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Abstract

This master thesis investigates innovative methods for identifying physical activ-
ity phenotypes, primarily utilising Case-Based Reasoning (CBR) and clustering.
The study explores the effects of varying the number of clusters, global similarity
measures, and data representations in the pursuit of more precise and actionable
results. CBR has advantages over other Al approaches in its transparency, which
makes it ideal for interdisciplinary work, such as between computer science and
public health research.

Physical inactivity remains a pressing global health concern, contributing signifi-
cantly to healthcare expenditure and straining healthcare systems. While public
health recommendations exist, they often follow a one-size-fits-all approach, ne-
glecting the unique needs and activity patterns of individuals. To provide tailored
guidance on physical activity, it is essential to identify and explore population
clusters characterised by similar activity patterns.

The results indicate that a 4-cluster solution may be optimal for identifying mean-
ingful physical activity phenotypes. Data-driven global similarity measures are
found to have little impact on clustering when local similarity measures already
account for attribute distribution. In conclusion, this research contributes a gen-
eralised method for identifying physical activity phenotypes, offering a template
for future work. The combination of CBR and clustering provides a promis-
ing avenue for addressing the complexities of physical inactivity and enhancing
personalised guidance to promote healthier lifestyles.



Samandrag

Denne masteroppgava undersgker nyskapande metodar for & identifisere fenotypar
for fysisk aktivitet, hovudsakleg ved bruk av Case-Based Reasoning (CBR) og
gruppering. Studien utforskar effektane av a variere talet pa grupper, globale
likskapsmal og datarepresentasjonar for & oppna meir presise og nyttige resultat.
CBR har fordelar framfor andre tilnegermingar innan kunstig intelligens pa grunn
av si openheit, noko som gjer CBR ideelt for tverrfagleg samarbeid, som til dgmes
mellom datateknologi og folkehelse.

Fysisk inaktivitet er framleis eit presserande globalt helseproblem som bidreg
betydeleg til auka helseutgifter og press pa helsetenesta. Sjglv om offentlege
helsetilradingar eksisterer, fglgjer dei ofte ei "one-size-fits-all"-tilnserming, som
neglisjerer individuelle behov og aktivitetsmgnster. For a kunne gi skreddarsydde
rad om fysisk aktivitet, er det avgjerande & identifisere og utforske grupper som
er kjenneteikna av liknande aktivitetsmgnster.

Resultata indikerer at ei lgysing med 4 grupper kan veere optimal for a identifis-
ere meiningsfulle fysiske aktivitetsfenotyper. Datastyrte globale likskapsmal har
avgrensa innverknad pa grupperinga nar lokale likskapsmal alt tek omsyn til at-
tributtdistribusjonen i datasettet. Avslutningsvis bidreg denne studien med ein
generalisert metode for a identifisere fysiske aktivitetsfenotyper og gir ein mal
for framtidige studier. Kombinasjonen av CBR og gruppering gir ei spanande
tilneerming for & handtere kompleksitetane knytt til fysisk inaktivitet og & forbe-
tre skreddarsydde rad for a fremje ein sunnare livsstil for individet.
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1 Introduction

Case-based reasoning (CBR) is a widely employed Al methodology in domains
characterised by abundant historical data and domain-specific expertise. Its ver-
satility extends its utility to various fields and to be used in combination with
other techniques, such as clustering. In comparison to other AI methods, CBR is
transparent, which makes it ideal for interdisciplinary work where it can be cru-
cial to understand the reasoning behind the model’s decisions. Nevertheless, the
prerequisite for both domain experts and engineers in its application might render
it less appealing for industrial and scientific purposes. To mitigate these chal-
lenges, there is a compelling need for systematic data-driven approaches. Verma
et al. [1] endorse the adoption of such an approach in the modelling of similarity
measures for identifying population clusters with the use of a CBR system, which
combines the advantages of CBR and clustering.

With the arrival of objective physical behaviour measurements, new research
possibilities have been unlocked in the fields of public health and computer sci-
ence. The use of body-worn accelerometers in combination with machine learning
methodologies, facilitates the recording and prediction of physical activities [2][3].
Human Activity Recognition (HAR) specialises in recognising activities based on
sensor data. Leveraging the predictive capacities of HAR, an array of techniques
can be implemented for the purpose of identifying physical activity phenotypes.

Physical inactivity stands as a predominant contributor to premature mortality
on a global scale and represents a substantial challenge in the domain of pub-
lic health [4]. These concerns significantly intensify healthcare expenditure and
the burden on national healthcare systems. On average in Canada, an inactive
individual spends 38% more days in the hospital compared to an active one [5].
The World Health Organisation has recommendations regarding physical activity
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but reports that more than 25% of the world’s adult population is insufficiently
active. There has been no improvement in these levels since 2001 [6].

Presently, activity recommendations follow a largely uniform template for the
general population, with variations restricted primarily to different age cate-
gories. This one-size-fits-all strategy falls short of accommodating the distinct
requirements and activity routines of each individual. To provide more tailored
and accurate guidance, while still operating on a population-wide scale, it be-
comes necessary to identify and explore groups characterised by similar activity
patterns, namely physical activity phenotypes.

This thesis endeavours to build on the CBR system and clustering methods pro-
posed by Verma et al. This is done by utilising new and more extensive data from
the HUNT4! population study, with an overall goal of investigating contempo-
rary and innovative ways of using CBR for the identification of physical activity
phenotypes. In contrast to the work of Verma et al. with 9000 participants,
this thesis works with the full HUNT4 dataset which includes data from 38 000
participants for up to 6 days.

The objectives of this study are defined by the following research questions:

RQ 1: What is the state-of-the-art in data representation of objectively measured
health data, similarity-based clustering, and identifying phenotypes in the
field of Artificial Intelligence?

RQ 2: How, and employing which data representation, can CBR and clustering
be used to find phenotypes in the HUNT4 dataset?

RQ 3: What are the optimal cluster sizes for forming phenotypes with this data
and method?

RQ 4: How does adjusting the global similarity measure influence the clustering?

The thesis will be structured as follows: Chapter 2 will provide the foundational
background necessary for a nuanced understanding of the research done. The
exploration of the first research question within Chapter 3 will encompass related
works. In Chapter 4, a detailed exposition of the methodologies employed for data
processing, CBR and clustering within this thesis will be presented, which covers
the second research question. Chapter 5 presents the experiments and subsequent
results, and thus provides answers to the last two research questions. Chapter 6
will engage in discussion and analysis of the work. The culmination of the thesis
and prospects for future research will be presented in Chapter 7.

https://www.ntnu.no/hunt/hunt4



2  Background

This chapter presents the background of methods, data, and tools used for the
experiments in this thesis, and is heavily based on the contents of the preceding
project thesis [7].

2.1 HUNT4 data set

Between 2017 and 2019, an extensive population health study known as HUNT4
was conducted in Nord-Trgndelag, Norway, involving 56000 of its inhabitants.
The part of it used for this master thesis consists of the objective monitoring of
physical activities for 38000 participants.

To capture this data, two 3-axial accelerometers were affixed to each participant’s
lower back and right thigh respectively, continuously recording their activities
over a seven-day period. Subsequently, machine learning models were employed
for Human Activity Recognition (HAR) to classify the accelerometer data stream
into six activity categories: lying, sitting, standing, walking, running and cycling
[2][3], described in Table 2.1.
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Table 2.1: Description of activity categories.

Activity  Description

Lying Person is lying down horizontally
Sitting Person is in a seated position
Standing Person is upright on their feet

Walking  Person is moving with strides

Running  Person is moving with both feet off the ground during a stride

Cycling  Person is riding a bicycle

Figure 2.1 shows an example of the processing of the data, from raw accelerometer

data via a machine learning model to 5-second windows.

id
4430292
4430292
4430292
4430292

| MACHINE LEARNING MODEL |

|

timestamp  weekday

2018-04-13 13:11:15
2018-04-13 13:11:20
2018-04-13 13:11:25
2018-04-13 13:11:30

4

4
4
4

activity
sitting
sitting
walking
standing

Figure 2.1: Process from raw accelerometer data via a machine learning model
to b-second windows of physical activities.



The process begins with the capture of raw data from the accelerometers, which
are in three dimensions, in response to the orientation and movement of the
accelerometer. The HAR machine learning model operates on this raw data and
segments it into discrete windows, each spanning 5 seconds. It then performs
the task of classifying these 5-second windows into the aforementioned activity
categories, based on labeled patterns. In the final processing step, the system
labels the weekday for all of the windows. Any incomplete days, not adding up
to 1440 minutes, are removed from the data set.

2.2 Bouts from Physical Activity Data

Using the 5-second windows to compare patterns is highly granular and will lead
to high computation time and cost as well as difficulties finding complex patterns.
It is therefore need to explore ways to represent physical activity data. Bouts
are a way to perceive consecutive activity types as well as summarise days, as
presented by Diaz and Yacef [§].

In physical activity data, a bout is a continuous period of a specific length for a
specific activity. By organising a day of physical activity into bouts of different
lengths it is possible to not only look at each participant’s amount of activity
but also how this activity is accumulated throughout the day. As an illustra-
tive example, it can differentiate between extended walking activities and more
sedentary indoor movements.

2.3 Case-Based Reasoning

Case-Based Reasoning (CBR) has its roots in cognitive science, describing how
humans reason when solving problems. The field is founded on the premise that
similar problems also possess similar solutions. CBR sets itself apart from other
artificial intelligence approaches by employing a unique data representation, as
presented by Aamodt in 1994 [9].

Figure 2.2 illustrates the core structure of CBR, where each experience is repre-
sented as a case that encompasses both problem and solution descriptions. The
problem description is comprised of a collection of attributes. Cases are sys-
tematically organized within a case base, and although they all share the same
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set of attributes, they differ in the values assigned to those attributes and their
respective solutions.

[ Problem description ]

[Solution description]

CASE

CASE BASE

Figure 2.2: Structure of a case base containing cases with problem and solution
descriptions.

CBR finds a familiar application in human reasoning, such as when a doctor relies
on their memory of a past patient’s medical history while diagnosing and treating
a new patient who presents similar symptoms. In such a scenario, relevant at-
tributes for problem comparison might encompass age, gender, and specific test
results, while relevant solutions can be a specific medicine or an operation. The
CBR process adheres to four distinct steps, often referred to as the CBR cycle
or the four R’s:

1. RETRIEVE: In this first phase, the system seeks out the most similar case
within its case base.

2. REUSE: Knowledge and solutions from that similar case are reutilised to
address the new problem at hand.

3. REVISE: The suggested solution is subject to revision and adaptation as
needed to fit the nuances of the current problem.

4. RETAIN: The case, along with its updated solution, is retained within the
case base. This preserves it for potential use in future situations.

When confronted with a problem, the CBR cycle initiates by creating a new case,
primarily derived from the problem description, as illustrated at the top of Figure
2.3. This freshly formed case serves as a means to retrieve one or more pertinent
previous cases from the case base. The selection of these prior cases is based on a
similarity measure, ensuring their relevance to the current problem. The solution



contained within the retrieved case can then be suggested as a potential solution
for the new case. However, this proposed solution is not blindly accepted. If a
solution does not fit it can be adapted to function better for the new case. Finally,
the case, now enriched with its revised solution, is stored in the case base. This
practice ensures its availability for addressing future problems.

Problem

Learned

Previous Retrieved

case

case

CASE BASE

Repaired

case

Solved
case

Figure 2.3: CBR cycle displaying the four R’s.

2.3.1 Similarity Measures

A case is deemed similar to a new case if its solution can be used to resolve the new
problem. This similarity is predicated on the utility of a case for addressing the
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new problem, and it is determined by a similarity measure, an essential element
in the retrieval phase of the CBR cycle.

The similarity measure comprises two parts that operate together, following the
local-global principle. Cases are evaluated from both a local, atomic perspective
and a global, conceptual standpoint. The local similarity measure scrutinises the
resemblance between cases in each of their individual attributes. For instance,
in the context of a doctor comparing patients, distinct age ranges might be es-
tablished as similar, acknowledging that age differences bear greater significance
early in life than in later stages.

In contrast, the global similarity measure operates at a conceptual level, taking
into account the relative importance of each attribute when comparing cases. For
instance, when making a diagnosis for a new patient, a similar test result often
carries more weight than factors such as the patient’s gender or age. Conse-
quently, attributes related to test results might be assigned a higher significance
in the global similarity modelling.

One way of modelling local similarity measures for numerical data in CBR, as
presented by Verma et al.[10], is to look at the distribution of values for each
attribute in the dataset to be analysed. The local similarity measures are poly-
nomial functions whose degrees need to be determined. Figure 2.4 shows the
method of how the range of values for an attribute in the dataset can determine
the local similarity measure. It uses the interquartile range (IQR), which is de-
fined as the difference between the 75" and 25" percentiles of the data, and the
min-max range to determine the polynomial function.
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Figure 2.4: Visualisation of how the local similarity measure is based on the
attribute’s distribution.

The global similarity measure is determined by calculating weighted arithmetic
mean, that is the weighted sum (WS) of all attributes’ local similarity functions
(SMF) divided by the sum of weights, as represented in Equation 2.1, where n

corresponds to the number of attributes, while w denotes the weight assigned to
each attribute.

WS ==, (2.1)

2.3.2 myCBR

myCBR is an open-source Case-Based Reasoning (CBR) tool that’s hosted by the
Competence Centre for Case-Based Reasoning at the German Research Centre for
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Artificial Intelligence (DFKI). It was developed in collaboration with the Centre
for Model-Based Software Engineering and Explanation-Aware Computing at the
University of West London (UWL).

This tool is designed with two key components. The Graphical User Interface
(GUI), called the myCBR workbench, provides users with a visual interface for
modelling similarity measures. It allows users to define and customise how cases
are compared and evaluated for similarity. Figure 2.5 shows a screenshot of the
GUI. Downloads and more information are found on the myCBR website?.

@ myCBR — O X
File Model CaseBase Help

I D’l H Modeling [ Case Bases [ﬁ’ Q E%

O Projects| 4" @ ‘»? @ﬂ ® = 0|6 Participant % | @ Participant_sim2 @ cycling10 @ cycling10_sim = a

v @ HUNT2

L]
Concept
v (3 Participant p

@ cyclingl0 Name: | Participant]
@ cycling100

@ cycling300

@ cycling3

@ cycling30

@} lying10

[ Similarity Measures x = O

@ Participant_sim_symbelic

@ Participant_sim
@ default function

@ Participant_sim2 . = %
PRt Concept | Concept Explanation | Instances | Information Extraction

Loading cases..: (2%) [ ]

Figure 2.5: Screenshot of the myCBR workbench.

In addition to the GUI, myCBR offers a RESTful Application Programming
Interface (REST API) that enables users to interact with the tool through pro-
gramming. Figure 2.6 shows the Swagger UI for the REST API used via localhost
and gives a visualisation of some of the functions provided by the REST API.
With this REST API, users can perform tasks like updating the model and re-
trieving information from it. The REST API is accessed via an open-source
GitHub repository?.

2http://mycbr-project.org/
Shttps://github.com/ntnu-ai-lab/mycbr-rest/
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{3} swagger default

myCBR RESTful API documentation®

RL: localhost:8881

This pages documents RESTful Web Service endpoints to be used to create Case-Based Reasoning services. The RESTful APl uses the myCBR SDK.

Terms of service
myCBR Team - Website
Send email to myCBR Team

LGPL

analytics-controller Analytics controller
attribute-controller Atribute Controller

case-base-controller Case Base controller

‘ ﬂ Jcasebases getCaseBaselDs

/casebases/{casebaseID} addCaseBaselD

Im Jcasebases/{casebaseID} deleteCaseBaselD

rasp-rantraller case Controller

Figure 2.6: Screenshot of the Swagger Ul for the REST API.

2.4 Clustering

Clustering refers to the process of organising data points into groups or clusters
in a way that maximises the similarity among data points within the same cluster
while minimising the similarity with those in other clusters, as discussed by Jain
et. al [11]. Tt falls under the category of unsupervised learning, which means
that the data points do not require pre-existing labels for the algorithm to begin
learning. This characteristic makes clustering particularly advantageous when
dealing with extensive datasets where manual labelling would be impractical or
unfeasible.

One commonly employed method for clustering is known as k-means clustering
[12], where the parameter k represents the number of clusters and is predeter-
mined. In this approach, k centroids are chosen initially. Then the process
consists of two loops. In the first one, new data points are compared to the
centroids and assigned to the closest one. In the second loop, the centroids are
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updated to become the mean of the data points within their respective clusters.
Figure 2.7 illustrates an instance of k-means clustering with three clusters.

A A
o
00080000 Q OO%OOOO o
%S Fo L %P O:)Oo(,)
BB 0 S
o o 270 -
o0 00 Ogo e Oﬁ’o
9o S8 9 °8 e,
O o0 0o0o0° 000
%Oo oo oo ‘0 0P
°7 PPPo PPPa
o~ 00oC i 0~ 00°
> >

Figure 2.7: K-means clustering. Unclustered data on the left and clustered with
k=3 on the left. Centroids are the darker points.

The comparison between data points and centroids typically involves measuring
the Euclidean distance, which is the length of the shortest line between the two
points. However, other similarity measures can also be used. It’s important to
note that the final centroids can vary depending on the initial centroids chosen.
Consequently, different initialisation techniques are often employed to optimise
the clustering process and achieve better results.

2.4.1 Evaluating Clustering Methods

Different methods can be used to evaluate the quality of the clustering results.
It is however somewhat more difficult without having a ground truth to compare
to. Two intrinsic methods when having no labelled data are testing cohesion and
separation. Cohesion refers to the similarity between data points intra-cluster,
while separation refers to the inter-cluster similarity. The goal is to have higher
similarity within the clusters and lower similarity between the clusters.

The most commonly used intrinsic technique is the Silhouette Coefficient, as pre-
sented by Rousseeuw in 1987 [13|. It serves the purpose of detecting densely
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populated and distinctly separated clusters, by using the average inter- (mean-
InterDistance) and intra-cluster distances (meanIntraDistance). Equation 2.2
shows the calculation. When using inter- (meanInterSimilarity) and intra-cluster
(meanIntraSimilarity) similarity measures instead of distance, the subtraction
is reversed and it changes from dividing on the maximum to dividing on the
minimum.

meanlInter Distance — meanIntraDistance

SC =

max(meanInter Distance, meanIntraDistance)
(2.2)
meanlIntraSimilarity — meanInter Similarity

min(meanIntraSimilarity, meanInterSimilarity)

The highest achievable score is 1, while the lowest is -1. Scores approximating
0 suggest clusters that overlap, while negative scores indicate errors in cluster
assignment. Figure 2.8 shows a visual representation of the same calculations,
where each line shows the Silhouette coefficient of a data point in a coloured
cluster. Shorter or negative lines indicate that the data points overlap with
another cluster.

T T T T T T T T T

0.1 0.0 01 0z 03 0.4 0.5 06 0.7

Figure 2.8: Silhouette plot where each line represents the Silhouette coefficient
of a data point and each colour a different cluster.

Another method, the Dunn Index, introduced by Dunn in 1974 [14], involves
computing the ratio between the smallest inter-cluster distance (minlnterDis-
tance) and the largest intra-cluster distance (maxIntraDistance). The goal is to
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maximise the Dunn index. However, like the previous method, the prefix gets
switched, as shown in Equation 2.3. The ratio is then between the largest inter-
cluster similarity (maxInterSimilarity) and the smallest intra-cluster similarity
(minIntraSimilarity), and the goal becomes to minimise the Dunn index. While
the Silhouette coefficient focuses on the average data points in a cluster, the Dunn
index looks at the outliers.

DI — minInter Distance

mazxIntraDistance
(2.3)

mazInterSimilarity

manIntraSimilarity

2.5 Visualising by Dimensionality Reduction

When clustering using similarity measures on high-dimensional data it is dif-
ficult to visualise the clusters. Visualising is helpful to both understand and
optimise the cluster compositions. Principal Component Analysis (PCA) and
t-Distributed Stochastic Neighbour Embedding (t-SNE) are two techniques em-
ployed for visualising high-dimensional datasets by dimensionality reduction in
the context of clustering. Figure 2.9 illustrates a simple example of dimensional-
ity reduction, transforming three-dimensional data to two dimensions and further
to one dimension.

o8| ‘e
06| o o :
- Yy o . ® | — em o cscome
0 02 o &0 o
[ ]
0.5 0 & | - } : . - ; d
0.5 0 0.5 0 02040608 1

Figure 2.9: Dimensionality reduction from three dimensions on the left, via two
dimensions in the middle, to one dimension on the right. The three coloured
clusters stay the same.
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PCA, a linear dimensionality reduction method, seeks to capture the most im-
portant variations within a dataset by identifying its principal components. By
projecting the data into a lower-dimensional space while preserving as much vari-
ance as possible, PCA simplifies the representation of complex datasets. This
reduction in dimensions facilitates visual exploration and interpretation of data,
particularly in cases where the original dataset is high-dimensional.

On the other hand, t-SNE is a nonlinear dimensionality reduction technique spe-
cialised in visualising high-dimensional data while preserving local similarities.
Unlike PCA, t-SNE focuses on maintaining the relative relationships between
data points, emphasising the clustering of similar points and the separation of
dissimilar ones. In clustering tasks, t-SNE’s visualisations provide a means to un-
cover intricate cluster structures within the data. It is particularly useful when
dealing with datasets where clusters exhibit complex and nonlinear patterns.
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3 Related Work

This thesis is largely inspired by the work done by Verma et al. [1]. They present
an approach that combines Case-Based Reasoning (CBR) and k-means cluster-
ing to identify phenotypes within a population. This chapter explores similar
research problems in the literature and examines various solutions proposed by
other researchers in the field. Hence it provides an overview of the state-of-the-
art organised in relevant topics, as requested by RQ1. Some of the related work
is reapplied from the preceding project thesis [7].

3.1 Retrieval Strategies

The retrieval is crucial in CBR systems since it finds the most similar, relevant
cases. Retrieval strategies focus on correct and fast retrieval, and address three
CBR components: case representation, case base size and similarity measures.
In Verma’s work, case retrieval hinges on a similarity score determined by both
local and global similarities, mirroring the principles employed by the k-means
algorithm in finding the nearest neighbouring centroid for each data point.

In contrast, Wess et al. [15] and Bergmann et al. [16] advocate for the use of k-d
trees for retrieval, a strategy aimed at enhancing efficiency. This retrieval tech-
nique can be seen as a form of clustering, as it works like a binary search tree and
groups similar cases together for faster retrieval. Another paper by Bergmann
and Stromer [17] presents the use of MAC/FAC as a retrieval strategy for se-
mantic workflow cases, and reports significantly reduced retrieval time without
notable impact on the quality. The acronym MAC/FAC stands for “many are
called, few are chosen”, representing a two-stage process where a cheap initial

17
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filter is employed to generate a subset, which is then subjected to more precise
selection.

3.2 Case Representation and Similarities

Establishing an effective CBR system entails selecting appropriate attributes for
case representation, which can be derived from machine learning or domain exper-
tise. Additionally, defining the similarities within and between these attributes
is crucial. Another paper by Verma et al. [10] exemplifies this by transforming
accelerometer data into six distinct activity classes and using the average daily
minutes spent in each activity as attributes, with domain experts contributing to
the definition of these classes. They propose a data-driven approach for develop-
ing similarity measures based on target attribute ranges.

Verma et al. [1] demonstrate an intriguing approach by utilising feature impor-
tance derived from machine learning models used on patient-recorded outcomes
to select features for predicting outcome measures in the healthcare domain. This
not only reduces case base complexity but also maintains overall performance.
Veites and Bach [18] support these findings by showcasing the effectiveness of
expert-selected features and data-driven local similarity measures in their Sup-
portPrim application. Their work involves attributes comprising both symbolic
and numerical values, offering a hybrid approach to attribute selection and simi-
larity definition.

Mathisen et al. [19] introduce a framework for learning similarity measures from
data, subsequently creating novel similarity measure designs. Instead of apply-
ing the local-global principle, they employ a Siamese neural network to compute
similarity between cases. Their results underscore the efficacy of using machine
learning classifiers as a foundation for similarity measures, with data-driven ap-
proaches yielding superior performance. Stahl [20] investigates diverse methods
for adjusting similarity measures, utilising user feedback to refine these mea-
sures as the case base expands. Additionally, Abdel-Aziz et al. [21] introduce
preference-based learning, a novel approach involving pair-wise comparisons to
learn similarities based on feedback from users on which of the two in a pair they
prefer. This more closely mirrors the origin of CBR, where the learning strategy
is inspired by human experience.
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3.3 Clustering with CBR

CBR and clustering are used together for various purposes, with the choice of
clustering algorithm significantly influencing outcomes and performance. The
selection process is closely linked to feature selection within the case representa-
tion. Zhu et al. [22] propose a hybrid approach that combines feature selection
and clustering to optimise feature utilisation using a clustering method to divide
the case base into subsets with a hierarchical structure, showcasing enhanced
performance.

In their paper, Ahmed et al. [23] look into using the combination of CBR and
cluster analysis for health monitoring of elderly participants with a 90% match be-
tween expert and CBR clustering. They propose a time-series clustering strategy
to pre-group cases, which accelerates the retrieval process by narrowing the search
to specific clusters. Miiller and Bergmann [24] also suggest using a cluster-based
approach to improve the retrieval phase in Process-Oriented CBR with extensive
similarity measures. These approaches serve as alternatives to the MAC/FAC
retrieval technique.

Clustering is also employed to improve data presentation and user understanding.
Yang and Wu [25] adopt a density-based clustering algorithm, DBSCAN;, to merge
similar cases, aiding users in interactive CBR tasks. This allows for the utilisation
of a large case base while also making the output to the user comprehensible.
Fullen et al. [26] use DBSCAN to detect and prevent alarm floods, a situation
where an overwhelming number of alarms can exceed a user’s cognitive capacity,
potentially causing them to overlook critical alarms.

3.4 Use of Visualisations

Generally, Al researchers have a challenge in providing explanations for their
solutions. Visualisation techniques can be helpful for enhancing the clarity and
comprehensibility of data. It can also be a tool for feature extraction in CBR,
either to use as attributes in the system or to improve similarity measures.

Massie et al. [27] propose the use of a visual output tool FormuCaseViz for their
CBR problem solution to explain the solution to its user. The tool was by domain
experts deemed more helpful than the previous textual output. Three novel visu-
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alisation approaches are presented by Schultheis et al. [28] for helping knowledge
engineers better understand and model similarities in Process-Oriented CBR.
In their research, Martin et al. [29] present an explanation framework for sup-
porting network engineering experts in explaining solutions to non-expert staff
in a telecommunication organisation. Cantu et al. [30] argue the necessity of
a visualisation tool for correlation detection that can work on both categorical
and numerical data and came up with the solution of a Parallel Assemblies Plot
(PAP).

Leal et al. [31] use PCA to extract features for use as attributes in a CBR
system, with the purpose of detecting correct and incorrect measurements in
glucose monitoring systems in an intensive care unit. In their paper, Ruiz et
al. [32] suggest the use of Multiway PCA to reduce the high-dimensionality of
process monitoring data from a wastewater treatment plant, by summarising the
information into fewer variables to be used in a CBR system.

3.5 Identifying Phenotypes

Researchers utilise various techniques to identify phenotypes from accelerometer
data in population studies. Marschoellek [33| suggests using the ATLAS index
and x-means clustering to identify groups based on activity attributes such as
regularity, duration, and intensity. In their research, Diaz and Yacef [8] use
the extraction of bouts of physical activity as features for clustering and thus
detecting behavioural changes in school children’s activity levels. The use of
latent class analysis (LCA) is presented by Gupta et al. [34] to identify four
activity profiles. Howie et al. [35] propose sex-specific LCA to cluster individuals
into five activity phenotypes based on activity intensity. Meisingset et al. [36]
employ LCA to categorise musculoskeletal patients into five distinct phenotype
groups. In another approach, Willetts et al. [37] advocate for statistical machine
learning techniques to identify physical activity phenotypes and sleep behaviour.

CBR’s utility extends to optimising activity plans for enhanced physical perfor-
mance based on time series data. Bergman [38] explores the prediction of optimal
finish times for speed skaters based on their past races and external conditions.
Smyth and Cunningham [39] aim to recommend race plans to marathon runners,
helping them achieve predicted personal best race times by drawing on the race
history of similar runners. These applications illustrate the versatility of CBR
across diverse problem domains, from phenotype identification to performance
optimisation.



4 Method

This chapter provides a thorough account of the procedures, tools, and techniques
employed throughout the research process. It addresses the second research ques-
tion regarding how CBR and clustering can be used to find phenotypes in the
HUNT4 dataset. The method is outlined in Figure 4.1, showing the different
steps of the process and how they are connected.

local
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Data ———— > CBR ————>» Clustering —» Evaluation

global
similarity
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Y

Visualisation

\ 4

t-SNE —

Y

Figure 4.1: Process architecture showing the different steps of the methodology.
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Initially, the data is used for two things. Firstly it is processed and used for
the case representation and population of the CBR system. Simultaneously, the
data is used to model the local similarity measures by utilising the attribute dis-
tribution. Visualisation of the data set is used to change the global similarity
measure, which starts a series of iterative experiments within the CBR system.
From the CBR system, a self-similarity matrix (SSM) is used as a means for
clustering based on the similarity between the cases given by the similarity mea-
sures. The clusters are later evaluated based on their inter- and intra-cluster
similarities. This iterative process starts over by selecting an alternative global
similarity measure.

Throughout this methodology chapter, the real-world HUNT4 dataset will be
used to explain the different steps in the method. Most of the methodology is
however applicable to different domains and datasets.

4.1 Data Pre-processing

The process of making the data ready for use starts with the raw 5-second win-
dows of physical activity data derived from the HUNT4 accelerometer data. Ev-
ery participant has at least 6 full days of activity and each window is labelled with
one of the six activities: lying, sitting, standing, walking, running and cycling.
The weekdays are then labelled for every window, before structuring the bouts.

Each participant’s daily data is used to compute activity bouts with durations of
300, 100, 50, 10, and 5 seconds, for each day and for every activity. This process
initiates by filtering out the longest bouts initially, specifically, all uninterrupted
sequences of the same activity lasting 300 seconds or more. Subsequently, the
procedure continues to the next most prolonged bouts and goes on in a similar
fashion. In the end, all the 5-second windows should be accounted for. Figure
4.2 gives a brief example of how bouts are structured from the 5-second windows.
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Figure 4.2: Example of how bouts are calculated from the 5-second windows.

As a response to challenges encountered when processing the extensive dataset
with diverse weekdays, a simplification of the weekday labelling occurred, re-
ducing it to a binary categorisation of weekend (true/false). Subsequently, the
activity bouts within these two categories were aggregated from the correspond-
ing weekdays. This results in a data set with 65 340 entries. Table 4.1 gives an
overview of the structure of the data to go into the case base.

Table 4.1: Example of data to go into the case base. For visual purposes, the
dots (...) represent the rest of the attributes, like lying10, lying5, sitting300, etc.

id weekend lying300 lyingl00 lying50
5143580 1 1 98 4 2
4802235 1 1 204 8 3
4636595 0 0 118 12 9
4445692 1 1 152 20 14

cyclingb

134
4
32
177
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4.2 CBR System

The use of the CBR system can be divided into four phases: the creation of a
myCBR project with a populated case base, the modelling of the local and global
similarity measures, and the pre-processing of the linear retrieval among each case
in the form of a self-similarity matrix. To facilitate this work the myCBR REST
API is used to ease the programming and retrieval from the myCBR project.

4.2.1 Case Representation and Case Base Population

The project is initialised by declaring all the attributes of the chosen concept. For
each activity category, five bouts are declared as float attributes: 5, 10, 50, 100
and 300. In addition, the weekend attribute is set at an integer due to issues with
boolean attributes. Then the case base is populated via the REST API from the
data, with the case ID and the attributes. As shown in Figure 4.3, the attribute
ranges must be entered manually in myCBR for the set-up to be complete.

Attribute
Mame ’ cycling10 |
Type ‘ Float |
Multiple []

Minimum | 0.0 |
Maximum | 1114.0 |

Figure 4.3: Attribute declaration for cycling10 in myCBR.

Figure 4.4 shows the case representation in myCBR for one case in the case base,
with the case ID as its name.



Instance

Instance information

Mame 5201457_1
Attributes

cycling10 2320
cycling100

cycling300

cycling3 50.0
cycling50
lying10 23.0
lying 100 10.0

=
[=1

lying300 128.0
lying3 110.0
lying30 8.0

running1® | 4.0
running100
running300
running3 a.0
running30
sitting10 334.0
sitting 100 A60
sitting300 | 40.0
sitting3 1680.0
sitting 30

4.2.2 Local Similarity Measures

y(mazx —min) ~ 0

y(IQR) ~ 0.3

standing1® | 505.0
standing100 | 310
standing300
standingd | 3500
standing30 | 450
walking10 | 385.0
walking100 | 21.0
walking300 | 2.0
walking3 2570

walking30 | 3p.0

a—

weekend
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Figure 4.4: Representation of a case in myCBR. The name is the ID of the case.

The second phase is the calculation and set-up of the local similarity measures for
all of the attributes. First, the ranges of values for all the numerical attributes
are established, including the maximum and minimum as well as the interquartile
range (IQR). Verma et al. [10]| suggest y = 0.3 as the targeted similarity for the
IQR on the polynomial function and y = 0 for the max-min range. Hence, the
polynomial function is obtained when the approximations below are true.

Figure 4.5 shows multiple possible polynomial functions with polynomial values
from 0 to 10. For each of the functions, the red dot shows the target of y(IQR) =
0.3. The polynomial function for each numerical attribute will be the one with
the red dot closest to the attribute’s IQR.
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Figure 4.5: Multiple polynomial similarity functions. The red dots mark the
target value where y(IQR) = 0.3.

A Python function, as shown in Listing 4.1, is made to facilitate the adjusting of
the polynomial to fit the targeted values for each of the attributes’ distributions.
The inputs are the attribute’s IQR, a target similarity and the difference between
the maximum and minimum value for the attribute.

Listing 4.1: Python function to get polynomial values for local similarity
measures

def find_polynomial(iqr, target_sim, minmax_diff):
# Iterate through polynomial values until target sim is reached
for poly in np.arange(0.01, 100, 0.01):
degree = 1/poly
sim = 1 - (iqr / minmax_diff) ** degree
if sim <= target_sim:
return poly

The function is run for each of the numerical attributes in the case base. Table
4.2 shows the polynomial values for all the numerical attributes.



Table 4.2: Polynomial value for local similarity measures for all attributes,
listed with minimum and maximum values and interquartile range (IQR).

Attribute Polynomial Min Max IQR

lying300 7.0 0 504  49.0
lying100 10.0 0 299 9.0
lying50 11.0 0 324 7.0
lying10 13.0 0 3948  52.0
lyingh 12.0 0 2825  44.0
sitting300 6.0 0 365  47.0
sitting100 7.0 0 305  33.0
sittingh0 7.0 0 360  32.0
sitting10 8.0 0 3934  246.0
sittingh 9.0 0 2726 118.0
standing300 11.0 0 286 6.0
standing100 7.0 0 266  27.0
standing50 7.0 0 404 39.0
standing10 7.0 0 3863 356.0
standingb 8.0 0 2788 211.0
walking300 12.0 0 66 1.0
walking100 8.0 0 103 6.0
walking50 8.0 0 149  11.0
walking10 6.0 0 1445 220.0
walkingh 5.0 0 984 178.0
running300 NaN 0 28 0.0
running100 NaN 0 32 0.0
runningsb0 NaN 0 33 0.0
running10 NaN 0 325 0.0
runningd 15.0 0 302 2.0
cycling300 NaN 0 41 0.0
cycling100 NaN 0 71 0.0
cyclingd0 13.0 0 96 1.0
cycling10 10.0 0 1114  33.0
cyclingb 8.0 0 1004  59.0
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Local similarity measures are then set up in myCBR as polynomial functions.
The polynomial values from the aforementioned code and table are entered into
the polynomial functions as shown in Figure 4.6. For the NaN values, 1 is used
as a polynomial value in myCBR. A constant 1 is given as the local similarity
measure for the binary weekend attribute.

Symmetry (®) symmetric () asymmetric
Distance Function (@) difference P quotient

() Constant 0.5 Constant 0.5

() Step at 557.0 Step at 557.0

{®) Polynomial with | 10.0 Polynomial with | 10.0

() Smooth-Stepat | 557.0 Smooth-5tep at | 557.0

Case < query case > query

n 7s 4

Figure 4.6: Setup of a polynomial function as the local similarity measure for
attribute cycling?0 in myCBR with 10 as the polynomial value.

4.2.3 Global Similarity Measures

As shown in Figure 4.7, the global similarity measure is configured by choosing
weights for the different local similarity measures before adding them together,
referred to as the weighted sum. Changes in the weights are made to experiment
with cluster populations and are motivated by patterns shown in the visualisation
with PCA and t-SNE from the high-dimensional data set as well as by domain
expertise.
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Type (® Weighted Sum () Euclidean () Minimum () Maximum

Attribute Discriminant Weight SMF ~
cycling10 true 1.0 cycling10_sim
cycling100 true 1.0 cycling100_sim
cycling300 true 1.0 cycling300_sim
cycling3 true 1.0 cycling3_sim
cycling30 true 1.0 cycling30_sim
lying10 true 1.0 lying10_sim
lying100 true 1.0 lying100_sim
lying300 true 1.0 lying300_sim
lying3 true 1.0 lying3_sim

lying 30 true 1.0 lying30_sim
running10 true 1.0 running10_sim
running100 true 1.0 running100_sim
running300 true 1.0 running300_sim
runmning3 true 1.0 running3_sim
rimminAGN Frina 1n rmminAG i

Figure 4.7: Configuration of weights for the global similarity measure in
myCBR.

4.2.4 Self-Similarity Matrix

To facilitate the comparison of cases during the clustering process, it is essential to
establish similarities among them. This is achieved by acquiring a self-similarity
matrix (SSM) through the REST API. Due to memory constraints in the REST
API, given the substantial size of the SSM (approximately 80 GB), the retrieval
process was divided into multiple batches. A shell script was developed to address
this, as shown in the pseudocode in Listing 4.2.
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for i in seq (first,

Listing 4.2: Pseudocode of shell script

start REST API

PID = get last process ID

sleep 30

last,

step):

ssm = retrieve ssm(i) via REST API
save ssm to file

kill PID
sleep 5

4  METHOD

The retrieval of ssm(i) gives a matrix consisting of step number of columns from
case i to case i + step. The rows are all the cases in the case base. An example
of an SSM with four cases can be found in Table 4.3.

Table 4.3: Example of a self-similarity matrix with 4 cases

4809449 0
5086788 1
4467236 1
4534570 1

4809449 0 5086788 1

1.000
0.735
0.652
0.798

0.735
1.000
0.710
0.798

4467236 1
0.652
0.710
1.000
0.620

4534570 1
0.798
0.798
0.620
1.000

The matrix values are the corresponding similarities between the cases as given by
the similarity measures. When merging all these matrices together, the final SSM
can be used to look up the similarity between two arbitrary cases. A visualisation
of this through an example with fifteen cases is shown as a heat map in Figure
4.8. The SSM is generated to eliminate the necessity for later similarity retrieval
from the CBR system during the clustering process, to enhance computational

efficiency and expedite run time.
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4384199 1

5137114 1

4270157 0 - 055

4270157_1
5137114 0
090
4608318 1
4608318_0 -
49350250
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5092154 0
49350251 -
5023578 1 -
-0.E0

5092154 1

4527299 1

5023578 0 -075

4354199 0

4527299 1 -

4608318 0 -

4935025 0 .
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4270157 0
4270157 1
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5092154 1
5023578 0 -
4354199 0

Figure 4.8: Heatmap of an example self-similarity matrix with 15 cases. Darker
colours indicate a higher similarity between cases.

4.3 Visualisation

Creating diverse visualisations for various attributes can provide valuable insights
into which attribute weights should be adjusted when refining the global similarity
measure. This endeavour aims to optimise the global similarity measure with the
ultimate objective of improving the quality of the resulting clusters.
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PCA and t-SNE plots are used for visual clustering, with the goal of reveal-
ing attributes that contribute to cluster distinction, also referred to as attribute
importance. Before the plotting, the bout attributes in the data set are nor-
malised and the weekdays are removed from the set. In order to distinguish
which attributes contribute to the clusters formed in the plots, the data points
are coloured as above or below average for the 300-second bouts for each activity.

Examples of the PCA and the t-SNE plots are shown in Figures 4.9 and 4.10
respectively, coloured for above and below the average of the attribute walking300.
The Python package scikit-learn® is used for both plots.

207 L ® Below average
® Above average

15 A

10 +

T T T T T T T T
-6 -4 -2 0 2 4 6 8

Figure 4.9: PCA plot, coloured for above/below average for an attribute.

4https://scikit-learn.org/
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Figure 4.10: t-SNE plot, coloured for above/below average for an attribute.

4.4 Clustering Algorithm

The clustering algorithm used for this thesis is based on a pseudocode found in
Verma’s paper [1|, which is mainly based on k-means clustering but differs in
the way the data points are compared. While the Euclidean distance is used
for k-means, this algorithm uses the similarity between cases as presented in the
SSM. Consequently, the nearest centroid is the one with the highest similarity
rather than the shortest distance. The algorithm written in Python can be found
in Listing 4.3.

The procedure begins by selecting £ random cases as centroids. Subsequently,
each case is allocated to its most similar centroid, as determined by the self-
similarity matrix. A cluster evaluation is then undertaken to identify the case
possessing the highest average similarity within each cluster, which is designated
as the new centroid. This iterative process persists until a predefined stopping
criterion is met: when the same centroids have been selected for the preced-
ing three iterations or after the tenth iteration. To find the optimal number of
clusters, the algorithm is run for k£ = 3,4, ..., 10. Recent research on activity clus-
tering [34; 35; 36] typically employs 4 or 5 clusters, suggesting that testing up to
10 clusters should provide an adequate range to identify the optimal clustering
solution.
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Listing 4.3: Clustering Algorithm in Python

def clustering_algorithm(ssm, caselIDs, k):

# random initialisation from list of caselDs
centroids = random.sample(caseIDs, k)

cases = ssm.index.to_numpy ()

hist_mean_sim = [[] for x in range(k)]

for i in range(0, 10):
clusters = [[] for x in range(k)]

for case in cases:

4  METHOD

# get similarity between case and each of the centroids

similarities = ssm[centroids].loc[case]

# find most similar centroid to case
most_similar_centroid = similarities.idxmax()
# assign case to most similar centroid

clusters[centroids.index(most_similar_centroid)].append(case)

for cluster in clusters:
# find mean case in each cluster
similarities = ssm[cluster].loc[cluster]

# find highest average similarity within cluster

mean_sim = similarities.mean(axis=1)

mean_case = mean_sim.idxmax()

# set mean case as new centroid for cluster
centroids[clusters.index(cluster)] = mean_case
# save mean case for comparison later

hist_mean_sim[clusters.index(cluster)].append(mean_sim.max())

# stop if the last three clusters are the same

if i > 3 and [np.round(x[-1],5) for x in hist_mean_sim]

== [np.round(x[-3],5) for x in hist_mean_sim]:
break

return centroids, clusters, [np.round(x[-1],5) for x in hist_mean_sim]
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4.5 Cluster Evaluation Methodology

To assess the quality of the performed clustering, both metric and visual eval-
uation methods are conducted. The list hist_mean_sim in the clustering al-
gorithm saves the average intra-cluster similarity for all the clusters, while the
inter-cluster similarity is retrieved from filtering the SSM on the centroids after-
wards. The average inter- and intra-cluster similarities are used to calculate the
Silhouette Coeflicients. In addition, the highest inter-cluster similarity and the
lowest intra-cluster similarity are used to calculate the Dunn Index.

Boxplots are used to visualise the distribution of values in the clusters for par-
ticular attributes. The plots give a better perspective on the phenotypes the
clusters can represent. Figure 4.11 shows an example of boxplots of an attribute
for four clusters, where the red line represents the median for the cluster cases
and the blue line the population median.

0 20 40 &0 &0 100

Figure 4.11: Boxplot of an attribute for four clusters. The red line marks the
median for the clusters and the blue line the population median.

The use of bar charts is another way of visualising the clusters. This method
shows the composition of bouts for an average day for the cases comprising each
cluster and for the cluster centroids, which is helpful for distinguishing the clus-
ters. Each day consists of only 24 hours which means that if one activity increases
another must decrease.
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Figure 4.12 gives an example of such a bar chart, with each of the colour nuances
representing the different bout lengths.

0 50 100 150 200 250 300

Figure 4.12: Bar chart showing the composition of bouts for 4 clusters



5  Experiments

In this chapter, the experiments and their corresponding results, conducted as
part of this thesis work, are presented. The goal of the experiments is to address
the third and fourth research questions by exploring different cluster sizes and
adjusting the global similarity measure. Both of these changes contribute to
optimising the results.

5.1 Iterations

The experiments are carried out in three iterations, each involving a modification
of the global similarity measure by changing the weights. Initially, a baseline ex-
periment is performed, wherein all the weights in the global similarity measure
(GSM1) are equally set to 1, as shown in Table 5.1. Subsequently, in the sec-
ond global similarity measure, these weights are adjusted through visualisation
techniques. Finally, in the third iteration, the weights are determined by domain
expertise.

5.1.1 Visualisation

For the second iteration, the weights in the global similarity measure are changed
based on attributes found through visualising the dataset. Table 5.2 displays
the similarity weights for the second global similarity measure (GSM2). These
alterations are made by insights derived from PCA and t-SNE plots.
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5 EXPERIMENTS

The PCA plots for the attributes lying300, sitting300, standing300, walking300,
running300 and cycling300 are shown in Figure 5.1, marked for above and below

average in the data set for each of the attributes.

@ Below average

. © Below average

@ Below average
® Above average

. @ Below average
® Above average

@ Below average
® Above average

@ Below average
® Above average

(e) running300

(f) cycling300

Figure 5.1: PCA plots of above and below average for the 300-second bouts for

the six activity categories.

The corresponding t-SNE plots are found in Figure 5.2, also here marked for
above and below average for all the 300-second attributes.
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Figure 5.2: t-SNE plots of above and below average for the 300-second bouts for
the six activity categories.

From the PCA plot, it looks like the attributes lying300, running300 and cy-
cling300 are overlapping, while the others give some separation. From the t-SNE
plots, however, the three aforementioned attributes show more clear clustering.
This underscores the possible significance of the 300-second bouts in accentuat-
ing the clustering of phenotypes in this dataset. Consequently, these attributes
make the adjustment of weights in this iteration, where the weights for all the
300-second bouts are set to 2 while the rest remain at 1.
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Table 5.1: Global
similarity measure 1

Attribute
cycling10
cycling100
cycling300
cyclingd
cyclingb0
lying10
lying100
lying300
lying5
lying50
running10
running100
running300
runningb
runningb0
sitting10
sitting100
sitting300
sittingd
sittingh0
standing10
standing100
standing300
standingb
standing50
walking10
walking100
walking300
walkingh
walkingh0

weekend

Weight
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

Table 5.2: Global
similarity measure 2

Attribute
cycling10
cycling100
cycling300
cyclingd
cyclingb0
lying10
lying100
lying300
lying5
lying50
running10
running100
running300
runningb
running50
sitting10
sitting100
sitting300
sittingb
sittingh0
standing10
standing100
standing300
standingb
standing50
walking10
walking100
walking300
walkingh
walkingh0

weekend

Weight
1.0
1.0
2.0
1.0
1.0
1.0
1.0
2.0
1.0
1.0
1.0
1.0
2.0
1.0
1.0
1.0
1.0
2.0
1.0
1.0
1.0
1.0
2.0
1.0
1.0
1.0
1.0
2.0
1.0
1.0
1.0
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Table 5.3: Global
similarity measure 3

Attribute
cycling10
cycling100
cycling300
cyclingd
cyclingb0
lying10
lying100
lying300
lying5
lying50
running10
running100
running300
runningd
runningb0
sitting10
sitting100
sitting300
sittingd
sittingb0
standing10
standing100
standing300
standingb
standingb0
walking10
walking100
walking300
walkingh
walkingb0

weekend

Weight
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
2.0
1.0
1.0
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5.1.2 Domain Expert Influence

The third iteration (GSM3) incorporates domain expert input. The specific
weightings for this global similarity measure are detailed in Table 5.3. The
rationale behind giving prominence to the walkingd bout lies in the desire to
investigate whether individuals with a higher frequency of short walking bouts
can constitute a distinct phenotype cluster. An example of such a group could
comprise individuals who engage in frequent short walks throughout their work-
days, often transitioning between tasks.

5.2 Results

For the three global similarity measure iterations, the average intra-cluster and
inter-cluster similarities for each of the cluster sizes are listed in Table 5.4 and
presented visually in Figure 5.3. This shows an increase in intra-cluster similarity
with the increase in cluster size for all three global similarity measures. The
inter-cluster similarity does not show a consistent trend with the increase in
cluster size, but the fluctuation follows the same pattern for all three global
similarity measures. The second global similarity measure shows the highest
average similarity among the three, while the first has the lowest.

Table 5.4: Average intra- and inter-cluster similarities for the three iterations of
global similarity measures (GSM). Low inter-cluster values are marked yellow.

GSM 1 GSM 2 GSM 3
cluster size intra inter intra inter intra inter
3 0.837 0.839 0.873 0.864 0.864 0.840

0.846 0.797 0.876 0.842 0.871 0.822
0.848 0.819 0.881 0.866 0.874 0.846
0.844 0.806 0.882 0.846 0.874 0.839
0.848 0.794 0.885 0.831 0.877 0.817
0.853 0.817 0.886 0.843 0.881 0.837
0.853 0.815 0.888 0.850 0.881 0.843
10 0.852 0.799 0.889 0.847 0.879 0.831

© 0 N O Ot =
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Figure 5.3: Average intra- (circle) and inter-cluster (square) similarity for the
three different global similarity measures (GSM), shown in red, blue and green,
respectively.

5.3 Evaluation of the Results

Both metric and visual evaluation methods are conducted to evaluate the results.

5.3.1 Silhouette Coefficient and Dunn Index

The evaluation first incorporates the application of two metric methodologies:
the Silhouette coefficient and the Dunn index. Detailed numerical data for all
cluster sizes and global similarity measures can be found in Table 5.5 and Table
5.6.



43

Table 5.5: Silhouette coefficients for the three GSMs for all cluster sizes. The
highest values are marked yellow.

cluster size 3 4 5 6 7 8 9 10
global sim 01 -0.003 0.062 0.035 0.047 0.068 0.045 0.046 0.066
global sim 02 0.010 0.040 0.018 0.042 0.065 0.052 0.046 0.050
global sim 03 0.029 0.060 0.033 0.042 0.073 0.052 0.045 0.058

Table 5.6: Dunn indexes for the three GSMs for all cluster sizes. The relative
lowest values are marked yellow.

cluster size 3 4 ) 6 7 8 9 10
global sim 01 1.068 1.049 1.065 1.108 1.065 1.084 1.084 1.055
global sim 02 1.011 1.012 1.050 1.052 1.035 1.045 1.044 1.044
global sim 03 1.014 1.016 1.059 1.055 1.050 1.057 1.071 1.047

Additionally, the outcomes of these two evaluation techniques are graphically
represented in Figure 5.4 and Figure 5.5, respectively.

1072
8T \ 7
6, |
4, |
2, |
/ —e—GSM 1
/ —o— GSM 2
0 4 e GSM 3| |
| | | | | | | |
3 4 5 6 7 8 9 10

clusters

Figure 5.4: Silhouette coefficients for the three GSMs, shown in red, blue and
green, respectively, for all cluster sizes.
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Figure 5.5: Dunn indexes for the three GSMs, shown in red, blue and green,
respectively, for all cluster sizes.

Given the Silhouette coefficients, the setup with 7 clusters of GSM3 gives the
highest and best score of 0.073. From the Dunn index, the setup with GSM2 for
3 clusters achieves the lowest and best score of 1.011. However, 3 clusters also
have the lowest Silhouette coefficients. Therefore, the relative values are more
relevant in choosing the best cluster size.

The patterns in the graphs show that cluster sizes 4, 7 and 10 are the most
interesting to look at, as these have higher Silhouette coefficients and generally
lower Dunn indexes than their neighbours. Generally, the results present a trend
of higher scores for increasing cluster sizes for both methods. For the rest of this
chapter, 4 clusters will be used to show the results, which is supported by both
the evaluation methods and related work [34].

GSM3 has the overall highest average Silhouette coefficient, even though GSM1
for some cluster sizes has higher values. GSM2 has the lowest Silhouette coef-
ficient values. For the Dunn index, GSM1 has the highest values for all cluster
sizes and GSM2 has the lowest for all cluster sizes.
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5.3.2 Distribution and Composition

Figure 5.6 and Figure 5.7 show the distribution boxplots of the lying300 and
walkingd attributes respectively, for 4 clusters of the three global similarity mea-
sures. The remaining boxplots for 4 clusters, showing all the different activities
and bouts, can be found in Appendix A.

GSML, lying300

40 &0 80 100 120 140 160 150 200

GSM2, lying300

40 &0 80 100 120 140 160 180 200

GSM3, lying300

o | [ | |

o I I | !

R I I | |

: | | | | |

40 &0 80 100 120 140 160 150 200

Figure 5.6: Distribution boxplot of 4 clusters for attribute lying300 for the
three global similarity measures. The red line marks the median for the clusters
and the blue line the population median.
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Figure 5.7: Distribution boxplot of 4 clusters for attribute walkings for the
three global similarity measures. The red line marks the median for the clusters
and the blue line the population median.

Both the two figures show close to similar cluster distributions for all three global
similarity measures, but the clusters differ in whether or not the cluster medians,
depicted by the red lines, are above or below the population median, depicted by
the blue line. The same is found for all cluster sizes from 3 to 10.

A day consists of only 24 hours, which means that an increase in one activity
entails a reduction in another. Thus, it is advantageous to examine the cluster
composition for a comparative analysis of the clusters.

Bar charts showing the bout compositions of the centroids in 4 clusters, can be
found in Figure 5.8, which displays the case in the centre of a cluster. Figure 5.9
presents the average bout composition of all the cases in each of the 4 clusters.
The cluster compositions for 7 and 10 clusters can be found in Appendix B.
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Figure 5.8: Bar charts showing the attribute composition of the 4 cluster
centroid cases for the three different global similarity measures (GSM).
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Figure 5.9: Bar charts showing the average attribute composition of the cases in
4 clusters for the three different global similarity measures (GSM).



49

The centroid bar charts show distinct differences between clusters and GSMs.
This applies to all attributes. For the averaged compositions, more similar com-
positions are seen across all clusters and GSMs, they are however distinguishable.
While most of the attributes are similar, larger differences are found in the at-
tributes cyclingd and cycling10.
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§] Discussion

This research has been motivated by the objective of exploring existing and inno-
vative approaches to identify physical activity phenotypes. This chapter aims to
deliver an assessment of the strategies employed, achieved results and encountered
challenges, in accordance with the research questions listed in the first chapter.

6.1 Clustering

The results indicate a correlation between the number of clusters and the average
intra-cluster similarities, which aligns with the intuition that more clusters lead
to a closer proximity of centroids to their cluster objects which increases cohesion.
However, it is imperative to contextualise the number of clusters within the do-
main of study. While an increase in clusters may yield higher average similarity,
it is not inherently beneficial for the specific task of identifying physical activ-
ity phenotypes, where the emphasis is on promoting favourable physical activity
patterns. The usefulness of the phenotypes for healthcare providers should also
be taken into account when discussing cluster sizes.

With the Silhouette coefficient, as calculated in the results, approaching values
near zero, it suggests a considerable degree of overlapping within the clusters. It
is however important to note that this overlap does not inherently render the clus-
ters invalid or uninformative. Given the extensive dataset encompassing 65 340
data points, such a degree of overlap is within expectations. Study participants
display a wide array of activity patterns, which presents a challenge in achieving
distinct and well-separated clusters.

o1
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The results do however indicate a higher separation for cluster sizes 4, 7 and 10
for all three iterations, which is shown as peaks in the Silhouette Coefficients
for these three cluster sizes. In the Dunn index, this is shown as lower values
for the three sizes for some of the global similarity measures, but not clearly.
Given that four or five clusters are the predominant choices in related research,
these findings suggest that a 4-cluster solution might be optimal for identifying
meaningful physical activity phenotypes, as this aligns with the conventions in
the field. This answers the third research question on what cluster sizes are
optimal for forming phenotypes with this data and method.

6.2 Global Similarity Measures

The interpretation of the results is intricate. The Dunn index indicates a prefer-
ence for GSM2 as the optimal choice, whereas the Silhouette coefficient highlights
the merits of GSM3. Interestingly, GSM1 surpasses GSM2 in the Silhouette co-
efficient but significantly lags behind in the Dunn index. It is noteworthy that,
on the whole, the values exhibit close proximity to each other. The visual anal-
ysis through distribution boxplots suggests that no considerable changes have
been introduced to the cluster compositions due to the different global similarity
measures. The bar charts show differences in the centroid compositions, but the
average cluster compositions remain quite consistent. This prompts the ques-
tion of whether the variations in global similarity measures bear any significant
impact on the identification of activity phenotypes.

In GSM2, the weighting of the 300-second bouts is doubled. However, for at-
tributes such as cycling300 and running300, the distribution boxplot reveals a
median value of zero. This observation raises questions regarding the extent to
which this modification in the global similarity measure influences cluster compo-
sition. Similarly, in the case of GSM3, the attribute walking5 exhibits minimal
variations in cluster composition. Furthermore, the marginal variations in the
evaluation metrics suggest that the adjustments made to the global similarity
measure may not have had a substantial impact on the recognition of activity
phenotypes. This provides the response to the fourth research question on how
adjusting the global similarity measure influences the clustering results.

Maintaining equal weight for the global similarity measure may be the appro-
priate decision. Given that local similarity measures are determined through
a data-driven approach, the attribute distribution is already taken into account.
Utilising the distribution to inform weight selection may therefore become redun-
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dant. In addition, if the dataset exhibits any bias, that bias will be transferred
to the model using a data-driven approach. There could be merit in fine-tuning
the weights based on in-depth domain expertise. With a deeper understanding
of the characteristics of a phenotype, the weight selection process can be more
meticulous and devoid of any bias carried over from the dataset.

6.3 Structuring in Bouts

The chosen data structure for this study is bouts, which was intended to capture
the temporal aspect of the data while reducing granularity and serving as an
intermediary between the 5-second windows and average minutes per day. Nev-
ertheless, the findings suggest that the utilisation of bouts may not effectively
achieve the objective of identifying activity phenotypes within the dataset, as
originally intended.

Moreover, the utilisation of bouts in encoding information into the case base re-
sults in the loss of important details present in the raw data. Most notably, a lot
of the temporal aspects of the data representation are neglected in the current
configuration. In its current state, the cases do not adequately encompass the
wide spectrum of physical activity patterns existing within the dataset, highlight-
ing a limitation in the chosen approach. Although the chosen approach effectively
addresses the diverse durations of activities, it does not consider the timing of
activities during the day.

The visualisations of attribute distribution and composition reveal a notable lack
of diversity in attribute usage throughout the day within the dataset. For a
significant portion of the day, individuals within the population tend to spend
their time lying down in bed. Furthermore, for many individuals in the working
population, their typical day involves a substantial amount of sitting, interspersed
with standing and short walks. This indicates that it is essential to recognise that
even small variations in daily activity patterns can be of significant importance
when it comes to identifying distinct phenotypes.
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6.4 Large Dataset

As previously mentioned, the extensive size of the dataset can influence the de-
gree of overlap observed in the clustering results. While a substantial dataset is
valuable for capturing a wide spectrum of diverse activity patterns, it may not
necessarily facilitate the clustering process when looking for a smaller amount of
phenotypes. In addition, the large number of data points provides a challenge
in the technical execution of the research, due to limitations in memory capacity
and efficiency.

The literature review reveals that much of the research on activity phenotype
clustering has been based on smaller datasets, from small experimental groups
of thirty-five children [8] to surveys of around four thousand adults [33]. This
prevalence might be attributed to the relatively uncommon availability of exten-
sive datasets like HUNT4 with around thirty-eight thousand participants, which
can account for the widespread use of smaller datasets among researchers.



7 Conclusion

In conclusion, this thesis presents the development of a versatile methodology
for the identification of physical activity phenotypes, through the integration of
case-based reasoning (CBR) and clustering techniques. The methodology is char-
acterised by its data-driven approach to model local similarity measures within
the CBR system, complemented by a clustering algorithm inspired by k-means.
This clustering process utilises both local and global similarity measures derived
from the CBR system to form the clusters. The global similarity measures are
modelled through the visualisation of the dataset as well as domain expertise. No-
tably, the adaptability of the ready-to-use method allows it to be applied across
various data representations and domains, making it a robust template for future
explorations in the field.

In experimental findings, this study demonstrates a preference for a configuration
with four distinct physical activity phenotypes. Furthermore, it elucidates that
employing data-driven methods to determine weights for global similarity mea-
sures does not significantly impact clustering, particularly when local similarity
measures already account for attribute distribution. The visualisations reveal a
notable lack of diversity in attribute usage throughout the day with the data
representation chosen.

7.1 Future Work

Future work encompasses potential improvements in data representation. The
utilisation of bouts, which currently discards a significant portion of the time
series data, necessitates the exploration of alternative data representation ap-

35
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proaches. Collaboration with public health experts facilitates the refinement of
the global similarity measure.

The clustering algorithm holds the potential to help establish well-functioning
CBR systems from unlabelled data. Effectiveness in clustering is indicative of
the quality of similarity measures within the CBR system, as the clusters are
made directly from the similarities from the system.

One of the primary objectives of identifying physical activity phenotypes is to
enable the development of a decision support system for the population. Such a
system aims to assist individuals in identifying which changes they must make to
their physical activity to end up in a healthier cluster or to avoid being a part of
an unhealthy one. For the HUNT4 dataset, the potential for advancement goes
even further, with the possibility of incorporating additional health information
and health outcomes into the clusters at a later stage.
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Appendices

A Boxplots

Distribution boxplots for all activity bouts, for 4 clusters of the three global
similarity measures.
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