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ABSTRACT
The study of pigments in historical works of art is of sig-
nificant value for conservators and art historians, providing
insight into artistic techniques and the preservation of cul-
tural heritage. Hyperspectral imaging aids in the identifica-
tion and classification of pigments, facilitating conservation
efforts. However, the challenge lies in identifying these pig-
ments in artworks where ground-truth data are unavailable,
necessitating unsupervised clustering techniques. In this pa-
per, the performance of dimensionality reduction and cluster
estimator techniques are evaluated, further proposing a work-
flow for unsupervised clustering for paintings without known
pigments. A case study is conducted on Edvard Munch’s Self-
Portrait (1905), providing valuable insights into a relatively
unexplored artwork within the cultural heritage domain.

Index Terms— Hyperspectral imaging, cultural heritage,
painting, unsupervised clustering

1. INTRODUCTION

Knowledge about pigments used in historical artworks helps
conservators and art historians gain valuable insights into the
materials and techniques employed by artists from different
periods and regions. When dealing with an artwork for which
we have no prior knowledge of its details, one of the cru-
cial steps is determining the distinct number of pigments or
endmembers present in the artwork. Using multi- or hyper-
spectral imaging (HSI) techniques, one can analyze the spec-
tral signatures of different areas of the artwork. This helps
to identify and classify the pigments used, which is vital in-
formation for the preservation and restoration of the artwork
within the realm of cultural heritage (CH).

HSI, also known as imaging spectroscopy, provides de-
tailed, non-invasive, and material-specific information about
artworks and artifacts. Its ability to discriminate between ma-
terials, analyze subsurface features, and improve visualiza-
tion sets it apart from traditional imaging methods and con-
tributes significantly to preserving and understanding our CH.
It has been widely used as a complementary tool for conser-
vation studies, especially for paintings [1]. One of its most
popular uses is to map pigments or colorants over the spa-
tial extent of a painting [2], allowing for extrapolation of the
knowledge obtained by means of, usually, point-based analyt-
ical methods. In a typical scenario, an identification of which

pigments are available in a painting would have already been
performed. For an HSI-based pigment mapping, this means
that a spectral library of known pigment can be constructed,
and any supervised approach can be used to perform the map-
ping. However, in most cases in CH, we do not have such
information and, therefore, we need to analyze the data using
unsupervised techniques.

This paper proposes a workflow to estimate and map the
clusters in an artwork without available ground truth informa-
tion. We explore three dimensionality reduction techniques,
i.e., principal component analysis (PCA) [3], t-distributed
stochastic neighbor embedding (t-SNE) [4], and uniform
manifold approximation and projection (UMAP) [5]. They
are further evaluated by several k-estimators, with a par-
ticular focus on spectral datasets associated with pigments
commonly used in paintings from the historical periods. The
objective is to identify the most suitable dimensionality re-
duction technique and K-estimator for clustering analysis
on a pre-established dataset with a known number of clus-
ters (pigment mockup) and apply this optimized workflow
to the case study painting, i.e., Edvard Munch’s Self-Portrait
(1905). The case study will provide valuable information
since, to the best of our knowledge, there are not many details
available for this painting.

2. ON UNSUPERVISED CLUSTERING

Clustering is a statistical data analysis technique, mostly used
as an unsupervised machine learning task that organizes en-
tities into groups based on their shared features [6]. Cluster-
ing algorithms aim to maintain the distribution characteris-
tics of the input data by grouping similar entities within the
same cluster. When applied to hyperspectral images, the data
points to be clustered usually represent the individual pixels in
an image, with the features corresponding to the pixel values
across different spectral bands. A proficient clustering algo-
rithm should effectively group pixels with comparable spec-
tral signatures, essentially identifying pixels that likely corre-
spond to the same pigments.

Hierarchical and partitional clustering are two fundamen-
tal approaches to clustering data [7]. Hierarchical cluster-
ing does not require specifying the number of clusters be-
forehand, and it organizes data points into a tree-like struc-
ture (dendrogram) by recursively merging or splitting clus-



ters based on similarity or distance. This can be further cate-
gorized into Agglomerative clustering (bottom-up approach)
and Divisive clustering (top-down approach). Hierarchical
clustering is computationally expensive and, thus, not suitable
for large datasets. In addition, it does not separate overlapping
clusters [6]. On the other hand, partial clustering is an ap-
proach that divides data points into non-overlapping groups or
partitions based on the initially specified number of clusters.
Each data point belongs to one and only one cluster (disjoint
clusters). There are also some other clustering algorithms
based on a variety of theories and techniques that can be used
as hierarchical and partitional clustering; some of these in-
clude graph theory-based [8], fuzzy theory-based [9], mix-
ture densities-based [10], neural network-based [11], kernel-
based clustering [12], etc. Details about various clustering
algorithms can be found in [7, 12].

The choice of clustering method and strategy usually de-
pends on the specific dataset, computational resources, and
the trade-offs between accuracy and computational complex-
ity. Hierarchical clustering is computationally complex, es-
pecially for large datasets, because it operates pairwise to
build the hierarchical structure of clusters. On the other hand,
partitional clustering methods are often computationally effi-
cient; however, they often require prior knowledge or an esti-
mate of the cluster count. The key challenge lies in selecting
the optimal number of clusters k, a critical decision that sig-
nificantly influences cluster quality. Several techniques (k-
estimators), such as the elbow method [13], the silhouette
score [14], Davies-Bouldin index [15], and gap statistics [16],
can help determine the ideal cluster count.

Elbow method determines the optimal k by iteratively
calculating the within-group sum of squares (WCSS) for dif-
ferent values of k and selecting the point where the WCSS
graph starts to level off as adding the additional clusters does
not add sufficient information. The silhouette score summa-
rizes the variation within-cluster and between-clusters. It is
calculated by measuring the distances between data points
within the same cluster and to the nearest neighboring clus-
ter. The optimal k is determined by finding the value of the
peak silhouette coefficient. The Davies-Bouldin index (DBI)
is another metric to measure the separation and compactness
of clusters. It computes the ratio of within-cluster distance
to between-cluster distance for all clusters and their nearest
neighbors, recording the maximum ratio for each cluster. The
final index value is the average of these maximum ratios. The
lower the DBI, the better the clustering quality. The gap
statistic is used to compare the quality to a reference distri-
bution. Calculate the difference between the performance of
the clustering algorithm on actual data and its performance on
random data. A larger gap suggests better clustering quality,
indicating a suitable number of clusters. It can be calculated
with and without taking the logarithm of the observed WCSS
values. Using logarithms is helpful for datasets with widely
varying WCSS values.

High-dimensional data, e.g., hyperspectral data, con-
tain numerous features that represent variables or attributes.
While offering valuable information, high dimensionality
increases computational complexity, requiring more mem-
ory and resources. Dimensionality reduction techniques, by
mainly linear projection (e.g., PCA) and nonlinear embedding
(e.g., t-SNE, UMAP), aim to preserve essential information
while reducing dimensionality. PCA transforms data into a
lower-dimensional space and focuses on preserving the global
structure and variance [3]. t-SNE is a nonlinear approach that
can capture complex, nonlinear relationships between data
points, making it useful for preserving local structures in
the data. It is often used for clustering and visualization tasks
when local relationships are more important than global struc-
ture [4]. UMAP is another non-linear technique designed to
preserve local and global structures in data [5]. It employs a
nearest-neighbor approach with efficient algorithms, making
it better suited for handling large datasets. On the contrary,
t-SNE quickly becomes computationally expensive as the
size of the dataset increases.

3. MATERIALS AND METHODS

3.1. Object

Figure 1 depicts "Self-Portrait with Moustache and Starched
Collar" (Selvportrett med bart og høy snipp), a captivating
work by the renowned Norwegian artist Edvard Munch, cre-
ated in 1905. This is a relatively small painting, measur-

Fig. 1: Self-Portrait with Mustache and Starched Collar
(1905) by Edvard Munch, National Museum, Norway. The
color image was generated from the HSI data using bands at
614.52, 563.63, and 458.24 nm.



ing approximately 46.5×35.5 centimeters (18.3×14 inches).
This modest size invites viewers to closely examine the de-
tails of Munch’s self-representation and the nuances of his
expression. In the context of this painting, the specific pig-
ments employed, or the number of distinct end members re-
main unidentified. However, several studies delved into the
details of Edvard Munch’s artworks [17], providing valuable
insights into the artistic materials employed by Munch, span-
ning the period from 1885 to 1927.

3.2. Image acquisition

Hyperspectral images were acquired at the National Museum,
Oslo, Norway, where the painting was located. HySpex
VNIR-1600, a line scanner camera developed by Norsk Elek-
tro Optikk, was used. The painting was placed on an easel
and the camera was on an X-Y translation stage. We used
a 1-meter cylindrical lens for the acquisition that captures
1600 spatial pixels across a line with a field of view of ap-
proximately 30 cm. A quartz-enveloped halogen-tungsten
broadband light source covers the broad spectrum of 400-
2500 nm. A computer equipped with HySpex GROUND
software provided by the manufacturing company controlled
the hyperspectral acquisition system. This software automat-
ically synchronizes the scanning speed for the user-defined
integration time. Reference targets where also captured along
with the painting to use for reflectance calculations.

3.3. Radiance to reflectance factor

Hyperspectral image obtained from the acquisition comes in
terms of spectral radiance. To perform analysis on materials
or surfaces, spectral reflectance is needed since it is the in-
herent property of materials and is independent of the illumi-
nation condition. Given the use of a calibration target G and
its known reflectance RG

1 , we can estimate the illumination
factor I from its radiance image RG

0 by:

I =
RG

0

RG
1

. (1)

The reflectance factor RT
1 of the target radiance image RT

0

will therefore be computed as:

RT
1 =

RT
0

I
. (2)

Specifically for the case study image we use, the spectral re-
flectance image is derived by assuming that the whitest point
in the image is supposed to have a relatively flat reflectance
signal close to unity G = {1,∀λ}, where λ is the wave-
lengths.

4. RESULTS AND DISCUSSION

4.1. Validation experiment results

We conducted dimensionality reduction on datasets with
varying known numbers of clusters within the datasets. Dif-
ferent k-estimation methods were also applied to these lower-
dimensional data to determine the optimal value of k. The
results obtained were subsequently compared to the actual
number of groups in the data set (Figure 2 illustrates the
workflow). The summary of the results is presented in Ta-
ble 1. Here, n represents the number of actual clusters in the
dataset. By increasing n, we introduce greater complexity to
the dataset. As illustrated in Figure 3, P1 to P11 represent
distinct clusters. As more spectra overlap or become similar
to others with slight differences in magnitude and shape, they
can be considered representations of overlapping clusters.
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Fig. 2: Workflow for unsupervised clustering for works of art.
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Fig. 3: Spectra of various pigments used within the known
dataset. They represent the most commonly used pigments
within the works of art across various historical periods [18]
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Table 1: Summary of results obtained from three different data reduction techniques and a range of k estimators to ascertain
optimal cluster values for datasets with varying known cluster counts n.
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The results presented in Table 1 indicate that, paired with
the Elbow and silhouette estimators, UMAP excels in estimat-
ing k. This success can be attributed to the ability of UMAP to
capture local and global data structures, making it a valuable
tool in scenarios where accurate determination of the cluster
number is crucial. Although PCA performs adequately for a
lower number of clusters, its performance deteriorates as the
complexity of the clustering structure increases. This limita-
tion arises from PCA’s linear nature, which may struggle to
accurately represent intricate non-linear relationships within
the data. It should be noted that t-SNE consistently struggles
to effectively estimate the number of clusters using various
estimator methods for the dataset used. This observation sug-
gests that t-SNE’s primary focus on preserving pairwise sim-
ilarities may not be well suited for these specific datasets due
to its emphasis on local relationships.

4.2. The case study

Building upon the experiments and analyses conducted in
the previous section, which involved a dataset with a known
number of clusters, we observed that the use of silhouette
methods in conjunction with UMAP consistently delivered
the most optimal results in determining the appropriate value
of k. Therefore, we employed this workflow to establish the
value k for Munch’s Self-Portrait (1905). As depicted in Fig-
ure 4, a specific section of the portrait was selected to estimate

Fig. 4: Segment of Edvard Munch’s Self-Portrait (1905)
thoroughly reproduces the comprehensive features (pigments)
employed in the composition. Thus, this segment is used to
estimate k for the case study image.

k, carefully chosen to encapsulate the overall characteristics.
Having acquired the value of k through this workflow, we
applied the K-Means clustering algorithm to the entire paint-
ing. The resultant clustering is presented in Figure 6. We
identified the optimal number of clusters, i.e., k = 5 (See sil-
houette coefficient plot in Figure 5), through UMAP and the
silhouette method. This clustering analysis unveils distinct
groupings within the dataset, each corresponding to different
pigments or mixtures of pigments. This preliminary analysis
offers valuable insights into the dataset’s diversity, which can
serve as a useful starting point for curators and conservators.
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Fig. 5: Silhouette coefficients plotted against different num-
bers of clusters; the red dashed line indicates the number of
clusters (k) where the data points are well-separated and ap-
propriately assigned to the correct clusters.

5. CONCLUSION

In conclusion, this paper has successfully demonstrated the
application of K-means clustering algorithms to determine the
number of pigment clusters for unlabeled data, demonstrating
a robust workflow. This study highlights the effectiveness of



Fig. 6: K-Means clustering output applied to Edvard Munch’s
self-portrait, highlighting distinct clusters corresponding to
different pigments.

combining UMAP with the silhouette method for precisely
estimating cluster numbers in datasets that resemble works
of art. These findings emphasize the crucial role of select-
ing an appropriate dimensionality reduction technique consis-
tent with the unique characteristics and the specific challenges
posed by the clustering task. By applying this workflow to
Edvard Munch’s self-portrait, we have shed light on a rela-
tively unexplored artwork within the cultural heritage domain,
further illustrating the potential of computational methods in
art analysis and preservation.
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