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Tensor decomposition for painting analysis. 
Part 2: spatio‑temporal simulation
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Abstract 

In a previous article, we modelled the spectral and temporal dimensions of the photodegradation behaviour of 
pigments in the painting “A Japanese Lantern” by Oda Krohg. In particular, we extracted the endmembers and spectral 
fading rate of pigments by applying tensor decomposition on a time-series of spectroscopic point measurements. 
Now, we capture the same painting with a hyperspectral imaging setup and propose an approach to render the 
fading effects as 2D images. More precisely, from the hyperspectral image, we compute the concentration maps 
of each previously identified endmember with a least-squares unmixing method. Subsequently, by using tensor 
algebra, we multiply the concentration maps with the endmembers and their corresponding fading rate and obtain 
a 4D tensor where each pixel in the image is described by a spectrum and a fading function. This way, we generate 
past and future spatio-temporal simulations of the painting’s appearance by reversing and elevating light exposure, 
respectively.
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Introduction
A wide range of materials manifests light-induced 
appearance changes. To name only a few: wood [1], paper 
[2], dyed textiles [3], pigments [4]. For this reason, it is of 
general interest to create models that are able to predict 
future degradation as a function of light exposure. In 
the field of cultural heritage, for older paintings where 
damage has already occurred, there is also an interest to 
reverse these changes, either through physical restoration 
or through digital image processing  techniques. The 
latter are non-invasive methods because there is no 
intervention on the real object, and they offer a good 
playground for the implementation of various scenarios 
of degradation. Thus, digital rejuvenation has been 

employed for the reconstruction of Georges Seurat’s “La 
Grande Jatte” [5], van Huysum’s “Flowers in an Urn” [6], 
Vincent van Gogh’s “Field with Irises near Arles” [7] and 
other drawings and paintings by van Gogh [4]. In some 
of the previous works, the proposed solutions are based 
on physical-based models such as Kubelka–Munk that 
considers the absorption and scattering of pigments, and 
the non-linear mixing of the various pictorial layers [2, 
5, 7]. Other approaches are hybrid, combining physical 
models with data-driven methods [4]. There are also 
purely data-driven approaches, where analytical data and 
measurements of accelerated aging are combined with 
linear regression methods to virtually restore and/or age 
an artwork [7, 8].

Our novel approach for spatio-temporal simulation 
of paintings is also a data-driven method. In a previous 
article [10], we showed how from a set of microfading 
measurements, we created a tensor decomposition 
model and extracted the spectral curve of the pure 
pigments, together with their temporal evolution. Now, 
we link the loadings of the tensor decomposition model 
with a hyperspectral capture of the same scene. More 
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specifically, we unmix the hyperspectral image with the 
endmembers previously obtained by minimizing the least 
square error under a linear mixing assumption. Once the 
concentration maps are retrieved, backward and forward 
spatio-temporal simulations are proposed.

Related work
Microfading analysis
Microfading refers to the accelerated aging process, 
where gradual light-induced changes in color and spectra 
are gathered. While accelerated photodegradation 
of pigments has been studied long before [11, 12], 
usually on mockups, it was not until the introduction 
of microfading that such experiments were performed 
on real objects. The main advantage of microfading is 
its minimal invasiveness. Light is cast over an area so 
small, that the fading effect is almost unperceivable by 
the naked eye, making this technique appropriate for 
the measurement of real artworks. Since the pioneering 
work of Whitmore et al. [13], who was the first to design 
a microfading setup, several other systems with increased 
spectral accuracy and higher portability for in-situ 
handling have been proposed [14–16]. As a consequence, 
microfading has enabled the color degradation analysis 
of a series of artworks from museum collections [17, 
18] and even outdoor rock art specimens [19]. In many 
cases, this has determined museums to improve the light 
policy and better control the display time of sensitive 
artworks, such as Islamic Ardabil carpets [3], natural 
history artifacts [20], paintings [18], and heterogeneous 
collections including prints, watercolors, curtains [21].

Mapping of photodegradation
The point-based specificity of microfading experiments 
poses a challenge for the holistic visualization of the 
light-induced damage for an artwork’s entire surface. The 
lack of ground-truth regarding the aging of the artwork’s 
surface adds to the complexity of the task. There are 
several publications with a rather artistic approach to 
this challenge, where data from accelerated aging is used 
in combination with image manipulation software  such 
as Photoshop to simulate faded variants of artworks 
in the color domain [22–24]. For instance, Morris and 
Whitmore [22] collect microfading data of mockups that 
include different painting media. They transform the 
spectroscopic data to color coordinates, that are later 
fed to Photoshop to create uniformly colored swatches 
where the evolution of the photo-degradation becomes 
easier to visualize. Moreover, by using the same data and 
procedure, the authors render fading effects for images 
with variation in the spatial content. In particular, the 
spatial structure is taken from scans of real paintings. 
To avoid damage, the paintings are not measured with 

the microfadeometer and so, the color behaviour is 
borrowed from the mockups’ measurement. In addition, 
the authors automate the spatial rendering process in  a 
scientific software, where a look-up table is created from 
the fading measurements of the mockup, connecting a 
color group with its faded variants at all light dosages. 
Hence, when the simulation at a certain dosage is 
queried, the closest corresponding color in the look-up 
table is retrieved. However, no interpolation method is 
applied to fill in the gaps between unmeasured values. 
Hendriks et  al. [23] generated forecasts of the red and 
yellow colors in van Gogh’s “The Bedroom”, given a light 
exposure of up to 30 Mlux hr. The authors incorporated 
microfading data from aged mockups of red lakes and 
chrome yellow paints and based on these, altered the 
image of the painting in Photoshop. In a similar way, 
Brokerhof et  al. [24] made a prognosis of color changes 
for a collection of Dutch city maps from the 17th century, 
by running various light fading scenarios in the same 
image editing software. While in these works the fading 
experiments allowed for high dosages of light, this might 
not be possible when the analysis is performed on real 
artifacts. In these latter cases, the future change could 
be predicted from the set of measured data using linear 
regression [9] or time-series models [25].

Riutort-Mayol et  al. [8] proposed an interpolation 
method based on a multivariate Gaussian process, 
that correlates the set of microfaded points with a 
trichromatic image of the same scene. The Gaussian 
process considers the covariance between the faded spots 
and the pixels in color image based on their similarity 
in the HSV  (hue, saturation, value) color space and 
spatial proximity. This way, the color fading values are 
extrapolated to the entire image, facilitating spatio-
temporal analysis. Moreover, the sign of the partial 
derivative is used to ensure that the temporal change 
function is monotonically increasing. This method was 
applied to predict color changes for Spanish Levantine 
rock art paintings [19]. While potentially, given a 
hyperspectral image, the Gaussian process interpolation 
could be extended to the spectral domain as well, no such 
feasibility prospects were discussed in the papers [8] and 
[19].

Thomas et  al. [9] suggested an interdisciplinary 
approach for the spatial mapping of the color degradation 
in “The Scream” painting in the National Museum  of 
Norway collection. The pigments in the artwork had 
been previously  analysed with, among other methods, 
X-ray fluorescence, and test points for microfading were 
chosen based on previous test points. Microfading data 
were combined with knowledge of the paintings’ support, 
pigments and surface layer to create digital simulations 
of the painting after 10 dose values ranging from 0.5 to 
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25 MLux hr. Moreover, unrealistic colors were eliminated 
based on color rendering index values.  It was pointed 
out that it is reasonable to extrapolate up to 3 times the 
applied dose. If we assume that 1.5 Mlux hr were applied, 
this allows for projections up to 4.5 Mlux hr. Beyond this 
limit, the authors claim that the model performs less well. 
For many artworks, simulations such as these may not 
be possible, as they require a combination of different 
methods of analysis and data processing that may not be 
viable to carry out for most objects.

Method
Figure 1 displays the workflow of our approach. The first 
and core module is represented by the tensor decomposi-
tion model (thoroughly described in Part 1 of this two-
article series) [10]. This model takes as input a collection 
of microfaded samples, and employs parallel factor analy-
sis (PARAFAC) to find the spectra of the unmixed pig-
ments (endmembers), their concentration in each sample 
and their fading rate. In the second module, we capture 
a hyperspectral image of the same scene to obtain the 
concentration of the endmembers for the full spatial 
dimension, beyond the microfaded points. Then, we can 
reconstruct each pixel in the image as a tensor product 
between the concentration, endmembers and the fading 
rate. This way, we generate spatio-temporal simulations 
of the whole surface, for the time steps included in the 
model. In the third module, we go beyond the measured 
time steps, by applying linear regression on the fading 
rates. As a result, the fading rate of each endmember is 

characterized by two coefficients (slope and intercept) 
and a given time step. Hence, fading rates for past and 
future moments can be computed. In tensor algebra, 
these new fading rates can be multiplied with the end-
member and their concentration maps to render the ana-
lyzed surface backwards and forward in time.

Spatio‑temporal modelling
For the sake of brevity, we will not insist here on the 
tensor decomposition model as it was described in the 
“Method”  section of Part 1 of  this article series [10]. 
Thus, we take for granted that matrix C represents the 
endmembers, A the concentration of each endmember 
f = {1 . . . F} in all the input samples and B the fading 
rate for each endmember.

Let  us consider a hyperspectral image HI ·J ·U of the 
same scene from which  the microfading samples were 
collected. Instead of sampling the scene at only few 
locations as the microfadeometer does, the hyperspectral 
image measures the scene holistically, where for every 
pixel at location i, j with i = {1 . . . I} and j = {1 . . . J } its 
reflectance spectrum is recorded with a dense bandwidth 
for a total of U bands. Given the endmembers defined 
by the loadings of factor C of the trained PARAFAC 
model, we can unmix the hyperspectral image assuming 
the same endmembers. The unmixing is formulated as 
a least-square optimization problem, where the linear 
combination of the F  endmembers that best explains 
the image with the minimum sum of squared residuals 
is chosen. The result of the unmixing is given by the 
abundance maps, which are essentially the concentration 

Fig. 1  The diagram of our method. The module (1) is the core model, where we extract the endmembers and their fading rate with three-way 
tensor decomposition from a collection of microfading observations. Then we perform spatio-temporal fading simulation by capturing a 
hyperspectral image of the same microfaded scene (2). We unmix the hyperspectral image to get the concentration map for each endmember, 
and then recompose it as a tensor product with the fading rate for each of the modelled time steps. Finally, we extend the time span of the spatial 
simulations by extrapolating the fading rate for time steps not included in the trained model (3)
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of each pure spectrum defined at pixel level. By flattening 
the abundance maps Amap into a matrix of cardinality 
IJ · F  , we can then replace it in Eq. 2 of Part 1 [10] and 
obtain spatial simulations of fading for each k time step 
modelled with PARAFAC:

Then we can reshape HIJ ·KN
sim  to I · J · K · N  to access the 

fading simulations of the hyperspectral image at each 
time step k.

The loadings of the 2nd mode, B define the fading rate 
of every endmember. In Part 1 [10], Eq. 3 we showed how 
the fading rate can be expressed as a linear function of 
the light exposure. By replacing k in that equation with 
values lower than 1 or higher than K  (the total numbers 
of steps included in the model), we can estimate new 
values for the  fading rate Rf  backward or forward in 
time. These new values can then substitute B in Eq.  1 
to get the spatial simulations for time steps other than 
those measured. It is important to note that while from a 
mathematical standpoint the backward prediction holds, 
from a physical perspective, it is not entirely legitimate, 
as the modelling was achieved with data describing 
only the present and future state of the artwork. Thus, 
in this paper, we present a rather mathematically valid 
modelling of the past appearance.

Data collection and results
Case study: Oda Krohg’s painting “A Japanese Lantern (By 
the Christiania Fjord)”
In this article as well as its prequel, Part 1 [10], we 
show the performance of our method on the painting 
“A Japanese Lantern” created by the Norwegian painter 
Oda Krohg in 1886 and present in the collection of 
the National Museum of Norway (inventory number 
NG.M.00879). The painting is made on canvas, and with 
pastel media. The highlight of the painting, as indicated 
by its title, is the Japanese lantern in the top central part 
(see Fig.  2). The lantern is interesting from a scientific 
point as well, because it has an intricate color composi-
tion. For this reason, in this two-part series of articles, 
the lantern was chosen as the region of interest to char-
acterize the reflectance and lightfastness of the constitu-
ent pigments, based on microfading spectrometry. In this 
article, we present an approach to visualize the fading 
effects for the entire surface of the lantern.

Microfading analysis
In Part 1 [10] of this two-series article, we explained how 
we collected a set of measurements (see Fig.  2) from a 
fragment of the painting, i.e. the lantern in the top cen-
tral part, with a portable microfadeometer (MFT) [26]. 

(1)H
IJ ·KN
sim = AIJ ·F

map × (CN ·F ⊗ BK ·F )T

The temporal evolution of the color coordinates shows 
an overview of the color degradation mechanisms. As it 
emerges from the plots in Fig. 3, the tendency is for the 
colors to darken (the negative change of lightness) and 
desaturate (negative change of chroma). The desaturation 
effect is evident for the pink, red and orange samples. 
However, in the case of the green samples, it seems that 
chroma remains stable. Similarly, the chroma of the vio-
let samples has a rather small shift in comparison to the 
red, pink and orange. In addition, V1 saturates, while V2 
desaturates. This contrasting trend is probably related to 
the underlying materials that albeit similar in color, have 
different spectral composition.

Hyperspectral image capture
The painting was imaged with the HySpex VNIR-1800 
[27]. HySpex VNIR-1800 is a pushbroom hyperspectral 
scanner, with a CMOS sensor that records the spectral 
response every 3.2 nm between 400 and 1000 nm for a 
line of 1800 pixels at a time. In order to acquire a full sur-
face, either the camera or the object needs to be moved 
so that sequential frames are acquired. This results in a 
3D data array with size equal to (number of frames) * 1800 
pixels * 186 spectral bands. In this case, the camera was 
set on a rotational stage, parallel to the painting that 
was held in a vertical position with a motorized easel, as 
shown in Fig. 4. A lens focusing at 1 m was mounted on 
the camera, resulting in a pixel size equivalent to that of 
0.2 mm. The distance between the camera and the paint-
ing was approximately 1 m. To maximize the signal, two 
halogen studio lamps were placed on the left and right 
side of the camera, at 45◦ with respect to the painting. 
To account for the light non-uniformity of the captured 
line and to obtain the reflectance factor, a standard gray 
target with known reflectance of approximately 60% was 

Fig. 2  Locations measured with MFT on the central lantern. The 
samples correspond to five colour groups: pink (P), red (R), green 
(G), orange (O), violet blue (V). Courtesy of Børre Høstland, National 
Museum
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placed alongside the painting. Each pixel in the captured 
line is corrected for the dark current noise. Then, to get 
the reflectance factor, the pixels in the region of interest 
are divided by the response of the gray target and mul-
tiplied by the known reflectance of the target. Similar 
to the microfaded data, the hyperspectral signals were 
smoothed with a Savitzky–Golay filter [28] of order 2 and 
window size 17 to reduce the noise.

Due to various constraints related to the in-situ 
measurements and museum logistics, the microfading 
was performed before the hyperspectral imaging. 
Moreover, at the time of the imaging campaign, the 
painting was reframed, whereas it was without frame 
during the microfading experiment. The framing 
includes a thin sheet of Optium acrylic [29] overlaid on 
the painting. The acrylic sheet blocks 99% of the UV 

Fig. 3  Alteration of L*, C* coordinates for the microfaded samples in the central lantern. The black square marks the initial value, before fading, 
while the diamond marks the final value, after fading. The lightness of all samples decreases after fading. While the red, pink and orange sample 
desaturate, the chroma of the green samples keeps constant. Interestingly, the two violet samples have opposite behaviours, where chroma 
increases for V1, whereas it decreases for V2

Fig. 4  In-situ setup for hyperspectral imaging
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light, is anti-reflective and is transparent, so it should 
have minimal to no impact on the imaged signal of 
the painting’s reflectance in the visible range. It could 
be implied that during the gap in-between the two 
measurements, some intermediate fading might have 
occurred. Nonetheless, the painting was not on display 
during this period, so there should have been very little 
light exposure mostly due to the reframing after the 
microfading experiment, packing, and setting up for the 
hyperspectral scanning.

Exploratory analysis
In order to get a quick understanding of the hyperspec-
tral image, principal component analysis (PCA) was com-
puted to compress and visualize the significant variation 
in the spectral data for the full spectral range (400–1000 
nm). Before PCA was applied, the data was normalized 
along the spectral dimension with the standard nor-
mal variate preprocessing technique [30], to reduce the 

influence of the spectral signal’s intensity in favour of its 
shape. The data was split into 10 principal components, 
where the components are sorted descendingly by the 
amount of data variance they explain. By nature, prin-
cipal components (PC) are orthogonal, and they could 
suggest distinct materials in the data. However, it is dif-
ficult to give chemical meaning to the spectra of the PC 
especially since the mean-centering in pre-processing 
implies loadings with negative values. Fig.  5a, c display 
false color visualizations of the first 6 principal compo-
nents in the central lantern, where we can see a spatial 
distribution of different materials. We can parallel these 
distributions with the true color rendering of the central 
lantern (Fig. 5b) to attribute more meaning to the com-
ponents. For example, the red in Fig. 5a seems to corre-
spond to the yellow areas in the true color image, while 
green segments the violet-blue strokes and cyan cov-
ers the pink regions. Moreover, the false green color in 
Fig.  5c delineates stripes that overlap with the false red 
color regions in Fig. 5a. Actually, considering the known 

Fig. 5  True color visualization of the central lantern based on the hyperspectral image (b), together with PCA false color renderings (a, c). a R, G, B 
correspond to: PC1—45.23% retained variance, PC2—36.55% variance, PC3—7.3% variance. b R, G, B correspond to the most informative spectral 
bands: 650 nm, 551 nm and 470 nm. c R, G, B correspond to: PC5—2.47% retained variance, PC6—10.97% variance, PC4—5.53% variance
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fact that pastels are usually applied in layers, we could 
hypothesize that PCA manages to separate some of the 
layers in the painting, even though it is difficulty to quan-
tify the order. Nonetheless, if we carefully inspect the 
true color image, we can notice areas of yellow covered 
with green in the top left and right sides of the lantern.

Spatio‑temporal spectral fading simulation
One of the advantages given by our tensor decomposition 
model and facilitated by the multi-modal acquisition, is 
the possibility to spatially map the temporal changes trig-
gered by fading. For generating spatio-temporal simu-
lations, we first recover the concentration maps of the 
endmembers (factor C loadings extracted with the PAR-
AFAC model, displayed in Fig.  6b) in the hyperspectral 
image using least-squares method. We enforce the non-
negativity constraint so that we get realistic, positive con-
centrations. Also, we interpolate the spectral sampling of 
the hyperspectral image to match that of the microfading 
data. The resulting abundance maps have the same spa-
tial dimension as the input hyperspectral image, 736 * 790 
(height * width), and are shown in Fig.  7. A clustering 
effect can be noticed, where the same endmember is pre-
sent in contiguous and adjacent regions, which indicates 
that the abundance maps are realistic. The most spatially 
predominant pigment is endmember 1, while the least 
extensive is endmember 6. The uniformity of endmem-
ber 1 seems to confirm the likelihood of our previously 

mentioned layering theory, suggesting the presence of a 
common bottom red layer applied on the central lantern 
before the other colors.

The abundance maps with size 736 * 790 * 6 are then 
flattened to 581,440 * 6 arrays so that they can be 
combined with the fading rate and endmember loadings 
(see Fig. 6) using the Khatri-Rao product, as formulated 
in Eq.  1. The result is a 2D matrix with dimensions 
581,440 * 648, where the second dimension corresponds 
to the number of time steps (8) multiplied by the number 
of wavelengths (81). This is then reshaped to a 4D array 
with size 736 * 790 * 8 * 81, that contains the spectral 
simulations along the 81 wavelengths for the 8 time steps, 
spatially distributed for the entire surface of the central 
lantern. We then separate the images at  each temporal 
slice, and transform them to CIE L*a*b* using CIE 1931 
2 ◦ standard observer and D65 standard illuminant. This 
way, we can check whether the degradation pattern of the 
spatio-temporal simulations fits with the findings of the 
colorimetric analysis in “Microfading analysis” section.

Figure  8 shows the �E00 difference between the spa-
tio-temporal simulations at time step 8 and time step 1. 
We would expect that the maximum difference is 2 �E00 
units, since this is the span of the microfading data used 
to train the tensor decomposition model. While, indeed, 
the range is mostly below 2 �E00 units, the maximum dif-
ference reaches 2.5 units for few isolated groups of pixels. 
This can be caused by a number of factors: the imperfec-
tions of our model in finding all the endmembers; the 
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least-square fitting error in the estimation of the abun-
dance maps; the setup differences between the micro-
fading and hyperspectral measurements that might 
generate a difference of scale when computing the abun-
dance maps. In addition, we graphically represented the 
subtraction of the color coordinates L* and C* between 
the simulations at time step 1 and time step 8. Hence, in 
Fig. 9 the false colors red and green stand for positive and 
negative change, respectively. The previous colorimetric 
analysis (see   “Microfading analysis” section) revealed a 
negative trend for  the  L* and C* coordinates for almost 
all of  the single point measurements. This trend seems 
to be preserved for the spatial simulations as well. None-
theless, we can notice small red areas in Fig. 9, indicating 

a positive change, which is contrary to the colorimetric 
analysis of the individual microfaded samples. This may 
be explained by the fact that those areas in the hyper-
spectral image simulations that change positively in 
the L* and C* coordinates were not measured with the 
microfadeometer. Actually, this raises one potential limi-
tation of our spatio-temporal simulation model: if the 
microfading experiment doesn’t sample the full range of 
the materials spatially present, then the performance and 
accuracy of the model might be affected.

We know that the hyperspectral image was captured 
1  year after the microfading experiment. In this period, 
the painting was not on display. Hence, the exposure 
should have been minimal, mostly occurring during the 
reframing process after the microfading data collection 
and during the hyperspectral scanning. By comparing 
the spatio-temporal simulations with the hyperspectral 
image, it is possible to estimate the amount of light expo-
sure in-between the two measurements. Therefore, we 
computed the �E00 and root mean square error (RMSE) 
between the hyperspectral image and the spatio-tem-
poral simulations for time steps 1–8. According to both 
metrics, the simulation at time step 2 is the one with 
the highest colorimetric and spectral similarity with the 
original image, as shown in Fig. 10. This implies that in 
the gap between the two acquisitions, the painting was 
exposed for approximately 0.0385 Mlux hr. However, 
there are a number of factors other than light expo-
sure that may influence the precision of this result. For 
instance, there were a number of differences between 
the microfading data collection and hyperspectral imag-
ing: the state of the painting (without and with the acrylic 

0

0.5

1

1.5

2

2.5

Fig. 8  �E00 between the spatio-temporal simulations at time step 1 
and time step 8, where the exposure is equivalent to 0.027 Mlux hr

Fig. 9  Comparison of the CIE L*, C* coordinates between the spatio-temporal simulations at time step 8 (equivalent to 77 s of light exposure) 
and time step 1. Red depicts a positive change, while green a negative change. The negative difference prevails, which is in agreement with the 
colorimetric analysis of the microfading data (“Exploratory analysis” section)
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sheet), illumination (LED  vs. halogen) and acquisition 
geometry. In addition, the neutral reference tiles used to 
calibrate the light sources for the two instruments were 
different. Moreover, there is the problem of unidentifiable 
scale of the endmembers extracted with the parallel fac-
tor analysis (see “Tensor decomposition with parallel fac-
tor analysis”  section in Part 1 [10] prequel). To account 
for these variations in magnitude, before computing the 
difference between the simulations with respect to the 
hyperspectral image, we applied normalization in each 
case by division with the maximum values.

Rendering of past and future appearance
In a previous article we derived the linear approximations 
of the fading rates characteristic to each endmember and 
estimated the slope and intercept, (see Eq. 3 and Table 1 
of Part 1) [10]. In addition, the goodness of the linear 

approximations was proved based on a test dataset. To 
visually acknowledge the effect of reversed and increased 
fading, we computed new fading rates for k = {−31 . . . 0} 
and k = {9 . . . 32} , which together with the measured 
k = {1 . . . 8} , cover a light exposure range of ±341 sec-
onds or ±1.19 Mlux hr. The number of 32 time steps 
was inspired from the analysis of future modelling of 
the point measurements in Part 1 [10], section  “Data 
collection and  results”, where the reconstruction error 
was showed to increase proportionally with the extent of 
the temporal range. For this reason, we chose a moderate 
value as a way to cap the amount of error and at the same 
time, achieve the visible effect of aging. Then, we input 
the new fading rates in Eq.  1 and created a total of 64 
hyperspectral images for k = {−31 . . . 32} . In Fig. 11, we 
show sRGB renderings (based on the CIE L*, a*, b* coor-
dinates integrated for D65 illuminant and 2 ◦ observer) 
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Fig. 10  The spatio-temporal simulation at time step 2 is most similar to the hyperspectral image, both colorimetrically and spectrally, with 
an average �E00 of 0.86 and an average RMSE of 0.13. This indicates that light-induced aging happened in-between the two measurements 
(microfading and hyperspectral). However, there are other factors, mainly related to the differences between the two acquisitions setups, that could 
influence the accuracy of this result

Fig. 11  Spatio-temporal sRGB renderings of the lantern, for D65 illuminant and 2 ◦ observer. For simulating the past, we reverse the light exposure, 
up to − 1.19 Mlux hr (equivalent to − 341 s or k = − 31 time steps). Present refers to 0 Mlux hr (k = 1) and future to + 1.19 Mlux hr (k = 32 or + 341 s). 
We can see that the overall appearance turns darker due to photodegradation. Also we can notice the shift to greener hues of the orange colours in 
the center (corresponding to points O1, O2, O3 in the microfaded samples). For a more gradual display of the change, for intermediate time steps, 
please watch the animation in the Additional file 1
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of the past, present and future appearance of the Japa-
nese lantern. The past, simulated for the smallest k can 
be considered a digital rejuvenation and shows a brighter 
and more colorful appearance than the consequent ren-
derings. Indeed, the future appearance (Fig.  11c) looks 
darker and less colorful. This means that the color degra-
dation trend, previously discussed in the case of a sparser 
spatial sampling (Fig. 3) or for a more confined period of 
time (Fig.  9) is consistent for bigger cutouts in the spa-
tio-temporal volume. The animation in Additional file 1 
portrays a more gradual visualization of the change, that 
takes into account the intermediate time steps between 
the past and future simulations in Fig.  11. We chose 
these boundaries for the light exposure k = {−31 . . . 32} 
because they are sufficient to show the aging process. 
Mathematically, we have no clear boundaries and poten-
tially, we could generate simulations far beyond this 
range. However, from a physical point of view, simula-
tions might get unrealistic beyond a certain threshold. 
Defining this threshold requires precise knowledge about 
long-term kinetics of the pigments and a full monitoring 
of the painting’s storage and display conditions, and it is 
out of scope for our current work.

Every 2D rendering for a certain time step has a full 
spectral representation. This facilitates the visualiza-
tion of the degradation for particular wavelengths. For 
instance, Fig. 12 shows the difference between the reju-
venation (− 1.19 Mlux hr) and aged (+ 1.19 Mlux hr) ver-
sions of the lantern, in RGB composite images. Each R, G, 
B channel corresponds to the most representative spec-
tral bands in the long-wave, mid-wave and short-wave 
parts of the visible electromagnetic spectrum according 
to the correlation coefficient metric. These informative 

bands are 650 nm, 551 nm and 470 nm. By visualizing 
the difference hyperspectral image between past and 
future, we can see which wavelengths change most for 
certain areas in the lantern. For example, in the areas sur-
rounding the O1 and O2 microfaded points, we can see 
the predominant color in Fig. 12 is yellow, meaning that 
the most significant shift happens in G and R channels, 
corresponding to 551 nm and 650 nm. A full animation 
highlighting the photodegradation as the per-wavelength 
difference between the rejuvenation and aged simulations 
is included in Additional file 2.

Discussion
To summarize our results, we showed how the fusion 
of microfading spectrometry with reflectance image 
spectrometry can be useful to the analysis of an artwork 
on various levels. First, both acquisition methods enable 
informative preliminary analysis. Microfading gives us 
an overview of the color degradation of the materials, 
while the spatio-spectral dimension of the hyperspectral 
imaging enables principal component analysis that shows 
a distribution of probably distinct materials, even though 
the components have low interpretability with regard to 
the chemical meaningfulness. However, these techniques 
alone have a number of limitations. Microfading doesn’t 
have a spatial component making it a difficult task to 
extrapolate the degradation behaviour to other points 
on a surface. On the other hand, hyperspectral imaging, 
while having a good resolution in the spatial and spectral 
dimensions contains little information about the fading 
mechanisms of the pigments. Also, while pigment 
classification and unmixing techniques can be applied, 
hyperspectral imaging has a limited reach beyond the 
surface layer of a painting. In our case, the hyperspectral 
system is sensitive in the near-infrared region, and able 
to see through several pigments that are transparent 
in the near-infrared. In addition, we can argue that the 
microfading, based on an accelerated aging procedure, 
can  reach  as well layers underneath the superficial 
pictorial layer. In other words, through fading, some 
components disappear, uncovering pigments from 
underneath layers. Seeing beyond the surface turns out to 
be a useful property when it comes to pigment unmixing.

Given all these considerations, by fusing microfading 
data with hyperspectral image analysis we get a more 
holistic representation of an artwork and its constitutive 
pigments together with their fading mechanisms. In other 
words, we get a spatio-spectro-temporal representation.

Towards future validation of our approach, we intend 
to conduct psycho-physical studies where more experts 
could assess if the spatio-temporal simulations look 
realistic. Moreover, because the tensor decomposition 
method is sensitive to the training data, we are aware that 

Fig. 12  RGB image of the difference between past and future 
simulation of the lantern. The R, G, B channels correspond to the most 
informative spectral bands in the ranges 600–700 nm, 500–600 nm, 
400–500 nm, namely 650 nm, 551 nm and 470 nm. The contrast of 
the image is stretched for visualization purposes
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with a limited sampling of the microfading observations, 
some pure pigments might be disregarded, which in turn 
affects the spatial mapping. This could be accounted for 
with a more thorough sampling during the microfad-
ing experiment. In addition, the tensor decomposition 
method is ultimately a linear unmixing method, which 
might not capture all the non-linear mixing mechanisms 
in the current pastel painting. Because this has an impact 
on the spatial representation, non-linear models such as 
Kubelka–Munk are under consideration for further evalu-
ation. Finally, although we show results for a single case 
study, our method can be applied on any other type of col-
orant (ink, dyes, etc.) and artworks given a set of overlap-
ping microfading and hyperspectral measurements.

Conclusion
In this study, we elaborated a method that combines 
microfading spectrometry with hyperspectral image anal-
ysis towards spatio-temporal simulations of an artwork. 
The current approach builds on our previous work, where 
we distilled a time-series of point spectroscopic measure-
ments into the spectral signals of pure pigments and their 
fading functions. In this follow-up article, by coupling the 
basis factors  recovered beforehand with a hyperspectral 
image of the same scene, we are able to render the appear-
ance of the artwork by modulating the amount of light 
exposure. As a result, we can undo the fading and achieve 
a digital rejuvenation. Similarly, we can simulate the future 
photodegradation by virtually increasing the light expo-
sure. Our proposed spatio-temporal simulations have a 
full spectral representation, meaning that they can be ren-
dered for specific wavelengths, as well as adapted to the 
color response of various illuminants.
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