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Abstract

Optimisation is a valuable tool in process systems engineering, and has been
widely used in design, control, process identification and many other areas. This
thesis proposes novel applications of optimisation, as well as methods to solve
optimisation problems efficiently and reliably. Recurring topics are the use of
machine learning to reduce online computational effort, model predictive control,
and optimisation under uncertainty. This thesis is a collation of research outputs
and is divided in two parts: i) application driven works; ii) theory and algorithm
driven works.

The application driven research comprises of three works. The first focuses on
training an output-feedback neural network control policy for a distillation column
in closed-loop. This is a large problem and is particularly interesting because the
control policies can be trained to only use a few measurements along the column.
The second work demonstrates a model predictive control formulation for optimal
inventory allocation, with the key aspect of the formulation being that we do not
require accurate economic modelling or disturbance forecasting. The third work
proposes a optimisation formulation for PID tuning in the frequency domain and
solves it as a semi-infinite program. This formulation is a natural way to specify
controller robustness and noise attenuation.

The theoretical and algorithmic part of the thesis consists of four works. The
first two aim to reduce the online computational demand of model predictive
control by moving most of the demand offline. In the first of these a convex
terminal cost is learned to allow the use of a one-step horizon, whilst in the second
a method is proposed for closed-loop optimisation of neural network control
policies under uncertainty. The third study demonstrates how multiple shooting
can be used to improve the reliability of training neural networks embedded
in differential equations. Lastly, the final work focuses on the development of
improved lower bounding algorithms for the global optimisation of nonconvex
semi-infinite programs.

The key contributions of this thesis are the works on training neural network
control policies in closed loop. Under mild conditions the proposed formulations
enables trained policies to approximate model predictive control laws. However,
the methodology is not restrictive and permits flexible design of controllers that
can handle uncertainty and directly use measurements as feedback in a manner
that cannot be done with traditional model predictive control.
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Chapter 1

Introduction

1.1 Motivation

Optimisation has become established as an important tool throughout science and
engineering. In process systems engineering it is extremely prevalent throughout
the field, e.g. process design, control, process identification, and so on. There are
two important steps in the application of optimisation. The first is to formulate a
meaningful optimisation problem – this involves identifying a quantitative metric
of system performance to optimise, the objective, and the dependence of this metric
on variables that characterise the system. These variables are typically subject
to constraints which represent limitations of the system due to physical laws,
safety concerns, operational limits, etc. The fundamental goal when formulating
an optimisation problem is that it should yield a meaningful or useful solution.
Despite the apparent simplicity of this goal, it can often be a very difficult to
achieve.

Once a problem has been formulated, the second step is to solve the problem
reliably and without excessive computational requirements. What counts as an
excessive requirement depends on the context of the optimisation. If the optimisa-
tion is to be performed in real time (as in optimal control) then the optimisation
should be solved rapidly, relative to the time-scale of the system it is applied for.
Typically the computational requirements increase dramatically when consider-
ing uncertainty, enough to make even small problems computationally infeasible.
These computational requirements can be offset by algorithmic advancements,
improvements in hardware, and various other strategies. Often one can try to
reformulate the problem with the primary goal of yielding an easier problem to
solve, even if this gives a “worse” solution.

Recently machine learning has seen widespread use and popularity in a range
of domains, due to its incredible success in “impossible problems” such as text and
image recognition and generation. Researchers have proposed various approaches
for the use of machine learning within or in aid of traditional optimisation. Despite
significant research, it remains unclear on how best to combine machine learning
and optimisation. A common approach is to learn a model to describe the system
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behaviour and use this in the optimisation formulation. As numerous authors
have pointed out this can lead to issues due to the non-convexity of the machine
learning model and potential training artefacts, e.g. an oscillatory approximation
of a monotonic asymptote can be very accurate but lead to poor behaviour when
embedded in an optimisation problem. Despite its potential machine learning
techniques have to be carefully deployed alongside optimisation tools to prevent
both poor solutions but also deployment without gain – after all sometimes solving
a classically formulated problem is “good enough”.

This thesis focuses on advancements in the use of optimisation and machine
learning in process systems engineering. A recurring focus is to reduce the compu-
tational effort of optimisation through careful problem formulation, use of machine
learning, and algorithmic advancements.

1.2 Thesis overview

The works in this thesis are collected into two parts: Part 1 (Chapters 3–5) contains
application or case-study driven work and Part 2 (Chapters 6–9) contains work
of a more algorithmic and theoretical nature. The following is an outline of the
content of the thesis chapters.

• Chapter 2 provides some background to the later chapters of this thesis. This
section does not aim to be deep introduction to the literature, and instead
serves to highlight important parts of the literature and how they appear in
the thesis.

• Chapter 3 describes how the optimise-and-learn approach for learning neural
network control policies (see Chapter 7) can be applied to learn an output
feedback controller. This is demonstrated on a large scale example of a
distillation column. An emphasis is placed on how the behaviour of the
controller drastically changes based on the inputs provided to it, and this is
showcased through extensive numerical examples.

• Chapter 4 describes how model predictive control can be used to allocate pro-
cess inventories to isolate bottlenecks without requiring accurate modelling
of process economics or set-points. The work also discuses how a disturbance
model can be used to allow for the automatic correction for misidentified
bottlenecks or unmeasured faults.

• Chapter 5 shows how optimisation based tuning of PID controllers can
be performed entirely in the frequency domain by solving a semi-infinite
program (see Chapter 9). This formulation allows a natural way to specify
requirements on the controller (e.g. noise attenuation) alongside the control
objective.

• Chapter 6 proposes and demonstrates how input convex neural networks and
interpolating convex functions can be used to learn convex terminal costs to
reduce the computational requirements of (linear) MPC. The main idea is to
use a single step horizon online, by learning an accurate approximation of
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the cost-to-go offline.
• Chapter 7 details how neural network policies can be trained in closed loop

by using an optimise-and-learn approach. This approach also avoids issues
common to imitation learning based approaches for learning control policies.
In addition, we describe how the proposed approach can be used to find
policies that consider uncertainty. The method is demonstrated on extensive
numerical case studies. Appendix A contains a conference paper which covers
early results of this work.

• Chapter 8 shows how the concept of multiple shooting can be applied to
the training of neural (ordinary) differential equations to avoid pathological
behaviour. This is shown on an example using synthetic data, and an example
using real data.

• Chapter 9 proposes several algorithms that aim to improve the sequence
of lower bounds that arise when solving semi-infinite programs. These al-
gorithms aim to find increase the incumbent lower bounds at each iteration,
in contrast to the standard approach of adding lower bounds based on
feasibility. These algorithms are demonstrated on a set of problems from
literature.

• Chapter 10 concludes the thesis and provides suggestions for further work.
• Appendix A contains a conference paper describing early results that lead to

the work contained in Chapter 7.
• Appendix B summarises a conference paper which presents a simple al-

gorithm with two tunable parameters for steady state detection. This al-
gorithm is tested using data from a lab-rig at the department.

• Appendix C summarises a conference paper on the implementation of real
time optimisation strategies on a lab-rig at the department. Part of this work
was done by Sofie Lia and included in her Master’s thesis.
• Appendix D summarises a conference paper on the use of multi-class classifi-

ers for detecting periods of abnormal operation.

1.3 Publications

The following is a list of published or submitted papers completed during the PhD,
accurate at the time of writing. Chapters 3, 6 and 9 have been submitted and are
in review.

1.3.1 Publications contained in the thesis

• Chapter 4
E. M. Turan, S. Skogestad and J. Jaschke, ‘Model Predictive Control for
Bottleneck Isolation with Unmeasured Faults,’ Accepted at the 12th IFAC
Symposium on Advanced Control of Chemical Processes (ADCHEM 2024), 2024
• Chapter 5

E. M. Turan, R. Kannan and J. Jäschke, ‘Design of PID controllers using
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semi-infinite programming,’ Computer Aided Chemical Engineering, vol. 49,
no. 1958, pp. 439–444, 2022, ISSN: 15707946. DOI: 10.1016/B978-0-323-
85159-6.50073-7

• Chapter 7
E. M. Turan and J. Jäschke, ‘Closed-loop optimisation of neural networks for
the design of feedback policies under uncertainty,’ Journal of Process Control,
vol. 133, p. 103 144, 2024, ISSN: 09591524. DOI: 10.1016/j.jprocont.202
3.103144

• Chapter 8
E. M. Turan and J. Jaschke, ‘Multiple Shooting for Training Neural Differential
Equations on Time Series,’ IEEE Control Systems Letters, vol. 6, pp. 1897–
1902, 2022, ISSN: 24751456. DOI: 10.1109/LCSYS.2021.3135835
• Appendix A

E. M. Turan and J. Jäschke, ‘Designing neural network control policies under
parametric uncertainty: A Koopman operator approach,’ IFAC-PapersOnLine,
vol. 55, no. 7, pp. 392–399, 2022, ISSN: 24058963. DOI: 10.1016/j.ifacol
.2022.07.475

1.3.2 Publications summarised in the appendix

• Appendix B
E. M. Turan and J. Jaschke, ‘A simple two-parameter steady-state detec-
tion algorithm : Concept and experimental validation,’ in 33rd European
Symposium on Computer Aided Process Engineering, Elsevier B.V., 2023. DOI:
10.1016/B978-0-443-15274-0.50280-8
• Appendix C

E. M. Turan, S. Lia, J. Matias and J. Jaschke, ‘Experimental validation of
modifier adaptation and Gaussian processes for real time optimisation,’ in
22nd IFAC World Congress, IFAC, 2023

• Appendix D
E. M. Turan and J. Jaschke, ‘Classification of undesirable events in oil well
operation,’ in 2021 23rd International Conference on Process Control (PC),
IEEE, 2021, pp. 157–162. DOI: 10.1109/PC52310.2021.9447527

https://doi.org/10.1016/B978-0-323-85159-6.50073-7
https://doi.org/10.1016/B978-0-323-85159-6.50073-7
https://doi.org/10.1016/j.jprocont.2023.103144
https://doi.org/10.1016/j.jprocont.2023.103144
https://doi.org/10.1109/LCSYS.2021.3135835
https://doi.org/10.1016/j.ifacol.2022.07.475
https://doi.org/10.1016/j.ifacol.2022.07.475
https://doi.org/10.1016/B978-0-443-15274-0.50280-8
https://doi.org/10.1109/PC52310.2021.9447527


Chapter 2

Background

This chapter provides a brief background, with some personal comments, to the
literature underlying the contents of this thesis. Where appropriate material in
this background section is explicitly linked to later sections of the thesis. This
section first provides a broad overview of important concepts used when setting up
and solving optimisation problems. This is followed by an introduction to model
predictive control: its role in the control loop, how uncertainty can be handled
and how its computational complexity can be managed. This section ends with a
description of some pertinent aspects of neural networks, and their training, in
the context of this thesis.

2.1 Optimisation preliminaries

This section presents an informal overview of the optimisation problems that
populate this thesis. For a more comprehensive introduction see [1–3].

The standard form of an optimisation problem is:

V(p) =min
z

J(z, p) (2.1a)

subject to gi(z, p)≤ 0 ∀i ∈ I (2.1b)

gi(z, p) = 0 ∀i ∈ E (2.1c)

where z ∈ Rnz is a vector of optimisation variables, p ∈ Rnp is a vector of problem
parameters, J : Rnz × Rnp → R is the objective, g : Rnz × Rnp → R|I|+|E | is the
constraint function, I is the index set of inequality constraints, E is the index set
of equality constraints, and V : Rnp → R is the value function.

A vector z is feasible if it satisfies the inequality and equality constraints. A
vector z∗ is called locally optimal, and a (local) solution to (2.1), if it is feasible
and has the smallest objective value of all feasible z in a neighbourhood of z∗.
If z∗ has the smallest objective value of all feasible z then it is globally optimal.
Importantly, z∗ is an implicit function of p, i.e. z∗(p).

With a few exceptions most classes of optimisation problems do not have
analytical solutions. Since the late 1940s algorithms have been developed for

5



6 E.M. Turan: Optimisation and machine learning for process systems engineering

solving optimisation problems resulting in a truly vast body of literate that I will
not attempt to summarise here. The interested reader can refer to Nocedal and
Wright [1] for a general book on optimisation, Boyd and Vandenberghe [2] for
an overview of convex optimisation, Biegler [4] for non-linear optimisation, and
Kochenderfer and Wheeler [5] for a simple, algorithm focused introduction to
optimisation.

Despite the seeming range of optimisation problems, in this thesis the purpose
of optimisation is to define functions, i.e. the important aspect of the problem
solution is not V(p), or z∗(p) in and of itself, but rather the use of z∗(p) in later
contexts. As an example, some of the optimisation problems considered are:

• solving for neural network parameters in differential equations in Chapter 8,
where although a fitting loss is minimised the actual goal is to find network
parameters that generate realistic future trajectories.

• solving model predictive control problems (e.g. Chapters 4 and 6), where
the goal is to find a solution that defines a good (implicit or explicit) control
law.

• solving semi-infinite programs in Chapters 5 and 9, where one iteratively
solves and adjusts tractable optimisation problems, to find feasible points
for an untractable optimisation problem.

The majority of efficient algorithms for solving large-scale optimisation prob-
lems require the efficient and reliably calculation of derivatives. As such this is a
very important topic and is introduced in the following section. After this dynamic
optimisation and optimisation under uncertainty are introduced. These are both
important classes of optimisation problems that appear in various points in the
thesis.

2.1.1 Finding derivatives

All the optimisation problems considered in this thesis are solved (at least in part)
using derivative based local algorithms1. As the name suggests, these methods
require derivatives of the functions involved in the optimisation problem. Deriv-
atives can be found by 1) finite differencing, 2) analytical/symbolic expression,
or 3) algorithmic differentiation. Finite differencing methods are error prone and
unreasonably inefficient for large problems, and have not been used in this thesis.
Instead I have primarily relied on algorithmic differentiation tools, and as such
discuss them in the below both generally and in the context of taking derivatives
of differential equations and the solutions of optimisation problems.

Algorithmic differentiation – the big picture

The idea of algorithmic differentiation (AD, also known as automatic differenti-
ation and autodiff) is deceptively simple: every numerical calculation is a sequence

1At least in part – local optimisation is used within the global optimisation in Chapters 5 and 9.
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of elementary functions (log, exp, . . . ) and operations (+, −, . . . ). As the (partial)
derivatives of these constituent parts are known (partial) derivatives of the overall
numerical calculation can be determined by repeated application of the chain rule.
The application of the chain rule is typically performed either in forward (accumu-
lation of the derivative from input to output) or reverse mode (accumulation of
the derivative from output to input). Forward mode is typically more efficient than
reverse mode for functions Rn → Rm, with n << m and vice versa. Historically
AD has not seen widespread use due to difficulty of implementation [1], however
with advances in software modern AD tools are becoming ubiquitous [6–9] as they
provide a means to efficiently take derivatives of (nearly) arbitrary functions.

In many context one may wish to apply AD to the solutions of numerical
algorithms – in the context of this thesis solutions of differential equations and
the solutions of optimisation problems. These special cases are briefly discussed in
the follow sections. Depending on the field authors follow different conventions
on whether to include these under the umbrella of AD2. I feel that although the
implementation and details of these are different, from an application perspective it
is practical to group these methods under one name. Also note that both sensitivities
of differential equations and the solution of optimisation problems construct the
final derivative through an application of the chain rule – the difference between
these and standard AD is in how the constituent terms in the chain rule are
determined.

Sensitivities of differential equations

There are three fundamental strategies to calculate gradients of the solutions of
differential equations: pertubations (finite differencing), direct application of AD
(direct sensitivity calculations), and adjoint sensitivity methods. In general adjoint
sensitivity methods are more efficient for large problems, while direct sensitivity
methods are more stable [7, 10]. Practically, in choosing which option to use I
simply bench-mark various implementations of the methods on a representative
problem instance.

Colloquially, the fundamental difference between the later two methods are
whether the derivative is taken before or after discretisation of the differential
equation (by the chosen solution algorithm) [4, 7]. Taking the derivative after
discretisation amounts to performing (forward or reverse mode) AD on the solution
followed by an application of the chain rule3 [4].

The alternative is to use adjoint sensitivity methods, which construct the deriv-
atives based on a theoretical analysis of the sensitivity of the differential equation.
These methods can be much more efficient when taking the derivative with respect
to a large number of variables. The fundamental idea is outlined below, for more
details see Section 9.3.2 of [4] and there references therein.

2This is sometimes used as motivation for the use of the more general name “algorithmic differ-
entiation" instead of "automatic differentiation".

3For efficiency modern AD implementations may collect the derivative alongside the solution of
the differential equation, and not strictly after the discretisation.
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Consider the first order ordinary differential equation

d x
d t
= f (x(t), u(t), p) (2.2)

where t ∈ R is time, x ∈ Rnx is the state, u ∈ Rnu is an external input (e.g. control
input or forcing function), and p ∈ Rnp are again the parameters of the system.
Additionally, consider some scalar function l : Rnx × Rnu → R and let L be the
integral of l between some initial and final time, t0 and t f .

L =

∫ t f

t0

l(x(t), u(t)) d t (2.3)

For simplicity, let u(t) be constant over the interval, u(t) = u. The goal is to find
d L
du . To do this we define the adjoint state:

a(t) =
d L

d x(t)
(2.4a)

which evolves by the differential equation:

da
d t
=∇x l(x(t), u)− a(t)T∇x f (x(t), u, p) (2.4b)

a(t f ) = 0 (2.4c)

where ∇x l and ∇x f are the Jacobians of l and f with respect to x . As the final
time of a is specified, after solving the original system (2.2) forward in time, the
adjoint differential equation can be solved backwards in time. Afterwards d L

du by
numerical integration:

d L
du
= a(t0)

T∇u x(t0) +

∫ t f

t0

a(t)T∇u f (x(t), u, p) +∇ul(x(t), u)d t (2.5)

Use of the adjoint approach requires storage and retrieval of the forward
solution during the backwards integration of the adjoints. This can be highly
memory expensive, and can be partially alleviated by use of check-pointing and
forming continuous approximations of the forward solution [4, 7].

Sensitivities of optimisation problems

The key idea that allows for calculating derivatives of the solution of an optimisation
problem is the implicit function theorem. The implicit function theorem gives
conditions under which a system of equations implicitly defines a differentiable
function. In this context the implicit function theorem can be applied to local
optimality conditions of the optimisation problem, allowing one to compute∇pV(p)
and ∇pz∗(p).

Results from the literature are summarised by Theorem 1 which establishes
that under some mild conditions of regularity one can calculate ∇pV(p) and/or
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∇pz∗(p) by solving a linear equation. This equation involves the readily computable
derivatives of L and g with respect to p and z at z∗(p). This idea is the key to
constructing the improved lower bounding methods in Chapter 9 for the solution
of non-convex semi-infinite programs.

Theorem 1. Let z∗(p) satisfy the Karush-Kuhn-Tucker (KKT) conditions for prob-
lem (2.1) with associated Lagrange multipliers λ∗(p). Let L denote the Langrangian
of (2.1), i.e. L(z,λ, p) = J(z, p) + λTh(z, p). Suppose for some p̄ ∈ Rnp , functions
J and g are twice continuously differentiable in a neighborhood of (z∗(p̄), p̄). Let
A(z, p) be the indices of active constraints at a feasible point z. Assume that the
linear independence constraint qualification (LICQ) and strict complementarity (SC)
conditions hold at (z∗(p̄),λ∗(p̄)). Additionally, suppose either

(a) |A(z∗(p̄), p̄)|= nz , or
(b) the strong second order sufficient condition (SSOSC) holds at (z∗(p̄),λ∗(p̄)).

Then z∗(p̄) is an local minimiser of (2.1), and λ∗(p̄) are unique. Furthermore, for all
p in a neighbourhood around p̄, z∗(p) and λ∗(p) can be chosen to be continuously
differentiable, with z∗(p) a local minimizer of (2.1) at p.

Additionally, for all p in a neighbourhood around p̄ the gradient of the value
function V(p) is given by

∇pV(p) =∇pL(z∗(p),λ∗(p), p),

and the gradient of the solution z∗(p) may be computed as follows depending on
whether condition (a) or (b) above holds:

(a) Let Jz(p) ∈ Rnz×nz and Jp(p) ∈ Rnz×np be matrices with rows (∇z gi(z∗(p), p))T,
i ∈A(z∗(p), p), and (∇p gi(z∗(p), p))T, i ∈A(z∗(p), p), respectively. Then

∇pz∗(p) = −[Jz(p)]
−1Jp(p).

(b) Let Hz,λ(p) :=

�

∇2
zL(z

∗(p),λ∗(p), p) Jz(p)
(Jz(p))

T 0

�

, where Jz(p) is a |A(z∗(p), p)|×

n matrix with rows (∇z gi(z∗(p), p))T, i ∈A(z∗(p), p). Then
�

∇pz∗(p)
∇pλ

∗
A(p)

�

= −[Hz,λ(p)]
−1

�

∇pzL(z∗(p),λ∗(p), p)
�

∇p gi(z∗(p), p)
�

i∈A(z∗(p),p)

�

,

where λ∗A(p) denotes the Lagrange multipliers of the active constraints at z∗(p).

Proof. See Chapter 3 of Fiacco [11], or the unified Theorem 4.4 in Still [12].

2.1.2 Dynamic Optimisation

Dynamic optimisation problems are optimisation problems in which one or more
of the functions involved define or require the solution of a dynamical system.
Consider points of a continuous time dynamical system (2.2) with piecewise
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Figure 2.1: Prototypical outline of sequential dynamic optimisation.

constant input u(t) made up of k pieces. Let the system mapping from t0 to t f ,
Sk : Rnx ×Rnu×k to be defined as:

xk = Sk(x0, u0:k−1) (2.6)

where t0 is the initial time, and with a small abuse of notation xk ∈ Rnx and uk ∈
Rnu are the state and system input at time point tk, and u0:k−1 = [u0, . . . , uk−1] is
the sequence of inputs. In principal one can simply use the system mapping inside
an optimisation problem. This is called sequential dynamic optimisation as the
solution of the dynamical system is solved separately from the optimisation, as
shown in Figure 2.1.

Importantly, using the solution mapping (2.6) requires the use of an ODE solver,
or more generally a differential algebraic equation (DAE) solver and a method to
calculate gradients. As discussed in Section 2.1.1, this can be performed efficiently
by AD.

Single- and multiple-shooting

One can consider solving optimsation problems involving differential equations,
with z = [x0, u0:nk−1], and where the objectives and constraints contain the system
mapping, e.g. g(xk) = g(Sk(x0, u0:nk−1, tk), p) ≤ 0. This approach to sequential
dynamic optimisation is termed single-shooting as the system trajectory is solved
in a “single shot” from x0. As such, if the system is unstable at some time point t j ,
then this effects the entire remaining trajectory and can result in the differential
equation failing to solve or the derviative to “blow up”. In addition, unless f is
linear using the solution mapping, S, can give a very nonlinear problem potentially
leading to poor or failed convergence of the optimiser4.

Another option is to simply include the constraint (2.6) and x0:N in the optim-
isation problem, i.e. z = [x0:nk

, u0:nk−1]. This is termed multiple-shooting, as the

4If f is linear then there is an analytical expression for the solution mapping. Thus through single
shooting one can condense the problem to a very compact form which can offer computational
benefits.
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system trajectory is broken into N segments5, and the whole trajectory is found
by “stitching together” the segments. Importantly instability in one part of the
trajectory does not lead to instability in the rest of the trajectory. Thus, multiple
shooting leads to a larger, sparser and more stable optimisation problem than
single shooting.

For some system use of multiple shooting can still give convergence issues, and
in these situations one can use direct collocation (and variants) to directly embed
introduce constraints that describe the trajectory of the differential equation and
not just points along the trajectory. This typically much more reliable formulation
than both single and multiple shooting at the cost of much more constraints in the
optimisation problem [4].

Due to the stochastic nature of the optimisation algorithms used in machine
learning constraints are hard to enforce and thus when optimising in continuous
time in a machine learning context single shooting approaches predominate (see
Chapters 3 and 7 and Appendix A). A motivation of Chapter 8 was to introduce the
concept of multiple-shooting to a machine learning audience, by highlighting that
with a small increase in implementational complexity one can avoid otherwise
pathological problems.

2.1.3 Model mismatch, uncertainty and optimisation

In a “standard" engineering optimisation problem, a system model is either expli-
citly included as constraints, or implicitly included in the problem functions. For
practically every model there is some degree of model mismatch – a discrepancy
between what the model predicts and how the real system responds. This mismatch
can arise due to a variety of factors such as modelling assumptions, uncertainty in
fitted parameters, and un-modelled phenomena. Correspondingly, there are many
ways to model this mismatch, however the most common approach is to assume
the model as structurally correct, with the mismatch occuring due to parametric
and/or additive uncertainty.

Excluding some special cases, e.g. linear problems with uncertainty in the
inequality constraints, including uncertainty in the optimisation problem leads
to a much more computationally expensive problem. Additionally, and perhaps
underappreciatedly, the phrasing of the problem also becomes much more involved,
e.g. how should the uncertain objective by scalarised?

Robust and probabilistic constraints

When considering building an optimisation problem with uncertainty a key ques-
tion to decide is how the uncertainty should influence the constraints. Let p, the
parameters of the optimisation problem (2.1) be distributed by some continuous

5For notational simplicity I have used one segment per time-point, but each segment may contain
any number of time points.
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non-zero probability distribution function πp, supported on some set P. For sim-
plicity consider an optimisation problem with only one inquality constraint (i.e.
|I|= 1, |E |= 0)).

Robust optimisation (also called robust constraint satisfaction) means that the
probability distribution is “ignored” and one instead poses the constraint:

g(z, p)≤ 0 ∀p ∈ P (2.7)

An optimisation problem involving this constraint is called a semi-infinite program
(SIP) because it involves a finite number of optimisation variables and an infinite
number of constraints6. In some cases this constraint can be satisfied by only
considering a discrete set of points Pd . More generally, this constraint can be
reformulated as:

max
p∈P

g(z, p)≤ 0 (2.8)

Thus, checking feasibility of a point in general requires solving an optimisation
problem. Clearly, SIPs are an incredibly difficult class of problems to solve without
strong assumptions. Chapter 9 develops algorithms for solving SIPs, specifically
those that generate a sequence of lower bounds that converge to the global op-
timum. Constraints of this kind can occur in contexts other than robust optimisation,
e.g. when using H∞ norms, ∥ · ∥∞, as in Chapter 5.

In many cases πp may not have support on a compact set, e.g. if a parameter is
normally distributed, and satisfying (2.7) can be infeasible or overly conservative.
Typically one resolves this by truncating the distribution, and considers robust
optimisation of the problem with the truncated distribution. Alternatively, one can
chose to approximate the continuous distribution πp by a discrete distribution πd

p ,
which greatly reduces the computational complexity. This is part of the motivation
for multi-stage model predictive control, discussed in Section 2.2.

As such, despite the name robust optimisation with continuous distributions
typically involves allowing low probability violation of the constraint due to trun-
cation for feasibility or reduced conservativeness. This can serve as motivation
to consider the use of probabilistic constraints which require the constraint to be
satisfied in probability. A typical example is the joint chance constraint:

Pπp
[g(z, p)≤ 0]≥ 1− ε (2.9)

where Pπp
is the probability evaluated with respect toπp, and ε ∈ R+ is the allowed

probability of violating the constraint. Note that setting ε = 0 is equivalent to using
(2.7). Practically both robust (with a truncated distribution) and probabilistic
constraints allow some violation of the constraint but the manner in which it is
allowed differs. In Chapter 7 the use of probabilistic constraints and objectives in
the context of model predictive control is discussed, and a method for training
neural network control policies to meet these constraints is presented.

6As πp is a continuous probability distribution |P|=∞
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Adaptiveness for uncertainty and model-mismatch

Considering uncertainty greatly complicates the formulation and solution of an
optimisation problem. In an adaptive approach the uncertainty is handled separ-
ately to the optimisation problem. For problems that are solved multiple times, e.g.
model predictive control, one can consider solving a nominal optimisation problem,
and some adaptative algorithm. This algorithm would adapt objective, constraint
and/or model parameters based on measurements to act against uncertainty and
model-mismatch.

Ideally the adaptive algorithm will result in the nominal system (or the op-
timum of the nominal system) converging to the true system (or true optimum).
However, this adaptation is reactive, and there may be constraint violations before
convergence, assuming that the system does converge. This idea of adapting the
model appears in Chapter 4 where a disturbance model for inventory control is
considered. The disturbance model ensures that despite mis-identified parameters
gross violation of constraints is avoided.
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Figure 2.2: Schematic of a model predictive controller in a control loop. Solid lines
represent autonomous actions, while dashed lines indicate human intervention.
For simplicity the dependency on time has been neglected.

2.2 Model Predictive Control

Model predictive control (MPC) is an optimisation-based control strategy. At each
iteration, an optimisation problem is solved to find control inputs using a dynamic
system model to predict the short-term response of the system. Sometimes MPC is
used to refer to the more restrictive case where the objective is quadratic and the
model and the constraints are linear, i.e. the optimisation problem is a (convex)
quadratic program. Sometimes, this is made clear by calling this restrictive case
linear MPC, and the general case non-linear MPC. In this section I describe the
essential elements of MPC, with the aim to provide some broader scope context to
the use of MPC in Chapters 3, 4, 6 and 7 and Appendix A. As such I do not delve
into the fundamental theoretical aspects of MPC and instead direct the interested
reader to the first four chapters of Rawlings et al. [13].

2.2.1 MPC in the control loop

Figure 2.2 shows the typical set up of MPC in a control loop. Given an estimate of
the current state, x̂ , and set-points, xs, a dynamic optimisation problem is solved
to minimise some objective, subject to constraints. The solution of this problem
is a sequence of control actions. The first action in this sequence is taken and
implemented in the plant. After some time, measurements of the plant are taken
and used to estimate the current process state. The target selector block then takes
in the current estimate of the state and the desired set-point, ys and calculates a
consistent set-point (xs, us) for use in the MPC problem. Note that the target block
can be very problem dependent and may contain logic elements of prioritising
some constraints over others, etc. Often in academic works this block is neglected.
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With the exception of Chapter 4 the MPC related works in this thesis have
focused solely on the MPC block alone. In this setting one typically assumes that the
current state of the process is available (without error), consistent set-points have
been allocated, and that the tuning of the MPC parameters will not be changed.

Why use MPC?

Implementation of MPC in the control loop (Figure 2.2) clearly requires some
effort: MPC requires a model, and a (tuned) optimisation problem should solved
at every time step. For many systems, e.g. single-input single-output systems, this
effort can be significantly more than that of implementing a “classic" advanced
control scheme [14]. So when would someone want to implement MPC? Of the
many suggestions in the literature the most convincing can be distilled to the two
points:

1. MPC can improve operating efficiency (and hence profitability).
This follows from the “squeeze and shift" principal of process control – tighter
control leads to reduced operational variance and hence operating with
smaller back-off from operational/safety constraints that limit production.
Improvements in efficiency are especially expected for strongly interacting
systems or those where one can provide a forecasted disturbance to the
controller.

2. Given a model MPC is deceptively simple and flexible.
MPC implicitly defines a control law for systems where explicit computation
of a control law would be difficult or impossible [15]7. In addition an MPC
problem can be flexibly tailored to specific aspects, e.g. constraint priority,
while including online information and/or operator decisions [16].

Although implementing MPC can be expensive and time-consuming, if it is applied
to an economically valuable plant section it can rapidly pay itself off. In the
process industry MPC implementation takes 1-2 personnel years per plant (section)
compared to 2-4 months personnel months per (complex) unit for designing and
implementing an advanced regulatory control system, with both typically yielding
pack-back times of less than a year [17].

Feedback and MPC

A subtle but important aspect of the MPC control loop is that it incorporates
feedback by resolving the MPC problem at each iteration. Although this point may
seem un-important at first it is what enables the effective use of MPC.

Consider if the MPC problem was not resolved at every step – this is an open-loop
implementation of MPC. Att = 0 an MPC problem is solved to find a sequence of
control actions u0:nk−1. These control actions are then implemented and at t = tnk

the state is estimated and the MPC problem is solved again. This would works if

7Constraint handling, often cited as a key reason for MPC, falls under this point.
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Figure 2.3: Sketch of the inherant robustness of MPC. x̂k is the estimate of the
state at tk, xk is the actual state, x̂k+1|k is the prediction of the state at tk+1 from
x̂k, wk is an additive disturbance, ek is an estimation error, and X f is a terminal
region that the MPC aims to navigate the state into. The dashed lines show the
evolution of the state, and state estimate, assuming no stochastic disturbances.

the system evolved exactly as the model predicted, i.e. there is no model-mismatch
and no stochastic element affecting the control loop. Clearly these conditions
will never be met. As such, in general the system will evolve differently to the
prediction made in the optimisation problem, leading to the sequence of control
actions potentially failing to stabilise, or even destabilise the system.

In contrast, in a standard, closed-loop, implementation of MPC only the first
action of the control sequence is implemented. Then at the next measurement time,
the state is estimated and the MPC problem is resolved, and again only the first
action is taken. This cycle repeats, meaning that the un-modelled influences are
indirectly taken into account by repeated measurement of the system. An important
property of is that under mild conditions, this MPC scheme is inherently robust
[13]. Inherent robustness of MPC is shown pictorially in Figure 2.3. Essentially,
despite the influence of measurement noise, e, and additive stochastic disturbances
w, MPC can still steer the state from some starting point, xk, into some terminal
region around the desired set-point XF using only estimates of the state, x̂s.

2.2.2 Robust and stochastic MPC

Up to a point one can rely on the inherent robustness of MPC to ameliorate
uncertainty and stochasticity. However, due to uncertainty operating constraints
can be consistently violated. To ensure that operating constraints (2.1b) are not
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grossly violated the inequality constraints can be tightened:

g(x , u)≤ −δ (2.10)

where δ ∈ Rng
+ is a back-off. The idea is that even if (2.10) is violated, the original

constraint (2.1b) will not be violated.
Although use of (2.10) can sometimes ensure safe operations, it can also

result in over-conservative reduction of the operation region, make the desired
set-point infeasible and/or lead to high variance of the closed-loop system due
to unmodelled dynamics. The other option is to explicitly consider uncertainty
in the MPC problem in either a robust or stochastic framework, corresponding
to the use of a robust (2.7) or some kind of probabilistic (2.9) constraint. When
considering a nominal objective and uncertain constraints MPC implicitly define
the minimum required back-off to ensure safe operation. However, due to the
computational, implementational and theoretical difficulties this has primarily
remained of academic interest. To yield a feasible and non-conservative formulation
is clear from the literature that one needs to introduce a notion of feedback into
the control problem.

Feedback and uncertainty

An early robust MPC formulation, min-max MPC, considered linear systems, with
additive uncertainty, and aimed to achieve control of a tube of trajectories by a
sequence of control actions while minimising the worst case loss. In this formulation
predictions are made by:

x l
k+1 = Ax l

k + Buk +wl
k, l ∈ L (2.11)

where as the dynamics are linear a finite discretisation of uncertainty realisations, L,
can be used to ensure robustness of the system for bounded additive disturbances.

As each of the L predictions use the same control action at a time point, min-
max MPC commonly leads to infeasiblity or very conservative control actions. This
is because the formulation does not take into account that when implemented there
is feedback due to the state estimation, i.e. in the optimisation problem the tube
of trajectories can grow uncontrollably. Feedback min-max MPC [18] resolved this
issue by incorporating the feedback nature of MPC into the problem formulation,
thus allowing for different control actions depending on the uncertainty influencing
the system:

x l
k+1 = Ax l

k + Bul
k +wl

k, l ∈ L (2.12a)

x l1
k = x l2

k ⇒ ul1
k = ul2

k l1, l2 ∈ L (2.12b)

where the second constraints enforces causality, and prevents the MPC from anti-
cipating the uncertainty. In this formulation one performs optimisation over an
implicitly defined control policy, and not a sequence of control actions. To be clear,
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the distinction is that in a control policy the control is a function of the state and
not solely a function of time.

The issue with feedback min-max MPC is that the computationally effort grows
exponentially with the horizon length and number of uncertainties. The feedback
min-max MPC was extended to multistage MPC [19] where the system dynamics
are assumed “to become certain" after some time point, i.e. the control horizon
has a smaller robust horizon inside of it. As the robust horizon can be chosen
to be much shorter than the control horizon this can dramatically reduce the
computational cost. Additionally, this approach has been applied as a heuristic
method to non-linear MPC. This method is a heuristic because a robust horizon,
and finite discretisation of the uncertainty cannot ensure robustness with respect to
the original uncertain problem unless both of these are carefully designed, which in
general will induce a significant computational cost. Multistage MPC is practically
appealing due to its conceptual simplicity and relative ease of implementation
compared to other strategies that consider uncertainty for non-linear systems.

2.2.3 Reducing computational complexity

When MPC is used there is some delay between the measurement of the state
and sending the selected control input to the plant / lower level control system.
Although all the parts of the control loop contribute to the delay, this is primarily
due to the time required to solve the optimisation problem. The delay should be
sufficiently small, as significant enough delays can severely impact the control
of the system and can even destabilise the system [20, 21]. The computational
complexity of nominal MPC means that it can be applied to a wide range of
systems, as long as they are not very large or evolve very fast in time. However,
the computational cost of considering uncertain can make MPC computationally
infeasible, even for relatively moderately sized non-linear systems. Indeed, even for
linear systems multistage MPC can be computationally expensive when considering
many uncertain parameters or if a moderately long robust horizon is required.

To speed up MPC one can try four main approaches:

(a) Improve the solution algorithm of the optimisation problem [4, 22].
(b) Use the time between iterations to pre-compute a control action that is

corrected later [23, 24].
(c) Reduce the MPC problem size [25, 26].
(d) Compute/approximate the MPC policy offline [27, 28].

In Chapter 6 I consider point (c) and propose to learn a terminal cost that
captures the behaviour of using a long horizon, while allowing the single step
horizon. The proposed approach is demonstrated on a multi-stage MPC formulation,
however can easily be applied to other linear robust MPC methods.

Elsewhere in the thesis (Chapters 3 and 7 and Appendix A) I propose to directly
optimise an explicit control policy (for a potentially uncertain system) off-line to
address point (d). In the proposed approach we learn a control policy described
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by a neural network:
uk = fNN (xk,θ ) (2.13)

where fNN : Rnx ×Rnθ → Rnu is the neural network, and θ ∈ Rnθ are the neural
network parameters. Unlike approaches which learn this policy based on off-line
solutions of MPC problems [28], we optimise the policy in closed loop to avoid
issues arising due to the separation of the control and learning problem (see
Chapter 7). In addition optimisation of a closed-loop policy is inherently suitable to
formulations considering uncertainty, and problems where full state measurements
are not available (Chapter 3).
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2.3 Neural networks

Neural networks are the most famous family of mathematical models (or rather
the only famous model family) and are the poster-child example of machine and
deep learning. Considering this I do not describe standard aspects of their imple-
mentations or use, e.g. feature engineering, different architectures, over-fitting.
Instead this section briefly describe the archetypal neural network, before discuss-
ing some important similarities and differences between training neural networks
and solving “standard” optimisation problems. Following standard convention, in
this section x ∈ Rnx is used to indicate the network input. Neural networks are
used in Chapters 3, 6, 7, 8 and Appendix A.

Formulation of a Neural Network

The standard neural network is the feed-forward neural network, typically depicted
in a form similar to Figure 2.4. Each node in the network has an associated value,
ζ
(i)
j , and scalar, continuous activation function α(i)j that acts on the sum of the

nodes inputs8. The network is called feed-forward as each node feeds into nodes
of the following layer. Thus, the network is defined as the affine composition of
functions:

ζ(i+1) = α(i)(W (i)ζ(i) + b(i)), i = 0, . . . , Nw − 1 (2.14a)

θ = vec(W (0), b(0), . . . , W (Nw−1), b(Nw−1)) (2.14b)

ζ0
j = x j , j = 1, . . . , nx , ζ

j
0 = 1, i = 0, . . . , Nw − 1 (2.14c)

fNN (x ,θ ) = ζ(Nw), α(Nw−1)(ζ) = ζ (2.14d)

where by convention the bias nodes ζ j
0 are assigned a value of 1, and the last

activation function is chosen as the identity. The first layer is known as the input
layer and is followed by Nw − 1 hidden layers, with Nw termed the depth of the
network. Similarly, the number of nodes in each layer, m( j) is the width of the jth
layer. θ are called the neural network parameters or weight. The width, depth,
choice of action function, and connectivity of the network are choices of network
architecture and are called the hyper-parameters of a neural network. Through
bench-marking some network architectures have been shown to perform much
better than others for various tasks, e.g. convolution neural networks for image-
based tasks. The basic language of activation functions, weights, etc. remains the
same for the same for the wide-range of possible network architectures. For an
overview of the architectures, and other fundamental considerations in the design
and use of neural networks (and other machine learning models) see [29, 31].

8Although some works have proposed the use of discontinuous functions, this commonly leads
to difficulties when fitting the network. Standard texts define neural networks to use continuous
activation functions [29, 30].



Chapter 2: Background 21

ζ0

ζ1

...
ζnx

ζ
(1)
0

ζ
(1)
1

......
ζ
(1)
m(1)

• • •

• • •

• • • ζ
(N−1)
0

ζ
(N−1)
1

...

ζ
(N−1)
m(N−1)

ζ
(N)
1

ζ
(N)
2

...
ζ(N)ny

input layer
1st hidden layer N − 1th hidden layer

N th layer (output)

Figure 2.4: A feedforward neural network with N layers, nx inputs and ny outputs.
The jth hidden layer contains m( j) hidden units, and a bias.

2.3.1 Neural networks as nonlinear models

Finding a linear model, static or dynamic, from data can be performed nearly
effortlessly. However, not all data can be described by a linear model, and in these
situations one needs to search for a good non-linear model. Without significant
mechanistic or “first principal” knowledge this can be a difficult task due to the
range of possible models.

Neural networks are a popular model choice because they can be efficiently
trained and are able to approximate a broad class of functions. The later is a
now classic result, often referred to as the “universal approximation theorem".
Despite it’s name neural networks can not represent any function. Additionally, even
when fitted to data that they should be able to describe neural networks normally
benefit (extensively) from pre-processing of the data, use of domain knowledge
and architectural choices.

Why neural networks?

A reasonable question to ask is “Why use neural networks for non-linear regres-
sion"? The very short answer is – they work well. A short, but slightly longer
explanation is that the structure of (2.14) is good for non-linear regression. An
informal justification of this follows.

Given the task of fitting a model to a data a set of independent and dependent
data, (X , Y ), a reasonable first step is to try fit a linear model.

y ≈ fpred(x) = M x + c (2.15)

If the fit is poor then one can consider calculating some features, ξ , of X , i.e.
specified transformations of X such as cos(x), exp(x) x2. Then one can try fit a
linear function of ξ to Y . If the fit is again poor then one has to somehow select a
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more flexible non-linear model and optimise the parameters of this model to fit
the data.

Often a reasonable assumption is that the data is generated by a differentiable
function, or could reasonably be described by a differentiable function. Taylor’s
Theorem implies that such data can be approximated by the sum of polynomials.
Note that polynomials are the sum of products of features. So to perform non-
linear regression one can consider searching over different sums of products of
features. Polynomials are only one choice of basis function, Φbasis, that lift x into a
nξ dimensional space with predictions made by:

fpred(x) = MΦbasis(x) + C (2.16)

This of course raises the question of how should Φbasis be chosen. If one con-
siders the final layer of a neural network (with the normal choice of α(Nw−1)(ζ) =
ζ):

fNN (x ,θ ) =W (Nw−1)ζ(Nw−1)(x) + b(Nw−1) (2.17)

then it is clear that when training a neural network one is simultaneously optimising
over the weighting of the basis functions, and the basis function itself.

What we implicitly require is that α is chosen so that fNN is a flexible model9.
As discussed in the following section this is not difficult.

The vast majority of machine learning-esque models can be framed in this
context10. With this picture the multiple layers of neural networks each layer prior
to the last can be thought of as being optimised to provide useful features to the
following layer.

The limits of “Universal approximation"

The above motivation used the idea of a differentiable data-generating function to
motivate the use of neural networks, however this is not a required assumption
for a neural network to fit data well... After all neural networks are “universal
approximators”. Despite the name universal approximator it is important to note
that neural networks cannot approximate any function to arbitrarily low tolerance.
Rather, neural networks are dense in the space of continuous function [32].

Informally, classic results have established that a sufficiently large neural net-
work (in width or depth), with an appropriate activation function, is able to
approximate bounded, continuous functions defined on a compact subset of Rnx

to an arbitrarily low tolerance [32, 33]. If the activation function approximates
the step-function then an adaptation of the argument in Cybenko [32] applies,
however other arguments can be used for a wider range of functions [29].

9If every α is chosen as a linear function, e.g. α(ζ) = ζ then a neural network defines a cumber-
some linear regression.

10For example consider choosing features to be binary variable output of functions. A polynomial
of these features is then the output of a sequence of some generic logical expressionm, i.e. a decision
tree.
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The universal approximation theorem does not apply to discontinuous functions.
This is because a requirement for the activation function is that it is continuous, and
as a neural network is simply the composition and affine combination of continuous
functions, it is itself continuous. In the context of this thesis, this is important as the
control policies implicitly defined by nonlinear MPC are not necessarily continuous
[13]. Thus, in general neural networks cannot represent non-linear MPC policies.

Despite neural networks being universal approximators, better performance is
often observed by tailoring either the inputs (e.g. scaling, feature selection and
similar) and architecture (e.g. choice of activation functions, width, and depth) of
the network [29, 30].

2.3.2 The optimisation problem

Training versus optimisation of network parameters

Ideally neural network parameters (and hyper-parameters) should be chosen to
give the best performance of the network, i.e. by a solving an optimisation problem.
Let (X , Y ) consist of m entries (x , y), and consider the task of finding the optimal
neural network parameters that describe this data. This can simply be written in
the standard optimisation form of (2.1):

min
z

J(z, p) =
1
m

m
∑

i=1

loss( fNN (x i , z), yi) (2.18a)

subject to z = θ and (2.14) (2.18b)

where loss(·) is some appropriate loss function. The loss function is an important
choice as in reality we don’t want to approximate (X , Y ) well, but instead wish to
approximate unseen data generated by the same process well. Often one incorpor-
ates some form of regularistion in the loss function, or elsewhere in the training
of the network. For now we simply assume that some reasonable loss function is
chosen.

Despite (2.1) and (2.18) formally being the “same problem" the ideology, issues
and computing practices are different. That the optimisation of neural networks is
referred to as training is emblematic of this difference11. (2.18) is a non-convex
optimisation problem, and for many of the standard choices of activation functions
fNN is non-smooth and hence non-differentiable. Thus,as a standard optimisation
problem (2.18) would be considered a very difficult problem. Indeed, even if fNN
is smooth, one can show that a single neuron network can have exponentially
many local minimima [34]. Additionally there are plenty of theoretical results
demonstrating that optimisation of arbitrary networks is intractable – a favour-
ite example is titled ‘On the infeasibility of training neural networks with small
mean-squared error’ [35] which proves that optimisation of a feed-forward neural
network with two layers is NP-hard (and hence intractable).

11Throughout the text I have tried to maintain this difference, unless I wish to emphasise training
as being a sub-category of optimisation.
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In practice training neural networks is easy (at times frustratingly so). For
standard loss functions, 0≤ J , and so any θ with zero loss is a global minimiser.
Given a neural network, data that can be described by that neural network, and
a (decent) gradient based training algorithm from Github you will find a θ with
zero or close to zero loss. Why this seemingly difficult problem can be solved with
reasonable time and effort is an open research question. However given the wide
range of neural network applications, instead the focus is clearly on exploiting this
“surprisingly doable” optimisation.

Selecting hyper-parameters

Neural networks, and their surrounding pipeline, have many hyper-parameters.
These hyper-parameters describe the network architecture, pre-processing of the
data, parameters of the training algorithm, choices in the objective function, and
so-on. These parameters are not learned during training, and are instead “tuned"
based on how well the trained neural networks behaves on some criteria. This again
can be phrased as an optimisation problem – one that is bi-level, mixed-integer,
non-linear and (practically and theoretically) infeasibly hard to solve.

If one tries to perform hyper-optimisation then some black-box optimisation
algorithm is needed – in general these are tractable only for very low dimensions.
Bayesian optimisation has experienced some popularity as it leverages inform-
ation from prior solutions to solve the current problem more efficiently. So if
hyper-parameter optimisation of similar models is performed many times one can
alleviate the computational cost through Bayesian optimisation. However, Bayesian
optimisation still scales exponentially poorly if one cares about reliable finding an
optimum solution.

Luckily we don’t exactly want to solve the hyper-parameter optimisation – the
typical goal is simply to find reasonable hyper-parameters. Interestingly, if this is
the goal then random search is shockingly competitive, and variants of random
search (e.g. Hyperband) are bench-marked as amongst the most computation-
ally efficient and reliable tuning methods for hyper-parameters [36]. Similarly
Bayesian optimisation methods can often find reasonable hyper-parameters in a
few iterations given enough prior data.

As such I have not made a significant effort to tune the hyper-parameters of the
networks in my thesis. Considering their relatively small number, most often I’ve
picked something reasonable, compared against some randomly selected options
and moved on.

2.3.3 Training

Stochastic gradient descent

Compared to standard gradient based optimisation algorithms, neural networks
are typically trained by stochastic gradient based method. These methods use
(unbiased) stochastic estimates of the gradient instead of the true gradient. The
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standard motivating reason is that it is often computationally infeasible to evaluate
the gradient of network parameters when considering all the training data. Thus
one samples from the available data to produce an un-biased estimate of the
gradient. The prototypical example of such methods is stochastic gradient descent.
At each iteration the following update is performed:

θk+1← θk −ηk∇J(X ik , Yik) (2.19)

where k indexes the iteration number, ηk is a positive stepsize, and at each iteration
an index ik is chosen randomly, and used to evaluate the objective using only the
sample pair (X ik , Yik). As each iteration only involves a single sample pair, each
iteration is very cheap.

The stochastic gradient can be made less variable by a batch approach where
at each iteration a batch of indexes are chosen. Intuitively one is computing an
approximation of the expectation of the gradient at each iteration. Using a batch
of data results in an increase in the per-iteration complexity, however can result in
less total iterations due to a reduction in the variability of the gradient. However,
as the contributions to the mini-batch can be computed in parallel, computational
issues can be significantly alleviated. Common advice is to the largest mini-batch
that can fit in the available RAM [30].

Of course this is not the full story – although the gradient is zero at the optimum,
the stochastic gradients are often non-zero at the optimum12. Thus, in general
one needs αk → 0 as k→∞ for convergence. The original paper on stochastic
gradient descent [37] proposed using αk =

1
k . With this choice stochastic gradient

descent applies some a “running average" of the gradient to the original θ0, while
ensuring that the step sizes tend to zero and allowing the length of the path defined
by the update (2.19) to be infinite.

Beyond stochastic gradient descent

Many variants have been proposed to address the slow convergence of stochastic
gradient descent method [3, 30]. Compared to classical optimisation algorithms
these methods are often un-published and are relatively simple. Compared to
stochastic gradient descent these methods tend to either seek to stabilise the
gradient estimates and/or to automatically adjust η based on recent information.
A popular approach is to combine the current stochastic gradient with the previous
step, These are called momentum based methods and have the update:

∆θk← β∆θk−1 −ηk∇J(X ik , Yik) (2.20a)

θk+1← θk +∆θk (2.20b)

In practice these methods often significantly outperform stochastic gradient descent.
Typically a relatively large β isused(≈ 0.9) [30].

12For the stochastic gradients to be zero at the optimum then the optimal parameters should
be optimal when considering any sampled point. This is the case for the neural network policy in
Chapter 7.



26 E.M. Turan: Optimisation and machine learning for process systems engineering

There are many variants to automatically adjust ηk. The RMSProp algorithm13

[38] selects ηk by dividing a chosen η0 by a running average of the magnitude
of recent gradients (this makes ηk ∈ Rnθ ). Currently the default choice in many
machine learning packages is Adam [39] which combines the RMSProp algorithm
with a momentum based update. When training the neural network policies of
Chapters ref here I have found that have found that RMSProp, AMSGrad, and
Nesterov Adam (NAdam) perform the most reliably [38, 40, 41].

Differentiation without Differentiability

During training of neural networks one often takes “derivatives" of non-differentiable
functions. A common example of this occurs with the widespread use of the relu
activation function:

relu(x) =max(0, x) (2.21)

in neural networks. Despite the non-differentiablility of relu a modern automatic-
differentiation environment, e.g. [8], will allow its use. The basic idea is that the
AD tool will return the derivative of the smooth piece that is currently evaluated.
Although one can justify this with arguments that the set of non-differentiable
points is a set of measure zero, the more practical (and perhaps truthful) answer
is that theoretically issues are ignored because of the empirical success of doing so.
However, do note that a naive application of this idea can lead to various issues –
for a full discussion of this topic see chapter 14 of Griewank and Walther [9].

What happens during network training?

Recently it has been noted that neural networks trained by stochastic gradient
descent appear to be implicitly regularised both in terms of the solution path and
final solution [30, 42]. The pertinent aspect is that neural networks trained by
stochastic gradient descent methods have a spectral bias – they tend to learn low
frequencies before high frequencies during training. This is of both theoretical and
practical interest, e.g. early stopping is effective at preventing the fitting of noise
in the data if the noise is at higher frequencies than the underlying deterministic
function. This also implies that if neural networks need to learn a high-frequency
response immediately, e.g. as in Chapter 8, the training will likely be problematic.

Constraints

Stochastic gradient methods do not support constraints. When there are constraints
the general approach is to handle these implicitly. A simple example is that if the
output of the neural network should be positive then the final activation functions
should be chosen to restrict the network output to always be positive. A more

13Indicative of the field, despite its popularity, this is an unpublished algorithm with the standard
reference being class lecture notes.
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complicated example is to require that a network with the input xre f is equal to
zero. This can be done by selecting the architecture:

fNN (x ,θ ) = f r
NN (x ,θ )− f r

NN (xre f ,θ ) (2.22)

where f r
NN is any neural network. When these kind of tricks are not possible then

constraints are typically handled by a penalty method, most typically a quadratic
penalty.

Consider (2.1) with only equality constraints. Consider the relaxed problem
with a quadratic penalty:

min
z

J(z, p) +
µ

2
∥g(z, p)∥2

2 (2.23)

where µ ∈ R+ is a penalty parameter. By increasing µ violations of the constraint
are increasingly penalised. The idea of the formulation is that one can simply
increase µ until the constraint is satisfied at a desired tolerance. Unfortunately,
the quadratic penalty method is inexact which means that in general solutions of
(2.23) may not be solutions of (2.1) for any finite positive µ.

However, there are exact penalty methods that do yield the same solution
of (2.1) with some finite penalty parameter. An example, that is used in various
places in this thesis, is the Augmented Lagrangian method which uses the penalised
objective:

min
z

J(z, p) +
µ

2
∥g(z, p)∥2

2 −
∑

i∈|E |

λi gi(z, p) (2.24)

where µ ∈ R+ and λ ∈ R|E | are penalty parameters. The Augmented Lagrangian
method is exact, and compared to the quadratic penalty method yields a better
conditioned sequence of optimisation problem [1].

Additionally, although the penalty methods have been presented for only
equality constraints, they can be readily extended to also consider inequality
constraints. For further information on Augmented Lagrangian methods see e.g.
section 17.5 in [1] or [43]. Enforcing constraints by a penalty method can be
difficult and computationally expensive, especially if constraints should be satisfied
to high tolerance. As such throughout the thesis, constraints have tried to be
enforced by network design where possible and otherwise by a penalty approach.

2.4 Conclusion

Some important concepts that form the background of this thesis have been briefly
presented. In most chapters a combination of ideas from the three sections of
this chapter are used, with many works directly and indirectly using dynamic
optimisation, ideas from optimisation under uncertainty, and neural networks.
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Chapter 3

Closed-loop training of static
output feedback neural network
controllers for large systems: A
distillation case study

The online implementation of model predictive control for constrained multivariate
systems has two main disadvantages: it requires an estimate of the entire model
state and an optimisation problem must be solved online. These issues have typically
been treated separately. This work proposes an integrated approach for the offline
training of an output feedback neural network controller in closed loop. Online
this neural network controller computers the plant inputs cheaply using noisy
measurements. In addition, the controller can be trained to only make use of
certain predefined measurements. Further, a heuristic approach is proposed to
perform the automatic selection of important measurements. The proposed method
is demonstrated by extensive simulations using a non-linear distillation column
model of 50 states.

This chapter has been submitted as a journal article and is in review.

3.1 Introduction

Due to the difficulty of explicitly defining a control law for multivariate interacting
systems with constraints, a popular approach is to use model predictive control
(MPC) to implicitly define a feedback control law. Given an estimate of a system’s
state, MPC uses a dynamic model to forecast the behaviour of the system subject
to a sequence of control actions, optimises to find this sequence to minimise an
objective and satisfy system constraints. This sequence of control actions results
from an open-loop optimisation, i.e. the third control action does not take into
account the sequence of disturbances that may have occurred. It is well established
that use of open loop optimisation can have dramatic effects due to stochasticity or
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innacuracies in the system forecast. MPC incorporates feedback by only implement-
ing the first control action, before repeating the optimisation with a new estimate
of the system state.

Thus, MPC incorporates feedback due to measurements that are used to es-
timate the system state. However, each time a control action is determined, MPC
requires (a) the current state of the system to be estimated from measurements,
and (b) the solution of an optimisation problem. For many systems one can use a
linear(-ised) model which allows for computing the state estimate and optimal
solution reliably and efficiently. Some systems are inherently non-linear and the
use of linearised models can result in poor controller performance. However, non-
linear models generally incur a significantly larger computational cost, and as such
there may be a non-negligible delay between measurement and control action.
This is especially true for large systems, or if uncertainty is considered. This delay
reduces performance and can (if significant enough) destabilise the system [1, 2].

Various approaches have been proposed to reduce the computational cost as-
sociated with MPC. This can be done by general approaches, such as improving
the optimisation algorithm, or more tailored approaches such as using the time
between measurements to compute the control sequence in advance, and then
adjust this based on the new measurement [3–5]. Many authors have taken motiv-
ation from recent advances in machine learning to reduce the computational cost
of MPC. The main idea is to approximate some control relevant mapping that is
typically unavailable or expensive to compute. Examples of these mapping include:
terms in the objective function [6, 7], steady state inverses of processes [8], and
offline control policies [9–14]. This work focuses on the latter, where the aim is
to learn an explicit output feedback control policy offline instead of solving an
optimal control problem online.

For a “standard” linear MPC problem the optimal control law is piecewise affine
on polyhedrals, and can be computed offline by solving a parametric program
[15]. This has become commonly known as "explicit MPC". Unfortunately, the
online computational requirements of this method grows exponentially in the
number of states and length of control horizon, and hence this approach is not
suitable for large systems. Thus, a more generally applicable approach is to train
an approximator to describe the control policy. Typically neural networks are used
as they are flexible and cheap to evaluate – e.g. one can find a neural network
that is exactly equivalent to the explicit linear MPC solution, while avoiding the
exponential scaling of the online evaluation [10].

When training a neural network control policy one may either (a) separate the
training from the control problem by first collecting a database of states and control
actions, and then train the controller on this database (optimise-then-learn, or
imitation learning) [9–11], (b) combine the two problems by embedding the neural
network in the control problem and train the controller on the control objective
(optimise-and-learn) [13, 14], or (c) use a reinforcement learning approach. As
we wish to find a static, offline policy we do not consider reinforcement learning
approaches in this work.
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Although the imitation learning approach is conceptually and implementa-
tionally simpler, it is restrictive as it requires data for the controller to imitate.
In addition, as the control problem is solved separately to the training, a con-
troller that does well on the training/validation data may have poor closed-loop
performance [14]. In the optimise-and-learn approach the controller is directly
trained based on the controller performance, and hence avoids problems occured
by separating the control and training problems [14, 16]. In addition, if the con-
troller is directly embedded into the system dynamics, e.g. Turan and Jäschke [14]
and Turan and Jäschke [17], then the training occurs in closed-loop. Closed-loop
training allows for flexible handling of uncertainty and also allows the use of a
smaller controller compared to the open-loop alternative, e.g. [13]. In general, the
optimise-and-learn approach is a more complicated training problem, however it
allows for a more flexible specification of the resulting controller.

In this work we find an explicit output-feedback neural network control policy,
that can be cheaply evaluated, using noisy measurements, to give control actions.
This policy is trained in a closed-loop optimise-and-learn formulation [14], which
allows considering measurement noise, and pragmatic usage of a subset of only
some measurements. We show that one can perform measurement selection as
part of the training of the control policy, and highlight some potential issues of this
joint approach. The control policy is demonstrated on simulations of a non-linear
distillation column. This is a considerably larger problem (50 states) than all other
examples in the optimise-and-learn literature.

Prior literature has predominantly considered relatively small scale examples,
with the notable exception of Kumar et al. [11] which considered an imitation
learning approach applied to large linear MPC problem for control of distillation
column.

To the authors knowledge the only work considering offline optimisation of an
output feedback neural network policy is [13], which considers a small single-input
single-output system. Unlike this prior work, we incorporate knowledge of the
measurement noise in the closed loop training of the policy and consider control
policies that do not use all available measurements. In addition, we consider a
much larger nonlinear model of a distillation column consisting of 50 states. A key
challenge of the training is the size of the state space. Any practical implementation
requires restriction of attention to a smaller region of the state space. We sample the
state space to find the typical operationally relevant region [11, 12], and train the
policy to start from that region. Unlike an imitation which would requires sampling
along trajectories starting in this region [12], the control policy is optimised in
closed loop and hence these samples are “implicitly generated” during training
[14].

This work is structured as follows: we briefly summarise the background and
relevant literature in Section 3.2, and proceed to formulate the output-feedback
training problem in Section 3.3. In Section 3.4 we introduce the distillation problem.
In Section 3.5 we construct the control policies, and present extensive numerical
results of their closed-loop performance in Section 3.6. Lastly in Section 3.7 we
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discuss important aspects of the results and potential future work.

3.2 Background

3.2.1 Model predictive control

In a continuous time formulation of model predictive control (MPC) we wish to
solve the time dynamic optimisation problem1:

u∗M PC(t, z0) = argmin
u(t)

J(z0, u) (3.1a)

J(z0, u) =

∫ t f

t0

l(z, u, t) d t + Vf

�

z(t f ), u(t f )
�

(3.1b)

0= f (ż(t), z(t), u(t), p) (3.1c)

z(t) ∈ Z (3.1d)

u(t) ∈ U (3.1e)

z(t0) = z0 (3.1f)

where t is time, t0 is the initial time, t f the final time, z ∈ Z ∈ Rnz is the system
state, with time derivative ż, u ∈ U ∈ Rnu is the control input, u∗M PC is the optimal
control input, f is an implicit differential equation, z0 is the state at initial time, l
is the stage cost, Vf is the terminal cost, and Z and U are constraint sets. In process
control problems these constraints sets are typically defined by upper and lower
bounds constraints on z and u.

To incorporate feedback MPC is implemented in a receding-horizon approach.
Given a state estimate, z0, (3.1) is solved, and the control u∗M PC(t0, z0) is imple-
mented. Then at t0 +∆t, given a new estimate the problem is resolved to find a
new control action. Thus, MPC implicitly defines the control policy:

κM PC(z0) = u∗M PC(t0, z0) (3.2)

where κM PC returns the first control action of the open-loop solution. We emphasise
that to solve (3.1) the full initial state of the system, z0, needs to be specified. In a
typical process many of the process variables are unmeasured, and hence have to
be estimated from the available noisy measurements.

3.2.2 Neural network and control policies

When using MPC, due to the need to perform state estimation, and then solve
an optimisation problem (3.1) there will be a delay between receiving the sys-
tem measurement and sending the optimal input to the plant. If large enough

1Note that in practice, most MPC problem are given in a discrete time formulation, but we focus
on the continuous time formulation as we are interested in obtaining a continuous time feedback
control law.
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this delay can reduce the controller performance and can even destabilise the
system. Although there are efficient optimisation algorithms for MPC, managing
the computational delay can be challenging for large systems, especially when
non-linear dynamics and uncertainty is considered. We consider the use of neural
network control policies to eliminate this computational delay and provide fast
online evaluations for the control actions.

Authors dating back to 1995 [9] have proposed the use of neural networks to
learn control policies that otherwise require an expensive evaluation such as MPC,
as they are universal approximators, i.e. sufficiently large feed-forward neural
networks are able to approximate bounded, continuous functions defined on a
compact subset of Rnz to an arbitrarily low tolerance [18, 19]. More recently
authors have shown that neural networks with a specific architecture can exactly
represent the control policies of linear MPC [10], and under some assumptions
can approximate nonlinear MPC policies to arbitrary precision [14].

Consider the feed-forward neural network, κNN :

κNN (z,θ ) = ζ(NL), ζ0 = z (3.3a)

ζ(i+1) = α(i)(W (i)ζ(i) + b(i)), i = 0, . . . , NL − 1 (3.3b)

θ = vec(W (0), b(0), . . . , W (NL−1), b(NL−1)) (3.3c)

where NL is the number of layers, ζ(i) ∈ Rw(i) is the latent state of layer i, α(i) is an
activation function, and W (i) and b(i) are weights and biases that are collected in
the vector θ . In this work κNN is trained in closed-loop to yield a feedback control
policy.

Optimise-and-learn formulation

In this paper, we use an optimise-and-learn approach to train the control policy in
closed loop [13, 14, 16, 17]. In this approach the neural network is embedded into
the system dynamics to form a single dynamic optimisation problem. This problem
is not computationally feasible to solve online, however one can find an offline
policy to be used for controlling the system starting in some region Z0 by solving:

min
θ
E
πz0

[J(z(t0), u)] (3.4a)

1= P
πz0

[z(t) ∈ Z] (3.4b)

0= f (ż(t), z(t), u(t), p) (3.4c)

u(t) = κNN (z(t),θ ), u(t) ∈ U (3.4d)

z(t0)∼ πz0
(3.4e)

where πz0
is some non-zero probability distribution defined on Z0, Eπz0

is the
expectation with respect to πz0

, and Pπz0
is the probability with respect to πz0

.
If the control policy defined by the related MPC problem is continuous in z then
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under mild conditions, minimisation of (3.4) yields the a policy equivalent in
performance to the MPC policy [14]. Typically u is constrained between upper and
lower bounds, and thus (3.4d) can be enforced through the activation function of
the final layer. As this is the standard case we assume that the network architecture
is chosen to satisfy the constraint.

The expectation of the objective and probability constraint need to be approx-
imated in some way to yield a tractable problem. At each iteration we consider a
stochastic approximation of (3.4) by evaluating:

φ =
ns
∑

s=1

ωsJ(zs(t0), us(t)) +ρ(zs(t0), us(t)) (3.5a)

0= f (żs(t), zs(t), us(t), p) (3.5b)

us(t) = κNN (zs(t),θ ), us(t) ∈ U (3.5c)

zs(t0) = sample(πz0
), s = 1, . . . , ns (3.5d)

where ns is the number of samples, zs(t) is the trajectory of sample s taken from
πz0

, ωs > 0 weights the different trajectories, and ρ is some penalty function
used to enforce the constraint (3.1d) [14]. Note that the sth contribution of ∇θφ
can be calculated by a standard single shooting approach, i.e. J(zs(t0), us(t))
and ρ(zs(t0), us(t)) can be evaluated by solving a differential equation with the
current θ , and the gradient with respect to θ can then be found by algorithmic
differentiation. As each contribution to ∇θφ is independent, this computation can
be done in parallel, greatly reducing the computational cost of taking multiple
samples.

The key aspect that makes (3.5) appealing is that if random samples can be
taken such that φ is an unbiased estimator of the penalised objective of (3.4), then
∇θφ is a stochastic approximation of the gradient of (3.4). Thus,∇θφ can be used
in a stochastic optimization algorithm, e.g. stochastic gradient descent, to solve
(3.4). There are various options on how to select the samples, weights and number
of samples. At one extreme a single sample can be randomly taken at each iteration,
and at the other extreme the number of samples, weight, and sample locations can
be adapted to maintain a certain approximation tolerance of the expectation and
probabilistic constraint (a form of adaptive mini-batching). Although the latter
gives a better quality estimation of the gradient at each iteration, each iteration of
the former is likely to be much more computationally efficient.

Note that in some cases the constraint (3.1d) may be enforceable implicitly by
the system dynamics, network architecture or similar. If this is not the case then a
penalty approach must be used and adequate satisfaction of the constraint should
checked after training.

Selection of initial conditions

An important choice in the optimisation-based design of off-line control policies
is the region Z0 on which the policy is developed for. For small systems one may
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consider selecting Z0 = Z , however this becomes computationally impractical for
systems with more than a few states. The majority of chemical processes operate
in a relatively small region of the total feasible state space [11, 12]. If a model is
available then this region can be found by simulating closed-loop trajectories of
the controlled system subject to assumed disturbances, e.g. changes in set-points
and disturbances in the feed. Then from the simulations one can directly estimate
Z0 and πz0

.

3.3 Optimisation of an output feedback policy

The previous literature [9–12, 14, 17] has predominantly focused on neural net-
work control policies based on the assumption of noiseless full-state feedback. In
general the current state of the system is not available, instead we have measure-
ments y ∈ Rny which are related the state by:

y(t) = h(z(t), u(t), p) +η(t) (3.6)

where h is a (potentially nonlinear) measurement equation, and η ∈ Rny is a vector
of noise and/or biases that influence the measurements.

In this work, we leverage the optimise-and-learn framework to directly optimise
a control policy that:

(a) Incorporates knowledge of the expected measurement noise into the optim-
isation of the feedback policy.

(b) Only uses a subset of the potentially available measurements to control the
system.

The advantages of (a) is that the control policy will be less sensitive to small
perturbations because of noise, which should yield a more robust controller. The
advantage of (b) is more system dependent, but resolves around controlling the
desired behaviour of the policy. These two points are developed in the following
sections:

3.3.1 Noise and uncertainty

Consider measurements of some of the state subject to additive noise η as in
(3.6) with η distributed by πη, some compactly defined multivariate probability
distribution. If the noise is significant it should be included in the training of the
policy. This can be done by adapting the approach for parametric uncertainty from
Turan and Jäschke [14]. Consider the augmented state vector z̄ = [z, η], where η
has zero dynamics. Let η(t0) be distributed by πη. During training let the control
actions be given by:

u= κNN (y(t),θ ) (3.7)

As η is measurement noise not a stochastic input, it should only influence the
controller, i.e. in training the dynamics, objective, etc. should still use z. The
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objective to be minimised is:

E
πz0

,πη
[J(z̄(t0), u)] = E

πz0

�

E
πη
[J(z̄(t0), u)]

�

(3.8)

where for clarity we separate the expectations on the right. Along each trajectory
in the training η has zero dynamics, i.e. η(t) = η(t0), and hence acts as a constant
measurement bias. However, the controller cannot learn to “see” this constant bias
as the controller has no memory, and for any state in Z0 any η can be sampled.

3.3.2 Measurement selection

In general the entire state of system is rarely measured, and instead typically
only a subset of the states are measured. Thus, it is a natural desire to have a
controller that only uses this subset of states. In addition, we may also select a
subset of these measurements for use. One may interested selecting only some of
the available/possible measurements when:

• Reliable measurements are expensive.
• Certain states can only be estimated with high uncertainty.
• We wish to influence the behaviour of the control policy, e.g. only specific

measurements should influence the output.
• We wish to identify which measurements are more important for control.
• The system under consideration consists of interacting sections, or is dis-

tributed. In this case we may wish that specific control actions are only
dependent on a sparse selection of the total measurements.

Consider the control policy:

u= κNN (Hy,θ ) (3.9)

where H ∈ Rnd×ny is a matrix containing only zero entries and nd ones on the
main diagonal. By specifying H one specifies which measurements the control
policy should use, which can be done using engineering judgement. Another other
approach is to include the selection of measurements (i.e. selecting the non-zero
entries of H) in the training problem.

One cannot directly optimise for which nd entries to select as this is a com-
putationally intractable problem. Instead we use elastic net regularisation as an
heuristic. For simplicity of presentation we assume that nd = ny, i.e. all meas-
urements are available candidates to be used for feedback in the neural network
controller. Let H be a diagonal matrix, and let θ̄ = vec(H, θ ). Consider the use of
the regularised objective:

min
θ̄

J(θ̄ ) +λ1(λ2∥θ̄∥1 + 0.5(1−λ2)∥θ̄∥2
2) (3.10)

where λ1 controls the regularisation strength, and 0 ≤ λ2 ≤ 1 controls the type
of regularisation. λ2 = 1 and λ2 = 0 correspond to l1 (lasso) and l2 (ridge)
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regularisation respectively. This regularisation is called elastic net regularisation,
and it promotes small values of θ̄ . The l1 term values promotes sparsity in θ̄ , while
the l2 term penalises large values. Importantly as H is included in θ̄ this regularised
objective can be used for input selection as a measurement is unimportant it’s
corresponding entry in H will be zero or close to zero. Note that the regularisation
has to be applied to all of θ̄ as otherwise the network can adjust to use large values
of θ to compensate for the small values in H. After training one can select the
important inputs by selecting the entries of H larger than some magnitude. Lastly,
note that although this heuristic approach can be used to find a policy that uses
n measurements, there are no guarantees that the best n measurements will be
selected. However, due to the intractability of the exact measurement selection
problem this is an attractive heuristic that has been used in similar context [20].

3.4 Distillation problem formulation

In this work we consider the separation of an ideal binary mixture by a distillation
column of 25 theoretical stages (including reboiler and total condenser, shown in
Figure 3.1). The desired product composition (for the low boiling component) is
0.99 mole fraction in the top and 0.01 in the bottom. We use the model of Skogestad
[21], with parameters shown in Table 3.1. Although the model is relatively simple,
it captures the typical dynamic behaviour of a distillation column. For completeness
the model is briefly described in Section 3.4.1. The major assumptions of the model
are: constant molar flow rates, constant pressure, constant relative volatility, vapour
liquid equilibrium, negligible vapour holdup, and linearised liquid dynamics. In
section 3.4.2 aspects of the control problem formulation are described.

Importantly apart from the constraints on the control usage, when integrating
the system the inequality and equality constraints of the system are naturally
satisfied by the physics of the model. This removes the issue of ensuring constraint
satisfaction of (3.1d).

3.4.1 Distillation model

The model primarily consists of total and component material balances for each
stage of the column. The stages are indexed by i, with the bottom stage assigned
i = 1, and the top i = NT . The balance equations are described first for the trays,
then the condenser and last the reboiler. This is followed by the consititutive
equations of the column.

Material balances equations

Excluding the feed stage, each tray in the column is described by the total mole
balance:

dMi

d t
= Li+1 − Li + Vi−1 − Vi (3.11)
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Figure 3.1: Sketch of a distillation column with LV-configuration and external
flows shown.

where Mi is the liquid holdup on stage i, Li is the liquid flow from stage i, and Vi
is the liquid flow from stage i. Additionally, the material balance for the lighter
component is:

dMi x i

d t
= Li+1 x i+1 + Vi−1 yi−1 − Li x i − Vi yi (3.12a)

which combined with (3.11) yields:

d x i

d t
=

Li+1 x i+1 + Vi−1 yi−1 − Li x i − Vi yi − x i(Li+1 − Li + Vi−1 − Vi)
Mi

(3.12b)

where x i and yi are the mole fraction of the lighter component in the liquid and
vapour phases on stage i.

Assuming that the feed is mixed directly into feed stage, the total and compon-
ent mass balances of the feed stage are:

dMNF

d t
=LNF+1 − LNF

+ VNF−1 − VNF
+ F (3.13a)

d xNF

d t
=

LNF+1 xNF+1 + VNF−1 yNF−1 − LNF
xNF
− VNF

yNF
+ FzF

MNF

− xNF

LNF+1 − LNF
+ VNF−1 − VNF

+ F

MNF

(3.13b)
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where F is the feed, NF is the feed stage, and zF is the mole fraction of the
lighter component in the feed. Similarly, the total and component balances of the
condenser are:

dMNT

d t
= −LNT

+ VNT−1 − D (3.14a)

d xNT

d t
=

VNT
yNT−1 − LNT

xNT
− DxNT

MNT

− xNT

−LNT
+ VNT−1 − D

MNT

(3.14b)

where D is the distillate flow rate. And lastly, the total and component balances of
the reboiler are:

dM1

d t
= L2 − V1 − B (3.15a)

d x1

d t
=

L2 x2 − V1 y1 − Bx1

M1
− x1

L2 − V1 − B
M1

(3.15b)

where B is the bottoms flow rate.

Constitutive equations

By assumption, the liquid flow rates are governed by linearised dynamics:

Li = L0
i +

Mi −M0
i

τl
+λ(Vi−1 − V 0

i−1), i = 1, . . . , NT−1 (3.16a)

LN T = LT (3.16b)

where L0
i and M0

i are nominal values of the liquid flow and holdup on stage
i, τl is the time constant for the liquid flow dynamics and λ describes how the
vapour flow rate influences the liquid flow rate (the K2-effect [21]). The liquid
flow rate from the top tray is simply given by the reflux flow rate, LT .

By the assumption of constant molar flows and negligible vapour hold-up the
vapour flow rates are given by:

Vi = Vi−1 i = 2, . . . , NT−1, i ̸= NF (3.17a)

VNF
= VNF−1 + (1− qF )F (3.17b)

V1 = VB (3.17c)

where VB is the boilup flow rate, and qF is the liquid fraction of the feed.
The vapour liquid equilibrium is assumed to given by:

yi =
αx i

1+ (α− 1)x i
(3.18)

where α is the relative volatility.
To calculate tray temperatures a linear relationship based on the pure compon-

ent boiling points is assumed:

Ti = x i Tb,L + (1− x i)Tb,H (3.19)
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Table 3.1: Summary of nominal column parameters.

Parameter Description Value
F Feed rate [kmol/min] 1.0
zF Feed composition 0.5
qF Feed liquid fraction 1.0
α Relative volatility 1.75
τL Time constant for liquid flow dynamics [min] 0.063
λ Constant describing the K2-effect 0.0
M0

i Nominal liquid holdup[kmol] 0.5

L0
i Nominal liquid flow rate[kmol/min]

¨

3.564i ≤ NF

2.564i < NF

V 0
i Nominal vapour flow rate [kmol/min] 3.065

Tb,L Light boiling point [K] 341.9
Tb,H Heavy boiling point [K] 357.4
KD P-controller tuning for distillate 10.0
KB P-controller tuning for distillate 10.0
D0 Nominal distillate flow [kmol/min] 0.5
B0 Nominal boilup flow [kmol/min] 0.5

where Tb,L and Tb,H are the boiling points of the light and heavy components.
Lastly, we specify that the column is operated in LV-configuration which means

that the liquid levels in the reboiler and condenser (M1, MNT
) are controlled by

the product flows, B and D:

D = Ds + KD(MNT
−M0

NT
) (3.20a)

B = Bs + KB(M1 −M0
1 ) (3.20b)

The reflux and boilup, LT and VB, remain as control variables hence the name
LV-configuration. This is a reasonable assumption as it is the “conventional” choice
for distillation columns [22]. Note that although this controller stabilises the liquid
levels, the column itself remains unstable.

3.4.2 Control problem formulation

In the following we describe details of the control problem – the objective, con-
straints, assumed noise of the measurements and MPC parameters.

Objective and constraints

As the objective we consider regulating the product and distillate compositions
to their set-points with a small penalty on moving the inputs from the nominal
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values:

J =

∫ t f

t0

(x1(t)− 0.01)2 + (xNT
(t)− 0.99)2

+ 0.001
�

�

VB(t)− V 0
B

�2
+
�

LT (t)− L0
T

�2�
d t (3.21)

In addition we impose the following inequality constraints:

0≤ x(t)≤ 1 (3.22a)

0≤ y(t)≤ 1 (3.22b)

0≤ M(t) (3.22c)

0≤ VB(t)≤ 3.25 (3.22d)

0≤ LT (t)≤ 2.75 (3.22e)

Note that, apart from apart from Equations (3.22d) and (3.22e), these constraints
are implicitly enforced by the system dynamics, i.e. adaptive time-stepping of a
differential equation solver can ensure that the constraints are satisfied. This is
similarly the case if the MPC problem is solved with single shooting [23].

Disturbances, measurement noise and operating region

We assume that potential disturbances, and the ranges, are the column feed flow-
rate [0.8 1.2], feed composition [0.4 0.6] and feed liquid fraction [0.8 1.0]. Using
these disturbance ranges we generate a multi-level pseudo-random sequence of
disturbances, and by simulating the distillation column controlled by MPC (see
section 3.5.1) find the effective operating region of the column. 100 disturbances
are used with the time between disturbances randomly selected as one of 10
linearly spaced levels between 0.5 and 10 minutes, yielding a total simulation
time of 485 minutes. At each disturbance time-point one of the disturbances are
randomly selected and changed to one of 15 levels equally spaced between the
upper and lower bounds of the respective disturbance. The column is initialised
with the nominal feed composition and nominal liquid holdups on each stage and
after 15 minutes the disturbance sequence starts. The same approach is used to
generate a disturbance sequence to test different controllers against each other,
this sequence is shown in Figure 3.2.

The resulting temperature operating range of the column is shown in Figure
3.3. Due to the controller the ends of the column are not significantly influenced by
the disturbances while in the middle of the column there is considerable variation.
Importantly, from this data (and the corresponding hold-up data) one can see that
a very small region of the feasible operating space is visited in standard operation.
This reduction of the feasible state space is key aspect of computational feasibility
when considering high dimensional systems.

We assume that there are 30 candidate column measurements available: the
temperatures on each stage (T1:NT

), feed flow rate (F), feed temperature (TF ),
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Figure 3.2: Disturbance profile used in the comparison of the control policies.

Figure 3.3: Violin plot showing the temperature range of the distillation column
subject to disturbances, to find the relevant operating region of the column.
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Table 3.2: Summary of assumed measurement noise

Measurement Distribution (min, max)
Temperature N (0, 0.015) ∗ (TbH − TbL) (−0.775, 0.775)
Flow rate N (0, 0.03) (−0.1, 0.1)
Liquid fraction N (0, 0.03) (−0.1, 0.1)
Holdup N (0, 0.03) (−0.1, 0.1)

feed liquid fraction (qF ), and the liquid holdups in the reboiler and condenser (M1
and MNT

). Because composition measurements are unreliable and typically subject
to delays, temperature measurements are normally used instead. All measurements
are assumed to be subject to measurement noise as summarised in Table 3.2 where
N (µ,σ) denotes the normal distribution with mean and standard deviation µ and
σ, and the distributions are truncated at the specified min and max values.

3.5 Controller optimisation and training

The proposed method is implemented in Julia 1.7, with major use of the following
packages: Flux.jl [24], Zygote.jl [25], DifferentialEquations.jl [26], and JuMP.jl
[27]. For optimisation of the MPC and neural networks Ipopt [28] and RMSProp
[29] are used.

The control policies we consider are summarised in Table 3.3. We construct an
MPC policy κmpc and four neural network policies. The first two policy are trained
using all of the available measurements (note this excludes the tray holdups). We
consider training this controller with and without measurement noise included in
the training, yielding κall and κnonoise

al l respectively. The second policy, κreg , also
has all the available measurements, but is trained with the elastic net regularisation
term (3.10). The training will thus select a reduced set of inputs that the policy will
use. The third policy, κsel , is trained with only four user specified measurements
as inputs using the unregularised objective.

The inputs of κsel are chosen as ζ = [T̄5, T̄10, T̄16, T̄21]. These temperatures
are chosen in emulation of classic control configurations for distillation columns.
In such a control scheme instead of controlling the product purities directly, the
deviation of a temperature in the bottom and top section of the column from some
setpoint is controlled. This is because the temperatures away from the top and
bottom are more sensitive to changes in the inputs than the product temperatures
[21, 22]. Although we don’t directly specify a set-point for these trays, we also do
not give κsel the product temperatures. Any control policy that κsel defines must
implicitly transform and combine the temperatures and regulate this combination
to some set-point.

After training of the neural network control policies, all the control policies are
tested on their performance subject to the disturbance sequence shown in Figure
3.4.2. This comparison is detailed in section 3.6.
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Table 3.3: Summary of controllers compared in the distillation case study

Controller Objective Controller inputs Training noise
κmpc Discretised form of (3.21) 55 (all states) N/A
κno noise

al l (3.21) 30 No
κall (3.21) 30 Yes
κreg (3.21) with elastic net penalty 30 Yes
κsel (3.21) 4 temperatures Yes

Figure 3.4: Temperature profiles of distillation column controlled by MPC with
test disturbances. The dashed black lines indicate the pure component boiling
points, and the red dash-dotted line indicates the temperature in the reboiler and
condenser.

3.5.1 The benchmark MPC policy

We construct a MPC policy to be used a base-line, “best-case” control policy. As such
we conservatively assume that the MPC has perfect full state feedback. In a more
realistic comparison a state estimator would be used with the noisy measurements
that are provided to the other control policies. In the MPC problem we use implicit
Euler to discretise the dynamic system. Note that in the discretised problem the
objective and constraints are only evaluated at the discrete time points. A discret-
isation time of 30 seconds, and control horizon of 20 minutes are chosen, thus
there are NH = 41 points in the time discretisation. The temperature profile of
the distillation column when controlled by MPC is shown in Figure 3.4. Note that
although the column temperatures are in continuous time, the control output of
the MPC is piecewise-constant on 30 second intervals.
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3.5.2 Training control policies

Specification of neural policies

We consider optimisation of a two layer feed-forward neural network control policy
of the form:

[LT , VB] =
1
2
[2.75, 3.25] ◦ (1+κNN (Hζ,θ )) (3.23a)

α(i)(ζ) = (1+ e−ζ)−1, i = 0, 1 (3.23b)

θ̄ = vec(H, θ ) (3.23c)

where ◦ is the element-wise product and H ∈ Rnζ×nζ is a diagonal matrix. As
discussed in section 3.3.2, the use of H with a regularised objective promotes a
sparse selection of the inputs during training. For consistency, when comparing
between the different policies we still use H when training with the un-regularised
objective. The sigmoid function is used as the activation function for all layers
of the network including the neural network output. This choice of activation
function means that the controller inequality constraints (3.22) are satisfied for
all θ̄ .

For κall and κreg the policy takes the input vector:

ζ= [T̄1, . . . , T̄NT
, F, T̄F , qF , M1, MNT

] (3.24a)

T̄i =
Ti − TbL

TbH − TbL
(3.24b)

where T̄ is the normalised temperature. A normalised temperature is used as
then all elements of the input vector are the same magnitude. For both κall and
κreg we use a network of width 30, which means that there are ∼ 1000 network
parameters.

The inputs of κsel are chosen as ζ= [T̄5, T̄10, T̄16, T̄21], in emulation of classic
control configurations for distillation columns. We use the same structure of the
network but with only 4 nodes in the input layer. To keep the network a similar
size (∼ 1000 parameters) we chose a width of 150.

We note that any control policy found by κsel is within the scope of κreg
which is itself within the scope of κall . Thus one may expect that κall should
perform the best. However, this is not entirely to be expected. Although inclusion
of extra information can theoretically only be used to improve the control, it is
well known that despite neural networks being universal approximators they can
have worse performance without judicial selection and manipulation of inputs
(“feature engineering”).

Embedded training of the control policy

The control policies are embedded in the dynamical system and trained in the
optimise-and-learn formulation (3.5) using the control objective (3.21) (and regu-



52 E.M. Turan: Optimisation and machine learning for process systems engineering

larisation term for κreg). RMSProp [29] is used for training, and was chosen by
benchmarking several choices from Flux.jl [24] on the problem.

Due to the relatively high dimensionality of the system (50 states) and as
the training was performed on a laptop (16 GB RAM, i5-101310U processor) to
perform the training efficiently we followed the following strategy:

1. πz0
is estimated from the closed-loop data.

As described in section 3.4.2 we simulate the column under control of the
MPC policy to find the typical operating region of the column (see Figure 3.3).
Using this data we fit a multi-variate normal distribution to the temperatures
of the column and a separate multi-variate normal distribution to the hold-
ups of the column2. As a compact probability distribution is required these
are truncated at ±3 standard deviations from the mean.

2. πz0
is discretised to yield πd

z0
by taking 1000 quasi-random samples.

We wish to use quasi-random samples and not random samples as they cover
the domain more evenly at low number of samples. Generating quasi-random
samples with correlations is difficult to do directly. We first use a Sobol
sequence to generate points from the marginalised cumulative probability
distribution of each state. Correlations between these points are then induced
by the Iman-Connover method [30].

3. Noise is similarly sampled from the assumed distributions to give πd
η

Note that as the noise is uncorrelated, correlations are not induced by the
Iman-Connover method.

4. RMSProp is used to train the controller. At each iteration ns points are
independently sampled from πd

z0
and πd

η.
For the first 2000 iterations we use ns = 1, and then perform 750 iterations
with ns = 2 (with ws = 0.5). The number of iterations is chosen by picking a
point on a plot of the objective function versus the number of iterations at
which the objective stopped improving. The last 750 iterations serve to reduce
the variability of the estimate of θ̄ ∗. The objective gradient is calculated by
reverse-mode automatic-differentiation on the differential equation solver
[25].

Lastly if a regularised objective is used then after 4. the entries of D that
are smaller than 0.001 are set to zero. Then the training is repeated without
regularisation with D frozen to its new values, and θ set back to the initial guess.
This is because the elastic net regularisation also influences the expressivity of the
network, which is an undesired behaviour.

3.6 Results

We now compare the policies trained in the previous section, on controlling the
column subject to the disturbance sequence shown in Figure 3.4.2. Section 3.6.1

2Separation of the temperatures and hold-ups is conservative, and is to ensure that the controller
doesn’t somehow learn the initial hold-up from the initial temperature profile.
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Table 3.4: Cumulative closed loop objective value from using the trained policies
on the test sequence of disturbances excluding the start-up portion. Noise refers
to constant measurement noise along a trajectory. Unlike the other policies, κmpc
uses full state feedback and hence does not have noise entries.

Cumulative objective
no noise with noise averaged with noise

κmpc 0.0076 - -
κall 0.0092 0.0079 0.0096
κsel 0.0087 0.0103 0.0094
κreg 0.0142 0.0175 0.0157

compares the nominal performance of the policies with and without measurement
noise. In Section 3.6.2 we compare how the policies handle model mismatch,
first with respect to the specified noise distribution, and then with respect to the
implemented control to the column. Although the control policies are not directly
interpretable, by examining their outputs we aim to provide some interpretations
of their behaviour.

3.6.1 Comparison of policies with no model-mismatch

In this section the policies are compared based on their performance of controlling
the column subject to a test sequence of disturbances, prepared in the same way
as when determining the operating region of the column. Note that as before the
column starts from initially equimolar composition on each stage. This “start-up”
period is outside of the operating region used in the policy optimisation (see Figure
3.3). Thus, the control policies κall , κreg , and κsel will perform poorly in this region.
The performance of the control policies are summarised in Table 3.4, with further
details given in the following.

κall and κmpc

We first consider the case where κmpc and κall are used to control the column with
no model-mismatch or noise in the measurements, with the resulting temperature
profiles shown in Figures 3.4 and 3.5. By inspection the behaviour of the system is
qualitatively similar, although there are differences. For example, between 30-60
minutes κmpc is able to stabilise the system very quickly, while κall has a much
larger transient response.

This is to be expected as with no measurement noise or model error κmpc
is able to exactly compensate for (some) incoming disturbances. On the other-
hand, κall does not use the hold-ups of the internal stages of the column (which
the MPC does), and thus worse performance should be expected. However the
actual difference in the control objective is minor – the cumulative objective value
(excluding the start-up portion) is 0.0076 for κmpc and 0.0092 for κall (Table 3.4).
To gain further understanding of the behaviour of κall we can look at the actual
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Figure 3.5: Temperature profile using κall . Black dashed lines indicated TbL and
TbH , red dash-doted lines indicates T1 and TNT

, and the green lines indicate column
temperatures.

(a) Temperature profile (constant bias) (b) Controller output (varying noise)

Figure 3.6: Closed loop profile of κall with normally distributed measurement
noise. In Figure 3.6a a constant realisation of measurement noise is used across
the horizon. In Figure 3.6b the solid line indicates the nominal control output,
while shaded region shows the range of possible control outputs due to normally
distributed noise of the measurements.
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(a) Temperature profile (constant bias) (b) Controller output (varying noise)

Figure 3.7: Closed loop profiles using κno noise
al l with normally distributed meas-

urement noise. Green lines indicate column temperatures used by the controller,
and grey lines indicate unused column temperatures.

control output and how this is influenced by measurement noise, as shown in Figure
3.6. An interesting thing to note in that in the control output of κall (Figure 3.6b)
there are sharp spikes at the points of some disturbances – this means that the
controller is directly making use of the feed (disturbance) measurements for feed-
forward control. Although this comes with improved performance it does mean
that the controller can be more influenced by model error. Despite this, Figure 3.6a
shows that in the presence of a constant measurement bias κall is able to maintain
reasonable control of the system.

To demonstrate the role of including noise in the training process, we train a
controller set-up equivalently to κall but without noise in the training, κno noise

al l .
Figure 3.7 shows the closed loop performance of using κno noise

al l . This controller
output is clearly much more sensitive to noise, and in addition, the spikes in
Figure 3.7b are much more pronounced. This difference is expected – κno noise

al l is
more aggressive in its feedforward behaviour at it “expects” perfect measurements
of the disturbance and column. However, we would also like to note that despite
the higher sensitivity of κno noise

al l , the controllers have very similar performance
when examining the temperature profiles.

Regularised input selection: κreg

κreg is optimised with the elastic net parameters λ1 = 0.01, λ2 = 0.99. After the
first stage of optimisation, measurement selection is performed by checking for
entries of D larger in magnitude than 0.001. These hyper-parameters were chosen
as being demonstrative of the kind of measurement selection that can occur, and
were not selected based on the closed loop performance. The training yielded nine
selected measurements: T1, T3, T5, T6, T7, T10, T13, F , and qF . Upon first glance
this selection may seem strange – the seven temperature measurements are from
the bottom section of the column, and the other two measurements relate to the
feed.
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(a) Temperature profile (constant bias) (b) Controller output (varying noise)

Figure 3.8: Closed loop profile of κreg with normally distributed measurement
noise.

The repeated bottom temperature measurements may allow the controller
to combine measurements for less sensitivity to noise, but this doesn’t explain
why only bottom measurements are used. Note that as the feed is mainly liquid
(even with the disturbances to qF ), and upon entering the column most of the
feed immediately proceeds into the bottom section. Combined with the liquid flow
dynamics this means that multiple temperature measurements in the bottom section
of the column provides a short term “record” of previous disturbances, and are
thus very informative of the overall column state (assuming that there is no model
mismatch). By this reasoning one should expect κreg behaviour substantially in a
feedforward manner as the disturbances are measured exactly, and indirectly the
column state and disturbance history are measured. Considering that the training
problem is to reject disturbances while penalising the use of many measurements,
this behaviour is not surprising as feedforward control will yield tighter control
than pure feedback control in the absence of model error.

The closed loop simulations of κreg is shown in Figure 3.8. The feedforward
nature of κreg can be seen by examining the nominal control profile (Figure
3.8b) which varies very slowly between disturbances, while having sharp changes
whenever there is a large disturbance in the feed. In general, κreg shows much less
variation than κall both in the nominal control response, and under the influence
of noise.

The temperature profile has relatively sharp and rapid changes compared to
compared to Figure 3.6. Visually in some places κreg appears to perform better
than κall , however the cumulative control objective over the test horizon using
κreg is worse than using κall (see Table 3.4).

Control policy with manual input selection: κsel

Unlike κreg where we regularise for input selection, for κsel the inputs are chosen
as ζ = [T̄5, T̄10, T̄16, T̄21]. As discussed earlier, the motivation behind this highly
reduced set of temperature measurements is that these are similar temperatures
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(a) Temperature profile (constant bias) (b) Controller output (varying noise).

Figure 3.9: Closed loop profile of κsel with normally distributed measurement
noise.

that may be used in classic distillation control strategies. In addition note that this
removes the possibility of the controller performing feedforward control on the
disturbances. The resulting temperature and control profiles using κsel are shown
in Figure 3.9.

In general there is more variation in the control output than κreg , but less
than κall . However, the temperature profiles are much less sensitivity to noise than
κreg . Interestingly, the temperature and control profile of κsel and κall are very
similar. In addition, the cost of using these controllers is very similar (Table 3.4).
In particular, κsel seems to be giving a smoother version of κall , as it lacks the
initial kick from the feed measurements provided to κall . What this suggests is
that κsel contains the key elements of the “feedback part" of κall while neglecting
the feedforward part on the disturbances. Due to the time scale, the slightly slower
response of κsel compared to κall does not make a significant difference to the
cumulative objective.

3.6.2 Controller sensitivity to mismatch

It is well known that optimal control policies can potentially be sensitive to mis-
match between the model used in their solution and the true system. In this section
we compare the controllers when: (1) the measurement noise is mispecified and
(2) when there is a multiplicative output disturbance. We find that of the trained
controllers κsel is much more robust to these disturbances and is better able to
regulate the system. However, as all control schemes do not have an integrator,
offset free control is not achieved.

Mispecification of noise distribution

Figures 3.10 to 3.12 show the closed loop response of the system when instead of
normally distributed noise, the noise realisations are exclusively at the extremes
of the truncated probability distributions. This is an incredibly unlikely possibility
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(a) Temperature profile (constant bias) (b) Controller output (varying noise)

Figure 3.10: Closed loop profile of κall with extreme noise realisations.

(a) Temperature profile (constant bias) (b) Controller output (varying noise)

Figure 3.11: Closed loop profile of κreg with extreme noise realisations.

(a) Temperature profile (constant bias) (b) Controller output (varying noise)

Figure 3.12: Closed loop profile of κsel with extreme noise realisations.
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(a) κmpc (b) κall

(c) κreg (d) κsel

Figure 3.13: Closed loop temperature profiles of the system, with a constant
multiplicative output disturbance.

with respect the normally distributed noise and serves as an example of severe
mispecification of the noise characteristics of the system.

κall , Figure 3.10, has the most variable controller output due to noise and also
has the worst temperature regulation. A potential explanation is that as κall has
access to many measurements κall may compensate for the noise by combining
measurements together. When the assumption behind the noise is false then this
compensation does not work well and results in a large variance in the controller
output, as the controller did not learn to be less sensitive to variations. Additional
support for this is noting that κreg and κsel are much less sensitive to noise when
examining both the controller output and temperature profiles.

Comparing κreg and κsel it is interesting to note that despite κreg showing
more variation with noise than κsel (Figures 3.9b and 3.11b), in terms of regulation
κsel performs better. As noted in the previous section this is likely because κreg
primarily makes changes based on the feed measurements, and only small changes
based on the temperatures.
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Multiplicative model error

We consider the same model, but assume that due to model-mismatch the reflux
and boil up are respectively 10% more and less than what the policy specifies, i.e.

[LT , VB]actual = [1.1LT , 0.9VB] (3.25)

This is a considerably large error, and as the control policies considered in this
work are static and not integrating we can reasonably expect significant steady
state offset. However, offset free control is not the primary goal, instead we can
see how robust the policies are at managing this large, unmodelled disturbance.

The closed loop response of the system, without any measurement noise, and
using policies κmpc , κall , κreg , and κsel is shown in Figure 3.13. Immediately it
is clear that the best performing controller is κmpc followed by κsel . The good
performance of κsel is unsurprising given the previous results, as the controller is
forced to perform feedback control and robustness is exacerbated by feedforward
control.

3.7 Conclusion

We have proposed and demonstrated the closed loop training of (static) meas-
urement based control policies on a distillation case study. This case study is
significantly larger compared to prior literature. The key features of the proposed
approach are: (1) the controller is trained in closed loop using an optimise-and-
learn approach, (2) the controller is trained in an operationally relevant region
of the state-space to reduce the computational demands of the training, and (3)
using this approach the controller can be trained to use a selection of measure-
ments. Three controllers are trained using different selections of measurements,
and their performance is compared for the nominal system (with and without
measurement noise) and also for a system with model mismatch. A controller
using only 4 measurements along the column is able to perform well, achieving
close to MPC performance on the nominal system while being more robust than
the other controllers in the example with significant model mismatch.

Further work

There are key aspects of the approach that need to be further developed are the
selection of measurements for the controller and the incorporation of integration
in the control policy.

We have demonstrated that one can set up a training problem to automatically
select important measurements for use by a control policy. Through numerical
simulation we show that such a control policy (κreg) achieves good nominal
performance. However, this example also shows that doing so can lead to fragile
policies that perform poorly beyond the nominal system (Figure 3.13). This is
because regularisation for measurement selection removes measurements that
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are not necessary for control of the (assumed perfect) model, which can result
in a dramatically worse performance when there is model mismatch. A potential
approach to address this problem is to incorporate uncertainty into the training.
However, doing so requires in a meaningful manner requires an accurate description
of the uncertainty, and can also dramatically increase the computational complexity
of the training.

Another choice is to use engineering judgement to select measurements that
can be used to find good control actions (κsel). Despite using considerably less
measurements, this controller was significantly more robust to the others in the
numerical examples. Compared to classical control techniques that pair single
measurement to control variables, κsel can be trained with multi-variable pairings
without specifying the structure of this relationship. However, the central issue of
selecting which measurements remains [31].

Without integration, a static controller cannot achieve offset free control by
itself. A potential option is to directly include the potential for integration in the
controller by allowing it to use an additional state as “memory”. The challenge with
this approach is for the controller to not over-fit during training, and to generalise
beyond the model-mismatch, measurement bias, and similar used in the training.
Alternatively, integration may be performed separately, e.g. by a disturbance model.
In this approach the controller would be trained with the augmented model, and
online the disturbance parameters would be provided to the controller to achieve
offset free control.
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Chapter 4

Inventory control

We address the task of allocating process inventories to maximise production and
bottleneck isolation using a model predictive control (MPC) scheme. This scheme
implicitly defines “set-points" for the inventories based on current operating condi-
tions, and automatically adjusts these set-points when the operating conditions
change. This problem has previously been identified as a challenge for MPC, and
likely to requiring a forecast of disturbances or multi-scenario approach. In contrast,
we address this challenge with an appropriate choice of the MPC objective and
design of a disturbance model. The combined scheme does not require a forecast
of disturbances or involve significant computational expense while allowing for the
MPC to automatically correct for misidentified bottlenecks or unmeasured faults.

This chapter is an extended version of the unpublished but accepted work:

E. M. Turan, S. Skogestad and J. Jaschke, ‘Model Predictive Control
for Bottleneck Isolation with Unmeasured Faults,’ Accepted at the 12th
IFAC Symposium on Advanced Control of Chemical Processes (ADCHEM
2024), 2024

4.1 Introduction

Despite large variations in the design and operating considerations of chemical
process plants, nearly all plants share the task of managing inventories. The
inventories typically need to be controlled within given minimum and maximum
bounds, with the set-point of these inventories as degrees of freedom. These set-
points are important to the process economics because they act as buffers that
prevent disturbances from cascading through a process and disrupting throughput
[1, 2]. The task of automatically adjusting these set-points based on operating
concerns is a key challenge that has been identified in several works, e.g. Skogestad
[3] and the references therein. This paper considers the development of a model
predictive control (MPC) scheme, with disturbance model, that implicitly defines

65
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set points for the inventories that are optimal when the process goal is to maximise
throughput.

Inventory control has two competing goals (a) mitigate changes/fluctuations
in inventories and (b) mitigate the effects of a reduction in the maximum flow
allowed through a section or unit of the plant. These goals directly compete with
each other as addressing goal (b) may necessitate changing the set-points of the
process inventories based on current information.

If changes in process operations lead to a bottleneck that persists over a long
enough period, then it becomes necessarily to change the inventory set-points
to mitigate the influence of future bottlenecks. Likewise, once the bottleneck is
relieved, the set-points have to be changed again. Automatic selection of good
set-points of the inventories are key to mitigating the influence of bottlenecks
on the process throughput, and is the focus of this paper, i.e. goal (b). There are
predominantly two challenges in meeting goal (b) [2, 3]:

• Challenge 1. Use of intermediate storage for bottleneck isolation (containment):
How to optimally select the inventory (level) setpoints to maximize the time
until a new bottleneck makes it is necessary to decrease the throughput?

• Challenge 2. Inventory control rearrangement: How to implement a logic that
automatically rearranges the inventory loops / setpoints to maintain consistent
inventory control when encountering a new bottleneck?

These challenges have been addressed in a Zoticǎ et al. [2], in which a system
consisting of serially connected inventories is considered, and a decentralised
control structure consisting of simple control elements was proposed to address
these challenges. In particular a bidirectional inventory control scheme [4] is
proposed and shown to be optimal for the class of systems under consideration.
This control scheme was extended by Bernardino and Skogestad [5] to consider
systems with minimum flow constraints.

The inventory control problem summarised by challenges 1 and 2 was presented
as a challenge for MPC as it was supposed that MPC would require either a
disturbance measurement or forecast which is unrealistic, or a multi-scenario
approach which would greatly increase the required computational complexity [2].
Later it was noted that challenges 1 and 2 could be addressed without minimum
flow constraints through the use of unreachable set-points, assuming no model
mismatch or misidentified bottlenecks [3].

In this work we make three contributions: (1) we show how for serially con-
nected inventories model predictive control (MPC) can be developed in two ways
to meet the inventory challenges, (2) we demonstrate how with a suitable dis-
turbance model the MPC scheme can still meet the challenges despite inaccurate
operating information, and (3) how the first goal of inventory control may also be
incorporated in the MPC scheme. Importantly, in all the MPC implementations we
do so without relying on a forecast of disturbances, a scenario tree or any other
significant computational complications to the standard MPC problem. Instead our
approach relies on either the selection of an unreachable set-point or a selection



Chapter 4: Inventory control 67

of weights for tank levels. The MPC problem is sparse and convex it can be solved
rapidly and reliably by modern solvers even for large systems. Furthermore, a
dynamic model of the inventory alone is required, i.e. a full dynamic model of the
plant or process economics is not required. Thus we avoid many of the typical
concerns of the complexity of implementing an MPC solution.

The paper is structured as follows: Section 4.2 briefly reviews the essential
background of the paper, including the inventory control problem, and the MPC
model, Section 4.3 introduces the proposed approaches when considering units
in series, with Section 4.4 detailing practical concerns in the implementation of
the MPC, including the use of a disturbance model and tuning of the transient
response. Lastly we end with a discussion and conclusion in Sections 4.6 and 4.7.

4.2 Background

4.2.1 Inventory control

Level control is a common task in process plants and there is an extensive literature
on the topic, see Belanger and Luyben [1], Zoticǎ et al. [2] and Skogestad [3] and
the references therein. Important concepts from the literature are the throughput
manipulator (TPM) and bottleneck. The TPM is defined as the variable (usually
a flow rate) used to set the (steady state) throughput rate for the entire process.
The production bottleneck is a constraint that limits further increase in the steady
state throughput of the system. A bottleneck may thus be a wide range of things,
e.g. operating temperature, but can often be written (sometimes implicitly) as
a flow rate constraint. Note that this definition presupposes that an increase in
the steady state throughput would be economically preferred. When considering
process economics (or equivalently the maximisation of production) a good choice
is to locate the TPM near the production bottleneck [6]. For units in series, to
satisfy the “pair-close" rule from inventory control one should follow the radiation
rule [7], that is, inventory control should be be in the direction of flow downstream
of the TPM and it should be opposite the direction of flow upstream of the TPM.
When a new bottleneck emerges, the TPM should move requiring a rearrangement
of the inventory loops. Automatically performing this task is the crux of challenge
2.

Bidirectional inventory control [4] has recently been shown to resolve these
challenges for units in series [2, 3, 5], see section 4.3. In this work we show that a
simple MPC formulation is able to meet these challenges, while also allowing for
misrepresentation of process bottlenecks.

4.2.2 Model predictive control

Model predictive control (MPC) is a popular control strategy for constrained
systems with multiple inputs and outputs, especially when explicit implementation
of a control policy becomes complex. A key requirement of a successful MPC
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scheme is the use an adequate model. Although finding a model can generally be
an arduous task, for inventory control we are able to only consider the inventory
dynamics and thus can use a simple first principle model.

We consider a system of NI inventories or vessels, and NF flows. For simplicity
we use a volumetric basis and assume the inventories are in rectangular tanks.
Practically the inventories can be arbitrary units or process sections, as the meth-
odology can easily be used with other appropriate extensive variables. From a
volume balance we write the discrete time model:

ah(tk+1) = ah(tk) +M F(tk) (4.1a)

Mi j =











1 if F j enters vessel i

−1 if F j exits vessel i

0 otherwise

(4.1b)

where h ∈ RNI is a vector of levels, a ∈ RNI is a vector of cross sectional areas,
F ∈ RNF is a vector of flows, and M ∈ RNI×NF is an incidence matrix that describes
the connectivity of the system.

We assume that flow rate F is our control variable, with it acting as the set
point for a lower-level controller, which we assume is controlled perfectly. By
this assumption we avoid non-linearities that would otherwise be included in the
formulation. Additionally, in Section 4.4 we address how a disturbance model can
be used to handle the case where the lower level controller is unable to meet the
desired flow specification. We thus consider the MPC problem:

min
h,F

J (4.2a)

h(tk+1) = Ah(tk) + BF(tk) (4.2b)

hmin ≤ h(tk)≤ hmax (4.2c)

0≤ F(tk)≤ Fmax (4.2d)

where J is an objective function (specified later), hmin ∈ R
NI
+ and hmax ∈ R

NI
+

are vectors that define the range of allowable levels, Fmax ∈ R
NF
++ defines the range

of allowable flow rates, and Nk is the number of time points considered. To put the
dynamics into standard form we have defined B ∈ RNI×NF as the component-wise
division M/a, and A∈ RNI×NI as the identity.

Note that if J is convex, then this is a convex optimisation problem. Additionally,
we have assumed that there is no lower limit on the flow rate because specifying a
lower limit can lead to an infeasible problem.

In this model a bottleneck occurs due to the entries in Fmax. As discussed above,
a bottleneck may also be a temperature or similar, and thus only implicitly a flow
rate. In this case the entries of Fmax may be uncertain and/or incorrect, however
this can also be addressed by an appropriate disturbance model (Section 4.4). We
note that in the current MPC formulation, Fmax is assumed to not vary in time, i.e.
we do not have a forecast. If we had a forecast, this can easily be incorporated into
the framework.
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Figure 4.1: Three tanks in series, with bidirectional inventory control structure
proposed by Zoticǎ et al. [2] in grey. The grey dashed lines represent control
signals, LC represent a level controller, and the min blocks represent min selectors.
H and L represent high and low limits, of their corresponding LC or min selector.
We neglect a subscript to show their relationship as this is clear from context. The
level setpoints vary between the high and low limits automatically to isolate the
effects of the current, and future, bottlenecks.

4.3 Inventory Allocation of Units in Series

Consider a plant consisting of units in series, a simple example of which is shown
in Figure 4.1. To isolate bottlenecks, while aiming to maximise throughput, one
can follow the following rule [2], which is motivated by the following example.

Rule for challenge 1. To isolate the effect of a bottleneck, the inventory set-
points before the bottleneck should be set high, and those after should be set low.

Example 1. Consider a single tank, with a valve before and after the tank (i.e.
the system of F0, F1 and unit 1 in Figure 4.1) Consider that the process has been
operating at a steady state of F0 = F max

0 = F max
1 = F1, i.e. there is no bottleneck as

both valves are fully open. Now consider that a reduction in F max
0 occurs i.e. F0 is

now the bottleneck, without any forecast on how long the bottleneck will last.
To minimise the effect of the bottleneck of F0 on F1 one should keep the flow rate

of F1 the same, which can be done as long as the tank level is sufficiently above it’s
minimum heights. If the bottleneck persists until the tank depletes, then the system
should be operated with the level set point of hmin, and F1 = F0. If F0 becomes further
reduced then as there is no buffer inventory available F1 is similarly reduced (set point
remains hmin). Now consider that the reduction is lifted, with the new F max

0 ≥ F max
1 ,

i.e. F1 is the bottleneck. To isolate the effect of the F1 bottleneck, and to maximise the
isolation time of a future bottleneck, one should operate with F0 = F max

0 , i.e. the set
point becomes hmax. The above argument can be extended for an arbitrary sequence
of tanks in series, leading to the rule.

The bidirectional control structure, shown in Figure 4.1, implicitly follows this
rule, while also resulting in automatic control rearrangement (challenge 2) [2, 4].
The core of the control structure is that each flow is linked through a min selector
to (1) their upper limit, (2) the high-level control of the downstream vessel, and
(3) the low-level control of the upstream vessel. As such unless a stream is the
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bottleneck (controlled by its upper limit) it will be controlled by the higher level
limit of the downstream tank if it is before the bottleneck and the lower level limit
of the upstream tank if it is after the bottleneck. Although this scheme explicitly
assigns flow rates, it implicitly allocates set points for the inventories in accordance
to the proposed rule. Later this scheme was extended to include minimum flow
rate constraints [5].

4.3.1 An MPC solution

We now present two simple MPC solutions that are based on the same logic as the
rule 1. The key challenge is that one cannot specify set-points for the tank levels,
as these set points should be implicitly defined by the controller and automatically
adjusted based on the current operation (challenge 2). Note that the dynamics
of these schemes (and the previous) depend on their tuning and thus may not
be the same. However, if the schemes yield the same steady state then they are
consistent. As such, for simplicity of presentation for now we neglect terms that
can be included to shape the MPC transients and focus on an objective that will
implicitly select the same set-points as the bidirectional inventory scheme.

Unreachable set-points

Instead of specifying a set point for the tank levels, we instead consider imple-
menting a standard MPC with an unreachable set point for the flow rates of the
system. In addition we require that the objective at future time steps is subject to
a discount factor, e.g. for a system of NI serially connected tank:

J =
Nk
∑

k=0

γk∥F(tk)− Fsp∥2
2 (4.3)

where 0 < γ < 1 is the discount factor. The discount factor must be used as
otherwise there is “time symmetry" and the solution of the MPC problem is non-
unique. Using this objective, the MPC will maximise the throughput of the system
subject to the system constraints. If one works through Example 1 then it is clear
that this MPC scheme is consistent with rule 1 and the control structure proposed
by Zoticǎ et al. [2].

Use of a “Economic" objective

The previous MPC scheme meets challenges 1 and 2 for the case of serial tanks,
however it immediately suggests that an economic objective based on the through-
put may also suffice. The idea is to maximise the sum of the time discounted flow
rate out of the system, e.g. γkF3 in Figure 4.1, and the weighted heights of the
vessels, αihi . For the system in Figure 4.1 this gives an objective of:

J = −
Nk
∑

k=0

γk

�

FN (tk) +
NI
∑

i=1

αihi(tk)

�

(4.4)
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where 0< γ < 1 is the discount factor and 0< α1 < · · ·< αN < 1 are the weights
of the tank heights. Although we call this an economic objective we note that it is
not the true economic objective of the integrated profit over infinite time. Instead
(4.4) is designed to yield solutions equivalent to this more complicated objective.

Importantly (4.4) is a linear objective and thus at any time step there is a
priority in the maximisation, namely: the flow rates are to be allocated to maximise
F3, if F3 is constrained then h3 should be maximised, if it is constrained then so on.
This ordering is achieved by the constraint on α. Note that if the αs were the same
this would lead to multiple optima. Similarly to the previous case γ breaks time
symmetry. By inspection of the objective it is clear that this allocates inventories
consistently with the bidirectional scheme, as levels after the bottleneck will be set
low (FN ,k is preferred) while levels before the bottleneck will be set high (as it can
be done without reducing FN ,k).

An additional motivation of (4.4) over (4.3) is that if there are some units that
preferentially should not have high inventory (e.g. they become less efficient) then
this can be easily incorporated by changing the ordering of the constraint on the
αs.

4.3.2 Simulation of proposed scheme

We consider the closed loop performance of the proposed MPC scheme using (4.3)
on Example 2.

Example 2. Consider a system of three tanks, as in Figure 4.1, with a = [1.0 1.5 2.0]m2

, htanks = [2.3 2.8 3.2] m, hmin = 0.1htanks, and hmax = 0.9htanks, with all
levels at their upper limit at t = 0 and a time discretisation of 1 minute. We
vary the maximum flow rate as follows: Fmax = [1.667 1.428 1.125 1.0] m3/min
for 10 minutes, Fmax = [0.833 1.428 1.125 1.0] m3/min for 50 minutes, and
Fmax = [1.667 1.428 1.125 1.0] m3/min for the last 20 minutes. This means that
the bottleneck is originally at F4, then F1 and then F4 again. Furthermore, after 30
minutes, we introduce an uncontrolled depletion of 0.05 m3/min from tank 3 if the
level is above the minimum, e.g. due to a leak. In the simulation we add normally
distributed noise (mean zero, standard deviation 0.1) to the height measurements.

We consider using MPC with the unreachable set-point objective (4.3) for in-
ventory control of Example 2. The closed loop simulation of the proposed proposed
MPC scheme is shown in Figure 4.2. Figure 4.2b shows that production rate of
the system is only reduced when all tanks are empty, thus meeting challenge 1
(bottleneck containment). This is done through implicit set-points of the levels,
e.g. at time 0-40 minutes the level of tank 3 is implicitly set to be high resulting
in the flow rates being adjusted once the leakage begins occuring at t = 30 min,
without use of a scenario tree, forecast of the bottlenecks, etc. We note that due to
the measurement noise there is minor violation of the level constraints, however
without an additional back-off term this is unavoidable.
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This scheme has two significant disadvantages (1) it requires the bottlenecks
and operating information to be accurately identified and (2) the changes in flow
rates is very aggressive leading to rapid changes in tank level and hence going
against goal (a) of inventory control. These points are addressed in the following
section.

4.4 Practical Concerns

Two important concerns for the inventory control scheme are (1) robustness to
misidentified bottlenecks and (2) tuning of the controller. The control schemes of
[2, 3, 5] use PID controllers, and hence due to feedback and the integral term these
control schemes can inherantly correct (1). In contrast the proposed MPC scheme
needs to be augmented by an integrating state, or the model parameters have
to be adapted online to have similar properties. In this section we show how (1)
can be achieved by appropriate disturbance modelling, and (2) can be performed
effectively by an additional constraint.

4.4.1 Handling of disturbances

For the inventory problem unmeasured disturbances can cause the bottleneck of
the process to shift and if not corrected can result in assignments of flowrates
that lead to infeasible operation. These disturbances can have a wide range of
causes, e.g. a leak in a tank, or change in the maximum flow rate across a valve,
or (temporary) error in the estimation of the maximum production achievable by
the lower level controller. Although it is likely that the model can be adjusted if
the error disturbance persists, it is important for the MPC to handle such errors
without unsafe operation or significant reduction in throughput. In this section we
briefly review disturbance models for MPC, and hence initially move away from
the inventory control problem. After an introduction to the essential theory we
demonstrate that the “standard simple" tunings result in very poor performance
for the inventory control problem and showcase the use of a marginally more
complex, simple tuning. For further information and theory see the tutorial paper
Pannocchia [8] and the references therein.

A brief introduction to disturbance models

To handle disturbances MPC algorithms normally rely on some disturbance model
and observer, with a range of different formulations in the literature. In this text we
use an augmented model in which the nominal system model is augmented with
disturbances, d, which are integrating states estimated from output measurements,
y [9, 10]. Usage of this formulation is not restrictive, as it has been shown that
several other formulations are special cases of this formulation [8]. The augmented
model is:

xk+1 = Axk + Buk + Bd dk (4.5a)
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(a) Tank levels of the MPC scheme with measured change in bottleneck. Red
areas of the graph correspond to violation of the upper and lower level limits.

(b) Flow rates of the MPC scheme with measured change in bottleneck

Figure 4.2: Performance of the MPC scheme using objective (4.3) for Example 2.
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dk+1 = dk (4.5b)

yk = C xk + Cd dk (4.5c)

x0 = x̂0|0, d0 = d̂0|0 (4.5d)

where xk ∈ Rnx is the state, uk ∈ Rnu is the control input, dk ∈ Rnd is the dis-
turbance, yk is a measurement at time k, C ∈ Rny×nx is relates measurements to
states in the measurement equation (4.5c), and Cd ∈ Rny×nd and Bd ∈ Rnx×nd are
matrices describing how the disturbances effect the augmented system. For the
inventory control system xk = h(tk), uk = F(tk).

At each iteration the initial value of the state and disturbance are set to their
estimated value at t0 (4.5d). These estimates are evolved by the observer:

ek = yk − C x̂k|k−1 − Cd d̂k|k−1 (4.6a)

x̂k|k = x̂k|k−1 + Kx ek (4.6b)

d̂k|k = d̂k|k−1 + Kd ek (4.6c)

where ek is the error estimate, and the notation x̂k|k−1 refers to the prediction of
x̂k from x̂k−1 (using the augmented model).

For the augmented system to be detectable we require that the original system
(C,A) is detectable and

rank

�

A− I Bd
C Cd

�

= nx + nd (4.7)

Bd and Cd can be chosen to satisfy this condition if and only if nd ≤ ny . Typically
one chooses nd = ny to ensure integration for all measurements. Lastly, the observer
gains should be chosen such that the augmented observer is stable, i.e.:

max |λ(Aa − KaCaAa)| ≤ 1 (4.8a)

Aa =

�

A Bd
0 I

�

, Ca =
�

C Cd
�

, Ka =
�

Kx Kd
�

(4.8b)

where maxλ(·) is the largest absolute eigenvalue. Disturbance modelling thus
requires the appropriate choice of: Bd , Cd , Kx , Kd to meet these requirements. Un-
fortunately the choice of these matrices is non-trivial with good MPC performance
typically requiring a well chosen disturbance model. The detectability condition

offers some guidance – as (A, C) is detectable the submatrix

�

A− I
C

�

has rank nx ,

and thus any nd ≤ ny columns that are independent of

�

A− I
C

�

can be chosen for
�

Bd
C

�

to meet the rank condition for detectability.

We now consider three simple tuning strategies for the disturbance model
applied to the inventory control problem. We assume that the level of each tank is
measured and select NI disturbances i.e. nd = nx = ny = NI , C = I .
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Deadbeat output disturbance model

The “standard" industry practice is to use a dead output disturbance model in
which any error is assumed to be due to a step (constant) disturbance in the output.
This corresponds to a choice of:

Bd = 0, Cd = I , Kx = 0, Kd = I , (4.9)

and is equivalent to designing a deadbeat Kalman filter for the augmented system.
However, this cannot be applied to the inventory system as the levels are integrators,
and thus h cannot be distinguished from the integrating disturbances (the rank
condition is not met).

Deadbeat input disturbance model

This simplest alternative to the standard deadbeat output model is to simply move
the disturbance to the input instead, corresponding to a choice of:

Bd = I , Cd = 0, Kx = 0, Kd = I . (4.10)

In this model any disturbance is assumed to be solely due to a disturbance at the
input. By design this avoids the rank issue, and often can give better performance
than the output disturbance model. Additionally, if nd = nu then one could select
Bd = B. However, for the inventory control system we cannot do this (nd ≤ ny < nu)
and we instead assign an independent input disturbance to each state equation.
However, applied to the inventory control problem this leads to the non-augmented
system matrix (A− Kx CA) having eigenvalues at 1, and the augmented observer
having positive eigenvalues with non-zero imaginary parts. Thus the system will
show poor performance.

Youla-Kucera parameterisation of disturbance model

Lastly we examine the tuning suggested in Pannocchia [8, 11], based on a prior
formulation of Tatjewski [12], in which the choice of the four disturbance matrices
is replaced by the choice of a single matrix Q ∈ Rnx×nd . Q should be selected
such that the non-augmented system characteristic matrix (A−QCA) has desired
properties, e.g. has eigenvalues in interior of the unit circle. Then the disturbance
matrices can be set to:

Bd =Q, Cd = I − CQ, Kx =Q, Kd = I . (4.11)

For any such choice of Q the augmented system is detectable, and the observer is
asymptotically stable.

Note that as Kd = I this tuning places ny poles of the observer at the origin
(and thus may lead to sensitivity to output noise) and results in the disturbance
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being set to the difference between the measurement and predicted state value,
i.e. the innovation yk − C x̂k|k−1:

d̂k|k = d̂k|k−1 + Kd ek = d̂k|k−1 + ek (4.12a)

= d̂k|k−1 +
�

yk − C x̂k|k−1 + Cd d̂k|k−1

�

(4.12b)

= yk − C
�

Ax̂k−1|k−1 + Buk−1

�

(4.12c)

= yk − C x̂k|k−1 (4.12d)

This means that the augmented model output is readjusted to exactly match the
measured output at each iteration.

4.4.2 Numerical simulation

Example 3. We consider the same system in example 2, but the MPC only receives
level measurements, i.e. (1) the change Fmax is not provided to the MPC, i.e. it uses
the Fmax = [1.667 1.428 1.125 1.0] m3/min throughout the horizon and (2) the
draining from tank 3 (0.05 m3/min when above the lower limit) is not in the MPC
model.

To prevent infeasibility of the MPC problem the state constraints are replaced
with soft constraints. In the simulation, if the controller allocates a flow-rate higher
than the actually achievable flow rate, then the maximum allowable flow rate is used.
Similarly, if the tank level exceeds 100 % then the level is set to 100 % and it is
assumed that excess is lost.

We consider applying the nominal MPC solution and the discussed disturbance
schemes to the inventory control problem, with the results summarised in Figure
4.3. The nominal MPC solution (Figure 4.3a), significantly violates the level con-
straints of the first two tanks, with both of the tanks running dry. However, due to
the feedback of the MPC implementation the leakage disturbance is adequately
controlled, although it does result in violation of the lower level constraint of tank
3 at t = 59 min.

The use of the deadbeat output disturbance model is shown in Figure 4.3b.
As expected this leads to very poor performance as the augmented system is not
detectable and hence the state and disturbance estimates are entirely inaccurate
leading to violation of all the tank levels, and the inventories not shifting once the
bottleneck is lifted.

Although the deadbeat input disturbance model, Figure 4.3c, correctly accounts
for the leakage disturbance (see level 3 before t = 40 min) it handles the unob-
served reduction in the maximum flow rate very poorly. Good performance of the
leakage is expected as this can be entirely captured by an input disturbance. Simil-
arly, the poor performance is expected due to eigenvalues of the observer inducing
oscillations (the large imaginary components) while not providing asymptotic
stability.

On the contrary, the use of the Youla-Kucera parameterisation with Q = 1.1I , is
able to avoid extended infeasible operation, see Figure 4.3d, by correctly handling



Chapter 4: Inventory control 77

(a) Level profiles of applying the MPC
scheme without disturbance model to a sys-
tem with incorrect Fmax

(b) Level profiles of applying the MPC
scheme with disturbance model deadbdeat
ouput to a system with incorrect Fmax

(c) Level profiles of applying the MPC
scheme with disturbance model deadbdeat
input to a system with incorrect Fmax

(d) Level profiles of applying the MPC
scheme with disturbance model Youla to a
system with incorrect Fmax

Figure 4.3: Use of MPC for the inventory control problem with incorrect identific-
ation of bottleneck (Example 3).

both disturbances. We note that there is some violation of the level constraints,
and that the system is not compensate as effectively for the leakage of tank 3,
however the performance is very similar to when the MPC has full information
(4.2a) and so we judge this acceptable. There is a minor back-off of the level of
tank 1 from the constraint, due to the combined influence of the disturbance and
noise, however there is some room for adjustment of this by tuning of Q.

4.4.3 Tuning of transients

The use of objective (4.3) or (4.4) will lead to a controller that maximises the time
between interruptions in production due to bottlenecks. Although this is desirable,
another aspect of inventory control is to mitigate short-term fluctuations in the
inventories. This is clearly at odds with the aggressive goal of maximising through-
put. The simplest way to consider these dual goals is to introduce a constraint on
the constraint on the change in the levels, i.e.

|hi(tk)− hi(tk−1)| ≤∆maxhi , i = 1, ..., NI (4.13)
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where ∆maxhi limits the allowable change of hi. Although it is more common
to penalise or restrict the change in the control variable, this is undesirable for
the inventory problem as we are okay with fluctuations in the flow if these don’t
significantly influence the levels. We also note that this constraint implicitly contains
the logic that goal a applies to shorter time scales, and goal (b) to a longer time
scale. Additionally, small level variations as this is typically acceptable.

Practically we note that (1) this constraint should be enforced as a soft con-
straint to prevent infeasibility of the MPC problem and (2) this constraint introduces
a new bottleneck source, as sometimes the inflow or outflow from a tank can be
limited by this constraint. Practically one may also wish to consider some kind of
allowed “acceleration" of the change in height, this can easily be incorporated by
allowing ∆maxhi to increase (to some upper limit) if this constraint was active at
a previous iteration. We note that if ∆maxh is chosen sufficiently small then this
not only restricts not the transients but can induce a bottleneck by making a large
flow rate infeasible due to it resulting in a inventory increasing too fast.

As pathological example of what can result from an excessively small∆maxh we
consider Example 2 with (4.13) and ∆maxhi = 0.03hmax,i for all tanks. The results
are shown in Figure 4.4 and should be compared with Figure 4.2. This choice of
∆maxh results in a bottleneck when the levels are refilled after the disturbance to
F0 has ended (Figure 4.4b). In addition, due to the constraint the levels of the
first two tanks drop together, and the level of the third tank begins to drop when
the first tank reaches its lower limit, as if it did not the level of the second tank
would decrease too fast. Thus the constraint can induce a non-intuitive coupling
between non-adjacent inventories. Lastly, in terms of the process throughput the
scheme still prioritises keeping F3 at its maximum, however due to the constraint
the effective maximum flow rate when the tank is being depleted is around 0.93
(Figure 4.4a, around t = 50 min).

4.5 Preliminary results – complex processes

We have focused on the case of tanks in series, however any realistic process is
more complicated – one can have recycles, multiple feed streams (or sources), and
multiple product streams (or sinks). As the process size increases it becomes more
important to have an easy to apply control scheme. For these kinds of systems we
propose the use of the MPC objective:

J = −
N
∑

k=0

γk

 

∑

j∈O
αOj F j(tk) +

∑

i∈I
αIi hi(tk)

!

(4.14)

where αOj is the weighting factor for the outflows, e.g. in the previous O = {3},
and 0 < αIi < 1 is the weighting factor for the inventories. The αOj s should be
assigned in order of preferred production, e.g. if production via a certain unit /
processing branch is preferred than the associated αOj should be set higher than
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(a) Tank levels of the MPC scheme with measured disturbances and constraint
on ∆h.

(b) Flow rates of the MPC scheme with measured change in bottleneck and
constraint on ∆h. Note that the maximum flow rates are not reached due to the
∆h constraint.

Figure 4.4: Performance of the MPC scheme using objective (4.3) for Example 2.



80 E.M. Turan: Optimisation and machine learning for process systems engineering

the others. Note that to ensure production is prioritised over storage the αs should
be assigned to satisfy:

0<max
i∈I
αIi <min

j∈O
αOj (4.15)

4.5.1 Algorithmic specification of weights

Use of (4.14) may seem tedious due to the need to specify all the αs consistently,
however we propose a simple algorithm for the consistent assignments of the
weights that requires only some order of preference amongst the sinks. This is
equivalent to having some preference amongst production paths, or if the multiple
sinks represent multiple consumers, then having preference amongst the consumers.
Note that the sinks can have equal preference, however this may lead to multiplicity
in the solution.

We assume that the network is acyclic, i.e. there are no recycles. An extension
to systems with recycles is discussed in section 4.5.2. As motivation for this setting
one can consider distribution networks or processes that allow multiple processing
paths for flexible operation. We consider our network to consist of NI nodes, with
NE connections between the nodes. Every node is assigned a label of storage, with
some nodes additionally assigned labels of producer (source) and consumer (sink).
Let S, P, and C be the sets of the indices of these node. Source node receive an
external input, e.g. unit 1 in example 2. Sink nodes have an output that leaves
the system. For simplicity we assume that sink nodes have only one outflow that
leaves the system, and source nodes have only one input that enters the system.
Thus, NF = NE + |C |+ |P|. For pedagogical reasons, we assume that each transfer
between internal units is equally preferred, which we do so by assigning each edge
in the network a weight (or distance) of 1. We relax this assumption following
algorithm 1.

Algorithm 1 Approach to systematically find weights for generalised problem

Require: Network of nodes, and index list of nodes labelled storage s ∈ S and
consumer c ∈ C.

0: Allocate: δ ∈ R|C |, dc,s ∈ R|C |×|S|, d̄s ∈ R|S|, αIs ∈ R
|S|

1: For each i ∈O assign a weight 1< αOi ∈ Z. A larger value implies an preference
for this stream over another.

2: Each i ∈O, the vector Mi has one non-zero entry at index c, where c ∈ C. Let
this relationship be written as: i = m(c).

3: δc ← 1/αOm(c) ∀c ∈ C
4: dc,s← shortest path from storage s to consumer c.
5: d̄s←minc∈C(dc,s +δc) for each s
6: αIs ← 1/d̄s for each s
7: return αI , αO

Algorithm 1 generates weights αOi and αIj that can be used in the generalised
MPC objective (4.14). In the above we have assumed that transfer between units
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is equally preferred (the edges are all 1). If some steps are preferred less over
others then they should be assigned a larger weight. A simple example of this is if
one processing path is preferred because the equipment has been retrofitted more
recently and operates more efficiently. In general the edge immediately before
recombination should be assigned a larger weight, i.e. 1< ei . In this case that means
that the edge corresponding to F5 can be allocated a weight of 1.5. The magnitude
of this weight is important, as too high a value can mean that the increasing the
inventory near an outflow is preferred over starting to produce through a another
branch. To avoid this all edge weights, ei , should satisfy 1< ei < 1+maxc∈C(δc).

4.5.2 Systems with recycles

It is well known in the literature that a system with a recycle should have one
stream in the recycle that is flow-controlled [1, 13]. This is also clear from our
proposed scheme. Applying the scheme to a system with a recycle it is clear that a
recycle is against the direction towards the outflow, therefore the recycle would be
as small as possible. This is because a recycle exists to due to operational concerns.
One can consider controlling a flow rate of the recycle based on a ratio of the
resulting mixture or keeping the recycle flow rate near some set-point [1, 13]. As
long as this objective is linear then by an appropriate choice of weight one can
incorporate it in the MPC scheme and allow for it to be given up if desired.

4.6 Discussion

4.6.1 Comparison to prior work

This chapters considers the same inventory control problem as Zoticǎ et al. [2] and
Skogestad [3] in which a a decentralised control structure consisting of simple
control elements was proposed. In comparison, this work proposes the use of
an MPC scheme. Under identical scenarios both control schemes will find the
same steady state operating point, with the transient behaviour of the schemes
determined entirely by their tunings. As such, it is not informative to compare
these schemes quantitatively. Qualitatively, the decentralised control scheme is
computationally simple as it uses simple control elements. However, the MPC
scheme does not represent a computational burden as a small, convex optimisation
problem is solved which can be done very reliably and efficiently. An important
benefit of the MPC scheme is that if future information is available, then this
can be directly incorporated in the MPC problem. Similarly, the MPC scheme can
be augmented in several ways, with two suggestions outlined below. Based on
simplicity, it is likely that unless more complex process topologies and constraints
are considered (and the schemes are suitably extended), the decentralised control
scheme will be preferred.
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4.6.2 Delay in transportation

In this work we have considered that there is no delay in the transport between
units. Because of this the outflow from a unit can be more than amount of substance
in that unit. To avoid this one can introduce a constraint of the form:

M out F(tk)≤ aihi(tk) (4.16a)

M out
i j =

¨

−1 if F j exits vessel i

0 otherwise
(4.16b)

where M out ∈ RNI×NF is an incidence matrix that describes the processes
outflows. This constraint requires the total outflow from a unit is less than or equal
to the amount of substance in the unit at a point in time.

4.6.3 Incorporation of economics

The proposed scheme does not make direct use of the process economics. This
choice is an intentional choice, as economic considerations of processes can be very
complex. Instead based on assumption of increasing throughput being economically
preferred, we avoid explicit inclusion of the process economics. In practice this
may not be the case e.g. due to increased cost or inefficiencies if some inventories
are kept high. If this is the case then one can design tiered soft constraints that
promote operating in a predefined “Goldilock" zone, but allows for short transients
in the less profitable operating regions if necessitated.

4.7 Conclusion

We address the task of allocating process inventories to maximise production and
bottleneck isolation using a model predictive control (MPC) scheme. This approach
addresses the two challenges associated with mitigating the effects of bottlenecks,
while also allowing incorporation of the goal of minimising short term inventory
fluctuation. Unlike the claims of previous works this is done without requiring a
computational expensive formulation, bottleneck forecast, multi-scenario approach
or similar. Furthermore, we also investigated the use of a Youla-Kucera tuning of a
disturbance model for the MPC scheme and showed it to be effective when provided
with incorrect operational information, e.g. leaks or misidentified bottlenecks.
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Chapter 5

PID controller tuning

This work considers optimisation based tuning of a PID controller entirely in the
frequency domain. We show that this can be formulated using the H∞ norm
of the frequency domain error function as the objective and H∞ constraints for
robustness and noise attenuation. The use of H∞ norms makes this problem a
semi-infinite program (SIP). Previous authors considered a discretisation of the
H∞ constraints, along with a time domain objective. While discretisation of SIPs
can yield feasible solutions, it often requires a very fine discretisation unless done
adaptively.

In this paper we showed the proposed SIP formulation can be solved rapidly
(less 10 seconds). Numerical examples show that the formulation is able to find
sensible value for the PID controllers, thus suggesting this as an attractive method
to automatically tune PID controllers.

In Chapter 9 we return to the topic of SIPs and propose optimality based
algorithms for generating lower bounds used for the solution of SIPs.

The work has been published as:

E. M. Turan, R. Kannan and J. Jäschke, ‘Design of PID controllers using
semi-infinite programming,’ Computer Aided Chemical Engineering,
vol. 49, no. 1958, pp. 439–444, 2022, ISSN: 15707946. DOI: 10.1016
/B978-0-323-85159-6.50073-7

5.1 Introduction

The PID controller has found widespread use in industry and there are many
methods in the literature to tune PID parameters. Typically, tuning involves a
trade-off between rejecting disturbances and robustness to uncertainty rules [1].
Finding parameters by trial and error is time-intensive, which has led to the
formulation of tuning rules, e.g. the Ziegler-Nichols tuning rule, SIMC, see Åström
and Hägglund [1] for an overview. An alternative to tuning rules, is to find controller
parameters by solving an optimisation problem. Optimisation-based tuning is a
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Figure 5.1: Block diagram of a closed loop system. K(s) is the controller, G(s) is
the process and F(s) is the measurement filter, and s is the Laplace variable.

powerful tool, especially when system complexity, non-standard parameterisations,
or requirements on performance and robustness mean that tuning rules are ill-
suited [1, 2].

Balchen [3] presented the first “modern” formulation of the PID optimisation
problem, that explicitly included a performance and robustness trade off. Since
then, various authors have proposed different formulations, see e.g. Soltesz et al.
[4]. Here, we place constraints on the H∞ norm of transfer functions, i.e. the
constraints should be satisfied for all considered frequencies (w ∈ Ω ⊂ Rn), which
means there are an infinite number of constraints [2, 4].

Previous authors [2, 4] discretised the frequencies to form a finite problem, e.g.,
Grimholt and Skogestad [2] used 10 000 points. This is an outer approximation
and does not guarantee a feasible point. It also raises the problem of how to
select the frequencies. If we consider the PID tuning problem as one in which the
constraints must be satisfied, then this means that multiple iterations with a finer
discretization may be necessary or the use of expert knowledge to choose a good
prior discretization.

In this work we use the global optimisation algorithm proposed by Djelassi and
Mitsos [5] to solve the semi-infinite PID tuning problem. This algorithm iteratively
solves discretised subproblems, where at each iteration a new discretization point
is added at the frequency that results in the largest constraint violation at the
incumbent solution. To facilitate the global optimisation algorithm, we use an
objective function in the frequency domain. Initial results show that the proposed
formulation reasonable quick computation times (<10 seconds) and gives sensible
controller tuning values without the need to apply expert knowledge to the tuning
problem.

5.1.1 System

We consider the closed loop linear system in Figure 5.1, with disturbances at the
plant input and output (du and dy), and noise (n) entering the system at the
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measurement output. The system is represented by the transfer functions [1]:

S(s) =
1

1+ G(s)K(s)
, T (s) = 1− S(s), T F(s) = T (s)F(s)

GS(s) = G(s)S(s), KS(s) = K(s)S(s), KFS(s) = K(s)F(s)S(s)

where is the complex frequency (s = iw), and S(s) and T (s) are the sensitivity
and complementary sensitivity functions respectively. Here, we consider the case
of pure error feedback (F = 1). The controller error, E , is the difference between
the measured output (y) and setpoint (ys):

−E(s) = y − ys = S(s)dy + GS(s)du − T (s)n (5.1)

In this work we consider PID controllers, parameterised in the linear form:

K(s) = kp +
ki

s
+ kds (5.2)

where kp, ki , and kd are the tuning parameters. In this form the optimiser can
selected a PID subtype, e.g. setting kd to zero give a PI controller.

5.1.2 Objective

We wish to pick control parameters that minimise the error after some disturbance.
Various performance indices have been proposed, with the most widely used being
the integral absolute error (IAE):

IAE =

∫ ∞

0

|e(t)|d t (5.3)

This formulation requires the error function in the time domain (e(t)). Finding
the time domain error function generally involves explicit simulation or taking
the inverse Laplace transform. Balchen [3] proposed the use of a performance
index in the frequency domain that approximates the IAE. The rationale behind
the approximation is that |e(t)| = e(t) |e(t)|e(t) , where if e(t) is oscillatory then the
fraction defines a square wave.

The IAE can then be approximated by introducing a sine wave with free
parameters w and a , that are chosen to maximise the integral, i.e. reduce the
approximation error. This allows one to write the objective in the frequency domain:

ISE =

∫ ∞

0

|e(t)|d t ≈max
a,w

∫ ∞

0

e(t) sin(wt + a)d t (5.4)

=max
w
|E(iw)|= |E(s)|∞ = HI E (5.5)

where |·|∞ is the H∞ norm. For convenience, we shall refer to this as the H-infinity
error (HIE). The HIE is bounded by the integral error (IE) and IAE: I E ≤ HI E ≤ IAE.
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If the system is well-dampened, then I E ≈ HI E ≈ IAE. Using Parseval’s theorem,
the integral squared error can be (exactly) represented in the frequency domain:

ISE =

∫ ∞

0

e(t)2d t =
1
π

∫ ∞

0

|E(iw)|2dw (5.6)

5.1.3 Robustness

We enforce robustness by constraining the maximums in the sensitivity and com-
plementary sensitivity functions (MS and MT ).

MS = |S(iw)|∞, MT = |T (iw)|∞,

The magnitude of MS and MT , describe the sensitivity of the system to process
uncertainty or change, e.g., MS gives the worst-case amplification of a disturbance
and, on a Nyquist plot, is the distance from the loop transfer function to the point
(-1,0).

Constraining the magnitude of MS and MT , defines circles on the Nyquist plot
that the loop transfer function must lie out of. A combined sensitivity constraint can
be defined that covers both excluded regions. For M = MS = MT , this constraint is
a circle on the Nyquist plot with centre, (C, 0), and radius, R, given by [1]:

C = −
2M2 − 2M + 1

2M2 − 2M
, R= −

2M − 1
2M2 − 2M

5.1.4 Noise attenuation

It is also desirable to limit control usage due to noise. This can be performed by

bounding the noise amplification ratio,
σ2

u
σ2

n
, where σ2

u and σ2
n are the variances of

the control and noise respectively. Let φ(w) be the unknown spectral density of
the (unclassified) noise, and Q be the transfer function from noise to the control
signal (Q = −KFS) see Figure 1). The following inequality holds [4]:

σ2
u ≤ |Q|

2
∞σ

2
n (5.7)

Thus, a constraint |Q|2∞ ≤ MQ, conservatively constrains the noise amplification
ratio. This inequality can be written in the form:

|KF(iw)| −MQ|1+ L(iw)| ≤ 0, w ∈ Ω ⊂ R+ (5.8)

where Ω defines the range of frequencies considered.

5.1.5 Optimisation problem

Semi-infinite programs are optimisation programs with a finite number of variables,
and an infinite number of constraints. In the PID problem we have an infinite
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number of constraints as the constraint must hold for all considered frequencies
(w ∈ Ω ⊂ R+). The optimisation problem for some performance index (PI) in the
frequency domain is:

min
kp ,ki ,kd

η (5.9)

PI(iw)−η≤ 0, w ∈ Ω ⊂ R+ (5.10)

R2 − |C − L(iw)| ≤ 0, w ∈ Ω ⊂ R+ (5.11)

|KF(iw)| −MQ|1+ L(iw)| ≤ 0, w ∈ Ω ⊂ R+ (5.12)

where the constraints are explicitly parameterised by the frequency.

5.2 Numerical examples

This work is coded in Julia, and uses the global optimisation package EAGO.jl [6],
GLPK [7], IPOPT [8], and the JuMP modelling language [9].

5.2.1 First order process with time delay

Consider the system from Grimholt and Skogestad [2] with transfer functions:

G(S) =
exp(−s)

s+ 1
, F(s) =

1
0.001s+ 1

To compare with the published results, we use the same weighted cost of the
error from a step disturbance in u, and y: η = 1

1.56 HI Ed y +
1

1.42 HI Eduand enforce
constraints on the sensitivity and complementary sensitivity with MS = MT = 1.3
with w in the interval [0.01 100]. No constraint is used for the input usage.

The optimiser finds the parameters [0.51, 0.54, 0.23] in 2.6 seconds, with the
Nyquist plot shown in Figure 5.2a. This closely matches the reported solution of
[0.52, 0.53, 0.22], despite the use of HIE instead of the IAE [2].

For comparison, introducing a constraint on input usage (MQ = 1.0) and using
the combined circle constraint gives the control parameters [0.32 0.28 and 0.01],
with the Nyquist plot shown in Figure 5.2b.

5.2.2 Third order process with inverse response

Consider the system process transfer functions:

G(S) =
1− 0.2s
(s+ 1)3

, F(s) = 1

We consider a constraint on the maximum combined sensitivity (≤ 1.3) and error
function E(s) = GS(s)du. We consider frequencies in the interval [0.01 100], and
bounds on controller parameters of 0.0 and 2.0. The optimisation is performed



90 E.M. Turan: Optimisation and machine learning for process systems engineering

(a) (b)

Figure 5.2: Nyquist plots of first order process with time delay. Left plot has
constraints on maximum sensitivity and complementary sensitivity. Right plot has
constraints on combined sensitivity and noise attenuation.

(a) (b)

Figure 5.3: Step response and Nyquist plot for third order process with inverse
response. HIE used as the objective, no constraint on input usage.

with HIE and ISE as the objective, giving parameters of [1.58, 1.00, 1.73] and
[1.54, 1.05, 1.87] respectively, in less than 5 seconds each. The system response
using the HIE parameters is shown in Figure 5.3.

5.2.3 Discussion

Despite the potential for HIE to go to zero, this did not occur in the above examples.
Numerical experiments have shown that this generally occurs with oscillatory
systems or large upper bounds on the control parameters, and no constraint on
input usage. Providing good bounds on the control parameters (e.g. by using a
tuning rule) can improve the speed of the optimisation. If the bounds could ensure
that the control system is well-dampened, then HI E ≈ IAE. The proposed SIP
formulation can be readily extended to other linear fixed-order controllers.
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5.3 Conclusions

We demonstrate that the robust PID tuning problem can be formulated and solved
as a semi-infinite program, entirely in the frequency domain, using the HIE or ISE
as objective functions. Robustness is enforced via H∞ constraints on the sensitivity
and complementary sensitivity functions, or an H∞ constraint on the combined
sensitivity. Control usage due to noise is restricted via an H∞ constraint on the
noise amplification ratio. On a range of systems, sensible controller parameters
were found, typically in less than 10 seconds.

5.4 Acknowledgements

J.J. and E.M.T. acknowledge the support of the Norwegian Research Council
through the AutoPRO project. R.K. acknowledges the support of the U.S. Depart-
ment of Energy through the LANL/LDRD Program and the Center for Nonlinear
Studies.

References

[1] K. J. Åström and T. Hägglund, Advanced PID control. ISA-The Instrumenta-
tion, Systems and Automation Society, 2006.

[2] C. Grimholt and S. Skogestad, ‘Optimization of fixed-order controllers using
exact gradients,’ Journal of Process Control, vol. 71, pp. 130–138, 2018.

[3] J. G. Balchen, A performance index for feedback control systems based on the
Fourier transform of the control deviation. Norges tekniske vitenskapsaka-
demi, 1958, vol. 247.

[4] K. Soltesz, C. Grimholt and S. Skogestad, ‘Simultaneous design of propor-
tional – integral – derivative controller and measurement filter by optim-
isation,’ IET Control Theory & Applications, vol. 11, no. 3, pp. 341–348,
2017.

[5] H. Djelassi and A. Mitsos, ‘A hybrid discretization algorithm with guaranteed
feasibility for the global solution of semi-infinite programs,’ Journal of Global
Optimization, vol. 68, no. 2, pp. 227–253, 2017.

[6] M. E. Wilhelm and M. D. Stuber, ‘Eago. jl: Easy advanced global optimization
in julia,’ Optimization Methods and Software, vol. 37, pp. 425–450, 2022.

[7] A. Makhorin, ‘Glpk (gnu linear programming kit),’ http://www. gnu. or-
g/s/glpk/glpk. html, 2008.

[8] A. Wächter and L. T. Biegler, ‘On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming,’ Math-
ematical programming, vol. 106, pp. 25–57, 2006.

[9] I. Dunning, J. Huchette and M. Lubin, ‘Jump: A modeling language for
mathematical optimization,’ SIAM review, vol. 59, no. 2, pp. 295–320, 2017.





Part II

Algorithmic and theoretical
contributions

93





Chapter 6

Learning convex terminal costs
for efficient MPC

For large systems that consider uncertainty the online solution of model predictive
control problems can be computationally taxing, and potentially intractable. This
can be offset by using a shorter horizon, however this can in turn result in poor
controller performance. In this work we consider the task of learning a convex
cost-to-go to allow the use of a short, potentially single step, control horizon to
reduce the online computational cost. We consider two surrogates: (1) a convex
interpolating function and (2) an input-convex neural network. We highlight that
irrespective of the choice of surrogate the behaviour of the surrogate near the origin
and ability of the surrogate to describe the feasible region are key concerns for the
closed loop performance of the new MPC problem. We address these concerns by
tailoring the design of the surrogate to ensure good performance in both aspects.
The paper concludes with a numerical example, showing the clear and significant
reduction in computational complexity through the use of these convex surrogates.

This chapter has been submitted as a journal article and is in review.

6.1 Introduction

Model predictive control (MPC) is an optimisation-based control method, in which
a control action that minimises some objective while satisfying constraints is
found by use of a model that predicts the (short-term) response of a system given
the current state. To find the control action an optimisation problem has to be
solved, which can be computationally infeasible for large problems or fast systems,
especially when considering a robust MPC formulation. The computational burden
can be reduced by considering a shorter horizon, i.e. reducing the problem size,
however this can often excessively deteriorate the controller performance. In this
work, we aim to reduce the computational burden of MPC by learning a convex
control objective that allows the use of a prediction and control horizon of one.

Various approaches have been considered to reduce the online computational
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delay of MPC. One approach is to compute the explicit feedback control law that
is implicitly defined by the MPC problem. For a standard linear MPC problem
this can be done by solving a multi-parametric programming problem [1]. This
method is limited to relatively small-scale problems as the online computational
requirements grows exponentially with the problem size. One can instead consider
finding a “compact" parameterisation of the control policy by a neural network,
trained in either an imitation learning [2] or optimize-and-learn framework [3].
However, these policies are difficult to adjust online.

An alternative approach is to consider solving a smaller problem online. How-
ever, a smaller problem does not necessarily yield an effective control policy – a
naive implementation of an MPC problem with a horizon of 1 will often give bad
results. However, Bellman’s principal of optimality indicates that with an appropri-
ately designed cost-to-go one can exactly recover the solution of the long-horizon
problem even when using a horizon of one. We consider the problem of learning
(offline) a convex surrogate of the cost-to-go of a linear, robust MPC problem with
the primary aim of reducing the online computational cost of the MPC problem.

This is related to approaches in inverse optimal control and approximate
dynamic programming. In inverse optimal control a data-set of state-input pairs
from a controller or an expert is fitted to a simple MPC controller by learning
a value function, such that the simple MPC controller is approximately optimal
[4]. In approximate dynamic programming, the value function is approximated
(commonly iteratively) based on some metric, e.g. [5] solved a semi-definite
problem offline to find a convex quadratic value function to approximate the
cost-to-go.

In this work, we approximate the cost-to-go by a convex surrogate. By choosing
a convex surrogate we can use it in a convex MPC scheme and still maintain
convexity, leading to low computational effort [6] and avoiding the standard
difficulties of optimising over neural networks. Furthermore, the restriction of the
surrogate to be convex can be regarded as a form of regularisation thus avoiding
the difficulty of tuning the training problem to avoid over-fittings. In particular, we
focus on two convex surrogates: (1) an interpolating convex function given as the
solution of a convex function, and (2) an input-convex neural network, which is a
network that is non-convex to train, but convex to optimise over. In contrast to
learning a control policy, this approach is more flexible as changes to problem data
can be incorporated by partially lengthening the control horizon and updating the
optimisation problem with the new data.

This approach is related to [7, 8]. In the former, a quadratic cost function
is parameterised by a neural network such that the approximation error of the
parametric quadratic objective and the cost-to-go is minimised. In the latter the
parameters of a convex MPC problem are adjusted such that the performance
metric of the policy implicitly defined by the convex MPC problem is maximised.

The paper is organised as follows: Section 6.2 briefly states the problem formu-
lation, Section 6.3 introduces the two choices of convex surrogates (interpolating
convex functions and input-convex neural networks), Section 6.4 details how the
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cost-to-go is approximated, Section 6.5 numerically demonstrates the proposed
approach and Section 6.6 concludes the paper.

6.2 Problem formulation

Consider the convex MPC problem:

VN ( x̂) =min
u,x

N−1
∑

k=0

lk(xk, uk) + Vt(xN ) (6.1a)

xk+1 = Axk + Buk, k = 0, . . . , N − 1 (6.1b)

uk ∈ Uk, k = 0, . . . , N − 1 (6.1c)

x0 = x̂ , xk ∈ Xk, k = 1, . . . , N (6.1d)

where N is the horizon, xk ∈ Xk ⊆ Rnx are the states, uk ∈ Uk ⊆ Rnu are the control
inputs, x̂ ∈ Rnx is the initial condition, and estimate of the current state of the
process, k indexes the discrete time model, lk is a convex stage cost, Vt is a convex
terminal cost, VN is the optimal value function with horizon N , and Uk ⊂ Rnu and
Xk ⊂ Rnx are convex constraint sets, typically defined by linear inequalities.

As (6.1) is a convex problem that depends on x̂ , VN is a convex function of x̂ .
Typically lk and Vt are strictly convex quadratic functions:

l(xk, uk) = x T
k Qxk + uT

k Ruk (6.2a)

Vt(xN ) = xNQ f xN (6.2b)

where Q, R and Q f are symmetric positive definite matrices.
Often Vt is chosen as the value function of the unconstrained infinite horizon

control problem corresponding to (6.1), i.e. the linear quadratic regulator (LQR).
If lk and Vt are strictly convex quadratic functions then VN is a strictly convex
piecewise quadratic function.

6.2.1 Multistage MPC

Problem (6.1) is a nominal MPC problem as it assumes that the system is perfectly
described by (6.1b). Realistically this is not the case due to uncertainty in para-
meters and stochasticity. This uncertainty can either be ignored (in which case
we solve the nominal problem, (6.1)) or can be incorporated in some robust or
probabilistic framework. We focus on the multistage MPC framework [9], although
the main results of this paper can be applied to other robust MPC formulations
that maintain the convexity of the problem.

In a multistage MPC problem, we consider a similar system to (6.1) but expli-
citly consider the uncertainty by including predictions corresponding to S scenarios
with different process dynamics (S being a positive integer):

VMS
N ( x̂) =min

u,x

S
∑

s=1

wsVN ,s( x̂) (6.3a)
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VN ,s( x̂) =

�N−1
∑

k=0

lk(xk,s, uk,s) + Vt(xN ,s)

�

∀s ∈ S (6.3b)

xk+1,s = Ak,s xk,s + Bk,suk,s + dk,s,

k = 0, . . . , N − 1, ∀s ∈ S (6.3c)

uk,s ∈ Uk, k = 0, . . . , N − 1 ∀s ∈ S (6.3d)

x0,s = x̂ , xk,s ∈ Xk, k = 1, . . . , N ∀s ∈ S (6.3e)

xk,s1
= xk,s2

⇒ uk,s1
= uk,s2

, ∀s1, s2 ∈ S (6.3f)

where s indexes the different scenarios, and the objectives of the different scenarios
are weighted by ws > 0 with

∑

s ws = 1. Ak,s, Bk,s, and dk,s are realisation of
the stochastic or uncertain parameters which are typically decided upon offline.
Constraint (6.3f) is a non-anticipativity constraint that enforces the control action
of two scenarios to be equal at a time point if the states of two scenarios are equal
at the same time point.

The uncertainty realisations can be represented by a scenario tree, with branch-
ing representing a potential change in the uncertainty realisation. A tree is called
fully-branched if branching occurs until the end of the prediction horizon, i.e.
all possible system evolutions for a finite number of parameter realizations are
considered. The size of the fully-branched scenario tree, and consequently the
multistage MPC problem, grows exponentially with the horizon length and number
of parameter values. Therefore, it is often computationally infeasible to solve a
fully-branched multistage MPC problem with a long horizon.

6.2.2 Only a step-ahead

Using Bellman’s principle of optimality problems (6.1) and (6.3) may be refor-
mulated as the single horizon problem. As (6.1) is a special case of (6.3) we only
show the reformulation of (6.3):

VMS
N ( x̂) =min

u,x
l0( x̂ , u0) +

S
∑

s=1

ws(VMS
N−1(x1,s)) (6.4a)

x1,s = A0,s x̂ + B0,su0 + d0,s (6.4b)

u0 ∈ U0, x1,s ∈ X1 (6.4c)

Only a single step prediction into the future is used, however the section of the
trajectory that is left out is captured by the embedded value function, VMS

N−1, which
is called the cost-to-go. Due to the structure of the problem, every MPC problem has
an implicit cost-to-go V c t g

N−1. Due to considering considerably fewer variables than
a problem with large N , the computational cost of solving a nominal MPC problem
online could be greatly reduced if V c t g

N−1 were known. This benefit is compounded
when considering a multistage problem, as using a control horizon of 1 means that
the problem size grows linearly and not exponentially with the number of cases, S.
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6.3 Approximating convex functions

We consider the task of fitting a convex surrogate to data and focus on the applica-
tion of this to the MPC setting in the following section. We restrict our attention to
convex surrogates for VMS

N−1 as these (a) are easy to optimise over once trained and
(b) VMS

N−1 is convex. We consider two formulations for fitting a convex f to m data
points using a least squares objective.

6.3.1 Convex optimisation of a convex interpolating function

As f is convex, and the data is from a convex function, then all optimal f perfectly
interpolates the data, i.e.

yi − f (x i) = 0, i = 1, . . . , m (6.5)

and from the definition of convexity there exists g1,. . . ,gm ∈ Rnx such that:

f (x j)≥ f (x i) + gT
i (x j − x i), i, j = 1, . . . , m (6.6)

where the vector gi is the subgradient of f at x i. Thus, the original infinite-
dimensional problem can be stated as the convex finite-dimensional quadratic
program [6]:

min
ŷi ,gi

m
∑

i=1

(yi − ŷi)
2 (6.7a)

s.t. ŷ j ≥ ŷi + gT
i (x j − x i), i, j = 1, . . . , m (6.7b)

where ŷi and gi are the prediction and sub-gradient of f at x i. Once solved one
can use the optimal values to construct arbitrary convex functions that interpolate
the data e.g. the piecewise affine function:

fPWA = max
i=1,...,m

( ŷi + gT
i (x − x i)) (6.8)

However, as ŷ ∈ Rm and each gi ∈ Rnx , solving (6.8) involves m(nx + 1) variables
leading to the problem rapidly becoming computationally intractable.

6.3.2 Input-convex neural networks

It is practically reasonable to consider finding an approximate surrogate instead of
an exact interpolating function. As such we consider training input-convex neural
networks (ICNN) [10, 11]. Neural networks offer a relatively memory-efficient
representations of the data, and hence avoid the memory issue of the previous
formulation.

For ease of exposition, we consider a M -layer, fully connected ICNN. This
network, fNN is defined as:

zi+1 = αi(W
(z)
i zi +W (x)

i x i + bi),
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x

V(x)

V̂(x)

Figure 6.1: Illustration that a “good" convex approximator (red line) of VN (black
line) can be a poor choice of function to minimize due to non-unique minimizers.

i = 0, . . . , M − 1 (6.9a)

fNN (x ,θ ) = zM (6.9b)

0≤W (z)
i , i = 1, . . . , M − 1 (6.9c)

αi convex and non-decreasing, i = 0, . . . , M − 1 (6.9d)

where zi are the activations of layer i, αi is that layer’s activation function, and
θi = {W

(z)
0:M−1, W (x)

0:M−1, b0:M−1} are the parameters. Note that z0 ≡ 0, W (z)
0 ≡ 0,

and the final activation function, αM−1 is often chosen as the identity.
A sufficient condition for the convexity of fNN with respect to x is that the

elements of W (z)
1:M−1 are non-negative, and α0:M−1 are convex and non-decreasing

[10]. This is because: (1) the composition of a convex and convex non-decreasing
function is convex, and (2) non-negative weighted sums of convex functions
preserve convexity [6].

Lastly, we note that if one considers M = 2, α1(y) = y, W (z)
1 = I , α2(y) =

max{yi , . . . , ynz
}, where nz is the hidden layer width, (i.e. a max-out layer) then

the ICNN describes an alternative parameterisation of any convex piecewise-affine
(PWA) function defined by (6.8).

6.4 Learning the cost-to-go

As we wish to embed our surrogate in a control problem this leads to atypical
considerations. In this section we describe design concerns of the convex surrogate
for use in the MPC problem, and the problem of learning feasibility.

6.4.1 Design of cost-to-go approximation

To simplify the notation in this section we use V(x) instead of VN−1(x). One may
suppose that any convex approximation, V̂(x) of the cost-to-go, is good enough,
provided the error V̂(x)− V(x) is made small. However, we wish that using V̂(x)
in (6.4) yields control actions similar to solving the full-horizon problem.

Often V(x) is strictly convex , e.g. if lk and Vt chosen as in (6.2). However, V̂(x)
may not be strictly convex resulting in the minimiser of (6.4) not being unique.
Indeed, if the training objective is the squared error then this is not unlikely. This
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(unwanted) behaviour is typified by Figure 6.1 where a convex approximator
approximates the region around the minimum by a line. If (6.4) has a non-unique
minimum, then this implies that the controller using this approximation will show
poor performance close to the origin.

Neither of the convex surrogates described previously meets the sufficient
condition for being strictly convex. However, as the sum of a convex function and
a strictly convex function is strictly convex, and most often the stage and terminal
cost are quadratic functions we consider the surrogate:

V̂(x) = V̂ f i t(x) + x T P x (6.10)

where V̂ is the surrogate used in (6.4), V̂ f i t(x ,θ ) is the fitted surrogate, i.e. either
(6.8) or (6.9), and P ≻ 0. A potential approach is to simultaneously optimise θ
and the entries of P. However, it seems more practical to simply choose P and then
optimise for V̂ f i t .

To do this, one should ensure that x T P x is a lower bound of VMS
N , as otherwise

V̂ f i t would need be non-convex for V̂ to be close approximation of VMS
N . If the

stage cost is defined as in (6.2) then one can simply select P = Q. However, a
more powerful idea is to pick P based on the cost-to-go of an associated multistage
linear quadratic regulator (LQR) problem with the same robust horizon.

Theorem 2. Let PMS
N denote a feasible N stage convex, linear multistage MPC problem

(6.3), where the stage and terminal costs are convex and quadratic (6.2). Let the
optimal value function of PMS

N be VMS
N (x). Similarly let PMS

LQR denote the multistage,
infinite horizon, LQR problem corresponding to PMS

N , with dk,s = 0 and the same
robust horizon as PMS

N . Let the optimal value function of PMS
LQR be VMS

LQR(x) and finite.
Note that VMS

LQR(x) is given by:

VMS
LQR(x) = x T PMS

LQR x

where PMS
LQR is the weighting matrix defined by the corresponding Riccati equation.

Let the terminal cost of the PMS
N be chosen such that

x TQ f x ≥ VMS
LQR(x) ∀x

i.e. Q f − PMS
LQR ≽ 0

and let ds,k be chosen such that
∑S

s wsds,k = 0.
Then VMS

LQR(x) is an under-estimator of VMS
N (x).

Proof. Consider PMS
N with Ak,s = A, Bk,s = B, i.e. the uncertainty is only due to the

additive disturbance. The value function, VMS
N (x), can be explicitly written as a

function of the scenario value function and disturbance:

VMS
N (x) =

S
∑

s=1

wsVN ,s( x̂) =
S
∑

s=1

wsVN ( x̂ , ds)
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where ds is a vector with elements dk,s. As the value function is convex in ds, by
(the generalised) Jensen’s inequality [6]:

VN ( x̂ , 0) = VN

�

x̂ ,
S
∑

s=1

wsds

�

≤
S
∑

s=1

wsVN ( x̂ , ds)

where by assumption
∑S

s wsds,k = 0.
Thus, for an arbitrary PMS

N , we can find a lower bound of VMS
N (x) by considering

the value function of the multistage problem the same scenario tree, but with
ds,k = 0 for all k and s. V̄MS

N (x) = VN ( x̂ , 0).
If Q f = PMS

LQR then VMS
LQR(x) is an under-estimator of V̄MS

N (x), and hence VMS
N (x).

This is because PMS
LQR is a relaxation of P̄MS

N as it has the same objective and
dynamics, without state or input constraints. For any other feasible choice of Q f ,
by assumption x TQ f x > x T PMS

LQR x and hence VMS
LQR(x) remains an under-estimator.

Thus, by considering the associated LQR problem, P can be found for use in
(6.10) that is a lower bound of VMS

N . Moreover, under additional assumptions of
the origin this choice exactly describes the curvature around the origin.

Theorem 3. Let PMS
N , VMS

N (x), VN (x , ds), V̄MS
N (x), VMS

LQR(x) be defined as in (2). Let
the origin solution of PMS

N have no active inequality constraints. Then in a region
around the origin

VMS
N (x) = VMS

LQR(x) + C

where C ≥ 0 is some constant.

Proof. Consider a set, N , on which the optimal solution of PMS
N has no active

inequality constraints. By assumption the origin is part of this set. Furthermore, as
the dynamics and constraints are Lipschitz continuous, this set is not a singleton
and contains some neighbourhood of the origin. Consider some point δ ∈N . As
PMS

N has no active inequality constraints,

VMS
LQR(δ) = V̄MS

N (δ), ∀δ ∈N

Let C be the difference between the value functions with and without additive
disturbances at the origin:

VMS
N (0)− V̄MS

N (0) = C

Because of linearity of the dynamics and inactive constraints, the influence of
the disturbance sequence on VMS

N can be regarded separately to the cost of starting
at the state value, i.e. the value function can be decomposed as:

VMS
N (δ) = V̄MS

N (δ) + C = VMS
LQR(δ) + C
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Thus, as long as the convex surrogate is zero in this neighbourhood around
the origin then (6.4) with using the approximate value function, defines the same
control law as (6.3), thus inheriting any stability properties around the origin it
may have.

6.4.2 Learning feasibility

In the above, a tacit assumption is that the state constraint set X1 corresponds to
the set of feasible states of the problem. If this is so then one can simply sample
points in X1 to train the network. However, in general, this is not the case, as there
may exist initial conditions that are infeasible only for a problem with sufficiently
long horizon. As the feasible region is convex we propose to find a separate convex
approximator to learn a penalty term that describes the feasible region.

For simplicity of notation consider a nominal MPC problem with bound con-
straints on x . This can be reformulated as the soft-constrained problem:

VN ,µ( x̂ ,µ) =min
u,x

N−1
∑

k=0

lk(xk, uk) + Vt(xN ) +µ
N
∑

k=1





ηu
k +η

l
k







1 (6.11a)

x0 = x̂ (6.11b)

xk+1 = Axk + Buk, k = 0, . . . , N − 1 (6.11c)

uk ∈ Uk, k = 0, . . . , N − 1 (6.11d)

xk ≤ xu +ηu
k, k = 1, . . . , N (6.11e)

xk ≥ x l −ηl
k, k = 1, . . . , N (6.11f)

0≤ ηu
k, 0≤ ηu

l (6.11g)

where ηu
k and ηl

k are slack variables, µ is a penalty parameter and VN ,µ( x̂ ,µ) is
the optimal value function. As an exact penalty is used the optimum of (6.11) is
equivalent to that of (6.1) if µ > µ∗ where µ∗ is the largest Lagrange multiplier
arising from the bound constraints of (6.1).

The cost-to-go, VN−1,µ may be decomposed as:

VN−1,µ( x̂ ,µ) = VN−1( x̂) +µFN−1( x̂) (6.12)

where µFN is the convex, piecewise linear contribution of the slack variables to
the value function. One can either develop a surrogate to describe VN−1,µ or two
surrogates for the decomposed problem.

In this work, we consider the use of two surrogates, because our requirements
of accuracy of the two terms are different. For example, the approximation of
VN−1 does not have to be accurate in the infeasible region, where FN−1 is non-
zero. Furthermore, the approximation of FN−1 only needs to be accurate near the
boundary of the feasible region. Any inaccuracy in the interior of the infeasible
region can be captured by using a larger µ in the one-step problem (6.4) (this
term can be adjusted after optimisation of the surrogates).
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6.5 Numerical results

To demonstrate our proposed approach we consider solving a multistage MPC
problem, where the solution of the full horizon problem can take more than 1000
seconds. The code has been implemented in Julia. Problems (6.3), (6.4) and (6.7)
are solved in JuMP [12] using IPOPT [13]. L-BFGS [14] is used to train the neural
network, through NLopt [15]. For automatic differentiation we use [16].

6.5.1 Case study

We consider the two-state problem:

min
u,x

1
S

S
∑

s=1

�N−1
∑

k=0

�

x T
k,sQxk,s + uT

k,sRuk,s

�

+x T
N ,sP xN ,s

�

(6.13a)

x0,s = x̂ , ∀s ∈ S (6.13b)

xk+1,s =

�

2 1
−1 2

�

xk,s +

�

1 0
0 1

�

uk,s + ds,

k = 0, . . . , N − 1, ∀s ∈ S (6.13c)

∥uk,s∥∞ ≤ 1.0, k = 0, . . . , N − 1 ∀s ∈ S (6.13d)

∥xk,s∥∞ ≤ 1.0, k = 1, . . . , N ∀s ∈ S (6.13e)

xk,s1
= xk,s2

⇒ uk,s1
= uk,s2

,

∀s1 ∈ S, s2 ∈ S, s1 ̸= s2 (6.13f)

with Q = I , R = 2I , and P = 9.217I , based on the corresponding LQR problem.
The uncertain parameter is dk ∈ [−0.05, 0.05]× [−0.05, 0.05]. We consider a
control and robust horizon of N = 5. This corresponds to a scenario tree of 1024
scenarios.

6.5.2 Training data

To generate training data for the neural network we solve (6.13) with a control
horizon of N − 1 = 4, on a grid to generate 441 training points, solved with
an absolute tolerance of 10−8. To allow for sampling infeasible start points we
reformulate the state inequality as soft constraints with positively constrained slack
variables which we include in the objective with a weighting of 105. 80% of the
data is used for training, with the remaining 20% used as a test set. As discussed
in §6.4.1 we fit the surrogates network on VN−1(x)− x T PLQR x . We normalise the
value-function and feasibility data to have a range between zero and one based on
the training data. Lastly, as the dimensionality of the problem is low we do not
generate additional feasibility data.
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Figure 6.2: Solve times with the interpolating convex functions.

6.5.3 Use of interpolating convex functions

Using the training data we solve (6.8) to find the interpolating data. Note that (6.8)
requires 123904 inequality constraints, with 1056 variables. Thus, even though
the problem only has two states, there are a significant number of constraints.
However, the problem can still be solved in a reasonably short time.

We use the optimal interpolating data to construct the one step ahead MPC
problem:

min
u,x

l0( x̂ , u0) + V̂N−1 (6.14a)

x1,s = A0,s x̂ + B0,su0 + d0,s, ∀s = 1 . . . ns (6.14b)

u0 ∈ U0, x1,s ∈ X1 (6.14c)

V̂N−1 =
S
∑

i

ws(V f i t,s +µF f i t,s + x T
1,sP x1,s) (6.14d)

V f i t,s ≥ Vest,i + g ′V,i(x1,s − x f i t,i),

∀s = 1 . . . ns, i = 1, . . . , m (6.14e)

F f i t,s ≥ Fest,i + g ′F ,i(x1,s − x f i t,i),

∀s = 1 . . . ns, i = 1, . . . , m (6.14f)

0≤ V f i t,s, 0≤ F f i t,s, ∀s = 1 . . . ns (6.14g)

Although this introduces many linear inequality constraints we note that this only
introduces 2ns + 1 new variables (V̂N−1, V f i t,s, F f i t,s). Additionally, many of the
inequality constraints can be eliminated during the presolve of the optimisation
algorithm. Although it is theoretically possible for interpolating functions to per-
fectly interpolate they did not due to the optimisation tolerance, and had small
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Figure 6.3: Solve times with the input convex neural networks.

negative values near zero. As such we introduce the constraint (6.14g) to prevent
bad behaviour.

The difference in the control output when solving the full and reduced hori-
zon problems is very small: an average absolute error of 0.08 from feasible start
locations, and 0.02 from infeasible points. In addition, despite the large number
of linear inequality constraints the use of the interpolating functions gave a con-
siderable speed up over multistage MPC, around 1–1.5 orders of magnitude, as
shown in Figure 6.2.

6.5.4 Use of ICNNs

We select a network architecture with a single hidden layer of width 20 (i.e. M = 2),
with activation functions:

α1 =max(0.01x , x), α2 =max(0.0, x) (6.15)

We select this choice of α2 as we know that the network output is non-negative.
As the network is restricted to be convex, we do not perform any other form of
regularisation. We use the same architecture and data points to learn the ICNN for
the feasibility term.

After training the networks with L-BFGS [14], we set-up a 1-step ahead MPC
problem (6.4). We directly include the neural network as expressions in the MPC
problem, i.e. we do not introduce additional constraints as in (6.14). Using a
limited memory Hessian approximation with Ipopt is found to give more stable
performance, potentially due to the piecewise nature of the neural network.

The one-stage MPC formulation yields a 2.5–3.5 order of magnitude speedup as
shown in Figure 6.3, while capturing nearly all aspects of the original MPC problem.



Chapter 6: Learning convex terminal costs for efficient MPC 107

Figure 6.4: Cost-to-go using the ICNN with 1 horizon.

This is also a significant speedup over the interpolating functions (Figure 6.2). The
approximated value function (shown in Figure 6.4) has an average absolute error
of 0.91 from feasible start locations. Despite this error, the average difference in
the control output is very small: an average absolute error of 0.01 from feasible
start locations, and 0.03 from infeasible start locations. This minor difference in
the control output occurs predominately in the region near the end of the feasible
region with the error being very close to zero for most of the interior.

6.6 Discussion and conclusion

This paper introduces a novel approach in which convex objective terms are learnt
to allow for effective 1-step ahead MPC problems. Unlike previous work [7] that
restricted its attention to quadratic costs parameterised by neural networks, or [8]
in which the parameters of a control problem are learnt, here we use general convex
surrogates. In particular we examine the use of interpolating convex functions and
input convex neural networks.

We demonstrate the proposed method on a multistage MPC problem and show
that the 1-step ahead problem can achieve a nearly identical control policy while
significantly reducing the computational time using both approaches. However,
the use of input-convex neural networks is preferred as they allow for a larger
reduction in the computational effort, while being easily trainable and scaling well
with the amount of training data. Compared to learning the control policy, the
proposed approach is more flexible as the online MPC problem can be changed
based on new data.
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Chapter 7

Closed-loop Optimisation of
Neural Networks for the Design
of Feedback Policies under
Uncertainty

Solving model predictive control (MPC) problems online can be computationally
intractable, especially when considering uncertainty and nonlinear systems. One
approach to avoid this is to train a neural network on a data-set of solutions of
MPC problems (potentially nonlinear) offline, and to evaluate the trained control
policy online. However, due to the separation of these optimisation problems the
neural network controller must be carefully verified to ensure adequate closed loop
performance. In this paper we propose a method to train a neural network in closed
loop for control systems, in continuous or discrete time, while allowing for flexible
consideration of parametric uncertainty. This method does not require off-line
solutions of the NMPC problem, and instead directly optimises the desired closed
loop performance. We prove that our method can approximate the optimal closed-
loop control policy to arbitrary tolerance and in numerical examples demonstrate
its performance compared to explicit MPC, imitation learning and nominal MPC.

Chapter 3 makes use of the closed-loop optimisation formulation described in
this work to train an output feedback controller. The closed-loop formulation is
key as it allows for training of a controller that only takes certain measurements
as inputs.

This work has been published as:

E. M. Turan and J. Jäschke, ‘Closed-loop optimisation of neural net-
works for the design of feedback policies under uncertainty,’ Journal
of Process Control, vol. 133, p. 103 144, 2024, ISSN: 09591524. DOI:
10.1016/j.jprocont.2023.103144

An earlier version of these results appeared as the conference paper (available in
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https://doi.org/10.1016/j.jprocont.2023.103144
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Appendix A):

E. M. Turan and J. Jäschke, ‘Designing neural network control policies
under parametric uncertainty: A Koopman operator approach,’ IFAC-
PapersOnLine, vol. 55, no. 7, pp. 392–399, 2022, ISSN: 24058963. DOI:
10.1016/j.ifacol.2022.07.475

7.1 Introduction

Model predictive control (MPC) is a popular control strategy due to its inherent
ability to handle constraints and multi-output systems. A standard MPC implement-
ation involves iteratively solving a dynamic optimisation problem that takes in the
current state of the system and predicts the short term behaviour of the system.
As such MPC requires a suitably accurate model to use in the optimisation. The
computational cost of the optimisation can be a challenge, especially for complex
non-linear systems with fast dynamics, where it can be challenging to solve the
optimisation problem in real-time. The challenge is exacerbated when uncertainty
in the model parameters is included in the controller, as the MPC formulations
that consider this typically have a significantly larger computational cost. For ex-
ample, in feedback min-max [1] and multi-stage [2] MPC the size of the online
optimization grows exponentially with the (robust) horizon length and number
of uncertainties. Similarly, in tube based MPC [3] the computational cost of the
set-based operations grows rapidly with the horizon and number of states.

In this paper, we propose a method for determining a static, state feedback
control policy parameterised by a neural network that is optimised off-line by
embedding it in a dynamic optimisation problem similar to one solved in typical
MPC formulations. This yields a control policy that can be cheaply evaluated in
real-time while matching the control policy defined by solving the MPC problem in
real time. Unlike other approaches that split the optimisation of the neural network
policy in two stages, our approach directly optimises the closed loop performance.

Various approaches exist in the literature to compute off-line control laws to
reduce the computational delay. For a linear system, with no uncertainty, and a
quadratic objective function the optimal control law is known to be piecewise
affine on polyhedrals, and can be computed by solving a parametric program [4].

A more generic approach is to optimise some function that can describe the
control policy. Neural networks are a popular choice of function as they are univer-
sal approximators, cheap to evaluate and can be efficiently optimised. Recently it
has been shown that one can construct a neural network that is exactly equivalent
to the control law given by the linear explicit MPC, while being much cheaper to
evaluate [5]. In general control policies defined by neural networks can be found
by 1) an imitation learning approach which uses a database of MPC solution [5–8],
2) reinforcement learning approaches [9] or 3) an optimise-and-learn approach
wherein the neural network is embedded in a dynamic optimisation problem [10–
14].

https://doi.org/10.1016/j.ifacol.2022.07.475
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In imitation learning approaches, the optimisation of the neural network is
separated from the control problem. Thus, good performance on the training (and
validation) data may not correspond to good closed loop performance. Although
imitation learning style approaches can give reasonable closed loop performance,
this is contingent on having the quality of the data-set, and careful analysis and
potential restrictions of the neural network policy [7, 8, 12, 15, 16]. In contrast,
by embedding the neural network in the dynamic optimisation problem the closed
loop performance can be directly optimised.

This paper presents a framework for closed-loop optimisation of neural policies,
alongside theoretical and numerical results. We consider various uncertainty for-
mulations for neural network control policies. In the prior optimise-and-learn
literature (apart from our preliminary results [10]), only linear systems with
stochastic additive disturbances have been considered, and then by open-loop
optimisation. We describe conditions under which one can expect minimisation of
the proposed formulation to yield an MPC policy. These conditions had not been
explicitly addressed in the prior optimise-and-learn literature. This is important as
it is a common myth that neural networks can represent arbitrary control policies.

The paper is structured as follows: Section 7.2 briefly presents the framework
and main idea of the proposed method. A discussion of relevant background
material and related results is provided in Section 7.3. In Section 7.5 we present
our theoretical results, and in Section 7.6 we describe implementational aspects of
key steps in our algorithm. The developed algorithm is tested on three selected
case studies in Section 7.7. The paper is closed with a discussion, Section 7.8, and
our conclusions in Section 7.9.

7.2 Problem formulation

Applying open-loop optimal control policies does not, in general, lead to optimal
closed-loop performance. Therefore the objective of this work is to find tractable
control policies that directly optimise closed-loop performance. In particular, we
seek to find an optimal closed-loop control policy by embedding the neural network:

u= κ(x) = fNN (x ,θ ) (7.1)

in a dynamic model and optimising θ to minimise an MPC objective, e.g. distance
from set point. The notation in (7.1) means that the plant input, u ∈ U ⊂ Rnu ,
is computed by a neural network parameterised by θ ∈ Rnθ , that takes the state,
x ∈ X ⊂ Rnx , as input, fNN : X×Rnθ → U. As U is often chosen as a hyperrectangle
defined by box constraints on the elements of u this can be enforced by appropriate
design of the output layer of the neural network.

For notational and implementational aspects, we consider a particular formu-
lation of a dynamic optimization problem with closed-loop control policy, shown
below in continuous time:

min
κ(x)

φ(x(t f )) (7.2a)
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0= f ( ẋ(t), x(t), u, p) (7.2b)

u= κ(x(t)) (7.2c)

x(t0) = x0 (7.2d)

h(x(t f )) = 0 (7.2e)

where t ∈ R is time, t0 is the initial time, t f is the final time, ẋ(t) is the time
derivative of the state, x0 ∈ X is the initial condition, κ(x(t)) : X→ U is a feedback
control policy, that takes the state x(t) or an estimate of it and computes the plant
input, p ∈ Rnp are parameters, f describes a general nonlinear dynamic system, J
is a performance metric, with corresponding objective function φ : X→ R, and
h : X→ Rnh , is a constraint function.

Remark. Formulation (7.2), is inspired by the control vector parameterisation liter-
ature, e.g. [17], and may include problems with path inequality constraints and other
time dependent terms through an appropriate introduction of extra variables. For ex-
ample, the continuous time path constraint, g(x(t), u(t), t)≤ 0, gI : X×U×R→ Rng

can be reformulated as ng final time constraints by defining new states that are metrics
of constraint violation, M i

c corresponding to g i
I , e.g. [17]:

Ṁ i
c =max(0, g i

I(x(t), u(t), t))2, i = 1, . . . , ng

M i
c(t f )≤ 0, i = 1, . . . , ng

Note that due to squaring the max operator, in a standard automatic differentiation
(AD) framework the first derivative is continuous1. However, this formulation can
give numerical difficulties as the gradient of this term is zero whenever the constraint
is satisfied. In the control vector parameterisation literature, use of such a term has
been reported to sometimes give excessive oscillations between feasible and infeasible
solutions during the optimization [17]. In our computations, we did not experience
numerical issues due to this formulation. If the gradient issue is problematic, we
note that a smooth reformulation of max can be used. Furthermore, note that any
path equality constraints can be included in the system dynamics, leading to a new
differential algebraic dynamical system, see [17, 18]. However, this may lead to a
high-index problem.

7.3 Background and related work

Consider the standard continuous time model predictive control problem with
fixed initial condition and final time:

u∗M PC(t, x0) = arg min
u(t)

φ(x(t f )) (7.3a)

f ( ẋ(t), x(t), u(t), p) = 0 (7.3b)

x(t0) = x0 (7.3c)

1A standard AD framework will select one of the directional derivatives, and these are equal.
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h(x(t f )) = 0 (7.3d)

The fundamental difference between formulations (7.2) and (7.3) is that in (7.3)
is that the control u(t) does not incorporate state-feedback in the optimization, i.e.
it defines an open-loop control policy. To incorporate feedback (7.3) is solved in
a receding-horizon manner, with only the control action at time t0 implemented.
Thus, (7.3) defines a feedback control policy:

u∗(x) = u∗M PC(t0, x) (7.4)

that was determined by open-loop optimisation. In practice, if the solution of 7.3
is non-unique then one element of the solution set is picked. Problem (7.3) can
be solved by various different formulations, e.g. discretisation of time and control
profile by direct transcription [19].

Assuming it is possible to solve (7.3) reliably, considering the same problem
when parameters are uncertain represents a significant computational challenge
[2, 3]. In general, both stochastic and robust formulations typically require greater
computational effort than standard nonlinear MPC, and can be infeasible to solve
in real time. Indeed, when considering sufficiently large problems even solving a
nominal MPC problem within the desired sampling time can be infeasible [20].
As such numerous strategies exist to move the computational burden offline. In
this work we focus on offline approaches that aim to define an explicit feedback
control policy, u = κ(x), which can be cheaply evaluated online instead of solving
an optimisation problem.

7.3.1 Discrete time formulation

The discussion above considers the continuous time formulation. However, for
practical reasons in the MPC context, the continuous-time optimisation problem
(7.3) is typically discretised, and a finite dimensional approximation is solved:

min
u=[u0, ...,ut f −1]

φ(x(t f )) (7.5a)

xk+1 = f (xk, uk, p) (7.5b)

x(t0) = x0 (7.5c)

h(x(t f )) = 0 (7.5d)

In this formulation the state evolves according to a difference equation (7.5b)
unlike the differential equation in (7.3). This is often computationally cheaper, and
convenient if the system is only sampled at discrete times, as the model exclusively
describes the system state at sample times. Linear systems can be transformed
between continuous and discrete formulations without introducing a discretisation
error.

If the model originally is a continuous-time model (e.g. from mass and energy
balances), then the constraint satisfaction can only be ensured at the discretisation
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points. Since the feedback controller given by a neural network, u = fNN (x ,θ),
can be evaluated extremely fast, it seems reasonable to consider a continuous time
formulation, such that the controller acts continuously on the process. Therefore
we will focus the presentation of our method on the continuous time formulation,
and point out the differences to a discrete-time formulation where applicable.

7.3.2 Explicit model predictive control

For a discrete linear time-invariant system without uncertainty, and with a quadratic
cost function the optimal control law (7.4) is known to be a piece-wise affine
function defined on polyhedral regions of the state space [4]:

u(x) =











K1 x + c1 if x ∈R1 Ki ∈ Rnx ×Rnu , ci ∈ Rnu , i = 1, . . . , n
...

Kn x + cn if x ∈Rn

(7.6)

where the Ri ’s are polyhedrons in Rnx . To calculate this control law the dynamic
optimisation problem is reformulated as a multi-parametric quadratic programming
problem, which only depends on the current state of the system [4]. Once calculated
the real time application of this control law is reduced to finding which region the
state is in and calculating a linear expression. However, as the number of regions
grows exponentially with respect to the model dimensionality and control horizon,
the task of finding the active region can be computationally expensive and limits
the general applicability of this approach [21].

7.3.3 Machine learning for control policies

A different approach is to approximate the feedback law by some appropriate
function. A popular family of approximating functions are neural networks, as they
are cheap to evaluate, and can be optimised efficiently by gradient based methods.
Most approaches in the literature use feed-forward neural networks, fNN , which
are made up of a composition of L+1 nonlinear activation functions, βl , and affine
function αl :

fNN (x ,θ ) = βL+1 ◦αL+1 ◦ βL ◦αL · · · ◦ β1 ◦α1 (7.7a)

αl(ζl−1) =Wlζl−1 + bl , Wi ∈ Rnζ,l ×Rnζ,l−1 , bi ∈ Rnζ,l , i = 1, . . . , L + 1 (7.7b)

θ = [W1, b1, . . . ] (7.7c)

where Wl and bl are the weights and biases of the affine function αl , ζl is the
output from the previous layer (ζ0 = x), nζ,l is the width of layer l, and L is the
network depth. Often βL+1 is taken as the identity. Common choices of the other
activation functions include rectified linear units, and sigmoid functions [22]. It is
well known that for various choices of network architecture, a sufficiently large
neural network is able to approximate bounded, continuous functions defined on
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a compact subset of Rnx to an arbitrarily low tolerance, i.e. neural networks are
universal approximators [23, 24].

Beyond being universal approximators, it was recently shown that neural
networks with an appropriately chosen architecture can exactly represent the
explicit MPC law for linear systems (7.6), while scaling better in the memory
requirements and not requiring the identification of the current active region [5].
From the first proposed use of neural networks as control policies in 1995 [6],
the focus has primarily been on imitation learning style approaches in which the
dynamic optimisation problem and training of the neural network are treated
as separate tasks (“optimise then learn"). More recently, authors have proposed
combining these optimisations into one problem (“optimise and learn") [10, 12,
14].

Imitation learning (optimise then train)

This approach consists of 1) solving the optimal control problem at points in the
state space, to yield a dataset (x i , u∗i (t0)) and 2) training the neural network on
this data set in a standard supervised learning framework, as originally proposed
by [6].

The main challenge in this approach is that the training of the neural network
is decoupled from the control problem, thus a neural network that achieves a
good fit need not define a control policy with good closed-loop performance. A
clear example of when this behaviour will occur is when the optimal control law is
set-valued, i.e. there are multiple solutions. When solving the MPC problem the
solver may return any of the optima, thus training on the MPC solutions can yield
a bad control law. This is shown in Figure 7.1 (adapted from [12]) where a neural
network (blue line) is trained on MPC solutions (red dots), to achieve near zero
error while clearly defining a control law that has poor closed-loop performance.
The problem solved to make this figure is in 7.9.

In this case the unwanted behaviour can easily be identified and avoided,
however this validation is harder in higher dimensions. Another example of when
imitation learning yields poor closed loop performance is if the closed loop system
leaves the region in which the network was trained on. Unless the training set is
control invariant then this may occur. To avoid this an imitation learning controller
may require to be trained on tubes of closed loop trajectories beginning in the
training set. This is shown visually in Figure 7.2, and is illustrated further in the
first case study (section 7.7.1). The issue of generating closed loop trajectories
of training data has previously been highlighted in the literature, for potential
approaches see [8, 20].

Remark. To avoid this negative behaviour of the imitation learning approach one
could instead seek to sample from the entire feasible space, X f easible in Figure 7.2.
This rapidly becomes computationally impractical for systems with more than a few
states. In addition, the majority of chemical processes operate near exclusively in
several relatively small regions of the total feasible state space [20]. Thus it is practical
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Figure 7.1: Neural network control law trained via imitation learning when the
MPC problem has the set-valued optimal control law u(x) = ±x . Based on [12].

and desirable to consider the “operationally relevant" subset of the state space, X0
[20].

In the worst case, poor transferability of imitation performance to closed-loop
performance can result in constraint violation and destabilisation of a system.
Various authors have developed off-line validation measures to ensure the quality
of the closed loop neural network policy despite the separation of the optimisation
problems, e.g. [7, 16].

Optimise and train

To avoid the drawbacks of the decoupling of the MPC performance and the neural
network training we have previously proposed to perform these two tasks sim-
ultaneously, see [10] for some preliminary results. Similar approaches have also
been recently proposed independently in various formulations by different authors
[11–14]. The core idea in common with these approaches are that the neural
network feedback policy is embedded into (7.3) to form single dynamic optimisa-
tion problem in which the neural network parameters are chosen to minimise the
control objective.

Combining the neural network optimisation and the dynamic optimisation
yields a more complex problem, however it also provides several benefits. In
the combined problem, the closed loop cost of using the policy can be directly
optimised, unlike in the imitation learning approach. As such issues with the
training data set are avoided, including:

1. Achieving a good fit in training but not in closed loop performance, e.g. due
to set valued optimal policies or overfitting (Figure 7.1)

2. Specifying a control invariant data set to ensure that the neural does not
extrapolate outside the training regime (Figure 7.2).
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X0

x0

Xfeasible

Xtrain

Figure 7.2: Graphical demonstration that after specifying an operationally relevant
set of initial conditions, X0 ⊆ X f easible, imitation learning may require sampling
from a larger region Xt rain to ensure that neural network has been trained on
the reachable set of states. The closed loop MPC trajectory from x0 is shown
by black arrows and points. Grey arrows indicate the imitation learning policy,
which may not exactly match the MPC solution. The blue dashed circles, represent
neighbourhoods around the closed loop MPC trajectory that the imitation learning
control may reach.

Additionally, in the optimise-and-train formulation one can handle problem
formulations that are difficult to solve with a classic MPC formulation, e.g. one
can find a continuous time control policies, and flexibly incorporate parametric
uncertainty in a range of different formulations (see Section 7.5).

7.4 Contributions of this work

The present paper is an extension of the authors earlier conference paper [10].
Extending on the core ideas established in [10], in this work we present a continu-
ous time formulation, describe theoretical properties of the proposed neural policy
formulation, as well as provide further exposition on the algorithm, including a
brief descriptions of variations of the algorithm.

The main differences between this work and the state of the art [11–14] is that
we: (i) rigorously establish conditions for when our method can approximate an
MPC policy, (ii) use adaptive sampling during the optimisation to ensure finding
an adequate policy, (iii) can find continuous time control policies. In addition, we
consider nonlinear systems with parametric uncertainty, while only [13] considers
uncertainty (for discrete time linear systems with additive uncertainty). Further
major differences to the relevant literature are briefly listed below.

• [11] finds a feedback policy by embedding a neural network in the optimal
control problem and optimising with one initial condition, i.e. they solve



120 E.M. Turan: Optimisation and machine learning for process systems engineering

problem (7.8). This does not guarantee finding a feedback policy that is
appropriate for use with arbitrary future states. In contrast we sample across
the operationally relevant region of state space, and hence find a policy that
1) can be used across this region, and 2) approximates the nominal MPC
policy under mild assumptions. See section 7.5.1 for further information.

• [12] embeds a neural network in the optimal control problem and proposes
to solve this by two formulations 1) a two-stage stochastic program, and
2) a recurrent neural network optimisation. In both formulations 1) all the
sampled initial conditions are used at each step of the optimisation and
2) out-of-sample constraint satisfaction is only guaranteed probabilistically
in a separate validation step. In contrast we formulate the optimisation
differently, and adaptively sample from the state space.

• [13, 14] designs a neural network that returns a control sequence given the
initial state, i.e. [uk, . . . , uk+N ] = fNN (xk,θ).This formulation has a lower
computational effort than embedding the network in the dynamics, however
this defines an open-loop optimisation over control actions, i.e. there is no
feedback present during the optimisation. When considering uncertainty,
open loop optimisation of control actions is well known to potentially give
conservative behaviour, or even infeasible problems. The reason for this is
that for a given initial condition, a single control trajectory must be found
such that all probable trajectories satisfy the constraints (see the classic
example in section II of [1]). In contrast, in our approach we directly embed
the neural network in the dynamics, and hence optimise a feedback policy.
Additionally this formulation 1) requires a larger network the longer the
horizon is, and 2) cannot be used to find a continuous time policy.

7.5 Optimisation of closed-loop neural control policies

Throughout this section we assume full-state measurements, and that there exists
an optimal static control policy that is continuous in the state. Lastly, for notational
convenience we use the notation x f for x(t f ).

7.5.1 Systems without parametric uncertainty

We consider optimisation of a neural network embedded in dynamic optimisation
problem, with given constant parameter, pnom and initial condition x0:

min
θ
φ(x f ) (7.8a)

f ( ẋ(t), x(t), fNN (x(t),θ ), pnom) = 0 (7.8b)

x(t0) = x0 (7.8c)

h(x f ) = 0 (7.8d)

This embedding transforms the infinite dimensional problem (7.2) to a finite di-
mensional problem, where the decision variables are the unconstrained parameters
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of the neural network. In general, we assume that this embedding yields a feasible
optimisation problem.

Although (7.8) defines a feedback policy, this is not a policy that can be used for
arbitrary future states, as during the optimisation the network may not have had
inputs from the entire state space X. Thus the network might define an arbitrarily
bad policy for some regions of the space.

To avoid this issue our approach is to sample the initial conditions from some
set in the state space, X0 ⊆ X. Assuming that X0 is compact, we define a uniform
probability distribution πx0

on X0. We can then write the probabilistic optimisation
problem:

min
θ
E
πx0

�

φ(x f )
�

(7.9a)

P
πx0

�

hi(x f ) = 0, i = 1, . . . , nh

�

= 1 (7.9b)

f ( ẋ(t), x(t), fNN (x(t),θ ), pnom) = 0 (7.9c)

x(t0)∼ πx0
(7.9d)

where E denotes the expectation, and P is the joint probability of constraint
satisfaction. Note that although φ and h involve the state at final time, as the
system is deterministic this is an implicit function of the initial state, i.e.

x f = S(x0,κ) (7.10)

where S is the system mapping of the dynamic system from t0 to t f , which
depends on the initial state, and control policy, κ(x). For notational convenience
let SNN (x0,θ ) be the dynamical system with neural policy parameters θ . Theorem 4
establishes that if the control policy implicitly defined by optimisation of the original
MPC problem (7.3) is continuous in x , then under mild conditions, this control
policy corresponds to a minimiser of the embedded neural network optimisation
(7.9). This applies for both globally and locally optimal policies of the original
MPC problem.

Theorem 4. Let X0 ⊂ Rnx be a compact set of initial states, X ⊂ Rnx be a compact set
of feasible states, and let πx0

be a compact, positive, probability distribution function
defined on X0. Let φ : X→ R be a function, and u∗ : X→ Rnu be a minimiser of (7.3)
at t0. Let both φ and u∗ be continuous. Let fNN : X×Rnθ → Rnu be a neural network,
that is a universal approximator with parameters θ . Let S∗(x0) and SNN (x0,θ) be
the system mapping from x0 to x f for the dynamic system with control policy u∗(x)
and fNN (x ,θ ), respectively, and let these mappings be continuous in x0 and θ .

We assume that for every θ the difference in the value functions is bounded:

∥φ(SNN (x0,θ ))−φ(S∗(x0))∥∞ < δ, δ > 0, ∀x0 ∈ X0 (7.11)

and that problems (7.8) and (7.9) are feasible.
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Then, for a suitably chosen neural network, fNN , for every u∗(x) there exists a
corresponding minimiser of (7.9), θ ∗, where ∥φ(SNN (x0,θ)−φ(S∗(x0))∥∞ < δ

for all x0 ∈ X0 for an arbitrarily small δ > 0.

Proof. First, we note that as u∗(x) is continuous in x and defined on a compact set
then as fNN belongs to a family of universal approximators, there exists θ ∗ such
that

∥ fNN (x ,θ ∗)− u∗(x)∥∞ < ε ∀x ∈ X (7.12)

for arbitrarily small ε. Due to continuity of SNN and φ, as ε goes to zero, so does
δ. Thus for suitably chosen fNN , δ can be arbitrarily small.

Note that:

E
πx0

�

φ(x f )
�

=

∫

X0

φ(SNN (x0,θ ))πx0
(x0)d x0 (7.13)

If u∗(x) is a minimiser of (7.3) then there are two cases:

1. If u∗(x) is the value of a global minimiser of (7.3) for all x ∈ X, then by
definition, φ(S∗(x0)) is a lower bound of (7.8). Furthermore, the θ ∗ that
minimises (7.11) is a global minimiser of (7.8) for all x0 ∈ X0. As πx0

is
non-negative, by optimality of (7.8):

φ(SNN (x0,θ ∗))πx0
(x0)≤ φ(SNN (x0,θ ))πx0

(x0) ∀x0 ∈ X0, ∀θ ∈ Rnθ
∫

X0

φ(SNN (x0,θ ∗))πx0
(x0)d x0 ≤

∫

X0

φ(SNN (x0,θ ))πx0
(x0)d x0 ∀θ ∈ Rnθ

Therefore θ ∗ is a (non-unique) global minimiser of (7.9), and δ can be made
arbitrarily small. In addition, if u∗ is a unique minimiser then as δ goes to
zero so does ∥ fNN (x ,θ ∗)− u∗(x)∥∞ for all x ∈ X0.

2. If u∗(x) is the value at t0 of a locally optimal minimiser of (7.3) for all x ∈ X
then, there exists a neighbourhood, N (x), of u∗(x) such that u∗(x) is the
global minimiser of (7.3) with the constraint u(x) ∈N (x). After introducing
this constraint into (7.8) and (7.9), the above argument follows. Thus, θ ∗ is
a local minimiser of (7.9).

The most restrictive assumption of this theorem is that the control policy is
continuous in x , as it is known that this cannot be guaranteed for a nonlinear
MPC problem with state constraints. This potential issue is further discussed in
Section 7.8.2. We would like to emphasise that the proposed approach does not
use solutions of the original MPC problem explicitly.

If the MPC optimum is only weekly dependent on the input (or even non-
unique), then we expect difficulties in recovering the exact same MPC control
policy. However, the expected closed loop cost will be similar.

Note that the approximation error, ε, of an approximate MPC policy can be
viewed as an input disturbance to the system controlled by the optimal MPC policy.
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Thus, if the optimal, nominal MPC policy is inherently robust to bounded errors,
then for small enough ε the approximate policy is also inherently robust and
stabilising [20].

7.5.2 Systems with parametric uncertainty

The above formulation readily extends to considering parametric uncertainty.
Throughout this section we assume that p is distributed by some known, time-
invariant probability distribution, p ∼ πp. When considering parametric uncer-
tainty, we need to decide on how the probabilistic constraint and objective should be
formulated. We first consider a formulation, in which we minimize the expectation
of the objective and impose a joint chance constraint:

min
θ
E

πx0
,πp

�

φ(x f )
�

(7.14a)

P
πx0

,πp

�

hi(x f ) = 0, i = 1, . . . , nh

�

≥ 1− ε, 0≤ ε≤ 1 (7.14b)

f ( ẋ(t), x(t), fNN (x(t),θ ), p) = 0 (7.14c)

x0 ∼ πx0
, p ∼ πp (7.14d)

Note that we have weakened the constraint (7.2e) to be satisfied (jointly) with
probability 1 − ε in (7.14b). Specification of ε = 0 means that the constraints
should be always satisfied, which can lead to conservative solutions or the non-
existence of a solution (infeasibility). However, note that specifying ε > 0 means
that the controller may not be recursively feasible. Potentially, one may employ
an approach to recover recursive feasibility after optimisation of the network, e.g.
[21, 25], although in general this is not trivial.

In this formulation the uncertain parameter takes some value at the initial
time, and stays at that value over the horizon. However, the controller is unable
to take advantage of the constant parameter as the control policy only has the
un-augmented state as input, i.e. the policy takes the same action for a given x for
every p and t, and for every initial condition every uncertain parameter realisation
is considered. In other words, the uncertain parameter is treated by the controller
as an unmeasured state of the system.

For a system with discrete uncertainty, this formulation has some similarity
with the corresponding multi-stage MPC problem [2] with a robust horizon of 1. A
multi-stage MPC problem has non-anticipatory constraints that enforces that if the
state of different scenarios are equal at a specific time, the control action must be
the same for these scenarios. If we let i and j index different scenarios then this
is a constraint of the form x i(tk) = x j(tk)⇒ ui(tk) = u j(tk). The neural network
specification is a stricter form of this constraint because the output must be the
same if the states are the same, irrespective of when in time the state is reached.
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Choice of probabilistic constraint

A standard reformulation of the chance constraint (7.14b), is to write it as an
expectation involving the indicator function, 1:

1(z) =

¨

1 if z = 0

0 otherwise
(7.15a)

E
πx0

,πp

� nh
∏

i=1

1

�

hi(x f )
�

�

≥ 1− ε (7.15b)

In this form, it is evident that the chance constraint has two main issues:

1. The discontinuous nature of the indicator function, 1, is a significant chal-
lenge for optimisation. Practically, one could replace the indicator function
by an approximation.

2. The chance constraint does not penalise the extent of constraint violation.
Thus, large violations of the constraints are treated equivalently to small
violations.

An alternative formulation for constraints under uncertainty is to penalise the
extent of constraint violation:

E
πx0

,πp

� nh
∑

i=1

|hi(x f )|

�

≤ δ, δ ≥ 0 (7.16)

We note that enforcing this constraint with δ = 0 is equivalent to enforcing ε= 0
with the chance constraint. Furthermore, assuming that δ = 0 yields a feasible
problem, then for any choice of ε, δ can be selected to ensure that if (7.16) is
satisfied, then the chance constraint (7.14b) is satisfied. However, the control
policies found when using the extent of violation constraint (7.16) and the chance
constraint (7.14b) will not be equivalent in general. In general, δ can be treated
as a tuning parameter that controls the conservativeness of the controller.

Choice of probabilistic objective

A motivation for using the expected value, is that this directly links the robust
(7.14) (ε = 0) and nominal problems (7.9). Consider augmenting the state vector,
x , by the vector of parameters p to yield a new state vector x̄ , where the parameters
have zero dynamics, dp

d t = 0. Finding a policy of the nominal system corresponds
to finding a full-state feedback policy for the augmented system where all the
states, z, are provided to the control policy (the initial states of the parameters by
distributed by a dirac delta distribution). Similarly, finding a policy of the uncertain
system corresponds to finding a partial-state feedback policy as only the states, x ,
are passed to controller, with the initial states of the parameters distributed by πp.

The primary flaw in choosing to minimise the expectation is that the variability
in the performance is not penalised. An alternative is to penalise some measure of
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the variability, such as the weighted expectation-variance objective:

E
πx0

,πp

�

φ(x f )
�

+ρv V
πx0

,πp

�

φ(x f )
�

= E
πx0

,πp

�

φ(x f )
�

+ρv

�

E
πx0

,πp

�

φ(x f )
2
�

− E
πx0

,πp

�

φ(x f )
�2
�

(7.17)

where V is the variance, and ρv ≥ 0 is a tuning parameter. Note that to calculate
this objective the only additional quantity to determine is the expectation of the
objective squared: Eπx0

,πp

�

φ(x f )2
�

. In general this, and similar objectives, will
result in a trade-off between minimising the expectation and the variability. In the
case of (7.17) this trade-off is governed by ρv. An example of such behaviour is
shown in the second case study in section 7.7.

7.6 Implementation aspects of the algorithm

In this section we focus on the implementation of an algorithm to solve (7.14),
which is used in the numerical examples in section 7.7. The main steps of this
algorithm are shown in Figure 7.3.

Given ρ and θ at iteration k samples are taken from πX0
, πp to generate

an ensemble of initial value problems. These initial value problems are solved to
find an estimate of the expectation of a penalised objective Eπx f

[J]. As long as

the framework to calculate this expectation supports automatic differentiation,
and the functions involved are differentiable then the above allows calculation
of an estimate of the gradient ∇θk

Eπx f
[J]. Thus any gradient based optimiser

can be used to optimise the neural policy. In practice, if the functions involved
are differentiable almost everywhere then it is often reasonable to use a gradient
based optimiser, with heuristics for points of non-differentiability. Indeed, neural
networks with piecewise activation functions are not differentiable, but are trained
by gradient based methods [22].

The follow sections detail key aspects of the implementation of our proposed
approach.

7.6.1 Optimisation formulation

Based on section 7.5, we formulate an uncertainty-aware version of the original
infinite dimensional, continuous time optimisation problem (7.3) as the following
optimisation problem:

min
θ
E

πx0
,πp

�

φ(x f )
�

(7.18a)

E
πx0

,πp

� nh
∑

i=1

|hi(x f )|

�

≤ δ, δ ≥ 0 (7.18b)

0= f ( ẋ(t), x(t), fNN (x(t),θ ), p) (7.18c)
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Optimiser

Control policy

Model

Closed loop simulation

u(t) x(t)

x(t0), p, θk

J(x(tf ), ρk)

θk, ρk

E[J ], ∇θk
E[J ]

θ0 θ∗

Evaluate NN parameters under
given uncertainties

πX0
, πp

Sampling &
expectation evaluation

Cost and
constraints

(θk)

Figure 7.3: Block diagram of the training process of the neural network control
policy, adapted from [10]

fNN (x ,θ ) ∈ U ∀x , θ (7.18d)

x0 ∼ πx0
, p ∼ πp (7.18e)

Optimisation of (7.18) yields a continuous time control policy, if a single shooting
approach is used wherein the system is solved by an adaptive integrator. Assuming
that the control output is constrained by simple bound constraints, then (7.18d)
can be satisfied by appropriate choice of the neural network architecture, e.g. using
a sigmoid function on the output nodes.

Note that robust satisfaction of the chance constraint is equivalent to specifying
that δ = 0. Otherwise, if some degree of violation is acceptable, then δ is a tuning
parameter, that controls the conservativeness of the control policy. Lastly, the
nominal case corresponds to using a Dirac delta distribution for the uncertain
parameter, alongside δ = 0.

7.6.2 Formulation of expectation evaluation

The expectations in Figure 7.3 and (7.18) must, in general, be computed numeric-
ally. Furthermore, although we know the uncertainty at the initial time, h and φ
are evaluated with the system state at the final time.

One approach is to consider propagating the probabilities through the system
dynamics. For example using a Monte Carlo type scheme Ns samples would be
generated from πx0

and simulated to t f , to approximate πx f
. Then the expectation

of any function with respect to πx f
can be taken as an average of the Ns points.

In such a scheme one first approximate π f and then the expectation, with the
number of samples needed to approximate the expectation to some tolerance
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grows exponentially with the dimension of the state space, i.e. “the curse of
dimensionality".

There are various approaches to reduce the computational effort associated
with propagating the uncertainty, e.g. polynomial chaos expansion. However, con-
sidering formulation (7.18) it is clear that one can instead consider evaluating the
expectation with respect to the initial time uncertainty [26, 27]. The essential idea
is that as the dynamics are deterministic the probability distribution at final time
is solely dependent on the initial distribution and system dynamics, e.g.:

E
πx f

[φ(x f )] = E
πx0

,πp
[φ(SNN (x0,θ ))] (7.19)

Recall that SNN is the system mapping of the dynamic system (7.2b) with the
neural network policy (7.1) from t0 to t f , which depends on the initial state and
control policy parameters. Although we do not have access to SNN in closed form,
we can evaluate it numerically, which also allows calculation of the gradients
through automatic differentiation.

As the initial probability distributions are known, and SNN can be evaluated, the
expectation evaluation at the initial time is simply a numerical integration problem,
for which efficient methods have been developed that do not scale exponentially
in the number of dimensions. Formally, this reformulation can be written as the
adjoint property of the Frobenius-Peron (pushing forward the uncertainty) and
Koopman (pulling back the uncertainty) operators [26, 28].

The key difference is that the propagation based methods first approximate π f
and then calculates the expectation, while the other seeks to directly approximate
the expectation. Because of this the evaluation of the expectation at initial time
can often offer computational advantages, e.g. one does not need to accurately
determine the volume of support ofπ f . For a more complete theoretical justification
and comparison see [26, 27].

7.6.3 Penalty formulation

Constraints (7.18c) and (7.18d) are satisfied by the system mapping function, SNN ,
and the neural network architecture. Thus the only constraint to consider in the
optimisation is (7.18b).

As we wish to use a stochastic optimiser, we need to use some form of penalty
method as there are no well established stochastic optimisation algorithms that
consider constraints. We note that moving the constraint to the objective provides
a benefit as only a single expectation must be taken. To perform the constrained
optimisation we use an augmented Langrangian method to ensure satisfaction of
the constraints to a desired tolerance (Algorithm 2).

For the considered inequality-constrained optimisation problem, with δ > 0,
one can form the penalised Augmented Langrangian objective:

h̄(x f ) =
nh
∑

i=1

|hi(x f )| −δ (7.20a)
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J =

(

Eπx0
,πp
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φ(x f )−λh̄(x f ) +
ρ
2 h̄(x f )2

�

if h̄(x f )−
λ
ρ ≤ 0

Eπx0
,πp

�

φ(x f )−
λ2

2ρ

�

otherwise.
(7.20b)

where ρ and λ are penalty parameters that are updated appropriately, for further
details see Algorithm 3 in 7.9 or Chapter 17 of [29] and the references therein.
Note that if δ = 0, then this is an equality constrained optimisation problem, and
one should use the first case of (7.20b) until convergence. Unlike many penalty
approaches which add a single penalty term to the optimisation, e.g. ρ∥h(x)∥, the
augment Langrangian method uses both a quadratic and linear penalty term to
yield a better conditioned sequence of optimisation problems [29]. Although we
have implemented the simple augmented Langrangian algorithm described above,
more sophisticated versions have been implemented that may perform better, e.g.
see section 17.5 in [29] or [30].

7.6.4 Proposed algorithm

Algorithm 2 Simplified algorithm of proposed approach

Require: Initial parameters and distributions: θ0, πx0
, πp, ρ

Require: Tolerances: htol , Jtol , δ,
Require: Number of samples/iterations: m1, m2, m3, nbatch, Npoints
Require: Functions: φ : Rnx → R, h : Rnx → Rnh , SNN : Rnx ×Rnθ → Rnx

1: θ ← θ0, ρAL ← (δ, 0, ρ)
2: D_set← sample(πx0

,πp, Npoints) ▷ e.g. Sobol sampling
3: JAL,smpl(θ ,ρAL)← φ, h, D_set, nbatch, SNN , δ ▷ Sampled objective
4: JAL,adpt(θ ,ρAL)← φ, h, πx0

, πp, SNN , δ, Jtol , m1 ▷ Adaptive objective
5: hadpt(θ )← h, πx0

, πp, SNN , δ, htol , m1
6: θ , ρAL ← Aug_Lag(JAL,smpl , hadpt , θ , ρAL , optimiser1, m2)
7: θ , ρAL ← Aug_Lag(JAL,adpt , hadpt , θ , ρAL , optimiser2, m3)

A simple pseudo-code of the proposed approach is shown by Algorithm 2, and
is briefly described in the following paragraphs.

After initialising the initial guess, and parameters for the augmented Lagrangian
method, we create D_set by using a Sobol sequence (any random or pseudo-
random sequence can be used) to select points from πx0

and πp. The idea is that
D_set provide an (likely inaccurate) estimation of the expectation we wish to
evaluate. We then define a function JAL,smpl that takes nbatch samples from D_set
(with replacement) and uses these to estimate the expectation of the penalised
objective, i.e. mini-batching with a mini-batch size of nbatch. Similarly, we define
a two functions, JAL,adpt and hadpt that adaptively samples from πx0

and πp
to evaluate the respective expectations, until a desired tolerance (Jtol , htol) or
maximum number of samples (m1) is reached.

We then perform the optimisation in two steps (lines 6-7). In the first step we
use the Augmented Langrangian algorithm with JAL,smpl and a stochastic optimiser.
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In this work we use AMSGrad [31]. Note that hadpt is used to adjust the penalty
parameter vector ρAL, see algorithm 3. The Augmented Langrangian algorithm
ends if a feasible point is found or if m2 outer iterations are performed. Similarly,
in the next step the Augmented Langrangian algorithm is used with JAL,adpt and a
second optimiser. Based on problem characteristics and computational concerns one
may wish to perform additional solves at various tolerances. This proto-algorithm
concludes after using using the Augmented Langrangian algorithm once with a
more accurate objective, JAL,adpt , and thus we suggest using an algorithm like
L-BFGS [32] in this stage.

The idea behind splitting this optimisation in two is that the JAL,smpl is expected
to be much cheaper to evaluate than JAL,adpt , for reasonable values of nbatch. As
such, the first stage of the optimisation is to make progress towards finding reas-
onable parameters for the control policy, while the second stage tries to accurately
minimise the objective.

7.6.5 Scaling in higher dimensions

The major computational cost of the algorithm are in evaluating the expectations
at the sampled points (the functions defined on lines 3-5 in Algorithm 2). The
computational cost is offset by two factors: 1) the evaluations require the simulation
of the system with embedded neural network which can be performed efficiently
and relatively cheaply [33], 2) these evaluations are parallelisable, and 3) the
computational cost of objective used in the stochastic optimiser is determined by
the batch size. Point 3 implies that, as in standard learning tasks, the batch size
gives a trade-off between faster iterations and accurate estimation of the “true"
objective and gradient. Furthermore, as the optimisation is performed offline one
may make use of computing resources that are typically unavailable in standard
MPC implementations, e.g. GPUs and computing clusters.

Although, points 1-3 significantly reduce the computational effort in evaluating
JAL,smpl , efficiently evaluating JAL,adpt to the desired tolerance at each iteration
can still be a challenge. In the low dimensional problems considered in this work
(2-4D), we use a h-adaptive cubature algorithm in which the integration volume is
adapatively subdivided and sampled until a specified tolerance is reached [34].
Although this method is known to be efficient for low dimensional problems, it is
known to scale poorly. For higher dimensional problems methods that scale better
are known, e.g. sparse grids or quasi-Monte Carlo integration methods [35, 36]. If
these methods are still too computationally expensive we note that we can continue
to perform stochastic optimisation on line 7 but adaptively pick D_set using these
integration methods. To be explicit, periodically a D_set is calculated such that if it
its use would give an accurate estimate of the expectation. Then, mini-batches are
randomly selected from D_set for use by a the stochastic optimiser for a number
of iterations.

In other optimisation and learn approaches both the two stages of optimisation,
and adaptive sampling is not performed. [14] proposed using a randomly selected
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single sample of X0 for optimise in their formulation, while [12] uses a fixed batch
of samples, which is determined by an iterative procedure. Practically, we have
found that the second stage is useful to “finesse" the control policy.

7.7 Numerical results

The proposed method is implemented in Julia 1.6, with major use of the following
packages: Flux.jl [37], ForwardDiff.jl [38], and DifferentialEquations.jl [33]. To
solve the classic MPC problems we use JuMP.jl [39], and for the explicit MPC
we use the Multi-Parametric Toolbox [40] with MATLAB R2023b. The optimisers
Ipopt [41], L-BFGS [32], and AMSGrad are used [31]. Lastly, we use the numerical
integration algorithms HCubature.jl [34] and Suave from the Cuba library [36].
The code is available at https://github.com/Process-optimisation-and-Con
trol/2023Turan-Neural-Control-Policy.

In the first numerical example we consider a (parametric) linear system, with
no uncertain parameters, and compare the proposed formulation to the optimal
control policy, and an imitation learning policy. In the second example we consider a
nonlinear system with uncertain parameters, and show how considering uncertainty
yields a different control law when compared to the nominal MPC problem. We
then illustrate how the behaviour of a controller optimised with the expected-
variance objective (7.17) changes as the weighting between the variance and
expectation term is varied. These two examples only have two states, so that the
control policy and closed loop performance can be plotted. In the last example we
consider a linear system of 6 states, for which we show that the neural control
policy is significantly more computationally efficient than the classic explicit MPC
policy (7.6). This example also highlights the kind of state constraint violation that
can occur using the proposed formulation, if we do not set δ = 0.

7.7.1 Linear system

Consider the discrete time MPC problem with a double integrator:

min
u(t)

3
∑

k=0

�

x(tk)
T

�

1 0
0 0.05

�

x(tk) + 0.1u2(tk)

�

+ x(t4)
T

�

2.18 1.26
1.26 1.48

�

x(t4)

(7.21a)

x(tk+1) =

�

1 1
0 1

�

x(tk) +

�

0
1

�

u(tk) (7.21b)

− 3− p ≤ x2(tk)≤ 3+ p, k = 0, . . . , 4 (7.21c)

x(t0) = x0 (7.21d)

where p is a problem parameter related to the state constraint. We aim to find
the optimal neural network policy using formulation (7.14) (with ε= 0, and no
uncertain parameters). The neural network takes an input the current system

https://github.com/Process-optimisation-and-Control/2023Turan-Neural-Control-Policy
https://github.com/Process-optimisation-and-Control/2023Turan-Neural-Control-Policy
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state and p, i.e. p is treated as an augmented state. This parameterisation means
that the behaviour of the control policy can be changed online by varying this
input. In this example it means that the maximum allowable velocity of the system
can be changed online. We compare this control policy to the policy implicitly
defined by solving the MPC problem, and to an imitation learning policy. To reduce
redundancy in the comparisons we only train (and compare) the imitation learning
policy with p = 3.

We consider the set of initial conditions, X0, defined by the inequalities −9≤
x1(t0)≤ 9, −3≤ x2(t0)≤ 3 and 0≤ p ≤ 1. Note that X0 is not control invariant,
however the control can return the state to X0 in two steps.

Optimisation

For the the embedded neural control policy we scale the states based on the bounds
of X0:

s(x) =
�

1
18

1
6

�

x + [0.5 0.5] (7.22)

Furthermore, to ensure that the control output is zero at the origin for all θ and p
we use an architecture similar to that suggested in [20]:

fNN (x ,θ ) = 3mid(−1, NN([s(x) p],θ )− NN(s([0 0 p]),θ ), 1) (7.23)

where mid restricts the output between -1 and 1, NN(·, ·) is a feedforward neural
network with relu activation functions and two hidden layers of width 12. Apart
from the additional p input, we use the same architecture and input scaling in the
imitation learning approach for a fair comparison.

We use algorithm 2 with the following parameters: Npoints = 100, a constraint
tolerance of δ = 10−4, ρ = 0.5, a tolerance of the constraint evaluation of htol =
10−3, Jtol = 0.01, nbatch = 1, m1 =∞ (unlimited adaptive sampling), and a
maximum of m2 = 50 and m3 = 10 outer iterations for the augmented Lagrange
algorithm. We use AMSGrad [31] on line 6. We make a small modification to
algorithm 2, and first perform line 7 with AMSGrad (maximum of 1000 iterations)
and Jtol = 0.005, and then with L-BFGS [32] (maximum of 20 iterations) and
Jtol = 0.001. After optimisation we confirm that the constraint is satisfied at the
desired tolerance by evaluating it at a higher htol . The adaptive integration is
performed with the cubature algorithm described in [34].

For the imitation learning approach we use the same 100 samples from the first
stage with 20 000 iterations of AMSGrad with single samples, 5000 iterations of
AMSGrad with the whole batch and 20 iterations of L-BFGS with the whole batch.

Performance

Figure 7.4 shows the policies defined by the neural network optimised in closed
loop and the policy from solving the MPC problem, for the extreme values of p. The
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(a) Neural network (p = 0) (b) MPC (p = 0)

(c) Neural network (p = 1) (d) MPC (p = 1)

Figure 7.4: Filled contour map of the control policies defined by the neural
network (left) and MPC solution (right) for the double integrator system with
p = 0 and p = 1.

policies are very similar, which is what we expect as the assumptions of Theorem
4 are satisfied.

More important than the similarities in the control policy, is the performance
of the policies when applied in closed loop. To reduce the repetitiveness of this
comparison we consider the case of p = 0, i.e. when the system has the tightest
constraint. By simulation, we calculate the closed loop performance of the neural
network and the MPC policy (implemented in closed-loop) over four time steps,
and the difference in performance:

V C L
d = VNN − V C L

mpc (7.24)

where VNN is the closed loop performance of the neural network control, V C L
mpc

is the closed loop performance of the MPC, and V C L
d is the difference between

these. The logarithm of VNN and V C L
d is plotted in Figure 7.5. From Figure 7.5b

and Figure 7.4 it is clear that despite never using samples of the MPC policy, the
neural network policy is able to very closely match the MPC performance.

We also calculate the difference in the closed loop performance of the imitation
learning policy and MPC policy, Vnn,imi−Vmpc , with the results shown in Figure 7.6.
While the imitation learning policy matches the MPC performance very closely in
the central region of the state space, it is not able to ensure constraint satisfaction
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(a) Closed loop performance of neural
network

(b) Difference in closed loop perform-
ance

Figure 7.5: Filled contours depicting the closed loop performance of the neural
network for the double integrator problem. The scale in (a) and (b) are truncated
to 10−6 and 10−4 due to the logarithm.

for trajectories starting in various regions of X0. This is because the data set used
in the imitation learning approach did not contain samples along all trajectories
of the system from X0 (see Figure 7.2, and the associated discussion in section
7.3.3). This is critical because X0 is not control invariant, and hence the closed
loop trajectories can leave X0 and enter regions in which the imitation learning
policy was not trained on. In this example, it results in violations of the constraints,
as indicated by the white sections in Figure 7.6.

The justification of this choice of X0 is that the majority of chemical processes
operate in a several relatively small range of the total feasible state space. Thus it
is practical to specify X0 as the “operationally relevant" subset of the state space
[20], and not as the entire feasible state space set of the system, which can be
computationally impractical to sample in higher dimensions. As the embedded
neural network is trained on closed loop trajectories it is inherently trained on
the reachable set of states from X0, while for imitation learning points along the
potential trajectories need to be included in the training data, as depicted in Figure
7.2.

7.7.2 Nonlinear compressor system with uncertain parameters

The following problem is based on surge control of a compressor [42, 43]:

min
u
E

πB ,πγ
100

∫ 6

0

l(x , u, v) d t (7.25a)

d x1

d t
= B(Ψe(x1)− x2 − u) (7.25b)

d x2

d t
=

1
B
(x1 − γ

p
x2) (7.25c)
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Figure 7.6: Filled contour map of the difference in closed loop performance of the
imitation learning neural network controller for the double integrator problem.
Regions where the imitation learning policy fails to satisfy the state constraint
−3 ≤ x2(t i) ≤ 3 with an absolute tolerance of 0.1 are left blank. The scale is
truncated to 10−4 due to the logarithm.

Ψe(x1) =ψc +H
�

1+ 1.5
� x1

W
− 1

�

− 0.5
� x1

W
− 1

�3�

(7.25d)

x2 − v ≤ 0.4 (7.25e)

l(x , u, v) = (x − xSP)T (x − xSP) + 0.08u2 + 8v2 (7.25f)

x(0)= x0 (7.25g)

0≤ x1 ≤ 1, 0≤ x2 ≤ 1, 0≤ u≤ 0.3, 0≤ v (7.25h)

where x1 is the normalised mass flow, x2 the normalised pressure, u the norm-
alised mass flow through a close-coupled valve placed in series with the compressor,
and v a slack variable used to promote operating in a good regime [42, 43]. We
consider H = 0.18, ψc = 0.4, W = 0.25 as known parameters, and as uncertain
parameters with known normal distributions: γ∼N (0.5, 0.017), B ∼N (0.85, 0.1).
These distributions are truncated to [0.4 0.6], and [0.7 1] respectively.

The control objective is to avoid surge with a dual goal of controlling the system
to xSP = [0.4 0.6] while minimising input usage (this corresponds to a steady state
of [0.389 0.607] with the mean parameters). We compare the controllers found
by using the nominal, expectation, and expectation-variance formulations of the
objective. The distribution means are used as nominal parameters. We consider
X0 defined by 0.2≤ x1 ≤ 1, and 0≤ x2 ≤ 0.7.

Optimisation

To solve the MPC problem we discretise the dynamics using implicit Euler with a
step-size of 0.5 and control horizon of 12. As certain initial state and parameter
combination give infeasible problems we use slack variables to enforce the state
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(a) MPC (b) NN policy

Figure 7.7: Filled contour map of the control policies. State trajectories of the
controlled system with different constant parameters are shown. The red dashed
lines and solid pink lines correspond to γ = 0.5, B = .85 (the nominal values),
and γ = 0.45, B = 1 respectively. Initial conditions used are: [0.85 0.1], [0.4 0.4]
and [0.25 0.1].

constraints with a penalty parameter of 1000.
For the neural policy we consider a feed-forward neural network with sigmoid

activation functions and two hidden layers of width 12. We solve for a continuous
time policy, by embedding the neural network in an adaptive integration scheme.
Otherwise, we use the same procedure described in section 7.7.1 with the following
differences: (1) the expectation of the constraint is evaluated with a tolerance of
htol = 10−4, and (2) the last two optimisations are performed with Jtol = 0.1, and
then Jtol = 0.01.

Performance

Nominal and expected value controllers

The two approaches define markedly different control laws, shown in Figure 7.7.
Although this difference may make the neural policy seem suspect, we note that
prior work identified that a control law linear in x1 and not a function of x2 can be
used to stabilise the system without exact knowledge of the compressor parameters
[43]. This is very similar to the control policy in 7.7b, although there is some minor
dependence on x2 in the control policy.

Several trajectories of the controlled system are also shown on the control
policy plots, with additional trajectories for a single choice of initial state shown in
Figure 7.8. Note that although the system evolves in continuous time the MPC is
solved at discrete times (∆t = 0.5). In general the nominal MPC controller shows
less tight control of the uncertain system than the neural control policy.

This difference in performance can be shown clearly from plots of the expected
close-loop performance as shown in Figures 7.9 and 7.10. The same trajectories
shown in Figure 7.7 are reproduced here. As in the optimisation, the expectations
are calculated by h-adaptive numerical integration. Due to the significant com-
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(a) MPC (b) NN policy

Figure 7.8: Trajectories with NN and MPC controller with sampled realisations of
the uncertain parameters and same initial condition.

Figure 7.9: Filled contour map of the neural network output. State trajectories of
the controlled system with the same initial conditions and parameter combinations
as in Figure 7.7b are shown.

putational cost of evaluating this with the nominal MPC, Figure 7.10 uses fewer
points in the contours resulting in a more jagged figure. Figure 7.10 shows that
the neural policy is able to improve upon the nominal MPC performance, with the
relative difference increasing as one approaches the nominal set-point. This shows
that, as expected, the neural control finds a “trade-off control" for the uncertain
system at a price of worst performance for the nominal system controlled by the
nominal MPC.

Expectation-variance controller

Figure 7.11 shows the possible range of closed-loop trajectories of the system, con-
trolled by “expectation variance controllers" optimised with a different weighting of
the variance term. The shaded areas depict the range of the states of the controlled
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Figure 7.10: Percentage difference in the closed loop performance of the nominal
MPC and neural policy.

(a) E[J] (b) E[J] + 0.05V[J]

(c) E[J] + 0.15V[J]

Figure 7.11: Controlled system, with controller optimised by expectation variance
with a weigthing term of (a) 0. (i.e. just expectation), (b) 0.05, and (c) 0.15. The
shaded areas depict the possible range of the states, as determined by random
sampling of initial conditions and parameter values. The bold line shows the
average value of the states, and the black line shows the steady state of the
nominal system.
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loop system, with parameters and initial conditions randomly sampled from their
respective distributions. Inclusion of the variance term penalises the variability of
the regulatory objective, and hence the variability of the state trajectories, which
can clearly be seen when examining the shaded areas shown in the Figure 7.11.

For example, when not penalising the variance (Figure 7.11a) x1 reaches zero
around t = 2. Introducing a lightly penalised variance term, (0.05, Figure 7.11b)
is enough to avoid this behaviour and achieve tighter control along the simulated
trajectories. The weighting factor trades off the goals of variance and expectation
minimisation. This trade-off can be seen as a small off-set of the mean value of
x2 (bold red line) from the black line in Figure 7.11b. A more drastic example is
shown in Figure 7.11c, where a much larger variance weight is used, resulting in
prioritisation of variance reduction over taking the system to the desired operating
point. We note that it is possible to include this weighting factor as an input to the
network, and sample over different values yielding a controller with adaptable
online performance. Lastly we note the different versions of the variance term can
be used, e.g. penalise the variance of the states at final time only which introduces
a further aspect of flexibility.

7.7.3 Linear system of 6 states

We consider a linear system of 6 states and 2 control inputs:

min
u

7
∑

k=0

�

x(tk)
T I x(tk) + 0.5u(tk)

T Iu(tk)
�

+ x(t8)
T P x(t8) (7.26a)

x(tk+1) = Ax(tk) + Bu(tk) (7.26b)

∥x(tk)∥∞ ≤ 1, k = 0, . . . , 8 (7.26c)

∥u(tk)∥∞ ≤ 1, k = 0, . . . , 7 (7.26d)

x(t0) = x0 (7.26e)

A=
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0.2099 −0.4143 −0.1434 −1.3725 −0.6476 0.2083
−0.3611 0.8083 0.2985 1.0440 0.0943 0.3186
0.1901 −0.1511 0.1901 0.1558 −0.1445 0.1830















(7.26f)

b =






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0.2393 0.5207
0 1.0527

0.0921 −0.3938
−0.4048 −0.8272
−0.0120 −1.1967
−1.9193 −0.9621















(7.26g)

where I is the identity, and P is the solution to the discrete time algebraic
Riccati equation of the associated unconstrained infinite horizon problem. We
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consider the problem of finding an offline control policy valid for initial states
starting in the set X0 = [−0.44 0.44]nx . X0 is (to two decimal places) the largest
hypercube on which the problem is feasible. We compare the classic explicit MPC
policy with the proposed embedded neural network policy, and show that the
latter is more computationally and memory efficient. The neural network policy
achieves nearly the same closed-loop objective although it exhibits minor constraint
violations (within the specified tolerance).

Optimisation

Despite the problem’s modest size, the exact explicit MPC law in standard form
(7.6) is considerably complex. The explicit control law, defined on the feasible
state space, is found using the Multi-Parametric Toolbox 3.0 [40]. It consists of
6505 regions with 5487 unique affine functions. It is important to note one cannot
compute the explicit control law on X0 as the optimal controller will leave the
set. One can either compute the entire reachable feasible set and determine the
explicit controller on this set, or use the entire feasible region.

We select the same neural network architecture as in the first example (7.23),
and use a network of width 10 and 4 layers (312 parameters). To find the embedded
neural policy control law we follow the same procedure described in section 7.7.1
with the following differences: Npoints = 500, δ = 0.1, htol = 0.1, Jtol = 0.5 for
the first stage of the augmented Lagrange with AMSGrad (500 iterations), and
Jtol = 0.1 for the augmented Lagrange with L-BFGS (maximum 20 iterations). The
adaptive integration is performed using the Suave algorithm [36].

Comparison

As we have 6 states we cannot plot the control policy or closed loop performance
as in the previous examples. Instead our comparison is based on the expected
performance and typical trajectories of the controlled system. We evaluate the
expectation of the closed loop objective with the Suave algorithm with an absolute
and relative tolerance of 10−3. The explicit MPC has an average objective of 1.2829
while the neural network policy has value of 1.2825, which is well within the
desired tolerance. However, as the explicit MPC policy is optimal, it is clear that the
neural network policy is achieving the lower objective by allowing some violation
of the state constraints. However, the expected value of the constraint violation is
approximately 10−5, which is well within the desired tolerance. By another metric,
if one included an l1 penalty of the constraint violation with a weighting parameter
of 1000, then the neural network policy would have an expected objective of
1.3204 (calculated as above). Note that with the proposed formulation, after
optimisation of a sufficiently large network state constraints are only violated if
doing so benefits the objective function. This is not the case for a control policy
trained with imitation learning.

This behaviour can also be seen when examining trajectories of the two control-
lers, as show in Figure 7.12. In Figure 7.12 (b) the neural network policy achieves
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(a) MPC (b) Neural network policy

(c) MPC (d) Neural network policy

Figure 7.12: Comparison of the MPC and neural network policy for the 6 state LTI
system, with figures on the same row having the same initial condition. The closed
loop cost of the controllers are (a) 4.31, (b) 4.27, (c) 3.51, and (d) 3.51.The
neural network policy achieves a better performance in (b) by violating the state
on x5.

a better performance than the MPC Figure 7.12 (a) by violating the state constraint
of x5 for one time step. Note that the state constraint on x4 is satisfied by the
neural network policy. At other initial conditions the two controllers have identical
performance, as shown in Figures 7.12 (c) and (d). Although the controller does
violate the constraints we note that this is within the tolerances used in the optim-
isation. Performing the optimisation at higher tolerances will reduce the degree of
constraint violation, although this will increase the offline computational cost.

In terms of computational resources the neural network controller is signi-
ficantly better than the explicit MPC law. The explicit MPC law takes ∼ 16ms to
evaluate. In comparison, the neural policy takes ∼ 0.05ms to evaluate (i.e. a 99%
speed up). In terms of storage, the neural network only has 312 parameters. In
comparison, when considering only the unique functions of the explicit MPC law
this would require storing 5487(nx nu+nu) = 76 818 parameters. Note that storing
the regions comes with an additional memory requirement. Thus it is clear from a
memory and computational perspective that the neural policy is more resource
efficient.
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7.8 Discussion

7.8.1 Changing set points and other problem parameters

In the numerical examples we considered a simple case in which the controller
output could be altered online by changing a parameter related to state constraint
that was provided to the controller. It is also reasonable to consider changes in
other problem parameters (e.g. set-points, cost weightings) based on operational
decisions. Similarly to the example, these changes can be incorporated in the
framework by augmenting the neural network inputs with the problem parameter
values (or trajectories of their values) [14, 20]. Thereafter, the set of desired
problem parameters can be constructed and sampled from along with the initial
conditions and uncertain parameters.

We note that including this flexibility can greatly increase offline computational
effort. Alternatively, the proposed approach could potentially be combined with
an online learning scheme, or some algorithm that alters the control policy output
based on optimality or feasibility concerns, e.g. [25, 44].

7.8.2 Assumption of continuous MPC policy

A myth in implicitly prevalent in the literature is that neural networks can ap-
proximate any MPC policy. Neural networks typically use continuous activation
functions, that are differentiable everywhere or nearly everywhere, to allow the
use of gradient based optimisation algorithms [22]. However the use of continuous
activation functions, means that they cannot approximate discontinuous functions
to arbitrary accuracy. This is relevant as an MPC policy is only guaranteed to be
continuous in the state if, in addition to standard assumptions, 1) the solution of
the MPC problem is unique and 2) either the dynamics are linear with a polyhedral
state-control constraint set or there are no state constraints (see Theorem 2.7 in
[45]). Although this may seem restrictive we note that it is industrial practice to
not use hard constraints for the state variables in MPC implementations, which
will result in continuous control policies.

7.8.3 Worst case loss

Given the formulation described in this paper it may be tempting to minimise the
worst-case loss, e.g. by using an epigraph reformulation of the form:

min
θ ,γ

γ (7.27)

P
πx0

,πp

�

φ(x f )<= γ
�

= 1 (7.28)

However we note this formulation would minimises the worst-case loss as determ-
ined over both the parameters and initial condition. Thus, a policy defined by
this formulation could perform very poorly in most of the state space and is not
recommended.
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7.8.4 Highly unstable systems

The random initialisation of controller variables can be problematic for highly
unstable system, especially if this would result in the integrator returning Inf and
similar. A potential option for these systems is to first roughly pre-train the network
via imitation learning on a relatively small number of MPC solutions.

7.9 Conclusion

The key idea in the proposed approach is that embedding a neural network policy
into the dynamic optimisation problem, allows the policy to be optimised in closed
loop. Compared to an imitation learning approach, (1) we directly optimise the
closed-loop performance. This avoids issues of the policy performing well in train-
ing, but not in closed-loop performance, and (2) an imitation learning approach is
explicitly limited to problem formulations that can be efficiently solved by MPC.
For example, the probabilistic formulation in this work cannot be replicated by a
standard MPC formulation.

In this work we describe a formulation to optimise feedback control policies
for uncertain systems, and prove that, under some assumptions, our method can
approximate the optimal closed-loop control policy to arbitrary tolerance. This
is numerically demonstrated in the first case study. In the second case study we
compare nominal MPC and two formulations that consider parametric uncer-
tainty (optimising expectation and expectation-variance). In the last case study
we demonstrate the method on a larger system, where there is a clear advantage
in computationally efficiency of the neural network policy over the explicit MPC
law. This example also highlights the kind of state constraint violations that may
occur. This can potentially be addressed by optimisation to a higher tolerance, or
use of safety filter [25].

Further work could include comparisons of other approaches to treat uncer-
tainty, extensions to output MPC approaches, a larger case study, and further
developments in the analysis and theoretical properties of the proposed formula-
tion.
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Appendix

Set valued control law example

Consider the following problem [12]:

u(x) = argmin
u

x1 (7.29a)

x1 = x2
0 − u2 (7.29b)

x0 = x (7.29c)

The optimum is clearly zero, which corresponds to the set-value optimal control
law u(x) = ±x . As such, given x0, an optimisation algorithm may return either of
these optima depending on the algorithm and initial point. Ipopt [41] is used to
solve (7.29) using a random initialisation for the variables for a range of x values.
This dataset is then used to train a neural network that achieves near zero error,
despite clearly corresponding to poor closed-loop performance. Figure 7.1 depicts
the data set (red circles), ideal set-valued optimal control law (red lines), and
trained neural network (blue line).

Augmented Lagrangian algorithm

A simple augmented Lagrangian algorithm for problems with a scalar inequality
constraint is shown in Algorithm 3. For problems with an equality constraints the
first case in line 3, and the else section of the last if statement (lines 8-13) should
always be evaluated. We note that more sophisticated augmented Lagrangian
algorithms have been implemented, e.g. see section 17.5 in [29] or [30], that may
show better performance.
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Algorithm 3 Basic Augmented Lagrangian algorithm for problems with inequality
constraint h≤ 0 [29]
Require: φ : Rx → R, h : Rx → R, x0, ρAL , optimiser, γ= 2

1: converge← 0, x ← x0, (tol,λ,ρ)← ρAL
2: while converge ̸= 1 do

3: J(x) =

¨

φ(x)−λh(x) + ρ
2 h(x)2 if h(x)− λ

ρ ≤ 0

φ(x)− λ2

2ρ otherwise.
4: x ← optimiser(φ, x) ▷ Any optimisation algorithm
5: if |h(x)| ≤ tol then
6: converge← 1
7: else
8: if −h(x) + λ

ρ ≤ 0 then
9: λ← 0

10: else
11: ρ← ργ
12: λ← λ−ρh(x)
13: end if
14: end if
15: end while



Chapter 8

Fitting neural differential
equations

The following paper describes the application of multiple shooting to the problem
of fitting a neural network embedded in a differential equation. Although multiple
shooting is a well-known technique in the control literature, it had not been used
in the neural differential literature beyond an unusual implementation which
considered noise-less measurements. Instead in the literature primarily a single
shooting approach is used.

This work introduced the concept of multiple shooting to a new audience, and
motivated it’s use by showing how single shooting with embedded neural networks
can lead to incredibly poor fits when the data contains oscillations across a long
time span. This was shown on both a synthetic example, and on experimental data
from a two tanks system.

This work has been published as:

E. M. Turan and J. Jaschke, ‘Multiple Shooting for Training Neural
Differential Equations on Time Series,’ IEEE Control Systems Letters,
vol. 6, pp. 1897–1902, 2022, ISSN: 24751456. DOI: 10.1109/LCSYS.2
021.3135835

8.1 Introduction

Mechanistic or first principle modelling of systems described by differential equa-
tions requires specification of the functional form, following which parameter
estimation can be undertaken given data. Neural differential equations (DEs) are a
data-driven approach to developing dynamic models from time series data. Neural
DEs give continuous dynamics, allow for irregular/incomplete time series, and
can be more efficient than neural network approaches through the use modern of
ODE solvers [1, 2]. In comparison to mechanistic modelling, neural DEs reduce
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the need to decide on functional form, while still allowing domain knowledge to
be included in the model [1, 2].

Despite the application of neural DEs to complex problems [2], there are
still challenges in their use. The standard approach to fitting the neural DE is to
iteratively calculate a trajectory by integrating the system to the final time and
updating the parameters based on this trajectory. In the dynamic optimization
literature, this is known as single shooting as a single trajectory is calculated that
depends entirely on the parameters and initial point [3].

Fitting a neural DE via single shooting to a system or time series with oscillatory
behaviour or with a long time span can be difficult. The optimization of neural
ODE, with randomly initialised weights, may result in a “flattened out” or low
frequency trajectory that does not describe higher frequency responses, as shown
in Figure 8.1. Indeed, researchers have demonstrated that neural networks have
a spectral bias: low-frequency components of functions are learnt faster during
training via gradient descent [4, 5].

The contribution of this work is to propose and numerically demonstrate the
use of the multiple shooting method to fit neural differential equations, with
constraints satisfied by an Augmented Lagrangian method. In multiple shooting
the idea is to form several successive time intervals from the original time span and
apply single shooting to each interval. This allows for an initially discontinuous
trajectory to be formed early in the optimisation. As the optimization proceeds, the
trajectory becomes continuous through the enforcement of shooting constraints.
Multiple shooting is widely used for optimisation of ill-conditioned and unstable
systems, see [3]. We demonstrate this method on a synthetic and experimental
data set, that the neural DE otherwise fails to fit.

8.2 Background

8.2.1 Neural differential equations

Neural ODEs were introduced by [1] to be a differential equation specified by a
neural network, i.e.:

dx
dt
= NN(x , u, t,θ ) (8.1)

where x are the states, θ are the neural network parameters, u is an exogenous
input, and t is time. As the neural ODE is restricted by construction to be the solu-
tion of a differential equation, it is not a universal approximator [6]. Nevertheless,
a wide range of systems in science and engineering are described by differential
equations and neural ODEs allow one to fit a model to these systems, without
specifying a function form for the differential equation.

Later authors demonstrated the use of neural networks in other types of dif-
ferential equations, with the potential incorporation of a known functional form
(neural differential equations) [2], e.g. a first order differential equation of the
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form:
dx
dt
= f (x , u, NN(x , u, t,θ ), t) (8.2)

This formulation allows first principle knowledge, such as conservation laws
or relationships between quantities to be specified, while using the neural network
to model unknown relationships [2]. Note that equation 8.1 is a special form of
equation 8.2.

Regardless of the formulation, the problem of training the parameters of a
neural DE is the same as estimating the parameters of a differential equation. If one
had access to the states and time derivatives (x , dx

dt ) then the parameter estimation
would be a fitting problem, i.e. one would not have to integrate the system. How-
ever, typically only noisy measurements of some of the states are available. There
are two main approaches to estimate the parameters of a differential equation. The
first is to use a two stage method where first a flexible smooth function (typically
spline bases) is fit to the data to provide estimates ( x̂ , d x̂

dt ) which are then used
to estimate the model parameters [7]. This technique requires that all states are
measured, and that the estimate d x̂

dt is accurate. This later requirement becomes
increasingly difficult to satisfy with increasing noise and sparsity of sampling. The
alternative approach is to integrate the ODE and define the cost function C using
the measured and predicted states, typically the sum of squared errors (SSE) is
used. This is the approach most often used for neural DEs and was taken from the
optimal control literature [1].

8.2.2 Single shooting with neural differential equations

Despite the potential of neural DEs, a significant issue is the existence of local
minima during the training procedure. For example, consider the example of fitting
a neural ODE to the spiral differential equation [1, 2, 8]:

dx
dt
= Ax3 (8.3)

=

�

−0.1 2.0
−2.0 −0.1

�

x3 (8.4)

The system is solved with x0 = [2., 0.], and tε[0., 6.0] using a Runge–Kutta method
[9]. Synthetic data points are recorded at 0.1 intervals and normally distributed
noise (N (0.0, 0.2)) is introduced.

We consider the task of fitting a neural ODE with a neural network with x3 as
input, i.e. dx

dt = fNN (x3,θ), using the sum of squared error as the cost function.
This means that the neural network has the task of approximating A in equation
8.3. The neural network has one hidden layer of 16 nodes, tanh is used as the
activation function in the input and hidden layer, and initial weights are set via
Glorot initialization [10].

An issue with single shooting is that the optimiser must simultaneously select
parameters to improve the fit at all points along the trajectory. This can result
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Figure 8.1: Plot of neural ODE fitted to data from equation 8.3 via single shooting
with Nadam [12].

in the network getting stuck during training by fitting a flattened curve through
the middle of the data as shown in Figure 8.1. Fitting is performed by a Nesterov
momentum version of the Adam algorithm (Nadam) [11, 12], with an initial
learning rate of 0.001.

When changing the learning rate, different behaviour can be observed during
the training. For example, the initial oscillation of the system (0≤ t ≤ 1.5) can be
fit followed by straight or warped lines “within” the oscillations of the data, similar
to Figure 8.1. It should be noted that the curve can be fit by careful adjustments of
the learning rate (scheduling) during the optimization. However, in general this
will require manual interaction.

8.2.3 Multiple shooting

Multiple shooting is an alternative method of fitting, wherein the time span [t0, t f ]
is partitioned into Ns intervals by forming a grid of Ns + 1 points, t0 = τ0 < τ1 <

...< τNs
= t f [13]. The values of the state x at the grid points are introduced as

additional variables (shooting variables) e.g. in Figure 8.2, interval 2 is formed by
τ1 = 2.0 to τ2 = 4.0 and the initial and final values in this interval are denoted as
x (2)0 and x (2)f .

On each interval an initial value problem can be solved, giving a potentially
discontinuous trajectory x̂ as shown in Figure 8.2. This trajectory is used to calculate
the cost (and gradient) as in single shooting. The trajectory becomes meaningful,
when the gap between intervals (the shooting gap, see Figure 8.2) introduced
by the new state variables is zero, i.e. at the end of the training procedure, the
following constraints need to be satisfied:

x (i)f − x (i+1)
0 = 0 i = 1, 2, . . . , Ns (8.5)

The use of multiple shooting offers two advantages for training neural DEs:
(1) the time series data can be used to provide an initial guess for the unknown
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Figure 8.2: Schematic of multiple shooting.

states at the shooting points - thus, the influence of poor initial parametrisation is
reduced [13], (2) the Ns initial value problems are independent and hence their
solving is parallelisable. Point (1) can aid in the initial fitting of a neural DE -
while the network weights are small (i.e. the neural network is close to linear)
the optimiser can improve the fit by adjusting the shooting variables, thereby
giving a discontinuous trajectory that describes the data. The disadvantage of
multiple shooting is that the optimisation problem has Ns constraints that need to
be satisfied, e.g. by the methods outlined in the following section.

8.2.4 Penalty and Augmented Lagrangian methods

Consider the constrained optimization problem:

min C(z) (8.6)

s.t. h(z) = 0 (8.7)

where C is the cost function and h is a vector function of equality constraints, in our
case the shooting constraints (Equation 8.5), and z are the optimisation variables.
Supervised learning of neural networks is typically performed by optimising an
unconstrained problem, that is related to the constrained optimisation problem. A
common approach is to define a proxy cost function, φ, which has the constraints
as penalties terms:

φ = C(z) +ρQ(h(z)) (8.8)
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where ρ is a hyper-parameter, and Q is a penalty function. The most common
choices of Q are a quadratic penalty function (Q(h(z)) = h(z))2), or the l1, l2 (not
squared) and l∞ norms

The later three norms give an exact penalty function, which means that under
standard assumptions [14] a single minimization with some ρ∗ can yield the same
solution as the constrained problem. Note that a too large ρ can result in numerical
issues, while a too small ρ may result in constraint violation [14].

An alternative approach is to use the method of multipliers or the augmented
Lagrangian method which defines the objective function as:

φ = C(z) +
∑

hi(z)
T vi +ρ

∑

h(z)Ti h(z)i (8.9)

where v is an approximation of the Lagrange multipliers, that is updated, along
with ρ, as part of the optimization algorithm. Algorithm 1 outlines a potential
Augmented Lagrangian algorithm.

Algorithm 4 Augmented Lagrangian

1: Initialize the constrained optimisation problem
2: Set: v← 0, ρ← 0, k← 1
3: repeat
4: θ k, xk = arg minφ ▷ Unconstrained
5: if h(xk,θ k) = 0 then
6: Converged← True
7: else
8: Update v and ρ ▷ Algorithm dependent
9: k← k+ 1

10: end if
11: until Converged

Augmented Lagrange algorithms can use any unconstrained optimiser to solve
the unconstrained optimization problem (line 4). Globally convergent augmented
Lagrange algorithms have been implemented [15, 16].

Remark 1. At the time of writing, there is unpublished related work, similar in spirit,
in an example in a neural differential equation package [17]. In the example a penalty
approach is used, and the shooting intervals are restricted to start and end on selected
data points. Thus, the approach is unsuitable for real, noisy systems because the data
points are noise contaminated and there is no reason why the fitted solution should
go through these data points.

8.3 Multiple shooting with Neural DEs

In the following sections we demonstrate the approach on two problems. This
work is coded in Julia [18], using the following packages: DifferentialEquations.jl
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Figure 8.3: Plot of neural ODE fitted to data from equation 8.3 via multiple
shooting with 20 intervals. Figure was made using the fitted parameters in a single
IVP, i.e. without intervals.

[19, 20], DiffEqFlux [2, 17], Flux.jl [21], ForwardDiff.jl [22], NLopt.jl [23] and
Hyperopt.jl [24].

8.3.1 Spiral differential equation - synthetic example

The spiral differential equation introduced in the preceding section (Eq. 8.3) is
used as a synthetic example to demonstrate the proposed procedure. The sum of
squared errors (SSE) is again used for the cost function, however to allow for good
out-of-sample prediction we introduce a regularisation term, R(θ ), that penalises
the complexity of the neural DE, i.e. C(θ) = SSE(θ) + ρRR(θ), where ρR is a
regularisation constant.

We use the sum of the spectral norm of the weights in each layer as the
regularisation term [25], with a regularisation constant of 1.0. Furthermore, we
remove the bias nodes from the network as we wish to map zeros-to-zeros, as an
application of prior knowledge. The additional variables introduced by multiple
shooting are initially set to x(0).

Training is performed with 20 intervals using an Augmented Lagrangian method
[15, 16], with LBFGS [26] used as the inner optimiser. Figure 8.3 shows that in
comparison to single shooting (Figure 8.1), multiple shooting is able to give a
neural ODE that fits the data. Moreover, the trained neural ODE shows good
generalisation to a much longer time scale tε[0., 250.0], as shown in Figure 8.4,
despite only being trained on data up to t = 6.0. This is partially because the
removal of the bias nodes forces the neural DE to have a time derivative of 0.0
when both states are 0.0.
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Figure 8.4: Plot of neural ODE fitted to data from equation 8.3 on tε[0., 6.0], on
a much larger span. Neural ODE fitted via multiple shooting with 20 intervals.

8.3.2 Cascading tanks - real data

System description

The cascading tank system considered here is part of a non-linear identification
benchmark problem, fully described in [27]. The system consists of two tanks,
arranged as per Figure 8.5. Water is fed to tank one (the pump voltage is the
exogenous input signal, u), and then flows into tank two before leaving the system.
Water can also overflow over the edge of the tanks, and a portion of the overflow
from tank one may enter tank two. Only the water level of the second tank (output
signal, y) is recorded.

The benchmark problem consists of a training and testing dataset. The input,
u(t), is a multisine signal consisting of 1024 measurements (at 4 seconds intervals),
and the output signal, y(t), is the measurement from the water level sensor at
these same time points, giving the data shown in Figure 8.6. The second half of
training set is used for validation. The initial height of the tanks are unknown,
but are the same for both data sets, i.e. y(0) is estimated from the data. Our goal
is to fit a neural ODE to this dataset. The SSE is used as the cost function. As
the input signal (u) is discrete, we use a constant piecewise interpolation of the
data for evaluation in continuous time. In comparison, using a cubic spline has
influence on the results. Inputs before the data period are assumed to be constant,
i.e. u(t) = u(0), ∀t < 0.0.

Neural network

A neural network with no bias units, and one hidden layer with 64 units, tanh
as the activation function in the input and hidden layer, and initial weights set
via Glorot initialization [10]. For regularisation, an l2 penalty is applied on the
network weights, with the penalty constant, ρl2 , as a hyper parameter.
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Figure 8.5: Diagram of cascading tank system

Figure 8.6: Input and output signals for the cascading tanks system [27]
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Figure 8.7: Neural ODE for cascading tanks system fitted via single shooting, with
Adam [11] (2000 iterations, with learning rate set to 0.001).

Using only the input, u(t), and output, y(t), signals as features for the neural
network gives a poor fit to the data. As such we provide three additional inputs:

•
p

y(t) - the flow out of a tank is proportional to the square root of the fluid
height (Bernoulli’s equation)

• u(t −τd) - the first tank acts as a time delay
•
∫ t

t−τi
u(t∗)d t∗ - the output signal shows less rapid variation than the input

as the first tank “smooths” the data (see Figure 8.6)

Thus, we are fitting the neural DE:

dy
dt
=NN

�

u(t), y(t),
Æ

y(t), u(t −τd), (8.10)
∫ t

t−τi

u(t∗)d t∗
�

NN : R5→ R

Fitting

Fitting the neural DE via single shooting proceeds poorly as shown in Figure 8.7.
In comparison, with multiple shooting the neural ODE is able to be fit to the data
(Figure 8.8). The average square root error on the training, validation and test
set is 0.42, 0.50, 0.62 respectively. Figure 8.9 shows that the neural DE is able
to generalise well, although it has issues with the large peaks in the first 2000
seconds. The hyper parameters values are chosen via Bayesian optimization as
5.96× 10−2, 79.0s, and 164.0s, for ρl2 , τd , and τi respectively. See [28] for an
introduction to Bayesian optimization.
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Figure 8.8: Neural ODE for cascading tanks system fitted via multiple shooting,
with an Augmented Lagrange method [16]. The first half of the data (0-2048
seconds) was used for training, and the later half for validation (2048-4096
seconds).

Figure 8.9: Neural ODE for cascading tanks system fitted via multiple shooting,
with an Augmented Lagrange method [16].
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8.4 Discussion

The examples shown in the paper use the augmented Lagrangian method, however
we found that using a penalty method is feasible. The penalty parameter strongly
influences the fit of the neural ODE, with potential approaches to adjust this
parameter discussed in [14] and [3].

Authors have recently showed that the interaction between neural DE and DE
solver can lead to discrete dynamics, resulting in the neural DE depending on the
numerical methods used in the fitting [29]. A specialised time stepping algorithm
was recommended [29], however the use of “normal” adaptive time stepping, as
implemented in DifferentialEquations.jl [30] showed no issues.

8.5 Conclusion

Fitting a neural DE to a time series with oscillatory behaviour can be a challenging
task. Multiple shooting can alleviate this difficulty, by providing the optimiser the
flexibility to find an initially discontinuous trajectory that is close to the observed
data [13]. This was demonstrated through fitting a synthetic and experimental
dataset. An augmented Lagrangian method was used to fit the neural ODE due to
the shooting interval constraints. In practice the penalty method can work well, if
the penalty parameter is carefully chosen. Future work could investigate the effect
on computational time due to the introduction of constraints and the possible
parallelization, or the influence of the length of the shooting intervals.
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Chapter 9

Bounding-Focused Discretization
Methods for the Global
Optimization of Nonconvex
Semi-Infinite Programs

We use sensitivity analysis to design bounding-focused discretization (cutting-plane)
methods for the global optimization of nonconvex semi-infinite programs (SIPs).
These methods generate lower bounds for SIPs and hence can also be combined
with algorithms for generating feasible points (upper bounds) to solve nonconvex
SIPs to global optimality. For example, the SIPs in Chapter 5 are solved using such
a sequence of upper and lower bounds.

We begin by formulating the optimal bounding-focused discretization of SIPs
as a max-min problem and propose variants that are more computationally tract-
able. We then use parametric sensitivity theory to design an effective heuristic
approach for solving these max-min problems. We also show how our new it-
erative discretization methods may be modified to ensure that the solutions of
their discretizations converge to an optimal solution of the SIP. We then formulate
optimal bounding-focused generalized discretization of SIPs as max-min problems
and design effective heuristic algorithms for their solution. Numerical experiments
on standard nonconvex SIP test instances from the literature demonstrate that our
new bounding-focused discretization methods can significantly reduce the num-
ber of iterations for convergence relative to a state-of-the-art feasibility-focused
discretization method.

This chapter has been submitted as a journal article and is in review.

9.1 Introduction

Semi-infinite programs (SIPs) are mathematical optimization problems with a
finite number of decision variables and an infinite number of constraints. They
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can be used to model several problems in science and engineering, such as robust
optimization, controller design, Chebyshev approximation, and design centering [1–
4]. Our focus is on the global optimization of SIPs of the form:

v∗ :=min
x∈X

f (x) (SIP)

s.t. g(x , y)≤ 0, ∀y ∈ Y, (9.1)

where X ⊂ Rdx and Y ⊂ Rdy are nonempty compact sets, |Y |=∞, and functions
f : Rdx → R and g : Rdx ×Rdy → R are continuous. We assume (SIP) is feasible,
but do not assume that X , Y , f , or g is convex. We detail extensions to SIPs with
multiple semi-infinite constraints in Section 9.5.

A key challenge in solving (SIP) is that evaluating feasibility of a candidate
solution x ∈ X requires the global solution of the following lower-level problem:

G(x) :=max
y∈Y

g(x , y). (LLP(x))

Clearly, x ∈ X is feasible for (SIP) if and only if G(x)≤ 0.
Several papers propose algorithms for the global minimization of nonconvex

SIPs [4–13]. They primarily construct lower bounds for (SIP) by replacing the
semi-infinite constraint (9.1) with a finite discretization (cf. [14, 15]):

min
x∈X

f (x) (LBP)

s.t. g(x , y)≤ 0, ∀y ∈ Yd ,

where Yd ⊊ Y with |Yd |<∞. A lower bound for the optimal value v∗ of (SIP) can
be obtained by solving this (nonconvex) problem to global optimality.

The choice of discretization Yd can greatly impact the tightness of the lower
bound obtained by solving (LBP). Because naïve discretization approaches may
require a large discretization for (LBP) to approximate (SIP) well [16], techniques
for adaptively populating Yd are of interest. Global optimization methods for (SIP)
mainly rely on the feasibility-focused discretization method of Blankenship and Falk
(BF, outlined in Algorithm 5) [17], which is the state-of-the-art method for discretiz-
ing nonconvex SIPs. The BF method populates Yd with points in Y corresponding
to the largest violation of constraint (9.1) at incumbent solutions of (LBP), i.e.,
based primarily on feasibility arguments.

The sequence of non-decreasing lower bounds {LBDk}k generated by the BF
algorithm converges to v∗ under our assumptions on (SIP) (see, e.g., [17, The-
orem 2.1]). However, as Example 4 below illustrates, the BF algorithm may require
an excessively large discretization Yd before the sequence {LBDk}k converges to
within a specified tolerance of the optimal value v∗.

Example 4. [18, Example (DP)]
Consider (SIP) with dx = 1, dy = 1, X = [0,6], Y = [2,6], f (x) = 10− x1, and

g(x , y) =
y2

1
1+exp(−40(x1−y1))

+ x1− y1−2. The global solution is x∗ = 2 with objective
v∗ = 8.
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Algorithm 5 The Blankenship and Falk algorithm [17]

1: Input: feasibility tolerance ϵ f ≥ 0, initial discretization Yd = ;.
2: for k = 1,2, . . . do
3: Solve problem (LBP) globally to get solution xk, lower bound LBDk.
4: Solve problem (LLP(x)) with x = xk globally to get solution yBF,k ∈ Y .
5: if G(xk)≤ ϵ f then
6: Terminate with ϵ f -feasible solution xk to (SIP).
7: else
8: Set Yd ← Yd ∪ {yBF,k}.
9: end if

10: end for

Table 9.1: Lower bounds generated by the BF algorithm 5 on Example 4. This
algorithm needs more than 20 iterations to approximate v∗ = 8 to within 10%.

Iteration No. 1 2 3 4 5 10 15 20 25 28
Lower Bound 4 4.19 4.38 4.56 4.74 5.62 6.41 7.12 7.73 8

Solving (LBP) with Yd = {2} (prescribed by our new discretization methods) yields
a lower bound of v∗. However, as shown in Table 9.1, the state-of-the-art BF algorithm
needs more than 20 iterations to even yield a lower bound that is within 10% of v∗.
Figure 9.1 contrasts the above discretizations of the semi-infinite constraint.

Example 4 motivates our study of new bounding-focused discretization meth-
ods for (SIP) that can mitigate the slow convergence of the feasibility-focused BF
algorithm. The main idea of our bounding-focused discretization methods is to pop-
ulate the discretization Yd with points in Y such that the lower bound from (LBP)
is maximized. Since determining optimal bounding-focused discretizations may
be challenging, we consider more tractable variants and design efficient heuristic
approaches to determine such discretizations. We also study how to construct
bounding-focused generalized discretizations.

While we only investigate discretization methods that yield tighter lower
bounds, our ideas may be adapted to design discretization methods for finding
feasible solutions faster (cf. [8, 9]). We assume for our theoretical results that
all subproblems solved to global optimality are solved exactly in finite time; our
approaches may also be adapted to the setting where such subproblems are only
solved to ϵ-global optimality for some ϵ > 0 [11, 13, 19].

This paper is organized as follows. Section 9.2 briefly reviews results from para-
metric sensitivity theory. Section 9.3 proposes new bounding-focused discretization
methods, designs effective heuristic solution approaches, and presents theoret-
ical guarantees. Section 9.4 proposes bounding-focused generalized discretization
methods for (SIP) and designs effective heuristic solution strategies. Section 9.5
briefly outlines some extensions. Section 9.6 presents detailed computational res-
ults that show our bounding-focused discretization methods significantly reduce
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Figure 9.1: Benefits of bounding-focused discretization: Left: objective f (x) and
constraint G(x) for Example 4 along with discretization Yd = {2, 3, 4, 5} (cf. [13,
Figure 3.1]). Middle: BF method needs 27 discretization points for its lower bounds
to converge to v∗. Right: our proposed bounding-focused discretization method in
Section 9.3 only requires a single discretization point (|Yd |= 1).

the number of iterations for convergence relative to the BF algorithm. Section 9.7
concludes with avenues for future work.

Notation. Let [n] := {1, . . . , n} and mid(v1, v2, v3) denote the componentwise
median of vectors v1, v2, v3. Given δ > 0, v ∈ Rn, S ⊂ Rn, let ∥v∥ denote the
Euclidean norm of v, Bδ(v) denote the open Euclidean ball of radius δ centered
at v, projS(v) denote (an element of) the Euclidean projection of v onto S, and
diam(S) denote the diameter of S with respect to the Euclidean norm. We say (SIP)
is convex if X is convex and f and g(·, y) are convex on X for each y ∈ Y (note
that Y and g(x , ·) are not necessarily convex in this case).

9.2 Review of parametric sensitivity theory

We briefly review standard results from parametric sensitivity theory [20, 21].
Consider the parametric nonlinear program (NLP):

min
z∈Rn

F(z, p) (9.2)

s.t. ci(z, p)≤ 0, ∀i ∈ I,

ci(z, p) = 0, ∀i ∈ E ,

where z ∈ Rn are decision variables, p ∈ Rd are parameters, F : Rn ×Rd → R is
the objective function, c : Rn ×Rd → R|I|+|E | are the constraint functions, and I
and E are finite index sets. We write z∗(p) and ν∗(p) to denote a local minimum
of problem (9.2) and its optimal value ν∗(p) := F(z∗(p), p).

The Lagrangian for problem (9.2) is L(z,λ, p) := F(z, p)+λTc(z, p), where the
Lagrange multipliers λ ∈ R|I|+|E |. Let λ∗(p) denote Lagrange multipliers satisfying
the KKT conditions at z∗(p), and A(z, p) := {i ∈ I : ci(z, p) = 0} ∪ E denote the
indices of active constraints at a feasible point z.

We now present sufficient conditions under which ∇pν
∗(p) and ∇pz∗(p) may

be computed (see Fiacco [20] or Still [21] for details).
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Theorem 5 (Parametric sensitivities). Let z∗(p) be a KKT point for problem (9.2)
with associated Lagrange multipliers λ∗(p). Suppose for some p̄ ∈ Rd , functions F and
c are twice continuously differentiable in a neighborhood of (z∗(p̄), p̄). Assume that
the linear independence constraint qualification (LICQ) and strict complementarity
(SC) conditions hold at (z∗(p̄),λ∗(p̄)). Additionally, suppose either

(a) |A(z∗(p̄), p̄)|= n, or
(b) the strong second order sufficient condition (SSOSC) holds at (z∗(p̄),λ∗(p̄)).

Then, ∃δ > 0 such that ∀p ∈ Bδ(p̄), we can choose the mappings z∗(p) and λ∗(p)
to be continuously differentiable on Bδ(p̄) and z∗(p) to be a strict local minimizer
of (9.2). Additionally, for all p ∈ Bδ(p̄), the gradient of the value function ν∗ is given
by

∇pν
∗(p) =∇p L(z∗(p),λ∗(p), p),

and the gradient of the solution mapping z∗(p) may be computed for each p ∈ Bδ(p̄)
as follows depending on whether condition (a) or (b) above holds:

(a) Let Jz(p) ∈ Rn×n and Jp(p) ∈ Rn×p be matrices with rows (∇zci(z∗(p), p))T,
i ∈A(z∗(p), p), and (∇pci(z∗(p), p))T, i ∈A(z∗(p), p), respectively. Then

∇pz∗(p) = −[Jz(p)]
−1Jp(p).

(b) Let Hz,λ(p) :=

�

∇2
z L(z∗(p),λ∗(p), p) Jz(p)
(Jz(p))

T 0

�

, where Jz(p) is a |A(z∗(p), p)|×

n matrix with rows (∇zci(z∗(p), p))T, i ∈A(z∗(p), p). Then
�

∇pz∗(p)
∇pλ

∗
A(p)

�

= −[Hz,λ(p)]
−1

�

∇pz L(z∗(p),λ∗(p), p)
�

∇pci(z∗(p), p)
�

i∈A(z∗(p),p)

�

,

where λ∗A(p) denotes the Lagrange multipliers of the active constraints at z∗(p).

Proof. See Chapter 3 of Fiacco [20], or the unified Theorem 4.4 in Still [21].

Lemma 6.2 of Still [21] presents weaker assumptions under which the (local)
value function ν∗ is locally Lipschitz continuous. Theorem 1.12 of Dempe [22]
and its surrounding discussion provides estimates of generalized gradients of ν∗ in
the above setting. Weaker assumptions for the solution mapping z∗ to be Hölder
continuous or locally Lipschitz continuous are presented in Theorems 6.2 to 6.5 of
Still [21].

In the next two sections, we formulate bounding-focused discretization and gen-
eralized discretization of (SIP) as max-min problems and use parametric sensitivity
theory to design effective heuristic approaches for their solution.

9.3 Bounding-focused discretization methods

We propose new bounding-focused discretization methods for (SIP) that can
achieve faster convergence of lower bounds than the BF algorithm 5. The key
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idea of these discretization methods is to populate Yd with points in Y that yield
the highest lower bound. In the first iteration, instead of updating Yd with a solu-
tion yBF,1 of (LLP(x)) at x = x1, as in the BF algorithm 5, we propose to solve the
following max-min problem to determine a discretization Yd = { ȳ1} that results in
the highest lower bound:

ȳ1 ∈ argmax
y1∈Y

min
x∈X

f (x) (9.3)

s.t. g(x , y1)≤ 0.

We assume for simplicity that the maxima in all of our subproblems is attained (oth-
erwise, we may pick any ϵ-optimal solution for some small ϵ > 0). Techniques for
solving problem (9.3) are discussed in Section 9.3.3. We consider two approaches
for updating the discretization Yd at iteration k > 1.

The first approach discards the discretization Y k−1
d from iteration k − 1 and

determines a new discretization at iteration k by solving the max-min problem:

( ȳ1, . . . , ȳk) ∈ arg max
(y1,...,yk)∈Y k

φk(y
1, . . . , yk) := min

x∈X
f (x) (9.4)

s.t. g(x , y i)≤ 0, ∀i ∈ [k],

where φk : Y k→ R denotes the value function of the inner-minimization in prob-
lem (9.4) at iteration k. Formulation (9.4) is inspired by the idea of strong partition-
ing proposed by Kannan et al. [23]. The resulting discretization Y k

d := { ȳ1, . . . , ȳk}
at iteration k yields the highest lower bound among all possible relaxations (LBP)
with at most k discretization points. However, the outer-maximization in prob-
lem (9.4) involves k× dy variables compared to only dy variables in problem (9.3).

To mitigate this increased computational burden, our second approach updates
the discretization Y k−1

d := { ȳ1, . . . , ȳk−1} at iteration k−1 by adding a single point
ȳk ∈ Y that maximizes the lower bound improvement. This can be formulated as
the max-min problem:

ȳk ∈ argmax
yk∈Y

ψk

�

yk; Y k−1
d

�

:=min
x∈X

f (x) (9.5)

s.t. g(x , y)≤ 0, ∀y ∈ Y k−1
d ,

g(x , yk)≤ 0,

where ψk : Y → R denotes the value function of the inner minimization, and
Y k

d = Y k−1
d ∪ { ȳk} is the discretization specified at iteration k. Problem (9.5) is

a greedy approximation of problem (9.4). We introduce two variants of these
discretization methods in Section 9.3.1 and establish theoretical guarantees for
our bounding-focused discretization methods in Section 9.3.2.

In contrast with the approach of Tsoukalas and Rustem [9], which treats the
violation of the semi-infinite constraint (9.1) and the objective of (SIP) as two com-
peting objectives, problems (9.4) and (9.5) directly optimize the discretization for
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the best lower bound. Baltean-Lugojan et al. [24] propose bounding-focused cuts
with a similar flavor but tailored for outer-approximating semidefinite programs,
which are a family of convex SIPs. Similar to problem (9.4), Coniglio and Tieves [25]
formulate bounding-focused cut selection for integer linear programs as a bilevel
problem and reformulate it as a single-level bilinear program using linear pro-
gramming duality (cf. Section 9.3.3). Paulus et al. [26] consider bounding-focused
cutting-plane selection for mixed-integer linear programs (MILPs), where they use
explicit enumeration to choose the best bounding-focused cut from a finite list of
candidate cuts. Finally, Das et al. [27] use the well-known result that problem (9.4)
with k = dx discretization points yields an exact reformulation of convex SIPs
under mild assumptions (see Proposition 7 in Section 9.3.2). They use simulated
annealing to solve the resulting max-min problem and report encouraging results
on small-scale convex SIPs.

9.3.1 Outline of bounding-focused discretization algorithms

Algorithm 6 outlines a prototype bounding-focused discretization method for (SIP).
Similar to the BF algorithm 5, at each iteration, it solves (LBP) to global optimality
to determine a candidate solution xk and a corresponding lower bound LBDk. It
then solves the lower-level problem (LLP(x)) with x = xk to global optimality
to determine a point ŷk, which is used to check if xk is ϵ f -feasible for (SIP).
The key difference between Algorithm 6 and the BF algorithm 5 is on lines 8–11
of Algorithm 6. If xk is not ϵ f -feasible, Algorithm 6 solves a max-min problem
(heuristically) to identify new points that may be used to update the discretization
Yd when a sufficient bound increase condition holds. In contrast, the BF algorithm 5
always adds ŷk to the discretization.

We consider four realizations of Algorithm 6 that only vary on lines 8–11: OPT,
GREEDY, 2GREEDY, and HYBRID. We emphasize that except on line 9 of Algorithm 6,
we do not require the inner-minimizations and outer-maximizations of our max-min
problems to be solved to global optimality1.

• OPT seeks to discard the discretization Y k−1
d at iteration k− 1 and replace it

with a fresh discretization obtained by solving problem (9.4). It initializes
the solution of this max-min problem with Y k−1

d ∪ { ŷk}.
• GREEDY adds a single point ȳk to the discretization Y k−1

d := { ȳ1, . . . , ȳk−1}
at iteration k− 1 by solving problem (9.5) with the initialization ŷk.

• 2GREEDY first updates the discretization at iteration k−1 with ŷk, i.e., Y k−1
d ←

Y k−1
d ∪{ ŷk}. It then solves problem (9.5) to find another point to add to the

discretization using a perturbation of ŷk as the initialization.
• HYBRID mitigates the increasing computational burden of Algorithm OPT

as the iteration count k increases. For the first K iterations, it solves prob-

1While an extra global solve during each iteration of Algorithm 6 may seem expensive, note that
we can require it to be performed infrequently, e.g., only during every tenth iteration k, without
sacrificing convergence guarantees. This global solve step is also redundant for convex SIPs under
mild assumptions, since the inner-minimization problems are convex programs in this setting.
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Algorithm 6 Prototype bounding-focused discretization algorithm

1: Input: feasibility tolerance ϵ f ≥ 0, minimum bound improvement δ ≥ 0, and
initial discretization Yd = ;.

2: for k = 1,2, . . . do
3: Solve problem (LBP) globally to get solution xk, lower bound LBDk.
4: Solve problem (LLP(x)) with x = xk globally to get solution ŷk ∈ Y .
5: if G(xk)≤ ϵ f then
6: Terminate with ϵ f -feasible solution xk to (SIP).
7: else
8: Solve a max-min problem (heuristically) to get { ȳk,1, . . . , ȳk,nk}.
9: Solve the inner-min problem to global optimality at the max-min

solution { ȳk,1, . . . , ȳk,nk}. Let η∗k denote its (global) optimal value.
10: if η∗k ≥ LBDk +δ then
11: Update the discretization Yd using { ȳk,1, . . . , ȳk,nk}.
12: else
13: Set Yd ← Yd ∪ { ŷk}.
14: end if
15: end if
16: end for

lem (9.4) to try and determine a fresh discretization with sufficient lower
bound improvement (similar to OPT). From iteration K + 1, it then switches
to the GREEDY strategy and solves problem (9.5) to try and find a single best
point to add to the previous discretization Y k−1

d .

All four realizations of Algorithm 6 use the point ŷk to either construct an initial
guess, or to add to the discretization. Algorithm 2GREEDY looks to add two discret-
ization points per iteration (including ŷk) with the goal of reducing the number of
global solves of (LBP) and (LLP(x)) and the overall time required for the sequence
of lower bounds {LBDk} to converge to v∗.

9.3.2 Convergence guarantees

We show the sequence {LBDk} of lower bounds determined by Algorithms OPT,
GREEDY, 2GREEDY, and HYBRID converge to v∗ under different assumptions. We
provide omitted proofs in Appendix 9.7.

Our first result is the most useful one in practice. It allows our max-min
formulations to be solved using any heuristic under the following conditions: (i) the
inner-minimization problem is solved to global optimality once at the candidate max-
min solution (see line 9 of Algorithm 6), and (ii) the minimum bound improvement
required at each iteration δ > 0.

Theorem 6. Consider Algorithm 6 with ϵ f = 0, δ > 0. Suppose the discretization
Yd is updated using Algorithm OPT, GREEDY, 2GREEDY, or HYBRID. Then, we have



172 E.M. Turan: Optimisation and machine learning for process systems engineering

limk→∞ LBDk = v∗.

Proof. Since f and g are continuous, X and Y are compact, and (SIP) is assumed
to be feasible, the optimal value v∗ is finite and bounded below by minx∈X f (x)>
−∞. Line 11 of Algorithm 6 updates the discretization Yd using the points
ȳk,1, . . . , ȳk,nk only if this candidate discretization increases the lower bound in
iteration k + 1 by at least δ. Since v∗ − LBD0 = v∗ −minx∈X f (x) <∞, line 11
of Algorithm 6 can be executed only finitely many times before the lower bound
converges to v∗. Therefore, line 13 is executed for all k large enough and the
asymptotic behavior of Algorithm 6 is the same as that of the BF algorithm 5. The
result that LBDk→ v∗ then follows from Lemma 2.2 of Mitsos [8] (cf. Theorem 3.1
of Harwood et al. [19]).

The remaining results in this section are mainly of theoretical interest since
they assume our max-min formulations are solved to global optimality (which is
impractical because this may be as hard as solving (SIP) itself).

The following result identifies favorable properties of Algorithm OPT when the
max-min problem (9.4) is solved to global optimality at each iteration.

Proposition 7. Consider Algorithm OPT with ϵ f = δ = 0, and suppose the max-min
problem (9.4) is solved to global optimality. Then, limk→∞ LBDk = v∗. Moreover,
suppose (SIP) is convex and ∃ x̄ ∈ X such that G( x̄)< 0. Then, LBDk = v∗, ∀k ≥ dx ,
i.e., Algorithm OPT converges in at most dx iterations.

Our next results establish convergence rates of BF and OPT lower bounds.

Theorem 8. Consider the BF Algorithm 5 with ϵ f > 0. Then, Algorithm 5 terminates
in at most N iterations, where

N :=min
¦

�

diam(Y )Lg,y

2ϵ f

�dy

,

�

diam(X )Lg,x

2ϵ f
+ 1

�dx
©

.

Theorem 9. Consider the BF Algorithm 5 with ϵ f > 0. Suppose {g(·, y)}y∈Y is
uniformly Lipschitz continuous on X with Lipschitz constant Lg,x > 0, i.e.,

|g(x , y)− g( x̄ , y)| ≤ Lg,x∥x − x̄∥, ∀x , x̄ ∈ X , y ∈ Y.

Then Algorithm 5 terminates in at most
�

diam(X )Lg,x
2ϵ f

+ 1
�dx

iterations.

Proof. Follows, e.g., from Section 5.2 of Mutapcic and Boyd [28].

Theorem 10. Consider Algorithm OPT with ϵ f > 0 and δ = 0. Suppose {g(x , ·)}x∈X
is uniformly Lipschitz continuous on Y with Lipschitz constant Lg,y > 0, i.e.,

|g(x , y)− g(x , ȳ)| ≤ Lg,y∥y − ȳ∥, ∀y, ȳ ∈ Y, x ∈ X .

If problem (9.4) is solved to global optimality, then Algorithm OPT terminates with an

ϵ f -feasible point in at most
�

diam(Y )Lg,y
2ϵ f

�dy
iterations. Furthermore, if the assumptions
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of Theorem 9 hold, then Algorithm OPT terminates in at most min
¦
�

diam(Y )Lg,y
2ϵ f

�dy
,

�

diam(X )Lg,x
2ϵ f

+ 1
�dx ©

iterations.

Proof. Suppose Algorithm OPT has not converged by iteration k > 1. The candidate
solution xk at iteration k of Algorithm OPT satisfies for each 1≤ j < k:

g(xk, ŷk)> ϵ f and g(xk, ȳ j)≤ 0 =⇒ g(xk, ŷk)− g(xk, ȳ j)> ϵ f

=⇒




 ŷk − ȳ j




>
ϵ f

Lg y
,

where Yd = { ȳ i}k−1
i=1 denotes the discretization at the start of iteration k. Therefore,

an upper bound on the number of iterations for convergence can be obtained by
calculating the number of Euclidean balls of radius

ϵ f
Lg y

needed to cover Y (cf. [28]).
The second assertion follows from Theorem 9 and part 1 of Proposition 7.

When dy ≪ dx , as in many applications, the bound on the number of iterations
for Algorithm OPT can be much smaller than the bound on the BF algorithm (cf.
[16, Theorem 2]). Theorem 10 can also be sharpened to estimate the number
of balls needed to cover {y∗(x) : x ∈ X } instead of Y . We now link Theorems 9
and 10 to the rate of convergence of their sequence of lower bounds.

Proposition 11. Suppose the value function V (z) :=min{x∈X : G(x)≤z} f (x) is Lipschitz
continuous on [0, ϵ̄] with a Lipschitz constant LV > 0. Additionally, suppose the as-
sumptions of Theorems 9 and 10 hold. Then for any ϵ ∈ (0, ϵ̄):

1. Whenever k ≥
�

diam(X )Lg,x LV
2ϵ + 1

�dx
, the BF lower bound LBDk ≥ v∗ − ϵ.

2. Whenever k ≥ min
§

�

diam(Y )Lg,y LV
2ϵ f

�dy
,
�

diam(X )Lg,x LV
2ϵ f

+ 1
�dx
ª

, the OPT lower

bound LBDk ≥ v∗ − ϵ.

Proof. Readily follows from Theorems 9 and 10 upon noting V (ϵ)≥ v∗− LVϵ.

The Lipschitz assumption in Proposition 11 is satisfied by convex SIPs when
the objective f is Lipschitz and Slater’s condition holds (see Corollary 2 to The-
orem 6.3.2 in Clarke [29]). Chapter 6 of Clarke [29] also details other constraint
qualifications under which this Lipschitz assumption holds.

We conclude this section with an example that illustrates the above rates of
convergence cannot be improved in general. Specifically, the example below shows
that discretization-based lower bounding methods involving (LBP) (such as the
BF algorithm and any realization of Algorithm 6) may require an exponential
number of discretization points in the problem dimensions to converge. Although
this behavior is expected, we are not aware of such an example in the SIP literature
(similar examples are known for the classical cutting-plane method in convex
optimization, see [30, Ex. 3.3.1], [31, Ex. 1]).
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Example 5. (Based on [31, Example 1])
Consider (SIP) with X = [−1,1]dx , Y = {y ∈ Rdx : ∥y∥2 = dx − 1}, f (x) = −∥x∥2,
and g(x , y) =

∑dx
i=1(x i − yi)yi. Note that this semi-infinite constraint (9.1) may

be reformulated as the convex constraint ∥x∥ ≤
p

dx − 1. Any x ∈ X with ∥x∥ =
p

dx − 1 solves (SIP) with v∗ = 1− dx .
Lemma 2.1 of Hijazi et al. [31] implies any discretization point y ∈ Y can exclude

at most one vertex of the cube X . Because every vertex of X is a solution to (LBP) with
the discretization Yd = ;, any discretization-based lower bounding algorithm that
solves (LBP) requires exponentially many discretization points in the dimension dx
for its sequence of lower bounds {LBDk} to exceed v∗ − 0.5.

9.3.3 Solving the max-min problems

While solving the max-min problems (9.4) or (9.5) to global optimality is clearly
desirable, this may be as difficult as solving (SIP) itself. Hence, we exploit the
fact that solving these problems heuristically is sufficient to obtain a discretization
with desirable convergence properties (see Theorem 6 and the discussion in Sec-
tion 9.3.1). Numerical experiments in Section 9.6 empirically demonstrate that
our heuristic approaches for solving problems (9.4) or (9.5) almost always yield
better discretizations with faster convergence than the BF algorithm.

Properties of the value functions φk and ψk in problems (9.4) and (9.5)
Before we outline our approach for solving problems (9.4) and (9.5), we plot the
value functions φk andψk of these problems for some examples from the literature.
We consider the following three examples in addition to Example 4.

Example 6. [32, Example 2.1]
Consider (SIP) with dx = 2, dy = 1, X = [−1, 1]2, Y = [−1, 1], f (x) = −x1+1.5x2,
and g(x , y) = −y2

1 + 2y1 x1 − x2. The global solution is x∗ =
�1

3 , 1
9

�

with v∗ = −1
6 .

Example 7. [9, Example 2.1]
Consider (SIP) with dx = 1, dy = 1, X = [−6, 6], Y = [−6, 6], f (x) = 10− x1, and
g(x , y) = −x4

1 + x2
1 − x2

1 y2
1 + 2x3

1 y1 − 4. The global solution is x∗ = 2 with v∗ = 8.

Example 8. [18, Example (H)]
Consider (SIP) with dx = 2, dy = 1, X = [0, 1]× [−103, 103], Y = [−1, 1], f (x) =
x2, and g(x , y) = −(x1 − y1)2 − x2. Any x∗ = ( x̄1, 0) with x̄1 ∈ [0,1] is a global
solution with optimal value v∗ = 0.

Figure 9.2 plots the (global) value function φ1 for Examples 4, 6, 7, and 8. It
illustrates that φ1 may be nonconcave, nondifferentiable, or even discontinuous
with large flat regions. Additionally, the supremum in problem (9.3) is not attained
for Example 7. Figure 9.2 also empirically illustrates that the BF point yBF,1 provides
a good initial guess for solving problem (9.3).
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Figure 9.2: Value functions φ1 (note the discontinuity for Example 7). The red
dot indicates φ1 at the point yBF,1 determined by the BF algorithm at iteration 1.
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Figure 9.3: Value functionsψ1,ψ2,ψ3 in the first three iterations of problem (9.5)
for Examples 7 and 8 (all three functions are discontinuous for Example 7). The red
dot indicatesψk at the initial guess ŷk (see line 4 of Algorithm 6) for problem (9.5)
when the discretization is set using Algorithm GREEDY in Section 9.3.1.

Figure 9.3 shows that the (global) value functions ψk in Algorithm GREEDY
may become increasingly challenging to optimize over as k increases2; however,
solving the lower-level problem (LLP(x)) at incumbent (lower bounding) solutions
empirically continues to yield a good initial guess.

Overall, Figures 9.2 and 9.3 highlight that exploiting (generalized) gradient
information can yield effective heuristics for solving problems (9.4) and (9.5).

An effective heuristic solution approach Due to the potential nonsmooth and
discontinuous nature of the functions φk andψk, we propose to solve the max-min
problem of Algorithm 6 using gradients (whenever they exist) of φk andψk within
a bundle solver for nonsmooth nonconvex optimization [33]. Each iteration of

2We do not plot ψ2 and ψ3 for Examples 4 and 6 as max
y∈Y

φ1(y) = v∗ for these instances.
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the bundle method requires function and generalized gradient evaluations. We
estimate the values of the functions φk and ψk by solving the inner-minimization
problems in problems (9.4) and (9.5) to local optimality. We then try and use
Theorem 5 to compute gradients of the local minimum value function φk or ψk
(this involves the solution of a linear system of equations) when its assumptions
hold. If some of the assumptions of Theorem 5 do not hold during the solution of
problem (9.4) or (9.5), we try and use the heuristics detailed below to estimate
a generalized gradient of φk or ψk. Note that we terminate the solution of the
max-min problem and return its best found solution if the local solver fails to
successfully solve the inner-minimization problem at any step.

Heuristics for estimating a generalized gradient of φk or ψk Whenever either
of its assumptions hold, we use Theorem 5 to compute a gradient of the value
functions φk and ψk in problems (9.4) and (9.5). In practice, we find that the
LICQ and SC conditions in Theorem 5 may not hold at every iterate of the max-min
solution. If LICQ does not hold, then either Jz(p) or Hz,λ in Theorem 5 is singular,
in which case we add a small regularization term before attempting to solve the
corresponding linear system to determine sensitivities. If this regularization step
fails, we stop the solution of the max-min problem and return the best found
solution. We now detail heuristics for computing a generalized gradient of φk or
ψk when SC fails to hold.

When only SC does not hold, the value functions φk and ψk are piecewise-
differentiable with a kink at the evaluation point. In this case, we can compute
a generalized gradient of φk or ψk by excluding a subset of the weakly active
constraints from the set of active constraints before solving either linear system in
Theorem 5. In particular, we exclude weakly active bound constraints by default
since including them causes the derivative of the variable at the bound to be
zero. Based on numerical experiments, we heuristically choose to include all other
weakly active constraints while computing generalized gradients. An alternative
to the above heuristic is to use the results of Stechlinski et al. [34] to rigorously
compute generalized gradients when SC does not hold; we do not adopt this
approach because of its higher computational cost.

Enhancements to the heuristic method for solving max-min problems We list
ways in which Algorithms OPT, GREEDY, 2GREEDY, and HYBRID can be enhanced in
practice. First, the solution of the sequence of inner-minimization problems in (9.4)
or (9.5) can be effectively warm-started using active-set methods. Second, solving
these inner-minimization problems using multi-start techniques can increase the
likelihood that we compute the global value functions φk and ψk. Finally, as we
saw in Examples 6 to 8, the assumptions of Theorem 5 may not hold throughout
the domain of φk and ψk. In such situations, we may either return the best found
solution to problems (9.4) and (9.5), or randomly perturb the current iterate in
an attempt to avoid points of nondifferentiability.
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Alternative approaches for solving the max-min problems (9.4) and (9.5) If
the inner-minimization problems in (9.4) and (9.5) are convex and satisfy a con-
straint qualification (e.g., Slater’s condition), then we might be able to use strong
duality to reformulate problems (9.4) and (9.5) into single-level maximization
problems. The resulting problems can then be solved to local optimality to update
the discretization Yd . Alternatively, suppose the functions in (SIP) are continuously
differentiable and the inner-minimization problems in (9.4) and (9.5) satisfy a
constraint qualification for each feasible point of the outer-maximization prob-
lems. Then we can reformulate (9.4) and (9.5) into maximization problems with
complementarity constraints using the KKT conditions for the inner-minimization
problems, which can then be solved locally to update Yd (cf. [35]). We compare our
heuristic approach for solving problems (9.4) and (9.5) with this KKT reformulation
approach in Section 9.6.

When the assumptions of Theorem 5 fail to hold, we may also be able to either
use generalized gradients [22, 36] of φk and ψk, or directional derivatives [37] of
φk and ψk and their generalizations [34, 38] to solve problems (9.4) and (9.5)
heuristically [39]. Techniques for minimizing discontinuous functions (see, e.g.,
Ermoliev et al. [40]) may also be used to maximize φk and ψk over their domains
when none of the aforementioned approaches are applicable.

9.4 Generalized bounding-focused discretizations

We propose generalized bounding-focused discretization methods for (SIP) that can
achieve faster convergence of the sequence of lower bounds than any traditional
discretization method relying on (LBP).

To motivate these generalized discretization methods, note that (SIP) can be
equivalently reformulated as the bilevel problem [41, 42]:

min
x∈X

f (x) (9.6)

s.t. g(x , y∗(x))≤ 0,

where y∗ : X → Y maps x ∈ X to an optimal solution to (LLP(x)).
The BF algorithm 5 may be viewed as approximating y∗(x) with solutions

{y∗(xk)}k of the lower-level problem (LLP(x)) at incumbent solutions {xk}k
to (LBP). This zeroth-order approximation of y∗ may be crude. Assuming y∗

is differentiable (cf. Theorem 5), Seidel and Küfer [32] and Djelassi [13] instead
propose to use the first-order approximation y∗(x)≈ y∗(xk) + J∗y(x

k)(x − xk) at

incumbent solutions {xk}k, where J∗y(x
k) is the dy × dx Jacobian matrix with rows

(∇x y∗1(x
k))

T
, . . . , (∇x y∗dy

(xk))
T
. In particular, Section 3.4 of Djelassi [13] suggests

the following generalization of the lower bounding problem (LBP):

min
x∈X

f (x) (G-LBP)

s.t. g
�

x , projY (Ax + b)
�

≤ 0, ∀(A, b) ∈ Y G
d ,
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where tuples (A, b) in the generalized discretization Y G
d satisfy A ∈ Rdy×dx and

b ∈ Rdy . Setting Y G
d = {(0, yBF,1), . . . , (0, yBF,k)} recovers the BF lower bounding

problem at iteration k. Djelassi [13] proposes to improve upon the BF lower bound
by specifying the generalized discretization Y G

d = {(J
∗
y(x

1), y∗(x1)− J∗y(x
1)x1),

. . . , (J∗y(x
k), y∗(xk) − J∗y(x

k)xk)} at iteration k given a sequence of candidate

solutions {xk}k ⊂ X to (SIP). The projection step ensures (G-LBP) is a relaxation
of (SIP), which implies solving (G-LBP) to global optimality yields a lower bound
on the optimal value v∗. However, it also makes (G-LBP) nonsmooth and more
challenging to solve than (LBP).

We propose bounding-focused generalized discretizations of (SIP) in the form
of (G-LBP) that can achieve faster convergence of lower bounds than the dis-
cretization methods in Section 9.3. Our key idea is to populate the generalized
discretization Y G

d with tuples (A, b) that yield the highest lower bound. In the
first iteration, we solve the max-min problem below to determine a generalized
discretization Y G

d = {(Ā
1, b̄1)} that results in the highest lower bound:

(Ā1, b̄1) ∈ arg max
A1∈Rdy×dx ,b1∈Rdy

min
x∈X

f (x) (9.7)

s.t. g
�

x , projY (A
1 x + b1)

�

≤ 0.

We again assume for simplicity that the maxima in all of our subproblems is
attained. We propose the following extensions of problems (9.4) and (9.5) for
updating the bounding-focused generalized discretization at iteration k > 1.

The first approach discards the generalized discretization Y G,k−1
d at iteration k−

1 and determines a fresh generalized discretization at iteration k by solving the
max-min problem:

(Ā1, b̄2, . . . , Āk, b̄k) ∈ argmax
A1,...,Ak∈Rdy×dx

b1,...,bk∈Rdy

φG
k (A

1, b1, . . . , Ak, bk), (9.8)

φG
k (A

1, b1, . . . , Ak, bk) := min
x∈X

f (x)

s.t. g
�

x , projY (A
i x + bi)

�

≤ 0, ∀i ∈ [k].

The resulting generalized discretization Y G,k
d := {(Ā1, b̄1), . . . , (Āk, b̄k)} at itera-

tion k yields the highest lower bound among all possible relaxations (G-LBP)
with

�

�Y G
d

�

�= k. To mitigate the computational cost of solving problem (9.8), our

second approach updates the generalized discretization Y G,k−1
d := {(Ā1, b̄1), . . . ,

(Āk−1, b̄k−1)} at iteration k − 1 by adding a single tuple (Āk, b̄k) that maximizes
lower bound improvement. This can be formulated as:

(Āk, b̄k) ∈ argmax
Ak∈Rdy×dx ,bk∈Rdy

ψG
k

�

Ak, bk; Y G,k−1
d

�

(9.9)

ψG
k

�

Ak, bk; Y G,k−1
d

�

:= min
x∈X

f (x)
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Algorithm 7 Prototype bounding-focused generalized discretization method

1: Input: feasibility tolerance ϵ f ≥ 0, minimum bound improvement δ ≥ 0, and
initial generalized discretization Y G

d = ;.
2: for k = 1,2, . . . do
3: Solve problem (G-LBP) globally to get solution xk, lower bound LBDk.
4: Solve problem (LLP(x)) with x = xk globally to get solution y∗(xk).
5: If assumptions of Theorem 5 hold for (LLP(x)) with x = xk, compute

the Jacobian matrix J∗y(x
k).

6: if G(xk)≤ ϵ f then
7: Terminate with ϵ f -feasible solution xk to (SIP).
8: else
9: Solve a max-min problem (heuristically) to get candidate

generalized discretization tuples {(Āk,1, b̄k,1), . . . , (Āk,nk , b̄k,nk)}.
10: Solve the inner-min problem to global optimality at the above

candidate solution. Let η∗k denote its (global) optimal value.
11: if η∗k ≥ LBDk +δ then
12: Update Y G

d using {(Āk,1, b̄k,1), . . . , (Āk,nk , b̄k,nk)}.
13: else
14: Set Y G

d ← Y G
d ∪ {(J

∗
y(x

k), y∗(xk)− J∗y(x
k)xk)} if assumptions

of Theorem 5 hold, and Y G
d ← Y G

d ∪ {(0, y∗(xk))} otherwise
15: end if
16: end if
17: end for

s.t. g(x , projY (Ax + b))≤ 0, ∀(A, b) ∈ Y G,k−1
d ,

g(x , projY (A
k x + bk))≤ 0.

Problem (9.9) can be viewed as a greedy approximation of problem (9.8). We
propose two variants of these bounding-focused generalized discretization methods
in Section 9.4.1 and establish theoretical guarantees in Section 9.4.2.

9.4.1 Outline of bounding-focused generalized discretization methods

Algorithm 7 outlines a prototype bounding-focused generalized discretization
method for (SIP) (cf. Algorithm 6). The key difference with the approach outlined
in Djelassi [13] is on lines 9–12 of Algorithm 7. If xk is not ϵ f -feasible, Algorithm 7
solves a max-min problem (heuristically) to identify new tuples that could be used
to update the generalized discretization Y G

d , whereas Djelassi [13] always looks to
update Y G

d with the tuple (J∗y(x
k), y∗(xk)− J∗y(x

k)xk) corresponding to a linear

approximation of y∗(x) at x = xk.
We consider four realizations of Algorithm 7 that only vary on lines 9–12:

G-OPT, G-GREEDY, G-2GREEDY, and G-HYBRID. Algorithms G-OPT, G-GREEDY, and G-
HYBRID are direct analogs of OPT, GREEDY, and HYBRID that rely on problems (9.8)
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and (9.9) instead of problems (9.4) and (9.5). Algorithm G-2GREEDY first adds
either (J∗y(x

k), y∗(xk)− J∗y(x
k)xk) or (0, y∗(xk)) to Y G

d (depending on whether
the assumptions of Theorem 5 hold). It then solves problem (9.9) to try and find
another tuple to add to the generalized discretization.

9.4.2 Convergence guarantees

We begin by establishing convergence of the sequence of lower bounds generated
by Algorithms G-OPT, G-GREEDY, G-2GREEDY, and G-HYBRID to v∗. Like Theorem 6,
this result also does not assume the max-min problems (9.8) and (9.9) are solved
to global optimality.

Theorem 12. Consider Algorithm 7 with ϵ f = 0 and δ > 0. Suppose the set Y
is convex and the generalized discretization PG

d is updated using Algorithm G-OPT,
G-GREEDY, G-2GREEDY, or G-HYBRID. Then lim

k→∞
LBDk = v∗.

Proof. The proof follows a similar outline as the proof of Theorem 6 and Lemma
2.2 of Mitsos [8] (cf. Theorem 3.1 of Harwood et al. [19]).

Suppose each xk ∈ X is infeasible to (SIP) (otherwise, LBDk = v∗ for all k
large enough). Since X is compact, we can assume (by moving to a subsequence)
that xk→ x∗ ∈ X . We show that x∗ is feasible to (SIP), which implies LBDk→ v∗.

Following arguments in Theorem 6, line 14 of Algorithm 7 must be run infinitely
often with PG

d ← PG
d ∪ {(J

∗
y(x

k), y∗(xk)− J∗y(x
k)xk)} or PG

d ← PG
d ∪ {(0, y∗(xk))}.

Therefore, the asymptotic behavior of Algorithm 7 is the same as the algorithm that
adds at each iteration either (J∗y(x

k), y∗(xk)− J∗y(x
k)xk) to PG

d if Theorem 5 holds,

or (0, y∗(xk)) to PG
d otherwise. We show that LBDk→ v∗ for the above algorithm.

Define the index sets Jk := { j ∈ [k] : Theorem 5 holds} and Lk := {1, . . . , k}\Jk.
By construction of the above problem, we have ∀l, k such that l > k:

g(x l , projY (Ã
k x l + b̃k))≤ 0, if k ∈ Jk, and g(x l , y∗(xk))≤ 0, if k ∈ Lk,

where Ãk := J∗y(x
k), b̃k := y∗(xk)− J∗y(x

k)xk if k ∈ Jk. Continuity of g, projY (·)
and compactness of X , Y ensure uniform continuity, which implies that for any
ϵ > 0, there exists κ > 0 such that for all x ∈ X with





x − x l




< κ and ∀l, k with
l > k:

g(x , projY (Ã
k x + b̃k))< ϵ, if k ∈ Jk, and g(x , y∗(xk))< ϵ, if k ∈ Lk.

(9.10)

Since xk → x∗, we have




x l − xk




 < κ, ∀l, k with l > k ≥ K̄. Plugging x = xk

in (9.10) and noting Ãk xk + b̃k = y∗(xk) if k ∈ Jk yields 0 < g(xk, y∗(xk)) < ϵ,
∀k ≥ K̄. Therefore, g(xk, y∗(xk)) = G(xk) → 0 and continuity of G implies
G(x∗) = 0.

By construction, Algorithms G-OPT and G-GREEDY generate tighter lower bounds
than Algorithms OPT and GREEDY, respectively, since we can set Āk = 0. Our next res-
ult establishes rate of convergence of the G-OPT lower bounds when problem (9.8)
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is solved to global optimality. We require the following lemma, which is sharp for
affine functions (cf. Figure 9.4).

Lemma 13. Suppose Z ⊂ RN is a compact convex set and F : Z → RM is continuously
differentiable with a Lipschitz continuous gradient. Let L∇F denote the Lipschitz

constant of ∇F on Z. Then ∀ϵ > 0, there exist J = 1 +
�

diam(Z)
2

q

L∇F
2ϵ

�N
affine

functions {(α j)Tz + β j}Jj=1 such that sup
z∈Z

min
j∈[J]





F(z)−
�

(α j)Tz + β j
�



< ϵ.

Proof. The integral form of Taylor’s theorem implies for any z, z̄ ∈ Z:





F(z)− F(z̄)−∇F(z̄)T(z − z̄)




≤
L∇F

2
∥z − z̄∥2.

Therefore,




F(z)− F(z̄)−∇F(z̄)T(z − z̄)




 < ϵ whenever
¦

z ∈ Z : ∥z − z̄∥ <
Ç

2ϵ
L∇F

©

. The stated result follows by covering Z using balls of radius
Ç

2ϵ
L∇F

, set-

ting z j to be the center of the jth ball, and setting α j = ∇F(z j), β j = F(z j) −
∇F(z j)Tz j .

Theorem 14. Consider Algorithm G-OPT with ϵ f > 0 and δ = 0. Suppose X and Y
are convex sets and {g(x , ·)}x∈X is uniformly Lipschitz continuous on Y with Lipschitz
constant Lg,y > 0. Assume additionally that y∗ is continuously differentiable on X
with a Lipschitz continuous gradient. Let L∇y denote the Lipschitz constant of∇y∗ on
X . If problem (9.8) is solved to global optimality, then Algorithm G-OPT terminates

with an ϵ f -feasible point in at most 1+
�

diam(X )
2

r

L∇y Lg y
2ϵ f

�dx

iterations. Furthermore,

if the assumptions of Theorem 10 also hold, then Algorithm G-OPT terminates in at

most min
¦

1+
�

diam(X )
2

r

L∇y Lg y
2ϵ f

�dx

,
�

diam(Y )Lg,y
2ϵ f

�dy ©

iterations.

Proof. Suppose Algorithm G-OPT has not converged by iteration k > 1. The can-
didate solution xk at iteration k of Algorithm G-OPT satisfies for each 1≤ j < k:

g(xk, y∗(xk))> ϵ f and g(xk, projY (Ā
j xk + b̄ j))≤ 0

=⇒ g(xk, y∗(xk))− g(xk, projY (Ā
j xk + b̄ j))> ϵ f

=⇒ Lg y





y∗(xk)− projY (Ā
j xk + b̄ j)





> ϵ f ,

=⇒




y∗(xk)− (Āj xk + b̄ j)




>
ϵ f

Lg y
,

where PG
d = {(Ā

i , b̄i)}k−1
i=1 denotes the generalized discretization at the start of

iteration k. Therefore, an upper bound on the number of iterations for G-OPT to
converge can be obtained by estimating the minimal number k of generalized
discretization cuts required for supx∈X min j∈[k]





y∗(x)− (Āj x + b̄ j)




 ≤ ϵ
Lg y

. The
first result then follows from Lemma 13, whereas the second result follows from
Theorem 10.
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Figure 9.4: Optimal solution mapping y∗ (note that it only depends on x1 for
Examples 6 and 8). The red dot indicates y∗(x1) at x1 ∈ arg minx∈X f (x).

Chapter 3 of Fiacco [20] presents conditions when the assumption on y∗ holds.
The convexity assumption on the set X may be relaxed by considering any convex
superset of X . Note that the bound on the number of iterations in Theorem 14
scales like ϵ−0.5dx

f compared to the ϵ−dx
f scaling in Theorem 9. The rate at which

LBDk→ v∗ for G-OPT can be derived similar to Proposition 11.

9.4.3 Solving the max-min problems

In addition to the challenges outlined in Section 9.3, solving problems (9.8)
and (9.9) globally may also be challenging due to the nonsmooth projection
operator. Therefore, we design effective heuristic methods for solving these prob-
lems and empirically show in Section 9.6 that they often yield good generalized
discretizations with fast convergence of lower bounds (cf. Theorem 12).

Properties of the optimal solution mapping y∗ Before we outline our heuristic
approach for solving problems (9.8) and (9.9), we provide empirical motivation
for (bounding-focused) generalized discretization methods. Figure 9.4 plots the
optimal solution mapping y∗ for Examples 4, 6, 7, and 8. Interestingly, this mapping
is well-behaved for all four examples (it is piecewise-linear for Example 4 and
linear for Examples 6 to 8). Moreover, using Y G

d = {(J
∗
y(x

1), y∗(x1)− J∗y(x
1)x1)}

in (G-LBP) at the point (x1, y∗(x1)) highlighted in these plots yields a lower
bound equal to v∗ for all four examples. However, this favorable situation may
not always be the case, and the mapping y∗ may be nonconvex, nonsmooth, and
even discontinuous in general. For example, any (SIP) with X = Y = [0,1] and
g(x , y) = (x − 0.5)y results in the optimal solution mapping y∗(x) = 1(x − 0.5),
where 1(z) = 1 if z ≥ 0 and zero otherwise, which is discontinuous at x = 0.5.
Example 5 from Section 9.3.2 provides another instance where y∗ is discontinuous.

Example 5: Pick any ȳ ∈ Y , and consider the optimal solution mapping y∗:

y∗(x) :=

¨

x
∥x∥
p

dx − 1, if x ̸= 0

ȳ , if x = 0
.

This mapping is discontinuous at x = 0 irrespective of the choice of ȳ ∈ Y . However,
setting Y G

d = {(Idy
, 0)} in (G-LBP), where Idy

is the dy×dy identity matrix, yields a
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lower bound equal to v∗ since projY (x) = y∗(x), ∀x ∈ X . Therefore, a generalized
discretization with

�

�Y G
d

�

� = 1 is sufficient for convergence, which is in stark contrast
with the discretization methods in Section 9.3.2 that require exponentially many
iterations in the dimension dx to converge.

An effective heuristic solution approach In this work, we primarily consider the
setting where Y = [y L , yU] for some vectors y L , yU ∈ Rdy . The function projY (·)
can then be reformulated as the MILP-representable function mid(y L , ·, yU) using
the “lambda formulation” [43], and problem (G-LBP) can in turn be reformulated
as a mixed-integer nonlinear program (MINLP). Section 3.4 of Djelassi [13] also
considers more general settings for Y .

As in Section 9.3.3, asφG
k andψG

k are potentially nonsmooth and discontinuous,
we propose to solve the max-min problems of algorithm of Algorithm 7 using
gradients (whenever they exist) within a bundle solver for nonsmooth, nonconvex
optimization [33]. As before we estimate the values of φG

k and ψG
k by solving the

inner-minimization problems to local optimality. We then attempt to apply Theorem
5 to compute gradients of the local minimum value function ofφG

k andψG
k . To do so

we use the smooth approximation t−1 log
�

(exp
�

t y L
�

+ exp(t y))−1 + exp
�

−t yU
��

,
with smoothing parameter t = 100, instead of mid{y L , y, yU} in the max-min
problem. If the max-min optimization using these smooth approximations terminate
after a single iteration of the bundle method, we restart their solution with a random
initialization for (Ak, bk). For estimating a generalized gradient, we follow the
same heuristics in section 9.3.3, although unlike the discretization methods, all
weakly active constraints are excluded when SC does not hold based on numerical
experiments.

9.5 Generalizations

Multiple semi-infinite constraints Suppose (SIP) includes |I| semi-infinite con-
straints gi(x , y)≤ 0, ∀y ∈ Y i , i ∈ I. The formulation below extends the max-min
problem (9.3) for constructing a bounding-focused discretization at the first itera-
tion of Algorithm 6.

( ȳ1, . . . , ȳ |I|) ∈ argmax
(y1,...,y |I|)∈Y 1×···×Y |I|

min
x∈X

f (x)

s.t. gi(x , y i)≤ 0, ∀i ∈ I.

Extensions of the max-min problems (9.4) and (9.5) and the bounding-focused
generalized discretization methods in Section 9.4 readily follow.

Generalized discretizations based on nonlinear approximations of y∗ Instead
of restricting ourselves to bounding-focused linear approximations of y∗(x) as in
Section 9.4, we can construct bounding-focused nonlinear approximations of y∗
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for potentially faster convergence. Let γ : X ×Θ→ Rdy be any family of functions.
We propose the following extension of (G-LBP):

min
x∈X

f (x) (9.11)

s.t. g
�

x , projY (γ(x ,θ ))
�

≤ 0, ∀θ ∈ Θd .

Clearly, (G-LBP) is a special case of problem (9.11) where γ is the family of
parametric affine (in x) functions. Extensions of the max-min problems (9.8)
and (9.9) to determine an optimal sequence of parameters {θ k}k readily follow.

Mixed-integer SIPs The presence of integer variables in (SIP) precludes the use
of the sensitivity theory in Section 9.2 for solving the max-min problems (9.4),
(9.5), (9.8), and (9.9). Because we can heuristically solve these max-min problems
without sacrificing convergence of our (generalized) discretization methods, one
heuristic is to use sensitivities of the value functions of the inner-minimization
problems with the integer variables fixed to an optimal solution. An alternative is
to use smoothing-based approaches [40] for approximating sensitivity information.

9.6 Numerical results

We compare Algorithms GREEDY, 2GREEDY, HYBRID, and OPT in Section 9.3.3 and G-
GREEDY, G-2GREEDY, G-HYBRID, and G-OPT in Section 9.4.1 with the BF algorithm on
instances from the literature. These instances include standard test problems from
the nonconvex SIP literature from Watson [44], Seidel and Küfer [32], Tsoukalas
and Rustem [9], and Mitsos [18]. Note that although these are small (dx ∈ [1, 6]
and dy ∈ {1, 2}) we are trying to converge to the global solution, and as such their
optimization is not trivial. We also test our methods on larger SIPs (dx ∈ [21, 105]
and dy ∈ [5, 13]) from Cerulli et al. [45]where (LBP) is a quadratically constrained
quadratic program (QCQP).

We only consider scalar semi-infinite constraints and Y = [y L , yU], and omit
instances with trigonometric functions.

Lastly, although there are discretization approaches for SIPs that yield a feasible
point in a finite number of iterations, e.g. [11], our methods are focused on
improving the convergence of the lower bound. As such, we compare to BF as it is
the state-of-the-art for constructing lower bounds.

9.6.1 Implementational details

Our codes are compiled using Julia 1.7.3, JuMP 1.15.1 [46], BARON 23.1.5 [47]
or Gurobi 9.1.2 as the global solver, Knitro 13.1.0 as the local NLP solver, Gurobi
9.1.2 as the LP solver, and the bundle solver MPBNGC 2.0 [33] for the max-min
problems. They will be made available at https://github.com/Process-Optim
ization-and-Control/Optimal-SIP-Discretizations.

https://github.com/Process-Optimization-and-Control/Optimal-SIP-Discretizations
https://github.com/Process-Optimization-and-Control/Optimal-SIP-Discretizations
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Table 9.2: Comparison of the BF, GREEDY, 2GREEDY, HYBRID, and OPT algorithms.
Bold entries correspond to the minimum number of iterations for each instance.

Instance dx dy BF GREEDY 2GREEDY HYBRID OPT
number of iterations for convergence

Watson 2 2 1 2 2 2 2 2
Watson 5 3 1 5 4 2 3 3
Watson 6 2 1 3 2 2 2 2
Watson 7 3 2 2 2 2 2 2
Watson 8 6 2 15 6 4 9 9
Watson 9 6 2 9 8 5 5 13
Watson h 2 1 18 29 19 29 26
Watson n 2 1 3 3 2 3 3

Seidel & Küfer 2.1 2 1 8 2 2 2 2
Tsoukalas & Rustem 2.1 1 1 8 5 6 5 5

Mitsos 4_3 3 1 5 4 2 6 5
Mitsos 4_6 6 1 7 8 6 5 5
Mitsos DP 1 1 28 2 2 2 2

Cerulli et al. PSD 1 21 5 2 2 2 2 2
Cerulli et al. PSD 2 21 5 2 2 2 2 2
Cerulli et al. PSD 3 21 5 2 2 2 2 2
Cerulli et al. PSD 4 21 5 2 2 2 2 2
Cerulli et al. PSD 5 66 10 5 2 5 2 2
Cerulli et al. PSD 6 66 10 6 2 2 2 2
Cerulli et al. PSD 7 105 13 7 2 5 2 2
Cerulli et al. PSD 8 105 13 5 2 5 2 2

General algorithmic parameters Since (LBP) and (G-LBP) may not yield a
feasible point finitely, we run our algorithms until the lower bound converges
absolutely or relatively to within 10−3 of v∗ (which is computed offline). We use
ϵ f = δ = 10−8 in Algorithms 5, 6, and 7. The feasibility and optimality tolerance
of Gurobi is set to 10−8. All of BARON’s parameters, except MaxTime= 7200s, are
kept as their defaults. Knitro is used with the following parameters: algorithm = 5,
ftol= 10−8, and feastol= 10−8.

Algorithm-specific parameters The starting point for the max-min problem
solved by the 2GREEDY method is specified as 0.99 ŷk + 0.005(y L + yU). Similarly,
for the G-2GREEDY method, the elements of Ak are initialized randomly from [0, 1)
and bk is set to 0.99 ŷk + 0.005(y L + yU)− Ak xk. We set the parameter K = 3 for
Algorithms HYBRID and G-HYBRID.
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9.6.2 Bounding-focused discretization methods

Table 9.2 details the instance, dimensions dx and dy , and the number of iterations
k taken by the different methods for their lower bounds to converge to v∗ (note that
the number of discretization points at termination is 2k− 2 for 2GREEDY and k− 1
for the other methods). We do not report computational times since all methods
take similar time (seconds) for their lower bounds to converge (any gains from a
decrease in the number of global solves is offset by the time taken for solving the
max-min problems).

On almost all instances, our proposed bounding-focused discretization methods
require fewer iterations for convergence than the BF algorithm (the main exception
is “Watson h”, where our proposed methods face numerical issues). Notably, our
new discretization methods require only two iterations (a single discretization
point for GREEDY, HYBRID, and OPT, and two discretization points for 2GREEDY) to
converge for most instances. Although OPT is theoretically expected to perform
at least as well as the other discretization methods, Table 9.2 shows that this
is not always the case in practice. This is because the solution of the max-min
problem (9.4) can get stuck at poor local maxima. Overall, Algorithm 2GREEDY
performs the best on the small-scale instances whereas GREEDY, HYBRID, and OPT
all perform extremely well on the larger instances.

Table 9.3 notes the performance of our discretization methods on the small-
scale instances when max-min problems (9.4) and (9.5) are reformulated and
solved as mathematical programs with complementarity constraints (MPCCs),
see Section 9.3.3. These MPCCs are solved using Knitro’s tailored algorithms.
Comparing Table 9.3 with Table 9.2 reveals that the discretizations generated by
the MPCC formulations sometimes converge in fewer iterations, but require more
iterations in other cases. The MPCC formulation performs poorly on “Tsoukalas &
Rustem 2.1” possibly because it does not satisfy MFCQ at x∗.

9.6.3 Bounding-focused generalized discretization methods

We test our generalized discretization methods on small-scale SIP instances.
Table 9.4 summarizes the performance of our generalized discretization meth-

ods relative to the BF algorithm. These new methods perform well on most instances,
but BARON times out during the solution of the nonconvex MINLP (G-LBP) for
“Watson 8”, “Watson 9”, and “Mitsos 4_6”. BARON appears to “stall” while solving
these MINLPs—this could potentially be due to weak relaxations of (G-LBP). In
most cases, the bundle method also terminates after one iteration during the solu-
tion of problems (9.4) and (9.5), which suggests our initial guess is either locally
optimal or does not provide a clear direction for improvement (which could be due
to the smooth approximation of the projection operator). Apart from “Watson h”
and “Tsoukalas & Rustem 2.1”, the generalized discretization methods do not
offer a significant advantage over the bounding-focused discretization methods in
Section 9.3.
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Table 9.3: Results with the MPCC reformulation of the max-min problems. Bold
entries correspond to the minimum number of iterations for each instance.

Instance dx dy BF GREEDY 2GREEDY HYBRID OPT
number of iterations for convergence

Watson 2 2 1 2 2 2 2 2
Watson 5 3 1 5 6 2 3 3
Watson 6 2 1 3 3 3 3 3
Watson 7 3 2 2 2 2 2 2
Watson 8 6 2 15 20 14 16 15
Watson 9 6 2 9 5 4 19 7
Watson h 2 1 18 18 18 18 18
Watson n 2 1 3 2 2 2 2

Seidel & Küfer 2.1 2 1 8 2 6 2 2
Tsoukalas & Rustem 2.1 1 1 8 7 6 12 > 100

Mitsos 4_3 3 1 5 3 2 3 3
Mitsos 4_6 6 1 7 6 5 4 4
Mitsos DP 1 1 28 2 2 2 2

9.6.4 Discussion of results

Tables 9.2 to 9.4 show that our bounding-focused (generalized) discretization
methods have the potential to significantly reduce the number of iterations for
convergence relative to the classical feasibility-based approach. We expect our
new discretization methods to be particularly advantageous when solving (LBP)
to global optimality is expensive. In particular, we find that the “simplest" methods
GREEDY and 2GREEDY offer the most consistent benefits over BF. However, this may
be due to the nature of the test problems which in most cases only require a few
iterations for our methods to converge.

While our preliminary results are encouraging, designing more efficient and
reliable algorithms for solving our max-min formulations (in particular, our gener-
alized discretization formulations (9.8) and (9.9)) merits further investigation.

9.7 Future work

There are many interesting avenues for future work. First, we would like to extend
our bounding-focused (generalized) discretization methods to generalized semi-
infinite programs [4, 48]. Second, our bounding-focused discretization methods
could be modified (cf. [8]) to generate feasible points to (SIP). Third, extensions
of our max-min formulations can enable the design of more efficient cutting-plane
methods for a broader class of optimization problems (cf. [26]). Finally, using
machine learning to learn a sequence of optimal discretizations (cf. [23, 26, 49])
can mitigate the computational burden of solving our max-min problems for larger
dimensions.
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Table 9.4: Comparison of the BF, G-GREEDY, G-2GREEDY, G-HYBRID, and G-OPT
algorithms. Bold entries correspond to the minimum number of iterations for each
instance, and TLE denotes the time limit of 2 hours was exceeded.

Instance dx dy BF G-GREEDY G-2GREEDY G-HYBRID G-OPT
number of iterations for convergence

Watson 2 2 1 2 2 2 2 2
Watson 5 3 1 5 4 3 4 4
Watson 6 2 1 3 2 2 2 2
Watson 7 3 2 2 2 2 2 2
Watson 8 6 2 15 TLE 9 TLE TLE
Watson 9 6 2 9 TLE TLE TLE 8
Watson h 2 1 18 2 2 2 2
Watson n 2 1 3 3 3 3 3

Seidel & Küfer 2.1 2 1 8 3 3 3 3
Tsoukalas & Rustem 2.1 1 1 8 2 3 2 3

Mitsos DP 1 1 28 2 2 2 2
Mitsos 4_3 3 1 5 5 5 5 4
Mitsos 4_6 6 1 7 6 TLE 6 TLE
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Omitted proofs

Proof of Proposition 7

The first part holds by virtue of the definition of the max-min problem (9.4) since
the sequence of lower bounds obtained using Algorithm OPT dominate the sequence
of lower bounds obtained using the BF algorithm. The second part follows, e.g.,
from Theorem 3.2 of Shapiro [50].
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Chapter 10

Conclusions and future work

10.1 Summary and contributions

This thesis has explored how optimisation and machine learning can be applied to
various problems in process systems engineering. The first part of the thesis consists
of three works that focus on developing and solving formulations motivated by
specific applications. The first work describes the training of output-feedback neural
network control policies for a binary distillation column. A feedback policy of just
four measurements is able to effectively control the distillation column, and shows
a good robustness to model error and distributional shifts of the measurement
noise. Additionally, a heuristic is proposed for automatically selecting important
measurements for use by the controller. While this heuristic does allow automatic
selection of measurements, it resulted in a small reduction in nominal controller
performance and also makes the controller more fragile to model mismatch.

The second work demonstrates a model predictive control formulation for
optimal inventory allocation, without using detailed economics or a disturbance
forecast. This work also demonstrates how a disturbance model can be used to
find good inventory allocations despite mispecification of process information.
However, this work does not consider systems with recycles which could be a topic
of further research. The third work tunes PID controllers by solving an semi-infinite
program. The problem is set up in the frequency domain, and can be solved to
global optimality without significant computational effort.

The second part of the thesis presents four works that concentrate on theoretical
and algorithmic developments. The first work proposes the offline optimisation
of convex terminal costs to reduce the computational requirements of model
predictive control. A key aspect of the approximate terminal cost is that it should
be based on the associated cost-to-go of the infinite horizon unconstrained problem.
By doing so the optimal controller is recovered in a region near the regulation
point. Unfortunately, due to the potential non-convexity of the feasible set it is
likely that this approach cannot be directly extended to nonlinear MPC.

The second work proposes an method for the closed loop training of neural net-
work control policies. As the network is trained in closed loop, one can incorporate
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uncertainty into the training without yielding an overly conservative controller.
Furthermore, the proposed approach offers a great deal of flexibility in comparison
to the use of an imitation learning approach. For example, an adaptation of this
method is used in the Chapter 3 of the thesis for finding an output-feedback control
policy. However, compared to imitation learning the training is significantly more
expensive per iteration.

The third work employs multiple shooting for training neural networks em-
bedded in differential equations, and shows how this can avoid some pathological
behaviour. The use of multiple shooting does increase the computational costs,
which can be infeasible for very long time series. However, this can be offset by 1)
only considering parts of the time series at each iteration, and 2) potentially using
a distributed optimisation approach to converge the shooting constraints.

Lastly, the fourth work proposes (generalised) optimality-focused discretisation
methods for obtaining lower-bounds for semi-infinite programs. The idea is to use
parametric sensitivity theory to increase incumbent lower bounds found during
the optimisation of a semi-infinite program. Numerical examples show that these
methods can significantly reduce the number of discretisation points compared to
the current state-of-the-art, making them a promising avenue of future research.
Unfortunately, these schemes do come at an additional computational cost, making
them most suitable for problems where the benefits of reducing the number of
discretisation points / outer iterations is significant.

10.2 Further work

10.2.1 Robust and stochastic model predictive control

Chapters 6 and 7 considered reducing the online computational cost of MPC
formulations, motivated in part by the rapid increase in this cost when considering
robust or stochastic formulations. Despite the burgeoning literature on robust and
stochastic MPC, there has been scant industrial interest in this topic. As various
authors have pointed out – robust (or stochastic) MPC offers minor improvements
over nominal MPC at the cost of a tremendous increase in computational complexity.
If this is the case, then it is important for researchers to return to the motivation
of robust MPC. Methods that offer a greater robustness margin while remaining
computationally efficient and conceptually simple may be preferred even if they are
not wholly robust. An interesting direction is off-set free MPC which can be regarded
as an adaptive approach to handle uncertainty. As minor constraint violation are
typically acceptable, combining offset free MPC with a further adaptive approach
could be a potential alternative to robust MPC approaches.

10.2.2 Neural network control policies

Chapters 3 and 7 details the closed-loop training of neural network control policies.
Unlike training by imitation learning, closed-loop training is more computational
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expensive, but also offers a greater degree of flexibility. This flexibility is exploited
in these chapters to allow for optimisation with uncertain parameters and to
find policies that are only functions of certain measurements. Once trained these
policies can be efficiently evaluated, however their offline training is still computa-
tionally challenging especially when there are system constraints. Improving the
computational efficiency of this training is still an open challenge. Additionally,
explicit control policies (of any form) have the general disadvantage that they
are hard to adjust online. One may wish to adjust the policy online to eliminate
offset, tighten/loosen constraints due to changes in operational limits, change the
controller aggressivity, and so on. Although one can include parameters as inputs
in the training to allow for some online adjustment this is not a particularly flexible
approach. Authors have proposed several potential approaches to address some of
these concerns, e.g. safety filters, however there is no consensus on how this task
should best be performed.
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Appendix A

Designing neural network control
policies under parametric
uncertainty: A Koopman operator
approach

Solving the optimisation problem associated with nonlinear model predictive
control (MPC) on-line when considering uncertainty is often infeasible due to the
large computational times. One approach is to avoid the online optimisation by
using an imitation learning approach where a neural network or other approximator
is trained on offline solutions of the MPC problem. This can be computationally
costly as the potential system behaviour must be fully represented in the data,
which requires many MPC solutions.

In this work we propose a new method to train a neural feedback controller in
closed loop for problems with uncertainty in parameters and/or the initial con-
ditions. Our method does not require solving MPC problems off-line to generate
training data, instead we optimise the neural network directly on the MPC object-
ive in a single shooting approach, with expectations evaluated in their Koopman
expectation form using a quadrature algorithm. The proposed method is demon-
strated on three problems. The optimised controllers for these problems show good
performance, and have an average evaluation time of less than 4 µs.

This work was presented as a keynote at the 13th IFAC Symposium on Dynamics
and Control of Process Systems, including Biosystems (DYCOPS 2022), and has
been published as:

E. M. Turan and J. Jäschke, ‘Designing neural network control policies
under parametric uncertainty: A Koopman operator approach,’ IFAC-
PapersOnLine, vol. 55, no. 7, pp. 392–399, 2022, ISSN: 24058963. DOI:
10.1016/j.ifacol.2022.07.475. [Online]. Available: https://doi
.org/10.1016/j.ifacol.2022.07.475

198

https://doi.org/10.1016/j.ifacol.2022.07.475
https://doi.org/10.1016/j.ifacol.2022.07.475
https://doi.org/10.1016/j.ifacol.2022.07.475


Chapter A: Neural network control policies under parametric uncertainty 199

A.1 Introduction

Model predictive control (MPC) is a widely used optimisation technique to control
a system, given a model. The model takes in the current system state and is used
to predict the short term system response, allowing for an optimisation problem to
be solved to find the control inputs that minimise some objective, while satisfying
constraints. Uncertainty may be addressed in various robust MPC formulations,
typically at a significant increase in computational expense. The need to solve
the (robust) MPC optimisation problem on-line is a major issue, as this can be
infeasible for some processes due to the computational complexity.

In this work we propose to parametrise the control by a neural network, and
train this network (off-line) using the expectation of the MPC objective function,
and a joint probabilistic constraint, i.e. without solving robust MPC problems to
generate training data. This results in a control law that can be cheaply evaluated
on-line, while taking into account parametric uncertainty.

Previously it has been proposed to avoid solving the MPC optimisation problem
online by pre-computing an explicit control law. After optimisation this control
law can then simply be evaluated on-line. For a linear system, without uncertainty,
and with a quadratic cost function the optimal control law is known to be a
piecewise affine function on polytopes which can be computed in advance [1].
The number of regions defining the piecewise control law rapidly increases with
system complexity, thus computing and using this explicit control law can be
computationally intractable for large systems [2].

Another approach is to define an approximate control law, that is cheap to
evaluate and feasible to optimise. As neural networks are universal approximators,
and cheap to evaluate after training, numerous authors have proposed the use of
a neural network to approximate the control law (a neural control law) with a
recent work showing that bounds can be calculated for the neural network size
necessary to exactly represent an explicit MPC law [3]. Neural control laws have
been optimised by 1) using MPC solutions evaluated at various points (imitation
learning) [3, 4], 2) reinforcement learning, 3) using a neural differential equation
approach where the loss is the MPC objective [5, 6] or 4) a mixture of approaches,
e.g. [7].

The imitation learning (1) approach can be very costly, as the data set containing
MPC solutions needs to fully describe the system behaviour, which requires solving
an MPC problem many times, although this can be done off-line. We note that
there are various approaches to generate the data for imitation learning, including
algorithms to generate “rich” training data, to aid in the scaling of the method to
higher dimensions [8]. An important advantage of imitation learning is that one
can approximate a robust (stationary) controller, e.g. a controller robust to input
disturbances [4] or a multi-stage NMPC [7, 8].

In the reinforcement learning approach (2) the neural network parameters
are updated on-line based on the state of the system and its response to control
outputs. A variation of this approach is to optimise the network off-line using a
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system model [2]. This is similar to training the network in a neural differential
equation approach (3), where instead of a loss defined by data, the MPC objective
function is used at discrete time points [5, 6]. In the control literature, this later
approach is essentially an indirect, single shooting method [9].

In this work, we build on approach (3) to train a robust neural controller, for
problems with parametric uncertainties, without solving a robust MPC problem.
We train the neural network via single shooting, where the expectation of the
constraint and objectives are evaluated in their Koopman expectation form, using
a quadrature algorithm.

A.2 Background

A.2.1 Nonlinear model predictive control

Consider the general nonlinear dynamic system,

ẋ(t) = f (x(t), u(t), p) (A.1)

where t is time, x ∈ Rnx are the states, u ∈ Rnu are the control inputs, p ∈ Rnp

are parameters, and f describes the dynamics.
The goal of nonlinear model predictive control (NMPC) is to compute the

optimal state and control trajectories (x = [x1, . . . , xNk
] and u = [u0, . . . , uNk−1

])
for a given prediction horizon. NMPC requires the initial state of the system, which
we assume is available. Typically, the MPC problem takes the discretised form:

min
x,u

J =min
x,u

Nk−1
∑

k=0

l(xk, uk, p, k) + V (xNk
) (A.2a)

xk+1 = fd(xk, uk, p), ∀k = 0, . . . , Nk − 1 (A.2b)

0≥ g(xk, uk, p), ∀k = 1, . . . , Nk (A.2c)

x l bd ≤ xk ≤ xubd , ∀k = 1, . . . , Nk (A.2d)

ul bd ≤ uk ≤ uubd , ∀k = 0, . . . , Nk (A.2e)

xk=0 = x ini t (A.2f)

where J is the objective function, Nk the prediction horizon points, l the stage
cost, V the terminal cost, fd the discretised dynamics, g a vector of nonlinear
constraints, and x ini t denotes the initial conditions. Bounds (x l bd , xubd , ul bd , uubd)
are defined for the state and controls. In this formulation constraints are enforced
at the discrete time points.

A.2.2 NMPC with parametric uncertainty

Consider the NMPC problem, but where p and/or x ini t are uncertain, and described
by some probability density functions. We assume that the uncertain parameters
are not time varying. Thus, uncertainty in the parameters and initial conditions
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are equivalent, i.e. if we augment the system equations with the parameter vector
(with no dynamics) then there will only be uncertainty in the initial states.

Given probability density functions for the parameters πp and initial state
πx ini t

we can write the stochastic MPC problem, where the objective is given as an
expectation:

min
x,u
Ep,xk=0

[J(x,u, p)] , p ∼ πp, xk=0 ∼ πx ini t
(A.3)

If desirable we could also include the variance of the cost V[J] in the optimisation,
noting that V[J] = E[(J −E[J])2].

We define a joint chance constraint that the probability of g, the vector function
of constraints, being satisfied at all time points of the discretisation is greater than
1− ε:

Pp,xk=0

� Nk
⋂

k=0

g(xk, uk, p)≤ 0

�

≥ 1− ε, 0≤ ε≤ 1 (A.4)

where P is the probability. If possible, specifying ε= 0 can significantly increase
the cost (Eq. A.3) as it is highly conservative. The chance constraint can be written
as an expectation by defining an indicator function (I):

I(xk, uk, p) =

¨

1 g(xk, uk, p)≤ 0

0 else
(A.5)

Ep,xk=0
[I(xk, uk, p)] = P

� Nk
⋂

k=0

g(xk, uk, p)≤ 0

�

(A.6)

Ignoring the uncertainty and picking a nominal p can lead to a controller
that performs poorly, despite feedback from the system [10]. Solving the original
NMPC problem (A.2) can be difficult, and under uncertainty the problem becomes
even more computationally expensive. Various formulations have been proposed
for nonlinear and linear MPC under uncertainty including: solving a worst-case
objective function [10], multi-stage MPC [11] and tube-based MPC [12]. In general,
treating the uncertainty in an online optimisation (as in multi-stage MPC) is very
costly. On the other hand this computational cost can be moved off-line by training a
neural network, which can lead to practically the same performance with negligible
on-line computational cost.

A.3 Optimisation of the neural network control policy

A.3.1 Overview of the method

We combine the closed loop simulation of the neural network policy, the evaluation
of the expectation, and the optimisation as shown in Figure A.1. At each iteration
of the method we take neural network parameters θk and evaluate the expectation
of the (penalised) objective. This expectation is evaluated in an inner loop wherein
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Optimiser

NN Policy

Model

Closed loop simulation

u(t) x(t)

xk=0, p, θk

J(θ, p, xk=0),

θk

Ex0
, ∇Ex0

θ0 θ
∗

Evaluate NN parameters under
given uncertainties

πxinit
, πp

g(θ, p, xk=0)

Expectation
evaluation

Cost and
constraints

Figure A.1: Block diagram of the training process of the neural network control
policy.

we adaptively sample p and xk=0 from πx ini t
and πp. For each sample we perform

a closed loop simulation of the control policy, in which the value of the constraints
and cost function are evaluated. The adaptive sampling is performed until the
expectation is evaluated to a specified tolerance.

The main features of the workflow are that 1) the network is optimised via
closed loop simulations and 2) that the network is optimised on the expectations
of the system, which are evaluated by “pulling back” the uncertainty by applying
the Koopman operator. These two steps are described in detail below.

A.3.2 Closed loop simulation of the control policy

To avoid solving an NMPC problem with uncertainty in real time, we focus on
optimising an off-line control law given by a neural network (NN), with parameters
θ : u(x) = fNN (x |θ), i.e. a neural network policy. Neural networks can be used
in to approximate the control law as from the universal approximation theorem,
they can approximate any function to a desired tolerance, under mild conditions.
Historically, Parisini and Zoppoli [13] first proposed the use of neural networks to
approximate an MPC law. More recently, Karg and Lucia [3] showed that neural
networks can exactly represent the explicit MPC law for linear time-invariant
systems.

There are various network architectures, and in this work we chose to use
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deep, fully connected, feedforward neural networks. Such a network has the form:

fNN (x |θ ) = βL+1 ◦ fL+1 ◦ βL ◦ fL . . .β1 ◦ f1(x) (A.7)

where L is the number of hidden layers. Each hidden layer, l, consists of a nonlinear
activation function, gl and an affine function, fl , given by:

fl =Wlζl−1 + bl (A.8)

where Wl and bl are the weights and biases of the affine function, and ζl−1 is
the output from the previous layer (ζ0 = x). Common choices for βl include
rectified linear units, sigmoid functions, and hyperbolic tangent functions. For
convenience we define θ to be a vector containing the weights and biases, i.e.
θ = [W1, b1, . . . , WL , bL].

To explain how the network parameters are optimised, consider a dynamical
system with no uncertainty (Equation A.1). Given a neural network policy, this
means the dynamics are given by the neural differential equation [14]:

ẋ(t) = f (x(t), fNN (θ ), p) (A.9)

Consider the deterministic MPC objective with only a constraint to enforce the
dynamics (equations A.2a-b). Given θ , p, and the initial conditions, x ini t , we can
find the sequence xk and uk simply by integrating the neural differential equation
(i.e. the block “Closed loop simulation” in Figure A.1) which enforces the constraint
A.2b. After integration, the sequence xk and uk can then be used to evaluate the
objective function (equation A.2a).

The gradient with respect to network parameters is given by the chain rule,
e.g. dJ

dθ =
dJ
d xk

d xk
dθ , and can be evaluated via automatic differentiation on the

integrator. This allows the use of any gradient based optimiser for finding the
network parameters.

In the control literature this formulation of the optimisation problem is es-
sentially a single shooting, optimal control problem [9], where the manipulated
variables are the unconstrained network parameters. The suggested parametrisa-
tion of the control policy, u(x) = fNN (x |θ), is known as a state feed-back neural
policy in the reinforcement learning literature. However, here the optimisation is
performed entirely off-line as in Sandoval et al. [6]. We note that this approach
does have difficulties with unstable systems, however first training the network on
a nominal control profile and then proceeding with the optimisation is a potential
approach to overcome this [6].

In this approach the control law is optimised in a closed loop manner. Once
optimised, the network defines a control law that is a function of the current state
and in online operation can simply be evaluated, similar to an explicit MPC. In
comparison to an explicit MPC, the memory requirements for a neural network
control law can be significantly smaller [3].
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A.3.3 Expectation evaluation

Assume we have a control law u= fNN (x |θ), and that uncertainties in the para-
meters have been transformed to uncertainties in the initial state, i.e. we define

x0 =

�

x ini t
p

�

(A.10)

The Koopman operator provides a way to evaluate the expectations that occur
in optimisation under uncertainty (equation A.3 and A.4) in a relatively efficient
manner [15]. The main idea is that if the dynamics of a system are deterministic,
then the probability of a distribution in the future is solely dependent on the initial
distribution, i.e. the uncertainty can be “pulled back”.

Let x0 be the uncertain initial state, described by a valid probability density
function π0, and xT be the uncertain state at some future time T , described by the
probability distribution function πT . Let h(x) be some real valued function of the
state space, (e.g. the constraints A.2c-A.2e), that we wish to evaluate, and S be
the mapping of the system from t = 0 to some time T , S : Rnx → Rnx . Assuming
that S is measurable and non-singular, and that h is continuously differentiable
and has compact support, then the following are equivalent [16]:

ExT
[h(xT )|xT ∼ πT ] = Ex0

[h(S(x0))|x0 ∼ π0] (A.11)

=

∫

Ω

h(S(x))π0(x)dx (A.12)

where Ω is the state space. The right-hand side of equation A.11 is known as the
Koopman expectation, which is explicitly written as an integral in equation A.12.
Equation A.11 uses the adjoint property of the Koopman and Frobenius-Perron
operators. For more information on these operators we direct the reader to Lasota
and Mackey [16] (Chapter 1 and 3) or Leonard [17], and the references therein,
for a focus on the Koopman operator in optimisation problems.

Equation A.11 states that determining the expectation at time T , given the
corresponding probability distribution (πT ), is equivalent to using the initial prob-
ability distribution (π0) and the system mapping. Note that the mapping does not
have to be known, only its evaluation. This is significant as we typically know the
system uncertainty at its initial state.

To evaluate E[h(xT )|xT ∼ πT ] we could take samples from the initial distribu-
tion, π0, and push them through the system dynamics, forming a Monte Carlo es-
timate of πT . Using the estimate of πT one could then evaluate E[h(xT )|xT ∼ πT ].
Forming this estimate ofπT is typically computationally expensive as many samples
are needed.

However, there are various benefits to evaluating the Koopman expectation
form (Eq. A.12) instead [15, 18]. As we know π0, and can evaluate h(S(x)), the
integral can be evaluated by any numerical integration technique, e.g. multidi-
mensional quadrature, (quasi-) Monte Carlo integration. If an adaptive integration
procedure is used, then realisations of the uncertain parameters will be selected to
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evaluate E[h(S(x0))|x0 ∼ π0] to a desired tolerance [15]. In other words, instead
of fixing the location or number of samples we specify the desired tolerance directly.

In this work the integration is performed via a multidimensional h-adaptive
quadrature [19]. In this type of quadrature the integral is evaluated by adaptively
subdividing the integration volume into smaller volumes, while applying the
same fixed-order quadrature rule within each sub-region. Quadrature can be very
efficient in low dimensions (here the number of uncertain parameters and states),
however it is known to scale exponentially with the number of dimensions. An
alternative choice for high dimensional problems are adaptive quasi-Monte Carlo
integration algorithms, e.g. see the CUBA library [20]. Note that the point at
which quasi-Monte Carlo algorithms are more efficient that quadrature algorithms
depends on both the dimensionality and the behaviour of the integrand – see
Schürer [21] for a comparison.

Regardless, by evaluating the expectation in the Koopman form the computa-
tional costs can be significantly reduced compared to forming the Monte Carlo
estimate of πT [15, 18]. Using this approach the overall cost of performing optimal
control under uncertainty can be significantly reduced [18].

A.3.4 Remarks on the Implementation

As discussed, uncertainty in the parameters and/or initial state can be considered,
by evaluating the expectation of the cost (equation A.3) using Eq. A.11. We note
that πx0

could describe both the uncertainty in initial conditions of a batch process,
or the operating region of the state space (e.g. estimated from data). In both of
these cases πx0

could be a complex multi-dimensional probability distribution,
especially when there are constraints on the states. It should be noted that the
controller is not trained only on state space given by πx0

, i.e. the closed loop
optimisation means that the controller will be receive state values, based on the
controller outputs. Due to this approach, important regions of the space will be
heavily sampled if the horizon used in the controller optimisation is long enough.

When performing the optimisation, box constraints on the input u can be
treated in the network design, e.g. use a sigmoid activation on the final layer to
limit the output between 0 and 1. To enforce state constraints we use a penalty
approach, where we define the penalised objective φ:

min
θ
Ex0
[φ(θ , x0)] =min

θ
Ex0
[J(θ , x0)+

ρQ(I(θ , x0))] (A.13)

where I is the indicator function, ρ is an adjustable penalty parameter and Q is a
penalty function. We remind that x0 is the augmented vector with parameters as
states.

Common choices for Q include the l1 and l∞ norms, and the quadratic penalty
function, Q(x) = x2. Using the norms gives an exact penalty function, which
means that minimization with some ρ∗ will give the same solution as the con-
strained problem, under some assumptions [9]. One may then iteratively evaluate
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E[I(θ , p, x0)] and increase ρ until the desired satisfaction is met. Although the
quadratic penalty is not exact it is still commonly used for numerical convenience.

An alternative choice that is also not equivalent to the constrained optimisation
is to penalise the extent of constraint violation, e.g. using a quadratic penalty:

Q(g) =
Ng
∑

i=0

Nk
∑

k=0

(max(gi(xk, uk, p), 0.0))2 (A.14)

Ultimately, the choice of penalty function depends on the system considerations
that apply.

In summary, we perform gradient-based optimisation to find the parameters of
a neural network feedback policy for a system with uncertainty in the parameters
and/or initial conditions, using the expectation of the penalised cost E[φ], as the
objective function, evaluated in the Koopman expectation form via quadrature. As
is standard, hyperparameters of the formulation, e.g. network layer width, can be
set by Bayesian optimisation or similar by performing the proposed workflow in
an “inner-loop”.

An alternative approach is to estimate E[φ] using a small number of samples,
and use a stochastic optimisation algorithm. The advantage of taking a small
number of samples is that the expectation evaluations will be less costly. The
estimate of the expectation may be inaccurate due to the number of samples,
however if it is unbiased then the stochastic optimiser will converge. Thus, such
an approach will trade off faster iterations, due to the low number of samples,
with slower convergence of the optimiser [22]. We note that it would be feasible
to begin with a stochastic optimisation approach and then switch to using the
proposed approach.

The proposed workflow is coded in Julia [23], and applied to three case studies,
using the following packages: DifferentialEquations [24], DiffEqFlux [14],DiffEqUn-
certainty [15], Flux [25], ForwardDiff [26], HCubature, and NLopt [27]. We note
that this combination of packages supports the automatic differentiation of equa-
tion A.13. The neural networks are initialised with Glorot initialisation [28]. The
case studies were performed on an Intel i5-10310U CPU.

A.4 Case studies

A.4.1 Double integrator

Consider the double integrator, with uniform uncertainty in the initial condition,
x ini t = [U(−15,15), U(−6, 6)], and no parametric uncertainty:

d x1

d t
= x2 (A.15)

d x2

d t
= u (A.16)
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Figure A.2: Neural network control for the double integrator system

The objective is to control the system to the origin, with constraints −1≤ u≤ 1,
and stage cost:

l(x , u, t) = x(t)2 + 0.1u(t) (A.17)

One can find the explicit MPC for this system, as in Bemporad et al. [1], using the
ranges x1 ∈ [−15,15] and x2 ∈ [−6,6].

The control horizon used for optimising the neural network is 5 seconds, with
the objective calculated at time points of 1 second intervals. The network has 2
hidden layers of 10 nodes each, without bias nodes, tanh as the activation functions
and the control constraints are satisfied by a “hard tanh”. Optimisation is performed
with LBFGS [29].

Quadrature for the expectation is performed with an absolute tolerance 10−3.
The trained neural network control law is shown in Figure A.2. Using the neural
controller, the expected cost over a 40 second period is 851 while for an explicit
MPC (with 7 regions) it is 873. Examples of the controlled trajectory of x1 is shown
in Figure A.3. Note that the control is mostly at its constraints which is responsible
for the slow response seen in Figure A.3. Performance is improved by increasing
the bound on the control.

After training the mean and median execution time of the neural network is
2.576 µs (10−6s) and 2.171 µs respectively.

A.4.2 Linear angular positioning system

This is a linear model of an angular positioning system described in Kothare et al.
[10]:

dθ1

d t
= θ2 (A.18)



208 E.M. Turan: Optimisation and machine learning for process systems engineering

Figure A.3: Multiple state trajectory of the double integrator system from different
initial conditions, controlled by the trained neural network.

dθ2

d t
= αθ2 +κu (A.19)

|u| ≤ 2 (A.20)

where θ are the states (rad), κ = 0.787 (rad−1V−1s−2) and α (s−1) is an uncertain
parameter, assumed to be uniformly distributed between 0.1 and 10. The objective
is to return an initially disturbed state to the origin, with the stage cost:

l(θ , u, t) = θ1(t)
2 + 10−5u(t)2 (A.21)

To parametrise the controller we use a neural network with three layers of
eight neurons each, and no bias nodes. Rectified linear units are used as activation
functions, and the constraint on the control is enforced by a “hard tanh”. The
network is trained on a 4 second time range, with the objective evaluated at
0.1 intervals, and the initial point fixed to x ini t = [0.05,0.0]. Optimisation is
performed with LBFGS [29]. Quadrature is performed with an absolute tolerance
of 10−5.

The state profile of the trained system is shown in Figure A.4. In this plot each
trajectory corresponds to a closed loop simulation of the system with a different
realisation of the parametric uncertainty. Figure A.5 shows a closed-loop simulation
with the uncertain parameter varying in time.

After training the mean and median execution time of the neural network is
3.620 µs and 3.188 µs respectively, with an estimated memory requirement of
8.20 KiB.

A.4.3 Nonlinear CSTR

The proposed approach is demonstrated on a nonlinear continuous stirred tank
reactor (CSTR) based on the implementation of [11], with uncertainty in the states
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Figure A.4: State trajectories of the controlled angular positioning system, with
parameter α drawn from its distribution.

Figure A.5: Profile of θ1 and control output for the angular positioning system
with randomly time varying α

(a) (b)

Figure A.6: State trajectories of the controlled CSTR, using parameters drawn
from their distributions, after optimisation of the neural controller. Temperature
constraint marked in red, in (a). Constraint satisfaction is 100%.
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and parameters. The CSTR model is given by the following equations:

dCA

d t
= F(CA,0 − CA)− k1CA− k3C2

A (A.22a)

dCB

d t
= FCB + k1CA− k2CB (A.22b)

dTR

d t
=

k1CAHR,1 + k2CBHR,2 + k3C2
A HR,3

−ρcP
+ (A.22c)

F(Tin − TR) +
KwAR(TR − TK)

ρcP VR

dTK

d t
=

Q+ kwAR(TR − TK)
mkCP,k

(A.22d)

with kinetic expression:

k1 = βk0,1 exp
� −EA,1

TR + 273.15

�

(A.23)

k2 = k0,2 exp
� −EA,2

TR + 273.15

�

(A.24)

k3 = k0,3 exp
� −αEA,3

TR + 273.15

�

(A.25)

where parameters α and β are normally distributed, N (1., 0.02) and N (1., 0.05),
with the distributions truncated at 1 ± 0.05 and 1 ± 0.1 respectively. The four
states are the concentrations of A and B (CA, CB, mol/L), with bounds [0.1, 2.],
and the temperatures of the reactor and cooling jacket (TR, TK , ◦C) with bounds
[50, 140]. The initial condition is given by independent normal distributions:
πx0
= [N (0.7, 0.05), N (0.6, 0.05), N (135, 1.5), N (130, 2.5)]. These distributions

are truncated at the mean ±0.1 mol/L for the concentrations, ±3◦C for TR, and
±5◦C for TK .

The feed (F , L/h) and heat flow (Q, kW) are control inputs, with bounds of
[5., 100.] and [−8500, 0.] respectively. Other parameter values are listed in [11].
Note that in the above time (t) is in hours. We consider the stage cost:

l = (CB(t)− 0.6)2 + 0.1(CA(t)− 0.706)2 (A.26)

+ 0.001
�

(TR(t)− 135)2 + (TK(t)− 133)2
�

As the objective function we use the expectation of the penalised cost plus two
times the variance, i.e.

min
θ
Ep,x0

[φ] + 2Vp,x0
[φ] (A.27)

where the penalised cost is defined as in Eq. A.13.
A neural network with two hidden layers of six nodes each is used, with tanh

as the activation functions, and with control constraint satisfaction enforced by a
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sigmoid function. We use normalised states and control outputs for the network
due to the differences in magnitude in these variables. The network is trained
using a 0.1875 hours (11.25 minutes) time interval, with data recorded every
0.025 hours (1.5 minutes).

Optimisation is performed by LBFGS [29]. Quadrature is performed with an
absolute tolerance of 10−4. We use a penalty approach, aiming for a joint chance
constraint of 100% satisfaction.

250 trajectories of the controlled system are shown in Figure A.6. The controller
is able to stabilise the states, with 100% constraint satisfaction. State profiles of
the controlled system with randomly varying parameters is shown in Figure A.7.
Despite the varying parameters the controller is able to keep the states near their
set points.

After training the mean and median execution time of the neural network is
1.91 µs and 1.86 µs respectively, with an estimated memory requirement of 3.86
KiB.

A.5 Conclusion

We have shown that neural networks can be optimised to give an explicit control law
for systems with uncertainty in the parameters and/or initial state. The optimisation
was performed with expectations evaluated in their Koopman expectation form,
for the numerical benefits described in [15, 18].

In comparison to an explicit MPC law of 7 regions for double integrator example,
the neural policy gives a similar solution. The use of a neural policy to ensure near
complete probabilistic constraint satisfaction is shown on a nonlinear example.
The use of neural networks in this context is interesting as after training they are
fast to evaluate, with all evaluation times in this paper being less than 4 µs. Future
work could include a comparison to other training approaches, such as imitation
learning, and a comparison of different approaches to evaluating the expectations,
e.g. polynomial chaos expansion and the unscented transformation.
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Appendix B

A simple two-parameter
steady-state detection algorithm

This appendix summarises the work published as:

E. M. Turan and J. Jaschke, ‘A simple two-parameter steady-state
detection algorithm : Concept and experimental validation,’ in 33rd
European Symposium on Computer Aided Process Engineering, Elsevier
B.V., 2023. DOI: 10.1016/B978-0-443-15274-0.50280-8

B.1 Motivation

The online identification steady state periods from process data is a necessary task
for many other tasks relating to process operation, e.g. event detection and real
time optimisation. Despite it’s apparent simplicity steady state detection is not an
easy task, in part due to the process never truly being at steady state as there is
always some degree of stochasticity.

B.2 Main findings

The time series of a controlled process variable at steady state, subject to stochastic
disturbances, resembles that of a mean reverting process, i.e. it tends to some
mean point despite the stochasticity of the system. In the example of a controlled
process unit, this would be due to the relevant controllers rejecting disturbances,
or the system settling to a new operation point. Thus one can test for steady state
by testing if the process is mean reverting – this can be done by applying the
Dickey-Fuller test statistic [1].

Consider process measurements in a time window, written in deviation-variable
form, i.e.

ȳk = yk −µ (B.1)
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Statistic Proposed method Kelly and
Hedengren [2]

Cao and
Rhinehart [3]

Slope

Precision 0.85 0.83 0.81 0.86
Recall 0.90 0.78 0.89 0.44
F1 score 0.87 0.81 0.85 0.58
φ coefficient 0.60 0.46 0.51 0.29

Table B.1: Summary statistics of steady state detection algorithms applied to lab
data. Bolded entries indicate the best method in each row.

where µ is the average of y in that window. We assume that within the window
the data can be described by the first order auto-regressive model:

ȳk+1 = ρ ȳk+1 +ηk (B.2)

where ηk is a random variable with mean zero and finite variable, and ρ is to be
estimated. The process is mean reverting if |p| < 1, i.e. there is a deterministic
reduction in the deviation from µ. Thus, a one-sided confidence test (i.e. the
Dickey-Fuller test) can be performed on the null-hypothesis that the process is in
a transient state (|p|= 1). Note that a standard statistical test, e.g. t-test, cannot
be performed due to unsatisfied assumptions. The performance of the test was
compared against other methods in the literature on simulated and real noisy data,
with the Dickey-Fuller test performing the best overall, e.g. Table B.1.

B.3 Conclusion

The use of the Dickey-Fuller test for steady-state detection seems promising. The
test is simple, and only requires two parameters to tune – the time window of
measurements and the confidence level of the test. Based on simulated and ex-
perimental data the test also better than methods in the literature. Further work
could extend the approach to multivariate system, and consider more extensive
comparisons with methods in the literature.
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Appendix C

Experimental validation of
modifier adaptation and Gaussian
processes for real time
optimisation

This appendix summarises the work published as:

E. M. Turan, S. Lia, J. Matias and J. Jaschke, ‘Experimental validation of
modifier adaptation and Gaussian processes for real time optimisation,’
in 22nd IFAC World Congress, IFAC, 2023

C.1 Motivation

In a real time optimisation (RTO) approach one seeks to find operating points that
maximise economic performance based on real time disturbances and conditions.
In doings so online measurements are used, typically along side a steady state
process model. If there is significant plant model mismatch then model based RTO
approaches can yield sub-optimal, or even infeasible operating points. As such
model-mismatch is a major challenge in the practical implementation of RTO.

Modifier adaptation (MA) is an extension of standard RTO, in which correction
terms are estimated from online data and included in the RTO optimisation to
locally correct for plant-model mismatch [1]. Under some assumptions MA allows
convergence to a point satisfying the KKT conditions of the plant. Significant
disadvantages with MA is that it only gives a local correction, and it requires
estimation of the process gradients. Gaussian processes (GPs) have recently been
proposed to be used (1) to find a global correction term for the process model
in RTO (GP-RTO), and (2) to estimate the process gradients for MA approaches
(GP-MA) [2].
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Figure C.1: Average objective value (45 seconds) of the methods compared the
average profit achieved by using the quadratic model without modifications (black
line). MA is in red, GP-MAy in purple, and GP-RTO in brown. Different operating
sections (due to step-disturbances) are separated by vertical green lines.

Results on this topic are predominately theoretical and simulation based, with
only a few works on the experimental implementation of these schemes. In this
work we implemented and compared the implementation and performance of
output modifier adaption (MAy), GP-RTO, and GP-MAy on an experimental lab rig
emulating a gas-lifted oil well system.

C.2 Main findings

The algorithms are implemented and tested on the gas-lift lab rig described in
Matias et al. [3]. A quadratic model is used as the steady state model, with the
various algorithms attempting to correct for the model mismatch. The results of
the implementation are summarised in Table C.1 with the real time iterates of
the objective value shown in Figure C.1. All methods are able to improve upon
the base case on average, despite significant system noise. GP-MAy gave the most
consistent performance across the experimental runs.

The greatest challenge of the approach was to tune the methods, as all methods
were relatively sensitive to choice in their tuning. In addition, averages of the
measurements had to be provided, as otherwise the noise was too hard to overcome.
The GP based methods perform hyper-parameter optimisation at each iteration.
To prevent poor behaviour (1) in the first section of the comparison the system is
probed at pre-determined anchor points and (2) maximum-a-posterior estimation is
used for the hyper-parameters. Without these considerations the hyper-parameters
are too sensitive to the data in an experimental run.
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Table C.1: Average objective value in each section and the across all sections.

Section Avg.
Method 1 2 3
Base 432 393 313 379
MAy 435 402 320 386
GP-MAy 436 402 322 387
GP-RTO 431 397 325 384

C.3 Conclusion

All the RTO variants improve upon the base case, with GP-MAy giving the most
consistent performance. However, for all methods steps had to be introduced to
reduce the effect of noise, e.g. averages of the measurements had to be provided,
and filters/constraints had to be introduced to prevent agressive behaviour due to
noise. In addition, for reasonable performance all the methods required tuning of
their parameters. As such, despite these methods improving the RTO performance,
it seems that further work is required to make them easier to tune and implement
for systems with significant, real noise.

References

[1] A. Marchetti, B. Chachuat and D. Bonvin, ‘Modifier-adaptation methodo-
logy for real-time optimization,’ Industrial & engineering chemistry research,
vol. 48, no. 13, pp. 6022–6033, 2009.

[2] T. de Avila Ferreira, H. A. Shukla, T. Faulwasser, C. N. Jones and D. Bonvin,
‘Real-time optimization of uncertain process systems via modifier adaptation
and gaussian processes,’ in 2018 European Control Conference (ECC), IEEE,
2018, pp. 465–470.

[3] J. Matias, J. P. Oliveira, G. A. Le Roux and J. Jäschke, ‘Steady-state real-time
optimization using transient measurements on an experimental rig,’ Journal
of Process Control, vol. 115, pp. 181–196, 2022.



Appendix D

Classification of undesirable
events in oil well operation

This appendix summarises the work published as:

E. M. Turan and J. Jaschke, ‘Classification of undesirable events in
oil well operation,’ in 2021 23rd International Conference on Process
Control (PC), IEEE, 2021, pp. 157–162. DOI: 10.1109/PC52310.2021
.9447527

D.1 Motivation

During process operations events that infrequently events can occur that greatly
impact operation – these are called abnormal events. During an abnormal event
the goal is to (1) detect the event, (2) diagnose the cause of the event, and (3)
return the process to normal. Early detection of an abnormal event, i.e. before it
has drastically disrupted the process, can mitigate damages and the risk of unsafe
operation and is hence highly desirable.

In this work we investigate the use of various classifiers for event detection,
and apply them to the 3W dataset. The 3W dataset, compiled by Petrobras, is the
first public dataset of rare undesirable events in oil wells compiled from real and
simulated operating periods [1]. Classification is performed during the transient
phase of the event, and with the aim to help operators identify which of seven
classes of unwanted events is occurring. These classes are summarised in Table
D.1. This is a relatively large industrial dataset, it is made up of over 2000 events,
each of which is a time-series of several hours, containing 8 measurements, with
measurements every second.
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Table D.1: Breakdown of events in the 3W database, for descriptions of each class
see [1].

Class Number Type of event Real Simulated Total
0 Normal 597 0 597
1 Abrupt Increase of BSW 5 114 119
2 Spurious Closure of DHSV 22 16 38
3 Severe Slugging 32 74 106
4 Flow Instability 344 0 344
5 Rapid Productivity Loss 12 439 451
6 Quick Restriction in PCK 6 215 221
7 Hydrate in Production Line 3 81 84

D.2 Main findings

Each event in the dataset, is subdivided into windows and in each window various
features typically used to describe time series are calculated. These include mo-
ments of the time window, miscellaneous features describing the distribution of the
data, coefficients of polynomials fit to the data in the window, and various others.
Classifiers, with and without a first step of feature selection are compared with the
results summarised in Table D.2 (hyper-parameters chosen based on a grid-search).
Using the F1-score as the metric for comparison the best classifier is the random
forest, followed by AdaBoost and the decision tree classier. Interestingly, despite
random forest and AdaBoost being aggregate tree classifiers they have similar
performance to the decision tree. Another interesting point is the feature selection
did not significantly improve the performance of the classifiers.

Based on the validation results we refit the decision tree to the combined test
and validation data, and used the trained tree on a previously unseen test set
(Table D.3). With the exception of class 2 (Spurious closure of DHSV) the decision
tree is able to identify faults extremely well. The poor performance on class 2 may
be as it occured the least in the dataset (see Table D.1).

D.3 Conclusion

Relatively simple classifiers are shown to perform extremely well on the task of
classifying abnormal events in the 3W dataset. This implies that the considered
features are informative enough that relatively simple classification rules can be
applied to the data. As such, further work could investigate the use of optimal
sparse decision trees as these tend to be highly interpretable.
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Table D.2: Comparison of classifiers (cross validation results)

Classifier F1 Accuracy
No feature selection
Linear discriminant analysis 0.83 0.86
Quadratic discriminant analysis 0.69 0.70
Linear SVC 0.83 0.87
Logistic 0.82 0.88
Decision Tree 0.89 0.93
Random Forest 0.91 0.94
AdaBoost 0.90 0.92
With feature selection
Linear discriminant analysis 0.81 0.83
Quadratic discriminant analysis 0.75 0.83
Linear SVC 0.81 0.88
Logistic 0.81 0.86
Decision Tree 0.90 0.93
Random Forest 0.90 0.93
AdaBoost 0.89 0.92

Table D.3: Classification metrics for decision tree on test data

Class Precision Recall F1-score
Normal 0.95 0.85 0.90
Abrupt Increase of BSW 0.83 0.98 0.90
Spurious Closure of DHSV 0.42 0.60 0.49
Severe Slugging 0.97 0.91 0.94
Flow Instability 0.94 0.96 0.95
Rapid Productivity Loss 0.91 0.94 0.92
Quick Restriction in PCK 0.76 0.86 0.81
Hydrate in Production Line 0.84 0.90 0.87
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