature and pressure are known, the flash
equations can be rearranged into the Rachford-Rice equations by firstly substituting Equa-
tion (4.2.72) into Equation (4.2.71), and then rearranging for xi:

xi =
Fzi

L+ V KV LE,i

=
zi

1 + V
F
(KV LE,i − 1)

. (4.2.75)

Since the sum of all vapor and liquid fractions become 0,
∑

i yi − xi = 0, this condition can
then be used for Equation (4.2.75) for formulating the Rachford-Rice equations:

f(ψ) =
∑
i

zi(KV LE,i − 1)

1 + ψ(KV LE,i − 1)
= 0, (4.2.76)

where ψ = V/F . It is worth noting that f(ψ) is monotonic in ψ, where 0 ≤ ψ ≤ 1. The
equations for the process condensate model can then be summarized as:

0 = zi − xi(1 +
V

F
(KV LE,i − 1)) (4.2.77)

0 = yi −KV LE,ixi (4.2.78)

0 =
∑
i

zi(KV LE,i − 1)

1 + ψ(KV LE,i − 1)
(4.2.79)

0 = F − L− V, (4.2.80)

where Equation (4.2.80) is the total mass balance. Equation (4.2.77) and Equation (4.2.78)
apply for every component i in the unit, and therefore are 12 equations in total.

4.2.5 Pressure swing adsorption model

To model the pressure swing adsorption model, a split ratio for the different components
has been assumed from a study that did case studies for different configurations for PSA [48].
Hydrogen purity for the 2-tank case from the study was used for this process, and it is
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assumed that other components have been split near ideally. The split ratio, t, used for the
PSA unit in this process is:

t = [0.001, 0.001, 0.995, 0.001, 0.001], (4.2.81)

where the order of the components are CH4, H2O, H2, CO and CO2. In other words, the
product stream recovers 97.0% of the hydrogen and 0.1% of the other components in the
inlet stream, which results in a 99.96% hydrogen purity rate. It is assumed that the PSA
unit is modeled as a stream splitter, and the equations in the PSA model can be summarized
as:

0 = tin0,i − nprod,i (4.2.82)
0 = (1− ti)n0,i − npurge,i, (4.2.83)

where the split ratio is multiplied by its respective component mole stream, nprod,i is the
product stream containing majorly hydrogen, and npurge,i is the purge stream containing
majorly CO2. The part of the product stream (stream 17) is then used for combustion for
the heater unit with a part of the natural gas feed stream (stream 19), as shown in Figure 8.

4.2.6 Fuel switch heater model

For the heater model or the fuel switch model, a constraint that will account for the required
heat in the model was implemented, which will be supplied by the heat generated from
combusting part of the hydrogen product stream (stream 17) and part of the natural gas
feed (stream 19) and is formulated as:

Qheat = FH2,heat · HHVH2 + FNG,heat · HHVNG, (4.2.84)

where Qheat is the required amount of heating required in the process, FH2,heat is the amount
of product hydrogen stream used for combustion, or stream 17, HHVH2 is the high heated
value of H2, FNG,heat is the amount of natural gas feed stream used for combustion, or stream
19, and HHVNG is the high heated value of natural gas.

The second constraint will account for the hydrogen stream being sold as a product, being
the difference between the PSA outlet product stream with the hydrogen stream that is
being combusted for the required heating in the process. This constraint is expressed as

FH2,prod = F16 − FH2,heat, (4.2.85)

where FH2,prod is the amount of hydrogen that is being sold, or stream 18. Stream 18 is also
one of the variables in the economic objective function, explained in section 4.2. F16 is the
outlet product stream from the PSA unit shown in Figure 8 and FH2,heat is the amount of
hydrogen used for combustion and is the same variable shown in Equation (4.2.84).

Furthermore, a similar constraint as the one shown in Equation (4.2.85), a constraint to
account for natural gas feed stream used for combustion can be expressed as:

F2 = FNG,init − FNG,heat, (4.2.86)
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where F2 is the first flow that enters the process shown in Figure 7, FNG,init is the initial
purified natural gas flow that is extracted from the gas well and FNG,heat is the same variable
that is shown in Equation (4.2.84).

The last newly added variable, FCO2,inj, is the CO2 stream in addition to other impurities
separated from the product stream in the PSA, which is being injected back into the gas
well. This stream is also referred to as stream 21 in the model flowsheet shown in Figure 8.
The injection stream, FCO2,inj, is the sum of the purge stream from PSA unit (stream 15)
and the amount of CO2 generated from combustion and N2 generated from the use of air for
combustion (stream 20). The constraint that accounts for this sum is expressed as:

FCO2,inj = F15 + F20, (4.2.87)

where F15 is the purge stream from the PSA unit and F20 is the sum of CO2 generated from
the combustion and inert N2 that comes with the air used for combustion. The constraint
explaining F20 is shown as:

F20 = FNG,heat +
2 · FNG,heat

0.79
, (4.2.88)

where FNG,heat is the amount of CO2 generated from combusting natural gas due to the
combustion of hydrocarbons of n-carbons has a 1:1 molar ratio. This ratio is also shown
in Equation (3.1.4). Lastly, the last term comes from the average molar composition of
standard air used for combustion is approximately 21% O2 and 79% N2 and the molar ratio
of hydrocarbons of n-carbons and O2, which is shown in Equation (3.1.5).

4.2.7 Compression work model

The compression work model calculates the amount of work that it requires to compress
stream 21, which is the injection stream, from 1 bar to 100 bar. To model this, a two-stage
compressor is used, with a cooler in between. The compressors have the same compression
factors, in other words, the first compressor performs an isentropic (adiabatic and reversible)
compression from 1 bar to 10 bar. Due to the adiabatic conditions and constant volume, the
temperature will increase. To deal with this, a cooler is implemented to cool down the
compressed stream to the initial temperature before the first compression. Then the last
compressor compresses the gas from 10 bar to 100 bar. The equation for calculating the
reversible work for an isentropic compression is given as [61]:

W rev
s = n · cp · T1

((
P2

P1

) γ−1
γ

− 1

)
, (4.2.89)

where W rev
s is the reversible work, n is the total mole stream, T1 is the temperature of the

inlet stream, P1 and P2 is the pressure inlet and post-compression pressure of the stream,
respectively, cp is the heat capacity of the stream. However, since the flow from the heater
is considered as a total mole stream, and with the ideal gas assumption, the heat capacity is
estimated to be 5R/2 and not calculated as a mean heat capacity, which is the sum of the
heat capacity of each component multiplied by its respective molar fraction. γ is the specific
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heat ratio and is defined as the ratio between cp/cv. The ideal gas law is assumed in this
process, and thus cv = cp + R. The mathematical expression for the specific heat ratio is
shown in Equation (4.2.90).

γ =
cp

cp +R

γ =
5R/2

5R/2−R

γ =
5

3

(4.2.90)

For calculating the temperature after compression, the following expression is given [61]:

T2 = T1

(
P1

P2

) γ−1
γ

. (4.2.91)

The heat recovered in the cooler part can be used in a heat exchanger network to minimize
the required amount of heat, but this implementation will not be considered in this project
and can be a potential future improvement for the process to reduce the costs of operating
the plant. Another cooler after the last compression will not be implemented as it will not
be significant for the objective and optimization problem. The total compression work is
assumed to be the major cost of injecting the CO2 gas into the oil reservoir. In reality,
the compressor needs higher work to actually perform the compression than the reversible
compression work due to the effectiveness of the compressor and how well it can convert
electrical work into compression work. In this project, it is assumed that an ideal compressor
converts all electrical work into compression work, where the work required in the process is
assumed to be reversible.

4.3 Selection of variables

4.3.1 Controlled variables

Generally, when selecting control variables for self-optimizing control, local or global methods
can be used, where both approaches approximate the nonlinear loss function quadratically
around the nominal operating point. In this project, good engineering decisions will be used
to decide the good variables in the system that can be considered as input variables. These
variables will then be given their respective lower and upper bounds instead of an equality
constraint to free up the variable, and then studying the optimization results to see if there
are any control variables that are active. An active variable needs to be controlled, and a
degree of freedom is lost since the control variable can not be used for control purposes. In
addition, it is assumed that the active set does not change from disturbance changes.

Control variables should be measurements that are available for control purposes. Most
measurements in the system are flow data, such as mole flow, composition, or temperature
in the flow. In theory, these measurements, such as mole streams, may be selected for control
purposes, but it can lead to bottleneck or snowballing, which causes the process to break or
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lead to economic losses. In addition, these streams are not easily manipulated. Instead, the
heating and cooling required in the process, reactor temperatures, steam-to-carbon (S/C)
ratio, and oxygen stream will be used as control variables, which amounts to a total of 8
control variables. These measurements are easy to manipulate and measure and have a big
impact on economic evaluation.

Table 4: Selected control variables with their respective upper and lower bounds and their
nominal optimal value.

Variable Nominal optimal value Unit lb ub

S/C-ratio 5.0 [-] 0.0 5.0
nO2 79.3 [kmol h−1] 0.0 100.0
TprePR 644.6 [K] 643.0 743.0
TPR 609.2 [K] 609.2 709.2
TATR 1291.8 [K] 1273.0 1373.0

TpostATR 634.2 [K] 550.0 650.0
TITSR 473.0 [K] 473.0 573.0
TCond 293.0 [K] 293.0 333.0

The variables to be tested for active constraints are shown in Table 4, where lb and ub
are their respective variable’s upper and lower bounds, respectively. The temperature for
the pre-GHR heater unit is dependent on the temperature of the GHR unit, which again
is dependent on the post-ATR cooler, and will therefore not be a degree of freedom. The
resulting optimization problem shows that S/C-ratio, and temperature for PR, ITSR, and
process condensator are at their bounds, and therefore need to use a degree of freedom to
control them. In addition, the inequality constraint for heat exchange between the GHR and
ATR units, shown in Equation (4.2.43), is active, and therefore, TpostATR needs to control
as well. In conclusion, the control variables that will be used for self-optimizing control are
nO2 , TprePR, and TATR.

4.3.2 Disturbances

Disturbance variables in the process are the variables that can not be controlled as they
are fluctuating unpredictable variables. In reality, there are numerous disturbances that can
impact the process and the economy both by a substantial or negligible amount. In this
project, only the most important disturbances are chosen with good engineering decisions.
The chosen disturbance variables are the natural gas flow amount, price of hydrogen, and
electricity, as these disturbances can have a huge impact on the economy of the process.
These variables with their respective nominal values and their chosen deviation are shown
in Table 5.
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Table 5: Disturbances with their respective nominal value and deviations.

Variable Nominal value Unit Deviation

FNG 145.4 [kmol/h] ±5

PH2 3.347 [$/kmol] ±10%

Pel 0.14 [$/kWh] ±10%

4.3.3 Degrees of freedom analysis

The nominal optimization results showed that there were 192 variables, 184 equality con-
straints, and 2 inequality constraints. In the case where both inequality constraints are
inactive, this gives a total number of degrees of freedom of 8. As presented in section 4.3.1, 1
inequality constraint was active, and 4 variables were at their respective bounds. Therefore,
the remaining degrees of freedom remaining for self-optimizing control is 3.

4.3.4 Measurement subset selection

As mentioned in section 2.7.2, the MIQP method will not be used, while the Tailor-made
Branch and Bound algorithm was used for selecting the best measurement subset. A Branch
and Bound algorithm developed by Yi Cao [37] was used for selecting the best measurement
subset, which uses the exact local method to evaluate the performance for different subsets
to ultimately choose the subset. The same subset will be used for the nullspace method.
In addition to the measurement subset selected by the Branch and Bound algorithm, good
engineering decisions will be used to choose a subset for control purposes. The resulting
measurement subset selection was shown in section 5.
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5 Results

5.1 Nominal case

As the upper or lower bounds for certain controlled variables were active, as shown in sec-
tion 4.3.1, these variables use one degree of freedom and cannot be used for self-optimizing
control. In addition, the heat exchange inequality constraint shown in Equation (4.2.43),
also showed to be active, which leads to the variable, TpostATR, to be used to control the
constraint. The remaining variables that were not active (nO2 , TprePR and TATR), are used
for self-optimizing control, with the assumption that the set of active constraints does not
change during operation when disturbances change. The resulting optimization results where
the inputs and disturbances were not perturbed will be considered as the nominal case, and
the resulting output, inputs, and disturbances will be referred to as ynom, unom, and dnom,
respectively. The nominal values will be crucial when calculating various vectors and matri-
ces necessary for self-optimizing control. The output or measurement values are shown in
appendix A.1, and the inputs and the disturbances remain the same as shown in section 4.3.1
and section 4.3.2.

5.2 Local method

To perform local methods for self-optimizing control, different gain vectors that represents the
sensitivity of the output when input or disturbance variables are pertubated were calculated.
In addition, the Hessian matrix of the sensitivity of the output with respect to input change
and input and disturbance change is also calculated. The gain matrices used for performing
self-optimizing control are Gy and Gy

d, for input and disturbance change, respectively, where
the resulting matrices are shown in section 5.2.1. Lastly, the Hessian matrices Juu and
Jud denote the Hessian matrix of the output sensitivity with respect to input change and
input and disturbance change, respectively, and the resulting Hessian matrices are shown in
section 5.2.2. It is important that the assumption of linearity in the model needs to hold for
all operations.

To check if the resulting gain and Hessian matrices were calculated correctly with respect to
model mismatch and numerical errors, the gain matrices and Hessian matrices were tested
by simulating the linearization equations shown in Equation (2.7.13) and Equation (2.7.19),
respectively. By changing one variable at a time and keeping the other variables fixed, the
left-hand side of both equations could be checked with their respective right-hand side for
each variable. When the matrices were checked to be correctly calculated, the equation shown
in Equation (2.7.21) for calculating the optimal sensitivity matrix, F , was used. Lastly, the
scaled diagonal matrices for measurements and disturbances were calculated, denoted as Wn

and Wd, respectively, which contain the magnitude of the perturbation.

The only remaining matrix for local methods, such as the nullspace method or the exact
local method, is the optimal combination matrix, H. Note that the values in Gy, Gy

d, Juu,
Jud, Wn and Wd will be the same for both local methods, and therefore presented with all
values before the results of the local methods are presented. The only thing varying with the
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method was the optimal combination matrix, H. However, based on the measurement subset
selection for the different methods, the optimal combination matrices will differ from each
method. In other words, even though all values in the calculated matrices are presented, the
measurement subset selection chooses which variable and its value to use for self-optimizing
control.

5.2.1 Gain matrices

To calculate the gain matrices, Gy and Gy
d, each element in the matrices were calculated

using finite difference, and is shown as:

∂f

∂x
≈ f(x+ h)− f(x)

h
, (5.2.1)

where h is the size of the perturbation and should be as small as possible. In the case of
calculating the gain matrices, a value of h = 1e−5 was used. A smaller perturbation should,
in theory, give more accurate solutions, the perturbation size should however be carefully
chosen as it can lead to constraint violations. It is also worth noting that the perturbation
size will be relative to its respective nominal value. The dimensions of the gain matrices
when all measurements are used will be ny × nu, where ny = 184 and nu = 3. The gain
matrices are calculated as:

Gy =



∂y1
∂u1

∂y1
∂u2

∂y1
∂u3

∂y2
∂u1

∂y2
∂u2

∂y2
∂u3

...
...

...

∂y184
∂u1

∂y184
∂u2

∂y184
∂u3


(5.2.2)

Gy
d =



∂y1
∂d1

∂y1
∂d2

∂y1
∂d3

∂y2
∂d1

∂y2
∂d2

∂y2
∂d3

...
...

...

∂y184
∂d1

∂y184
∂d2

∂y184
∂d3


. (5.2.3)

The resulting matrices for Gy and Gy
d are shown in appendix A.1.1 and appendix A.1.2, re-

spectively. Note that the gain matrices that are shown in appendix A.1.1 and appendix A.1.2,
contains all of the measurements, but later when the matrices are used for different algo-
rithms, certain measurements that give the best performance will be chosen and thus will
reduce the size of the gain matrices.
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5.2.2 Hessian matrices

For calculating the Hessian matrices, Juu and Jud, each element were calculated with multi-
variable finite difference methods, shown as:

∂2f(x, y)

∂x2
≈ f(x+ h, y)− 2f(x, y) + f(x− h, y)

h2

∂2f(x, y)

∂xy
≈

 f(x+ h, y + k)− f(x+ h, y)− f(x, y + k) + 2f(x, y)
− f(x− h, y)− f(x, y − k) + f(x− h, y − k)

2hk

 . (5.2.4)

where h and k is the relative perturbation size of variable x and y, respectively. The dimen-
sions for Juu is nu × nu and for Jud, the dimensions are nu × nd. The Hessian matrices for
this case are then defined as:

Juu ≈


∂2J
∂u2

1

∂2J
∂u1∂u2

∂2J
∂u1∂u3

∂2J
∂u2∂u1

∂2J
∂u2

2

∂2J
∂u2∂u3

∂2J
∂u3∂u1

∂2J
∂u3∂u2

∂2J
∂u2

3

 (5.2.5)

Jud ≈


∂2J

∂u1∂d1
∂2J

∂u1∂d2
∂2J

∂u1∂d3

∂2J
∂u2∂d1

∂2J
∂u2∂d2

∂2J
∂u2∂d3

∂2J
∂u3∂d1

∂2J
∂u3∂d2

∂2J
∂u3∂d3

 . (5.2.6)

where each element is the change in the objective value with respect to inputs and distur-
bances. It is worth noting that when calculating each element, absolute perturbation size
was used to perpetuate the variables in finite difference and not relative perturbation size
that is being used in calculating gain matrices. In this case, the absolute perturbation size of
h = k = 1 · 10−2, is relatively high compared to the relative perturbation used in calculating
gain matrices, but this size was necessary due to numerical issues. The resulting Hessian
matrices are shown as:

Juu ≈

−1051.96 −0.0022 10.7973
−0.0022 −224.72 10.7657
10.7973 10.7657 −10.7609

 (5.2.7)

Jud ≈

−9.0226 · 10−5 −3.0687 0.0030
−1.0272 · 10−7 −0.0749 2.7102 · 10−5

5.7413 · 10−5 0.0019 −3.0804 · 10−6

 . (5.2.8)

5.2.3 Optimal sensitivity matrix

The optimal sensitivity matrix, F , is defined as shown in Equation (2.7.21) or Equation (2.7.22).
However, as it was tested that the necessary gain matrices and Hessian matrices were calcu-
lated correctly, the equation shown in Equation (2.7.21) was used to calculate the optimal
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sensitivity matrix:
F = Gy

d −GyJ−1
uu Jud. (5.2.9)

The dimensions of the matrix are ny×nd, and the resulting matrix is shown in appendix A.1.3.
The optimal sensitivity matrix will be used in the nullspace method, where only certain rows
of the matrix will be used, decided by the selected measurement subset.

5.2.4 Diagonal scaling matrices

To calculate the diagonal scaling matrices, different measurement noises were chosen by good
engineering judgment, as plant measurements were not available in this project. There were
4 different types of measurements; temperature, flow, component fraction, and heat flow. For
temperature, an absolute measurement noise of 1K was assumed. For flow measurements, a
relative measurement noise size of 2% of the nominal value of the variable was assumed. For
component fractions, an absolute measurement noise of 0.01 was chosen, and lastly, a relative
measurement noise of 5% for heat flow measurements was assumed. After the measurement
noises were applied for the appropriate measurements, a diagonal scaling matrix was made
from the measurement vector to finally calculate the diagonal scaling matrix for measurement
noise, Wn. For calculating the Wd diagonal matrix, which represents the magnitude of the
fluctuations of the disturbance variables, a relative disturbance size of 10% of the nominal
value of d2 and d3 were assumed, which are the electricity price and the hydrogen price,
respectively, and an absolute disturbance size of 5 were assumed for d1, which is the initial
inlet natural gas stream. The same disturbance sizes are implemented when perturbing the
disturbance variables when studying the loss of optimality when control elements take place
in the system.

5.2.5 Exact local method

To select the optimal combination matrix, H, measurement subsets were selected using a
Bidirection branch and bound solver developed by Yi Cao [37]. This method performs a
custom branch and bound algorithm to evaluate the best measurement subset, evaluated by
worst-case loss. This algorithm gave a subset of 3 variables which are chosen as optimal
combination matrices. These matrices are then implemented to the optimization problem
as:

∆c = H∆yopt = 0, (5.2.10)

where ∆yopt is the difference between the optimal and nominal output. ∆c is set as zero to
calculate the worst-case loss and the loss from controlling the measurement variables will be
used as a measurement of performance when ranking which measurement variable is best to
use to control. The selected measurement variables for the subset were: n6,H2 , n15,CH4 and
T5, which corresponds to the hydrogen outlet mole stream of the pre-reformer, the methane
outlet purge mole stream out of the pressure swing adsorption unit, and the temperature of
the heater before the pre-reformer, respectively.
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5.2.6 Nullspace method

Measurement subset selection for the nullspace method uses the same measurement subset
that was found by the algorithm by Yi Cao [37], which was used for finding the worst-case
loss with Exact Local Method. The optimal sensitivity matrix that was calculated earlier
then contains only the selected measurements from the measurement subset. The optimal
combination matrix, H is then found by calculating the nullspace matrix of the F matrix
such that:

HF = 0. (5.2.11)

Under the assumption that there is no measurement noise, the average loss and worst-case
loss from the optimal combination matrix found from the nullspace method is zero. As such,
even though the optimal measurement matrix found from the nullspace method minimizes
loss in optimality due to disturbances, it does not guarantee optimal performance for all cases.
One important note is that the assumption of linearity needs to be held for all disturbance
changes such that the linear model holds and the matrices calculated from the linear model
are considered to be valid, in addition to the assumption that the set of active constraints
is not changed. This is also why other methods are considered, as in nonlinear systems or
systems where the measurement noise is high and can significantly impact the system, the
nullspace method is not the best method.

5.2.7 Measurement subset from good engineering judgement

In addition to the optimal combination matrix calculated from the measurement subset se-
lection algorithm for the exact local method and the nullspace method, another measurement
subset was selected through good engineering judgment to create another optimal combina-
tion matrix. When selecting such measurements, good variables for the control variables to
control needs to be considered. For the first input variable, nO2 , measuring the CO2 amount
that enters the ITSR unit can be used to control the equilibrium in the ATR such that
maximum CO is converted. For the second input, T6, measuring the CH4 stream out of the
pre-reformer can be used for control, as keeping an optimal temperature will ensure that in
addition to all heavier hydrocarbons converted to methane, but also keeping the amount of
methane high such that the conversions in the following units, GHR and ATR, can operate
optimally. Lastly, T9, which is the last input variable and represents the outlet tempera-
ture of the ATR unit. To control this variable, measuring T8 or the outlet temperature of
GHR or inlet temperature of the ATR can be measured to be controlled. In summary, the
measurement subset selected from good engineering decisions is T8, n10,CO2 , and n6,CH4 .

5.2.8 Loss

This subsection shows the loss for different control structures when different disturbance vari-
ables changes. The disturbance variables are the inlet natural gas flow, electricity price, and
hydrogen price, denoted as d1, d2, and d3, respectively. The signs in front of the disturbance
variables denote if the change is either +10% of its nominal value or -10% of its nominal
value for d2 and d3, while the signs denote an absolute value of ±5 for d1. Furthermore, the
optimal combination matrices, H, found from the local methods, exact local method, and
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nullspace method are denoted as Hexact, and Hnull, respectively. The optimal combination
matrix decided from good engineering judgment is denoted as Hgej. In addition, the nominal
performance where inputs are fixed at their nominal values and disturbances are ignored, is
reported to compare the results with the implemented advanced control element to improve
the economy of the process. This is denoted by u = unom in the reported loss in the tables
below. Firstly, only one disturbance variable is perturbed to study how each disturbance
change impacts the system by itself and the resulting loss is shown in Table 6. Then two
disturbance variables are pertubated for all combinations possible, to see which disturbance
variable impacts the system more than the other variable, where the results are reported in
Table 7. Lastly, combinations of all disturbance variables pertubated are reported in Ta-
ble 8, to see overall how the economic loss is impacted when all disturbance variables are in
effect. A best and worst case of disturbances can also be seen from this result. The units of
the resulting loss from different cases with different optimal combination matrices, H, are
profit in USD per hour, or $/hour. In the next section, the performance of different control
structures will be discussed.

When the optimization problem resulted in constraint infeasibility, all variable bounds were
removed including inequality constraints and the self-optimizing constraints can lead to an
infeasible problem. To study the system, inequality constraints that could lead to infeasi-
bility were removed. After studying the infeasible cases, all cases were infeasible due to the
constraints regarding the GHR and ATR unit being violated. This indicates that when the
disturbance is changed, the assumption of the linear model did not hold. In other words,
as the model is assumed locally linear around the nominal points, a such change in distur-
bances drives the system out of its linear assumption, which results in constraint violations.
In the cases where the optimal problem resulted in a constraint violation, the resulting loss
is denoted by a red color.

Table 6: Reported loss from different control structures, where 1 disturbance variable is
changed. The values have $/hour as their unit, and the numbers in red denote constraint
violation.

Case Perturbation u = unom Hexact Hnull Hgej

1 +d1 -19.9865 -22.0054 -21.5284 -19.9862
2 +d2 -0.0066 -2.0778 577.6286 -0.000
3 +d3 -0.0035 -2.1761 -2.1704 -0.000
4 −d1 -16.4390 -1.1232 -1.1239 22.2995
5 −d2 -0.0010 -1.6012 -1.9688 -0.000
6 −d3 -0.0011 -1.8701 -1.8721 -0.000
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Table 7: Reported loss from different control structures, where 2 disturbance variables are
changed. The values have $/hour as their unit, and the numbers in red denote constraint
violation.

Case Perturbation u = unom Hexact Hnull Hgej

7 +d1,+d2 -22.4891 -24.5610 -24.5316 -22.4889
8 +d1,+d3 -19.4825 -21.6450 -20.3731 -19.4822
9 +d2,+d3 -0.0013 -2.2283 -2.2283 -0.000
10 −d1,−d2 -16.4813 -1.0685 -1.0685 22.5375
11 −d1,−d3 -14.7528 -1.0664 -1.067 19.8346
12 −d2,−d3 -0.001 -1.7983 -0.000 -0.000
13 +d1,−d2 -78.0521 159.483 161.415 161.4149
14 −d1,+d2 -16.3967 -1.1794 565.6105 22.0594
15 +d1,−d3 -20.4903 -22.3607 -8.6928 -20.4903
16 −d1,+d3 -18.1252 -1.1802 -1.1809 24.7687
17 +d2,−d3 576.4591 -1.9281 577.4468 -0.000
18 −d2,+d3 598.9526 -1.1802 -1.1809 127.3042

Table 8: Reported loss from different control structures, where 3 disturbance variables are
changed. The values have $/hour as their unit, and the numbers in red denote constraint
violation.

Case Perturbation u = unom Hexact Hnull Hgej

19 +d1,+d2,+d3 -21.9849 -24.2071 -24.2134 -21.9849
20 −d1,−d2,−d3 -14.7951 -0.8525 -1.0115 -320.7931
21 +d1,−d2,+d3 299.7693 -19.0741 -19.0963 -16.9796
22 +d1,+d2,−d3 -22.9932 -24.9147 -24.8835 -22.9929
23 +d1,−d2,−d3 -18.5576 -19.7988 -19.7578 -17.9876
24 −d1,+d2,+d3 -17.9878 -1.2363 -1.2363 24.5294
25 −d1,−d2,+d3 -18.1675 -1.1255 -1.1255 25.0076
26 −d1,+d2,−d3 -14.7105 -1.1224 -1.1224 19.5906
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6 Discussion

Overall, no control structure ensured an optimal performance for all disturbance changes,
and all approaches lead to constraint violations. All constraints that were violated were the
constraints that involved the GHR and ATR models which is the main reforming part of
the process. An improvement to fix the constraint violations regarding the GHR and ATR
modeling is to limit the reaction rate in the GHR. Simulations show that in the cases where
constraints are violated, CH4 is converted to a high amount, such that the energy balance
constraints are violated. However, some control structures performed better than others and
can be discussed by comparing the resulting loss of optimality for different cases. Cases 1 to
6 are the cases where 1 disturbance variable was changed at a time and the rest set to its
nominal value and is shown in Table 6. Case 7 to 18 shows the cases where two disturbances
were changed at the same time, where the last one is set to its nominal value. The resulting
loss is shown in Table 7. Lastly, the cases where all disturbance variables are changed are
cases 19 to 26 and are shown in Table 8. The largest loss when inputs are controlled to
their nominal setpoint was reported to be -22.9932. It is hard to conclude whether this is an
acceptable loss as it is around a 1-2% loss compared to the nominal objective value.

When observing the nominal performance, all cases except case 4, found an optimal solution
when 1 disturbance is changed. It can also be observed that for all other cases where d1 is
perturbed with a negative change resulted in infeasibility. Some control structures, however,
managed to find an optimal solution in the cases where d1 is negatively perturbed. In general,
all reporting loss should be a negative value as it is comparing the objective value when there
are no degrees of freedom as all inputs are controlled with the optimal objective value when
the inputs are free and can be adjusted to find the optimal solution when the disturbances
are changed and impacts the system. Some cases reported a positive loss, but these cases
were concluded as infeasible.

6.1 Exact local method

When implementing the control structure from the optimal combination matrix (Hexact)
found from the exact local method, the loss in optimality was compared to the nominal case
to discuss its performance. In terms of infeasibility, the exact local method proved to be
better than only controlling the inputs to their nominal value. For cases 14, 16, 17, 19,
and 23, the nominal case showed infeasibility, while the results from the exact local method
showed to found an optimal solution. In addition, in all cases where the exact local method
showed infeasibility, the nominal case also showed infeasibility. When comparing these two
methods in terms of infeasibility, the control structure from the exact local method showed
to be better.

However, when comparing results where both the nominal case and the exact local method
case found a solution, all cases showed that the exact local method case performed worse
in terms of loss. So it indicates that, when only comparing the nominal case and the exact
local method case, the nominal case performed better if the solution is found. This may
indicate that the assumption of linearity breaks the same range as the nominal case, but
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as it is performing worse, a bad selection of measurement subset may be the reason. It
is worth noting that the measurement subset was chosen by the Bidirection branch and
bound algorithm [37] that uses the calculated gain and Hessian matrices of the system, and
the approximated linear model. As this is just an approximation of the true nonlinear
model, the branch and bound algorithm is not guaranteed to find a reasonable solution.
When comparing the exact local method with the other methods, Hexact showed a better
performance in terms of finding a solution and not resulting in infeasibility. For instance,
the exact local method was the only method that found an optimal solution for cases 14 and
16, where other methods could not. However, in the cases where the exact local method and
another approach had a feasible operation, the exact local method performed worse in terms
of loss in optimality and can indicate a bad selection of measurement subset. In summary,
the exact local methods were better than the other methods to find a solution in terms of
infeasibility, while in the cases where other methods also found solutions, the exact local
methods showed a worse performance.

6.2 Nullspace method

When calculating the optimal combination matrix in the nullspace method, the same mea-
surement subset as the exact local method was used. It is therefore expected that the
performance of the nullspace method is similar to the exact local method. In terms of in-
feasibility, it is hard to conclude whether it performed better than the nominal case or not.
In cases 23 and 21, the nominal case showed infeasibility, while the nullspace method found
an optimal solution. However, the nullspace method showed infeasibility in a relatively high
number of cases and showed that it cannot handle the disturbance change well. In the cases
where only 1 disturbance variable is perturbed, the nullspace method performed worse out
of all methods. In other cases where both the exact local method and the nullspace method
found a solution, the nullspace method performed generally better. Notable cases are 12 and
15, where the nullspace method performed exceedingly well. It indicates that the nullspace
method handles negative change in hydrogen price relatively well when it first finds an op-
timal solution. Apart from cases 12 and 15, it performed worse than the nominal case and
may indicate a bad selection of measurement subset. There is no set pattern of the perfor-
mance, in some cases, it performed excellent and poorly in others, however, it was in general
outperformed by Hgej. In addition, the nullspace method resulted in the highest number of
cases with constraint violations, and due to this, it is concluded that the nullspace method
performed worse out of all approaches.

As the optimal combination matrix is found from the optimal sensitivity matrix with the
same measurement subset as the exact local method, there are suggestions for improving
the method. As the optimal sensitivity matrix is calculated from the gain and Hessian
matrices, if the assumption of linearity breaks, the optimal sensitivity matrix is not valid,
which can lead to constraint violations. A better measurement subset selection may result
in better performance. And in the cases where the nullspace method performed worse, this
may indicate that the measurement noise in the system is high and can significantly impact
the system, and cannot be assumed to be negligible.
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6.3 Good engineering judgment

In general, out of all methods, the optimal combination matrix chosen by good engineering
judgment performed the best overall. When first observing the cases where the nominal case
found a solution, Hgej resulted in a lower loss for all instances. Many cases were also observed
to be -0.000, which is good. By implementing control elements into the system, there is no
loss in performance when a disturbance is changed and the performance is identical to optimal
performance. Compared to the other control structures, Hgej gave the best results, except
for case 15, where it was discussed that the nullspace method rejected a negative change in
hydrogen relatively well.

This result indicated that the measurement subset selection indeed was a problem. How-
ever, the selection of measurements in Hgej is not guaranteed to be the best measurement
subset as it is chosen from good engineering judgment. It is worth noting that selecting the
best measurement subset mathematically does not guarantee the best subset either due to
assumptions, e.g. the nullspace method is “optimal”, but performs worst. These results are
not universal, as they are related to how good the linear approximation is. One suggestion to
deal with constraint changes is to develop a more flexible control structure with selectors.

6.4 Feasiblity of offshore blue hydrogen

The nominal case resulted in a gross profit of 1268.2 $/h, which corresponds to approximately
11 million USD per annum, assuming that this platform runs 24 hours a day and 365 days
a year. This number is also the resulting profit per hour when the disturbance variables are
at their nominal value. Assuming the number of workers needed on a such platform, the
profit does not even cover the cost of the salary of the operators and the workers on the
platform, and many factors indicate that did project is not feasible. However, improvements
in different aspects of this project for a step closer to decarbonization with hydrogen as its
key will be discussed.

6.4.1 Reducing costs

For reducing the investment costs of constructing a platform, this offshore hydrogen plant
can be integrated from an already existing platform, where the same extraction equipment
can be used for the feed to the hydrogen plant. Another suggestion is to implement a heat
exchanger network or heat integration to reduce the need for fuel to the required amount of
heat, as there are coolers in the process that are not taken advantage of.

6.4.2 Additional costs

In this project, the natural gas sweetening cost is not considered and is an additional impor-
tant cost that should be considered in the future when calculating the economic feasibility
of this project. Calculation of pure oxygen is also not a part of this project’s scope and
is assumed to be accessible for free. In reality, this is an important cost to measure, as
good separation methods are expensive to operate with, whereas lesser separation methods
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such as air membrane separation lead to nitrogen being introduced to the system. However,
such membrane separation may be advantageous as a way to import hydrogen back onshore,
which will be discussed.

6.4.3 Hydrogen transportation

As hydrogen becomes a liquid at −253.0 ◦C, transporting hydrogen by liquifying it can lead
to tremendous costs, and be unsafe and unreliable as well. Another method for transporting
hydrogen is by first converting it to ammonia, NH3, which is seen as a hydrogen carrier, by
ammonia synthesis where N2 and H2 react together, and is why an air membrane with a
sufficient separation grade can be used [62].

6.4.4 Methods for producing oxygen

Air separation is also a cheap method of obtaining oxygen with relatively good purity. The
last method to be considered as a way to obtain oxygen is by electrolysis, where water is
separated to H2 and O2 by adding an electric current. This process requires a high amount
of electricity, which is not always easily accessible at all times, which will be discussed later.
However, if cheap electricity is obtainable in this process, an electrolysis unit for obtaining
oxygen is ideal, as the oxygen is guaranteed to be pure, which makes the process predictable
in terms of reactions. Water is also easily accessible by boiling seawater. Lastly, hydrogen is
a byproduct in an electrolysis process, which can be sold together with the product stream
of the process.

6.4.5 Process choice

The process choices in the project were chosen with respect to investment cost, weight,
space, and infrastructure. For instance, instead of operating a large SMR furnace, a GHR,
and an ATR unit are used, as it takes up less space, give higher conversions, are more energy
effective, and lower investment costs. However, the PSA unit which is used for separating
CO2 from the hydrogen in the last stream, is not necessarily the most compact solution
for separation, nor the cheapest option with respect to both investment and operating cost.
The reasoning behind the choice of the PSA unit as a separate unit instead of more compact
solutions like using hydrogen-selective membranes, which are a more energy-efficient and
cost-effective alternative, is due to the resulting pressure of the product and purge streams.

PSA results in low pressure CO2 stream and a high-pressure H2, while a hydrogen-selective
membrane, such as a palladium-alloy membrane, results in a high-pressure CO2 stream and
a low-pressure hydrogen stream. [63] Both gases need to be compressed to a certain level of
pressure, where CO2 needs to be compressed such that it can be transported to the reservoir
under the seabed, while hydrogen needs to be compressed for transport, either by liquefying
it or reacting to NH3. It also requires less energy to cool down a gas that has higher pressure,
and reacting hydrogen N2 to NH3 requires relatively high pressure. Generally, hydrogen has
a lower density than CO2, and thus requires less energy to compress to the same pressure
for hydrogen than CO2, and this is why a PSA unit is preferred in this project over a
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hydrogen-selective membrane.

The PSA unit is also well studied, while the hydrogen-selective membrane is a relatively new
technology that needs to be studied more. The detailed costs behind the two methods are
dependable on how much hydrogen and CO2 there are in the product and purge streams,
and if there is a larger amount of CO2 than hydrogen, a hydrogen-selective membrane may
be preferable, and can be calculated by formulating it as an optimization problem where the
required compression work is minimized.

6.4.6 Electricity in an offshore facility

Electricity for compression in the objective function formulated in the optimization problem
is an important factor in improving the economy of the process. In this project, it is assumed
that electricity is transferred through subsea cables from shore, and the price is the same as
for all other industries with non-intensive energy requirements. Electricity prices fluctuate
and are considered a disturbance variable. To handle this problem, alternatives for generating
electricity for the facility are considered. In a decarbonization project, renewable energy
needs to be considered, such as wind power, solar panels, or wave power. However, most
renewable energy is non-dispatchable, which means that they do not have an on/off switch,
are not controllable, and cannot guarantee to match the electricity demand at all times.
And this decentralized nature, unreliability, and unsafe reasons are why such renewable
energy sources need to be combined with dispatchable energy source technologies or energy
storage [62].

For instance, one dispatchable technology is gas turbines, where gas such as steam or CO2, is
heated through fuel. This should be feasible to implement in this process, as there is already
a furnace with fuel switching between hydrogen and natural gas implemented. Renewable
source like nuclear power is also an option in the future but needs to be studied more as
their own project before being implemented into a such facility as this project.

In summary, to supply the process with electricity that is not transferred from onshore, non-
dispatchable energy sources such as wind power, solar power, or wave power can be combined
with dispatchable energy such as a gas turbine [62]. Note that the CO2 from burning fuel
for operating the gas turbine needs to be captured and stored. However, there are some
challenges that arise when these two methods are combined together. The first one is to
limit the frequent start and stops of gas turbines, which is decided by the amount of energy
that is generated from non-dispatchable sources. This limitation helps the gas turbine’s
lifetime. When the gas turbine has not operated for a specific time, it requires good control
strategies that allow the gas turbine power to quickly operate to meet its demands, due to
the delay of heating up the gas to its specific temperature [62].
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7 Conclusion

Blue hydrogen production, as described in this project, is economically infeasible. Even
with all the assumptions such as neglected natural gas sweetening/purifying costs, oxygen
costs, PSA operating costs, and hydrogen transportation costs, the process does not have
sufficient revenue at the current hydrogen prices. In addition, the linear model did not hold
for all disturbance changes and the assumption of linearization was no longer valid due to
constraint violations. All constraint violations were involved with the GHR and the ATR
model. This was due to the disturbance changes being too high and the model not being
able to reject the disturbances while operating optimally. To improve the model, a reaction
limit on the GHR unit can be implemented, as the main reforming part should happen in
the ATR unit and too high conversion in the GHR causes the energy balance constraints to
be violated. However, in some cases where the linear model did hold, self-optimizing control
showed a reduction in loss compared to the nominal case and leads strongly to the conclusion
that in an improved model with a better selection of measurements, self-optimizing control
is achievable, where control is achieved without the need for re-optimizing with disturbance
changes with minimal loss in profits.

The measurement subset that was chosen from good engineering judgment showed the best
operation with disturbance change. However, this result is not necessarily the optimal mea-
surement subset. Other measurement subset selection methods that aim to perform better for
larger operating windows are the Polynomial zero loss method or Controlled variable adap-
tion [26]. The other approaches, the exact local method, and the nullspace method showed
room for improvement, as all methods lead to constraint violations for certain disturbance
changes, but in the cases where the method found a solution, it showed a relatively small
loss in optimality when disturbances are rejected.

It is assumed that the only generated revenue in the process is the hydrogen that is being
sold, which means that the only way to increase profits is by either increasing the hydrogen
price or reducing the other costs. When developing this model further, even more costs
need to be implemented in the objective function that the optimization problem is trying to
minimize. Instances of such costs are mentioned earlier in this section.

There is also a large number of research with a focus on developing technologies that are
advantageous for an offshore blue hydrogen facility but faces challenges in terms of weight,
HSE risks, or infrastructure requirement. Further work on the offshore sector for blue hy-
drogen production can lead to more support from policymakers and oil and gas companies
investing and developing roadmaps for reaching climate targets [62]. Future studies can in-
volve heat exchanger networks, a combination of dispatchable and non-dispatchable energy
sources to supply the process with its own electricity that can be controlled easier and is
more predictable. Alternatives for the PSA unit, which is a relatively expensive unit to
operate, such as absorption-/adsorption-based separation, which still is under development,
and can be used for replacing PSA if the methods are proven to be effective and cheaper.

Methods to produce oxygen to supply the ATR unit is another aspect that needs to be
studied, whether separating with an air membrane such that some nitrogen is added to the
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system through the air, electrolysis, or even a combination of both. If hydrogen is transported
by synthesizing it to ammonia, as there is enough nitrogen in the system, electrolysis can
be used, but that also increases the need for electricity in the system which may switch the
dispatchable energy sources on. In the future, for a such project to be feasible, increased
funding and investment from the government and industry are needed.

Due to the high profitability of the oil and gas industry, a such plant is not convincing enough
for investments yet. When oil and gas demand is reduced, and other energy sources without
emissions are in demand, such hydrogen plants may be in more demand and more industries
will invest in them, in addition to other circumstances in the industry such as a carbon tax.
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A.1 Nominal output

Table 9: Nominal case outputs, where * denoted the actual name of the variable

Variable Variable* Value Unit
mix_in_mol[1] n2,CH4 113.761 kmol h−1

mix_in_mol[2] n2,H2O 0.000 kmol h−1

mix_in_mol[3] n2,H2 0.000 kmol h−1

mix_in_mol[4] n2,CO 0.000 kmol h−1

mix_in_mol[5] n2,CO2 1.948 kmol h−1

mix_in_mol[6] n2,C2H6 8.869 kmol h−1

mix_in_mol[7] n2,C3H8 9.742 kmol h−1

mix_in_mol[8] n2,i-C4H10 4.606 kmol h−1

mix_in_mol[9] n2,n-C4H10 2.050 kmol h−1

mix_in_mol[10] n2,C5H12 5.336 kmol h−1

H2Ostream n3 716.822 kmol h−1

mix_out_mol[1] n4,CH4 113.761 kmol h−1

mix_out_mol[2] n4,H2O 716.822 kmol h−1

mix_out_mol[3] n4,H2 0.000 kmol h−1

mix_out_mol[4] n4,CO 0.000 kmol h−1

mix_out_mol[5] n4,CO2 1.948 kmol h−1

mix_out_mol[6] n4,C2H6 8.869 kmol h−1

mix_out_mol[7] n4,C3H8 9.742 kmol h−1

mix_out_mol[8] n4,i-C4H10 3.606 kmol h−1

mix_out_mol[9] n4,n-C4H10 2.050 kmol h−1

mix_out_mol[10] n4,C5H12 5.336 kmol h−1

prePR_in_mol[1] n4,CH4 113.761 kmol h−1

prePR_in_mol[2] n4,H2O 716.822 kmol h−1

prePR_in_mol[3] n4,H2 0.000 kmol h−1

prePR_in_mol[4] n4,CO 0.000 kmol h−1

prePR_in_mol[5] n4,CO2 1.948 kmol h−1

prePR_in_mol[6] n4,C2H6 8.869 kmol h−1

prePR_in_mol[7] n4,C3H8 9.742 kmol h−1

prePR_in_mol[8] n4,i-C4H10 3.606 kmol h−1

prePR_in_mol[9] n4,n-C4H10 2.050 kmol h−1

prePR_in_mol[10] n4,C5H12 5.336 kmol h−1

prePR_out_mol[1] n5,CH4 113.761 kmol h−1

prePR_out_mol[2] n5,H2O 716.822 kmol h−1

prePR_out_mol[3] n5,H2 0.000 kmol h−1

prePR_out_mol[4] n5,CO 0.000 kmol h−1

Continued on Next Page
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Variable Variable* Value Unit
prePR_out_mol[5] n5,CO2 1.948 kmol h−1

prePR_out_mol[6] n5,C2H6 8.869 kmol h−1

prePR_out_mol[7] n5,C3H8 9.742 kmol h−1

prePR_out_mol[8] n5,i-C4H10 3.606 kmol h−1

prePR_out_mol[9] n5,n-C4H10 2.050 kmol h−1

prePR_out_mol[10] n5,C5H12 5.336 kmol h−1

pr_in_mol[1] n5,CH4 113.761 kmol h−1

pr_in_mol[2] n5,H2O 716.822 kmol h−1

pr_in_mol[3] n5,H2 0.000 kmol h−1

pr_in_mol[4] n5,CO 0.000 kmol h−1

pr_in_mol[5] n5,CO2 1.948 kmol h−1

pr_in_mol[6] n5,C2H6 8.869 kmol h−1

pr_in_mol[7] n5,C3H8 9.742 kmol h−1

pr_in_mol[8] n5,i-C4H10 3.606 kmol h−1

pr_in_mol[9] n5,n-C4H10 2.050 kmol h−1

pr_in_mol[10] n5,C5H12 5.336 kmol h−1

pr_out_mol[1] n6,CH4 179.522 kmol h−1

pr_out_mol[2] n6,H2O 656.033 kmol h−1

pr_out_mol[3] n6,H2 0.55.141 kmol h−1

pr_out_mol[4] n6,CO 0.228 kmol h−1

pr_out_mol[5] n6,CO2 32.229 kmol h−1

pr_out_mol[6] n6,C2H6 0.000 kmol h−1

pr_out_mol[7] n6,C3H8 0.000 kmol h−1

pr_out_mol[8] n6,i-C4H10 0.000 kmol h−1

pr_out_mol[9] n6,n-C4H10 0.000 kmol h−1

pr_out_mol[10] n6,C5H12 0.000 kmol h−1

preGHR_in_mol[1] n6,CH4 179.522 kmol h−1

preGHR_in_mol[2] n6,H2O 656.033 kmol h−1

preGHR_in_mol[3] n6,H2 55.141 kmol h−1

preGHR_in_mol[4] n6,CO 0.228 kmol h−1

preGHR_in_mol[5] n6,CO2 32.229 kmol h−1

preGHR_out_mol[1] n7,CH4 179.522 kmol h−1

preGHR_out_mol[2] n7,H2O 656.033 kmol h−1

preGHR_out_mol[3] n7,H2 55.141 kmol h−1

preGHR_out_mol[4] n7,CO 0.228 kmol h−1

preGHR_out_mol[5] n7,CO2 32.229 kmol h−1

ghr_in_mol[1] n7,CH4 179.522 kmol h−1

ghr_in_mol[2] n7,H2O 656.033 kmol h−1

ghr_in_mol[3] n7,H2 55.141 kmol h−1

ghr_in_mol[4] n7,CO 0.228 kmol h−1

ghr_in_mol[5] n7,CO2 32.229 kmol h−1

ghr_out_mol[1] n8,CH4 94.626 kmol h−1

Continued on Next Page
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Variable Variable* Value Unit
ghr_out_mol[2] n8,H2O 518.618 kmol h−1

ghr_out_mol[3] n8,H2 362.347 kmol h−1

ghr_out_mol[4] n8,CO 32.605 kmol h−1

ghr_out_mol[5] n8,CO2 84.6258 kmol h−1

atr_in_mol[1] n8,CH4 94.626 kmol h−1

atr_in_mol[2] n8,H2O 518.618 kmol h−1

atr_in_mol[3] n8,H2 362.347 kmol h−1

atr_in_mol[4] n8,CO 32.605 kmol h−1

atr_in_mol[5] n8,CO2 84.6258 kmol h−1

atr_out_mol[1] n9,CH4 0.301 kmol h−1

atr_out_mol[2] n9,H2O 582.934 kmol h−1

atr_out_mol[3] n9,H2 486.682 kmol h−1

atr_out_mol[4] n9,CO 126.977 kmol h−1

atr_out_mol[5] n9,CO2 84.7013 kmol h−1

postATR_in_mol[1] n9,CH4 0.301 kmol h−1

postATR_in_mol[2] n9,H2O 582.934 kmol h−1

postATR_in_mol[3] n9,H2 486.682 kmol h−1

postATR_in_mol[4] n9,CO 126.977 kmol h−1

postATR_in_mol[5] n9,CO2 84.7013 kmol h−1

postATR_out_mol[1] n10,CH4 0.301 kmol h−1

postATR_out_mol[2] n10,H2O 582.934 kmol h−1

postATR_out_mol[3] n10,H2 486.682 kmol h−1

postATR_out_mol[4] n10,CO 126.977 kmol h−1

postATR_out_mol[5] n10,CO2 84.7013 kmol h−1

itsr_in_mol[1] n10,CH4 0.301 kmol h−1

itsr_in_mol[2] n10,H2O 582.934 kmol h−1

itsr_in_mol[3] n10,H2 486.682 kmol h−1

itsr_in_mol[4] n10,CO 126.977 kmol h−1

itsr_in_mol[5] n10,CO2 84.7013 kmol h−1

itsr_out_mol[1] n11,CH4 0.301 kmol h−1

itsr_out_mol[2] n11,H2O 464.639 kmol h−1

itsr_out_mol[3] n11,H2 604.976 kmol h−1

itsr_out_mol[4] n11,CO 8.683 kmol h−1

itsr_out_mol[5] n11,CO2 202.995 kmol h−1

preCond_in_mol[1] n11,CH4 0.301 kmol h−1

preCond_in_mol[2] n11,H2O 464.639 kmol h−1

preCond_in_mol[3] n11,H2 604.976 kmol h−1

preCond_in_mol[4] n11,CO 8.683 kmol h−1

preCond_in_mol[5] n11,CO2 202.995 kmol h−1

preCond_out_mol[1] n12,CH4 0.301 kmol h−1

preCond_out_mol[2] n12,H2O 464.639 kmol h−1

preCond_out_mol[3] n12,H2 604.976 kmol h−1
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Variable Variable* Value Unit
preCond_out_mol[4] n12,CO 8.683 kmol h−1

preCond_out_mol[5] n12,CO2 202.995 kmol h−1

cond_in_mol[1] n12,CH4 0.301 kmol h−1

cond_in_mol[2] n12,H2O 464.639 kmol h−1

cond_in_mol[3] n12,H2 604.976 kmol h−1

cond_in_mol[4] n12,CO 8.683 kmol h−1

cond_in_mol[5] n12,CO2 202.995 kmol h−1

cond_L n13 463.346 kmol h−1

cond_liq_frac[1] x13,CH4 0.000 -
cond_liq_frac[2] x13,H2O 0.999 -
cond_liq_frac[3] x13,H2 0.000 -
cond_liq_frac[4] x13,CO 0.000 -
cond_liq_frac[5] x13,CO2 0.000 -

cond_V n14 818.248 kmol h−1

cond_vap_frac[1] x14,CH4 0.000 -
cond_vap_frac[2] x14,H2O 0.002 -
cond_vap_frac[3] x14,H2 0.739 -
cond_vap_frac[4] x14,CO 0.011 -
cond_vap_frac[5] x14,CO2 0.248 -
psa_in_mol[1] n14,CH4 0.301 kmol h−1

psa_in_mol[2] n14,H2O 1.294 kmol h−1

psa_in_mol[3] n14,H2 604.976 kmol h−1

psa_in_mol[4] n14,CO 8.683 kmol h−1

psa_in_mol[5] n14,CO2 202.995 kmol h−1

psa_outPurge_mol[1] n15,CH4 0.301 kmol h−1

psa_outPurge_mol[2] n15,H2O 1.293 kmol h−1

psa_outPurge_mol[3] n15,H2 18.149 kmol h−1

psa_outPurge_mol[4] n15,CO 8.674 kmol h−1

psa_outPurge_mol[5] n15,CO2 202.792 kmol h−1

psa_outProduct_mol[1] n16,CH4 0.000 kmol h−1

psa_outProduct_mol[2] n16,H2O 0.001 kmol h−1

psa_outProduct_mol[3] n16,H2 586.826 kmol h−1

psa_outProduct_mol[4] n16,CO 0.009 kmol h−1

psa_outProduct_mol[5] n16,CO2 0.203 kmol h−1

mix_in_T T2 311.000 K
H2O_T T3 423.000 K

mix_out_T T4 397.246 K
prePR_in_T T4 397.246 K
prePR_out_T T5 644.595 K
preGHR_in_T T6 609.2 K
preGHR_out_T T7 609.2 K

ghr_in_T T7 609.2 K
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Variable Variable* Value Unit
ghr_out_T T8 951.482 K
atr_in_T T8 951.482 K

postATR_in_T T9 1291.820 K
postATR_out_T T10 634.2 K
preCond_out_T T12 293.0 K

cond_in_T T12 293.0 K
cond_L_T T13 293.0 K
cond_V_T T14 293.0 K
psa_in_T T14 293.0 K

psa_outPurge_T T15 293.0 K
psa_outProduct_T T16 293.0 K

prePR_Q QprePR 8.520e6 MJh−1

preGHR_Q QpreGHR 0.006 MJh−1

ghr_Q Qghr 3.074e7 MJh−1

postATR_Q QpostATR -3.074e7 MJh−1

itsr_Q Qitsr -1.151e7 MJh−1

preCond_Q QpreCond -7.658e6 MJh−1

F_H2 n18 556.999 kmol h−1

F_H2_heat n17 29.827 kmol h−1

F_NG n1 145.400 kmol h−1

F_NG_heat n19 0.000 kmol h−1

F_fluegas n20 0.000 kmol h−1

F_inj n21 231.208 kmol h−1

A.1.1 Gain matrix of the output with respect to input change

Table 10: Gain matrix Gy, which represents the output sensitivity with respect to input
change

Variable Variable* ∂y
∂u1

∂y
∂u2

∂y
∂u3

mix_in_mol[1] n2,CH4 1.345E-05 1.653E-06 -1.471E-02
mix_in_mol[2] n2,H2O 1.373E-41 1.722E-42 -9.632E-31
mix_in_mol[3] n2,H2 -1.144E-39 1.516E-40 2.628E-29
mix_in_mol[4] n2,CO 2.513E-39 1.283E-39 -5.549E-39
mix_in_mol[5] n2,CO2 2.303E-07 2.830E-08 -2.520E-04
mix_in_mol[6] n2,C2H6 1.048E-06 1.289E-07 -1.147E-03
mix_in_mol[7] n2,C3H8 1.151E-06 1.415E-07 -1.260E-03
mix_in_mol[8] n2,i-C4H10 4.262E-07 5.239E-08 -4.664E-04
mix_in_mol[9] n2,n-C4H10 2.423E-07 2.978E-08 -2.652E-04
mix_in_mol[10] n2,C5H12 6.307E-07 7.752E-08 -6.902E-04

H2Ostream n3 -1.179E+02 -1.714E+00 -9.236E-02
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Variable Variable* ∂y
∂u1

∂y
∂u2

∂y
∂u3

mix_out_mol[1] n4,CH4 1.345E-05 1.653E-06 -1.471E-02
mix_out_mol[2] n4,H2O -1.179E+02 -1.714E+00 -9.236E-02
mix_out_mol[3] n4,H2 -3.409E-40 4.471E-40 -1.314E-29
mix_out_mol[4] n4,CO 2.864E-39 -5.035E-40 -2.315E-29
mix_out_mol[5] n4,CO2 2.303E-07 2.830E-08 -2.520E-04
mix_out_mol[6] n4,C2H6 1.048E-06 1.289E-07 -1.147E-03
mix_out_mol[7] n4,C3H8 1.151E-06 1.415E-07 -1.260E-03
mix_out_mol[8] n4,i-C4H10 4.262E-07 5.239E-08 -4.664E-04
mix_out_mol[9] n4,n-C4H10 2.423E-07 2.978E-08 -2.652E-04
mix_out_mol[10] n4,C5H12 6.307E-07 7.752E-08 -6.902E-04
prePR_in_mol[1] n4,CH4 1.345E-05 1.653E-06 -1.471E-02
prePR_in_mol[2] n4,H2O -1.179E+02 -1.714E+00 -9.236E-02
prePR_in_mol[3] n4,H2 -1.721E-39 -1.387E-39 2.178E-39
prePR_in_mol[4] n4,CO -6.411E-39 -9.190E-40 -4.629E-29
prePR_in_mol[5] n4,CO2 2.303E-07 2.830E-08 -2.520E-04
prePR_in_mol[6] n4,C2H6 1.048E-06 1.289E-07 -1.147E-03
prePR_in_mol[7] n4,C3H8 1.151E-06 1.415E-07 -1.260E-03
prePR_in_mol[8] n4,i-C4H10 4.262E-07 5.239E-08 -4.664E-04
prePR_in_mol[9] n4,n-C4H10 2.423E-07 2.978E-08 -2.652E-04
prePR_in_mol[10] n4,C5H12 6.307E-07 7.752E-08 -6.902E-04
prePR_out_mol[1] n5,CH4 1.345E-05 1.653E-06 -1.471E-02
prePR_out_mol[2] n5,H2O -1.179E+02 -1.714E+00 -9.236E-02
prePR_out_mol[3] n5,H2 -2.580E-39 -4.000E-40 6.570E-30
prePR_out_mol[4] n5,CO -3.462E-39 7.104E-40 -4.827E-29
prePR_out_mol[5] n5,CO2 2.303E-07 2.830E-08 -2.520E-04
prePR_out_mol[6] n5,C2H6 1.048E-06 1.289E-07 -1.147E-03
prePR_out_mol[7] n5,C3H8 1.151E-06 1.415E-07 -1.260E-03
prePR_out_mol[8] n5,i-C4H10 4.262E-07 5.239E-08 -4.664E-04
prePR_out_mol[9] n5,n-C4H10 2.423E-07 2.978E-08 -2.652E-04
prePR_out_mol[10] n5,C5H12 6.307E-07 7.752E-08 -6.902E-04

pr_in_mol[1] n5,CH4 1.345E-05 1.653E-06 -1.471E-02
pr_in_mol[2] n5,H2O -1.179E+02 -1.714E+00 -9.236E-02
pr_in_mol[3] n5,H2 -1.701E-39 -1.736E-40 -2.628E-29
pr_in_mol[4] n5,CO -3.800E-39 -2.007E-40 -1.448E-28
pr_in_mol[5] n5,CO2 2.303E-07 2.830E-08 -2.520E-04
pr_in_mol[6] n5,C2H6 1.048E-06 1.289E-07 -1.147E-03
pr_in_mol[7] n5,C3H8 1.151E-06 1.415E-07 -1.260E-03
pr_in_mol[8] n5,i-C4H10 4.262E-07 5.239E-08 -4.664E-04
pr_in_mol[9] n5,n-C4H10 2.423E-07 2.978E-08 -2.652E-04
pr_in_mol[10] n5,C5H12 6.307E-07 7.752E-08 -6.902E-04
pr_out_mol[1] n6,CH4 1.543E+00 -4.347E-02 -2.323E-02
pr_out_mol[2] n6,H2O -1.148E+02 -1.798E+00 -8.451E-02
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pr_out_mol[3] n6,H2 -6.179E+00 1.712E-01 -7.113E-03
pr_out_mol[4] n6,CO 8.454E-03 2.707E-03 -2.950E-05
pr_out_mol[5] n6,CO2 -1.551E+00 4.077E-02 -4.164E-03
pr_out_mol[6] n6,C2H6 5.120E-13 -3.256E-14 4.636E-14
pr_out_mol[7] n6,C3H8 8.221E-13 1.049E-13 5.304E-14
pr_out_mol[8] n6,i-C4H10 -2.359E-13 -1.335E-14 1.057E-15
pr_out_mol[9] n6,n-C4H10 -2.645E-14 -6.822E-15 -4.443E-15
pr_out_mol[10] n6,C5H12 1.089E-12 5.318E-14 4.204E-14

preGHR_in_mol[1] n6,CH4 1.543E+00 -4.347E-02 -2.323E-02
preGHR_in_mol[2] n6,H2O -1.148E+02 -1.798E+00 -8.451E-02
preGHR_in_mol[3] n6,H2 -6.179E+00 1.712E-01 -7.113E-03
preGHR_in_mol[4] n6,CO 8.454E-03 2.707E-03 -2.950E-05
preGHR_in_mol[5] n6,CO2 -1.551E+00 4.077E-02 -4.164E-03
preGHR_out_mol[1] n7,CH4 1.543E+00 -4.347E-02 -2.323E-02
preGHR_out_mol[2] n7,H2O -1.148E+02 -1.798E+00 -8.451E-02
preGHR_out_mol[3] n7,H2 -6.179E+00 1.712E-01 -7.113E-03
preGHR_out_mol[4] n7,CO 8.454E-03 2.707E-03 -2.950E-05
preGHR_out_mol[5] n7,CO2 -1.551E+00 4.077E-02 -4.164E-03

ghr_in_mol[1] n7,CH4 1.543E+00 -4.347E-02 -2.323E-02
ghr_in_mol[2] n7,H2O -1.148E+02 -1.798E+00 -8.451E-02
ghr_in_mol[3] n7,H2 -6.179E+00 1.712E-01 -7.113E-03
ghr_in_mol[4] n7,CO 8.454E-03 2.707E-03 -2.950E-05
ghr_in_mol[5] n7,CO2 -1.551E+00 4.077E-02 -4.164E-03
ghr_out_mol[1] n8,CH4 9.903E+00 1.218E-01 -1.713E-01
ghr_out_mol[2] n8,H2O -9.891E+01 -1.465E+00 -2.619E-01
ghr_out_mol[3] n8,H2 -3.880E+01 -4.924E-01 4.665E-01
ghr_out_mol[4] n8,CO -8.126E-01 5.326E-03 1.188E-01
ghr_out_mol[5] n8,CO2 -9.090E+00 -1.271E-01 2.515E-02
atr_in_mol[1] n8,CH4 9.903E+00 1.218E-01 -1.713E-01
atr_in_mol[2] n8,H2O -9.891E+01 -1.465E+00 -2.619E-01
atr_in_mol[3] n8,H2 -3.880E+01 -4.924E-01 4.665E-01
atr_in_mol[4] n8,CO -8.126E-01 5.326E-03 1.188E-01
atr_in_mol[5] n8,CO2 -9.090E+00 -1.271E-01 2.515E-02
atr_out_mol[1] n9,CH4 1.106E-01 1.675E-03 -5.176E-03
atr_out_mol[2] n9,H2O -1.075E+02 -1.587E+00 4.223E-02
atr_out_mol[3] n9,H2 -1.064E+01 -1.304E-01 -1.699E-01
atr_out_mol[4] n9,CO 8.193E+00 1.237E-01 9.061E-02
atr_out_mol[5] n9,CO2 -8.304E+00 -1.254E-01 -1.129E-01

postATR_in_mol[1] n9,CH4 1.106E-01 1.675E-03 -5.176E-03
postATR_in_mol[2] n9,H2O -1.075E+02 -1.587E+00 4.223E-02
postATR_in_mol[3] n9,H2 -1.064E+01 -1.304E-01 -1.699E-01
postATR_in_mol[4] n9,CO 8.193E+00 1.237E-01 9.061E-02
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postATR_in_mol[5] n9,CO2 -8.304E+00 -1.254E-01 -1.129E-01
postATR_out_mol[1] n10,CH4 1.106E-01 1.675E-03 -5.176E-03
postATR_out_mol[2] n10,H2O -1.075E+02 -1.587E+00 4.223E-02
postATR_out_mol[3] n10,H2 -1.064E+01 -1.304E-01 -1.699E-01
postATR_out_mol[4] n10,CO 8.193E+00 1.237E-01 9.061E-02
postATR_out_mol[5] n10,CO2 -8.304E+00 -1.254E-01 -1.129E-01

itsr_in_mol[1] n10,CH4 1.106E-01 1.675E-03 -5.176E-03
itsr_in_mol[2] n10,H2O -1.075E+02 -1.587E+00 4.223E-02
itsr_in_mol[3] n10,H2 -1.064E+01 -1.304E-01 -1.699E-01
itsr_in_mol[4] n10,CO 8.193E+00 1.237E-01 9.061E-02
itsr_in_mol[5] n10,CO2 -8.304E+00 -1.254E-01 -1.129E-01
itsr_out_mol[1] n11,CH4 1.106E-01 1.675E-03 -5.176E-03
itsr_out_mol[2] n11,H2O -1.137E+02 -1.681E+00 -4.948E-02
itsr_out_mol[3] n11,H2 -4.415E+00 -3.625E-02 -7.824E-02
itsr_out_mol[4] n11,CO 1.973E+00 2.956E-02 -1.102E-03
itsr_out_mol[5] n11,CO2 -2.083E+00 -3.123E-02 -2.114E-02

preCond_in_mol[1] n11,CH4 1.106E-01 1.675E-03 -5.176E-03
preCond_in_mol[2] n11,H2O -1.137E+02 -1.681E+00 -4.948E-02
preCond_in_mol[3] n11,H2 -4.415E+00 -3.625E-02 -7.824E-02
preCond_in_mol[4] n11,CO 1.973E+00 2.956E-02 -1.102E-03
preCond_in_mol[5] n11,CO2 -2.083E+00 -3.123E-02 -2.114E-02
preCond_out_mol[1] n12,CH4 1.106E-01 1.675E-03 -5.176E-03
preCond_out_mol[2] n12,H2O -1.137E+02 -1.681E+00 -4.948E-02
preCond_out_mol[3] n12,H2 -4.415E+00 -3.625E-02 -7.824E-02
preCond_out_mol[4] n12,CO 1.973E+00 2.956E-02 -1.102E-03
preCond_out_mol[5] n12,CO2 -2.083E+00 -3.123E-02 -2.114E-02

cond_in_mol[1] n12,CH4 1.106E-01 1.675E-03 -5.176E-03
cond_in_mol[2] n12,H2O -1.137E+02 -1.681E+00 -4.948E-02
cond_in_mol[3] n12,H2 -4.415E+00 -3.625E-02 -7.824E-02
cond_in_mol[4] n12,CO 1.973E+00 2.956E-02 -1.102E-03
cond_in_mol[5] n12,CO2 -2.083E+00 -3.123E-02 -2.114E-02

cond_L n13 -1.137E+02 -1.681E+00 -4.931E-02
cond_liq_frac[1] x13,CH4 1.371E-10 2.064E-12 -6.278E-12
cond_liq_frac[2] x13,H2O 2.800E-13 1.722E-14 8.594E-15
cond_liq_frac[3] x13,H2 -1.400E-09 -1.150E-11 4.145E-15
cond_liq_frac[4] x13,CO 2.468E-09 3.659E-11 2.503E-14
cond_liq_frac[5] x13,CO2 -1.205E-09 -2.716E-11 6.249E-12

cond_V n14 -4.422E+00 -3.630E-02 -1.058E-01
cond_vap_frac[1] x14,CH4 1.371E-04 2.064E-06 -6.278E-06
cond_vap_frac[2] x14,H2O 4.649E-15 6.728E-17 -2.518E-16
cond_vap_frac[3] x14,H2 -1.400E-03 -1.150E-05 4.145E-09
cond_vap_frac[4] x14,CO 2.468E-03 3.659E-05 2.503E-08
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cond_vap_frac[5] x14,CO2 -1.205E-03 -2.716E-05 6.249E-06
psa_in_mol[1] n14,CH4 1.106E-01 1.675E-03 -5.176E-03
psa_in_mol[2] n14,H2O -6.993E-03 -5.740E-05 -1.673E-04
psa_in_mol[3] n14,H2 -4.415E+00 -3.625E-02 -7.824E-02
psa_in_mol[4] n14,CO 1.973E+00 2.956E-02 -1.102E-03
psa_in_mol[5] n14,CO2 -2.083E+00 -3.123E-02 -2.114E-02

psa_outPurge_mol[1] n15,CH4 1.106E-04 1.675E-06 -5.176E-06
psa_outPurge_mol[2] n15,H2O -6.993E-06 -5.740E-08 -1.673E-07
psa_outPurge_mol[3] n15,H2 -4.283E+00 -3.516E-02 -7.589E-02
psa_outPurge_mol[4] n15,CO 1.973E-03 2.956E-05 -1.102E-06
psa_outPurge_mol[5] n15,CO2 -2.083E-03 -3.123E-05 -2.114E-05

psa_outProduct_mol[1] n16,CH4 1.105E-01 1.674E-03 -5.170E-03
psa_outProduct_mol[2] n16,H2O -6.986E-03 -5.735E-05 -1.672E-04
psa_outProduct_mol[3] n16,H2 -1.324E-01 -1.087E-03 -2.347E-03
psa_outProduct_mol[4] n16,CO 1.971E+00 2.953E-02 -1.101E-03
psa_outProduct_mol[5] n16,CO2 -2.081E+00 -3.120E-02 -2.112E-02

mix_in_T T2 0.000E+00 0.000E+00 0.000E+00
H2O_T T3 -3.217E+00 -4.676E-02 9.732E-06

mix_out_T T4 0.000E+00 0.000E+00 0.000E+00
prePR_in_T T4 -3.217E+00 -4.676E-02 9.732E-06
prePR_out_T T5 0.000E+00 1.000E+00 0.000E+00
preGHR_in_T T6 3.428E+00 7.334E-01 -1.037E-05
preGHR_out_T T7 3.428E+00 7.334E-01 -1.269E-05

ghr_in_T T7 3.428E+00 7.334E-01 -1.269E-05
ghr_out_T T8 -2.942E-01 4.405E-02 3.468E-01
atr_in_T T8 -2.942E-01 4.405E-02 3.468E-01

postATR_in_T T9 0.000E+00 0.000E+00 1.000E+00
postATR_out_T T10 3.428E+00 7.335E-01 -1.982E-05
preCond_out_T T12 0.000E+00 0.000E+00 -4.400E-12

cond_in_T T12 0.000E+00 0.000E+00 -4.400E-12
cond_L_T T13 0.000E+00 0.000E+00 -4.400E-12
cond_V_T T14 0.000E+00 0.000E+00 -4.400E-12
psa_in_T T14 0.000E+00 0.000E+00 -4.400E-12

psa_outPurge_T T15 0.000E+00 0.000E+00 -4.400E-12
psa_outProduct_T T16 0.000E+00 0.000E+00 -4.400E-12

prePR_Q QprePR -9.219E+05 2.350E+04 -1.099E+03
preGHR_Q QpreGHR 7.883E-01 9.685E-02 -8.458E-02

ghr_Q Qghr -3.314E+06 -7.815E+04 4.568E+04
postATR_Q QpostATR 3.314E+06 7.815E+04 -4.568E+04

itsr_Q Qitsr 2.959E+05 -2.558E+04 -2.561E+03
preCond_Q QpreCond 7.138E+05 1.041E+04 9.203E+02

F_H2 n18 -1.055E+00 -1.174E-01 5.667E-03
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F_H2_heat n17 -3.227E+00 8.228E-02 -8.156E-02
F_NG n1 1.718E-05 2.112E-06 -1.881E-02

F_NG_heat n19 -1.718E-05 -2.112E-06 1.881E-02
F_fluegas n20 -6.069E-05 -7.460E-06 6.642E-02

F_inj n21 -1.394E-01 -1.149E-03 3.651E-02

A.1.2 Gain matrix of the output with respect to disturbance change

Table 11: Gain matrix Gyd, which represents the output sensitivity with respect to distur-
bance change

Variable Variable* ∂y
∂d1

∂y
∂d2

∂y
∂d3

mix_in_mol[1] n2,CH4 4.705E-05 2.639E-07 2.123E-09
mix_in_mol[2] n2,H2O 1.607E-40 5.263E-38 -3.310E-39
mix_in_mol[3] n2,H2 1.971E-38 -6.441E-26 2.888E-37
mix_in_mol[4] n2,CO -7.057E-38 -2.115E-25 9.141E-38
mix_in_mol[5] n2,CO2 8.059E-07 4.441E-09 3.980E-11
mix_in_mol[6] n2,C2H6 3.669E-06 2.030E-08 1.592E-10
mix_in_mol[7] n2,C3H8 4.029E-06 2.284E-08 2.654E-10
mix_in_mol[8] n2,i-C4H10 1.491E-06 8.565E-09 7.961E-11
mix_in_mol[9] n2,n-C4H10 8.480E-07 4.441E-09 5.307E-11
mix_in_mol[10] n2,C5H12 2.207E-06 1.269E-08 1.327E-10

H2Ostream n3 3.466E-03 1.713E-05 5.095E-08
mix_out_mol[1] n4,CH4 4.705E-05 2.639E-07 2.123E-09
mix_out_mol[2] n4,H2O 3.466E-03 1.713E-05 5.095E-08
mix_out_mol[3] n4,H2 5.459E-39 -3.221E-26 -5.086E-40
mix_out_mol[4] n4,CO -1.247E-38 -9.678E-26 -8.315E-38
mix_out_mol[5] n4,CO2 8.059E-07 4.441E-09 3.980E-11
mix_out_mol[6] n4,C2H6 3.669E-06 2.030E-08 1.592E-10
mix_out_mol[7] n4,C3H8 4.029E-06 2.284E-08 2.654E-10
mix_out_mol[8] n4,i-C4H10 1.491E-06 8.565E-09 7.961E-11
mix_out_mol[9] n4,n-C4H10 8.480E-07 4.441E-09 5.307E-11
mix_out_mol[10] n4,C5H12 2.207E-06 1.269E-08 1.327E-10
prePR_in_mol[1] n4,CH4 4.705E-05 2.639E-07 2.123E-09
prePR_in_mol[2] n4,H2O 3.466E-03 1.713E-05 5.095E-08
prePR_in_mol[3] n4,H2 -3.429E-38 -5.305E-26 -3.009E-37
prePR_in_mol[4] n4,CO 4.138E-38 2.670E-26 -1.103E-37
prePR_in_mol[5] n4,CO2 8.059E-07 4.441E-09 3.980E-11
prePR_in_mol[6] n4,C2H6 3.669E-06 2.030E-08 1.592E-10
prePR_in_mol[7] n4,C3H8 4.029E-06 2.284E-08 2.654E-10
prePR_in_mol[8] n4,i-C4H10 1.491E-06 8.565E-09 7.961E-11
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prePR_in_mol[9] n4,n-C4H10 8.480E-07 4.441E-09 5.307E-11
prePR_in_mol[10] n4,C5H12 2.207E-06 1.269E-08 1.327E-10
prePR_out_mol[1] n5,CH4 4.705E-05 2.639E-07 2.123E-09
prePR_out_mol[2] n5,H2O 3.466E-03 1.713E-05 5.095E-08
prePR_out_mol[3] n5,H2 -7.932E-39 9.473E-28 -1.208E-37
prePR_out_mol[4] n5,CO 1.573E-38 -2.227E-25 5.298E-38
prePR_out_mol[5] n5,CO2 8.059E-07 4.441E-09 3.980E-11
prePR_out_mol[6] n5,C2H6 3.669E-06 2.030E-08 1.592E-10
prePR_out_mol[7] n5,C3H8 4.029E-06 2.284E-08 2.654E-10
prePR_out_mol[8] n5,i-C4H10 1.491E-06 8.565E-09 7.961E-11
prePR_out_mol[9] n5,n-C4H10 8.480E-07 4.441E-09 5.307E-11
prePR_out_mol[10] n5,C5H12 2.207E-06 1.269E-08 1.327E-10

pr_in_mol[1] n5,CH4 4.705E-05 2.639E-07 2.123E-09
pr_in_mol[2] n5,H2O 3.466E-03 1.713E-05 5.095E-08
pr_in_mol[3] n5,H2 -1.223E-38 6.063E-26 -6.113E-39
pr_in_mol[4] n5,CO 5.656E-38 -8.352E-26 2.206E-38
pr_in_mol[5] n5,CO2 8.059E-07 4.441E-09 3.980E-11
pr_in_mol[6] n5,C2H6 3.669E-06 2.030E-08 1.592E-10
pr_in_mol[7] n5,C3H8 4.029E-06 2.284E-08 2.654E-10
pr_in_mol[8] n5,i-C4H10 1.491E-06 8.565E-09 7.961E-11
pr_in_mol[9] n5,n-C4H10 8.480E-07 4.441E-09 5.307E-11
pr_in_mol[10] n5,C5H12 2.207E-06 1.269E-08 1.327E-10
pr_out_mol[1] n6,CH4 3.278E-05 2.436E-07 3.397E-09
pr_out_mol[2] n6,H2O 3.358E-03 1.673E-05 5.095E-08
pr_out_mol[3] n6,H2 1.889E-04 8.527E-07 2.548E-09
pr_out_mol[4] n6,CO -1.330E-07 -1.427E-09 -5.805E-12
pr_out_mol[5] n6,CO2 5.503E-05 2.436E-07 4.246E-10
pr_out_mol[6] n6,C2H6 -1.581E-13 2.706E-11 2.016E-11
pr_out_mol[7] n6,C3H8 -2.202E-13 -4.907E-10 1.880E-11
pr_out_mol[8] n6,i-C4H10 -1.207E-13 8.759E-12 3.956E-12
pr_out_mol[9] n6,n-C4H10 -7.325E-14 -3.300E-11 -4.220E-12
pr_out_mol[10] n6,C5H12 3.465E-13 1.911E-10 3.059E-12

preGHR_in_mol[1] n6,CH4 3.278E-05 2.436E-07 3.397E-09
preGHR_in_mol[2] n6,H2O 3.358E-03 1.673E-05 5.095E-08
preGHR_in_mol[3] n6,H2 1.889E-04 8.527E-07 2.548E-09
preGHR_in_mol[4] n6,CO -1.330E-07 -1.427E-09 -5.805E-12
preGHR_in_mol[5] n6,CO2 5.503E-05 2.436E-07 4.246E-10
preGHR_out_mol[1] n7,CH4 3.278E-05 2.436E-07 3.397E-09
preGHR_out_mol[2] n7,H2O 3.358E-03 1.673E-05 5.095E-08
preGHR_out_mol[3] n7,H2 1.889E-04 8.527E-07 2.548E-09
preGHR_out_mol[4] n7,CO -1.330E-07 -1.427E-09 -5.805E-12
preGHR_out_mol[5] n7,CO2 5.503E-05 2.436E-07 4.246E-10
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∂d2

∂y
∂d3

ghr_in_mol[1] n7,CH4 3.278E-05 2.436E-07 3.397E-09
ghr_in_mol[2] n7,H2O 3.358E-03 1.673E-05 5.095E-08
ghr_in_mol[3] n7,H2 1.889E-04 8.527E-07 2.548E-09
ghr_in_mol[4] n7,CO -1.330E-07 -1.427E-09 -5.805E-12
ghr_in_mol[5] n7,CO2 5.503E-05 2.436E-07 4.246E-10
ghr_out_mol[1] n8,CH4 -2.361E-04 -1.167E-06 -4.246E-09
ghr_out_mol[2] n8,H2O 2.862E-03 1.413E-05 4.076E-08
ghr_out_mol[3] n8,H2 1.222E-03 6.212E-06 2.887E-08
ghr_out_mol[4] n8,CO 4.231E-05 2.436E-07 3.184E-09
ghr_out_mol[5] n8,CO2 2.815E-04 1.391E-06 4.670E-09
atr_in_mol[1] n8,CH4 -2.361E-04 -1.167E-06 -4.246E-09
atr_in_mol[2] n8,H2O 2.862E-03 1.413E-05 4.076E-08
atr_in_mol[3] n8,H2 1.222E-03 6.212E-06 2.887E-08
atr_in_mol[4] n8,CO 4.231E-05 2.436E-07 3.184E-09
atr_in_mol[5] n8,CO2 2.815E-04 1.391E-06 4.670E-09
atr_out_mol[1] n9,CH4 -2.820E-06 -1.431E-08 -5.307E-11
atr_out_mol[2] n9,H2O 3.121E-03 1.543E-05 4.416E-08
atr_out_mol[3] n9,H2 4.970E-04 2.680E-06 1.868E-08
atr_out_mol[4] n9,CO -1.658E-04 -7.714E-07 4.246E-10
atr_out_mol[5] n9,CO2 2.563E-04 1.269E-06 3.821E-09

postATR_in_mol[1] n9,CH4 -2.820E-06 -1.431E-08 -5.307E-11
postATR_in_mol[2] n9,H2O 3.121E-03 1.543E-05 4.416E-08
postATR_in_mol[3] n9,H2 4.970E-04 2.680E-06 1.868E-08
postATR_in_mol[4] n9,CO -1.658E-04 -7.714E-07 4.246E-10
postATR_in_mol[5] n9,CO2 2.563E-04 1.269E-06 3.821E-09
postATR_out_mol[1] n10,CH4 -2.820E-06 -1.431E-08 -5.307E-11
postATR_out_mol[2] n10,H2O 3.121E-03 1.543E-05 4.416E-08
postATR_out_mol[3] n10,H2 4.970E-04 2.680E-06 1.868E-08
postATR_out_mol[4] n10,CO -1.658E-04 -7.714E-07 4.246E-10
postATR_out_mol[5] n10,CO2 2.563E-04 1.269E-06 3.821E-09

itsr_in_mol[1] n10,CH4 -2.820E-06 -1.431E-08 -5.307E-11
itsr_in_mol[2] n10,H2O 3.121E-03 1.543E-05 4.416E-08
itsr_in_mol[3] n10,H2 4.970E-04 2.680E-06 1.868E-08
itsr_in_mol[4] n10,CO -1.658E-04 -7.714E-07 4.246E-10
itsr_in_mol[5] n10,CO2 2.563E-04 1.269E-06 3.821E-09
itsr_out_mol[1] n11,CH4 -2.820E-06 -1.431E-08 -5.307E-11
itsr_out_mol[2] n11,H2O 3.238E-03 1.596E-05 3.397E-08
itsr_out_mol[3] n11,H2 3.803E-04 2.030E-06 2.717E-08
itsr_out_mol[4] n11,CO -4.907E-05 -2.309E-07 -9.022E-09
itsr_out_mol[5] n11,CO2 1.396E-04 7.511E-07 1.359E-08

preCond_in_mol[1] n11,CH4 -2.820E-06 -1.431E-08 -5.307E-11
preCond_in_mol[2] n11,H2O 3.238E-03 1.596E-05 3.397E-08
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preCond_in_mol[3] n11,H2 3.803E-04 2.030E-06 2.717E-08
preCond_in_mol[4] n11,CO -4.907E-05 -2.309E-07 -9.022E-09
preCond_in_mol[5] n11,CO2 1.396E-04 7.511E-07 1.359E-08
preCond_out_mol[1] n12,CH4 -2.820E-06 -1.431E-08 -5.307E-11
preCond_out_mol[2] n12,H2O 3.238E-03 1.596E-05 3.397E-08
preCond_out_mol[3] n12,H2 3.803E-04 2.030E-06 2.717E-08
preCond_out_mol[4] n12,CO -4.907E-05 -2.309E-07 -9.022E-09
preCond_out_mol[5] n12,CO2 1.396E-04 7.511E-07 1.359E-08

cond_in_mol[1] n12,CH4 -2.820E-06 -1.431E-08 -5.307E-11
cond_in_mol[2] n12,H2O 3.238E-03 1.596E-05 3.397E-08
cond_in_mol[3] n12,H2 3.803E-04 2.030E-06 2.717E-08
cond_in_mol[4] n12,CO -4.907E-05 -2.309E-07 -9.022E-09
cond_in_mol[5] n12,CO2 1.396E-04 7.511E-07 1.359E-08

cond_L n13 3.237E-03 1.584E-05 2.548E-08
cond_liq_frac[1] x13,CH4 -3.657E-15 -1.865E-17 -7.878E-20
cond_liq_frac[2] x13,H2O 1.527E-13 2.379E-10 6.634E-12
cond_liq_frac[3] x13,H2 4.124E-14 3.025E-16 9.490E-18
cond_liq_frac[4] x13,CO -6.605E-14 -3.155E-16 -1.142E-17
cond_liq_frac[5] x13,CO2 2.847E-14 1.134E-16 6.327E-18

cond_V n14 4.687E-04 2.517E-06 3.057E-08
cond_vap_frac[1] x14,CH4 -3.657E-09 -1.863E-11 -7.936E-14
cond_vap_frac[2] x14,H2O -5.100E-14 -2.416E-11 1.296E-14
cond_vap_frac[3] x14,H2 4.124E-08 3.172E-10 9.951E-12
cond_vap_frac[4] x14,CO -6.605E-08 -3.147E-10 -1.140E-11
cond_vap_frac[5] x14,CO2 2.847E-08 1.190E-10 7.463E-12
psa_in_mol[1] n14,CH4 -2.820E-06 -1.431E-08 -5.307E-11
psa_in_mol[2] n14,H2O 7.411E-07 -1.586E-08 5.307E-11
psa_in_mol[3] n14,H2 3.803E-04 2.193E-06 2.717E-08
psa_in_mol[4] n14,CO -4.907E-05 -2.322E-07 -9.076E-09
psa_in_mol[5] n14,CO2 1.396E-04 7.308E-07 1.274E-08

psa_outPurge_mol[1] n15,CH4 -2.820E-09 -1.433E-11 -5.345E-14
psa_outPurge_mol[2] n15,H2O 7.411E-10 -1.580E-11 5.831E-14
psa_outPurge_mol[3] n15,H2 3.689E-04 2.111E-06 2.378E-08
psa_outPurge_mol[4] n15,CO -4.907E-08 -2.317E-10 -9.122E-12
psa_outPurge_mol[5] n15,CO2 1.396E-07 7.335E-10 1.327E-11

psa_outProduct_mol[1] n16,CH4 -2.817E-06 -1.427E-08 -5.307E-11
psa_outProduct_mol[2] n16,H2O 7.404E-07 -1.586E-08 5.307E-11
psa_outProduct_mol[3] n16,H2 1.141E-05 6.598E-08 8.492E-10
psa_outProduct_mol[4] n16,CO -4.902E-05 -2.322E-07 -9.076E-09
psa_outProduct_mol[5] n16,CO2 1.394E-04 7.308E-07 1.274E-08

mix_in_T T2 0.000E+00 0.000E+00 0.000E+00
H2O_T T3 8.647E-05 1.218E-07 -3.057E-08
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∂y
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mix_out_T T4 8.647E-05 1.218E-07 -3.057E-08
prePR_in_T T4 0.000E+00 0.000E+00 0.000E+00
prePR_out_T T5 -9.213E-05 -5.684E-07 0.000E+00
preGHR_in_T T6 -1.127E-04 -9.745E-07 -5.435E-08
preGHR_out_T T7 -1.127E-04 -9.745E-07 -5.435E-08

ghr_in_T T7 2.760E-05 2.436E-07 6.793E-09
ghr_out_T T8 2.760E-05 2.436E-07 6.793E-09
atr_in_T T8 0.000E+00 0.000E+00 0.000E+00

postATR_in_T T9 -1.761E-04 -1.218E-06 -7.812E-08
postATR_out_T T10 -5.864E-10 -2.842E-07 0.000E+00
preCond_out_T T12 -5.864E-10 -2.842E-07 0.000E+00

cond_in_T T12 -5.864E-10 -2.842E-07 0.000E+00
cond_L_T T13 -5.864E-10 -2.842E-07 0.000E+00
cond_V_T T14 -5.864E-10 -2.842E-07 0.000E+00
psa_in_T T14 -5.864E-10 -2.842E-07 0.000E+00

psa_outPurge_T T15 -5.864E-10 -2.842E-07 0.000E+00
psa_outProduct_T T16 2.831E+01 1.397E-01 1.280E-03

prePR_Q QprePR -7.515E-01 -1.857E-03 -1.750E-03
preGHR_Q QpreGHR 1.054E+02 5.322E-01 3.784E-03

ghr_Q Qghr -1.054E+02 -5.322E-01 -3.784E-03
postATR_Q QpostATR -9.104E+00 -2.794E-02 -4.619E-03

itsr_Q Qitsr -2.234E+01 -1.324E-01 6.205E-03
preCond_Q QpreCond 3.466E-03 1.713E-05 5.095E-08

F_H2 n18 4.132E+00 2.436E-07 1.359E-08
F_H2_heat n17 -4.132E+00 1.860E-06 1.040E-08

F_NG n1 6.014E-05 3.451E-07 3.397E-09
F_NG_heat n19 9.999E-01 -3.337E-07 -2.930E-09
F_fluegas n20 3.531E+00 -1.178E-06 -1.035E-08

F_inj n21 3.532E+00 -6.496E-07 -5.944E-09

A.1.3 Optimal sensitivity matrix with respect to disturbance change

Table 12: Optimal sensitivity matrix, F, which represents the optimal output change when
the distubances change

Variable Variable* ∂yopt

∂d1

∂yopt

∂d2

∂yopt

∂d3

mix_in_mol[1] n2,CH4 4.697E-05 4.840E-05 -4.025E-08
mix_in_mol[2] n2,H2O -5.368E-36 3.154E-33 -2.780E-36
mix_in_mol[3] n2,H2 1.465E-34 -6.441E-26 7.604E-35
mix_in_mol[4] n2,CO -7.057E-38 -2.115E-25 9.141E-38
mix_in_mol[5] n2,CO2 8.045E-07 8.289E-07 -6.859E-10
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∂d1

∂yopt

∂d2

∂yopt

∂d3

mix_in_mol[6] n2,C2H6 3.662E-06 3.774E-06 -3.144E-09
mix_in_mol[7] n2,C3H8 4.022E-06 4.145E-06 -3.363E-09
mix_in_mol[8] n2,i-C4H10 1.489E-06 1.534E-06 -1.263E-09
mix_in_mol[9] n2,n-C4H10 8.465E-07 8.720E-07 -7.105E-10
mix_in_mol[10] n2,C5H12 2.203E-06 2.271E-06 -1.855E-09

H2Ostream n3 3.468E-03 3.491E-01 -3.426E-04
mix_out_mol[1] n4,CH4 4.697E-05 4.840E-05 -4.025E-08
mix_out_mol[2] n4,H2O 3.468E-03 3.491E-01 -3.426E-04
mix_out_mol[3] n4,H2 -7.323E-35 -3.221E-26 -3.787E-35
mix_out_mol[4] n4,CO -1.290E-34 -9.678E-26 -6.680E-35
mix_out_mol[5] n4,CO2 8.045E-07 8.289E-07 -6.859E-10
mix_out_mol[6] n4,C2H6 3.662E-06 3.774E-06 -3.144E-09
mix_out_mol[7] n4,C3H8 4.022E-06 4.145E-06 -3.363E-09
mix_out_mol[8] n4,i-C4H10 1.489E-06 1.534E-06 -1.263E-09
mix_out_mol[9] n4,n-C4H10 8.465E-07 8.720E-07 -7.105E-10
mix_out_mol[10] n4,C5H12 2.203E-06 2.271E-06 -1.855E-09
prePR_in_mol[1] n4,CH4 4.697E-05 4.840E-05 -4.025E-08
prePR_in_mol[2] n4,H2O 3.468E-03 3.491E-01 -3.426E-04
prePR_in_mol[3] n4,H2 -3.429E-38 -5.305E-26 -3.009E-37
prePR_in_mol[4] n4,CO -2.580E-34 2.670E-26 -1.335E-34
prePR_in_mol[5] n4,CO2 8.045E-07 8.289E-07 -6.859E-10
prePR_in_mol[6] n4,C2H6 3.662E-06 3.774E-06 -3.144E-09
prePR_in_mol[7] n4,C3H8 4.022E-06 4.145E-06 -3.363E-09
prePR_in_mol[8] n4,i-C4H10 1.489E-06 1.534E-06 -1.263E-09
prePR_in_mol[9] n4,n-C4H10 8.465E-07 8.720E-07 -7.105E-10
prePR_in_mol[10] n4,C5H12 2.203E-06 2.271E-06 -1.855E-09
prePR_out_mol[1] n5,CH4 4.697E-05 4.840E-05 -4.025E-08
prePR_out_mol[2] n5,H2O 3.468E-03 3.491E-01 -3.426E-04
prePR_out_mol[3] n5,H2 3.661E-35 9.472E-28 1.882E-35
prePR_out_mol[4] n5,CO -2.690E-34 -2.227E-25 -1.391E-34
prePR_out_mol[5] n5,CO2 8.045E-07 8.289E-07 -6.859E-10
prePR_out_mol[6] n5,C2H6 3.662E-06 3.774E-06 -3.144E-09
prePR_out_mol[7] n5,C3H8 4.022E-06 4.145E-06 -3.363E-09
prePR_out_mol[8] n5,i-C4H10 1.489E-06 1.534E-06 -1.263E-09
prePR_out_mol[9] n5,n-C4H10 8.465E-07 8.720E-07 -7.105E-10
prePR_out_mol[10] n5,C5H12 2.203E-06 2.271E-06 -1.855E-09

pr_in_mol[1] n5,CH4 4.697E-05 4.840E-05 -4.025E-08
pr_in_mol[2] n5,H2O 3.468E-03 3.491E-01 -3.426E-04
pr_in_mol[3] n5,H2 -1.465E-34 6.063E-26 -7.575E-35
pr_in_mol[4] n5,CO -8.071E-34 -8.352E-26 -4.174E-34
pr_in_mol[5] n5,CO2 8.045E-07 8.289E-07 -6.859E-10
pr_in_mol[6] n5,C2H6 3.662E-06 3.774E-06 -3.144E-09
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∂d1

∂yopt

∂d2

∂yopt

∂d3

pr_in_mol[7] n5,C3H8 4.022E-06 4.145E-06 -3.363E-09
pr_in_mol[8] n5,i-C4H10 1.489E-06 1.534E-06 -1.263E-09
pr_in_mol[9] n5,n-C4H10 8.465E-07 8.720E-07 -7.105E-10
pr_in_mol[10] n5,C5H12 2.203E-06 2.271E-06 -1.855E-09
pr_out_mol[1] n6,CH4 3.260E-05 -4.455E-03 4.399E-06
pr_out_mol[2] n6,H2O 3.360E-03 3.400E-01 -3.336E-04
pr_out_mol[3] n6,H2 1.891E-04 1.817E-02 -1.789E-05
pr_out_mol[4] n6,CO -1.326E-07 -2.618E-05 2.512E-08
pr_out_mol[5] n6,CO2 5.506E-05 4.571E-03 -4.499E-06
pr_out_mol[6] n6,C2H6 -1.581E-13 2.706E-11 2.016E-11
pr_out_mol[7] n6,C3H8 -2.202E-13 -4.907E-10 1.880E-11
pr_out_mol[8] n6,i-C4H10 -1.207E-13 8.760E-12 3.956E-12
pr_out_mol[9] n6,n-C4H10 -7.325E-14 -3.300E-11 -4.220E-12
pr_out_mol[10] n6,C5H12 3.465E-13 1.911E-10 3.059E-12

preGHR_in_mol[1] n6,CH4 3.260E-05 -4.455E-03 4.399E-06
preGHR_in_mol[2] n6,H2O 3.360E-03 3.400E-01 -3.336E-04
preGHR_in_mol[3] n6,H2 1.891E-04 1.817E-02 -1.789E-05
preGHR_in_mol[4] n6,CO -1.326E-07 -2.618E-05 2.512E-08
preGHR_in_mol[5] n6,CO2 5.506E-05 4.571E-03 -4.499E-06
preGHR_out_mol[1] n7,CH4 3.260E-05 -4.455E-03 4.399E-06
preGHR_out_mol[2] n7,H2O 3.360E-03 3.400E-01 -3.336E-04
preGHR_out_mol[3] n7,H2 1.891E-04 1.817E-02 -1.789E-05
preGHR_out_mol[4] n7,CO -1.326E-07 -2.618E-05 2.512E-08
preGHR_out_mol[5] n7,CO2 5.506E-05 4.571E-03 -4.499E-06

ghr_in_mol[1] n7,CH4 3.260E-05 -4.455E-03 4.399E-06
ghr_in_mol[2] n7,H2O 3.360E-03 3.400E-01 -3.336E-04
ghr_in_mol[3] n7,H2 1.891E-04 1.817E-02 -1.789E-05
ghr_in_mol[4] n7,CO -1.326E-07 -2.618E-05 2.512E-08
ghr_in_mol[5] n7,CO2 5.506E-05 4.571E-03 -4.499E-06
ghr_out_mol[1] n8,CH4 -2.373E-04 -2.872E-02 2.825E-05
ghr_out_mol[2] n8,H2O 2.863E-03 2.935E-01 -2.879E-04
ghr_out_mol[3] n8,H2 1.226E-03 1.132E-01 -1.113E-04
ghr_out_mol[4] n8,CO 4.300E-05 2.007E-03 -2.010E-06
ghr_out_mol[5] n8,CO2 2.818E-04 2.680E-02 -2.632E-05
atr_in_mol[1] n8,CH4 -2.373E-04 -2.872E-02 2.825E-05
atr_in_mol[2] n8,H2O 2.863E-03 2.935E-01 -2.879E-04
atr_in_mol[3] n8,H2 1.226E-03 1.132E-01 -1.113E-04
atr_in_mol[4] n8,CO 4.300E-05 2.007E-03 -2.010E-06
atr_in_mol[5] n8,CO2 2.818E-04 2.680E-02 -2.632E-05
atr_out_mol[1] n9,CH4 -2.851E-06 -3.102E-04 3.061E-07
atr_out_mol[2] n9,H2O 3.124E-03 3.178E-01 -3.120E-04
atr_out_mol[3] n9,H2 4.964E-04 3.200E-02 -3.135E-05
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∂d2
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∂d3

atr_out_mol[4] n9,CO -1.655E-04 -2.453E-02 2.405E-05
atr_out_mol[5] n9,CO2 2.559E-04 2.493E-02 -2.443E-05

postATR_in_mol[1] n9,CH4 -2.851E-06 -3.102E-04 3.061E-07
postATR_in_mol[2] n9,H2O 3.124E-03 3.178E-01 -3.120E-04
postATR_in_mol[3] n9,H2 4.964E-04 3.200E-02 -3.135E-05
postATR_in_mol[4] n9,CO -1.655E-04 -2.453E-02 2.405E-05
postATR_in_mol[5] n9,CO2 2.559E-04 2.493E-02 -2.443E-05
postATR_out_mol[1] n10,CH4 -2.851E-06 -3.102E-04 3.061E-07
postATR_out_mol[2] n10,H2O 3.124E-03 3.178E-01 -3.120E-04
postATR_out_mol[3] n10,H2 4.964E-04 3.200E-02 -3.135E-05
postATR_out_mol[4] n10,CO -1.655E-04 -2.453E-02 2.405E-05
postATR_out_mol[5] n10,CO2 2.559E-04 2.493E-02 -2.443E-05

itsr_in_mol[1] n10,CH4 -2.851E-06 -3.102E-04 3.061E-07
itsr_in_mol[2] n10,H2O 3.124E-03 3.178E-01 -3.120E-04
itsr_in_mol[3] n10,H2 4.964E-04 3.200E-02 -3.135E-05
itsr_in_mol[4] n10,CO -1.655E-04 -2.453E-02 2.405E-05
itsr_in_mol[5] n10,CO2 2.559E-04 2.493E-02 -2.443E-05
itsr_out_mol[1] n11,CH4 -2.851E-06 -3.102E-04 3.061E-07
itsr_out_mol[2] n11,H2O 3.240E-03 3.365E-01 -3.303E-04
itsr_out_mol[3] n11,H2 3.799E-04 1.330E-02 -1.301E-05
itsr_out_mol[4] n11,CO -4.913E-05 -5.832E-03 5.717E-06
itsr_out_mol[5] n11,CO2 1.395E-04 6.233E-03 -6.097E-06

preCond_in_mol[1] n11,CH4 -2.851E-06 -3.102E-04 3.061E-07
preCond_in_mol[2] n11,H2O 3.240E-03 3.365E-01 -3.303E-04
preCond_in_mol[3] n11,H2 3.799E-04 1.330E-02 -1.301E-05
preCond_in_mol[4] n11,CO -4.913E-05 -5.832E-03 5.717E-06
preCond_in_mol[5] n11,CO2 1.395E-04 6.233E-03 -6.097E-06
preCond_out_mol[1] n12,CH4 -2.851E-06 -3.102E-04 3.061E-07
preCond_out_mol[2] n12,H2O 3.240E-03 3.365E-01 -3.303E-04
preCond_out_mol[3] n12,H2 3.799E-04 1.330E-02 -1.301E-05
preCond_out_mol[4] n12,CO -4.913E-05 -5.832E-03 5.717E-06
preCond_out_mol[5] n12,CO2 1.395E-04 6.233E-03 -6.097E-06

cond_in_mol[1] n12,CH4 -2.851E-06 -3.102E-04 3.061E-07
cond_in_mol[2] n12,H2O 3.240E-03 3.365E-01 -3.303E-04
cond_in_mol[3] n12,H2 3.799E-04 1.330E-02 -1.301E-05
cond_in_mol[4] n12,CO -4.913E-05 -5.832E-03 5.717E-06
cond_in_mol[5] n12,CO2 1.395E-04 6.233E-03 -6.097E-06

cond_L n13 3.239E-03 3.365E-01 -3.303E-04
cond_liq_frac[1] x13,CH4 -3.695E-15 -3.851E-13 3.800E-16
cond_liq_frac[2] x13,H2O 1.527E-13 2.379E-10 6.634E-12
cond_liq_frac[3] x13,H2 4.127E-14 4.137E-12 -4.054E-15
cond_liq_frac[4] x13,CO -6.611E-14 -7.302E-12 7.156E-15

Continued on Next Page
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Variable Variable* ∂yopt

∂d1

∂yopt

∂d2

∂yopt

∂d3

cond_liq_frac[5] x13,CO2 2.853E-14 3.550E-12 -3.478E-15
cond_V n14 4.682E-04 1.341E-02 -1.311E-05

cond_vap_frac[1] x14,CH4 -3.695E-09 -3.851E-07 3.800E-10
cond_vap_frac[2] x14,H2O -5.100E-14 -2.416E-11 1.296E-14
cond_vap_frac[3] x14,H2 4.127E-08 4.137E-06 -4.053E-09
cond_vap_frac[4] x14,CO -6.611E-08 -7.302E-06 7.156E-09
cond_vap_frac[5] x14,CO2 2.853E-08 3.550E-06 -3.477E-09
psa_in_mol[1] n14,CH4 -2.851E-06 -3.102E-04 3.061E-07
psa_in_mol[2] n14,H2O 7.404E-07 2.119E-05 -2.072E-08
psa_in_mol[3] n14,H2 3.799E-04 1.330E-02 -1.301E-05
psa_in_mol[4] n14,CO -4.913E-05 -5.832E-03 5.716E-06
psa_in_mol[5] n14,CO2 1.395E-04 6.233E-03 -6.098E-06

psa_outPurge_mol[1] n15,CH4 -2.851E-09 -3.102E-07 3.061E-10
psa_outPurge_mol[2] n15,H2O 7.404E-10 2.119E-08 -2.072E-11
psa_outPurge_mol[3] n15,H2 3.685E-04 1.290E-02 -1.262E-05
psa_outPurge_mol[4] n15,CO -4.913E-08 -5.832E-06 5.716E-09
psa_outPurge_mol[5] n15,CO2 1.395E-07 6.233E-06 -6.097E-09

psa_outProduct_mol[1] n16,CH4 -2.849E-06 -3.099E-04 3.058E-07
psa_outProduct_mol[2] n16,H2O 7.396E-07 2.117E-05 -2.070E-08
psa_outProduct_mol[3] n16,H2 1.140E-05 3.991E-04 -3.903E-07
psa_outProduct_mol[4] n16,CO -4.908E-05 -5.827E-03 5.711E-06
psa_outProduct_mol[5] n16,CO2 1.394E-04 6.226E-03 -6.092E-06

mix_in_T T2 0.000E+00 0.000E+00 0.000E+00
H2O_T T3 8.655E-05 9.515E-03 -9.371E-06

mix_out_T T4 0.000E+00 0.000E+00 0.000E+00
prePR_in_T T4 8.655E-05 9.515E-03 -9.371E-06
prePR_out_T T5 2.665E-07 -4.904E-04 2.587E-07
preGHR_in_T T6 -9.204E-05 -1.047E-02 1.013E-05
preGHR_out_T T7 -1.126E-04 -1.047E-02 1.008E-05

ghr_in_T T7 -1.126E-04 -1.047E-02 1.008E-05
ghr_out_T T8 2.955E-05 -2.890E-04 1.648E-07
atr_in_T T8 2.955E-05 -2.890E-04 1.648E-07

postATR_in_T T9 5.573E-06 -3.274E-03 2.882E-06
postATR_out_T T10 -1.760E-04 -1.048E-02 1.005E-05
preCond_out_T T12 -5.864E-10 -2.842E-07 -1.268E-17

cond_in_T T12 -5.864E-10 -2.842E-07 -1.268E-17
cond_L_T T13 -5.864E-10 -2.842E-07 -1.268E-17
cond_V_T T14 -5.864E-10 -2.842E-07 -1.268E-17
psa_in_T T14 -5.864E-10 -2.842E-07 -1.268E-17

psa_outPurge_T T15 -5.864E-10 -2.842E-07 -1.268E-17
psa_outProduct_T T16 -5.864E-10 -2.842E-07 -1.268E-17

prePR_Q QprePR 2.833E+01 2.712E+03 -2.669E+00

Continued on Next Page
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Variable Variable* ∂yopt

∂d1

∂yopt

∂d2

∂yopt

∂d3

preGHR_Q QpreGHR -7.515E-01 -3.953E-03 -1.748E-03
ghr_Q Qghr 1.057E+02 9.667E+03 -9.494E+00

postATR_Q QpostATR -1.057E+02 -9.667E+03 9.494E+00
itsr_Q Qitsr -9.133E+00 -8.522E+02 8.395E-01

preCond_Q QpreCond -2.236E+01 -2.115E+03 2.082E+00
F_H2 n18 4.132E+00 3.153E-03 -3.061E-06

F_H2_heat n17 -4.132E+00 9.751E-03 -9.562E-06
F_NG n1 6.004E-05 6.187E-05 -5.076E-08

F_NG_heat n19 9.999E-01 -6.186E-05 5.123E-08
F_fluegas n20 3.531E+00 -2.185E-04 1.809E-07

F_inj n21 3.532E+00 2.918E-04 -3.054E-07

B Julia Code

This section contains all code that has been developed and used in this project for multiple
purposes, such as building the model, testing data, simulations and more. Under each
subsection, the function of the code is explained. All the files containing julia code used in
this thesis are available in the author’s GitHub repository [64].

B.1 0Model.jl

The file 0Model.jl builds all the submodels to a larger model and connects the submodels
with connectivity constraints. Parameters from 0par.jl file is imported and used for building
the model. After building the model, the objective function is formed and optimized. At the
end, the dataframe.jl file is used for printing out the variables of the optimization results.

� �
using JuMP, Ipopt, MathOptInterface, DataFrames, PrettyTables

include("enthalpy.jl")

include("0par.jl")

include("1MIX.jl")

include("2PrePR.jl")

include("3PR.jl")

include("4PreGHR.jl")

include("5GHR.jl")

include("6ATR.jl")

include("7PostATR.jl")

include("8ITSR.jl")

include("9PreCondensate.jl")

include("10Condensate.jl")

include("11PSA.jl")

include("dataframe.jl")

include("equilibrium.jl")

include("compWork.jl")

include("active.jl")
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const MOI = MathOptInterface

C = 12.01;

H = 1.008;

O = 16;

Base.@kwdef mutable struct _par

init::init_par = init_par();

mix::mix_par=mix_par();

prePR::prePR_par=prePR_par();

pr::pr_par = pr_par();

preGHR::preGHR_par = preGHR_par();

ghr::ghr_par = ghr_par();

atr::atr_par = atr_par();

postATR::postATR_par = postATR_par();

itsr::itsr_par = itsr_par();

preCond::preCond_par = preCond_par();

cond::cond_par = cond_par();

psa::psa_par = psa_par();

hconst = heavy_const;

smr_const = smr_const;

wgsr_const = wgsr_const;

HHV_H2::Float64 = 141.7*1000;

HHV_NG::Vector = [55.5,0.0,141.7,0.0,0.0,51.9,50.4,49.1,49.1,48.6]*1000; #

CH4, H2O, H2, CO, CO2, C2H6, C3H8, n-C4H10, i-C4H10, C5H12

molarMass::Vector = [C+H*4, H*2+O, H*2, C+O, C+O*2, C*2+H*6, C*3+H*8, C*4+H*
10, C*4+H*10, C*5+H*12];

P_H2::Float64 = 3.347; #[\$/kmol]

P_inj::Float64 = 9.650; # [\$/ton CO2]

R::Float64 = 8.314;

elCost::Float64 = 0.14; # [\$/Kwh]

end

################# Initializing the model ################

par = _par();

optimizer = optimizer_with_attributes(Ipopt.Optimizer,

"tol" => 1e-6, "constr_viol_tol" => 1e-8, "print_level" => 0)

m = Model(optimizer);

###### Assembling the submodels to a larger model #######

MIX_model(m, par);

prePR_model(m, par);

PR_model(m, par);

preGHR_model(m, par);

GHR_model(m, par);

ATR_model(m, par);

postATR_model(m, par);

ITSR_model(m, par);

preCond_model(m, par);

Cond_model(m, par);

PSA_model(m, par);

#all_variables(m)

#### Introducing new variables for the economic objective function #######

@variable(m, 0 <= F_H2, start = 500); # H2 product that is being sold in the obj
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function

@variable(m, 0 <= F_H2_heat, start = 1); # H2 from the product stream that is

being used to heat up the process

@variable(m, 0 <= F_NG_heat, start = 1); # NG from the initial stream that is

being used to heat up the process

@variable(m, 0 <= F_NG, start = 150); # NG from the initial stream that is being

used in the process

@variable(m, 0 <= F_fluegas, start = 1); # CO2 gas that generates from

combusting natural gas which needs to be injected

@variable(m, 0 <= F_inj, start = 200); # CO2 and other component gases that is

being injected

##################### Connection constraints #######################

for i = 1:10

@NLconstraint(m, m[:mix_out_mol][i] - m[:prePR_in_mol][i] == 0)

@NLconstraint(m, m[:prePR_out_mol][i] - m[:pr_in_mol][i] == 0)

end

for i = 1:5 # After all heavier carbons are removed

@NLconstraint(m, m[:pr_out_mol][i] - m[:preGHR_in_mol][i] == 0)

@NLconstraint(m, m[:preGHR_out_mol][i] - m[:ghr_in_mol][i] == 0)

@NLconstraint(m, m[:ghr_out_mol][i] - m[:atr_in_mol][i] == 0)

@NLconstraint(m, m[:atr_out_mol][i] - m[:postATR_in_mol][i] == 0)

@NLconstraint(m, m[:postATR_out_mol][i] - m[:itsr_in_mol][i] == 0)

@NLconstraint(m, m[:itsr_out_mol][i] - m[:preCond_in_mol][i] == 0)

@NLconstraint(m, m[:preCond_out_mol][i] - m[:cond_in_mol][i] == 0)

@NLconstraint(m, m[:cond_vap_frac][i]*m[:cond_V] - m[:psa_in_mol][i] == 0)

end

################# Same for the temperature ##################################

@NLconstraint(m, m[:mix_out_T] - m[:prePR_in_T] == 0);

@NLconstraint(m, m[:prePR_out_T] - m[:pr_in_T] == 0);

@NLconstraint(m, m[:pr_out_T] - m[:preGHR_in_T] == 0);

@NLconstraint(m, m[:preGHR_out_T] - m[:ghr_in_T] == 0);

@NLconstraint(m, m[:ghr_out_T] - m[:atr_in_T] == 0);

@NLconstraint(m, m[:atr_out_T] - m[:postATR_in_T] == 0);

@NLconstraint(m, m[:postATR_out_T] - m[:itsr_in_T] == 0);

@NLconstraint(m, m[:itsr_out_T] - m[:preCond_in_T] == 0);

@NLconstraint(m, m[:preCond_out_T] - m[:cond_in_T] == 0);

@NLconstraint(m, m[:cond_V_T] - m[:psa_in_T] == 0);

############## Initial values ##########################################

for i = 1:10

@NLconstraint(m, par.init.init_comp[i]*m[:F_NG] - m[:mix_in_mol][i] == 0);

end

@NLconstraint(m, par.mix.in_T - m[:mix_in_T] == 0);

@NLconstraint(m, par.mix.H2O_T - m[:H2O_T] == 0);

############# To ensure the GHR and ATR heat exchange ###################

@NLconstraint(m, m[:ghr_Q] + m[:postATR_Q] == 0); #- additional_Q == 0);

##To ensure that the inlet hot stream is hotter than outlet cold stream##

@NLconstraint(m, m[:atr_out_T] - m[:ghr_out_T] >= 25);

@NLconstraint(m, m[:postATR_out_T] - m[:ghr_in_T] >= 25);
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######## New constraints for the economic objective function #############

@NLconstraint(m, m[:F_H2] - m[:psa_outProduct_mol][3] + m[:F_H2_heat] == 0);

@NLconstraint(m, m[:F_NG] - par.init.init_stream + m[:F_NG_heat] == 0);

@NLconstraint(m, m[:F_fluegas] - m[:F_NG_heat] - 2*m[:F_NG_heat]/0.79 == 0);

@NLconstraint(m, m[:F_inj] - m[:F_fluegas] - sum(value(m[:psa_outPurge_mol][i])

for i = 1:5) == 0);

@NLconstraint(m, m[:prePR_Q] + m[:preGHR_Q] - m[:F_H2_heat]*par.HHV_H2*2.016 -

sum(m[:F_NG_heat]*par.HHV_NG[i]*par.init.init_comp[i]*par.molarMass[i] for

i = 1:10) == 0);

compW1 = Wrev(m, m[:F_inj], 1, 10, m[:psa_outPurge_T], par);

T2 = compT(m, m[:psa_outPurge_T],1,10);

compW2 = Wrev(m, m[:F_inj],10,100,m[:psa_outPurge_T], par);

compWsum = @NLexpression(m, compW1 + compW2);

@NLobjective(m, Max, m[:F_H2]*par.P_H2 - compWsum*par.elCost/1000); # 44*m[:

F_inj]/1000*par.P_inj

#@NLobjective(m, Max, m[:psa_outProduct_mol][3])

optimize!(m)

#@show m

##################### Printing output ################################

streamdf, otherdf, massdf, compositiondf = printTable(m);

println("Stream table"); show(streamdf, allrows=true);

println("\n\nOther variables"); show(otherdf, allrows=true);

println("\n\nMass table"); show(massdf, allrows=true);

println("\n\nCompostion table"); show(compositiondf, allrows=true);

println("");

printActive(m);� �

B.2 0par.jl

The file 0par.jl contains all the parameters from each submodel that is being built into
a larger parameter set used in 0Model.jl. Most parameters are stream, temperature and
composition data.

� �
using JuMP, Ipopt, MathOptInterface

# Parameters for initial flow values

Base.@kwdef mutable struct init_par

init_stream::Float64 = 145.4;

init_comp::Vector = [0.7824, 0.0, 0.0, 0.0, 0.0134, 0.0610, 0.0670, 0.0248,

0.0141, 0.0367]

end

Base.@kwdef mutable struct mix_par

in_T::Float64 = 311.00;

out_T::Float64 = 381.41;

H2O_T::Float64 = 423.00;
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carbon_ratio::Float64 = 2.5;

ini_mix_in::Vector = [113.76022309722791, 0.0, 0.0, 0.0, 1.9483473792214394,

8.869342547202073,

9.741736896107197, 3.605896642141171, 2.0501267199270368, 5.379765151581587

];

end

Base.@kwdef mutable struct prePR_par

out_T::Float64 = 693.00;

end

Base.@kwdef mutable struct pr_par

out_T::Float64 = 630.52;

end

Base.@kwdef mutable struct preGHR_par

out_T::Float64 = 753.0;

end

Base.@kwdef mutable struct ghr_par

out_T::Float64 = 973.0;

end

Base.@kwdef mutable struct atr_par

out_T::Float64 = 1323.0;

nO2_H::Float64 = 22.7;

end

Base.@kwdef mutable struct postATR_par

out_T::Float64 = 512.79;

end

Base.@kwdef mutable struct itsr_par

out_T::Float64 = 523.0;

end

Base.@kwdef mutable struct preCond_par

out_T::Float64 = 313.0;

end

Base.@kwdef mutable struct cond_par

L_T::Float64 = 313.0;

V_T::Float64 = 313.0;

ant_par::Vector = [6.20963, 2354.731, 7.559];

cond_P::Float64 = 15.0;

end

Base.@kwdef mutable struct psa_par

outPurge_T::Float64 = 313.0;

outProduct_T::Float64 = 313.0;

splitratio::Vector = [0.001, 0.001, 0.97, 0.001, 0.001]; # Almost ideal

end� �
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B.3 1MIX.jl

1Mix.jl contains the function MIX_model() which builds the submodel for the first submodel,
which calculates the amount of steam required in the process depending on the natural
gas feed and the steam-to-carbon ratio. After mixing the two water streams, the mixed
temperature is calculated by the enthalpy balance, where the function build_enthalpy()
imported from the enthalpy.jl file is used.

� �
function MIX_model(model, par)

# Variables

# CH4, H2O, H2, CO, CO2

@variable(model, 0 <= mix_in_mol[1:10]); # Stream 1

@variable(model, 0 <= H2Ostream, start = 358.5177276354675); # Stream 2

@variable(model, 0 <= mix_out_mol[1:10]); # Stream 3

# CH4 H2O H2 CO CO2 C2 C3 i-C4 n-C4 C5

ini_mix_in = [113.76022309722791, 0.0, 0.0, 0.0, 1.9483473792214394, 8.8

69342547202073, 9.741736896107197, 3.605896642141171, 2.0501267199270368,

5.379765151581587];

ini_mix_out = [113.76022309722791, 358.5177276354675, 0.0, 0.0, 1.9

483473792214394, 8.869342547202073, 9.741736896107197, 3.605896642141171,

2.0501267199270368, 5.379765151581587];

for i=1:10

set_start_value(mix_in_mol[i] , ini_mix_in[i]);

set_start_value(mix_out_mol[i] , ini_mix_out[i]);

end

@variable(model, 273 <= mix_in_T, start = 311);

@variable(model, 273 <= mix_out_T, start = 381.41);

@variable(model, 273 <= H2O_T, start = 423.00);

@variable(model, 0 <= SC_ratio <= 5.0, start = 2.5);

# Expressions

mix_H_out = build_enthalpy(model, mix_out_T, par)

mix_H_in = build_enthalpy(model, mix_in_T, par)

mix_H_inH2O = build_enthalpy(model, H2O_T, par)

mix_n_Carbon = @NLexpression(model, sum(mix_out_mol[i] for i=6:10)+mix_out_mol

[1])

# Mass balance

@NLconstraint(model, H2Ostream - SC_ratio*mix_n_Carbon == 0);

@NLconstraint(model, mix_out_mol[1] - mix_in_mol[1] == 0)

@NLconstraint(model, mix_out_mol[2] - mix_in_mol[2] - H2Ostream == 0)

@NLconstraint(model, mix_out_mol[3] - mix_in_mol[3] == 0)

@NLconstraint(model, mix_out_mol[4] - mix_in_mol[4] == 0)

@NLconstraint(model, mix_out_mol[5] - mix_in_mol[5] == 0)

@NLconstraint(model, mix_out_mol[6] - mix_in_mol[6] == 0)

@NLconstraint(model, mix_out_mol[7] - mix_in_mol[7] == 0)

@NLconstraint(model, mix_out_mol[8] - mix_in_mol[8] == 0)

@NLconstraint(model, mix_out_mol[9] - mix_in_mol[9] == 0)

@NLconstraint(model, mix_out_mol[10] - mix_in_mol[10] == 0)
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# Energy balance

@NLconstraint(model, sum(mix_H_out[i]*mix_out_mol[i] - mix_H_in[i]*mix_in_mol[

i] for i=1:10) - mix_H_inH2O[2]*H2Ostream == 0);

end� �

B.4 2prePR.jl

2prePR.jl file contains the prePR_model function that builds the submodel for the heater
before the pre-reformer unit. The energy balance calculates the heat required in this process
to reach its desired temperature.

� �
function prePR_model(model, par)

# Variables

# CH4, H2O, H2, CO, CO2

@variable(model, 0 <= prePR_in_mol[1:10]);

@variable(model, 0 <= prePR_out_mol[1:10]);

# CH4 H2O H2 CO CO2 C2 C3 i-C4 n-C4 C5

ini_prePR_in = [113.76022309722791, 358.5177276354675, 0.0, 0.0, 1.9

483473792214394, 8.869342547202073, 9.741736896107197, 3.605896642141171,

2.0501267199270368, 5.379765151581587]; # Stream 3

ini_prePR_out = [113.76022309722791, 358.5177276354675, 0.0, 0.0, 1.9

483473792214394, 8.869342547202073, 9.741736896107197, 3.605896642141171,

2.0501267199270368, 5.379765151581587]; # Stream 4

for i=1:10

set_start_value(prePR_in_mol[i] , ini_prePR_in[i])

set_start_value(prePR_out_mol[i] , ini_prePR_out[i])

end

@variable(model, 273 <= prePR_in_T, start = 381.41);

@variable(model, 273 <= prePR_out_T, start = 693.00);

@variable(model, 0 <= prePR_Q, start = 6890.45);

# Expressions

prePR_H_out = build_enthalpy(model, prePR_out_T, par)

prePR_H_in = build_enthalpy(model, prePR_in_T, par)

# Constraints

# Mass balance

@NLconstraint(model, prePR_out_mol[1] - prePR_in_mol[1] == 0)

@NLconstraint(model, prePR_out_mol[2] - prePR_in_mol[2] == 0)

@NLconstraint(model, prePR_out_mol[3] - prePR_in_mol[3] == 0)

@NLconstraint(model, prePR_out_mol[4] - prePR_in_mol[4] == 0)

@NLconstraint(model, prePR_out_mol[5] - prePR_in_mol[5] == 0)

@NLconstraint(model, prePR_out_mol[6] - prePR_in_mol[6] == 0)

@NLconstraint(model, prePR_out_mol[7] - prePR_in_mol[7] == 0)

@NLconstraint(model, prePR_out_mol[8] - prePR_in_mol[8] == 0)

@NLconstraint(model, prePR_out_mol[9] - prePR_in_mol[9] == 0)

@NLconstraint(model, prePR_out_mol[10] - prePR_in_mol[10] == 0)
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# Energy balance

@NLconstraint(model, sum(prePR_H_out[i]*prePR_out_mol[i] - prePR_H_in[i]*
prePR_in_mol[i] for i=1:10) - prePR_Q==0);

# Energy balance - equipment specification

#@NLconstraint(model, prePR_out_T - par.prePR.out_T == 0);

return model;

end� �

B.5 3PR.jl

3PR.jl file contains the function PR_model() and builds the submodel for the pre-reformer.
In this function, mole balances are balanced with the extent of reactions to calculate the
amount of methane that is reformed from heavier hydrocarbons and the equilibrium. As this
is an adiabatic reaction, the outlet temperature is also calculated from the energy balance.

� �
function PR_model(model, par)

# Variables

# CH4, H2O, H2, CO, CO2

@variable(model, 0 <= pr_in_mol[1:10]); # Stream 4

@variable(model, 0 <= pr_out_mol[1:10]); # Stream 5

ini_pr_in = [113.76022309722791, 358.5177276354675, 0.0, 0.0, 1.9

483473792214394, 8.869342547202073, 9.741736896107197, 3.605896642141171,

2.0501267199270368, 5.379765151581587]; # CH4 H2O H2 CO CO2 C2 C3 i-C4

n-C4 C5

ini_pr_out = [178.58124131020057, 295.5198912988238, 59.489482856563995, 0.3

3375721522392365, 33.28038693993136, 0, 0, 0, 0, 0];

for i=1:10

set_start_value(pr_in_mol[i] , ini_pr_in[i]);

set_start_value(pr_out_mol[i] , ini_pr_out[i]);

end

@variable(model, 643 <= pr_in_T <= 743, start = 693.00);

@variable(model, 609.2 <= pr_out_T <= 709.2, start = 659.2);

# Expressions

pr_ksi1 = @NLexpression(model, pr_in_mol[6]); # C2H6

pr_ksi2 = @NLexpression(model, pr_in_mol[7]); # C3H8

pr_ksi3 = @NLexpression(model, pr_in_mol[8]); # n-C4H10

pr_ksi4 = @NLexpression(model, pr_in_mol[9]); # i-C4H10

pr_ksi5 = @NLexpression(model, pr_in_mol[10]); # C5+

pr_ksi6 = @NLexpression(model, pr_in_mol[1] - pr_out_mol[1]);

pr_ksi7 = @NLexpression(model, pr_out_mol[5] - pr_in_mol[5]);

#pr_Ksmr_model = @NLexpression(model, exp(-22790 / pr_out_T + 8.156 * log(

pr_out_T) - 4.421 / 10^3 * pr_out_T
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#- 4.330 * 10^3 / (pr_out_T^2) - 26.030));

#pr_Kwgsr_model = @NLexpression(model, exp(5693.5/pr_out_T + 1.077*log(

pr_out_T) + 5.44e-4*pr_out_T - 1.125e-7*pr_out_T^2 - 49170/(pr_out_T^2)

-13.148));

pr_K_smr_model = K_smr(model, pr_out_T, par);

pr_K_wgsr_model = K_wgsr(model, pr_out_T, par);

pr_ntot = @NLexpression(model, sum(pr_out_mol[i] for i=1:10));

pr_H_out = build_enthalpy(model, pr_out_T, par);

pr_H_in = build_enthalpy(model, pr_in_T, par);

# Constraints

# Mass balance

@NLconstraint(model, pr_out_mol[2] - pr_in_mol[2] + 2 * pr_ksi1 + 3 * pr_ksi2

+ 4 * pr_ksi3 + 4 * pr_ksi4 + 5 * pr_ksi5 + pr_ksi6 + pr_ksi7 == 0);

@NLconstraint(model, pr_out_mol[3] - pr_in_mol[3] - 5 * pr_ksi1 - 7 * pr_ksi2

- 9 * pr_ksi3 - 9 * pr_ksi4 - 11 * pr_ksi5 - 3 * pr_ksi6 - pr_ksi7 == 0);

@NLconstraint(model, pr_out_mol[4] - pr_in_mol[4] - 2 * pr_ksi1 - 3 * pr_ksi2

- 4 * pr_ksi3 - 4 * pr_ksi4 - 5 * pr_ksi5 - pr_ksi6 + pr_ksi7 == 0);

@NLconstraint(model, pr_K_smr_model*((pr_out_mol[1]/pr_ntot) * (pr_out_mol[2]/

pr_ntot )) - (((pr_out_mol[4]/pr_ntot) * (pr_out_mol[3]/pr_ntot)ˆ3)) == 0

);

@NLconstraint(model, pr_K_wgsr_model*((pr_out_mol[4]/pr_ntot) * (pr_out_mol[2]

/pr_ntot)) - (((pr_out_mol[5]/pr_ntot) * (pr_out_mol[3]/pr_ntot))) == 0);

@NLconstraint(model, pr_out_mol[6] - pr_in_mol[6] + pr_ksi1 == 0)

@NLconstraint(model, pr_out_mol[7] - pr_in_mol[7] + pr_ksi2 == 0)

@NLconstraint(model, pr_out_mol[8] - pr_in_mol[8] + pr_ksi3 == 0)

@NLconstraint(model, pr_out_mol[9] - pr_in_mol[9] + pr_ksi4 == 0)

@NLconstraint(model, pr_out_mol[10] - pr_in_mol[10] + pr_ksi5 == 0)

# Add NLconstraint for the last 5 carbons as 0

# Energy balance

@NLconstraint(model, sum(pr_H_out[i]*pr_out_mol[i] - pr_H_in[i]*pr_in_mol[i]

for i=1:10) ==0);

return model;

end� �

B.6 4preGHR.jl

4preGHR.jl file contains the function preGHR_model() which builds the submodel for the
heater before the GHR unit and calculates the required amount of heat required for reaching
the inlet GHR temperature.

� �
function preGHR_model(model, par)

# Variables

# CH4, H2O, H2, CO, CO2
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@variable(model, 0 <= preGHR_in_mol[1:5]); # Stream 5

@variable(model, 0 <= preGHR_out_mol[1:5]); # Stream 6

ini_preGHR_in = [178.58124131020057, 295.5198912988238, 59.489482856563995, 0

.33375721522392365, 33.28038693993136]; # CH4 H2O H2 CO CO2

ini_preGHR_out = [178.58124131020057, 295.5198912988238, 59.489482856563995, 0

.33375721522392365, 33.28038693993136];

for i=1:5

set_start_value(preGHR_in_mol[i] , ini_preGHR_in[i]);

set_start_value(preGHR_out_mol[i] , ini_preGHR_out[i]);

end

@variable(model, 273 <= preGHR_in_T, start = 630.5201);

@variable(model, 273 <= preGHR_out_T, start = 753.00);

preGHR_H_out = build_enthalpy(model, preGHR_out_T, par)

preGHR_H_in = build_enthalpy(model, preGHR_in_T, par)

@variable(model, 0 <= preGHR_Q, start = 8918.36225526873);

# Constraints

# Mass balance

@NLconstraint(model, preGHR_out_mol[1] - preGHR_in_mol[1] == 0)

@NLconstraint(model, preGHR_out_mol[2] - preGHR_in_mol[2] == 0)

@NLconstraint(model, preGHR_out_mol[3] - preGHR_in_mol[3] == 0)

@NLconstraint(model, preGHR_out_mol[4] - preGHR_in_mol[4] == 0)

@NLconstraint(model, preGHR_out_mol[5] - preGHR_in_mol[5] == 0)

# Energy balance

@NLconstraint(model, sum(preGHR_H_out[i]*preGHR_out_mol[i] - preGHR_H_in[i]*
preGHR_in_mol[i] for i=1:5) - preGHR_Q==0);

# Energy balance - equipment specification

#@NLconstraint(model, preGHR_out_T - par.preGHR.out_T == 0);

return model;

end� �

B.7 5GHR.jl

5GHR.jl file contains the function GHR_model() which builds the submodel for the GHR
unit. In the GHR unit, mole and energy balances are formed to calculate the exiting tem-
perature from the energy balance and mole streams from the equilibrium constant. The
equilibrium constant is calculated from functions in the equilibrium.jl file.

� �
function GHR_model(model, par)

# Variables

# CH4, H2O, H2, CO, CO2

@variable(model, 0 <= ghr_in_mol[1:5]); # Stream 6

@variable(model, 0 <= ghr_out_mol[1:5]); # Stream 7
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# CH4 H2O H2 CO CO2

ini_ghr_in = [178.58124131020057, 295.5198912988238, 59.489482856563995, 0.3

3375721522392365, 33.28038693993136];

ini_ghr_out = [100.543406840790453, 122.15875765109533, 544.9262854431126, 139

.04829250631568, 50.60368611824971];

for i=1:5

set_start_value(ghr_in_mol[i] , ini_ghr_in[i]);

set_start_value(ghr_out_mol[i] , ini_ghr_out[i]);

end

@variable(model, 559.2 <= ghr_in_T <= 659.2, start = 609.2);

@variable(model, 914.8 <= ghr_out_T <= 1014.8, start = 964.8);

@variable(model, 0 <= ghr_Q, start = 34472000);

ghr_K_smr_model = K_smr(model, ghr_out_T, par);

ghr_K_wgsr_model = K_wgsr(model, ghr_out_T, par);

ghr_ksi_smr = @NLexpression(model, ghr_in_mol[1] - ghr_out_mol[1]);

ghr_ksi_wgsr = @NLexpression(model, ghr_out_mol[5] - ghr_in_mol[5]);

ghr_ntot = @NLexpression(model, sum(ghr_out_mol[i] for i=1:5));

ghr_H_out = build_enthalpy(model, ghr_out_T, par);

ghr_H_in = build_enthalpy(model, ghr_in_T, par);

# Constraints

# Mass balance

@NLconstraint(model, ghr_K_smr_model*((ghr_out_mol[1]/ghr_ntot) * (ghr_out_mol

[2]/ghr_ntot )) -

(((ghr_out_mol[4]/ghr_ntot) * (ghr_out_mol[3]/ghr_ntot)ˆ3)) == 0);

@NLconstraint(model, ghr_K_wgsr_model*((ghr_out_mol[4]/ghr_ntot) * (

ghr_out_mol[2]/ghr_ntot)) -

(((ghr_out_mol[5]/ghr_ntot) * (ghr_out_mol[3]/ghr_ntot))) == 0);

@NLconstraint(model, ghr_out_mol[2] - ghr_in_mol[2] + ghr_ksi_smr +

ghr_ksi_wgsr == 0);

@NLconstraint(model, ghr_out_mol[3] - ghr_in_mol[3] - 3 * ghr_ksi_smr -

ghr_ksi_wgsr == 0);

@NLconstraint(model, ghr_out_mol[4] - ghr_in_mol[4] - ghr_ksi_smr +

ghr_ksi_wgsr == 0);

# Energy balance

@NLconstraint(model, sum(ghr_H_out[i]*ghr_out_mol[i] - ghr_H_in[i]*ghr_in_mol[

i] for i=1:5) - ghr_Q==0);

# Energy balance - equipment specification

#@NLconstraint(model, ghr_out_T - par.ghr.out_T == 0);

return model;

end� �



Yoonsik Oh B Julia Code

B.8 6ATR.jl

6ATR.jl file contains the function ATR_model() which builds the submodel for the ATR unit.
In the ATR unit, mole and energy balances are formed to calculate the exiting temperature
from the energy balance and mole streams from the equilibrium constant. The equilibrium
constant is calculated from functions in the equilibrium.jl file.

� �
function ATR_model(model, par)

# Variables

# CH4, H2O, H2, CO, CO2

@variable(model, 0 <= atr_in_mol[1:5]); # Stream 7

@variable(model, 0 <= atr_out_mol[1:5]); # Stream 8

ini_atr_in = [22.543406840790453, 122.15875765109533, 544.9262854431126, 139.0

4829250631568, 50.60368611824971]; # CH4 H2O H2 CO CO2

ini_atr_out = [0.00032515179570229987, 217.23336631977338, 494.9378401524241,

184.6822048577565, 27.51285545580364];

for i=1:5

set_start_value(atr_in_mol[i] , ini_atr_in[i])

set_start_value(atr_out_mol[i] , ini_atr_out[i])

end

@variable(model, 912.18 <= atr_in_T <= 1012.18, start = 962.18);

@variable(model, 1273 <= atr_out_T <= 1373, start = 1323);

@variable(model, 0 <= nO2 <= 100, start = 47.26342984761337);

# Expressions

atr_K_smr_model = K_smr(model, atr_out_T, par);

atr_K_wgsr_model = K_wgsr(model, atr_out_T, par);

atr_ksi_smr = @NLexpression(model, atr_in_mol[1] - atr_out_mol[1]);

atr_ksi_wgsr = @NLexpression(model, atr_out_mol[5] - atr_in_mol[5]);

atr_ntot = @NLexpression(model, sum(atr_out_mol[i] for i=1:5));

atr_H_out = build_enthalpy(model, atr_out_T, par);

atr_H_in = build_enthalpy(model, atr_in_T, par);

# Constraints

# Mass balance

@NLconstraint(model, atr_K_smr_model*((atr_out_mol[1]/atr_ntot) * (atr_out_mol

[2]/atr_ntot )) - (((atr_out_mol[4]/atr_ntot) * (atr_out_mol[3]/atr_ntot)

ˆ3)) == 0);

@NLconstraint(model, atr_K_wgsr_model*((atr_out_mol[4]/atr_ntot) * (

atr_out_mol[2]/atr_ntot)) - (((atr_out_mol[5]/atr_ntot) * (atr_out_mol[3]

/atr_ntot))) == 0);

@NLconstraint(model, atr_out_mol[2] - atr_in_mol[2] + atr_ksi_smr +

atr_ksi_wgsr - 2*nO2 == 0);

@NLconstraint(model, atr_out_mol[3] - atr_in_mol[3] - 3 * atr_ksi_smr -

atr_ksi_wgsr + 2*nO2 == 0);
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@NLconstraint(model, atr_out_mol[4] - atr_in_mol[4] - atr_ksi_smr +

atr_ksi_wgsr == 0);

# Energy balance

@NLconstraint(model, sum(atr_H_out[i]*atr_out_mol[i] - atr_H_in[i]*atr_in_mol[

i] for i=1:5) - nO2*par.atr.nO2_H == 0);

# Energy balance - equipment specification

#@NLconstraint(model, atr_out_T - par.atr.out_T == 0);

return model;

end� �

B.9 7PostATR.jl

7PostATR.jl file contains the function postATR_model() which builds the submodel for the
cooler after the ATR unit. The amount of heat recovered in this cooler is set to be the
same as the amount of heat that the GHR unit requires with a constraint in the 0Model.jl
file where all submodels are assembled. The outlet temperature will depend on the mole
composition, the amount of heat required in the GHR, and the outlet temperature of the
ATR.

� �
function postATR_model(model, par)

# Variables

# CH4, H2O, H2, CO, CO2

@variable(model, 0 <= postATR_in_mol[1:5]); # Stream 8

@variable(model, 0 <= postATR_out_mol[1:5]); # Stream 9

ini_postATR_in = [0.00032515179570229987, 217.23336631977338, 494.9

378401524241, 184.6822048577565, 27.51285545580364]; # CH4 H2O H2 CO CO2

ini_postATR_out = [0.00032515179570229987, 217.23336631977338, 494.9

378401524241, 184.6822048577565, 27.51285545580364];

for i=1:5

set_start_value(postATR_in_mol[i] , ini_postATR_in[i])

set_start_value(postATR_out_mol[i] , ini_postATR_out[i])

end

@variable(model, 273 <= postATR_in_T, start = 1323.00);

@variable(model, 273 <= postATR_out_T, start = 600.00);

@variable(model, 0 >= postATR_Q, start = -34472000)

# Expressions

postATR_H_out = build_enthalpy(model, postATR_out_T, par)

postATR_H_in = build_enthalpy(model, postATR_in_T, par)

# Constraints

# Mass balance

@NLconstraint(model, postATR_out_mol[1] - postATR_in_mol[1] == 0)
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@NLconstraint(model, postATR_out_mol[2] - postATR_in_mol[2] == 0)

@NLconstraint(model, postATR_out_mol[3] - postATR_in_mol[3] == 0)

@NLconstraint(model, postATR_out_mol[4] - postATR_in_mol[4] == 0)

@NLconstraint(model, postATR_out_mol[5] - postATR_in_mol[5] == 0)

# Energy balance

@NLconstraint(model, sum(postATR_H_out[i]*postATR_out_mol[i] - postATR_H_in[i]

*postATR_in_mol[i] for i=1:5) - postATR_Q==0)

return model;

end� �

B.10 8ITSR.jl

8ITSR.jl contains the function ITSR_model() and builds the submodel for the ITSR unit.
Note that there is only 1 reaction happening, which is the water-gas shift reaction and not
the steam methane reforming equations like the other earlier reactors in the process. In
reality, an ITSR is operating adiabatic, but an internal cooler is built into the model such
that the recovered amount of heat in this process is both from cooling the inlet stream to
its operating temperature and the heat recovered from the reaction heat.

� �
function ITSR_model(model, par)

# Variables

# CH4, H2O, H2, CO, CO2

@variable(model, 0 <= itsr_in_mol[1:5]); # Stream 9

@variable(model, 0 <= itsr_out_mol[1:5]); # Stream 10

ini_itsr_in = [0.00032515179570229987, 217.23336631977338, 494.9378401524241,

184.6822048577565, 27.51285545580364]; # CH4 H2O H2 CO CO2

ini_itsr_out = [0.00032515179570229987, 55.89429423256371, 656.2769122396338,

23.343132770546816, 188.85192754301332];

for i=1:5

set_start_value(itsr_in_mol[i] , ini_itsr_in[i])

set_start_value(itsr_out_mol[i] , ini_itsr_out[i])

end

@variable(model, 550 <= itsr_in_T <= 650, start = 600.00);

@variable(model, 473 <= itsr_out_T <= 573, start = 523.00);

@variable(model, 0 >= itsr_Q, start = -5913000)

# Expressions

#itsr_Kwgsr_model = @NLexpression(model, exp(5693.5/itsr_out_T + 1.077*log(

itsr_out_T) + 5.44e-4*itsr_out_T - 1.125e-7*itsr_out_T^2 - 49170/(

itsr_out_T^2)-13.148))

itsr_ksi_wgsr = @NLexpression(model, itsr_in_mol[2] - itsr_out_mol[2])

itsr_K_wgsr_model = K_wgsr(model, itsr_out_T, par);
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itsr_ntot = @NLexpression(model, sum(itsr_out_mol[i] for i=1:5))

itsr_H_out = build_enthalpy(model, itsr_out_T, par)

itsr_H_in = build_enthalpy(model, itsr_in_T, par)

# Constraints

# Mass balance

@NLconstraint(model, itsr_out_mol[1] - itsr_in_mol[1] == 0)

@NLconstraint(model, itsr_K_wgsr_model*((itsr_out_mol[4]/itsr_ntot) * (

itsr_out_mol[2]/itsr_ntot)) - (((itsr_out_mol[5]/itsr_ntot) * (

itsr_out_mol[3]/itsr_ntot))) == 0)

@NLconstraint(model, itsr_out_mol[3] - itsr_in_mol[3] - itsr_ksi_wgsr == 0)

@NLconstraint(model, itsr_out_mol[4] - itsr_in_mol[4] + itsr_ksi_wgsr == 0)

@NLconstraint(model, itsr_out_mol[5] - itsr_in_mol[5] - itsr_ksi_wgsr == 0)

# Energy balance

@NLconstraint(model, sum(itsr_H_out[i]*itsr_out_mol[i] - itsr_H_in[i]*
itsr_in_mol[i] for i=1:5) - itsr_Q==0)

# Energy balance - equipment specification

#@NLconstraint(model, itsr_out_T - par.itsr.out_T == 0)

return model;

end� �

B.11 9PreCondensate.jl

9PreCondensate.jl contains the function preCond_model() and builds the submodel for the
cooler before the process condensate unit. This submodel is a simple heat exchanger that
calculates the amount of heat recovered when cooling down the outlet stream from ITSR to
reach the operating temperature of the process condensate unit.

� �
function preCond_model(model, par)

# Variables

# CH4, H2O, H2, CO, CO2

@variable(model, 0 <= preCond_in_mol[1:5]); # Stream 10

@variable(model, 0 <= preCond_out_mol[1:5]); # Stream 11

ini_preCond_in = [0.00032515179570229987, 55.89429423256371, 656.2769122396338

, 23.343132770546816, 188.85192754301332]; # CH4 H2O H2 CO CO2

ini_preCond_out = [0.00032515179570229987, 55.89429423256371, 656.2

769122396338, 23.343132770546816, 188.85192754301332];

for i=1:5

set_start_value(preCond_in_mol[i] , ini_preCond_in[i]);

set_start_value(preCond_out_mol[i] , ini_preCond_out[i]);

end

@variable(model, 273 <= preCond_in_T, start = 523.00);

@variable(model, 293 <= preCond_out_T <= 333, start = 313.00);
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preCond_H_out = build_enthalpy(model, preCond_out_T, par)

preCond_H_in = build_enthalpy(model, preCond_in_T, par)

@variable(model, 0 >= preCond_Q, start = -6345000);

# Constraints

# Mass balance

@NLconstraint(model, preCond_out_mol[1] - preCond_in_mol[1] == 0)

@NLconstraint(model, preCond_out_mol[2] - preCond_in_mol[2] == 0)

@NLconstraint(model, preCond_out_mol[3] - preCond_in_mol[3] == 0)

@NLconstraint(model, preCond_out_mol[4] - preCond_in_mol[4] == 0)

@NLconstraint(model, preCond_out_mol[5] - preCond_in_mol[5] == 0)

# Energy balance

@NLconstraint(model, sum(preCond_H_out[i]*preCond_out_mol[i] - preCond_H_in[i]

*preCond_in_mol[i] for i=1:5) - preCond_Q==0);

# Energy balance - equipment specification

#@NLconstraint(model, preCond_out_T - par.preCond.out_T == 0);

return model;

end� �

B.12 10Condensate.jl

10Condensate.jl file contains the function Cond_model() which builds the submodel for the
process condensate model which is modeled as a flash tank using flash equations, Raoults
law, and Rachford-Rice equations. As the flash tank only splits streams based on phases, no
energy balances are formed in this submodel.

� �
function Cond_model(model, par)

@variable(model, 0 <= cond_in_mol[1:5]); # Stream 11

#@variable(model, 0 <= cond_outPurge_mol[1:5]); # Stream 13 (H2O stream)

#@variable(model, 0 <= cond_outProduct_mol[1:5]); # Stream 12 (PSA)

@variable(model, 0 <= cond_liq_frac[1:5]<=1); # Outlet liquid phase fractions

@variable(model, 0 <= cond_vap_frac[1:5]<=1);

@variable(model, 0 <= cond_L, start = 141);

@variable(model, 0 <= cond_V, start = 923);

ini_cond_in = [0.00032515179570229987, 55.89429423256371, 656.2769122396338,

23.343132770546816, 188.85192754301332]; # CH4 H2O H2 CO CO2

ini_cond_liq_frac = [0.01,0.999,0.01,0.01,0.01];

ini_cond_vap_frac = [0.99,0.001,0.99,0.99,0.99];

for i=1:5

set_start_value(cond_in_mol[i] , ini_cond_in[i]);

set_start_value(cond_liq_frac[i], ini_cond_liq_frac[i]);

set_start_value(cond_vap_frac[i], ini_cond_vap_frac[i]);

end

@variable(model, 273 <= cond_in_T, start = 313.00);
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@variable(model, 273 <= cond_L_T, start = 313.00);

@variable(model, 273 <= cond_V_T, start = 313.00);

psat_H2O = @NLexpression(model, (10ˆ(par.cond.ant_par[1] - par.cond.ant_par[2]

/(cond_in_T + par.cond.ant_par[3])))/par.cond.cond_P);

cond_K = @expression(model, [1e6, psat_H2O, 1e6, 1e6, 1e6]);

cond_F = @expression(model, sum(cond_in_mol[i] for i = 1:5));

cond_z = @NLexpression(model, [i=1:5], cond_in_mol[i]/cond_F);

# Constraints

# Flash equations and Raoults law

for i=1:5

@NLconstraint(model, cond_z[i] - cond_liq_frac[i]*(1+(cond_V/cond_F*(cond_K[

i]-1))) == 0);

@NLconstraint(model, cond_vap_frac[i] - cond_K[i]*cond_liq_frac[i] == 0);

end

# Rachford-Rice equation

@NLconstraint(model, sum(cond_z[i]*(cond_K[i]-1)/(1+(cond_V/cond_F*(cond_K[i]-

1))) for i = 1:5) == 0); # insert sum rice equation here

# Total mass balance

@NLconstraint(model, cond_L + cond_V - cond_F == 0);

# Energy balance - Equipment specification

@NLconstraint(model, cond_V_T - cond_in_T == 0);

@NLconstraint(model, cond_L_T - cond_in_T == 0);

return model;

end� �

B.13 11PSA.jl

11PSA.jl file contains the function PSA_model() which is the last submodel that builds the
model for the entire plant. The function uses split ratios imported from the parameter set
from 0par.jl file and calculates the product stream and purge stream. No energy balances
are formed in this submodel, as PSA is modeled only as a stream splitter.

� �
function PSA_model(model, par)

@variable(model, 0 <= psa_in_mol[1:5]); # Stream 12

@variable(model, 0 <= psa_outPurge_mol[1:5]); # Stream 15 (Purge)

@variable(model, 0 <= psa_outProduct_mol[1:5]); # Stream 14 (H2)

ini_psa_in = [0.00032515179570229987, 0.05589429423256371, 656.2769122396338,

23.343132770546816, 188.85192754301332]; # CH4 H2O H2 CO CO2

ini_psa_outPurge = [0.0003219002777452769, 0.05533535129023807, 0.6

562769122396344, 23.10970144284135, 186.9634082675832];

ini_psa_outProduct = [3.2515179570229986e-06, 0.0005589429423256371, 655.6

206353273942, 0.23343132770546818, 1.8885192754301332];
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for i=1:5

set_start_value(psa_in_mol[i] , ini_psa_in[i]);

set_start_value(psa_outPurge_mol[i], ini_psa_outPurge[i]);

set_start_value(psa_outProduct_mol[i], ini_psa_outProduct[i]);

end

@variable(model, 273 <= psa_in_T, start = 313.00);

@variable(model, 273 <= psa_outPurge_T, start = 313.00);

@variable(model, 273 <= psa_outProduct_T, start = 313.00)

# Constraints

# Mass balance

for i = 1:5

@NLconstraint(model, par.psa.splitratio[i]*psa_in_mol[i] -

psa_outProduct_mol[i] == 0);

@NLconstraint(model, (1-par.psa.splitratio[i])*psa_in_mol[i] -

psa_outPurge_mol[i] == 0);

end

@NLconstraint(model, psa_outPurge_T - psa_in_T == 0);

@NLconstraint(model, psa_outProduct_T - psa_in_T == 0);

return model;

end� �

B.14 active.jl

The function printActive uses the optimized model as input and checks if specific variables
in the model chosen as input variables are at their respective bounds or not. If a variable is
at its bound, it is classified as active and needs to be controlled which means that it cannot
be used for control. In the loss.jl file, which contains the function that calculates the loss
of optimality, the variables that are active are set to their respective nominal setpoint as
equality constraints.

� �
function printActive(model)

# CV: S/C_ratio, n_O2, prePR_T, PR_T, ATR_T, postATR_T, ITSR_T

, Cond_T

l_bound = [0.0, 0.0, 643.0, 609.2, 1273, 550, 473,

293];

u_bound = [5.0, 100.0, 743.0, 709.2, 1373, 650, 573,

333];

variables = [value(model[:SC_ratio]),

value(model[:nO2]),

value(model[:prePR_out_T]),

value(model[:pr_out_T]),

value(model[:atr_out_T]),

value(model[:postATR_out_T]),

value(model[:itsr_out_T]),

value(model[:preCond_out_T])]
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variable_name = ["SC_ratio", "n_O2", "T_prePR", "T_PR", "T_ATR", "T_postATR"

, "T_ITSR", "T_Cond"]

for i = 1:8

if variables[i] ≈ l_bound[i]

println("The variable ", variable_name[i], " is at its lower bound

of ",l_bound[i]);

elseif variables[i] ≈ u_bound[i]

println("The variable ", variable_name[i], " is at its upper bound

of ",u_bound[i]);

else

println("The variable ",variable_name[i], " is not active, with a

value of ", variables[i], ", where the bounds are: ",l_bound[i]

," ≤ ",variable_name[i], " ≤ ",u_bound[i]);

end

end

end� �

B.15 compWork.jl

compWork.jl contains the functions Wrev() and compT(). The Wrev() function uses the
model, mole stream, initial pressure, pressure, initial temperature, and parameters to cal-
culate the work required to compress a gas, while compT() calculates the final temperature
after compression. The compressor is assumed to be isentropic.

� �
# Function for calculating the reversible adiabatic isentropic process

compression work

function Wrev(model, n, P1, P2, T1, par)

#ntot = @NLexpression(model, sum(n[i] for i = 1:5));

#cp = @NLexpression(model, sum(n[i]*par.cp_list[i]/ntot for i = 1:5));

gamma = @NLexpression(model, 5/3.0);

return @NLexpression(model, n*5/2*par.R*T1*((P2/P1)ˆ((gamma-1)/gamma)-1));

end

function compT(model, T1, P1, P2)

#ntot = @NLexpression(model, sum(n[i] for i = 1:5));

#cp = @NLexpression(model, sum(n[i]*par.cp_list[i]/ntot for i = 1:5));

gamma = @NLexpression(model, 5/3.0);

return @NLexpression(model, T1*(P1/P2)ˆ((gamma - 1)/gamma))

end� �

B.16 dataframe.jl

The printTable() function in the dataframe.jl file uses the model as inputs and prints out
all the variables in the terminal in a readable table. The tables are sorted in mole stream,
composition, and mass data, in addition to other variables like heat required/recovered in
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the heat exchangers.

� �
#using Pkg

#Pkg.add("DataFrames")

#Pkg.add("PrettyTables")

function printTable(model)

# Stream table (mole)

CH4 = [value(model[:mix_in_mol][1]), 0.0, value(model[:prePR_in_mol][1]),

value(model[:pr_in_mol][1]),

value(model[:preGHR_in_mol][1]), value(model[:ghr_in_mol][1]), value(model[

:atr_in_mol][1]),

value(model[:postATR_in_mol][1]), value(model[:itsr_in_mol][1]), value(

model[:preCond_in_mol][1]),

value(model[:cond_in_mol][1]), value(model[:cond_liq_frac][1])*value(model[

:cond_L]), value(model[:psa_in_mol][1]),

value(model[:psa_outProduct_mol][1]), value(model[:psa_outPurge_mol][1])];

H2O = [value(model[:mix_in_mol][2]), value(model[:H2Ostream]), value(model[:

prePR_in_mol][2]),

value(model[:pr_in_mol][2]), value(model[:preGHR_in_mol][2]), value(model[:

ghr_in_mol][2]),

value(model[:atr_in_mol][2]),value(model[:postATR_in_mol][2]), value(model[:

itsr_in_mol][2]),

value(model[:preCond_in_mol][2]), value(model[:cond_in_mol][2]), value(model

[:cond_liq_frac][2])*value(model[:cond_L]),

value(model[:psa_in_mol][2]), value(model[:psa_outProduct_mol][2]), value(

model[:psa_outPurge_mol][2])];

H2 = [value(model[:mix_in_mol][3]), 0.0, value(model[:prePR_in_mol][3]),

value(model[:pr_in_mol][3]),

value(model[:preGHR_in_mol][3]), value(model[:ghr_in_mol][3]), value(model[:

atr_in_mol][3]),

value(model[:postATR_in_mol][3]), value(model[:itsr_in_mol][3]), value(model

[:preCond_in_mol][3]),

value(model[:cond_in_mol][3]), value(model[:cond_liq_frac][3])*value(model[:

cond_L]), value(model[:psa_in_mol][3]),

value(model[:psa_outProduct_mol][3]), value(model[:psa_outPurge_mol][3])];

CO = [value(model[:mix_in_mol][4]), 0.0, value(model[:prePR_in_mol][4]),

value(model[:pr_in_mol][4]),

value(model[:preGHR_in_mol][4]), value(model[:ghr_in_mol][4]), value(model[:

atr_in_mol][4]),

value(model[:postATR_in_mol][4]), value(model[:itsr_in_mol][4]), value(model

[:preCond_in_mol][4]),

value(model[:cond_in_mol][4]), value(model[:cond_liq_frac][4])*value(model[

:cond_L]), value(model[:psa_in_mol][4]),

value(model[:psa_outProduct_mol][4]), value(model[:psa_outPurge_mol][4])];

CO2 = [value(model[:mix_in_mol][5]), 0.0, value(model[:prePR_in_mol][5]),

value(model[:pr_in_mol][5]),

value(model[:preGHR_in_mol][5]), value(model[:ghr_in_mol][5]), value(model[:

atr_in_mol][5]),
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value(model[:postATR_in_mol][5]), value(model[:itsr_in_mol][5]), value(model

[:preCond_in_mol][5]),

value(model[:cond_in_mol][5]), value(model[:cond_liq_frac][5])*value(model[

:cond_L]), value(model[:psa_in_mol][5]),

value(model[:psa_outProduct_mol][5]), value(model[:psa_outPurge_mol][5])];

C2H6 = [value(model[:mix_in_mol][6]), 0.0, value(model[:prePR_in_mol][6]),

value(model[:pr_in_mol][6]),

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];

C3H8 = [value(model[:mix_in_mol][7]), 0.0, value(model[:prePR_in_mol][7]),

value(model[:pr_in_mol][7]),

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];

nC4H1 0 = [value(model[:mix_in_mol][8]), 0.0, value(model[:prePR_in_mol][8]),

value(model[:pr_in_mol][8]),

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];

iC4H1 0 = [value(model[:mix_in_mol][9]), 0.0, value(model[:prePR_in_mol][9]),

value(model[:pr_in_mol][9]),

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];

C5+ = [value(model[:mix_in_mol][10]), 0.0, value(model[:prePR_in_mol][10]),

value(model[:pr_in_mol][10]),

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];

T = [value(model[:mix_in_T]), value(model[:H2O_T]), value(model[:prePR_in_T]

), value(model[:pr_in_T]),

value(model[:preGHR_in_T]), value(model[:ghr_in_T]), value(model[:atr_in_T])

, value(model[:postATR_in_T]),

value(model[:itsr_in_T]), value(model[:preCond_in_T]), value(model[:

cond_in_T]), value(model[:cond_L_T]),

value(model[:psa_in_T]), value(model[:psa_outProduct_T]), value(model[:

psa_outPurge_T])];

streamdf = DataFrame(T = T, CH4 = CH4, H2O = H2O, H2 = H2, CO = CO, CO2 = CO

2,

C2H6 = C2H6, C3H8 = C3H8, nC4H1 0 = nC4H1 0, iC4H1 0 = iC4H1 0, C5+ = C5+);

# Other variable table

variable = ["prePR_Q","preGHR_Q","ghr_Q", "postATR_Q", "itsr_Q","preCond_Q",

"nO2", "S/C_ratio", "F_H2", "F_H2_heat", "F_NG_Heat", "F_NG", "F_fluegas",

"F_inj", "Profit [\$/h]"]#,"additional_Q"]

values = [value(model[:prePR_Q]),value(model[:preGHR_Q]),value(model[:ghr_Q]

), value(model[:postATR_Q]),

value(model[:itsr_Q]),value(model[:preCond_Q]),value(model[:nO2]),value(

model[:SC_ratio]) , value(model[:F_H2]),

value(model[:F_H2_heat]),value(model[:F_NG_heat]),value(model[:F_NG]),value(

model[:F_fluegas]),

value(model[:F_inj]),objective_value(model)]#,value(model[:additional_Q])];

otherdf = DataFrame(Variable = variable, Value = values);
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# Mass table

C = 12.01;

H = 1.008;

O = 16;

# CH4, H2O, H2, CO, CO2, C2H6, C3H8, n-C4H10, i-C4H10, C5+

Mm = [C+H*4, H*2+O, H*2, C+O, C+O*2, C*2+H*6, C*3+H*8, C*4+H*10, C*4+H*10, C

*5+H*12];

mass = zeros(15);

for i=1:10

mass[1] += value(model[:mix_in_mol][i]) * Mm[i];

mass[3] += value(model[:prePR_in_mol][i]) * Mm[i];

mass[4] += value(model[:pr_in_mol][i]) * Mm[i];

end

mass[2] = value(model[:H2Ostream])*Mm[2];

for j=1:5

mass[5] += value(model[:preGHR_in_mol][j])*Mm[j]

mass[6] += value(model[:ghr_in_mol][j])*Mm[j]

mass[7] += value(model[:atr_in_mol][j])*Mm[j]

mass[8] += value(model[:postATR_in_mol][j])*Mm[j]

mass[9] += value(model[:itsr_in_mol][j])*Mm[j]

mass[10] += value(model[:preCond_in_mol][j])*Mm[j]

mass[11] += value(model[:cond_in_mol][j])*Mm[j]

mass[12] += value(model[:psa_in_mol][j])*Mm[j]

mass[13] += value(model[:cond_liq_frac][j])*value(model[:cond_L])*Mm[j]

mass[14] += value(model[:psa_outProduct_mol][j])*Mm[j]

mass[15] += value(model[:psa_outPurge_mol][j])*Mm[j]

end

oxygenstream = zeros(15);

oxygenstream[7] = value(model[:nO2])*32;

massdf = DataFrame(Mass= mass, O2 = oxygenstream);

# Composition table

xCH4 = zeros(15);

xH2O = zeros(15);

xH2 = zeros(15);

xCO = zeros(15);

xCO2 = zeros(15);

xC2H6 = zeros(15);

xC3H8 = zeros(15);

xnC4H10 = zeros(15);

xiC4H10 = zeros(15);

xC5 = zeros(15);

totalmolestream = zeros(15);

for i=1:15

totalmolestream[i] = CH4[i] + H2O[i] + H2[i] + CO[i] + CO2[i] + C2H6[i]

+ C3H8[i] + nC4H1 0[i] + iC4H1 0[i] + C5+[i]

end

for i=1:15

xCH4[i] = CH4[i]/totalmolestream[i]
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xH2O[i] = H2O[i]/totalmolestream[i]

xH2[i] = H2[i]/totalmolestream[i]

xCO[i] = CO[i]/totalmolestream[i]

xCO2[i] = CO2[i]/totalmolestream[i]

xC2H6[i] = C2H6[i]/totalmolestream[i]

xC3H8[i] = C3H8[i]/totalmolestream[i]

xnC4H10[i] = nC4H1 0[i]/totalmolestream[i]

xiC4H10[i] = iC4H1 0[i]/totalmolestream[i]

xC5[i] = C5+[i]/totalmolestream[i]

end

compositiondf = DataFrame(xCH4 = xCH4, xH2O = xH2O, xH2 = xH2, xCO = xCO,

xCO2 = xCO2,

xC2H6 = xC2H6, xC3H8 = xC3H8, xnC4H1 0 = xnC4H10, xiC4H1 0 = xiC4H10, xC5+ =

xC5);

return streamdf, otherdf, massdf,compositiondf

end� �

B.17 diagM.jl

The function diagWn() and diagWd() uses the nominal values calculated from nominal()
function in nominal_case.jl file, to calculate the diagonal scaling matrices for disturbances-
and measurement noises, respectively. The last function diag_to_xlsx() stores the resulting
diagonal matrices into excel sheets which can be imported for later calculations, e.g. Bound
and Branch algorithm for choosing the best measurement subset.

� �
include("nominal_case.jl")

using LinearAlgebra, XLSX

nominal_states, nom_f = nominal();

#@show(nominal_states[1:142], allrows = true)

function diagWn(nom)

##### Index list #####

# [1:126] - flow

# [127:131] - compfrac

# [132] - flow

# [133:137] - compfrac

# [138:152] - flow

# [153:171] - temp

# [172:177] - Q

# [178:184] - flow

flow_pert = 0.02; # relative% [kmol/h]

temp_pert = 1; # absolute [K]

Q_pert = 0.05; # relative% [kmol/h]

comp_pert = 0.01; # absolute [-]

for i in eachindex(nom)

if 1<=i<=126
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nom[i] = nom[i]*flow_pert;

elseif 127<=i<=131

nom[i] = comp_pert;

elseif i == 132

nom[i] = nom[i]*flow_pert;

elseif 133<=i<=137

nom[i] = comp_pert;

elseif 138<=i<=152

nom[i] = nom[i]*flow_pert;

elseif 153<=i<=171

nom[i] = temp_pert;

elseif 172<=i<=177

nom[i] = nom[i]*Q_pert;

else

nom[i] = nom[i]*flow_pert;

end

end

df = DataFrame(diagm(nom),:auto);

return df

end

function diagWd()

d= [145.4, 0.14, 3.347]

for i in eachindex(d)

d[i] = d[i]*0.1

end

return DataFrame(diagm(d),:auto)

end

function diag_to_xlsx()

df1 = diagWn(nominal_states)

XLSX.writetable("data/Wn.xlsx", df1);

df2 = diagWd()

XLSX.writetable("data/Wd.xlsx", df2)

end

#diag_to_xlsx()� �

B.18 enthalpy.jl

build_enthalpy() function calculates the specific enthalpy depending on the temperature by
using coefficients for each component from the literature and summing them up.

� �
# Order of components: CH4, H2O, H2, CO, CO2, C2H6, C3H8, n-C4H10, i-C4H10, C5+

# Order of coefficients: A, B, C, H298, Cp298/R <- remember to multiply with

8.314

heavy_const = [1.702 9.081 -2.164 -74.520 4.217;

3.470 1.450 0.000 -241.818 4.038;

3.249 0.422 0.000 0.000 3.468;

3.376 0.557 0.000 -110.525 3.507;



Yoonsik Oh B Julia Code

5.457 0.557 0.000 -393.509 4.467;

1.131 19.225 -5.561 -83.820 6.369;

1.213 28.785 -8.824 -104.680 9.011;

1.935 36.915 -11.402 -125.790 11.298;

1.935 36.915 -11.402 -125.790 11.298;

2.464 45.351 -14.111 -146.760 14.731]

function build_enthalpy(model, T, par)

return @NLexpression(model, [i = 1:10], (par.hconst[i,4] + (((par.hconst[i,1]*
T + par.hconst[i,2]/2*Tˆ2*10ˆ(-3) + par.hconst[i,3]/3*Tˆ3*10ˆ(-6))

- (par.hconst[i,1]*298 + par.hconst[i,2]/2*298ˆ2*10ˆ(-3) + par.hconst[i,3]/3*
298ˆ3*10ˆ(-6)))*8.314/1000))*1000)

end� �

B.19 equilibrium.jl

The equilibrium.jl file contains the functions K_smr() and K_wgsr(), which calculates the
equilibrium constant for steam methane reforming equation and the water gas shift reaction
for a given temperature, respectively. The coefficients used for both functions are imported
from literature.

� �
# Row order: CH4, H2O, H2, CO, CO2

smr_const = [-1.51735037e-05, 4.79654639e-02, -2.91867555e+01];

wgsr_const = [2.95405564e-06, -8.48603361e-03, 4.99373583e+00];

function K_smr(model, T, par)

T -= 273.15; # Convert kelvin to celsius

return @NLexpression(model, exp(par.smr_const[1]*Tˆ2 + par.smr_const[2]*T +

par.smr_const[3]));

end

function K_wgsr(model, T, par)

T -= 273.15; # Convert kelvin to celsius

return @NLexpression(model, exp(par.wgsr_const[1]*Tˆ2 + par.wgsr_const[2]*T

+ par.wgsr_const[3]));

end� �

B.20 finite_diff.jl

finite_diff.jl file contains two functions, where the first function, finite_diff_1() calculates
the double partial derivate of the same variable, e.g. f(x+h, y+k), where x and y are the same
variable that is being perturbated, depending on the option it was given and the step size
of the perturbation. The different options decide which variable to perturbate, either input
or disturbance, and either positive or negative change. The second function finite_diff_2(),
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is almost identical to the first function, only that it has two different options, one for each
variable as it calculates the double partial derivate with respect to two different variables,
e.g. f(x+ h, y + k).

� �
using JuMP, Ipopt, MathOptInterface, DataFrames, PrettyTables

include("enthalpy.jl")

include("0par.jl")

include("1MIX.jl")

include("2PrePR.jl")

include("3PR.jl")

include("4PreGHR.jl")

include("5GHR.jl")

include("6ATR.jl")

include("7PostATR.jl")

include("8ITSR.jl")

include("9PreCondensate.jl")

include("10Condensate.jl")

include("11PSA.jl")

include("dataframe.jl")

include("equilibrium.jl")

include("compWork.jl")

include("active.jl")

include("nominal_case.jl")

# Options for finite diff (eps = 1e-5)

# 1: u1+h, n_O2

# 2: u2+h, T_prePR

# 3: u3+h, T_ATR

# 4: d1+k, NG flow

# 5: d2+k, P_el

# 6: d3+k, P_H2

# -1: u1-h, n_O2

# -2: u2-h, T_prePR

# -3: u3-h, T_ATR

# -4: d1-k, NG flow

# -5: d2-k, P_el

# -6: d3-k, P_H2

eps = 1e-5

function finite_diff_1(option, eps)

par = _par();

optimizer = optimizer_with_attributes(Ipopt.Optimizer,

"tol" => 1e-10, "constr_viol_tol" => 1e-10,

"print_level" => 0)

m = Model(optimizer);

###### Assembling the submodels to a larger model #######

MIX_model(m, par);

prePR_model(m, par);

PR_model(m, par);

preGHR_model(m, par);

GHR_model(m, par);
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ATR_model(m, par);

postATR_model(m, par);

ITSR_model(m, par);

preCond_model(m, par);

Cond_model(m, par);

PSA_model(m, par);

h = 0;

k = 0;

d1 = par.init.init_stream;

d2 = par.elCost;

d3 = par.P_H2;

if option == 1 # u1 + h

h = eps*79.29706225438805;

@NLconstraint(m, m[:nO2]-79.29706225438805+eps== 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == 2 # u2 + h

h = eps*644.5953165006283;

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283+eps== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == 3 # u3 + h

h = eps*1291.817465833818;

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818+eps== 0);

elseif option == 4 # d1 + h

k = eps*par.init.init_stream;

d1 = par.init.init_stream+eps;

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == 5 # d2 + h

k = eps*par.elCost;

d2 = par.elCost+eps;

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == 6 # d3 + h

k = eps*par.P_H2;

d3 = par.P_H2+eps;

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == -1 # u1 - h

h = eps*79.29706225438805;

@NLconstraint(m, m[:nO2]-79.29706225438805-eps== 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == -2 # u2 - h

h = eps*644.5953165006283;

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283-eps== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);
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elseif option == -3 # u3 - h

h = eps*1291.817465833818;

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818-eps== 0);

elseif option == -4 # d1 - h

k = eps*par.init.init_stream;

d1 = par.init.init_stream-eps;

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == -5 # d2 - h

k = eps*par.elCost;

d2 = par.elCost-eps;

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == -6 # d3 - h

k = eps*par.P_H2;

d3 = par.P_H2-eps;

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

else

print("Option not valid")

end

@variable(m, 0 <= F_H2, start = 500); # H2 product that is being sold in the

obj function

@variable(m, 0 <= F_H2_heat, start = 1); # H2 from the product stream that

is being used to heat up the process

@variable(m, 0 <= F_NG_heat, start = 1); # NG from the initial stream that

is being used to heat up the process

@variable(m, 0 <= F_NG, start = 150); # NG from the initial stream that is

being used in the process

@variable(m, 0 <= F_fluegas, start = 1); # CO2 gas that generates from

combusting natural gas which needs to be injected

@variable(m, 0 <= F_inj, start = 200); # CO2 and other component gases that

is being injected

##################### Connection constraints #######################

for i = 1:10

@NLconstraint(m, m[:mix_out_mol][i] - m[:prePR_in_mol][i] == 0)

@NLconstraint(m, m[:prePR_out_mol][i] - m[:pr_in_mol][i] == 0)

end

for i = 1:5 # After all heavier carbons are removed

@NLconstraint(m, m[:pr_out_mol][i] - m[:preGHR_in_mol][i] == 0)

@NLconstraint(m, m[:preGHR_out_mol][i] - m[:ghr_in_mol][i] == 0)

@NLconstraint(m, m[:ghr_out_mol][i] - m[:atr_in_mol][i] == 0)

@NLconstraint(m, m[:atr_out_mol][i] - m[:postATR_in_mol][i] == 0)

@NLconstraint(m, m[:postATR_out_mol][i] - m[:itsr_in_mol][i] == 0)

@NLconstraint(m, m[:itsr_out_mol][i] - m[:preCond_in_mol][i] == 0)

@NLconstraint(m, m[:preCond_out_mol][i] - m[:cond_in_mol][i] == 0)
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@NLconstraint(m, m[:cond_vap_frac][i]*m[:cond_V] - m[:psa_in_mol][i] ==

0)

end

################# Same for the temperature

##################################

@NLconstraint(m, m[:mix_out_T] - m[:prePR_in_T] == 0);

@NLconstraint(m, m[:prePR_out_T] - m[:pr_in_T] == 0);

@NLconstraint(m, m[:pr_out_T] - m[:preGHR_in_T] == 0);

@NLconstraint(m, m[:preGHR_out_T] - m[:ghr_in_T] == 0);

@NLconstraint(m, m[:ghr_out_T] - m[:atr_in_T] == 0);

@NLconstraint(m, m[:atr_out_T] - m[:postATR_in_T] == 0);

@NLconstraint(m, m[:postATR_out_T] - m[:itsr_in_T] == 0);

@NLconstraint(m, m[:itsr_out_T] - m[:preCond_in_T] == 0);

@NLconstraint(m, m[:preCond_out_T] - m[:cond_in_T] == 0);

@NLconstraint(m, m[:cond_V_T] - m[:psa_in_T] == 0);

############## Initial values ##########################################

for i = 1:10

@NLconstraint(m, par.init.init_comp[i]*m[:F_NG] - m[:mix_in_mol][i] == 0

);

end

@NLconstraint(m, par.mix.in_T - m[:mix_in_T] == 0);

@NLconstraint(m, par.mix.H2O_T - m[:H2O_T] == 0);

############# To ensure the GHR and ATR heat exchange ###################

@NLconstraint(m, m[:ghr_Q] + m[:postATR_Q] == 0); #- additional_Q == 0);

##To ensure that the inlet hot stream is hotter than outlet cold stream##

@NLconstraint(m, m[:atr_out_T] - m[:ghr_out_T] >= 25);

@NLconstraint(m, m[:postATR_out_T] - m[:ghr_in_T] >= 25);

######## New constraints for the economic objective function #############

@NLconstraint(m, m[:F_H2] - m[:psa_outProduct_mol][3] + m[:F_H2_heat] == 0);

@NLconstraint(m, m[:F_NG] - d1 + m[:F_NG_heat] == 0);

@NLconstraint(m, m[:F_fluegas] - m[:F_NG_heat] - 2*m[:F_NG_heat]/0.79 == 0);

@NLconstraint(m, m[:F_inj] - m[:F_fluegas] - sum(value(m[:psa_outPurge_mol][

i]) for i = 1:5) == 0);

@NLconstraint(m, m[:prePR_Q] + m[:preGHR_Q] - m[:F_H2_heat]*par.HHV_H2*2.016

- sum(m[:F_NG_heat]*par.HHV_NG[i]*par.init.init_comp[i]*par.molarMass[

i] for i = 1:10) == 0);

compW1 = Wrev(m, m[:F_inj], 1, 10, m[:psa_outPurge_T], par);

compW2 = Wrev(m, m[:F_inj],10,100,m[:psa_outPurge_T], par);

compWsum = @NLexpression(m, compW1 + compW2);

@NLobjective(m, Max, m[:F_H2]*d3 - compWsum*d2/1000);

optimize!(m)

if termination_status(m) == LOCALLY_SOLVED || termination_status(m) ==

OPTIMAL || termination_status(m) == ALMOST_LOCALLY_SOLVED

return objective_value(m), h, k

else

return Inf, h, k

end



Yoonsik Oh B Julia Code

end

function finite_diff_2(option_x, option_y, eps;m=0.)

par = _par();

optimizer = optimizer_with_attributes(Ipopt.Optimizer,

"tol" => 1e-10, "constr_viol_tol" => 1e-10

,"print_level" => 0)

m = Model(optimizer);

###### Assembling the submodels to a larger model #######

MIX_model(m, par);

prePR_model(m, par);

PR_model(m, par);

preGHR_model(m, par);

GHR_model(m, par);

ATR_model(m, par);

postATR_model(m, par);

ITSR_model(m, par);

preCond_model(m, par);

Cond_model(m, par);

PSA_model(m, par);

h = 0;

k = 0;

d1 = par.init.init_stream;

d2 = par.elCost;

d3 = par.P_H2;

if option_x == 1 # u1 + h

h = eps*79.29706225438805;

@NLconstraint(m, m[:nO2]-79.29706225438805+eps== 0);

elseif option_x == 2 # u2 + h

h = eps*644.5953165006283;

@NLconstraint(m, m[:pr_in_T]-644.5953165006283+eps== 0);

elseif option_x == 3 # u3 + h

h = eps*1291.817465833818;

@NLconstraint(m, m[:atr_out_T]-1291.817465833818+eps== 0);

elseif option_x == 4 # d1 + k

h = eps*par.init.init_stream;

d1 = par.init.init_stream+eps;

elseif option_x == 5 # d2 + k

h = eps*par.elCost;

d2 = par.elCost+eps;

elseif option_x == 6 # d3 + k

h = eps*par.P_H2;

d3 = par.P_H2+eps;

elseif option_x == -1 # u1 - h

h = eps*79.29706225438805;

@NLconstraint(m, m[:nO2]-79.29706225438805-eps== 0);

elseif option_x == -2 # u2 - h

h = eps*644.5953165006283;

@NLconstraint(m, m[:pr_in_T]-644.5953165006283-eps== 0);

elseif option_x == -3 # u3 - h

h = eps*1291.817465833818;

@NLconstraint(m, m[:atr_out_T]-1291.817465833818-eps== 0);
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elseif option_x == -4 # d1 - k

h = eps*par.init.init_stream;

d1 = par.init.init_stream-eps;

elseif option_x == -5 # d2 - k

h = eps*par.elCost;

d2 = par.elCost-eps;

elseif option_x == -6 # d3 - k

h = eps*par.P_H2;

d3 = par.P_H2-eps;

else

print("Option not valid")

end

if option_y == 1 # u1 + h

k = eps*79.29706225438805;

@NLconstraint(m, m[:nO2]-79.29706225438805+eps== 0);

elseif option_y == 2 # u2 + h

k = eps*644.5953165006283;

@NLconstraint(m, m[:pr_in_T]-644.5953165006283+eps== 0);

elseif option_y == 3 # u3 + h

k = eps*1291.817465833818;

@NLconstraint(m, m[:atr_out_T]-1291.817465833818+eps== 0);

elseif option_y == 4 # d1 + k

k = eps*par.init.init_stream;

d1 = par.init.init_stream+eps;

elseif option_y == 5 # d2 + k

k = eps*par.elCost;

d2 = par.elCost+eps;

elseif option_y == 6 # d3 + k

k = eps*par.P_H2;

d3 = par.P_H2+eps;

elseif option_y == -1 # u1 - h

k = eps*79.29706225438805;

@NLconstraint(m, m[:nO2]-79.29706225438805-eps== 0);

elseif option_y == -2 # u2 - h

k = eps*644.5953165006283;

@NLconstraint(m, m[:pr_in_T]-644.5953165006283-eps== 0);

elseif option_y == -3 # u3 - h

k = eps*1291.817465833818;

@NLconstraint(m, m[:atr_out_T]-1291.817465833818-eps== 0);

elseif option_y == -4 # d1 - k

k = eps*par.init.init_stream;

d1 = par.init.init_stream-eps;

elseif option_y == -5 # d2 - k

k = eps*par.elCost;

d2 = par.elCost-eps;

elseif option_y == -6 # d3 - k

k = eps*par.P_H2;

d3 = par.P_H2-eps;

else

print("Option not valid")

end

if abs(option_y) != 1 && abs(option_x) !=1

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);
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end

if abs(option_y) != 2 && abs(option_x) !=2

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

end

if abs(option_y) != 3 && abs(option_x) !=3

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

end

@variable(m, 0 <= F_H2, start = 500); # H2 product that is being sold in the

obj function

@variable(m, 0 <= F_H2_heat, start = 1); # H2 from the product stream that

is being used to heat up the process

@variable(m, 0 <= F_NG_heat, start = 1); # NG from the initial stream that

is being used to heat up the process

@variable(m, 0 <= F_NG, start = 150); # NG from the initial stream that is

being used in the process

@variable(m, 0 <= F_fluegas, start = 1); # CO2 gas that generates from

combusting natural gas which needs to be injected

@variable(m, 0 <= F_inj, start = 200); # CO2 and other component gases that

is being injected

##################### Connection constraints #######################

for i = 1:10

@NLconstraint(m, m[:mix_out_mol][i] - m[:prePR_in_mol][i] == 0)

@NLconstraint(m, m[:prePR_out_mol][i] - m[:pr_in_mol][i] == 0)

end

for i = 1:5 # After all heavier carbons are removed

@NLconstraint(m, m[:pr_out_mol][i] - m[:preGHR_in_mol][i] == 0)

@NLconstraint(m, m[:preGHR_out_mol][i] - m[:ghr_in_mol][i] == 0)

@NLconstraint(m, m[:ghr_out_mol][i] - m[:atr_in_mol][i] == 0)

@NLconstraint(m, m[:atr_out_mol][i] - m[:postATR_in_mol][i] == 0)

@NLconstraint(m, m[:postATR_out_mol][i] - m[:itsr_in_mol][i] == 0)

@NLconstraint(m, m[:itsr_out_mol][i] - m[:preCond_in_mol][i] == 0)

@NLconstraint(m, m[:preCond_out_mol][i] - m[:cond_in_mol][i] == 0)

@NLconstraint(m, m[:cond_vap_frac][i]*m[:cond_V] - m[:psa_in_mol][i] ==

0)

end

################# Same for the temperature

##################################

@NLconstraint(m, m[:mix_out_T] - m[:prePR_in_T] == 0);

@NLconstraint(m, m[:prePR_out_T] - m[:pr_in_T] == 0);

@NLconstraint(m, m[:pr_out_T] - m[:preGHR_in_T] == 0);

@NLconstraint(m, m[:preGHR_out_T] - m[:ghr_in_T] == 0);

@NLconstraint(m, m[:ghr_out_T] - m[:atr_in_T] == 0);

@NLconstraint(m, m[:atr_out_T] - m[:postATR_in_T] == 0);

@NLconstraint(m, m[:postATR_out_T] - m[:itsr_in_T] == 0);

@NLconstraint(m, m[:itsr_out_T] - m[:preCond_in_T] == 0);

@NLconstraint(m, m[:preCond_out_T] - m[:cond_in_T] == 0);

@NLconstraint(m, m[:cond_V_T] - m[:psa_in_T] == 0);

############## Initial values ##########################################

for i = 1:10
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@NLconstraint(m, par.init.init_comp[i]*m[:F_NG] - m[:mix_in_mol][i] == 0

);

end

@NLconstraint(m, par.mix.in_T - m[:mix_in_T] == 0);

@NLconstraint(m, par.mix.H2O_T - m[:H2O_T] == 0);

############# To ensure the GHR and ATR heat exchange ###################

@NLconstraint(m, m[:ghr_Q] + m[:postATR_Q] == 0); #- additional_Q == 0);

##To ensure that the inlet hot stream is hotter than outlet cold stream##

@NLconstraint(m, m[:atr_out_T] - m[:ghr_out_T] >= 25);

@NLconstraint(m, m[:postATR_out_T] - m[:ghr_in_T] >= 25);

######## New constraints for the economic objective function #############

@NLconstraint(m, m[:F_H2] - m[:psa_outProduct_mol][3] + m[:F_H2_heat] == 0);

@NLconstraint(m, m[:F_NG] - d1 + m[:F_NG_heat] == 0);

@NLconstraint(m, m[:F_fluegas] - m[:F_NG_heat] - 2*m[:F_NG_heat]/0.79 == 0);

@NLconstraint(m, m[:F_inj] - m[:F_fluegas] - sum(value(m[:psa_outPurge_mol][

i]) for i = 1:5) == 0);

@NLconstraint(m, m[:prePR_Q] + m[:preGHR_Q] - m[:F_H2_heat]*par.HHV_H2*2.016

- sum(m[:F_NG_heat]*par.HHV_NG[i]*par.init.init_comp[i]*par.molarMass[

i] for i = 1:10) == 0);

compW1 = Wrev(m, m[:F_inj], 1, 10, m[:psa_outPurge_T], par);

compW2 = Wrev(m, m[:F_inj],10,100,m[:psa_outPurge_T], par);

compWsum = @NLexpression(m, compW1 + compW2);

@NLobjective(m, Max, m[:F_H2]*d3 - compWsum*d2/1000);

optimize!(m)

if termination_status(m) == LOCALLY_SOLVED || termination_status(m) ==

OPTIMAL || termination_status(m) == ALMOST_LOCALLY_SOLVED

return objective_value(m), h, k

else

return Inf, h, k

end

#return f, h, k

end� �

B.21 Fmatrix.jl

In the Fmatrix.jl file, there are two functions. The first function Fmatrix() imports all the
functions for calculating the gain matrices and Hessian matrices from other files to calculate
the optimal sensitivity matrix, F . The second function print_F() prints the resulting matrix
in a readable way in the output terminal.

� �
include("gain_d.jl")

include("gain_u.jl")

include("J_uu.jl")

include("J_ud.jl")
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include("nominal_case.jl")

using LinearAlgebra, XLSX

eps = 1e-5

nominal_values, nominal_J = nominal();

function Fmatrix(nominal)

G_y_matrix = matrix_Gy(nominal, eps);

G_y_d_matrix = matrix_Gyd(nominal, eps);

J_uu_matrix = J_uu(1e-2);

J_ud_matrix = J_ud(1e-2);

F = G_y_d_matrix' - G_y_matrix'*inv(J_uu_matrix)*J_ud_matrix;

return F

end

F = Fmatrix(nominal_values);

function print_F(matrix)

return DataFrame(Variable = variable_name,

Nominal = nominal_values,

∂y∂d_1 = matrix[:,1],

∂y∂d_2 = matrix[:,2],

∂y∂d_3 = matrix[:,3])

end

#show(print_F(Fmatrix(nominal_values)), allrows=true)

#show(nullspace(Fmatrix(nominal_value)))

XLSX.writetable("data/F.xlsx", print_F(Fmatrix(nominal_values)));� �

B.22 gain_d.jl

The function G_yd() calculates the output gain with respect to disturbance change for each
disturbance perturbation, which is assembled to a matrix in the function matrix_Gyd and
exported to an Excel sheet. printG_yd() prints out the G_yd matrix into a readable table
in the output terminal.

� �
variable_name = [

"mix_in_mol[1]", "mix_in_mol[2]", "mix_in_mol[3]", "mix_in_mol[4]", "

mix_in_mol[5]",

"mix_in_mol[6]", "mix_in_mol[7]", "mix_in_mol[8]", "mix_in_mol[9]", "

mix_in_mol[10]",

"mix_out_mol[1]", "mix_out_mol[2]", "mix_out_mol[3]", "mix_out_mol[4]", "

mix_out_mol[5]",

"mix_out_mol[6]", "mix_out_mol[7]", "mix_out_mol[8]", "mix_out_mol[9]", "

mix_out_mol[10]",

"prePR_in_mol[1]", "prePR_in_mol[2]", "prePR_in_mol[3]", "prePR_in_mol[4]",

"prePR_in_mol[5]",

"prePR_in_mol[6]", "prePR_in_mol[7]", "prePR_in_mol[8]", "prePR_in_mol[9]",

"prePR_in_mol[10]",
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"prePR_out_mol[1]", "prePR_out_mol[2]", "prePR_out_mol[3]", "prePR_out_mol

[4]", "prePR_out_mol[5]",

"prePR_out_mol[6]", "prePR_out_mol[7]", "prePR_out_mol[8]", "prePR_out_mol

[9]", "prePR_out_mol[10]",

"pr_in_mol[1]", "pr_in_mol[2]", "pr_in_mol[3]", "pr_in_mol[4]", "pr_in_mol

[5]",

"pr_in_mol[6]", "pr_in_mol[7]", "pr_in_mol[8]", "pr_in_mol[9]", "pr_in_mol

[10]",

"pr_out_mol[1]", "pr_out_mol[2]", "pr_out_mol[3]", "pr_out_mol[4]", "

pr_out_mol[5]",

"pr_out_mol[6]", "pr_out_mol[7]", "pr_out_mol[8]", "pr_out_mol[9]", "

pr_out_mol[10]",

"preGHR_in_mol[1]", "preGHR_in_mol[2]", "preGHR_in_mol[3]", "preGHR_in_mol

[4]", "preGHR_in_mol[5]",

"preGHR_out_mol[1]", "preGHR_out_mol[2]", "preGHR_out_mol[3]", "

preGHR_out_mol[4]", "preGHR_out_mol[5]",

"ghr_in_mol[1]", "ghr_in_mol[2]", "ghr_in_mol[3]", "ghr_in_mol[4]", "

ghr_in_mol[5]",

"ghr_out_mol[1]", "ghr_out_mol[2]", "ghr_out_mol[3]", "ghr_out_mol[4]", "

ghr_out_mol[5]",

"atr_in_mol[1]", "atr_in_mol[2]", "atr_in_mol[3]", "atr_in_mol[4]", "

atr_in_mol[5]",

"atr_out_mol[1]", "atr_out_mol[2]", "atr_out_mol[3]", "atr_out_mol[4]", "

atr_out_mol[5]",

"postATR_in_mol[1]", "postATR_in_mol[2]", "postATR_in_mol[3]", "

postATR_in_mol[4]", "postATR_in_mol[5]",

"postATR_out_mol[1]", "postATR_out_mol[2]", "postATR_out_mol[3]", "

postATR_out_mol[4]", "postATR_out_mol[5]",

"itsr_in_mol[1]", "itsr_in_mol[2]", "itsr_in_mol[3]", "itsr_in_mol[4]", "

itsr_in_mol[5]",

"itsr_out_mol[1]", "itsr_out_mol[2]", "itsr_out_mol[3]", "itsr_out_mol[4]",

"itsr_out_mol[5]",

"preCond_in_mol[1]", "preCond_in_mol[2]", "preCond_in_mol[3]", "

preCond_in_mol[4]", "preCond_in_mol[5]",

"preCond_out_mol[1]", "preCond_out_mol[2]", "preCond_out_mol[3]", "

preCond_out_mol[4]", "preCond_out_mol[5]",

"cond_in_mol[1]", "cond_in_mol[2]", "cond_in_mol[3]", "cond_in_mol[4]", "

cond_in_mol[5]",

"cond_L", "cond_liq_frac[1]", "cond_liq_frac[2]", "cond_liq_frac[3]", "

cond_liq_frac[4]", "cond_liq_frac[5]",

"cond_V", "cond_vap_frac[1]", "cond_vap_frac[2]", "cond_vap_frac[3]", "

cond_vap_frac[4]", "cond_vap_frac[5]",

"psa_in_mol[1]", "psa_in_mol[2]", "psa_in_mol[3]", "psa_in_mol[4]", "

psa_in_mol[5]",

"psa_outProduct_mol[1]", "psa_outProduct_mol[2]", "psa_outProduct_mol[3]", "

psa_outProduct_mol[4]", "psa_outProduct_mol[5]",

"psa_outPurge_mol[1]", "psa_outPurge_mol[2]", "psa_outPurge_mol[3]", "

psa_outPurge_mol[4]", "psa_outPurge_mol[5]",

"mix_in_T", "mix_out_T", "H2O_T", "prePR_in_T", "prePR_out_T", "preGHR_in_T"

, "preGHR_out_T",

"ghr_in_T", "ghr_out_T", "atr_in_T", "postATR_in_T", "postATR_out_T",

"preCond_out_T", "cond_in_T", "cond_L_T", "cond_V_T", "psa_in_T", "

psa_outProduct_T", "psa_outPurge_T",

"prePR_Q", "preGHR_Q", "ghr_Q", "postATR_Q", "itsr_Q", "preCond_Q",
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"H2Ostream", "F_H2", "F_H2_heat", "F_NG", "F_NG_heat", "F_fluegas", "F_inj"

]

# Variables that are removed = S/C, nO2, T_prePR, T_PR, T_ATR, T_postATR, T_ITSR

, T_cond

using JuMP, Ipopt, MathOptInterface, DataFrames, PrettyTables, XLSX

include("enthalpy.jl")

include("0par.jl")

include("1MIX.jl")

include("2PrePR.jl")

include("3PR.jl")

include("4PreGHR.jl")

include("5GHR.jl")

include("6ATR.jl")

include("7PostATR.jl")

include("8ITSR.jl")

include("9PreCondensate.jl")

include("10Condensate.jl")

include("11PSA.jl")

include("dataframe.jl")

include("equilibrium.jl")

include("compWork.jl")

include("active.jl")

include("nominal_case.jl")

eps = 1e-5

nominal_values, nominal_J = nominal();

# 1: d1+k, NG_flow

# 2: d2+k, P_el

# 3: d3+k, P_H2

# -1: d1-k, NG_flow

# -2: d-k, P_el

# -3: d3-k, P_H2

function G_yd(nominal, option, eps)

par = _par();

optimizer = optimizer_with_attributes(Ipopt.Optimizer,

"tol" => 1e-6, "constr_viol_tol" => 1e-8,

"print_level" => 0)

m = Model(optimizer);

###### Assembling the submodels to a larger model #######

MIX_model(m, par);

prePR_model(m, par);

PR_model(m, par);

preGHR_model(m, par);

GHR_model(m, par);

ATR_model(m, par);

postATR_model(m, par);

ITSR_model(m, par);

preCond_model(m, par);

Cond_model(m, par);

PSA_model(m, par);
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d1 = par.init.init_stream;

d2 = par.elCost;

d3 = par.P_H2;

if option == 1

delta_d = eps*par.init.init_stream;

d1 = par.init.init_stream*(1+eps);

elseif option == 2

delta_d = eps*par.elCost;

d2 = par.elCost*(1+eps);

elseif option == 3

delta_d = eps*par.P_H2;

d3 = par.P_H2*(1+eps);

elseif option == -1

delta_d = -eps*par.init.init_stream;

d1 = par.init.init_stream*(1-eps);

elseif option == -2

delta_d = -eps*par.elCost;

d2 = par.elCost*(1-eps);

elseif option == -3

delta_d = -eps*par.P_H2;

d3 = par.P_H2*(1+eps);

else

print("Option not valid")

end

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

@variable(m, 0 <= F_H2, start = 500); # H2 product that is being sold in the

obj function

@variable(m, 0 <= F_H2_heat, start = 1); # H2 from the product stream that

is being used to heat up the process

@variable(m, 0 <= F_NG_heat, start = 1); # NG from the initial stream that

is being used to heat up the process

@variable(m, 0 <= F_NG, start = 150); # NG from the initial stream that is

being used in the process

@variable(m, 0 <= F_fluegas, start = 1); # CO2 gas that generates from

combusting natural gas which needs to be injected

@variable(m, 0 <= F_inj, start = 200); # CO2 and other component gases that

is being injected

##################### Connection constraints #######################

for i = 1:10

@NLconstraint(m, m[:mix_out_mol][i] - m[:prePR_in_mol][i] == 0)

@NLconstraint(m, m[:prePR_out_mol][i] - m[:pr_in_mol][i] == 0)

end

for i = 1:5 # After all heavier carbons are removed

@NLconstraint(m, m[:pr_out_mol][i] - m[:preGHR_in_mol][i] == 0)

@NLconstraint(m, m[:preGHR_out_mol][i] - m[:ghr_in_mol][i] == 0)

@NLconstraint(m, m[:ghr_out_mol][i] - m[:atr_in_mol][i] == 0)

@NLconstraint(m, m[:atr_out_mol][i] - m[:postATR_in_mol][i] == 0)

@NLconstraint(m, m[:postATR_out_mol][i] - m[:itsr_in_mol][i] == 0)

@NLconstraint(m, m[:itsr_out_mol][i] - m[:preCond_in_mol][i] == 0)
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@NLconstraint(m, m[:preCond_out_mol][i] - m[:cond_in_mol][i] == 0)

@NLconstraint(m, m[:cond_vap_frac][i]*m[:cond_V] - m[:psa_in_mol][i] ==

0)

end

################# Same for the temperature

##################################

@NLconstraint(m, m[:mix_out_T] - m[:prePR_in_T] == 0);

@NLconstraint(m, m[:prePR_out_T] - m[:pr_in_T] == 0);

@NLconstraint(m, m[:pr_out_T] - m[:preGHR_in_T] == 0);

@NLconstraint(m, m[:preGHR_out_T] - m[:ghr_in_T] == 0);

@NLconstraint(m, m[:ghr_out_T] - m[:atr_in_T] == 0);

@NLconstraint(m, m[:atr_out_T] - m[:postATR_in_T] == 0);

@NLconstraint(m, m[:postATR_out_T] - m[:itsr_in_T] == 0);

@NLconstraint(m, m[:itsr_out_T] - m[:preCond_in_T] == 0);

@NLconstraint(m, m[:preCond_out_T] - m[:cond_in_T] == 0);

@NLconstraint(m, m[:cond_V_T] - m[:psa_in_T] == 0);

############## Initial values ##########################################

for i = 1:10

@NLconstraint(m, par.init.init_comp[i]*m[:F_NG] - m[:mix_in_mol][i] == 0

);

end

@NLconstraint(m, par.mix.in_T - m[:mix_in_T] == 0);

@NLconstraint(m, par.mix.H2O_T - m[:H2O_T] == 0);

############# To ensure the GHR and ATR heat exchange ###################

@NLconstraint(m, m[:ghr_Q] + m[:postATR_Q] == 0); #- additional_Q == 0);

##To ensure that the inlet hot stream is hotter than outlet cold stream##

@NLconstraint(m, m[:atr_out_T] - m[:ghr_out_T] >= 25);

@NLconstraint(m, m[:postATR_out_T] - m[:ghr_in_T] >= 25);

######## New constraints for the economic objective function #############

@NLconstraint(m, m[:F_H2] - m[:psa_outProduct_mol][3] + m[:F_H2_heat] == 0);

@NLconstraint(m, m[:F_NG] - d1 + m[:F_NG_heat] == 0);

@NLconstraint(m, m[:F_fluegas] - m[:F_NG_heat] - 2*m[:F_NG_heat]/0.79 == 0);

@NLconstraint(m, m[:F_inj] - m[:F_fluegas] - sum(value(m[:psa_outPurge_mol][

i]) for i = 1:5) == 0);

@NLconstraint(m, m[:prePR_Q] + m[:preGHR_Q] - m[:F_H2_heat]*par.HHV_H2*2.016

- sum(m[:F_NG_heat]*par.HHV_NG[i]*par.init.init_comp[i]*par.molarMass[

i] for i = 1:10) == 0);

compW1 = Wrev(m, m[:F_inj], 1, 10, m[:psa_outPurge_T], par);

compW2 = Wrev(m, m[:F_inj],10,100,m[:psa_outPurge_T], par);

compWsum = @NLexpression(m, compW1 + compW2);

@NLobjective(m, Max, m[:F_H2]*d3 - compWsum*d2/1000);

optimize!(m)

disturbed = [

value(m[:mix_in_mol][1]), value(m[:mix_in_mol][2]), value(m[:mix_in_mol]

[3]), value(m[:mix_in_mol][4]), value(m[:mix_in_mol][5]),

value(m[:mix_in_mol][6]), value(m[:mix_in_mol][7]), value(m[:mix_in_mol]
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[8]), value(m[:mix_in_mol][9]), value(m[:mix_in_mol][10]),

value(m[:mix_out_mol][1]), value(m[:mix_out_mol][2]), value(m[:

mix_out_mol][3]), value(m[:mix_out_mol][4]), value(m[:mix_out_mol][

5]),

value(m[:mix_out_mol][6]), value(m[:mix_out_mol][7]), value(m[:

mix_out_mol][8]), value(m[:mix_out_mol][9]), value(m[:mix_out_mol][

10]),

value(m[:prePR_in_mol][1]), value(m[:prePR_in_mol][2]), value(m[:

prePR_in_mol][3]), value(m[:prePR_in_mol][4]), value(m[:

prePR_in_mol][5]),

value(m[:prePR_in_mol][6]), value(m[:prePR_in_mol][7]), value(m[:

prePR_in_mol][8]), value(m[:prePR_in_mol][9]), value(m[:

prePR_in_mol][10]),

value(m[:prePR_out_mol][1]), value(m[:prePR_out_mol][2]), value(m[:

prePR_out_mol][3]), value(m[:prePR_out_mol][4]), value(m[:

prePR_out_mol][5]),

value(m[:prePR_out_mol][6]), value(m[:prePR_out_mol][7]), value(m[:

prePR_out_mol][8]), value(m[:prePR_out_mol][9]), value(m[:

prePR_out_mol][10]),

value(m[:pr_in_mol][1]), value(m[:pr_in_mol][2]), value(m[:pr_in_mol][3]

), value(m[:pr_in_mol][4]), value(m[:pr_in_mol][5]),

value(m[:pr_in_mol][6]), value(m[:pr_in_mol][7]), value(m[:pr_in_mol][8]

), value(m[:pr_in_mol][9]), value(m[:pr_in_mol][10]),

value(m[:pr_out_mol][1]), value(m[:pr_out_mol][2]), value(m[:pr_out_mol]

[3]), value(m[:pr_out_mol][4]), value(m[:pr_out_mol][5]),

value(m[:pr_out_mol][6]), value(m[:pr_out_mol][7]), value(m[:pr_out_mol]

[8]), value(m[:pr_out_mol][9]), value(m[:pr_out_mol][10]),

value(m[:preGHR_in_mol][1]), value(m[:preGHR_in_mol][2]), value(m[:

preGHR_in_mol][3]), value(m[:preGHR_in_mol][4]), value(m[:

preGHR_in_mol][5]),

value(m[:preGHR_out_mol][1]), value(m[:preGHR_out_mol][2]), value(m[:

preGHR_out_mol][3]), value(m[:preGHR_out_mol][4]), value(m[:

preGHR_out_mol][5]),

value(m[:ghr_in_mol][1]), value(m[:ghr_in_mol][2]), value(m[:ghr_in_mol]

[3]), value(m[:ghr_in_mol][4]), value(m[:ghr_in_mol][5]),

value(m[:ghr_out_mol][1]), value(m[:ghr_out_mol][2]), value(m[:

ghr_out_mol][3]), value(m[:ghr_out_mol][4]), value(m[:ghr_out_mol][

5]),

value(m[:atr_in_mol][1]), value(m[:atr_in_mol][2]), value(m[:atr_in_mol]

[3]), value(m[:atr_in_mol][4]), value(m[:atr_in_mol][5]),

value(m[:atr_out_mol][1]), value(m[:atr_out_mol][2]), value(m[:

atr_out_mol][3]), value(m[:atr_out_mol][4]), value(m[:atr_out_mol][

5]),

value(m[:postATR_in_mol][1]), value(m[:postATR_in_mol][2]), value(m[:

postATR_in_mol][3]), value(m[:postATR_in_mol][4]), value(m[:

postATR_in_mol][5]),

value(m[:postATR_out_mol][1]), value(m[:postATR_out_mol][2]), value(m[:

postATR_out_mol][3]), value(m[:postATR_out_mol][4]), value(m[:

postATR_out_mol][5]),

value(m[:itsr_in_mol][1]), value(m[:itsr_in_mol][2]), value(m[:

itsr_in_mol][3]), value(m[:itsr_in_mol][4]), value(m[:itsr_in_mol][

5]),

value(m[:itsr_out_mol][1]), value(m[:itsr_out_mol][2]), value(m[:

itsr_out_mol][3]), value(m[:itsr_out_mol][4]), value(m[:
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itsr_out_mol][5]),

value(m[:preCond_in_mol][1]), value(m[:preCond_in_mol][2]), value(m[:

preCond_in_mol][3]), value(m[:preCond_in_mol][4]), value(m[:

preCond_in_mol][5]),

value(m[:preCond_out_mol][1]), value(m[:preCond_out_mol][2]), value(m[:

preCond_out_mol][3]), value(m[:preCond_out_mol][4]), value(m[:

preCond_out_mol][5]),

value(m[:cond_in_mol][1]), value(m[:cond_in_mol][2]), value(m[:

cond_in_mol][3]), value(m[:cond_in_mol][4]), value(m[:cond_in_mol][

5]),

value(m[:cond_L]), value(m[:cond_liq_frac][1]), value(m[:cond_liq_frac][

2]), value(m[:cond_liq_frac][3]), value(m[:cond_liq_frac][4]),

value(m[:cond_liq_frac][5]),

value(m[:cond_V]), value(m[:cond_vap_frac][1]), value(m[:cond_vap_frac][

2]), value(m[:cond_vap_frac][3]), value(m[:cond_vap_frac][4]),

value(m[:cond_vap_frac][5]),

value(m[:psa_in_mol][1]), value(m[:psa_in_mol][2]), value(m[:psa_in_mol]

[3]), value(m[:psa_in_mol][4]), value(m[:psa_in_mol][5]),

value(m[:psa_outProduct_mol][1]), value(m[:psa_outProduct_mol][2]),

value(m[:psa_outProduct_mol][3]), value(m[:psa_outProduct_mol][4]),

value(m[:psa_outProduct_mol][5]),

value(m[:psa_outPurge_mol][1]), value(m[:psa_outPurge_mol][2]), value(m[

:psa_outPurge_mol][3]), value(m[:psa_outPurge_mol][4]), value(m[:

psa_outPurge_mol][5]),

value(m[:mix_in_T]), value(m[:mix_out_T]), value(m[:H2O_T]), value(m[:

prePR_in_T]), value(m[:prePR_out_T]), value(m[:preGHR_in_T]), value

(m[:preGHR_out_T]),

value(m[:ghr_in_T]), value(m[:ghr_out_T]), value(m[:atr_in_T]), value(m[

:postATR_in_T]), value(m[:postATR_out_T]),

value(m[:preCond_out_T]), value(m[:cond_in_T]), value(m[:cond_L_T]),

value(m[:cond_V_T]), value(m[:psa_in_T]), value(m[:psa_outProduct_T

]), value(m[:psa_outPurge_T]),

value(m[:prePR_Q]), value(m[:preGHR_Q]), value(m[:ghr_Q]), value(m[:

postATR_Q]), value(m[:itsr_Q]), value(m[:preCond_Q]),

value(m[:H2Ostream]), value(m[:F_H2]), value(m[:F_H2_heat]), value(m[:

F_NG]), value(m[:F_NG_heat]), value(m[:F_fluegas]), value(m[:F_inj]

)

]

for i in eachindex(disturbed)

disturbed[i] = (disturbed[i]-nominal[i])/delta_d;

end

return disturbed

end

dydd1_plus = G_yd(nominal_values, 1, eps)

dydd2_plus = G_yd(nominal_values, 2, eps)

dydd3_plus = G_yd(nominal_values, 3, eps)

function printG_yd()

return DataFrame(Variable = variable_name,

Nominal = nominal_values,

∂y∂d_1_plus = dydd1_plus,

∂y∂d_2_plus = dydd2_plus,
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∂y∂d_3_plus = dydd3_plus)

end

function matrix_Gyd(nominal_values, eps)

matrix = zeros(3,184);

for i in 1:3

if i == 1

vector = G_yd(nominal_values, 1, eps)

elseif i == 2

vector = G_yd(nominal_values, 2, eps)

else

vector = G_yd(nominal_values, 3, eps)

end

matrix[i,:] = vector'

end

return matrix

end

#XLSX.writetable("data/G_yd.xlsx", printG_yd());

#G_yd_table = printG_yd()

#println("G_yd"); show(G_yd_table, allrows=true);� �

B.23 gain_u.jl

The function G_y() calculates the output gain with respect to disturbance change for each
disturbance perturbation, which is assembled to a matrix in the function matrix_Gy and
exported to an Excel sheet. printG_y() prints out the G_y matrix into a readable table in
the output terminal.

� �
variable_name = [

"mix_in_mol[1]", "mix_in_mol[2]", "mix_in_mol[3]", "mix_in_mol[4]", "

mix_in_mol[5]",

"mix_in_mol[6]", "mix_in_mol[7]", "mix_in_mol[8]", "mix_in_mol[9]", "

mix_in_mol[10]",

"mix_out_mol[1]", "mix_out_mol[2]", "mix_out_mol[3]", "mix_out_mol[4]", "

mix_out_mol[5]",

"mix_out_mol[6]", "mix_out_mol[7]", "mix_out_mol[8]", "mix_out_mol[9]", "

mix_out_mol[10]",

"prePR_in_mol[1]", "prePR_in_mol[2]", "prePR_in_mol[3]", "prePR_in_mol[4]",

"prePR_in_mol[5]",

"prePR_in_mol[6]", "prePR_in_mol[7]", "prePR_in_mol[8]", "prePR_in_mol[9]",

"prePR_in_mol[10]",

"prePR_out_mol[1]", "prePR_out_mol[2]", "prePR_out_mol[3]", "prePR_out_mol

[4]", "prePR_out_mol[5]",

"prePR_out_mol[6]", "prePR_out_mol[7]", "prePR_out_mol[8]", "prePR_out_mol

[9]", "prePR_out_mol[10]",

"pr_in_mol[1]", "pr_in_mol[2]", "pr_in_mol[3]", "pr_in_mol[4]", "pr_in_mol

[5]",

"pr_in_mol[6]", "pr_in_mol[7]", "pr_in_mol[8]", "pr_in_mol[9]", "pr_in_mol

[10]",
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"pr_out_mol[1]", "pr_out_mol[2]", "pr_out_mol[3]", "pr_out_mol[4]", "

pr_out_mol[5]",

"pr_out_mol[6]", "pr_out_mol[7]", "pr_out_mol[8]", "pr_out_mol[9]", "

pr_out_mol[10]",

"preGHR_in_mol[1]", "preGHR_in_mol[2]", "preGHR_in_mol[3]", "preGHR_in_mol

[4]", "preGHR_in_mol[5]",

"preGHR_out_mol[1]", "preGHR_out_mol[2]", "preGHR_out_mol[3]", "

preGHR_out_mol[4]", "preGHR_out_mol[5]",

"ghr_in_mol[1]", "ghr_in_mol[2]", "ghr_in_mol[3]", "ghr_in_mol[4]", "

ghr_in_mol[5]",

"ghr_out_mol[1]", "ghr_out_mol[2]", "ghr_out_mol[3]", "ghr_out_mol[4]", "

ghr_out_mol[5]",

"atr_in_mol[1]", "atr_in_mol[2]", "atr_in_mol[3]", "atr_in_mol[4]", "

atr_in_mol[5]",

"atr_out_mol[1]", "atr_out_mol[2]", "atr_out_mol[3]", "atr_out_mol[4]", "

atr_out_mol[5]",

"postATR_in_mol[1]", "postATR_in_mol[2]", "postATR_in_mol[3]", "

postATR_in_mol[4]", "postATR_in_mol[5]",

"postATR_out_mol[1]", "postATR_out_mol[2]", "postATR_out_mol[3]", "

postATR_out_mol[4]", "postATR_out_mol[5]",

"itsr_in_mol[1]", "itsr_in_mol[2]", "itsr_in_mol[3]", "itsr_in_mol[4]", "

itsr_in_mol[5]",

"itsr_out_mol[1]", "itsr_out_mol[2]", "itsr_out_mol[3]", "itsr_out_mol[4]",

"itsr_out_mol[5]",

"preCond_in_mol[1]", "preCond_in_mol[2]", "preCond_in_mol[3]", "

preCond_in_mol[4]", "preCond_in_mol[5]",

"preCond_out_mol[1]", "preCond_out_mol[2]", "preCond_out_mol[3]", "

preCond_out_mol[4]", "preCond_out_mol[5]",

"cond_in_mol[1]", "cond_in_mol[2]", "cond_in_mol[3]", "cond_in_mol[4]", "

cond_in_mol[5]",

"cond_L", "cond_liq_frac[1]", "cond_liq_frac[2]", "cond_liq_frac[3]", "

cond_liq_frac[4]", "cond_liq_frac[5]",

"cond_V", "cond_vap_frac[1]", "cond_vap_frac[2]", "cond_vap_frac[3]", "

cond_vap_frac[4]", "cond_vap_frac[5]",

"psa_in_mol[1]", "psa_in_mol[2]", "psa_in_mol[3]", "psa_in_mol[4]", "

psa_in_mol[5]",

"psa_outProduct_mol[1]", "psa_outProduct_mol[2]", "psa_outProduct_mol[3]", "

psa_outProduct_mol[4]", "psa_outProduct_mol[5]",

"psa_outPurge_mol[1]", "psa_outPurge_mol[2]", "psa_outPurge_mol[3]", "

psa_outPurge_mol[4]", "psa_outPurge_mol[5]",

"mix_in_T", "mix_out_T", "H2O_T", "prePR_in_T", "prePR_out_T", "preGHR_in_T"

, "preGHR_out_T",

"ghr_in_T", "ghr_out_T", "atr_in_T", "postATR_in_T", "postATR_out_T",

"preCond_out_T", "cond_in_T", "cond_L_T", "cond_V_T", "psa_in_T", "

psa_outProduct_T", "psa_outPurge_T",

"prePR_Q", "preGHR_Q", "ghr_Q", "postATR_Q", "itsr_Q", "preCond_Q",

"H2Ostream", "F_H2", "F_H2_heat", "F_NG", "F_NG_heat", "F_fluegas", "F_inj"

]

# Variables that are removed = S/C, nO2, T_prePR, T_PR, T_ATR, T_postATR, T_ITSR

, T_cond

using JuMP, Ipopt, MathOptInterface, DataFrames, PrettyTables, XLSX

include("enthalpy.jl")

include("0par.jl")
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include("1MIX.jl")

include("2PrePR.jl")

include("3PR.jl")

include("4PreGHR.jl")

include("5GHR.jl")

include("6ATR.jl")

include("7PostATR.jl")

include("8ITSR.jl")

include("9PreCondensate.jl")

include("10Condensate.jl")

include("11PSA.jl")

include("dataframe.jl")

include("equilibrium.jl")

include("compWork.jl")

include("active.jl")

include("nominal_case.jl")

eps = 1e-5

nominal_values, nominal_J = nominal();

# 1: u1+h, n_O2

# 2: u2+h, T_prePR

# 3: u3+h, T_ATR

# -1: u1-h, n_O2

# -2: u2-h, T_prePR

# -3: u3-h, T_ATR

function G_y(nominal, option, eps)

par = _par();

optimizer = optimizer_with_attributes(Ipopt.Optimizer,

"tol" => 1e-6, "constr_viol_tol" => 1e-8,

"print_level" => 0)

m = Model(optimizer);

###### Assembling the submodels to a larger model #######

MIX_model(m, par);

prePR_model(m, par);

PR_model(m, par);

preGHR_model(m, par);

GHR_model(m, par);

ATR_model(m, par);

postATR_model(m, par);

ITSR_model(m, par);

preCond_model(m, par);

Cond_model(m, par);

PSA_model(m, par);

@variable(m, 0 <= F_H2, start = 500); # H2 product that is being sold in the

obj function

@variable(m, 0 <= F_H2_heat, start = 1); # H2 from the product stream that

is being used to heat up the process

@variable(m, 0 <= F_NG_heat, start = 1); # NG from the initial stream that

is being used to heat up the process

@variable(m, 0 <= F_NG, start = 150); # NG from the initial stream that is
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being used in the process

@variable(m, 0 <= F_fluegas, start = 1); # CO2 gas that generates from

combusting natural gas which needs to be injected

@variable(m, 0 <= F_inj, start = 200); # CO2 and other component gases that

is being injected

if option == 1

delta_u = eps*79.29706225438805;

@NLconstraint(m, m[:nO2]-79.29706225438805*(1+eps) == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == 2

delta_u = eps*644.5953165006283;

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283*(1+eps) == 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == 3

delta_u = eps*1291.817465833818;

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818*(1+eps) == 0);

elseif option == -1

delta_u = -eps*79.29706225438805;

@NLconstraint(m, m[:nO2]-79.29706225438805*(1-eps) == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == -2

delta_u = -eps*644.5953165006283;

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283*(1-eps) == 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == -3

delta_u = -eps*1291.817465833818;

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818*(1-eps) == 0);

else

print("Option not valid")

end

##################### Connection constraints #######################

for i = 1:10

@NLconstraint(m, m[:mix_out_mol][i] - m[:prePR_in_mol][i] == 0)

@NLconstraint(m, m[:prePR_out_mol][i] - m[:pr_in_mol][i] == 0)

end

for i = 1:5 # After all heavier carbons are removed

@NLconstraint(m, m[:pr_out_mol][i] - m[:preGHR_in_mol][i] == 0)

@NLconstraint(m, m[:preGHR_out_mol][i] - m[:ghr_in_mol][i] == 0)

@NLconstraint(m, m[:ghr_out_mol][i] - m[:atr_in_mol][i] == 0)

@NLconstraint(m, m[:atr_out_mol][i] - m[:postATR_in_mol][i] == 0)

@NLconstraint(m, m[:postATR_out_mol][i] - m[:itsr_in_mol][i] == 0)

@NLconstraint(m, m[:itsr_out_mol][i] - m[:preCond_in_mol][i] == 0)

@NLconstraint(m, m[:preCond_out_mol][i] - m[:cond_in_mol][i] == 0)

@NLconstraint(m, m[:cond_vap_frac][i]*m[:cond_V] - m[:psa_in_mol][i] ==
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0)

end

################# Same for the temperature

##################################

@NLconstraint(m, m[:mix_out_T] - m[:prePR_in_T] == 0);

@NLconstraint(m, m[:prePR_out_T] - m[:pr_in_T] == 0);

@NLconstraint(m, m[:pr_out_T] - m[:preGHR_in_T] == 0);

@NLconstraint(m, m[:preGHR_out_T] - m[:ghr_in_T] == 0);

@NLconstraint(m, m[:ghr_out_T] - m[:atr_in_T] == 0);

@NLconstraint(m, m[:atr_out_T] - m[:postATR_in_T] == 0);

@NLconstraint(m, m[:postATR_out_T] - m[:itsr_in_T] == 0);

@NLconstraint(m, m[:itsr_out_T] - m[:preCond_in_T] == 0);

@NLconstraint(m, m[:preCond_out_T] - m[:cond_in_T] == 0);

@NLconstraint(m, m[:cond_V_T] - m[:psa_in_T] == 0);

############## Initial values ##########################################

for i = 1:10

@NLconstraint(m, par.init.init_comp[i]*m[:F_NG] - m[:mix_in_mol][i] == 0

);

end

@NLconstraint(m, par.mix.in_T - m[:mix_in_T] == 0);

@NLconstraint(m, par.mix.H2O_T - m[:H2O_T] == 0);

############# To ensure the GHR and ATR heat exchange ###################

@NLconstraint(m, m[:ghr_Q] + m[:postATR_Q] == 0); #- additional_Q == 0);

##To ensure that the inlet hot stream is hotter than outlet cold stream##

@NLconstraint(m, m[:atr_out_T] - m[:ghr_out_T] >= 25);

@NLconstraint(m, m[:postATR_out_T] - m[:ghr_in_T] >= 25);

######## New constraints for the economic objective function #############

@NLconstraint(m, m[:F_H2] - m[:psa_outProduct_mol][3] + m[:F_H2_heat] == 0);

@NLconstraint(m, m[:F_NG] - par.init.init_stream + m[:F_NG_heat] == 0);

@NLconstraint(m, m[:F_fluegas] - m[:F_NG_heat] - 2*m[:F_NG_heat]/0.79 == 0);

@NLconstraint(m, m[:F_inj] - m[:F_fluegas] - sum(value(m[:psa_outPurge_mol][

i]) for i = 1:5) == 0);

@NLconstraint(m, m[:prePR_Q] + m[:preGHR_Q] - m[:F_H2_heat]*par.HHV_H2*2.016

- sum(m[:F_NG_heat]*par.HHV_NG[i]*par.init.init_comp[i]*par.molarMass[

i] for i = 1:10) == 0);

compW1 = Wrev(m, m[:F_inj], 1, 10, m[:psa_outPurge_T], par);

compW2 = Wrev(m, m[:F_inj],10,100,m[:psa_outPurge_T], par);

compWsum = @NLexpression(m, compW1 + compW2);

@NLobjective(m, Max, m[:F_H2]*par.P_H2 - compWsum*par.elCost/1000);

optimize!(m)

input_change = [

value(m[:mix_in_mol][1]), value(m[:mix_in_mol][2]), value(m[:mix_in_mol]

[3]), value(m[:mix_in_mol][4]), value(m[:mix_in_mol][5]),

value(m[:mix_in_mol][6]), value(m[:mix_in_mol][7]), value(m[:mix_in_mol]

[8]), value(m[:mix_in_mol][9]), value(m[:mix_in_mol][10]),

value(m[:mix_out_mol][1]), value(m[:mix_out_mol][2]), value(m[:
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mix_out_mol][3]), value(m[:mix_out_mol][4]), value(m[:mix_out_mol][

5]),

value(m[:mix_out_mol][6]), value(m[:mix_out_mol][7]), value(m[:

mix_out_mol][8]), value(m[:mix_out_mol][9]), value(m[:mix_out_mol][

10]),

value(m[:prePR_in_mol][1]), value(m[:prePR_in_mol][2]), value(m[:

prePR_in_mol][3]), value(m[:prePR_in_mol][4]), value(m[:

prePR_in_mol][5]),

value(m[:prePR_in_mol][6]), value(m[:prePR_in_mol][7]), value(m[:

prePR_in_mol][8]), value(m[:prePR_in_mol][9]), value(m[:

prePR_in_mol][10]),

value(m[:prePR_out_mol][1]), value(m[:prePR_out_mol][2]), value(m[:

prePR_out_mol][3]), value(m[:prePR_out_mol][4]), value(m[:

prePR_out_mol][5]),

value(m[:prePR_out_mol][6]), value(m[:prePR_out_mol][7]), value(m[:

prePR_out_mol][8]), value(m[:prePR_out_mol][9]), value(m[:

prePR_out_mol][10]),

value(m[:pr_in_mol][1]), value(m[:pr_in_mol][2]), value(m[:pr_in_mol][3]

), value(m[:pr_in_mol][4]), value(m[:pr_in_mol][5]),

value(m[:pr_in_mol][6]), value(m[:pr_in_mol][7]), value(m[:pr_in_mol][8]

), value(m[:pr_in_mol][9]), value(m[:pr_in_mol][10]),

value(m[:pr_out_mol][1]), value(m[:pr_out_mol][2]), value(m[:pr_out_mol]

[3]), value(m[:pr_out_mol][4]), value(m[:pr_out_mol][5]),

value(m[:pr_out_mol][6]), value(m[:pr_out_mol][7]), value(m[:pr_out_mol]

[8]), value(m[:pr_out_mol][9]), value(m[:pr_out_mol][10]),

value(m[:preGHR_in_mol][1]), value(m[:preGHR_in_mol][2]), value(m[:

preGHR_in_mol][3]), value(m[:preGHR_in_mol][4]), value(m[:

preGHR_in_mol][5]),

value(m[:preGHR_out_mol][1]), value(m[:preGHR_out_mol][2]), value(m[:

preGHR_out_mol][3]), value(m[:preGHR_out_mol][4]), value(m[:

preGHR_out_mol][5]),

value(m[:ghr_in_mol][1]), value(m[:ghr_in_mol][2]), value(m[:ghr_in_mol]

[3]), value(m[:ghr_in_mol][4]), value(m[:ghr_in_mol][5]),

value(m[:ghr_out_mol][1]), value(m[:ghr_out_mol][2]), value(m[:

ghr_out_mol][3]), value(m[:ghr_out_mol][4]), value(m[:ghr_out_mol][

5]),

value(m[:atr_in_mol][1]), value(m[:atr_in_mol][2]), value(m[:atr_in_mol]

[3]), value(m[:atr_in_mol][4]), value(m[:atr_in_mol][5]),

value(m[:atr_out_mol][1]), value(m[:atr_out_mol][2]), value(m[:

atr_out_mol][3]), value(m[:atr_out_mol][4]), value(m[:atr_out_mol][

5]),

value(m[:postATR_in_mol][1]), value(m[:postATR_in_mol][2]), value(m[:

postATR_in_mol][3]), value(m[:postATR_in_mol][4]), value(m[:

postATR_in_mol][5]),

value(m[:postATR_out_mol][1]), value(m[:postATR_out_mol][2]), value(m[:

postATR_out_mol][3]), value(m[:postATR_out_mol][4]), value(m[:

postATR_out_mol][5]),

value(m[:itsr_in_mol][1]), value(m[:itsr_in_mol][2]), value(m[:

itsr_in_mol][3]), value(m[:itsr_in_mol][4]), value(m[:itsr_in_mol][

5]),

value(m[:itsr_out_mol][1]), value(m[:itsr_out_mol][2]), value(m[:

itsr_out_mol][3]), value(m[:itsr_out_mol][4]), value(m[:

itsr_out_mol][5]),

value(m[:preCond_in_mol][1]), value(m[:preCond_in_mol][2]), value(m[:
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preCond_in_mol][3]), value(m[:preCond_in_mol][4]), value(m[:

preCond_in_mol][5]),

value(m[:preCond_out_mol][1]), value(m[:preCond_out_mol][2]), value(m[:

preCond_out_mol][3]), value(m[:preCond_out_mol][4]), value(m[:

preCond_out_mol][5]),

value(m[:cond_in_mol][1]), value(m[:cond_in_mol][2]), value(m[:

cond_in_mol][3]), value(m[:cond_in_mol][4]), value(m[:cond_in_mol][

5]),

value(m[:cond_L]), value(m[:cond_liq_frac][1]), value(m[:cond_liq_frac][

2]), value(m[:cond_liq_frac][3]), value(m[:cond_liq_frac][4]),

value(m[:cond_liq_frac][5]),

value(m[:cond_V]), value(m[:cond_vap_frac][1]), value(m[:cond_vap_frac][

2]), value(m[:cond_vap_frac][3]), value(m[:cond_vap_frac][4]),

value(m[:cond_vap_frac][5]),

value(m[:psa_in_mol][1]), value(m[:psa_in_mol][2]), value(m[:psa_in_mol]

[3]), value(m[:psa_in_mol][4]), value(m[:psa_in_mol][5]),

value(m[:psa_outProduct_mol][1]), value(m[:psa_outProduct_mol][2]),

value(m[:psa_outProduct_mol][3]), value(m[:psa_outProduct_mol][4]),

value(m[:psa_outProduct_mol][5]),

value(m[:psa_outPurge_mol][1]), value(m[:psa_outPurge_mol][2]), value(m[

:psa_outPurge_mol][3]), value(m[:psa_outPurge_mol][4]), value(m[:

psa_outPurge_mol][5]),

value(m[:mix_in_T]), value(m[:mix_out_T]), value(m[:H2O_T]), value(m[:

prePR_in_T]), value(m[:prePR_out_T]), value(m[:preGHR_in_T]), value

(m[:preGHR_out_T]),

value(m[:ghr_in_T]), value(m[:ghr_out_T]), value(m[:atr_in_T]), value(m[

:postATR_in_T]), value(m[:postATR_out_T]),

value(m[:preCond_out_T]), value(m[:cond_in_T]), value(m[:cond_L_T]),

value(m[:cond_V_T]), value(m[:psa_in_T]), value(m[:psa_outProduct_T

]), value(m[:psa_outPurge_T]),

value(m[:prePR_Q]), value(m[:preGHR_Q]), value(m[:ghr_Q]), value(m[:

postATR_Q]), value(m[:itsr_Q]), value(m[:preCond_Q]),

value(m[:H2Ostream]), value(m[:F_H2]), value(m[:F_H2_heat]), value(m[:

F_NG]), value(m[:F_NG_heat]), value(m[:F_fluegas]), value(m[:F_inj]

)

]

nominal= nominal

for i in eachindex(input_change)

input_change[i] = (input_change[i]-nominal[i])/delta_u;

end

return input_change

end

dydu1_plus = G_y(nominal_values, 1, eps)

dydu2_plus = G_y(nominal_values, 2, eps)

dydu3_plus = G_y(nominal_values, 3, eps)

dydu1_minus = G_y(nominal_values, -1, eps)

dydu2_minus = G_y(nominal_values, -2, eps)

dydu3_minus = G_y(nominal_values, -3, eps)

function printG_y()

return DataFrame(Variable = variable_name,

Nominal = nominal_values,

∂y∂u_1 = dydu1_plus,
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∂y∂u_2 = dydu2_plus,

∂y∂u_3 = dydu3_plus)

end

function matrix_Gy(nominal_values, eps)

matrix = zeros(3,184);

for i in 1:3

if i == 1

vector = G_y(nominal_values, 1, eps)

elseif i == 2

vector = G_y(nominal_values, 2, eps)

else

vector = G_y(nominal_values, 3, eps)

end

matrix[i,:] = vector'

end

return matrix

end

#XLSX.writetable("data/G_y.xlsx", printG_y());

#G_y_table = printG_y()

#println("G_y"); show(G_y_table, allrows=true);� �

B.24 J_ud.jl

The function J_ud() uses the functions finite_diff_1() and finite_diff_2() from the fi-
nite_diff() file to calculate each perturbation to approximate each double partial derivate
element in the Hessian matrix, J_ud(), which is the Hessian matrix of the cost function with
respect to inputs and disturbances. The function J_ud_xlsx() exports the resulting Hessian
matrix to an Excel sheet.

� �
include("finite_diff.jl")

include("nominal_case.jl")

# Options for finite diff (eps = 1e-5)

# 1: u1+h, n_O2

# 2: u2+h, T_prePR

# 3: u3+h, T_ATR

# 4: d1+k, NG flow

# 5: d2+k, P_el

# 6: d3+k, P_H2

# -1: u1-h, n_O2

# -2: u2-h, T_prePR

# -3: u3-h, T_ATR

# -4: d1-k, NG flow

# -5: d2-k, P_el

# -6: d3-k, P_H2



Yoonsik Oh B Julia Code

nominal_states, nom_f = nominal();

eps = 1e-5

function J_ud(eps)

J_ud = zeros(3,3);

for i=1:3

for j=4:6

f1, h, k = finite_diff_2(i,j,eps); # f(x+h, y+k)

f2, h, k = finite_diff_1(i,eps) # f(x+h, y)

f3, h, k = finite_diff_1(-i,eps) # f(x-h, y)

f4, h, k = finite_diff_1(j,eps) # f(x, y+k)

f5, h, k = finite_diff_1(-j,eps) # f(x, y-k)

f6, h, k = finite_diff_2(-i, -j, eps); # f(x-h, y-k)

f_xy = (f1 - f2 - f3 - f4 - f5 + f6 + 2*nom_f)/(2*h*k)

J_ud[i,j-3] = f_xy

end

end

return J_ud

end

function J_ud_xlsx()

J_ud_matrix = J_ud(1e-2)';

df = DataFrame(col1 = J_ud_matrix[1,:],

col2 = J_ud_matrix[2,:],

col3 = J_ud_matrix[3,:]);

XLSX.writetable("data/Jud.xlsx", df);

end� �

B.25 J_uu.jl

The function J_uu() uses the functions finite_diff_1() and finite_diff_2() from the fi-
nite_diff() file to calculate each perturbation to approximate each double partial derivate
element in the Hessian matrix, J_uu(), which is the Hessian matrix of the cost function with
respect to inputs and disturbances. The function J_uu_xlsx() exports the resulting Hessian
matrix to an Excel sheet.

� �
include("finite_diff.jl")

include("nominal_case.jl")

# Options for finite diff (eps = 1e-5)

# 1: u1+h, n_O2

# 2: u2+h, T_prePR

# 3: u3+h, T_ATR

# 4: d1+k, NG flow

# 5: d2+k, P_el

# 6: d3+k, P_H2

# -1: u1-h, n_O2

# -2: u2-h, T_prePR

# -3: u3-h, T_ATR

# -4: d1-k, NG flow
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# -5: d2-k, P_el

# -6: d3-k, P_H2

nominal_states, nom_f = nominal();

eps = 1e-2

function J_uu(eps)

J_uu = zeros(3,3);

for i=1:3

for j=1:3

if i==j

f1, h, k = finite_diff_1(i,eps) # f(x+h, y)

f2, h, k = finite_diff_1(-i,eps) # f(x-h, y)

f_xx = (f1 - 2*nom_f + f2)/(epsˆ2) # f(x+h,y) - 2f(x,y) + f(x-h,

y) / h^2

J_uu[i,j] = f_xx

else

f1, h, k = finite_diff_2(i,j,eps); # f(x+h, y+k)

f2, h, k = finite_diff_1(i,eps) # f(x+h, y)

f3, h, k = finite_diff_1(-i,eps) # f(x-h, y)

f4, h, k = finite_diff_1(j,eps) # f(x, y+k)

f5, h, k = finite_diff_1(-j,eps) # f(x, y-k)

f6, h, k = finite_diff_2(-i, -j, eps); # f(x-h, y-k)

f_xy = (f1 - f2 - f3 - f4 - f5 + f6 + 2*nom_f)/(2*eps*eps)

J_uu[i,j] = f_xy

end

end

end

return J_uu

end

function J_uu_xlsx()

J_uu_matrix = J_uu(1e-2)';

df = DataFrame(col1 = J_uu_matrix[1,:],

col2 = J_uu_matrix[2,:],

col3 = J_uu_matrix[3,:]);

XLSX.writetable("data/Juu.xlsx", df);

end� �

B.26 loss.jl

The Loss() function calculates the loss in optimality by calculating the difference between
the objective value when all inputs are used for control in a control strategy and the optimal
cases where the inputs are free when different disturbance changes affect the system. The
function nullspacePrint() calculates the nullspace matrix of the optimal sensitivity matrix
chosen from a measurement subset.

� �
using LinearAlgebra

include("nominal_case.jl")

variable_name = [
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"mix_in_mol[1]", "mix_in_mol[2]", "mix_in_mol[3]", "mix_in_mol[4]", "

mix_in_mol[5]",

"mix_in_mol[6]", "mix_in_mol[7]", "mix_in_mol[8]", "mix_in_mol[9]", "

mix_in_mol[10]",

"mix_out_mol[1]", "mix_out_mol[2]", "mix_out_mol[3]", "mix_out_mol[4]", "

mix_out_mol[5]",

"mix_out_mol[6]", "mix_out_mol[7]", "mix_out_mol[8]", "mix_out_mol[9]", "

mix_out_mol[10]",

"prePR_in_mol[1]", "prePR_in_mol[2]", "prePR_in_mol[3]", "prePR_in_mol[4]",

"prePR_in_mol[5]",

"prePR_in_mol[6]", "prePR_in_mol[7]", "prePR_in_mol[8]", "prePR_in_mol[9]",

"prePR_in_mol[10]",

"prePR_out_mol[1]", "prePR_out_mol[2]", "prePR_out_mol[3]", "prePR_out_mol

[4]", "prePR_out_mol[5]",

"prePR_out_mol[6]", "prePR_out_mol[7]", "prePR_out_mol[8]", "prePR_out_mol

[9]", "prePR_out_mol[10]",

"pr_in_mol[1]", "pr_in_mol[2]", "pr_in_mol[3]", "pr_in_mol[4]", "pr_in_mol

[5]",

"pr_in_mol[6]", "pr_in_mol[7]", "pr_in_mol[8]", "pr_in_mol[9]", "pr_in_mol

[10]",

"pr_out_mol[1]", "pr_out_mol[2]", "pr_out_mol[3]", "pr_out_mol[4]", "

pr_out_mol[5]",

"pr_out_mol[6]", "pr_out_mol[7]", "pr_out_mol[8]", "pr_out_mol[9]", "

pr_out_mol[10]",

"preGHR_in_mol[1]", "preGHR_in_mol[2]", "preGHR_in_mol[3]", "preGHR_in_mol

[4]", "preGHR_in_mol[5]",

"preGHR_out_mol[1]", "preGHR_out_mol[2]", "preGHR_out_mol[3]", "

preGHR_out_mol[4]", "preGHR_out_mol[5]",

"ghr_in_mol[1]", "ghr_in_mol[2]", "ghr_in_mol[3]", "ghr_in_mol[4]", "

ghr_in_mol[5]",

"ghr_out_mol[1]", "ghr_out_mol[2]", "ghr_out_mol[3]", "ghr_out_mol[4]", "

ghr_out_mol[5]",

"atr_in_mol[1]", "atr_in_mol[2]", "atr_in_mol[3]", "atr_in_mol[4]", "

atr_in_mol[5]",

"atr_out_mol[1]", "atr_out_mol[2]", "atr_out_mol[3]", "atr_out_mol[4]", "

atr_out_mol[5]",

"postATR_in_mol[1]", "postATR_in_mol[2]", "postATR_in_mol[3]", "

postATR_in_mol[4]", "postATR_in_mol[5]",

"postATR_out_mol[1]", "postATR_out_mol[2]", "postATR_out_mol[3]", "

postATR_out_mol[4]", "postATR_out_mol[5]",

"itsr_in_mol[1]", "itsr_in_mol[2]", "itsr_in_mol[3]", "itsr_in_mol[4]", "

itsr_in_mol[5]",

"itsr_out_mol[1]", "itsr_out_mol[2]", "itsr_out_mol[3]", "itsr_out_mol[4]",

"itsr_out_mol[5]",

"preCond_in_mol[1]", "preCond_in_mol[2]", "preCond_in_mol[3]", "

preCond_in_mol[4]", "preCond_in_mol[5]",

"preCond_out_mol[1]", "preCond_out_mol[2]", "preCond_out_mol[3]", "

preCond_out_mol[4]", "preCond_out_mol[5]",

"cond_in_mol[1]", "cond_in_mol[2]", "cond_in_mol[3]", "cond_in_mol[4]", "

cond_in_mol[5]",

"cond_L", "cond_liq_frac[1]", "cond_liq_frac[2]", "cond_liq_frac[3]", "

cond_liq_frac[4]", "cond_liq_frac[5]",

"cond_V", "cond_vap_frac[1]", "cond_vap_frac[2]", "cond_vap_frac[3]", "

cond_vap_frac[4]", "cond_vap_frac[5]",
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"psa_in_mol[1]", "psa_in_mol[2]", "psa_in_mol[3]", "psa_in_mol[4]", "

psa_in_mol[5]",

"psa_outProduct_mol[1]", "psa_outProduct_mol[2]", "psa_outProduct_mol[3]", "

psa_outProduct_mol[4]", "psa_outProduct_mol[5]",

"psa_outPurge_mol[1]", "psa_outPurge_mol[2]", "psa_outPurge_mol[3]", "

psa_outPurge_mol[4]", "psa_outPurge_mol[5]",

"mix_in_T", "mix_out_T", "H2O_T", "prePR_in_T", "prePR_out_T", "preGHR_in_T"

, "preGHR_out_T",

"ghr_in_T", "ghr_out_T", "atr_in_T", "postATR_in_T", "postATR_out_T",

"preCond_out_T", "cond_in_T", "cond_L_T", "cond_V_T", "psa_in_T", "

psa_outProduct_T", "psa_outPurge_T",

"prePR_Q", "preGHR_Q", "ghr_Q", "postATR_Q", "itsr_Q", "preCond_Q",

"H2Ostream", "F_H2", "F_H2_heat", "F_NG", "F_NG_heat", "F_fluegas", "F_inj"

]

optimal_J = optJ_func();

y_nom, J_nom = nominal();

function Loss()

__par = _par();

optimizer = optimizer_with_attributes(Ipopt.Optimizer,

"tol" => 1e-9, "constr_viol_tol" => 1e-5,

"print_level" => 0);

m = Model(optimizer);

eps = 0.1

par = deepcopy(__par)

#par.init.init_stream = par.init.init_stream +5; # +d1

#3par.elCost = par.elCost*(1+eps); # +d2

#par.P_H2 = par.P_H2*(1+eps); # +d3

#par.init.init_stream = par.init.init_stream -5; # -d1

#par.elCost = par.elCost*(1-eps); # -d2

#par.P_H2 = par.P_H2*(1-eps); # -d3

d1 = par.init.init_stream;

d2 = par.elCost;

d3 = par.P_H2;

###### Assembling the submodels to a larger model #######

MIX_model(m, par);

prePR_model(m, par);

PR_model(m, par);

preGHR_model(m, par);

GHR_model(m, par);

ATR_model(m, par);

postATR_model(m, par);

ITSR_model(m, par);

preCond_model(m, par);

Cond_model(m, par);

PSA_model(m, par);

# Constraints for setting the active constraints to their boundary value

@constraint(m, m[:SC_ratio] - 5.0 == 0);

@constraint(m, m[:pr_out_T] - 609.2 == 0);
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@constraint(m, m[:itsr_out_T] - 473.0 == 0);

@constraint(m, m[:preCond_out_T] - 293.0 == 0);

@constraint(m, m[:postATR_out_T] - 634.2 == 0);

# u = unom case, comment out the three constraints when implementing

advanced control

@constraint(m, m[:nO2] - 79.29706225438805 == 0);

@constraint(m, m[:pr_in_T] - 644.5953165006283 == 0);

@constraint(m, m[:atr_out_T] - 1291.817465833818 == 0);

# Disturb your disturbances here

# Choose your H matrix

# H1 Exact Local Method

#@constraint(m, m[:pr_out_mol][3] - y_nom[53] == 0);

#@constraint(m, m[:psa_outPurge_mol][1] - y_nom[148] == 0);

#@constraint(m, m[:prePR_out_T] - y_nom[157] == 0);

# H2 Nullspace method

H2 = [-0.010396358480702392 -0.9990843821558919 -0.041500759782440846;

-0.9999454720656192 0.010428244690954458 -0.0005519131554076154;

0.0009841878917459415 0.041492758944720855 -0.9991383199183929];

#@NLconstraint(m, H2[1,1]*(m[:pr_out_mol][3] - y_nom[53]) + H2[1,2]*(m[:

psa_outPurge_mol][1] - y_nom[148]) + H2[1,3]*(m[:prePR_out_T] - y_nom

[157]) == 0);

#@NLconstraint(m, H2[2,1]*(m[:pr_out_mol][3] - y_nom[53]) + H2[2,2]*(m[:

psa_outPurge_mol][1] - y_nom[148]) + H2[2,3]*(m[:prePR_out_T] - y_nom

[157]) == 0);

#@NLconstraint(m, H2[3,1]*(m[:pr_out_mol][3] - y_nom[53]) + H2[3,2]*(m[:

psa_outPurge_mol][1] - y_nom[148]) + H2[3,3]*(m[:prePR_out_T] - y_nom

[157]) == 0);

# H3 Good Engineering Decision

#@constraint(m, m[:ghr_out_T] - y_nom[161] == 0);

#@constraint(m, m[:itsr_out_mol][5] - y_nom[110] == 0);

#@constraint(m, m[:pr_out_mol][1] - y_nom[51] == 0);

@variable(m, 0 <= F_H2, start = 500); # H2 product that is being sold in the

obj function

@variable(m, 0 <= F_H2_heat, start = 1); # H2 from the product stream that

is being used to heat up the process

@variable(m, 0 <= F_NG_heat, start = 1); # NG from the initial stream that

is being used to heat up the process

@variable(m, 0 <= F_NG, start = 150); # NG from the initial stream that is

being used in the process

@variable(m, 0 <= F_fluegas, start = 1); # CO2 gas that generates from

combusting natural gas which needs to be injected

@variable(m, 0 <= F_inj, start = 200); # CO2 and other component gases that

is being injected

##################### Connection constraints #######################

for i = 1:10

@constraint(m, m[:mix_out_mol][i] - m[:prePR_in_mol][i] == 0)

@constraint(m, m[:prePR_out_mol][i] - m[:pr_in_mol][i] == 0)
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end

for i = 1:5 # After all heavier carbons are removed

@constraint(m, m[:pr_out_mol][i] - m[:preGHR_in_mol][i] == 0)

@constraint(m, m[:preGHR_out_mol][i] - m[:ghr_in_mol][i] == 0)

@constraint(m, m[:ghr_out_mol][i] - m[:atr_in_mol][i] == 0)

@constraint(m, m[:atr_out_mol][i] - m[:postATR_in_mol][i] == 0)

@constraint(m, m[:postATR_out_mol][i] - m[:itsr_in_mol][i] == 0)

@constraint(m, m[:itsr_out_mol][i] - m[:preCond_in_mol][i] == 0)

@constraint(m, m[:preCond_out_mol][i] - m[:cond_in_mol][i] == 0)

@constraint(m, m[:cond_vap_frac][i]*m[:cond_V] - m[:psa_in_mol][i] == 0)

end

################# Same for the temperature

##################################

@constraint(m, m[:mix_out_T] - m[:prePR_in_T] == 0);

@constraint(m, m[:prePR_out_T] - m[:pr_in_T] == 0);

@constraint(m, m[:pr_out_T] - m[:preGHR_in_T] == 0);

@constraint(m, m[:preGHR_out_T] - m[:ghr_in_T] == 0);

@constraint(m, m[:ghr_out_T] - m[:atr_in_T] == 0);

@constraint(m, m[:atr_out_T] - m[:postATR_in_T] == 0);

@constraint(m, m[:postATR_out_T] - m[:itsr_in_T] == 0);

@constraint(m, m[:itsr_out_T] - m[:preCond_in_T] == 0);

@constraint(m, m[:preCond_out_T] - m[:cond_in_T] == 0);

@constraint(m, m[:cond_V_T] - m[:psa_in_T] == 0);

############## Initial values ##########################################

for i = 1:10

@constraint(m, par.init.init_comp[i]*m[:F_NG] - m[:mix_in_mol][i] == 0);

end

@constraint(m, par.mix.in_T - m[:mix_in_T] == 0);

@constraint(m, par.mix.H2O_T - m[:H2O_T] == 0);

############# To ensure the GHR and ATR heat exchange ###################

@constraint(m, m[:ghr_Q] + m[:postATR_Q] == 0); #- additional_Q == 0);

##To ensure that the inlet hot stream is hotter than outlet cold stream##

@constraint(m, m[:atr_out_T] - m[:ghr_out_T] >= 25);

#@NLconstraint(m, m[:postATR_out_T] - m[:ghr_in_T] >= 25);

######## New constraints for the economic objective function #############

@constraint(m, m[:F_H2] - m[:psa_outProduct_mol][3] + m[:F_H2_heat] == 0);

@constraint(m, m[:F_NG] - d1 + m[:F_NG_heat] == 0);

@constraint(m, m[:F_fluegas] - m[:F_NG_heat] - 2*m[:F_NG_heat]/0.79 == 0);

@constraint(m, m[:F_inj] - m[:F_fluegas] - sum(m[:psa_outPurge_mol][i] for i

= 1:5) == 0);

@constraint(m, m[:prePR_Q] + m[:preGHR_Q] - m[:F_H2_heat]*par.HHV_H2*2.016 -

sum(m[:F_NG_heat]*par.HHV_NG[i]*par.init.init_comp[i]*par.molarMass[i]

for i = 1:10) == 0);

compW1 = Wrev(m, m[:F_inj], 1, 10, m[:psa_outPurge_T], par);

T2 = compT(m, m[:psa_outPurge_T],1,10);

compW2 = Wrev(m, m[:F_inj],10,100,m[:psa_outPurge_T], par);
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compWsum = @NLexpression(m, compW1 + compW2);

@NLobjective(m, Max, m[:F_H2]*d3 - compWsum*d2/1000);

# Checking where in the system the constraints are violated.

#=

for x in all_variables(m)

if has_upper_bound(x)

JuMP.delete_upper_bound(x)

end

if has_lower_bound(x)

JuMP.delete_lower_bound(x)

end

end

=#

# Optimize

optimize!(m)

# Calculate loss

L = objective_value(m) - optimal_J;

streamdf, otherdf, massdf, compositiondf = printTable(m);

println("Stream table"); show(streamdf, allrows=true);

println("\n\nOther variables"); show(otherdf, allrows=true);

println("\n\nMass table"); show(massdf, allrows=true);

#println("\n\nCompostion table"); show(compositiondf, allrows=true);

println("");

println("The new objective value is: ", objective_value(m));

println("While the optimal objective value is: ", optimal_J);

if termination_status(m) == LOCALLY_SOLVED || termination_status(m) ==

OPTIMAL || termination_status(m) == ALMOST_LOCALLY_SOLVED

println(termination_status(m))

return round(L; digits = 4)

else

println(termination_status(m))

return round(L; digits = 4)

end

end

@show(Loss())

function nullspacePrint(data)

df = DataFrame(XLSX.readtable(data, "Sheet1"));

A = Matrix(df);

A = A[:, end-2:end];

A = A[[53,68, 148, 157], :];

F = convert(Matrix{Float64}, A);

return nullspace(F, rtol=1);

end

#@show(nullspacePrint("data/F.xlsx"));� �
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B.27 nominal_case.jl

The nominal() function calculates and returns the nominal state values and the nominal
objective function, such that it can be used for other calculations, such as gain matrices and
the Hessian matrices. The optJ_func() calculates and returns the optimal state values and
the optimal objective function, for calculating e.g. loss in optimality.

� �
using JuMP, Ipopt, MathOptInterface, DataFrames, PrettyTables

include("enthalpy.jl")

include("0par.jl")

include("1MIX.jl")

include("2PrePR.jl")

include("3PR.jl")

include("4PreGHR.jl")

include("5GHR.jl")

include("6ATR.jl")

include("7PostATR.jl")

include("8ITSR.jl")

include("9PreCondensate.jl")

include("10Condensate.jl")

include("11PSA.jl")

include("dataframe.jl")

include("equilibrium.jl")

include("compWork.jl")

include("active.jl")

const MOI = MathOptInterface

C = 12.01;

H = 1.008;

O = 16;

Base.@kwdef mutable struct _par

init::init_par = init_par();

mix::mix_par=mix_par();

prePR::prePR_par=prePR_par();

pr::pr_par = pr_par();

preGHR::preGHR_par = preGHR_par();

ghr::ghr_par = ghr_par();

atr::atr_par = atr_par();

postATR::postATR_par = postATR_par();

itsr::itsr_par = itsr_par();

preCond::preCond_par = preCond_par();

cond::cond_par = cond_par();

psa::psa_par = psa_par();

hconst = heavy_const;

smr_const = smr_const;

wgsr_const = wgsr_const;

HHV_H2::Float64 = 141.7*1000;

HHV_NG::Vector = [55.5,0.0,141.7,0.0,0.0,51.9,50.4,49.1,49.1,48.6]*1000; #

CH4, H2O, H2, CO, CO2, C2H6, C3H8, n-C4H10, i-C4H10, C5H12

molarMass::Vector = [C+H*4, H*2+O, H*2, C+O, C+O*2, C*2+H*6, C*3+H*8, C*4+H*
10, C*4+H*10, C*5+H*12];

P_H2::Float64 = 3.347; #[\$/kmol]
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P_inj::Float64 = 9.650; # [\$/ton CO2]

R::Float64 = 8.314;

elCost::Float64 = 0.14; # [\$/Kwh]

end

eps = 0.1

# return_list should be either d1, d2 or d3,

function nominal()

__par = _par();

optimizer = optimizer_with_attributes(Ipopt.Optimizer,

"tol" => 1e-9, "constr_viol_tol" => 1e-5,

"print_level" => 0)

m = Model(optimizer);

d1 = par.init.init_stream;

d2 = par.elCost;

d3 = par.P_H2;

###### Assembling the submodels to a larger model #######

MIX_model(m, par);

prePR_model(m, par);

PR_model(m, par);

preGHR_model(m, par);

GHR_model(m, par);

ATR_model(m, par);

postATR_model(m, par);

ITSR_model(m, par);

preCond_model(m, par);

Cond_model(m, par);

PSA_model(m, par);

@variable(m, 0 <= F_H2, start = 500); # H2 product that is being sold in the

obj function

@variable(m, 0 <= F_H2_heat, start = 1); # H2 from the product stream that

is being used to heat up the process

@variable(m, 0 <= F_NG_heat, start = 1); # NG from the initial stream that

is being used to heat up the process

@variable(m, 0 <= F_NG, start = 150); # NG from the initial stream that is

being used in the process

@variable(m, 0 <= F_fluegas, start = 1); # CO2 gas that generates from

combusting natural gas which needs to be injected

@variable(m, 0 <= F_inj, start = 200); # CO2 and other component gases that

is being injected

##################### Connection constraints #######################

for i = 1:10

@NLconstraint(m, m[:mix_out_mol][i] - m[:prePR_in_mol][i] == 0)

@NLconstraint(m, m[:prePR_out_mol][i] - m[:pr_in_mol][i] == 0)

end

for i = 1:5 # After all heavier carbons are removed

@NLconstraint(m, m[:pr_out_mol][i] - m[:preGHR_in_mol][i] == 0)

@NLconstraint(m, m[:preGHR_out_mol][i] - m[:ghr_in_mol][i] == 0)

@NLconstraint(m, m[:ghr_out_mol][i] - m[:atr_in_mol][i] == 0)

@NLconstraint(m, m[:atr_out_mol][i] - m[:postATR_in_mol][i] == 0)
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@NLconstraint(m, m[:postATR_out_mol][i] - m[:itsr_in_mol][i] == 0)

@NLconstraint(m, m[:itsr_out_mol][i] - m[:preCond_in_mol][i] == 0)

@NLconstraint(m, m[:preCond_out_mol][i] - m[:cond_in_mol][i] == 0)

@NLconstraint(m, m[:cond_vap_frac][i]*m[:cond_V] - m[:psa_in_mol][i] ==

0)

end

################# Same for the temperature

##################################

@NLconstraint(m, m[:mix_out_T] - m[:prePR_in_T] == 0);

@NLconstraint(m, m[:prePR_out_T] - m[:pr_in_T] == 0);

@NLconstraint(m, m[:pr_out_T] - m[:preGHR_in_T] == 0);

@NLconstraint(m, m[:preGHR_out_T] - m[:ghr_in_T] == 0);

@NLconstraint(m, m[:ghr_out_T] - m[:atr_in_T] == 0);

@NLconstraint(m, m[:atr_out_T] - m[:postATR_in_T] == 0);

@NLconstraint(m, m[:postATR_out_T] - m[:itsr_in_T] == 0);

@NLconstraint(m, m[:itsr_out_T] - m[:preCond_in_T] == 0);

@NLconstraint(m, m[:preCond_out_T] - m[:cond_in_T] == 0);

@NLconstraint(m, m[:cond_V_T] - m[:psa_in_T] == 0);

############## Initial values ##########################################

for i = 1:10

@NLconstraint(m, par.init.init_comp[i]*m[:F_NG] - m[:mix_in_mol][i] == 0

);

end

@NLconstraint(m, par.mix.in_T - m[:mix_in_T] == 0);

@NLconstraint(m, par.mix.H2O_T - m[:H2O_T] == 0);

############# To ensure the GHR and ATR heat exchange ###################

@NLconstraint(m, m[:ghr_Q] + m[:postATR_Q] == 0); #- additional_Q == 0);

##To ensure that the inlet hot stream is hotter than outlet cold stream##

@NLconstraint(m, m[:atr_out_T] - m[:ghr_out_T] >= 25);

@NLconstraint(m, m[:postATR_out_T] - m[:ghr_in_T] >= 25);

######## New constraints for the economic objective function #############

@NLconstraint(m, m[:F_H2] - m[:psa_outProduct_mol][3] + m[:F_H2_heat] == 0);

@NLconstraint(m, m[:F_NG] - d1 + m[:F_NG_heat] == 0);

@NLconstraint(m, m[:F_fluegas] - m[:F_NG_heat] - 2*m[:F_NG_heat]/0.79 == 0);

@NLconstraint(m, m[:F_inj] - m[:F_fluegas] - sum(value(m[:psa_outPurge_mol][

i]) for i = 1:5) == 0);

@NLconstraint(m, m[:prePR_Q] + m[:preGHR_Q] - m[:F_H2_heat]*par.HHV_H2*2.016

- sum(m[:F_NG_heat]*par.HHV_NG[i]*par.init.init_comp[i]*par.molarMass[

i] for i = 1:10) == 0);

compW1 = Wrev(m, m[:F_inj], 1, 10, m[:psa_outPurge_T], par);

T2 = compT(m, m[:psa_outPurge_T],1,10);

compW2 = Wrev(m, m[:F_inj],10,100,m[:psa_outPurge_T], par);

compWsum = @NLexpression(m, compW1 + compW2);

@NLobjective(m, Max, m[:F_H2]*d3 - compWsum*d2/1000);

optimize!(m)

nominal_J = objective_value(m)



Yoonsik Oh B Julia Code

nominal_values = [

value(m[:mix_in_mol][1]), value(m[:mix_in_mol][2]), value(m[:mix_in_mol]

[3]), value(m[:mix_in_mol][4]), value(m[:mix_in_mol][5]),

value(m[:mix_in_mol][6]), value(m[:mix_in_mol][7]), value(m[:mix_in_mol]

[8]), value(m[:mix_in_mol][9]), value(m[:mix_in_mol][10]),

value(m[:mix_out_mol][1]), value(m[:mix_out_mol][2]), value(m[:

mix_out_mol][3]), value(m[:mix_out_mol][4]), value(m[:mix_out_mol][

5]),

value(m[:mix_out_mol][6]), value(m[:mix_out_mol][7]), value(m[:

mix_out_mol][8]), value(m[:mix_out_mol][9]), value(m[:mix_out_mol][

10]),

value(m[:prePR_in_mol][1]), value(m[:prePR_in_mol][2]), value(m[:

prePR_in_mol][3]), value(m[:prePR_in_mol][4]), value(m[:

prePR_in_mol][5]),

value(m[:prePR_in_mol][6]), value(m[:prePR_in_mol][7]), value(m[:

prePR_in_mol][8]), value(m[:prePR_in_mol][9]), value(m[:

prePR_in_mol][10]),

value(m[:prePR_out_mol][1]), value(m[:prePR_out_mol][2]), value(m[:

prePR_out_mol][3]), value(m[:prePR_out_mol][4]), value(m[:

prePR_out_mol][5]),

value(m[:prePR_out_mol][6]), value(m[:prePR_out_mol][7]), value(m[:

prePR_out_mol][8]), value(m[:prePR_out_mol][9]), value(m[:

prePR_out_mol][10]),

value(m[:pr_in_mol][1]), value(m[:pr_in_mol][2]), value(m[:pr_in_mol][3]

), value(m[:pr_in_mol][4]), value(m[:pr_in_mol][5]),

value(m[:pr_in_mol][6]), value(m[:pr_in_mol][7]), value(m[:pr_in_mol][8]

), value(m[:pr_in_mol][9]), value(m[:pr_in_mol][10]),

value(m[:pr_out_mol][1]), value(m[:pr_out_mol][2]), value(m[:pr_out_mol]

[3]), value(m[:pr_out_mol][4]), value(m[:pr_out_mol][5]),

value(m[:pr_out_mol][6]), value(m[:pr_out_mol][7]), value(m[:pr_out_mol]

[8]), value(m[:pr_out_mol][9]), value(m[:pr_out_mol][10]),

value(m[:preGHR_in_mol][1]), value(m[:preGHR_in_mol][2]), value(m[:

preGHR_in_mol][3]), value(m[:preGHR_in_mol][4]), value(m[:

preGHR_in_mol][5]),

value(m[:preGHR_out_mol][1]), value(m[:preGHR_out_mol][2]), value(m[:

preGHR_out_mol][3]), value(m[:preGHR_out_mol][4]), value(m[:

preGHR_out_mol][5]),

value(m[:ghr_in_mol][1]), value(m[:ghr_in_mol][2]), value(m[:ghr_in_mol]

[3]), value(m[:ghr_in_mol][4]), value(m[:ghr_in_mol][5]),

value(m[:ghr_out_mol][1]), value(m[:ghr_out_mol][2]), value(m[:

ghr_out_mol][3]), value(m[:ghr_out_mol][4]), value(m[:ghr_out_mol][

5]),

value(m[:atr_in_mol][1]), value(m[:atr_in_mol][2]), value(m[:atr_in_mol]

[3]), value(m[:atr_in_mol][4]), value(m[:atr_in_mol][5]),

value(m[:atr_out_mol][1]), value(m[:atr_out_mol][2]), value(m[:

atr_out_mol][3]), value(m[:atr_out_mol][4]), value(m[:atr_out_mol][

5]),

value(m[:postATR_in_mol][1]), value(m[:postATR_in_mol][2]), value(m[:

postATR_in_mol][3]), value(m[:postATR_in_mol][4]), value(m[:

postATR_in_mol][5]),

value(m[:postATR_out_mol][1]), value(m[:postATR_out_mol][2]), value(m[:

postATR_out_mol][3]), value(m[:postATR_out_mol][4]), value(m[:

postATR_out_mol][5]),

value(m[:itsr_in_mol][1]), value(m[:itsr_in_mol][2]), value(m[:
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itsr_in_mol][3]), value(m[:itsr_in_mol][4]), value(m[:itsr_in_mol][

5]),

value(m[:itsr_out_mol][1]), value(m[:itsr_out_mol][2]), value(m[:

itsr_out_mol][3]), value(m[:itsr_out_mol][4]), value(m[:

itsr_out_mol][5]),

value(m[:preCond_in_mol][1]), value(m[:preCond_in_mol][2]), value(m[:

preCond_in_mol][3]), value(m[:preCond_in_mol][4]), value(m[:

preCond_in_mol][5]),

value(m[:preCond_out_mol][1]), value(m[:preCond_out_mol][2]), value(m[:

preCond_out_mol][3]), value(m[:preCond_out_mol][4]), value(m[:

preCond_out_mol][5]),

value(m[:cond_in_mol][1]), value(m[:cond_in_mol][2]), value(m[:

cond_in_mol][3]), value(m[:cond_in_mol][4]), value(m[:cond_in_mol][

5]),

value(m[:cond_L]), value(m[:cond_liq_frac][1]), value(m[:cond_liq_frac][

2]), value(m[:cond_liq_frac][3]), value(m[:cond_liq_frac][4]),

value(m[:cond_liq_frac][5]),

value(m[:cond_V]), value(m[:cond_vap_frac][1]), value(m[:cond_vap_frac][

2]), value(m[:cond_vap_frac][3]), value(m[:cond_vap_frac][4]),

value(m[:cond_vap_frac][5]),

value(m[:psa_in_mol][1]), value(m[:psa_in_mol][2]), value(m[:psa_in_mol]

[3]), value(m[:psa_in_mol][4]), value(m[:psa_in_mol][5]),

value(m[:psa_outProduct_mol][1]), value(m[:psa_outProduct_mol][2]),

value(m[:psa_outProduct_mol][3]), value(m[:psa_outProduct_mol][4]),

value(m[:psa_outProduct_mol][5]),

value(m[:psa_outPurge_mol][1]), value(m[:psa_outPurge_mol][2]), value(m[

:psa_outPurge_mol][3]), value(m[:psa_outPurge_mol][4]), value(m[:

psa_outPurge_mol][5]),

value(m[:mix_in_T]), value(m[:mix_out_T]), value(m[:H2O_T]), value(m[:

prePR_in_T]), value(m[:prePR_out_T]), value(m[:preGHR_in_T]), value

(m[:preGHR_out_T]),

value(m[:ghr_in_T]), value(m[:ghr_out_T]), value(m[:atr_in_T]), value(m[

:postATR_in_T]), value(m[:postATR_out_T]),

value(m[:preCond_out_T]), value(m[:cond_in_T]), value(m[:cond_L_T]),

value(m[:cond_V_T]), value(m[:psa_in_T]), value(m[:psa_outProduct_T

]), value(m[:psa_outPurge_T]),

value(m[:prePR_Q]), value(m[:preGHR_Q]), value(m[:ghr_Q]), value(m[:

postATR_Q]), value(m[:itsr_Q]), value(m[:preCond_Q]),

value(m[:H2Ostream]), value(m[:F_H2]), value(m[:F_H2_heat]), value(m[:

F_NG]), value(m[:F_NG_heat]), value(m[:F_fluegas]), value(m[:F_inj]

)

]

return nominal_values, nominal_J

end

function optJ_func()

__par = _par();

optimizer = optimizer_with_attributes(Ipopt.Optimizer,

"tol" => 1e-9, "constr_viol_tol" => 1e-5,

"print_level" => 0)

m = Model(optimizer);

eps = 0.1
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par = deepcopy(__par)

#par.init.init_stream = par.init.init_stream +5; # +d1

par.elCost = par.elCost*(1+eps); # +d2

#par.P_H2 = par.P_H2*(1+eps); # +d3

par.init.init_stream = par.init.init_stream -5; # -d1

#par.elCost = par.elCost*(1-eps); # -d2

par.P_H2 = par.P_H2*(1-eps); # -d3

d1 = par.init.init_stream;

d2 = par.elCost;

d3 = par.P_H2;

###### Assembling the submodels to a larger model #######

MIX_model(m, par);

prePR_model(m, par);

PR_model(m, par);

preGHR_model(m, par);

GHR_model(m, par);

ATR_model(m, par);

postATR_model(m, par);

ITSR_model(m, par);

preCond_model(m, par);

Cond_model(m, par);

PSA_model(m, par);

@variable(m, 0 <= F_H2, start = 500); # H2 product that is being sold in the

obj function

@variable(m, 0 <= F_H2_heat, start = 1); # H2 from the product stream that

is being used to heat up the process

@variable(m, 0 <= F_NG_heat, start = 1); # NG from the initial stream that

is being used to heat up the process

@variable(m, 0 <= F_NG, start = 150); # NG from the initial stream that is

being used in the process

@variable(m, 0 <= F_fluegas, start = 1); # CO2 gas that generates from

combusting natural gas which needs to be injected

@variable(m, 0 <= F_inj, start = 200); # CO2 and other component gases that

is being injected

##################### Connection constraints #######################

for i = 1:10

@NLconstraint(m, m[:mix_out_mol][i] - m[:prePR_in_mol][i] == 0)

@NLconstraint(m, m[:prePR_out_mol][i] - m[:pr_in_mol][i] == 0)

end

for i = 1:5 # After all heavier carbons are removed

@NLconstraint(m, m[:pr_out_mol][i] - m[:preGHR_in_mol][i] == 0)

@NLconstraint(m, m[:preGHR_out_mol][i] - m[:ghr_in_mol][i] == 0)

@NLconstraint(m, m[:ghr_out_mol][i] - m[:atr_in_mol][i] == 0)

@NLconstraint(m, m[:atr_out_mol][i] - m[:postATR_in_mol][i] == 0)

@NLconstraint(m, m[:postATR_out_mol][i] - m[:itsr_in_mol][i] == 0)

@NLconstraint(m, m[:itsr_out_mol][i] - m[:preCond_in_mol][i] == 0)

@NLconstraint(m, m[:preCond_out_mol][i] - m[:cond_in_mol][i] == 0)

@NLconstraint(m, m[:cond_vap_frac][i]*m[:cond_V] - m[:psa_in_mol][i] ==

0)
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end

################# Same for the temperature

##################################

@NLconstraint(m, m[:mix_out_T] - m[:prePR_in_T] == 0);

@NLconstraint(m, m[:prePR_out_T] - m[:pr_in_T] == 0);

@NLconstraint(m, m[:pr_out_T] - m[:preGHR_in_T] == 0);

@NLconstraint(m, m[:preGHR_out_T] - m[:ghr_in_T] == 0);

@NLconstraint(m, m[:ghr_out_T] - m[:atr_in_T] == 0);

@NLconstraint(m, m[:atr_out_T] - m[:postATR_in_T] == 0);

@NLconstraint(m, m[:postATR_out_T] - m[:itsr_in_T] == 0);

@NLconstraint(m, m[:itsr_out_T] - m[:preCond_in_T] == 0);

@NLconstraint(m, m[:preCond_out_T] - m[:cond_in_T] == 0);

@NLconstraint(m, m[:cond_V_T] - m[:psa_in_T] == 0);

############## Initial values ##########################################

for i = 1:10

@NLconstraint(m, par.init.init_comp[i]*m[:F_NG] - m[:mix_in_mol][i] == 0

);

end

@NLconstraint(m, par.mix.in_T - m[:mix_in_T] == 0);

@NLconstraint(m, par.mix.H2O_T - m[:H2O_T] == 0);

############# To ensure the GHR and ATR heat exchange ###################

@NLconstraint(m, m[:ghr_Q] + m[:postATR_Q] == 0); #- additional_Q == 0);

##To ensure that the inlet hot stream is hotter than outlet cold stream##

@NLconstraint(m, m[:atr_out_T] - m[:ghr_out_T] >= 25);

@NLconstraint(m, m[:postATR_out_T] - m[:ghr_in_T] >= 25);

######## New constraints for the economic objective function #############

@NLconstraint(m, m[:F_H2] - m[:psa_outProduct_mol][3] + m[:F_H2_heat] == 0);

@NLconstraint(m, m[:F_NG] - d1 + m[:F_NG_heat] == 0);

@NLconstraint(m, m[:F_fluegas] - m[:F_NG_heat] - 2*m[:F_NG_heat]/0.79 == 0);

@NLconstraint(m, m[:F_inj] - m[:F_fluegas] - sum(value(m[:psa_outPurge_mol][

i]) for i = 1:5) == 0);

@NLconstraint(m, m[:prePR_Q] + m[:preGHR_Q] - m[:F_H2_heat]*par.HHV_H2*2.016

- sum(m[:F_NG_heat]*par.HHV_NG[i]*par.init.init_comp[i]*par.molarMass[

i] for i = 1:10) == 0);

compW1 = Wrev(m, m[:F_inj], 1, 10, m[:psa_outPurge_T], par);

T2 = compT(m, m[:psa_outPurge_T],1,10);

compW2 = Wrev(m, m[:F_inj],10,100,m[:psa_outPurge_T], par);

compWsum = @NLexpression(m, compW1 + compW2);

@NLobjective(m, Max, m[:F_H2]*d3 - compWsum*d2/1000);

optimize!(m)

opt_J = objective_value(m)

return opt_J

end

function warm_nominal()

par = _par();

optimizer = optimizer_with_attributes(Ipopt.Optimizer,
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"tol" => 1e-9, "constr_viol_tol" => 1e-9,

"print_level" => 0)

m = Model(optimizer);

###### Assembling the submodels to a larger model #######

MIX_model(m, par);

prePR_model(m, par);

PR_model(m, par);

preGHR_model(m, par);

GHR_model(m, par);

ATR_model(m, par);

postATR_model(m, par);

ITSR_model(m, par);

preCond_model(m, par);

Cond_model(m, par);

PSA_model(m, par);

@variable(m, 0 <= F_H2, start = 500); # H2 product that is being sold in the

obj function

@variable(m, 0 <= F_H2_heat, start = 1); # H2 from the product stream that

is being used to heat up the process

@variable(m, 0 <= F_NG_heat, start = 1); # NG from the initial stream that

is being used to heat up the process

@variable(m, 0 <= F_NG, start = 150); # NG from the initial stream that is

being used in the process

@variable(m, 0 <= F_fluegas, start = 1); # CO2 gas that generates from

combusting natural gas which needs to be injected

@variable(m, 0 <= F_inj, start = 200); # CO2 and other component gases that

is being injected

##################### Connection constraints #######################

for i = 1:10

@NLconstraint(m, m[:mix_out_mol][i] - m[:prePR_in_mol][i] == 0)

@NLconstraint(m, m[:prePR_out_mol][i] - m[:pr_in_mol][i] == 0)

end

for i = 1:5 # After all heavier carbons are removed

@NLconstraint(m, m[:pr_out_mol][i] - m[:preGHR_in_mol][i] == 0)

@NLconstraint(m, m[:preGHR_out_mol][i] - m[:ghr_in_mol][i] == 0)

@NLconstraint(m, m[:ghr_out_mol][i] - m[:atr_in_mol][i] == 0)

@NLconstraint(m, m[:atr_out_mol][i] - m[:postATR_in_mol][i] == 0)

@NLconstraint(m, m[:postATR_out_mol][i] - m[:itsr_in_mol][i] == 0)

@NLconstraint(m, m[:itsr_out_mol][i] - m[:preCond_in_mol][i] == 0)

@NLconstraint(m, m[:preCond_out_mol][i] - m[:cond_in_mol][i] == 0)

@NLconstraint(m, m[:cond_vap_frac][i]*m[:cond_V] - m[:psa_in_mol][i] ==

0)

end

################# Same for the temperature

##################################

@NLconstraint(m, m[:mix_out_T] - m[:prePR_in_T] == 0);

@NLconstraint(m, m[:prePR_out_T] - m[:pr_in_T] == 0);

@NLconstraint(m, m[:pr_out_T] - m[:preGHR_in_T] == 0);

@NLconstraint(m, m[:preGHR_out_T] - m[:ghr_in_T] == 0);
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@NLconstraint(m, m[:ghr_out_T] - m[:atr_in_T] == 0);

@NLconstraint(m, m[:atr_out_T] - m[:postATR_in_T] == 0);

@NLconstraint(m, m[:postATR_out_T] - m[:itsr_in_T] == 0);

@NLconstraint(m, m[:itsr_out_T] - m[:preCond_in_T] == 0);

@NLconstraint(m, m[:preCond_out_T] - m[:cond_in_T] == 0);

@NLconstraint(m, m[:cond_V_T] - m[:psa_in_T] == 0);

############## Initial values ##########################################

for i = 1:10

@NLconstraint(m, par.init.init_comp[i]*m[:F_NG] - m[:mix_in_mol][i] == 0

);

end

@NLconstraint(m, par.mix.in_T - m[:mix_in_T] == 0);

@NLconstraint(m, par.mix.H2O_T - m[:H2O_T] == 0);

############# To ensure the GHR and ATR heat exchange ###################

@NLconstraint(m, m[:ghr_Q] + m[:postATR_Q] == 0); #- additional_Q == 0);

##To ensure that the inlet hot stream is hotter than outlet cold stream##

@NLconstraint(m, m[:atr_out_T] - m[:ghr_out_T] >= 25);

@NLconstraint(m, m[:postATR_out_T] - m[:ghr_in_T] >= 25);

######## New constraints for the economic objective function #############

@NLconstraint(m, m[:F_H2] - m[:psa_outProduct_mol][3] + m[:F_H2_heat] == 0);

@NLconstraint(m, m[:F_NG] - par.init.init_stream + m[:F_NG_heat] == 0);

@NLconstraint(m, m[:F_fluegas] - m[:F_NG_heat] - 2*m[:F_NG_heat]/0.79 == 0);

@NLconstraint(m, m[:F_inj] - m[:F_fluegas] - sum(value(m[:psa_outPurge_mol][

i]) for i = 1:5) == 0);

@NLconstraint(m, m[:prePR_Q] + m[:preGHR_Q] - m[:F_H2_heat]*par.HHV_H2*2.016

- sum(m[:F_NG_heat]*par.HHV_NG[i]*par.init.init_comp[i]*par.molarMass[

i] for i = 1:10) == 0);

compW1 = Wrev(m, m[:F_inj], 1, 10, m[:psa_outPurge_T], par);

T2 = compT(m, m[:psa_outPurge_T],1,10);

compW2 = Wrev(m, m[:F_inj],10,100,m[:psa_outPurge_T], par);

compWsum = @NLexpression(m, compW1 + compW2);

@NLobjective(m, Max, m[:F_H2]*par.P_H2 - compWsum*par.elCost/1000); # 44*m[:

F_inj]/1000*par.P_inj

#@NLobjective(m, Max, m[:psa_outProduct_mol][3])

optimize!(m)

variable_primal = Dict(x => value(x) for x in all_variables(m))

return variable_primal

end� �

B.28 test.jl

The test.jl file contains the functions test_delta_y() and test_matrix() for calculating both
the left-hand side and right-hand side of the linearization equation to see if the calculated
gain matrices and Hessian matrices are correct.
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� �
variable_name = [

"mix_in_mol[1]", "mix_in_mol[2]", "mix_in_mol[3]", "mix_in_mol[4]", "

mix_in_mol[5]",

"mix_in_mol[6]", "mix_in_mol[7]", "mix_in_mol[8]", "mix_in_mol[9]", "

mix_in_mol[10]",

"mix_out_mol[1]", "mix_out_mol[2]", "mix_out_mol[3]", "mix_out_mol[4]", "

mix_out_mol[5]",

"mix_out_mol[6]", "mix_out_mol[7]", "mix_out_mol[8]", "mix_out_mol[9]", "

mix_out_mol[10]",

"prePR_in_mol[1]", "prePR_in_mol[2]", "prePR_in_mol[3]", "prePR_in_mol[4]",

"prePR_in_mol[5]",

"prePR_in_mol[6]", "prePR_in_mol[7]", "prePR_in_mol[8]", "prePR_in_mol[9]",

"prePR_in_mol[10]",

"prePR_out_mol[1]", "prePR_out_mol[2]", "prePR_out_mol[3]", "prePR_out_mol

[4]", "prePR_out_mol[5]",

"prePR_out_mol[6]", "prePR_out_mol[7]", "prePR_out_mol[8]", "prePR_out_mol

[9]", "prePR_out_mol[10]",

"pr_in_mol[1]", "pr_in_mol[2]", "pr_in_mol[3]", "pr_in_mol[4]", "pr_in_mol

[5]",

"pr_in_mol[6]", "pr_in_mol[7]", "pr_in_mol[8]", "pr_in_mol[9]", "pr_in_mol

[10]",

"pr_out_mol[1]", "pr_out_mol[2]", "pr_out_mol[3]", "pr_out_mol[4]", "

pr_out_mol[5]",

"pr_out_mol[6]", "pr_out_mol[7]", "pr_out_mol[8]", "pr_out_mol[9]", "

pr_out_mol[10]",

"preGHR_in_mol[1]", "preGHR_in_mol[2]", "preGHR_in_mol[3]", "preGHR_in_mol

[4]", "preGHR_in_mol[5]",

"preGHR_out_mol[1]", "preGHR_out_mol[2]", "preGHR_out_mol[3]", "

preGHR_out_mol[4]", "preGHR_out_mol[5]",

"ghr_in_mol[1]", "ghr_in_mol[2]", "ghr_in_mol[3]", "ghr_in_mol[4]", "

ghr_in_mol[5]",

"ghr_out_mol[1]", "ghr_out_mol[2]", "ghr_out_mol[3]", "ghr_out_mol[4]", "

ghr_out_mol[5]",

"atr_in_mol[1]", "atr_in_mol[2]", "atr_in_mol[3]", "atr_in_mol[4]", "

atr_in_mol[5]",

"atr_out_mol[1]", "atr_out_mol[2]", "atr_out_mol[3]", "atr_out_mol[4]", "

atr_out_mol[5]",

"postATR_in_mol[1]", "postATR_in_mol[2]", "postATR_in_mol[3]", "

postATR_in_mol[4]", "postATR_in_mol[5]",

"postATR_out_mol[1]", "postATR_out_mol[2]", "postATR_out_mol[3]", "

postATR_out_mol[4]", "postATR_out_mol[5]",

"itsr_in_mol[1]", "itsr_in_mol[2]", "itsr_in_mol[3]", "itsr_in_mol[4]", "

itsr_in_mol[5]",

"itsr_out_mol[1]", "itsr_out_mol[2]", "itsr_out_mol[3]", "itsr_out_mol[4]",

"itsr_out_mol[5]",

"preCond_in_mol[1]", "preCond_in_mol[2]", "preCond_in_mol[3]", "

preCond_in_mol[4]", "preCond_in_mol[5]",

"preCond_out_mol[1]", "preCond_out_mol[2]", "preCond_out_mol[3]", "

preCond_out_mol[4]", "preCond_out_mol[5]",

"cond_in_mol[1]", "cond_in_mol[2]", "cond_in_mol[3]", "cond_in_mol[4]", "

cond_in_mol[5]",

"cond_L", "cond_liq_frac[1]", "cond_liq_frac[2]", "cond_liq_frac[3]", "

cond_liq_frac[4]", "cond_liq_frac[5]",

"cond_V", "cond_vap_frac[1]", "cond_vap_frac[2]", "cond_vap_frac[3]", "
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cond_vap_frac[4]", "cond_vap_frac[5]",

"psa_in_mol[1]", "psa_in_mol[2]", "psa_in_mol[3]", "psa_in_mol[4]", "

psa_in_mol[5]",

"psa_outProduct_mol[1]", "psa_outProduct_mol[2]", "psa_outProduct_mol[3]", "

psa_outProduct_mol[4]", "psa_outProduct_mol[5]",

"psa_outPurge_mol[1]", "psa_outPurge_mol[2]", "psa_outPurge_mol[3]", "

psa_outPurge_mol[4]", "psa_outPurge_mol[5]",

"mix_in_T", "mix_out_T", "H2O_T", "prePR_in_T", "prePR_out_T", "preGHR_in_T"

, "preGHR_out_T",

"ghr_in_T", "ghr_out_T", "atr_in_T", "postATR_in_T", "postATR_out_T",

"preCond_out_T", "cond_in_T", "cond_L_T", "cond_V_T", "psa_in_T", "

psa_outProduct_T", "psa_outPurge_T",

"prePR_Q", "preGHR_Q", "ghr_Q", "postATR_Q", "itsr_Q", "preCond_Q",

"H2Ostream", "F_H2", "F_H2_heat", "F_NG", "F_NG_heat", "F_fluegas", "F_inj"

]

using JuMP, Ipopt, MathOptInterface, DataFrames, PrettyTables

include("enthalpy.jl")

include("0par.jl")

include("1MIX.jl")

include("2PrePR.jl")

include("3PR.jl")

include("4PreGHR.jl")

include("5GHR.jl")

include("6ATR.jl")

include("7PostATR.jl")

include("8ITSR.jl")

include("9PreCondensate.jl")

include("10Condensate.jl")

include("11PSA.jl")

include("dataframe.jl")

include("equilibrium.jl")

include("compWork.jl")

include("active.jl")

include("nominal_case.jl")

include("gain_d.jl")

include("gain_u.jl")

include("J_uu.jl")

include("J_ud.jl")

eps = 1e-5

nominal_values, nominal_J = nominal();

function test_delta_y(option)

delta_u = 0;

delta_d = 0;

par = _par();

optimizer = optimizer_with_attributes(Ipopt.Optimizer,

"tol" => 1e-6, "constr_viol_tol" => 1e-8,

"print_level" => 0)

m = Model(optimizer);

###### Assembling the submodels to a larger model #######

MIX_model(m, par);

prePR_model(m, par);
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PR_model(m, par);

preGHR_model(m, par);

GHR_model(m, par);

ATR_model(m, par);

postATR_model(m, par);

ITSR_model(m, par);

preCond_model(m, par);

Cond_model(m, par);

PSA_model(m, par);

if option == 1 # u1 + h

delta_u = eps*79.29706225438805;

@NLconstraint(m, m[:nO2]-79.29706225438805*(1+eps) == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == 2 # u2 + h

delta_u = eps*644.5953165006283;

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283*(1+eps) == 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == 3 # u3 + h

delta_u = eps*1291.817465833818;

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818*(1+eps) == 0);

elseif option == 4 # d1 + k

delta_d = eps*par.init.init_stream;

par.init.init_stream = par.init.init_stream*(1+eps);

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == 5 # d2 + k

delta_d = eps*par.elCost;

par.elCost = par.elCost*(1+eps);

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == 6 # d3 + k

delta_d = eps*par.P_H2;

par.P_H2 = par.P_H2*(1+eps);

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == -1 # u1 - h

delta_u = -eps*79.29706225438805;

@NLconstraint(m, m[:nO2]-79.29706225438805*(1-eps) == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == -2 # u2 - h

delta_u = -eps*644.5953165006283;

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283*(1-eps) == 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == -3 # u3 - h
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delta_u = -eps*1291.817465833818;

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818*(1-eps) == 0);

elseif option == -4 # d1 - k

delta_d = -eps*par.init.init_stream;

par.init.init_stream = par.init.init_stream*(1-eps);

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == -5 # d2 - k

delta_d = -eps*par.elCost;

par.elCost = par.elCost*(1-eps);

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

elseif option == -6 # d3 - k

delta_d = -eps*par.P_H2;

par.P_H2 = par.P_H2*(1-eps);

@NLconstraint(m, m[:nO2]-79.29706225438805 == 0);

@NLconstraint(m, m[:pr_in_T]-644.5953165006283== 0);

@NLconstraint(m, m[:atr_out_T]-1291.817465833818 == 0);

else

print("Option not valid")

end

@variable(m, 0 <= F_H2, start = 500); # H2 product that is being sold in the

obj function

@variable(m, 0 <= F_H2_heat, start = 1); # H2 from the product stream that

is being used to heat up the process

@variable(m, 0 <= F_NG_heat, start = 1); # NG from the initial stream that

is being used to heat up the process

@variable(m, 0 <= F_NG, start = 150); # NG from the initial stream that is

being used in the process

@variable(m, 0 <= F_fluegas, start = 1); # CO2 gas that generates from

combusting natural gas which needs to be injected

@variable(m, 0 <= F_inj, start = 200); # CO2 and other component gases that

is being injected

##################### Connection constraints #######################

for i = 1:10

@NLconstraint(m, m[:mix_out_mol][i] - m[:prePR_in_mol][i] == 0)

@NLconstraint(m, m[:prePR_out_mol][i] - m[:pr_in_mol][i] == 0)

end

for i = 1:5 # After all heavier carbons are removed

@NLconstraint(m, m[:pr_out_mol][i] - m[:preGHR_in_mol][i] == 0)

@NLconstraint(m, m[:preGHR_out_mol][i] - m[:ghr_in_mol][i] == 0)

@NLconstraint(m, m[:ghr_out_mol][i] - m[:atr_in_mol][i] == 0)

@NLconstraint(m, m[:atr_out_mol][i] - m[:postATR_in_mol][i] == 0)

@NLconstraint(m, m[:postATR_out_mol][i] - m[:itsr_in_mol][i] == 0)

@NLconstraint(m, m[:itsr_out_mol][i] - m[:preCond_in_mol][i] == 0)

@NLconstraint(m, m[:preCond_out_mol][i] - m[:cond_in_mol][i] == 0)

@NLconstraint(m, m[:cond_vap_frac][i]*m[:cond_V] - m[:psa_in_mol][i] ==
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0)

end

################# Same for the temperature

##################################

@NLconstraint(m, m[:mix_out_T] - m[:prePR_in_T] == 0);

@NLconstraint(m, m[:prePR_out_T] - m[:pr_in_T] == 0);

@NLconstraint(m, m[:pr_out_T] - m[:preGHR_in_T] == 0);

@NLconstraint(m, m[:preGHR_out_T] - m[:ghr_in_T] == 0);

@NLconstraint(m, m[:ghr_out_T] - m[:atr_in_T] == 0);

@NLconstraint(m, m[:atr_out_T] - m[:postATR_in_T] == 0);

@NLconstraint(m, m[:postATR_out_T] - m[:itsr_in_T] == 0);

@NLconstraint(m, m[:itsr_out_T] - m[:preCond_in_T] == 0);

@NLconstraint(m, m[:preCond_out_T] - m[:cond_in_T] == 0);

@NLconstraint(m, m[:cond_V_T] - m[:psa_in_T] == 0);

############## Initial values ##########################################

for i = 1:10

@NLconstraint(m, par.init.init_comp[i]*m[:F_NG] - m[:mix_in_mol][i] == 0

);

end

@NLconstraint(m, par.mix.in_T - m[:mix_in_T] == 0);

@NLconstraint(m, par.mix.H2O_T - m[:H2O_T] == 0);

############# To ensure the GHR and ATR heat exchange ###################

@NLconstraint(m, m[:ghr_Q] + m[:postATR_Q] == 0); #- additional_Q == 0);

##To ensure that the inlet hot stream is hotter than outlet cold stream##

@NLconstraint(m, m[:atr_out_T] - m[:ghr_out_T] >= 25);

@NLconstraint(m, m[:postATR_out_T] - m[:ghr_in_T] >= 25);

######## New constraints for the economic objective function #############

@NLconstraint(m, m[:F_H2] - m[:psa_outProduct_mol][3] + m[:F_H2_heat] == 0);

@NLconstraint(m, m[:F_NG] - par.init.init_stream + m[:F_NG_heat] == 0);

@NLconstraint(m, m[:F_fluegas] - m[:F_NG_heat] - 2*m[:F_NG_heat]/0.79 == 0);

@NLconstraint(m, m[:F_inj] - m[:F_fluegas] - sum(value(m[:psa_outPurge_mol][

i]) for i = 1:5) == 0);

@NLconstraint(m, m[:prePR_Q] + m[:preGHR_Q] - m[:F_H2_heat]*par.HHV_H2*2.016

- sum(m[:F_NG_heat]*par.HHV_NG[i]*par.init.init_comp[i]*par.molarMass[

i] for i = 1:10) == 0);

compW1 = Wrev(m, m[:F_inj], 1, 10, m[:psa_outPurge_T], par);

T2 = compT(m, m[:psa_outPurge_T],1,10);

compW2 = Wrev(m, m[:F_inj],10,100,m[:psa_outPurge_T], par);

compWsum = @NLexpression(m, compW1 + compW2);

@NLobjective(m, Max, m[:F_H2]*par.P_H2 - compWsum*par.elCost/1000); # 44*m[:

F_inj]/1000*par.P_inj

#@NLobjective(m, Max, m[:psa_outProduct_mol][3])

optimize!(m)

nominal_J = objective_value(m)

output_change = [

value(m[:mix_in_mol][1]), value(m[:mix_in_mol][2]), value(m[:mix_in_mol]
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[3]), value(m[:mix_in_mol][4]), value(m[:mix_in_mol][5]),

value(m[:mix_in_mol][6]), value(m[:mix_in_mol][7]), value(m[:mix_in_mol]

[8]), value(m[:mix_in_mol][9]), value(m[:mix_in_mol][10]),

value(m[:mix_out_mol][1]), value(m[:mix_out_mol][2]), value(m[:

mix_out_mol][3]), value(m[:mix_out_mol][4]), value(m[:mix_out_mol][

5]),

value(m[:mix_out_mol][6]), value(m[:mix_out_mol][7]), value(m[:

mix_out_mol][8]), value(m[:mix_out_mol][9]), value(m[:mix_out_mol][

10]),

value(m[:prePR_in_mol][1]), value(m[:prePR_in_mol][2]), value(m[:

prePR_in_mol][3]), value(m[:prePR_in_mol][4]), value(m[:

prePR_in_mol][5]),

value(m[:prePR_in_mol][6]), value(m[:prePR_in_mol][7]), value(m[:

prePR_in_mol][8]), value(m[:prePR_in_mol][9]), value(m[:

prePR_in_mol][10]),

value(m[:prePR_out_mol][1]), value(m[:prePR_out_mol][2]), value(m[:

prePR_out_mol][3]), value(m[:prePR_out_mol][4]), value(m[:

prePR_out_mol][5]),

value(m[:prePR_out_mol][6]), value(m[:prePR_out_mol][7]), value(m[:

prePR_out_mol][8]), value(m[:prePR_out_mol][9]), value(m[:

prePR_out_mol][10]),

value(m[:pr_in_mol][1]), value(m[:pr_in_mol][2]), value(m[:pr_in_mol][3]

), value(m[:pr_in_mol][4]), value(m[:pr_in_mol][5]),

value(m[:pr_in_mol][6]), value(m[:pr_in_mol][7]), value(m[:pr_in_mol][8]

), value(m[:pr_in_mol][9]), value(m[:pr_in_mol][10]),

value(m[:pr_out_mol][1]), value(m[:pr_out_mol][2]), value(m[:pr_out_mol]

[3]), value(m[:pr_out_mol][4]), value(m[:pr_out_mol][5]),

value(m[:pr_out_mol][6]), value(m[:pr_out_mol][7]), value(m[:pr_out_mol]

[8]), value(m[:pr_out_mol][9]), value(m[:pr_out_mol][10]),

value(m[:preGHR_in_mol][1]), value(m[:preGHR_in_mol][2]), value(m[:

preGHR_in_mol][3]), value(m[:preGHR_in_mol][4]), value(m[:

preGHR_in_mol][5]),

value(m[:preGHR_out_mol][1]), value(m[:preGHR_out_mol][2]), value(m[:

preGHR_out_mol][3]), value(m[:preGHR_out_mol][4]), value(m[:

preGHR_out_mol][5]),

value(m[:ghr_in_mol][1]), value(m[:ghr_in_mol][2]), value(m[:ghr_in_mol]

[3]), value(m[:ghr_in_mol][4]), value(m[:ghr_in_mol][5]),

value(m[:ghr_out_mol][1]), value(m[:ghr_out_mol][2]), value(m[:

ghr_out_mol][3]), value(m[:ghr_out_mol][4]), value(m[:ghr_out_mol][

5]),

value(m[:atr_in_mol][1]), value(m[:atr_in_mol][2]), value(m[:atr_in_mol]

[3]), value(m[:atr_in_mol][4]), value(m[:atr_in_mol][5]),

value(m[:atr_out_mol][1]), value(m[:atr_out_mol][2]), value(m[:

atr_out_mol][3]), value(m[:atr_out_mol][4]), value(m[:atr_out_mol][

5]),

value(m[:postATR_in_mol][1]), value(m[:postATR_in_mol][2]), value(m[:

postATR_in_mol][3]), value(m[:postATR_in_mol][4]), value(m[:

postATR_in_mol][5]),

value(m[:postATR_out_mol][1]), value(m[:postATR_out_mol][2]), value(m[:

postATR_out_mol][3]), value(m[:postATR_out_mol][4]), value(m[:

postATR_out_mol][5]),

value(m[:itsr_in_mol][1]), value(m[:itsr_in_mol][2]), value(m[:

itsr_in_mol][3]), value(m[:itsr_in_mol][4]), value(m[:itsr_in_mol][

5]),
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value(m[:itsr_out_mol][1]), value(m[:itsr_out_mol][2]), value(m[:

itsr_out_mol][3]), value(m[:itsr_out_mol][4]), value(m[:

itsr_out_mol][5]),

value(m[:preCond_in_mol][1]), value(m[:preCond_in_mol][2]), value(m[:

preCond_in_mol][3]), value(m[:preCond_in_mol][4]), value(m[:

preCond_in_mol][5]),

value(m[:preCond_out_mol][1]), value(m[:preCond_out_mol][2]), value(m[:

preCond_out_mol][3]), value(m[:preCond_out_mol][4]), value(m[:

preCond_out_mol][5]),

value(m[:cond_in_mol][1]), value(m[:cond_in_mol][2]), value(m[:

cond_in_mol][3]), value(m[:cond_in_mol][4]), value(m[:cond_in_mol][

5]),

value(m[:cond_L]), value(m[:cond_liq_frac][1]), value(m[:cond_liq_frac][

2]), value(m[:cond_liq_frac][3]), value(m[:cond_liq_frac][4]),

value(m[:cond_liq_frac][5]),

value(m[:cond_V]), value(m[:cond_vap_frac][1]), value(m[:cond_vap_frac][

2]), value(m[:cond_vap_frac][3]), value(m[:cond_vap_frac][4]),

value(m[:cond_vap_frac][5]),

value(m[:psa_in_mol][1]), value(m[:psa_in_mol][2]), value(m[:psa_in_mol]

[3]), value(m[:psa_in_mol][4]), value(m[:psa_in_mol][5]),

value(m[:psa_outProduct_mol][1]), value(m[:psa_outProduct_mol][2]),

value(m[:psa_outProduct_mol][3]), value(m[:psa_outProduct_mol][4]),

value(m[:psa_outProduct_mol][5]),

value(m[:psa_outPurge_mol][1]), value(m[:psa_outPurge_mol][2]), value(m[

:psa_outPurge_mol][3]), value(m[:psa_outPurge_mol][4]), value(m[:

psa_outPurge_mol][5]),

value(m[:mix_in_T]), value(m[:mix_out_T]), value(m[:H2O_T]), value(m[:

prePR_in_T]), value(m[:prePR_out_T]), value(m[:preGHR_in_T]), value

(m[:preGHR_out_T]),

value(m[:ghr_in_T]), value(m[:ghr_out_T]), value(m[:atr_in_T]), value(m[

:postATR_in_T]), value(m[:postATR_out_T]),

value(m[:preCond_out_T]), value(m[:cond_in_T]), value(m[:cond_L_T]),

value(m[:cond_V_T]), value(m[:psa_in_T]), value(m[:psa_outProduct_T

]), value(m[:psa_outPurge_T]),

value(m[:prePR_Q]), value(m[:preGHR_Q]), value(m[:ghr_Q]), value(m[:

postATR_Q]), value(m[:itsr_Q]), value(m[:preCond_Q]),

value(m[:H2Ostream]), value(m[:F_H2]), value(m[:F_H2_heat]), value(m[:

F_NG]), value(m[:F_NG_heat]), value(m[:F_fluegas]), value(m[:F_inj]

)

]

###### Calculating left hand side ######

lhs = zeros(length(output_change))

for i in eachindex(output_change)

lhs[i] = output_change[i] - nominal_values[i]

end

##### Calculating right hand side #####

if -3 <= option <= 3

G_y_matrix = G_y(nominal_values, option, eps);

rhs = G_y_matrix*delta_u;

else

G_yd_matrix = G_yd(nominal_values, option+3, eps);

rhs = G_yd_matrix*delta_d;
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end

##### Calculating the difference between left hand side and right hand side

#####

diff = zeros(length(lhs));

for i in eachindex(lhs)

diff[i] = lhs[i] - rhs[i];

end

##### Printing the results of the linearization #####

return DataFrame(Variable = variable_name,

delta_y = lhs,

linearized = rhs,

Difference = diff)

end

#show(test_delta_y(-6), allrows=true)

function test_matrix(option)

delta_d = 0;

input_list = [79.29706225438805,644.5953165006283,1291.817465833818]

par = _par();

optimizer = optimizer_with_attributes(Ipopt.Optimizer,

"tol" => 1e-10, "constr_viol_tol" => 1e-10,

"print_level" => 0)

m = Model(optimizer);

###### Assembling the submodels to a larger model #######

MIX_model(m, par);

prePR_model(m, par);

PR_model(m, par);

preGHR_model(m, par);

GHR_model(m, par);

ATR_model(m, par);

postATR_model(m, par);

ITSR_model(m, par);

preCond_model(m, par);

Cond_model(m, par);

PSA_model(m, par);

if option == 1 # d1 + k

delta_d = [eps*par.init.init_stream; 0; 0];

par.init.init_stream = par.init.init_stream*(1+eps);

elseif option == 2 # d2 + k

delta_d = [0;eps*par.elCost;0];

par.elCost = par.elCost*(1+eps);

elseif option == 3 # d3 + k

delta_d = [0;0;eps*par.P_H2];

par.P_H2 = par.P_H2*(1+eps);

elseif option == -1 # d1 - k

delta_d = [-eps*par.init.init_stream; 0; 0];

par.init.init_stream = par.init.init_stream*(1-eps);

elseif option == -2 # d2 - k

delta_d = [0;-eps*par.elCost;0];
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par.elCost = par.elCost*(1-eps);

elseif option == -3 # d3 - k

delta_d = [0;0;-eps*par.P_H2];

par.P_H2 = par.P_H2*(1-eps);

else

print("Option not valid")

end

@variable(m, 0 <= F_H2, start = 500); # H2 product that is being sold in the

obj function

@variable(m, 0 <= F_H2_heat, start = 1); # H2 from the product stream that

is being used to heat up the process

@variable(m, 0 <= F_NG_heat, start = 1); # NG from the initial stream that

is being used to heat up the process

@variable(m, 0 <= F_NG, start = 150); # NG from the initial stream that is

being used in the process

@variable(m, 0 <= F_fluegas, start = 1); # CO2 gas that generates from

combusting natural gas which needs to be injected

@variable(m, 0 <= F_inj, start = 200); # CO2 and other component gases that

is being injected

##################### Connection constraints #######################

for i = 1:10

@NLconstraint(m, m[:mix_out_mol][i] - m[:prePR_in_mol][i] == 0)

@NLconstraint(m, m[:prePR_out_mol][i] - m[:pr_in_mol][i] == 0)

end

for i = 1:5 # After all heavier carbons are removed

@NLconstraint(m, m[:pr_out_mol][i] - m[:preGHR_in_mol][i] == 0)

@NLconstraint(m, m[:preGHR_out_mol][i] - m[:ghr_in_mol][i] == 0)

@NLconstraint(m, m[:ghr_out_mol][i] - m[:atr_in_mol][i] == 0)

@NLconstraint(m, m[:atr_out_mol][i] - m[:postATR_in_mol][i] == 0)

@NLconstraint(m, m[:postATR_out_mol][i] - m[:itsr_in_mol][i] == 0)

@NLconstraint(m, m[:itsr_out_mol][i] - m[:preCond_in_mol][i] == 0)

@NLconstraint(m, m[:preCond_out_mol][i] - m[:cond_in_mol][i] == 0)

@NLconstraint(m, m[:cond_vap_frac][i]*m[:cond_V] - m[:psa_in_mol][i] ==

0)

end

################# Same for the temperature

##################################

@NLconstraint(m, m[:mix_out_T] - m[:prePR_in_T] == 0);

@NLconstraint(m, m[:prePR_out_T] - m[:pr_in_T] == 0);

@NLconstraint(m, m[:pr_out_T] - m[:preGHR_in_T] == 0);

@NLconstraint(m, m[:preGHR_out_T] - m[:ghr_in_T] == 0);

@NLconstraint(m, m[:ghr_out_T] - m[:atr_in_T] == 0);

@NLconstraint(m, m[:atr_out_T] - m[:postATR_in_T] == 0);

@NLconstraint(m, m[:postATR_out_T] - m[:itsr_in_T] == 0);

@NLconstraint(m, m[:itsr_out_T] - m[:preCond_in_T] == 0);

@NLconstraint(m, m[:preCond_out_T] - m[:cond_in_T] == 0);

@NLconstraint(m, m[:cond_V_T] - m[:psa_in_T] == 0);

############## Initial values ##########################################

for i = 1:10
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@NLconstraint(m, par.init.init_comp[i]*m[:F_NG] - m[:mix_in_mol][i] == 0

);

end

@NLconstraint(m, par.mix.in_T - m[:mix_in_T] == 0);

@NLconstraint(m, par.mix.H2O_T - m[:H2O_T] == 0);

############# To ensure the GHR and ATR heat exchange ###################

@NLconstraint(m, m[:ghr_Q] + m[:postATR_Q] == 0); #- additional_Q == 0);

##To ensure that the inlet hot stream is hotter than outlet cold stream##

@NLconstraint(m, m[:atr_out_T] - m[:ghr_out_T] >= 25);

@NLconstraint(m, m[:postATR_out_T] - m[:ghr_in_T] >= 25);

######## New constraints for the economic objective function #############

@NLconstraint(m, m[:F_H2] - m[:psa_outProduct_mol][3] + m[:F_H2_heat] == 0);

@NLconstraint(m, m[:F_NG] - par.init.init_stream + m[:F_NG_heat] == 0);

@NLconstraint(m, m[:F_fluegas] - m[:F_NG_heat] - 2*m[:F_NG_heat]/0.79 == 0);

@NLconstraint(m, m[:F_inj] - m[:F_fluegas] - sum(value(m[:psa_outPurge_mol][

i]) for i = 1:5) == 0);

@NLconstraint(m, m[:prePR_Q] + m[:preGHR_Q] - m[:F_H2_heat]*par.HHV_H2*2.016

- sum(m[:F_NG_heat]*par.HHV_NG[i]*par.init.init_comp[i]*par.molarMass[

i] for i = 1:10) == 0);

compW1 = Wrev(m, m[:F_inj], 1, 10, m[:psa_outPurge_T], par);

T2 = compT(m, m[:psa_outPurge_T],1,10);

compW2 = Wrev(m, m[:F_inj],10,100,m[:psa_outPurge_T], par);

compWsum = @NLexpression(m, compW1 + compW2);

@NLobjective(m, Max, m[:F_H2]*par.P_H2 - compWsum*par.elCost/1000); # 44*m[:

F_inj]/1000*par.P_inj

#@NLobjective(m, Max, m[:psa_outProduct_mol][3])

optimize!(m);

J_uu_matrix = J_uu(5e-2);

J_ud_matrix = J_ud(5e-2);

rhs = inv(J_uu_matrix)*J_ud_matrix*(delta_d);

lhs = [value(m[:nO2])-79.29706225438805,

value(m[:pr_in_T])-644.5953165006283,

value(m[:atr_out_T])-1291.817465833818]

input_name = ["nO2", "pr_in_T", "atr_out_T"];

diff = zeros(length(lhs));

for i in eachindex(lhs)

diff[i] = lhs[i] - rhs[i];

end

return DataFrame(Variable = input_name,

lhs = lhs,

rhs = rhs,

diff = diff);

end

#show(test_matrix(1), allrows=true)� �
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