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A B S T R A C T   

Current district heating networks are undergoing a sustainable transition towards the 4th and 5th generation of 
district heating networks, characterized by the integration of different types of renewable energy sources (RES) 
and low operational temperatures, i.e., 55 ◦C or lower. Due to the lower temperature difference between supply 
and return, it is necessary to develop novel methods to understand the loads accurately and provide operation 
scenarios to anticipate demand peaks and increase flexibility in the energy network, both for long- and short- 
term horizons. In this study, a hybrid machine-learning (ML) method is developed, combining a clustering 
pre-processing step with a multi-input artificial neural network (ANN) model to predict heat loads in buildings 
cluster-wise. Specifically, the impact of time-series data clustering, as a pre-processing step, on the performance 
of ML models was investigated. It was found that data clustering contributes effectively to the reduction of data 
training costs by limiting the training processes to representative clusters only instead of all datasets. Addi
tionally, low-quality data, including outliers and large measurement gaps, are excluded from the training to 
enhance the overall prediction performance of the models.   

1. Introduction 

1.1. Background 

Energy usage in buildings accounts for up to 40% of the total energy 
usage in the European Union (EU) (Pérez-Lombard, Ortiz and Pout, 
2008). With this in mind, increasing the energy efficiency of buildings is 
one of the key objectives of the EU strategy for the decarbonization of 
the economy (Directive (EU), Directive). Current district heating (DH) 
networks are responsible for covering around 13% of the total thermal 
energy demand in the EU (Werner, 2017). The evolution of DH networks 
over the years has reduced the supply temperatures with the progressive 
implementation of the so-called 4th and 5th generation district heating 
(4GDH, 5GDH) (Lund et al., 2014, Li and Nord, 2018), which supply 
heat at temperatures around 45◦C–55◦C and below. This has enabled an 
increased integration of low-grade energy sources such as distributed 
renewable energy systems (RES) (Lumbreras and Garay, 2020) or waste 

heat streams (Wahlroos, Pärssinen, Manner and Syri, 2017, Ziemele 
et al., 2018) in the heating network. 

Although the transition toward 5GDH has not yet been completed 
and considerable developments are still ongoing in this direction, 
However, there is a strong need to understand the energy demand trends 
on the end-user side and the interaction with the energy network, along 
with eventual connected RESs. This requires the introduction of accurate 
operating strategies to adapt local heat production and demand in the 
network. To do so, accurate understandings and characterization 
methods for heat loads are the first essential step, so the available local 
RES sources can be correctly operated concerning external variables 
such as weather and pricing models (Fitó et al., 2020). However, this 
task requires deep knowledge and understanding of the energy flow and 
heating patterns in buildings. Therefore, considerable efforts have been 
made nowadays for building energy assessments using metered data. 
Subsequently, the collected data can be potentially used for deep data 
analysis and optimization, and feed data-driven models for different 
load predictions (Frei et al., 2021, Ahmad and Chen, 2019). 
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Additionally, given the integration of HP potentials loads become more 
sensitive as they are also influenced by other variables and disturbances 
that have not been conventionally considered, e.g., building heating 
system operating modes, building time constant, storage effects, and 
occupant schedules (Calikus et al., 2019). Moreover, unlike space 
heating (SH) loads, loads of domestic hot water (DHW) are commonly 
case/building type-specific, with different performance patterns 
compared to SH loads. Therefore, how to develop a holistic machine 
learning (ML) framework that can fill the above gaps is not an easy task 
(Ding, Brattebø and Nord, 2021). In this study, we focus on filling this 
knowledge gap by developing hybrid load prediction methods that can 
be essential for any optimal energy operation strategy, particularly, for 
RES-integrated district heating systems with such as heat pumps (HPs). 

1.2. Previous studies 

In contrast to electricity load analysis, prediction methods applied to 
heat loads are relatively complex, and this research field is yet to be 
consolidated (Lumbreras et al., 2022). In this regard, different ap
proaches and frameworks have been investigated, such as white-box 
models, which are purely based on prior knowledge of building phys
ics (Klein et al., 2017). However, the model development and calibration 
process via metered data is time- and resource-intensive and hard to 
replicate at community levels (Lumbreras et al., 2022). Another alter
native is provided by data-driven models that are partially or fully based 
on energy meter data (Ding et al., 2022). A wide variety of data-driven 
models exist, ranging from black-box models, in which no prior 
knowledge of the building’s physics is assumed, up to gray-box models 
formulated using differential equations calibrated with metered data. 
Concerning monthly and yearly load forecasts for energy planning and 
operation, the energy signature method is a broadly utilized data-driven 
methodology that expresses heating energy use as a function of weather 
variables (Eriksson, Akander and Moshfegh, 2020). In this context, au
thors in (Sha et al., 2019, Nielsen and Madsen, 2006, Wang, Lu and Li, 
2019) studied the dependency between weather variables (e.g., outdoor 
temperature, wind speed, air humidity, solar irradiation) and the heat
ing demand in buildings. The targeted prediction horizons were 
monthly, weekly, and daily. Here, it has been proven that outdoor 
temperature was considered to be the most dominant factor in the 
studied cases (Timoudasa). Some results showed that multiple regres
sion models are applicable to short-term heat load prediction, however, 
these approaches need to be improved more by considering external 
factors, such as occupancy and indoor conditions. Furthermore, energy 
signature approaches are commonly valid for low-resolution pre
dictions, such as weekly or monthly accumulated energies. However, 
operation strategies require high-resolution predictions (from daily to 
hourly), which leads to the obligation of developing accurate models. 
For this purpose, different ML approaches have shown strengths (Dag
dougui, Bagheri, Le and Dessaint, 2019, Sandberg, Wallin, Li and Azaza, 
2019). As an ML method, artificial neural networks (ANN), have 

recently been applied for the heat load prediction problem in buildings. 
In (Dagdougui, Bagheri, Le and Dessaint, 2019), a study of several ANN 
architectures is presented to predict heat loads in a residential building 
in the very short-term (hourly) and short-term (daily) horizons. The 
obtained results vary from a mean absolute percentage error (MAPE) of 
3% to 4%. In the same context, authors in (Sandberg, Wallin, Li and 
Azaza, 2019) presented a nonlinear autoregressive neural network with 
external input (NARX) to perform heat demand forecasts. Thirteen input 
variables, including weather, energy, and social behavior parameters, 
have been considered to predict the hourly heat demand of a commercial 
building. In this case, a prediction error of 3.2 % is obtained. The result 
revealed that these input parameters can predict the building heat de
mand with up to 96 % accuracy on an hourly basis for a whole year. 
Nevertheless, as a drawback, existing ML approaches need large 
amounts of high-resolution data, which is not always available from the 
current DH substation measuring systems. This fact imposes additional 
duties on engineers and data scientists by requiring extensive cleaning 
and pre-processing procedures, which leads to considerable data anal
ysis costs and time. 

Regardless of the effectiveness of ML and data-driven approaches in 
regression problems, as stated earlier, such techniques are highly 
dependent on data resolution, quality, and availability. Data quality has 
been a major concern, leading to the introduction of data standards and 
quality frameworks (Biessmann et al., 2021, Breck et al., 2019, Gupta 
et al., 2021, Schelter et al., 2018, Gudivada, Apon and Ding, 2017). 
Recent advances in artificial intelligence (AI) have brought data quality 
back into the spotlight, and researchers have pointed out the impact of 
data processing methods on the performance of AI/ML models (Gudi
vada, Apon and Ding, 2017). In (Budach), a massive analysis, sustained 
by empirical results, is carried out to evaluate the effect of six data 
quality dimensions. It has been found that, in cases of regression prob
lems, the presence of missing values or inaccurate features in the test 
data leads to undesired model performance. For building energy man
agement systems, collected data, either from a legacy system or from the 
internet of things (IoT)-enabled sensors, is not an exception. In this 
particular case, additional uncertain factors, mainly human and 
environmental-related, can take place and make interpreting load data 
even more challenging (Li, Hong and Sofos, 2019, Gram-Hanssen, 
2013). Given such data challenges, the classification of heat demand 
profiles in buildings, using time-series data clustering, has been an 
active research topic recently, either regarding different timeslots 
(Gianniou et al., 2018) or according to building occupancy activities 
(Carbonare, Pflug and Wagner, 2018). 

1.3. Role of the proposed methods in the building energy operation 
framework 

Below, the role of the proposed data analysis and modeling 
approach, in the framework of building energy management, is detailed 
and explained. This framework consists of four stages that should be 

Nomenclature 

4GDH 4th Generation District Heating 
5GDH 5th Generation District Heating 
AI Artificial intelligence 
ANN Artificial neural networks 
DH District heating 
DHW Domestic hot water 
DSM Demand side management 
DTW Dynamic Time Warping 
ENOVA Norwegian Energy Efficiency Agency 
EU European Union 

HP Heat pump 
IoT Internet of Things 
LBFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
ML Machine learning 
MLP Multi-layer perceptron 
MSE Mean Squared Error 
NARX Nonlinear autoregressive neural network with external 

input 
RES Renewable energy source 
SH Space heating  
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accomplished in sequence. A simple flowchart, illustrating this frame
work is displayed in Fig. 1. These four stages are:  

1 Data cleaning and processing: it is common that "empty" values can 
be stored due to a temporary malfunction of the data transfer 
mechanism from sensors to databases. Additionally, noisy and faulty 
measurements can lead to outlier data that needs to be filtered out.  

2 Data clustering: even after data cleaning, null values, and irregular 
patterns can be present in the collected data profiles, and here comes 
the role of data clustering. As energy consumption data is mostly 
considered here, time-series clustering is the right approach to 
dealing with time-based datasets. This operation regroups similar 
profiles into separate groups or clusters and filters out uncommon 
data patterns and measurement gaps.  

3 Data-driven modeling: developing ANN models through training and 
validation processes using historical data. The models are subject to 
periodic updates by performing new training to enhance their per
formance using newly generated data.  

4 Potential operation strategies: based on accurate prediction models, 
optimization algorithms can anticipate the heat load flows in a 
building or a district of buildings and find out the optimal operation 
strategy accordingly. 

1.4. Objective of the study 

Objective of this study is to develop and validate a hybrid ML 
approach for DH load prediction in the context of solving energy data 
quality problems applied to DH load profiles. This study includes data 
mining using unsupervised ML, followed by data-driven modeling using 
supervised ML. For data mining, time-series clustering using two 
different clustering algorithms is applied. For data-driven modeling, a 
multi-feature ANN regression model is developed and validated. As 
mentioned previously, due to the nature of regression problem, an MLP 
architecture with multiple hidden layers is adopted. Such an architec
ture is needed to deal with the complexity of relationships between 
different input parameters. The proposed approaches are validated on 
real datasets of DH networks involving different building types in the 
Nordic climate. 

2. Methods 

This section explains the methodology adopted for data processing 
and mining and the development of the ANN modeling approach. In this 
context, two techniques for time-series clustering are formulated for the 
classification problem of DH load datasets. The classified data can then 
be subjected to ANN training separately to generate, in the end, MLP 
prediction models. 

2.1. Building and energy data inventory 

In this article, hourly-based resolution datasets for 20 nursing homes 
and 31 schools in Trondheim, Norway, have been used for modeling and 
evaluation. The heated floor areas of the observed buildings range from 
1350 to 10940 m2 for nursing homes and from 1822 to 8996 m2 for 
school buildings. Information on the observed buildings is summarized 
in Table 1, in which, the energy labeling scheme goes from A (best 
building energy performance) to G (weakest performance), and the la
beling explanation is provided by the Norwegian Energy Efficiency 
Agency (ENOVA) (Enova Offentlig søk etter energiattester). The analysis 
was performed on the specific DH load of each building (W/m2), which 

Fig. 1. Data transfer and analysis flowchart.  

Table 1 
List of the observed buildings’ information.  

Nursing homes 
Energy 
labeling 

A B C D E F, 
G 

No 
info. 

No. of 
buildings 

/ 4 6 6 3 / 1 

Construction 
year 

Before 
1950 

1950- 
1979 

1980- 
1999 

2000- 
2010 

After 
2010  

No 
info. 

No. of 
buildings 

/ / 7 9 3  1 

Label names / B1-B4 C1-C6 D1-D6 E1-E3 / NI1 
School buildings 

No. of 
buildings 

1 3 5 13 5 1 3 

Construction 
year 

Before 
1950 

1950- 
1979 

1980- 
1999 

2000- 
2010 

After 
2010  

No 
info. 

No. of 
buildings 

2 5 3 18 /  3 

Label names A1 B1-B3 C1-C5 D1- 
D13 

E1-E5 F1 NI1- 
NI3  
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was meant to focus on the energy density of each building regardless of 
the building size and floor area. 

2.2. Data preprocessing and normalization 

To address the similarities of load patterns over the load magnitudes, 
data normalization was applied using the min-max normalization 
formulated in Eq. (1). In this study, data mining, modelling, and vali
dation will be executed solely on normalized data, as the shape and 
patterns of the data are considered against data value ranges. The 
normalization is given as: 

xi =
xi − xmin

xmax − xmin
(1)  

where xi refers to the DH load at i-th hour [kW],xi refers to the 
normalized DH load at i-th hour, xmin and xmax refer to the minimum and 
maximum DH load value of the year [kW]. 

2.3. Time-series data clustering 

Clustering is the task of organizing data in such a way that similar 
objects are placed into related or homogeneous groups without prior 
knowledge of the groups’ definitions. Time-series clustering is one form 
of cluster analysis that has been used in many scientific areas to discover 
interesting patterns in time-series datasets, such as smart meter datasets 
(Aghabozorgi, Shirkhorshidi and Wah, 2015). As a data mining 
approach, datasets with similar characteristics are regrouped into one 
cluster, and each cluster can be studied separately afterwards, which 
improves the efficiency of the data analysis. In this study, the objectives 
of this approach are:  

• Identifying low-quality datasets, related mainly to measurement 
gaps and outliers Such datasets will be later eliminated from the 
training process to improve the performance of ANN prediction.  

• Regrouping datasets with irregular patterns within one specific 
cluster Those datasets are typically generated with uncommon load 
profiles, which are usually related to transitional changes in occu
pancy or in building energy performance. 

• The rest of the datasets should have higher chances of being repre
sentative of the studied building type, so they are arranged in one 
separate cluster. The main advantage here is that one prediction 
model can be valid for all buildings belonging to this cluster. 

Most of the approaches for time-series clustering are built based on 
two major design criteria: the clustering algorithm and the distance 
measure. The choice of clustering algorithms may depend on the strat
egy used to maximize intra-group similarity and minimize inter-group 
similarity (Javed, Lee and Rizzo, 2020). In this paper, k-means is cho
sen as a clustering method because of its popularity. The k-means al
gorithm generates spherical clusters that are similar in size and 
optimizes clustering by minimizing the distance between each cluster 
center (centroid) and the data points within that cluster (Jesper, Pag, 
Vajen and Jordan, 2021). The k-means algorithm requires that one input 
parameter be specified: the number of clusters (k). Given k, the algo
rithm iterates over two phases: (1) calculating centroids, and (2) 
assigning data points to their closest centroid, until a certain termination 
condition (e.g., number of iterations or convergence) is met. The initial 
centroids are chosen randomly, making the algorithm 
non-deterministic; all subsequent centroids are calculated to minimize 
the distance to all other data points within the given cluster. 

For distance measurement, two different methods are adopted in this 
study: Euclidean and Dynamic Time Warping (DTW), generating two 
different clustering approaches. 

2.3.1. Euclidean distance measure 
The Euclidean distance between time-series is straightforward and 

widely adopted as a distance measure for k-means algorithm (Zhang, 
Tang, Huo and Zhou, 2014). It calculates the distance between mea
surement points in two different time-series datasets X and Y using Eq. 
(2): 

EUC(X,Y) = δ(x, y) =
∑T

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − yi)
2

√

(2)  

where δ(x, y)is the distance between data points inside different time- 
series. xiand yi are two points from the two time-series X and Y 
respectively. 

2.3.2. DTW distance measure 
The DTW algorithm has earned its popularity by being extremely 

efficient, as it minimizes the effects of profile distortion in time by 
allowing "elastic" transformation of time series. This feature makes it 
possible to detect similar shapes with different phases (Zhang, Tang, 
Huo and Zhou, 2014). In contrast to Euclidean distance, which chooses 
the most straightforward way for aligning (Fig. 2 (a)), DTW distance 
chooses a more flexible alignment rule, it can find the best global 
alignment to achieve the minimum accumulated distance and handle 
time-series with different lengths, as shown in Fig. 2 (b). The distance 
measure according to DTW is formulated in Eq. (3). 

DTW(Xi,Yi) =
∑T

i=1
δ(xi, yi)+min

⎧
⎨

⎩

DTW(Xi, Yi− 1)

DTW(Xi− 1, Yi)

DTW(Xi− 1, Yi− 1)

⎫
⎬

⎭
(3) 

With the following boundary conditions: 

DTW(0, 0) = 0
DTW(Xi, 0) = ∞
DTW(0, Yi) = ∞

(4)  

where δis the same as Euclidean distance Eq. (2) andXiYi are two time- 
series datasets. 

2.4. Heat load prediction 

In this article, prediction models, using multi-input ANN, were 
created to predict the DH load for any given hour. In addition to the 
simple implementation, the reason behind choosing ANN is its ability to 
model nonlinear phenomena and handle multi-feature regression 
problems efficiently (Abiodun et al., 2018). The different behaviors of 
SH and DHW about the outdoor temperature, lead to the fact that total 
heat demand in buildings is nonlinear, with which classical linear 
regression models are no longer efficient. 

One model is to be created for each cluster, therefore, a total of four 
models were created for the two building types (nursing homes and 
schools). In addition to outdoor weather conditions, heat energy de
mand in buildings can be affected by many other factors. In this work, 
the chosen data inputs, for each hour, are listed below:  

• The forecasted outdoor temperature (in ◦C), is typically accessible 
via an online service.  

• Hour of the day: from 1 representing "1:00-2:00" to 24 representing 
"23:00-00:00",  

• Day of the week: an integer, from 1 for Monday to 7 for Sunday,  
• Month of the year: an integer, from 1 for January to 12 for December,  
• Holiday indicator: a Boolean, 1 for a holiday and 0 for a working day. 

Those parameters are set basically to give an estimation of the heat 
load trend, which changes essentially according to different timeslots. 
They can also give an approximate assessment of the occupancy rate and 
human activities related to the building type (Alam, Bao, Zou and San
jaya, 2017). 
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As the analyzed buildings are not residential, it can be possible to 
find some indicators having correlations with the occupancy rate with 
an accepted approximation, which is the reason behind the choice of the 
last four ANN inputs listed above. In this context, "hour of the day" can 
give an approximate guess of the daily scheduled work time for schools 
and nursing homes. In the same way, "day of the week" has been 
introduced to differentiate between working days and weekends, which 
is more significant in the case of schools as nursing homes still have 
partial work activities on weekends. With the same impact, the inputs 
"month of the year" and "holidays indicator" have been introduced to 
highlight vacation periods. 

2.4.1. Multi-layer perceptron 
A Multi-Layer Perceptron is a type of feedforward artificial neural 

network that consists of multiple layers of interconnected nodes, called 
neurons or units. It is a foundational and widely used architecture in the 
field of deep learning (Abiodun et al., 2018, Alam, Bao, Zou and Sanjaya, 
2017). The term "perceptron" refers to a basic building block that models 
a single neuron, and "multi-layer" indicates that multiple layers of these 
perceptrons are stacked together. 

In an MLP, the neurons are organized into layers, typically consisting 
of an input layer, one or more hidden layers, and an output layer. The 
input layer receives the input data, and the output layer produces the 
final output of the model. The hidden layers are intermediate layers 
between the input and output layers, responsible for processing and 
transforming the input information through a series of non-linear 

operations. Fig. 3 shows an illustrative architecture of an MLP with an 
input layer of five neurons; three hidden layers with 12 neurons each 
and one output layer with one single neuron. 

Each neuron in the MLP is associated with a set of learnable pa
rameters, including weights and biases. The weights determine the 
strength of the connections between neurons, while the biases introduce 
an offset or bias term to the neuron’s output. These parameters are 
adjusted during the training process to optimize the performance of the 
MLP on a given task. 

The functioning of an MLP involves two main steps: forward prop
agation and backward propagation. In forward propagation, the input 
data is fed through the network, and the activations of each neuron are 
computed layer by layer, ultimately producing the output. Back
propagation involves computing the gradients of the network’s param
eters concerning a chosen loss function, allowing for the adjustment of 
the weights and biases in a direction that minimizes the loss. This iter
ative process of forward and backward propagation is repeated until the 
model converges to an optimal state. Eq. (5) formulates the forward 
process through MLP architecture. 

f (L)(X) = a

(

w(L)
0 +

∑UL− 1

i=1
w(L)

i f (L− 1)
i (X)

)

(5)  

where: 
L is the layer number. 
f (L) is the L function layer. 

Fig. 2. Different aligning rules for (a) Euclidean distance and (b) DTW distance matching (Zhang, Tang, Huo and Zhou, 2014).  

Fig. 3. Example of an MLP model structure.  
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w(L)
0 and w(L)

i are respectively bias and weights vectors corresponding 
to layer L. 

X is the input vector. 
a is the activation function (it can represent different activation 

functions between different layers). 
UL− 1 is the number of previous layers of L. 
The chosen activation function is the Sigmoid function, it is formu

lated as: 

a(x) =
1

1 + e− x (6)  

2.4.2. Training 
During the training phase, an optimization algorithm is used to up

date the weights and biases of the MLP to minimize a loss function, 
which is formulated in Eq. (7). As an optimization method, this study 
addresses the use of Limited-memory Broyden-Fletcher-Goldfarb- 
Shanno (LBFGS). It is an optimization algorithm used for solving un
constrained optimization problems. The algorithm combines the BFGS 
method with limited memory storage, allowing it to approximate the 
inverse Hessian matrix without explicitly computing or storing it. The 
limited-memory aspect of LBFGS makes it memory-efficient and suitable 
for large-scale optimization problems. However, the detailed mathe
matical description of LBFGS is outside the scope of this article. 

MSE =
1

NP

∑NP

i=1
(yi − ŷi)

2 (7)  

where yi and ŷi are the actual and predicted DH load respectively at the 
hour i, NP is the number of data samples. 

The method "neural_network.MLPRegressor", which is a part of the 
Python package "sklearn", was chosen as an implementation tool. The 
training parameters are set in Table 2, and those parameters are reached 
after some trial-and-error tests. As training data, two datasets for hourly 
DH heat consumption for 2017 and 2018 are used. As stated earlier, the 
training will be solely executed on datasets showing a high correlation 
with the ANN model input parameters, which should be gathered in 
Cluster 1 and Cluster 2. Low-quality data, having measurement gaps and 
outliers, is excluded as it represents anomalies. The corresponding 
datasets, in this case, are gathered in Cluster 3. 

The pseudocode for a trained MLP is summarized below:  
Initializing w(1)

0 and w(1)
i 

Acquiring training data X 
While (training stopping criteria is not met){ 

Calculating the loss function 
Updating weights and bias for all layers  
MLP feedforward}  

2.4.3. Performance evaluation 
Datasets for DH load in 2019 are preserved for ANN validation. The 

performance of the prediction model was evaluated using Eq. (7) and 
mean absolute error (MAE) formulated in Eq. (8). For this purpose, two 
datasets, arbitrarily taken from Cluster 1 and Cluster 2, are the subject of 
model testing. The motivation behind this strategy is to prove how 
efficient data analytics and modeling in cluster-wise instead of the 
classical approach where all datasets are addressed. 

MAE =
1

NP

∑NP

i=1
|yi − ŷi| (8)  

3. Results 

In this section, simulation results for the energy data processing and 
modeling explained previously, are presented. Section 3.1 shows data 
clustering results for the whole studied datasets. Section 3.2 is the stage 
for load prediction validation for different clusters, while Section 3.3 is a 
performance assessment study in comparison with a similar approach. 

3.1. Time-series clustering 

In this section, the outcomes of data clustering are presented for 
nursing homes and schools separately. The goal is to show different data 
patterns that may influence the modeling process and, therefore, the 
expected load prediction performance. For this purpose, only 10 data
sets have been randomly selected for each building type. The reason 
behind limiting the study to this dataset is related mainly to the 
computing time restriction. 

3.1.1. Nursing home data clustering 
For nursing home data, Fig. 4 represents the clustering results using 

Euclidean k-means. The different clusters contain various dataset 
numbers and show different load patterns. In this regard, Cluster 1, 
which gathers the most regular load profiles, has 5 datasets. Cluster 2, 
which gathers relatively uncommon load data profiles, has 4 datasets, 
while Cluster 3 has only one dataset, characterized by tiny load variation 
and multiple data gaps and outliers (zones highlighted by black dashed 
rectangles). Large constant values, that appear in Cluster 3, which can 
keep appearing for months, are due to the chosen data interpolation 
policy in the preprocessing method adopted locally. This policy is based 
on keeping the same last measured value if data transfer from smart 
sensors is lost. This cluster, in particular, is to be eliminated from the 
ANN training. 

Using the DTW k-means technique, Fig. 5 shows the dataset classi
fication corresponding to the three clusters. In this case, Cluster 1 has 4 
datasets, Cluster 2 has 5 datasets, and Cluster 3 has the same unique 
dataset shown previously (Cluster 3 in Fig. 5). In the case of nursing 
homes, Euclidean and DTW k-means algorithms show comparable re
sults with slight differences in dataset numbers between clusters. It is 
worth mentioning that the computing time of DTW k-means is sub
stantially larger compared to that of Euclidean k-means. About two 
hours of computing time have been recorded for DTW k-means, while 
only a few seconds have been recorded for Euclidean k-means using the 
same datasets. 

3.1.2. Schools data clustering 
Similarly, time-series clustering is applied to school datasets, and the 

results are displayed in Fig. 6 and Fig. 7 using, respectively, Euclidean 
and DTW k-means techniques. As a first general overview, the figures 
show that the seasonal variation of heat load for schools looks noticeably 
more fluctuating compared to nursing homes. The reason is related 
essentially to differences in occupancy and building geometry and 
physics. In this situation, the difference between Euclidean and DTW k- 
means in clustering performance looks more visible. For the first tech
nique, Cluster 1 gathered 5 datasets, Cluster 2 gathered only 1 dataset, 
and 4 datasets are grouped in Cluster 3. Using DTW k-means, the 
dataset’s classification is more meaningful, as Fig 7 shows. In this 
context, 2 datasets with regular patterns are grouped in Cluster 1, and 7 
datasets are grouped in Cluster 2, some of which are having large load 
fluctuations in winter 2019, as highlighted in the dashed rectangles. One 
specific dataset could be identified in Cluster 3, which is considered to 
have a tiny load variation and a large measurement gap, highlighted by 
the dashed black box. 

Table 2 
MLP training parameters.  

Number of neurons in the input layer 5 
Number of hidden layers 5 
Number of neurons in one hidden layer 50 
number of neurons in the output layer 1 
Activation function Sigmoid 
Optimizer LBFGS 
Learning rate Constant (0.1) 
Loss function MSE  
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For more quantified information, further statistical analysis has been 
summarized in Table 3, in which, average values for "mean" and "stan
dard deviation" are calculated for all datasets existing in the generated 
clusters. As a general overview, the ratio of standard deviation to mean 
is relatively higher for schools than for nursing homes. This explains the 
fluctuating pattern of annual load profiles for schools. Additionally, 

similar values are calculated for different clusters separately. The results 
point to the fact that datasets in Cluster 2 are smoother compared to 
those in Cluster 1, with slight differences between the used clustering 
algorithms. It is worthy of mention that there is no need to calculate 
maximum and minimum values for datasets as they are all normalized. 

Fig. 4. Clustered datasets for nursing homes for the years 2017, 2018, and 2019 using Euclidean k-means.  

Fig. 5. Clustered datasets for nursing homes for the years 2017, 2018, and 2019 using DTW k-means.  
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3.2. Load prediction 

For each building type, two datasets, arbitrarily selected from clus
ters 1 and 2 separately, are the subject of a prediction performance 
evaluation using MLP. The goal is to verify and quantify the prediction 
accuracy cluster-wise for the two studied building types. 

3.2.1. Long-term assessment 
As a general overview of load prediction performance, annual as

sessments of the MLP model response over the validation data for the 
two building types are displayed. As the performance of data clustering 
varies slightly between the two techniques, Euclidean and DTW k- 
means, the prediction performance changes accordingly too. e.g., in 

Fig. 6. Clustered datasets for schools for the years 2017, 2018, and 2019 using Euclidean k-means.  

Fig. 7. Clustered datasets for schools for the years 2017, 2018, and 2019 using DTW k-means.  
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Fig. 8, the load prediction is conducted moderately differently between 
the two datasets due to the difference in load fluctuation patterns. The 
datasets extracted from Cluster 2 for schools, generated by both clus
tering methods, show relatively less modeling capability, which is 
translated to the average prediction performance summarized in Fig. 9. 

Mainly due to the different occupants’ activity schedules, the heat 
load annual profile for nursing homes is less fluctuating, as Fig. 10 
shows, compared to schools. This is because DH load profiles for schools 
are much sharper, with distinct night setbacks and weekday/weekend 
shifts than those for nursing homes. Moreover, heat loads in summer for 
schools are moderately lower than those for nursing homes, which is 
highlighted by the black dashed rectangles in Fig 8 and Fig 9. The reason 
is that no official scheduled activities are carried out during the summer 
in schools, which is not the case for nursing homes. 

Cluster 2, issued by the two studied clustering techniques for nursing 
home data, shows pretty different patterns compared to Cluster 1 (see 
Fig. 11). In this case, the annual heat load for the corresponding 
buildings is considerably lower. Low SH demands for these particular 
buildings can represent one potential justification. Moreover, Cluster 2 
also includes some data anomalies, such as the outlier value in Fig. 11 
(a) and the measurement gap in Fig. 11 (b), which are both highlighted 
by black dashed rectangles. 

3.2.2. Seasonal assessment 
To gain a deep insight into the prediction process in different sea

sonal periods, three-week scenarios have been selected: cold, warm, and 
mild. Below, more explanations, along with some graphs, are presented 
for this context. Datasets, chosen arbitrarily from Cluster 1, generated by 
DTW k-means for each building type, have been selected. 

In Fig. 12, the ANN model shows a high prediction capability for 
schools in the winter compared to the summer scenario. The reason is 
that in winter, heat load peaks appear clearly during working days daily, 
while in summer, this load pattern is negligible. The heat demand is 
substantially lower during the weekend in winter, while in summer this 
difference is not significant. This matter is highlighted by the black 
dashed rectangles in Fig 12 (a) and Fig 12 (b). Peak energy demands in 
winter are linked mainly with the need for SH and the noticeable oc
cupancy rate. In the summer, SH demands are insignificant, and occu
pancy is almost null due to the annual vacation. 

Concerning nursing homes, the ANN model shows clearly low pre
diction capabilities, especially in summer (see Fig. 13 (b)), as in this 
case, the outdoor temperature factor is less dominant for DH load (SH 
demand is significantly low). In this particular case, the DHW load 
represents the main energy demand portion, which is related to factors 
other than weather data. This effect is less dominant in the case of 
schools due to the impact of other important aspects, mainly related to 
the occupant’s activities. 

For load prediction assessment in mild seasons, the fact that outdoor 
temperature is no longer a dominant parameter for determining the heat 
load leads to inaccurate predictions for nursing homes (see Fig. 14 (a)), 
however, ANN is still showing relatively better results when it comes to 
school heat load prediction. 

3.3. Prediction performance evaluation 

Table 4 lists MSE and MAE values for the prediction performance of 
the proposed ANN regression method for all clusters, compared to a 
reference method developed in (Ohlson Timoudas). The authors in 
(Ohlson Timoudas) developed an ANN approach that includes, along 
with the historical outdoor temperatures, historical heat loads with 
different time lengths. It has been found that better results were reached 
using historical values of outdoor temperature and load up to 24 hours. 
This approach has been validated on the same datasets used in this 

Table 3 
Statistic measures of the generated normalized datasets in cluster-wise.  

School 
datasets 

Mean Standard 
deviation 

Nursing 
home 
datasets 

Mean Standard 
deviation 

Cluster 1 
(Euc k- 
means) 

0.2558 0.1831 Cluster 1 
(Euc k- 
means) 

0.3368 0.1473 

Cluster 1 
(DTW k- 
means) 

0.1214 0.1584 Cluster 1 
(DTW k- 
means) 

0.3235 0.1927 

Cluster 2 
(Euc k- 
means) 

0.1492 0.1396 Cluster 2 
(Euc k- 
means) 

0.1337 0.0988 

Cluster 2 
(DTW k- 
means) 

0.2185 0.1787 Cluster 2 
(DTW k- 
means) 

0.2328 0.1330  

Fig. 8. Annual prediction assessment using a school dataset extracted from Cluster 1 (a) using Euclidean k-means (b) using DTW k-means.  
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article, either for training or testing. Better results have generally been 
obtained using Cluster 2 datasets using both clustering techniques 
(Euclidean and DTW k-means). One justification for that is that Cluster 2 
generally gathers less fluctuating load profiles, as shown in Fig. 11. This 
makes it easier for MLP to track smoother load curves appearing in the 
winter as they reflect SH demands. Such load curves are highly depen
dent on weather data, mainly, outdoor temperatures, which explains the 
high prediction performance in this case. Fig. 10 shows more fluctuating 
curves, which can be affected by other additional factors, such as oc
cupancy change rates. For all clusters, the table shows clearly that the 
comparison is in favor of the MLP model, presented in this study, 
compared to the ANN baseline method. 

4. Discussions and future study 

4.1. Clustering 

It has been verified that load data tendency has an impact on the 
expected ANN prediction performance. Inappropriate data quality may 
appear during the measurement process, typically due to a temporary 
malfunctioning of energy meters, possible noise sources, or data transfer 
interruptions. In this study, such datasets are gathered in Cluster 3 for 
each building type and eliminated from the modeling stage. This 
filtering option can be significantly important during ANN training by 
providing only datasets with higher correlations with the input vari
ables. Additionally, time-series clustering also serves in the identifica
tion of uncommon load patterns, which generally arise from differences 
in occupancy rate or the change in energy performance between 

Fig. 9. Annual prediction assessment using a school dataset extracted from Cluster 2 (a) using Euclidean k-means (b) using DTW k-means.  

Fig. 10. Annual prediction assessment using a nursing home dataset extracted from Cluster 1 (a) using Euclidean k-means (b) using DTW k-means.  
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buildings, which is mostly linked with building physics. Such datasets 
are grouped in Cluster 2. One main advantage of data clustering as a 
preprocessing step is that one prediction model is valid for all buildings 
classified in the same cluster. This can, significantly, reduce data anal
ysis time and cost, and improve the expected modeling performances by 
selecting clusters with regular patterns only. 

It should be noted that the number of datasets in each cluster for a 
particular building type may be subject to continuous change over the 
years due to changes in indoor conditions such as occupancy rate and 
building energy performance degradation. Outdoor conditions, mainly 
related to extreme weather conditions, can also have an impact in this 
regard. 

4.2. Prediction 

Particularly for the studied datasets, summer tests for all buildings 
and all clusters show relatively lower prediction performance compared 
to winter tests. In summer, occupants in nursing homes are present 
permanently, continuously utilizing DHW along with small fractions of 
SH. The prediction in this case can be challenging because of the lack of 
peak loads that typically characterize SH demands, whereas the nature 
of the school’s occupancy is different, as no study activities are carried 
out in July. Schools have relatively more fluctuating patterns than 
nursing homes, and during the daytime, the peak load in schools can be 
significant. However, schools can be rented out outside of working 
hours, therefore, a few high heating demands in the evenings can be 

Fig. 11. Annual prediction assessment using a nursing home dataset extracted from Cluster 2 (a) using Euclidean k-means (b) using DTW k-means.  

Fig. 12. Prediction performance for a school dataset (a) in winter (b) in summer.  
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present, which was reflected by a few outliers in some periods. Nursing 
homes are occupied all the time, so the DH load is smoother with fewer 
fluctuations during the day, between working days, and on weekends. In 

the mild season, the outdoor temperature is not a dominant factor in the 
heat energy demand, and therefore, weather data alone is not sufficient 
to have a better prediction performance. Though the proposed ANN 
model with the additional data inputs could overcome this challenge, 

4.3. Limitations 

Regardless of the high prediction performance of the proposed ANN 
regression model, data availability for building occupancy can be a 
challenge, especially in residential buildings. Contrary to nursing homes 
and schools, in which, the occupant’s activities and habits are relatively 
predictable, occupancy in residential buildings is stochastic and irreg
ular to some extent. Therefore, the input data used in this article for 
building occupancy estimation may not be effective for load prediction 
in normal residential buildings. One potential solution to deal with such 
an issue is the installation of IoT-enabled sensors, designed to detect the 

Fig. 13. Prediction performance for a nursing home dataset (a) in winter (b) in summer.  

Fig. 14. Prediction performance in mild-season (a) for a nursing home (b) for a school.  

Table 4 
MSE and MAE evaluation using nursing homes normalized data for the year 
2019.  

Evaluation criteria Proposed MLP ANN proposed in [42] 

MSE Cluster 1 (Euc k-means) 0.0153  
0.0219  Cluster 1 (DTW k-means) 0.0154 

Cluster 2 (Euc k-means) 0.0073 
Cluster 2 (DTW k-means) 0.0072 

MAE Cluster 1 (Euc k-means) 0.0975  
0.1106  Cluster 1 (DTW k-means) 0.0977 

Cluster 2 (Euc k-means) 0.0639 
Cluster 2 (DTW k-means) 0.0638  
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occupancy rate and model the entire building. Along with other comfort 
sensors, those sensing points should be built within an optimal and cost- 
effective architecture (Deb and Schlueter, 2021). Though, data privacy 
issues in residential buildings should be solved in advance. 

Furthermore, the simulation tests displayed in this article are carried 
out assuming a perfect prediction of the outdoor temperature. The ANN 
model is designed to take advantage of the available online services for 
weather forecasts. Therefore, another study should be carried out, 
investigating the impact of the online weather forecast error margin on 
the prediction performance and, consequently, on the energy operation 
strategy in buildings. 

4.4. Future work 

In contrast to the accurate performance of MLP models for school 
heat load prediction, especially in winter, the problem of DHW load 
prediction in nursing homes is still not solved yet. As stated earlier in this 
article, DHW needs are not highly correlated with weather data. As 
nursing homes represent a specific use case, the suggested ANN inputs, 
for occupancy estimation, are not accurate enough in this context. 
Adding historical data for heat consumption itself, as additional ANN 
input can partially solve this issue since DHW load should have a regular 
periodic pattern related to the previous usage. In future work, the MLP 
model will be validated on the same datasets using this new ANN ar
chitecture, and with additional input, which is historical data of the load 
itself with different time windows, e.g., up to 12 hours, 24 hours, or 72 
hours. 

The impact of load prediction accuracy on energy operation strate
gies in buildings should be evaluated and quantified. This depends 
highly on the chosen integration solution of the district heating network 
in building substations and on the available energy flexibilities. Energy 
storage systems and HPs can represent effective solutions in this context. 
Thus, different optimization-based operation policies can be validated, 
taking advantage of the flexible control capacity of HP and any potential 
energy storage systems. 

Instead of dealing with data quality, time-series clustering can also 
be exploited to identify and classify building types and categories based 
on data profiles. This preprocessing phase can offer additional infor
mation to be included in ANN training data as a supplementary indi
cator. With this modeling architecture, the heat load prediction problem 
in buildings can be solved with a more generalized approach and 
improved prediction accuracy. 

5. Conclusion 

Heat load prediction in buildings is a complex task due to the variety 
of involved factors. Outdoor temperature is an essential parameter for 
prediction, particularly for SH power demands. However, more in
dicators are needed for the development of accurate load prediction 
models. In this article, a data-driven approach using multi-input ANN is 
essentially targeted. This study opens pathways toward optimal inte
gration of prediction models into potential operation strategies, and 
therefore, into the overall transition toward modern DH networks. The 
proposed methods have been validated on real load datasets for a DH 
network in a Nordic climate. The main findings are summarized as 
follows:  

• Data mining, as a pre-processing step, is suggested to deal with 
insufficient data quality. In this regard, time-series clustering can 
efficiently fulfill this mission, it gathers datasets with similar patterns 
into specific clusters, allowing the identification of noisy and inter
mitted measurements, as well as abnormal patterns.  

• Data cluster-wise assessment can significantly reduce the analysis 
and modeling costs by limiting ANN training and validation to 
representative datasets only.  

• Ordinary regression approaches, relying on weather data, may have 
some limitations since partial heat loads, mainly related to DHW, can 
be independent of weather conditions. This is observable in summer 
and mid-season. In this regard, MLP with additional input features 
can make a valuable contribution to solving this issue.  

• The advantage of multi-layer ANN architecture (MLP), to deal with 
the complexity associated with the relationships between different 
data inputs and the heat energy use, has been verified. However, 
there is a slight difference between a good model and an overfitted 
one, when it comes to the selection of the optimal number of hidden 
layers and the number of neurons in each layer. This task can usually 
be accomplished by trial and error. In the same context, computing 
time during training is another parameter to consider. 
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