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ABSTRACT

The Norwegian University of Science and Technology (NTNU)
has been building a system composed of multiple remote
sensing agents for ocean observations. NTNU launched the
first HYPerspectral Smallsat for Ocean observation (HYPSO-
1) satellite on the 13th of January 2022, adding a Hyperspec-
tral Imager satellite to its disposal, while HYPSO-2 will be
launched in 2024. However, due to the high dimensionality
of the collected data, onboard processing has been introduced
on the satellite to potentially deliver information in a more
rapid and condensed manner. In this paper, the operational
use of onboard classification will be explored, investigating
how different algorithms can be applied for data reduction
to potentially enable decision-making onboard the satellite
such as the use of classified images for onboard georeferenc-
ing. The classification could be used to enable near real-time
data latency cooperation between the satellite and the other
agents, such as autonomous surface vehicles for in-situ mea-
surements.

Index Terms— Onboard processing, Autonomous Sys-
tems, Classification, Cubesats, Georeferencing, Autonomous
surface vehicle

1. INTRODUCTION

The use of hyperspectral imagers has been growing in the
last decade due to their high performance in providing de-
tailed information to users in both spectral and spatial do-
mains. Multiple Hyperspectal Imagers (HSIs) satellites have
been launched, including several CubeSat missions. NTNU
has its own operational satellite, the HYPSO-1 [1], and a new
satellite, the HYPSO-2, is scheduled to be launched in 2024.
The amount of data generated is high due to the spectral de-
tail that the hyperspectral imagers provide; for this reason,
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processing algorithms can be used to reduce the data size of
and to extrapolate useful information that can be employed
for decision-making, either on-ground or onboard. NTNU
employs a series of autonomous agents forming an observa-
tional pyramid, consisting of satellites, unmanned aerial ve-
hicles, autonomous surface vehicles, and autonomous under-
water vehicles, as is represented in fig. 1. The challenge is to
make them cooperate and work together to provide multiple
types of information to monitor a given target area.

In addition to the Hyperspectal Imaging (HSI) payload,
the HYPSO-2 satellite will incorporate a flexible Software
Defined Radio (SDR), which will potentially allow it to adapt
a communication protocol to varying system requirements
and environmental constraints [2]. The flexibility of the
SDR could be exploited to transmit data from the HYPSO-
2 satellite to other agents in the pyramid. In particular, a
first integration between HYPSO-2 and autonomous surface
vehicles (ASV) is the selected scope for this paper.

The concept of operations is explained in the following:
A given phenomenon on the Earth’s surface could be iden-
tified by HYPSO-2. The satellite may then pre-process the
Hyperspectral image by means of compression, classification
[3] and georeferencing, as the amount of data for the SDR
link would need to be kept low. The automation of opera-
tions for the cooperation of HYPSO-2 and ASV requires the
definition of imposed constraints to ensure that, for example,
the ASV is directed to the right area, or that the measurement
taken onboard is reliable and relevant. This requires that the
information to be transmitted includes precise georeferenc-
ing as the measurements would not be controlled by a per-
son prior to transmission to the next sensor agent. The ASV
can then sample the same area to provide local and detailed
information to be complemented with the satellite measure-
ments. Whenever the output of each algorithm detects that
the information taken by the satellite presents one or multiple
errors (see Section 3), the image can be disregarded directly
onboard and the process would be aborted, to avoid erroneous



guidance of the ASV while freeing resources on the satellite.
Contour-matching georeferencing has been studied in previ-
ous works [4] [5], however the application of these algorithm
onboard CubeSats is a novel field. As CubeSats and lower
cost-missions can suffer of less precise attitude determination
and control of the spacecraft, the application of such algo-
rithms can aid in enhancing georeferencing. Similarly, in-
terest in automation of operations and cooperations between
different satellites and agents has been growing due to tech-
nology developments in the last years and the advantages of a
synergic approach [6] [7]. The goal of the work presented in
this paper is to investigate the usability of different onboard
processing algorithms to enable future integration between
satellites and other sensor agents, in order to reduce the time
between the first anomaly detection until the next agent can
be guided to the target area.

Fig. 1. Full observational pyramid for HYPSO [1]

2. ONBOARD CLASSIFICATION

Onboard classification consists of identifying the information
represented by a defined number of physical features, such as
land, sea, forest, urban areas, or algal blooms from the HSI
cube. The algorithm has been tested on HYPSO-1 in June
2023, following the development of the method by Røysland
[8]. In his work, Røysland implemented a machine learning
algorithm, specifically a Support Vector Machine (SVM) with
a Binary Decision Tree (BDT), to perform classification. Ra-
diometric calibration is applied in order to take into account
the light scene difference between different areas in the world,
such as different sun angles and exposures. The onboard clas-
sification method selected employs Sparse Radiance calibra-
tion, which provides approximately 85% accuracy between
the ground truth and predicted labels [8].
In the context of this work, the classified image has a dimen-
sion of 1092x598 pixels with a maximum number of classes
equal to 16, encoded using 4 bits of data per pixel. The classi-
fication algorithm abates the data size with respect to lossless
compression of the cube, from a maximum of 80 MB to 327
kB. This data reduction paves the way for more prompt and

responsive operations of the satellite. Specifically, the clas-
sified image was downloaded from HYPSO-1 in 2.64 s [8],
compared to an average of 10 min for a HSI cube, over an
S-band radiolink.

(a) Original image

(b) Classified image

Fig. 2. Sechelt area in Canada on 6th June 2023

3. OPERATIONAL EVALUATION

In order to minimize the probability of sending wrong infor-
mation to the ASV, several evaluations and constraints will
be imposed onboard in order to discard information that can
be misinterpreted. The data recorded by the satellite has to go
through several checks in order to optimize the autonomous
onboard decision-making; this allows the satellite to direct an
ASV to a target area where a selected phenomenon has been
observed. The evaluation and algorithms to be performed are:

1. Compression ratio

2. Histogram statistics

3. Classification & Cloud cover evaluation

4. Georeferencing

3.1. Compression ratio

The hyperspectral processing on HYPSO-1 includes the loss-
less compression algorithm CCSDS-123 [1], which is run on
the on-board FPGA for a standard cube size, or in the pro-
cessing system for arbitrary cube sizes. In routine operations,
a standard cube is composed of 1092x598 pixels and 120



spectral bands. CCSDS-123 is used for its simplicity, and
for the considerable compression ratio which is of pivotal im-
portance in the context of reducing the amount of data to be
downloaded thus reducing energy spent for communications
or increasing the number of potential captures per day. Birke-
land et al. [9] investigated the possible relationship between
the compression ratio and the image quality. The compres-
sion ratio r was defined as the compressed file size divided by
the original size of the image. The evaluation of this figure
of merit potentially allows the discarding of images present-
ing saturated pixels due to cloud cover and/or pointing errors.
A threshold on r can be imposed to automatize operations by
considering only more significant data.

3.2. Histogram statistics

A histogram shows the distribution of the intensities in an
image per intensity. Counting the amount of overexposed
or underexposed pixels, meaning pixels with intensity that is
higher than an overexposure threshold or lower than an under-
exposure threshold, can give a more accurate degree of cloud
cover, or indicate a pointing error where the HSI was pointing
off the horizon of the earth and containing many dark pixels.
The number of overexposed and underexposed pixels in an
image is an indicator of the quality of an image and a thresh-
old on them can be used for onboard decision-making with
regards to further processing and communication with other
agents.

(a) Partly cloudy (b) Pointing error

Fig. 3. Example scenes for the data in table 1

Scene overexposed underexposed rest
(a) 30.24% 0.0 % 69.76%
(b) 1.21% 43.22% 55.56%

Table 1. Example histogram statistics that can be used for
onboard decision-making

3.3. Classification & Cloud cover

The classification algorithm developed by Røysland [8] iden-
tifies a prescribed list of classes representing physical quan-
tities; two of these classes represent thick and thin clouds.
Even though cloud cover has been taken into consideration

in the compression ratio and histogram evaluation, an assess-
ment of absence or presence of the two classes allows us to
directly evaluate if an image has limited use, and can therefore
be deleted. By performing the compression ratio, histogram,
and cloud cover check, it would be possible to identify most
of the cloudy or failed pointing pictures [9].

3.4. Georeferencing

Georeferencing refers to the process of associating the image
taken from a satellite to geographical coordinates with respect
to each pixel. Many reliable algorithms have been applied to
this problem, such as scale-invariant feature transform (SIFT)
based feature mapping [10]. However, the SIFT algorithm is
complex to run onboard the satellite, and other options must
be sought. Bjørnsen [11] has adapted and tested an onboard
direct georeferencing method for HYPSO-1 which takes as
input the position and attitude of the satellite to associate lat-
itude and longitude to the pixels of the image. This has been
tested in a FlatSat on the ground, but the implementation to
HYPSO-1, and possibly HYPSO-2, is straightforward. How-
ever, the method implemented presents some offset in georef-
erencing caused by inaccuracies in attitude and position mea-
surements [11], as shown in fig. 4(a). As the satellite platform
has been purchased by NTNU, these uncertainties may be nei-
ther easy to be identified nor under NTNU control.
In the case of measurement targets in coastal areas, an indirect
georeferencing method could then be applied to georeference
the coastline present in an image. The method is based on the
Iterative Closest Point approach [12], which is an algorithm
that can be applied to find a match between 2D or 3D clouds
of points. In the scope of this paper, the longitude and latitude
of coastlines are the two dimensions to be matched, leading
to a two-dimensional problem. Using the Røysland classifica-
tion algorithm, the coastline can be easily identified, and then
broadly georeferenced with the direct method developed by
Bjørnsen [11]. Then, the pixels identifying the coastline can
be compared to a database containing refined coastal points
with exact longitude and latitude. If a match between the two
is found, a precise georeferenced image is obtained.
The Iterative Closest Point can be applied to a directly georef-
erenced and classified image. In this work, the algorithm used
is developed by Kroon [13]. After the identification of the
latitude and longitude of the coastline in the image, the points
are compared with the geographical coordinates available in
the database, representing the ground truth. The algorithm
solves the general problem of finding the rotation matrix R
and the translation vector T to match the latitude and longi-
tude of the image p, to the latitude and longitude of a database
of coastlines as follows:

q = R ∗ p+ T. (1)

The algorithm minimizes the distance by iteratively comput-
ing the rotation matrix R and the translation vector T for the



relative rigid body transformation. The identified coastline
points in the image, p, are represented in red in fig. 4(a),
and they present a significant error with respect to the ac-
tual coastline location, caused by the direct georeferencing
method. The cloud points of the image are compared with
the points present in a larger search area. Before applying
the algorithm, the cloud points representing the coastline are
heavily sub-sampled. The Iterative Closest point method is
then applied, and the red points p are translated and rotated,
obtaining the coastline-matched point q; the distance between
the transformed points q and the database points must be min-
imized to georeference the image. The results of the simula-
tion are depicted in fig. 4(b), where the matched points are
represented in red.
In order to identify whether the algorithm converges to a solu-
tion, the distance between each matched point and the nearest
actual coastal point is computed. A threshold on its median
and mean can be imposed for operational reasons. If the im-
posed conditions are not met, the algorithm has not converged
and no match between the points can be found. The indirectly
georeferenced and classified picture is reported in fig. 4(c),
where it is evident how the georeferencing is far more precise
after the application of the algorithm with respect to fig. 4(a).
The algorithm can be implemented onboard due to its rela-
tive simplicity with respect to other georeferencing methods.
Even though this algorithm provides promising results, on-
board tests will have to be carried out for an in-depth charac-
terization of the method and its possible operational use. The
main challenges with the indirect georeference approach are
the automated identification of coastlines and the establish-
ment of constraints to autonomously stop the algorithm after
it has converged. Moreover, the image presents deformations
due to the characteristics of the HSI camera and the classifica-
tion algorithm, and a accurate georeferencing over the whole
picture is not achievable with the available resources. How-
ever, this could be counteracted by applying the algorithm to
subsets of the image.

3.5. Using georeferenced and classified images

A measurement can be directly evaluated onboard through the
use of four different evaluations in terms of the information
that it provides, and it can be accurately georeferenced. This
approach could already be potentially added to HYPSO-1 op-
erations; in particular, it would be possible to delete onboard
the full cube associated with the capture, as the data through-
put, storage, and downlink capacity available for CubeSats
are limited. This allows, for example, to perform more cap-
tures per day.
Following the launch of HYPSO-2 in 2024, new possibilities
will arise. As the satellite will include a SDR, direct com-
munication with other agents could potentially be achievable
after testing. A classified image could then be used to detect
possible anomalies, as in the case of Harmful algal blooms.

(a) Directly georeferenced image
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Fig. 4. Georeferencing methods applied for an image taken
over the Sechelt area in Canada on 6th June 2023.

As monitoring this phenomenon is central to the HYPSO mis-
sion objective, Røysland [8] identified potential algae blooms
as one of the classes labeled in the image. In order to de-
tect the algae bloom and picture it with other sensors, precise
georeferencing needs to be carried out in order to correlate the
pixels expressing the anomaly to its exact location. Perform-
ing both steps onboard will then potentially support perform-
ing decision-making onboard HYPSO-2. In particular, if the
image is not cloudy, coastlines are present in the picture, no
attitude-pointing errors are detected, and an anomaly of inter-
est is identified through classification, it would be possible to
task the ASV directly from HYPSO-2. The ASV will then be
directed to the area of interest, which is accurately georefer-
enced through the Iterative Closest Point algorithm.
A parallel approach would consist of running onboard target



detection on the full HSI cube [14], and identifying the al-
gae bloom. Performing the previously described operational
evaluations and algorithms, the identified target can be pre-
cisely located through the indirect georeference method. The
information would then be transmitted to the ASV through
the SDR, displacing the remote agent to the identified target
area. Remote sensing observations are typically affected by
distortions, noise effect and other type of data degradation,
and the identification of a coastline match is therefore affected
by these phenomena. One possible solution could consist in
identifying part of the image to be compared with the ground
truth of coastline. Comparing the whole image is more chal-
lenging as the amount of cloud points is larger, and the dis-
tortion in the image can be more relevant. In addition, the
Iterative Closest Point algorithm applied in this work consist
in rigid rotation and translation of cloud points; applying the
algorithm to a less complex problem, such as sections of the
image, could allow to add the scaling of the cloud points.

4. CONCLUSION

The introduction of onboard classification and a SDR on
HYPSO-2 has paved the way to the adoption of new possible
cooperative applications between the agents in the NTNU
observational pyramid. This approach potentially allows to
respond in near-real time (less than 2 hours from observa-
tion to cuing the next agent(s)) to anomalies, as data latency
is minimized. The remaining open question regards evalu-
ating if such an autonomous approach would be beneficial
with respect to the timescale of the observed phenomenon.
The alternative would consist of relaying the classified im-
age to ground, where the image could be georeferenced, and
tasking the agent from the ground station to observe the phe-
nomenon. The georeferencing algorithm could be improved
by matching parts of the image instead of the whole capture,
as distortions and degradation in the image can affect the
quality of the observation. The investigation and design of
cooperative operations between the agents will then be com-
pleted by testing the whole pipeline when HYPSO-2 will be
launched.
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