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Abstract

Objective

Our goal was to review the available literature on prognostic risk prediction for incident

hypertension, synthesize performance, and provide suggestions for future work on the

topic.

Methods

A systematic search on PUBMED and Web of Science databases was conducted for stud-

ies on prognostic risk prediction models for incident hypertension in generally healthy indi-

viduals. Study-quality was assessed using the Prediction model Risk of Bias Assessment

Tool (PROBAST) checklist. Three-level meta-analyses were used to obtain pooled AUC/C-

statistic estimates. Heterogeneity was explored using study and cohort characteristics in

meta-regressions.

Results

From 5090 hits, we found 53 eligible studies, and included 47 in meta-analyses. Only four

studies were assessed to have results with low risk of bias. Few models had been externally

validated, with only the Framingham risk model validated more than thrice.

The pooled AUC/C-statistics were 0.82 (0.77–0.86) for machine learning models and

0.78 (0.76–0.80) for traditional models, with high heterogeneity in both groups (I2 > 99%).

Intra-class correlations within studies were 60% and 90%, respectively. Follow-up time (P =

0.0405) was significant for ML models and age (P = 0.0271) for traditional models in explain-

ing heterogeneity. Validations of the Framingham risk model had high heterogeneity (I2 >
99%).

Conclusion

Overall, the quality of included studies was assessed as poor. AUC/C-statistic were mostly

acceptable or good, and higher for ML models than traditional models. High heterogeneity
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implies large variability in the performance of new risk models. Further, large heterogeneity

in validations of the Framingham risk model indicate variability in model performance on

new populations.

To enable researchers to assess hypertension risk models, we encourage adherence to

existing guidelines for reporting and developing risk models, specifically reporting appropriate

performance measures. Further, we recommend a stronger focus on validation of models by

considering reasonable baseline models and performing external validations of existing mod-

els. Hence, developed risk models must be made available for external researchers.

Introduction

Hypertension is considered the number one preventable risk factor of cardiovascular disease

(CVD) and all-cause death globally [1]. The number of individuals suffering from hyperten-

sion effectively doubled in the period 1990–2019 to an estimated 1.4 billion individuals [1,2].

Despite global mean blood pressure (BP) remaining still or even decreased slightly over the

past decades due to more effective tools in managing BP, prevalence of hypertension has

increased, especially in low-to middle-income countries [3]. Yet, upwards of 50% of individu-

als participating in structured screening programs were not aware of their elevated blood pres-

sure, regardless of their income level in the country they were from [2,4]. One explanation for

this unawareness is the predominantly asymptomatic nature of hypertension, highlighting the

importance of individuals paying attention to their BP [2].

Despite the existence of effective prevention strategies in the form of lifestyle management

and drug treatment, prevalence of hypertension has steadily increased [2,3]. The potential of

these strategies has motivated research into identifying individuals at an earlier stage, includ-

ing the development of prognostic risk models. Risk models can be seen as one way of moving

towards personalized medicine, as risk estimates can be estimated for an individual based on

their unique set of clinical predictors [5].

Many risk models for hypertension in the general population have been developed in recent

years. Two earlier reviews provided a narrative synthesis of the available risk models at the

time, which were mostly developed using traditional regression-based models [6,7]. Recogniz-

ing the popularization and availability of machine learning (ML) methods, a third review [8]

expanded upon the two prior by including ML models. ML and traditional models were ana-

lyzed separately in meta-analyses, where high heterogeneity was noted in both cases. A quality

assessment of the literature indicated generally low risk of bias (ROB) for traditional models,

while no assessment was made on machine learning models [8].

In all three reviews, little distinction was made between diagnostic risk models and prog-

nostic risk models. Although modelling of diagnostic and prognostic models has similarities

and even share the same guidelines for appropriate development, they are different in their

aim and intended clinical use. A diagnostic model only extends to estimating the risk of exist-

ing disease, whereas prognostic models provide risk estimates for a prediction horizon. This

implies a difference in the clinical use case between the two model types. Prognostic models

may be an auxiliary tool for clinical practitioners. In providing risk estimates of future inci-

dence, they may allow for early intervention and personalized long-term health planning with

the goal of preventing incidence [5].

Considering this, we restricted our focus to only considering prognostic risk models for the

general population. Using meta-analyses, we synthesize available evidence to quantitatively
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summarize the performance of prognostic risk models in the literature [9,10]. To address the

issue of studies reporting multiple results, we used a three-level model for pooling results,

allowing a more accurate estimation of heterogeneity and its sources. Our aim was 1) systemat-

ically review and update existing knowledge on prognostic risk models for incident hyperten-

sion among the general population, 2) characterize studies and methodology used, 3)

qualitatively assess the literature, and 4) summarize our findings into specific suggestions for

improvement of risk modelling for incident hypertension.

Method

Retrieving articles and collection of data

A protocol for this review was registered to PROSPERO (ID: CRD42021226152). The Pre-

ferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) review form is

supplied in S1 Checklist. The search and selection of records, and extraction of data was con-

ducted by one reviewer (F.E.S.) with another reviewer validating each individual step (F.L.).

Disagreements were resolved through discussion with a third reviewer (I.S.).

Databases used

The databases PubMed and Web of Science were used to search for eligible articles. Google

Scholar was used for searching for additional hits among references and records citing already

included articles. The exact search phrase can be found in S1 Appendix. The final search was

conducted March 2023.

Inclusion and exclusion criteria

Records were eligible if they fulfilled the following criteria:

• Utilized data from a prospective or retrospective cohort,

• The population at baseline consisted of normotensive adults drawn from the general

population,

• The primary goal was the development of a model or tool for risk estimation,

• The outcome was prognostic risk of incident primary hypertension as a binary trait,

• The models were evaluated on a dataset and performance measures were reported,

• Written in English.

Exclusion criteria were:

• Simulation studies,

• Unpublished research studies,

• Studies concerned with any form of secondary hypertension,

• Studies concerned with any other hypertensive diseases, e.g., gestational, ocular, intra-cra-

nial, pulmonary, isolated systolic, isolated diastolic,

• Association studies or studies where the impact of one or a few similar predictors were the

primary focus,

• Reviews of the literature
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Selection of studies

After removing duplicates, articles were subsequently screened by title and abstract for rele-

vancy. Articles selected by their title and abstract were then assessed by their full text for eligi-

bility. Works citing, and references of the articles already included were searched for

potentially eligible articles not found during the database search. Primary reasons for exclu-

sions after full-text read were detailed following the criteria.

We used citation tracking of included records to assess whether the clinical impact of any

risk models had been validated in any subsequent publications.

Data extraction

For each included study, we collected Population, Intervention, Comparison, Outcome, Time-

frame, and Study design (PICOTS) items and information related to bias assessment and

meta-analyses.

We also assessed model availability, i.e., whether the developed models could be readily

adopted by external researchers or others. A developed model was deemed available if

described or presented in text or figure to a sufficient degree for application, provided as a

web-tool, or included as downloadable software linked to the publication.

Risk of bias

The risk of bias within studies was assessed independently by one reviewer (F.S.) using the

‘Prediction model Risk of Bias Assessment Tool’ (PROBAST) in a two-step process [11]. Ini-

tially, a short form version of PROBAST was used to quickly assess studies following a simpli-

fied assessment. While the simplified form is less detailed, it has a perfect sensitivity in

recognizing articles with high risk of bias [12]. The articles not marked high risk of bias during

the initial step were then assessed using the full PROBAST form on all reported models. The

bias assessment was subsequently validated by a second reviewer (F.L.). Differences in opinion

were resolved through discussion with the third reviewer (I.S.).

The initial step using the short form PROBAST was motivated by its time-saving potential,

while still ensuring a perfect true positive rate in studies and models marked high risk of bias.

Where the original PROBAST form had unspecified numerical criteria, we used thresholds

suggested in the short form version [12]. Specifically, these were:

• The sufficient ratio for events-per-variable (EPV) was set to 20 when candidate predictors

could be identified, or 40 for final predictors of the model, if not.

• Deletion of data due to missing covariates was unacceptable if more than 5% of included par-

ticipants was removed, calculated after appropriate exclusions had been applied.

• Doing univariable as opposed to multivariable predictor selection or lack of optimism assess-

ment could be ignored if the EPV was above 25 for candidate predictors, or 50 for final

model predictors if candidate predictors were not detailed.

Note, in the case of an external validation of a model, EPV was considered sufficient if the

minority outcome had more than 100 events, as described in PROBAST [11].

Analyses

We used descriptive statistics to summarize our findings. Within each included article, we

identified all applications of risk models for incident hypertension and detailed the method
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and setup used in model development and validation. Bias in studies was assessed for describ-

ing trustworthiness of model results.

Considering earlier reviews on the topic, it was anticipated that the Area Under the Receiver
Operator Curve, abbreviated AUROC or just AUC, and the Concordance-statistic, abbreviated

C-statistic, would be the most reported performance measures [6–8]. These statistics are dis-
criminatorymeasures and are equivalent in the binary outcome setting when info on event

times are not used [13]. As for calibration measures, the Hosmer-Lemeshow statistic was

expected to be the most widely reported [14]. Meta-analyses on reported AUC/C-stat. mea-

sures were fitted separately for traditional models and ML models, as done in an earlier review

[8]. Calibration was not used in meta-analyses due to incompleteness and variation in

reporting.

Further, based on earlier reviews, we assumed some models had been externally validated

by independent researchers. We performed meta-analyses for the Framingham risk model to

assess the expected performance and heterogeneity in a situation where variation in model

development was not relevant. No other model had been externally validated to an extent that

would allow a separate analysis.

Meta-analyses and regressions were calculated using themetafor package in R [15]. In arti-

cles where risk models for hypertension had been developed or externally validated, it is com-

mon to report multiple results. This may be to test various aspects of model development or

the use of different datasets. In the context of a meta-analysis or regression, this was a problem

due to the possible correlation between results that are reported using the same datasets. Meta-

analyses and regressions can accommodate this interdependency if the exact covariances or

correlations between results are given. However, estimates for within-study covariance or cor-

relation are often not reported in literature [9], meaning another approach must be used in

analyses. Naïve inclusion, i.e., assuming zero within-study correlation, of all results would

overemphasize the importance of the studies that reported the most results. Aggregating

results per study or randomly selecting singular studies has been proposed as an alternative

but would imply the loss of statistical information and is not considered ideal [16]. We opted

to address this issue by selecting a subset of results found in included studies as well as apply-

ing a three level meta-analysis model that can account for some of the described correlation.

We selected the subset of results by the following considerations:

• For nested models we did not include results for the reduced models.

• When several model performance measures for different validation procedures were

reported for a new risk model, only one score was included based on how they were calcu-

lated, with priority (from high to low): Bootstrapping/cross-validation, then test dataset

results, then development data.

• Models with only one or two predictors were excluded unless derived as such during model

development.

• Complete information on AUC/C-stat. standard error or the information needed to approxi-

mate it was reported.

• Where discrete models like nomograms or risk scores were derived from continuous models,

we included only results from the continuous model if available.

These considerations were made per modelling method, gender, and the studies mean/

median follow-up time reported in each article.

In using a three-level model in our meta-analyses, we allow heterogeneity to be estimated at

two levels as opposed to just one. We grouped results within the studies they were reported,
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modelling heterogeneity at the study level as well as the level of individual results. In practice,

if results from the same studies were more similar within each study compared to results across

studies, most heterogeneity would be estimated at the study level. Although a three-level

model is not a perfect reflection of the true correlation structure, it will likely produce a model

closer to reality versus a two-level model ignoring within-study correlation [17]. To evaluate

the three-level model compared to a two-level model, we performed a likelihood ratio test.

The three-level model does not fully solve the issue of sample error correlations not being

reported in studies. Rather, it produces an approximation assuming all covariances between

individual results within the same study are equal [16]. To account for this, we set missing

sample-error correlations to zero and subsequently apply the ClubSandwich estimator for

three-level models. This estimator is robust to slight model misspecification that arises from

ignoring sampling errors [17].

We performed a sensitivity analysis to assess the possible impact of ignoring sample-error

correlation: We sampled random sample-error correlations for results within each study and

ran our meta-analysis, repeating the procedure a total of 1000 times. This provided distribu-

tions of relevant parameter estimates such as heterogeneity and mean effect which allowed us

to estimate how much relevant parameters could be affected had we known the correct sam-

ple-error correlations.

In the third analysis, we applied a three-level meta-analysis to the external validations of the

Framingham risk model. In the case of studies reporting multiple validation results, we fixed

the intra-class correlation to that estimated by the meta-analysis on the traditional models. For

the external validations of the Framingham risk model, we excluded the results which included

diabetics in the data as the original model was not developed for individuals with diabetes [18].

Moderators were included in meta-regressions to assess whether they could explain some

of the heterogeneity. We included the following moderators: Region (Americas–Europe–

Asia), mean/median age of cohort at baseline, median/mean follow-up time of study, number

of participants in study, and the incidence-rate in data. Gender (men–women–all) was

included for traditional models, but not for ML models due to homogenous distribution.

Mean/median blood pressure of cohort at baseline was considered but was not reported suffi-

ciently for inclusion. Each moderator was tested as a single moderator. In addition, one analy-

sis was performed with all moderators included simultaneously. P-values below 0.05 were

considered significant. All meta-analyses and meta-regressions were calculated using the

REstricted Maximum Likelihood (REML) estimator.

For all analyses, the AUC/C-stat. was transformed using the logit transformation. The logit

transform of standard deviations were approximated, and if not reported, fully estimated using

the equations provided by Debray et al. [9]. Studies with insufficient information on sampling

error or other data needed to estimate standard deviations were left out of meta-analyses.

We did not assess publication bias by any statistical tests or funnel plot asymmetry.

Analyses were calculated using the R language (version: 4.3) and the RStudio IDE, with the

software libraries tidyverse used to handle data andmetafor to perform meta-analyses and meta-

regressions [15,19–21]. Plots and figures were created using ggplot and ggh4x [22,23]. All code

and data required to reproduce the results and associated figures are provided in S1 and S2

Files.

Results

Study details

A PRISMA flow diagram detailing the search process can be seen in Fig 1. From an initial pool

of 5090 unique records provided by our search terms, we found 46 eligible records, with seven
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Fig 1. PRISMA diagram of search process and selection of eligible records.

https://doi.org/10.1371/journal.pone.0294148.g001
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more discovered in citation analysis. In total, 53 articles were included in the review [18,24–

75]. The cohort origin of studies is detailed in Table 1 with selected summary statistics pre-

sented in Table 2. We did not find any impact studies of the included risk models.

Among the included articles, cohorts from Asia were utilized the most, followed by North

America and Europe. Only one article used a cohort from South America. None were found

for any African or Oceanian populations. The number of individuals included in cohorts had a

median of 6454 individuals and ranged from 297 to hospital electronic medical record (EMR)

datasets containing more than 823 000 individuals. All included studies had a follow-up period

of one year or more, with a median of five years. Fava et al. was an extreme outlier with a

median 23-year follow-up [31]. Lastly, the number of model results reported per study varied

from 1 to 22, with a median of 5.

The definition of hypertension used in studies was mostly consistent with ESC/ESH guide-

lines: 39 studies used systolic blood pressure above 140, diastolic blood pressure above 90, or

the use of medication related to managing elevated blood pressure to define hypertension [2].

Use of medication or any existing diagnosis of hypertension was often reported by participants

themselves. 10 studies relied on existing diagnosis-codes like ‘ICD-10’ or related in EMRs, or a

diagnosis predetermined by medical professionals. In a single study, an annual questionnaire

was used to determine the presence of hypertension. Two studies did not provide details on

how hypertension was defined in their study. One individual study used systolic blood pres-

sure above 130, diastolic blood pressure above 80, or the use of medication related to managing

elevated blood pressure to define a presence of hypertension. This is in line with the recom-

mendations defined by the American College of Cardiology (ACC) and American Heart Asso-

ciation (AHA) [76].

Table 1. Cohort origin statistics.

Cohort origin Number of studies, n = 53 Share of total

China 12 23%

USA 10 19%

Korea 8 15%

Japan 6 11%

England 4 8%

Iran 3 6%

Finland 2 4%

Sweden 2 4%

Canada 2 4%

Brazil 1 2%

India 1 2%

Germany* 1 2%

Denmark*
Singapore 1 2%

‘*’: Cohorts from both countries were used in the same study.

https://doi.org/10.1371/journal.pone.0294148.t001

Table 2. Summarized characteristics of included studies.

Median Inter-Quartile Range Min. Max.

Time between baseline and endpoint, years 5 4–7 1 23

Cohort size 6454 3983–16860 297 823627

Results reported per study 5 3–8 1 22

https://doi.org/10.1371/journal.pone.0294148.t002
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Modelling methods

Of the 53 included studies, 50 developed a new risk model. Traditional algorithms were used

in 44 studies, and machine learning in 14 studies. Hence, eight studies developed at least one

model using a method from each group of algorithms.

Studies developing traditional models used mostly the same methods: In cohorts with varying

follow-up times, this was Weibull or Cox regression in more recent years. Otherwise, logistic regres-

sion was mostly used. 12 of the 44 studies presented a risk score table or nomogram derived from a

fitted parametric model, primarily with the intention of simplifying the model for clinical use.

In terms of machine learning algorithms, a total of 13 different algorithms had been used to

develop new risk models. The most popular were Random Forest, Artificial neural networks,

XGBoost, and Support Vector Machine algorithms. An overview of methods with summarized

results from each article is given in Table 3.

Availability of models

Among the 44 studies developing traditional models, 40 studies had made their final model

available. However, among the 14 studies applying machine learning, only four studies had

made a developed machine learning model available [34,42,45,52]. These four studies

described their models graphically. While some complex machine learning models may be ill-

suited for presentation via text or figures, we note that no models had been made available

through online resources either.

Performance measures

The most frequent reported performance measure for discrimination was the AUC or the C-

statistic. Calibration measures were reported less consistently and with more variation in

method, with the Hosmer-Lemeshow statistic being the most popular. Other notable methods

were graphical assessment of calibration plots, curves, or distributions, reporting the pre-

dicted-observed ratio, or other statistical tests such as the Greenwood-Nam-D’Angelo test.

While no impact studies were found, we found four studies that reported measures for

assessing clinical implication of their model. In these, the net benefit of the developed model

was assessed and compared to alternatives using decision curves [59,63,75,77].

Some articles reported performance measures for comparing models, such as the Net
Reclassification Index. A few articles included more performance measures of discrimination,

like accuracy, sensitivity, Brier score and others. A recurring issue for measures requiring a

defined risk threshold for prognosis was that the threshold was not given. Due to a lack of con-

sistent reporting on these measures, these results were not recorded.

Validation of models

We observed a large degree of variability in the validation during model development: 11 stud-

ies (22%) reported a form of cross-validation, bootstrapping, or other repeated sampling pro-

cedure in validating its results. A test set was the primary validation method in 23 articles

(46%). 16 studies (32%) reported only results from the data the model was derived from. Addi-

tionally, four studies used external datasets to perform validation of their results within the

development study, shown in Table 4.

Externally validated models

Only six risk models were found to be externally validated in subsequent publications on new

populations. The Framingham risk model was validated the most, by 16 studies with a large
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Table 3. Summarized AUC/C-stat. results of new models in the included studies.

First author, year Method

used

AUC/C-stat. Max. [Median]

Development dataset Testing dataset Bootstrap / CV

Parikh et al., 2008[18] Weibull reg. - - 0.788

Kivimäki et al., 2009 [24] Weibull reg. - 0.804 -

Paynter et al., 2009[25] Logistic reg. 0.714 [0.708] 0.705 [0.704] -

Kivimäki et al., 2010 [26] Weibull reg. - 0.799 [0.796] -

Kshirsagar et al., 2010[27] Logistic reg. 0.800 [0.768] 0.776 [0.758] -

Muntner et al., 2010[28] Poisson reg. 0.773 [0.731] - -

Bozorgmanesh et al., 2011[29] Weibull reg. 0.741 [0.720] - -

Risk score sheet 0.734 [0.730] - -

Chien et al., 2011[30] Weibull reg. 0.741 [0.739] - -

Risk score sheet 0.735 [0.734] - -

Fava et al., 2013 [31] Cox reg. 0.664 [0.663] - -

Carson et al., 2013[32] Weibull reg. 0.710 - -

Lim et al., 2013[33] Weibull reg. 0.780 0.791 [0.749] -

Risk score sheet - 0.790 -

Völzke et al., 2013 [34] Bayes network 0.780 0.790 -

Choi et al., 2014[36] Logistic reg. 0.973 [0.906] - -

Lim et al., 2015[37] Logistic reg. 0.811 [0.811] - -

Lu et al., 2015[38] Logistic reg. 0.777 [0.685] - -

Otsuka et al., 2015[39] Cox reg. - 0.861 [0.861] -

Risk score sheet - 0.858 -

Zhang W et al., 2015[40] Cox reg. 0.801 [0.778] - 0.8 [0.7775]

Chen et al., 2016[41] Cox reg. 0.761 [0.757] - 0.76 [0.7545]

Lee et al., 2016[42] Cox reg. 0.729 0.724 -

Bayes network 0.700 0.693

Lim et al., 2016[43] Logistic reg. 0.707 - -

Niiranen et al., 2016[44] Logistic reg. 0.733 [0.732] - -

Ramezankhani et al., 2016[45] Decision trees - 0.810 [0.770] -

Sathish et al., 2016[46] Risk score sheet from logistic reg. 0.802 - -

Kanegae et al., 2018[47] Cox reg. 0.885 [0.885] - -

Patnaik et al., 2018[48] SVM 0.9 [0.866] - -

Sakr et al., 2018[49] MLP neural net - 0.660 [0.655] 0.670

Logit boost - 0.730 [0.725] 0.690

Locally weighted naïve Bayes - 0.690 [0.690] 0.670

Random Forest - 0.820 [0.815] 0.930

Bayes network - 0.830 [0.830] 0.700

SVM - 0.720 [0.720] 0.710

Ye et al., 2018[50] XGBoost 0.917 0.870 -

Kadomatsu et al., 2019[51] Logistic reg. 0.830 [0.818] - 0.830

Risk score sheet 0.826 - -

Xu F et al., 2019[52] Cox reg. 0.806 [0.806] 0.771 [0.765] 0.779 [0.778]

MLP neural net 0.809 [0.788] 0.773 [0.764] -

Naïve Bayes 0.796 [0.774] 0.761 [0.76] -

CART Decision tree 0.740 [0.730] 0.722 [0.71] -

Kanegae et al., 2020[53] XGBoost 0.976 0.877 -

Logistic reg. 0.855 0.859 -

Ensemble 0.992 0.881 -

(Continued)
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Table 3. (Continued)

First author, year Method

used

AUC/C-stat. Max. [Median]

Development dataset Testing dataset Bootstrap / CV

Nusinovici et al., 2020[54] SVM - 0.780 -

Random Forest - 0.765 -

MLP neural net - 0.775 -

Logistic reg. - 0.770 -

KNN - 0.768 -

GBM - 0.767 -

Poveda et al., 2020[55] Logistic reg. 0.776 [0.773] - 0.766 [0.764]

Syllos et al., 2020[56] Logistic reg. - 0.830 -

Black et al., 2021[57] Logistic reg. 0.840 - -

Castela Forte et al., 2021[58] Decision rules - - 0.700

Deng et al., 2021[59] Nomogram from logistic reg. 0.750 [0.605] 0.824 [0.597] -

Dritsas et al., 2021[60] Logistic reg. - 0.816 [0.811] -

Naïve Bayes - 0.758 -

KNN - 0.653 -

Decision tree - 0.692 -

Random Forest - 0.798 -

Stacked Random Forest and Logistic reg. - 0.823 -

Fang et al., 2021[61] KNN - 0.946 -

Light-GBM - 0.928 -

KNN and light-GBM ensemble - 0.951 -

SVM - 0.889 -

Random Forest - 0.913 -

MLP neural net - 0.895 -

Koohi et al., 2021[62] Weibull reg. 0.820 [0.820] - 0.820

Niu et al., 2021[63] Cox reg. - 0.786 [0.786] -

MLP neural net - 0.798 [0.794] -

Random Forest - 0.861 [0.849] -

GBM 0.871 [0.863]

Oishi et al., 2021[64] Cox reg. 0.812 - 0.804

Risk score sheet 0.790 - -

Vaura et al., 2021[66] Cox reg. 0.804 [0.802] - -

Wang et al., 2020 [67] Logistic reg. 0.795 0.791 0.794

Risk score sheet - 0.784 -

Xu Y et al., 2021[68] Nomogram from logistic reg. 0.803 0.809 -

Chowdhury et al., 2022[69] Cox reg. 0.707 [0.770] 0.770 -

Datta, 2022[70] Logistic reg. 0.920 [0.920] 0.780 [0.775] -

XGBoost 0.960 [0.955] 0.870 [0.855] -

Light-GBM 0.960 [0.950] 0.860 [0.85] -

LSTM-NN 0.980 [0.970] 0.940 [0.92] -

Jeong et al., 2022[71] Logistic reg. 0.630 - -

Random Forest 0.825

XGBoost 0.828

Kawasoe et al., 2021 [72] Logistic reg. 0.790 [0.760] 0.790 [0.770] -

Kurniansyah et al., 2022[73] Logistic reg. 0.656 [0.627] - -

Namgung et al., 2022[74] Weibull reg. - 0.741 [0.740] -

Risk score sheet - 0.729 [0.728]

(Continued)
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regional diversity [18]. The validation AUC/C-stat. ranged from 0.537 to 0.840, while the

AUC/C-stat. was reported as 0.788 in the development study. Calibration varied from accept-

able in some cohorts to severe mis-calibration in others. The second most validated model was

the KoGES model, being validated in three external studies [33]. The remaining examples had

only one external validation by independent researchers each, see Table 4.

Variables

The most used variables in studies were age, systolic blood pressure, diastolic blood pressure,

Body Mass Index (BMI), smoking, sex, and presence of hypertension in family. The top eight

most used variables in the literature were the same used in the Framingham risk model [18].

Note, in five studies applying ML methods, complete information about the variables used in

final models was not presented [45,48,50,53,70]. A summarized view of predictors used in

studies can be seen in Fig 2.

Use of genetic information. In total, we found 10 studies investigating the efficacy of

using detailed genetic information like genetic risk scores to improve risk prediction for inci-

dent hypertension [31,34,36–38,44,55,58,63,66,73]. In almost all cases, the resulting models’

AUC/C-stat. was only slightly higher if not equal compared to a model without genetic infor-

mation. Most applied traditional regression-based models which were limited to only captur-

ing linear effects. In one study, the inclusion of a genetic or personal risk score (GRS/PRS)

only improved modelling results for the ML models, which indicates a non-linear effect of the

GRS [63].

Quality assessment of included studies

In total, four studies had results assessed as low risk of bias, all applying or validating tradi-

tional models. In the initial step using the short form PROBAST 41 studies were assessed to

only have results with high risk of bias, see Fig 3. The predominant remarks were improper

handling or documentation of missing data in participants, too low events-per-variable (EPV)

ratio, or lack of or improper optimism assessment of results. In the subsequent step, five of the

remaining 12 studies were assessed as high risk of bias using the full PROBAST form, mainly

due to lack of or insufficient calibration assessment, see Fig 4. Applicability was mostly unclear

due to the use of cohorts with only middle-aged or older individuals, e.g., all being 40 years of

age or more.

Meta-analyses

Due to the low completeness of reporting and lack of consistency in how calibration was

assessed, we opted for only using the AUC/C-stat. performance measures in meta-analyses,

Table 3. (Continued)

First author, year Method

used

AUC/C-stat. Max. [Median]

Development dataset Testing dataset Bootstrap / CV

Zhang X et al., 2022[75] Nomogram from Cox reg. 0.764 [0.754] 0.791 [0.7795] -

Method and AUC/C-stat. results are summarized for new models per article, method and type of validation procedure used. Medians are reported for articles with >1

model results per validation procedure. ‘Development dataset’: Results from dataset used to fit the model. ‘Testing dataset’: Results from a part of the dataset withheld

from model-fitting. ‘Bootstrap / CV’: Results from cross-validation, bootstrapping, or any resampling procedure.

‘GMB’: Gradient Boosting Machine, ‘KNN’: K-Nearest Neighbor, ‘MLP’: Multi-Layer Perceptron, ‘Reg.’: Regression, ‘SVM’: Support Vector Machine, ‘XGBoost’:

eXtreme Gradient Boosting.

https://doi.org/10.1371/journal.pone.0294148.t003
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Table 4. External validations of risk models found in literature.

Developed by:

First author, Year,

Model name,

Cohort origin

Validated by:

First author,

year

External cohort

origin

External cohort

follow-up, years

AUC/C-

stat.

Calibration Note

Parikh et al., 2008 [18],

Framingham model,

USA

Kivimäki et al.,

2009 [24]

England 5.6 0.803 HL: 11.5

Kivimäki et al.,

2010 [26]

England 5.7 0.796 HL: 11.5

Muntner et al., 2010

[28]

USA 1.6 0.788 HL:

P < 0.001 “. . .under-

estimated the risk. . .”

Same subjects

4.8 0.792 -

Chien et al., 2011

[30]

China 6.15 0.709 HL: 7.4

Carson et al., 2013

[32]

USA 5 0.840 HL: 249.4

0.810 - Using only ‘Age x Diastolic

BP’ coefficient

Lim et al., 2013[33] Korea 4 0.789 HL: 29.74

Völzke et al., 2013

[34]

Germany 5.3 0.770 HL: 11.26 Different datasets

Denmark 5.4 0.730 HL: 203.3

Zheng et al., 2013 China 2 0.537 HL: 2287.1 Same subjects

4.8 0.610 HL: 8227.1

Lim et al., 2016[43] Korea 4 0.729 -

Kadomatsu et al.,

2019[51]

Japan 5 0.829 HL: 3.36

Syllos et al., 2020

[56]

Brazil 4 0.827 HL: 3.78

Wang et al., 2020

[67]

China 6 0.787 -

Castela Forte et al.,

2021[58]

England 8.8 0.6 -

Koohi et al., 2021

[62]

Iran 3 0.810 -

Chowdhury et al.,

2022[69]

Canada 5 0.729 -

Namgung et al.,

2022[74]

Korea 4 0.73 HL: 155.39 Coefficient-model.

0.728 HL: 25.22 Risk score based.

Pearson et al., 1990, John

Hopkins model

USA [78]

Chien et al., 2011

[30]

China 6.15 0.707 HL: 16.7

Kivimäki et al., 2009 [24],

Whitehall II risk model,

England

Chowdhury et al.,

2022[69]

Canada 5.8 0.581 -

Chien et al., 2011[30],

Chinese risk model,

China

Chowdhury et al.,

2022[69]

Canada 5.8 0.732 -

Lim et al., 2013[33],

KoGES model,

Korea

Lim et al., 2016[43] Korea 4 0.733 HL: 14.85 Overlap in article authors.

Chowdhury et al.,

2022[69]

Canada 5.8 0.737 -

Namgung et al.,

2022[74]

Korea 4 0.737 HL: 209.72 Coefficient-model

0.733 HL: 255.63 Risk score based

Wang et al., 2020[67], Rural

Chinese risk model,

China

Chowdhury et al.,

2022[69]

Canada 5.8 0.735 -

(Continued)
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Table 4. (Continued)

Developed by:

First author, Year,

Model name,

Cohort origin

Validated by:

First author,

year

External cohort

origin

External cohort

follow-up, years

AUC/C-

stat.

Calibration Note

Völzke et al., 2013 [34],

Bayes network, Germany

Denmark 5.4 0.770 HL: 40.6 External data used within

development article.

Kanegae et al., 2018[47],

Jichi Genki risk model, Japan

Japan 2.4 0.846 GNA: 8.7

Seo et al., 2021[65],

Hypertension Index Model for Women,

Korea

Korea 2 0.777 -

6 0.792 -

10 0.797 -

Seo et al., 2021[65],

Hypertension Index Model for Men,

Korea

2 0.718 -

6 0.726 -

10 0.714 -

Namgung et al., 2022[74],

F-CAVAS HTN, Korea

Korea 4 0.852 HL: 659

Namgung et al., 2022[74],

F-CAVAS HTN Risk score, Korea

4 0.784 HL: 345

Namgung et al., 2022[74],

CAVAS HTN, Korea

4 0.853 HL: 2082

Namgung et al., 2022[74],

CAVAS HTN Risk score, Korea

4 0.787 HL: 1175

‘-‘: Calibration not reported. ‘GNA’: Green-Namwood-D’Agostino test statistic, ‘HL’: Hosmer-Lemeshow test statistic.

https://doi.org/10.1371/journal.pone.0294148.t004

Fig 2. Variables used in studies. Variables were counted as those used in any final developed model in a study. We summarize by studies due to variation in

the number of developed models per study. Variables used by only one single study were either merged with similar ones, or grouped as”Other” within its

category. Note: Variable information from five studies were excluded as they did not report complete information, meaning variable information from 45

studies developing new models are included here. ‘BMI’: Body Mass Index, ‘BP’: Blood Pressure,’ Chol.’: Cholesterol, ‘HDL’: High-density lipoprotein, ‘LDL’:

Low-density lipoprotein, ‘Misc’: Miscellaneous, ‘SNPs’: Single nucleotide polymorphisms.

https://doi.org/10.1371/journal.pone.0294148.g002
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Fig 3. ROB assessment using short form PROBAST. PROBAST assessment summarized per study. In short, domains were: 1) Outcome assessment, 2)

EPV, 3) Continuous predictors handling, 4) Missing data management, 5) Univariable selection of predictors, and 6) Correction for overfitting/optimism. See

Venema et al. [12] for more details. Domains 3, 5 and 6 were not applicable for external validations. Six studies had remarks that were only valid for some of

the reported results, e.g., due to the Events Per Variable (EPV) criteria being less strict for external validations or different methods used on some of the

developed models. These were marked with a mixed “High/Low” symbol on relevant domain or overall assessment. ‘Dev.’: Developed models, ‘Ext. val.’:

External validations, ‘NA’: Not applicable.

https://doi.org/10.1371/journal.pone.0294148.g003
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similar to earlier reviews [6–8]. The results of the meta-analyses are summarized in Table 5.

Summary characteristics for the model results included in meta-analyses are shown in Table 6.

Traditional models. Of the 44 studies developing models using traditional models, 39

had sufficient information for meta-analysis. From these, a total of 46 results were included.

Fig 4. ROB assessment using long form PROBAST. PROBAST assessment for studies marked potentially low risk of bias using short form PROBAST. ‘An.’:

Analysis, ‘App.’: Applicability, ‘DEV’: Developed models, ‘NI’: No information, ‘Out.’: Outcome, ‘Part.’: Participants, ‘Pred.’: Predictors, ‘ROB’: Risk of bias,

‘VAL’: External validations.

https://doi.org/10.1371/journal.pone.0294148.g004

Table 5. Summarized estimates for AUC/C-stat. and heterogeneity found in meta-analyses.

Meta-analyses Estimated mean (μ),

95% confidence interval (CI),

95% prediction interval (PI)

Heterogeneity estimates Notes

New developed traditional models. m̂^ = 0.779

CI: (0.762–0.795)

PI: (0.660–0.865)

I2: 99.05%

Variability of studies, within: 9.53%,

between: 89.52%.

Intra-class correlation:

ICC = 0.904

46 results from 39 studies included.

New developed ML models. m̂^ = 0.817

CI: (0.767–0.858)

PI: (0.547–0.943)

I2: 99.85%

Variability of studies, within: 39.53%,

between: 60.32%.

Intra-class correlation:

ICC = 0.604

53 results from 13 studies included.

External validations of the Framingham risk model m̂^ = 0.761

CI: (0.722–0.795)

PI: (0.571–0.883)

I2: 99.45 19 results from 16 studies.

Using ICC = 0.904

‘CI’: 95% confidence interval, ‘ICC’: Intra-class correlation, ‘PI’: 95% prediction interval.
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Five studies contributed two results and one study contributed three results. Only two of the

39 studies were assessed as having low risk of bias for model development, with another being

unclear. Model fit was significantly improved using a three-level model compared to a two-

level model (P = 0.0119).

The estimated mean AUC/C-stat. was 0.779 (95% CI: 0.762–0.795). Heterogeneity was high

(I2: > 99%, Cochrane’s Q = 7325, P< 0.0001). Hence, the 95% prediction interval for new risk

models was wide, at 0.660–0.865. The intra-class correlation for each data-source was esti-

mated to be 90.4%, indicating variation was largely due to differences between studies. The

contribution of each study to the pooled estimates was calculated to a median of 2.6% and all

within 1.98% to 2.83%, meaning that influence of individual studies on our estimates was rela-

tively evenly distributed. A forest plot is provided in Fig 5.

When including moderators, the mean/median age of the cohort at baseline (P = 0.0246),

time from baseline to outcome determination (P = 0.0009), and outcome rate (P = 0.001) were

found significant in univariable assessment. Only age was found significant (P = 0.0271) when

all moderators were included simultaneously, while heterogeneity persisted (I2: 97%).

Machine-learning models. Of the 14 studies applying ML to develop risk models, 13 had

sufficient information for meta-analysis. From these, a total of 53 results were included. None

of the studies applying ML were assessed to have low risk of bias. The three-level model signifi-

cantly improved model fit compared to a two-level model (P< 0.0001).

The estimated mean performance was 0.817 (95% CI: 0.767–0.858). Heterogeneity was high

(I2: > 99%, Cochrane’s Q = 22001, P< 0.0001). The 95% prediction interval for new models

was 0.547–0.943. The intra-class correlation for each data-source was estimated to be 60.4%,

indicating variation due to differences between studies was moderate. The contribution of

each study to the pooled estimates was calculated at a median of 8% and all within 5.6% to

8.95%. Hence, the influence of each individual study was relatively even, despite a large varia-

tion in the number of results per study included in the analysis.

In meta-regressions, time from baseline to outcome determination was found significant

(P = 0.0283) in univariable assessment. Due to the missing entries, only number of partici-

pants, time between baseline and outcome determination, and region were included simulta-

neously, where time between baseline and outcome determination was again significant

(P = 0.0405). High heterogeneity persisted (I2: > 99%). A forest plot is provided in Fig 6.

Sensitivity analysis of ignoring sample-error correlation. None of the included studies

reporting multiple results reported the sample-error correlation. However, the sensitivity anal-

ysis of ignoring sample error correlation concluded that the estimates were mostly unaffected.

We suggest that this is likely due to the large scale of heterogeneity relative to the possible sam-

ple-error covariance that was ignored. We refer to S1 Appendix for more details.

Table 6. Study characteristics for model results included in the respective meta-analyses.

Median Inter-quartile range Min. Max.

Traditional models:

Time between baseline and endpoint, years 4.75 4–6 1 23

Cohort size 8319 4656–16856 297 661034

ML models:

Time between baseline and endpoint, years 5.3 2–8.7 1 10

Cohort size 8319 4592–33289 1605 680810

Framingham validations:

Time between baseline and endpoint, years 5 4–5.65 1.6 8.8

Cohort size 5423 3475–13678 1605 69918

https://doi.org/10.1371/journal.pone.0294148.t006
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External validations of the Framingham risk model. From the external validations, we

selected the 19 external validation results for the Framingham risk model found in 16 different

studies. Of these, only three were assessed as low risk of bias, with another assessed as unclear

Fig 5. Forest plot of traditional models. The 95% prediction interval for new models extending from the summary diamond on the bottom line was calculated

as (0.660–0.865). ‘*’: The result was obtained from a risk score, or nomogram, developed using that method. ‘CI’: Confidence interval, ‘Reg.’: Regression.

https://doi.org/10.1371/journal.pone.0294148.g005

PLOS ONE Prognostic risk models for incident hypertension

PLOS ONE | https://doi.org/10.1371/journal.pone.0294148 March 11, 2024 18 / 29

https://doi.org/10.1371/journal.pone.0294148.g005
https://doi.org/10.1371/journal.pone.0294148


Fig 6. Forest plot of ML models. The 95% prediction interval for new models extending from the summary diamond on the bottom line was calculated as

(0.547–0.943). ‘Method 1 + Method 2’: Ensemble of Method 1 and 2. ‘Method 1 into Method 2’: Outputs from Method 1 were used as inputs to Method 2. ‘BN’:

Bayes Network, ‘CI’: Confidence interval, ‘DT’: Decision tree, ‘GBM’: Gradient Boosting Machines, ‘KNN’: K-Nearest Neighbor, ‘LSTM NN’: Long Short-Term

Memory Neural Net, ‘LWNB’: Locally Weighted Naïve Bayes’, ‘MLP NN’: Multi-Layer Perceptron Neural Net, ‘NB’: Naïve Bayes, ‘Reg.’: Regression, ‘RF’:

Random Forest, ‘SVM’: Support Vector Machines, ‘XGBoost’: eXtreme Gradient Boosting.

https://doi.org/10.1371/journal.pone.0294148.g006
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risk. Three studies included two results. In Völzke et al. [34], the two results were derived from

unrelated cohorts, and we considered these as independent. For the other two, we fixed the

intra-class correlation to 0.904 as estimated for the traditional regression-based models and

applied a three-level model. We estimated the mean performance to 0.761 (95% CI: 0.722–

0.795) with high heterogeneity (I2:> 99%, Cochrane’s Q = 4268, P< 0.0001), and subsequently

the 95% prediction interval as 0.571–0.883. The cohorts mean/median age at baseline was

found significant (P = 0.013) in univariable assessment, without affecting heterogeneity much

(I2:> 99%). Simultaneous inclusion of moderators was not performed due to the relatively low

number of results available for the meta-regression. A forest plot is provided in Fig 7.

Discussion

Many risk models for incident hypertension have been developed in recent years with half of

the included articles in this review being published in 2018 or later. Concurrent with the sub-

stantial increase in the number of relevant articles, a large variation was found in terms of how

study cohorts were organized, which variables were used in modelling, and methods used for

model development. Notably, while 15 different countries had been represented in study

cohorts, only one study used a South American population, and no African or Oceanian popu-

lations had been used at all.

Fig 7. Forest plot for external validations of the Framingham risk model. The 95% prediction interval extending from the summary diamond was estimated

as (0.571–0.883). ‘CI’: Confidence interval.

https://doi.org/10.1371/journal.pone.0294148.g007
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The inclusion of genetic information along with clinical information was seen in multiple

studies yet displayed little comparative improvement to models without it [31,34,36–

38,44,55,58,66]. A single exception was found where ML models improved with the introduc-

tion of genetic information, but not the traditional model [63]. This might suggest that non-

linear modelling should be considered for capturing the predictive information presented by

genetic information. While Völzke et al.[34] considered genetic information in the form of

individual single nucleotide polymorphisms (SNPs) in Bayesian Networks, there was no direct

comparison versus a model without genetic information. Overall, the included genetic infor-

mation varied from individual SNPs to full genetic or risk scores for individuals or groups.

We found that only a small proportion of studies were assessed to have low risk of bias

results. Improper deletion of individuals with missing data, lack of optimism assessment and

improper or missing reporting of relevant performance measures were identified culprits in

most articles. Extra care should go into interpreting these reported results, as results may be

over-confident, and performance might not be as expected when the model is applied on a

new cohort. Notably, most studies assessed as having high risk of bias had similar issues in its

study methodology, as identified by the simplified PROBAST form. To improve reporting and

study quality, the Transparent reporting of a multivariable prediction model for individual

prognosis or diagnosis (TRIPOD) guidelines and the PROBAST assessment criteria themselves

may be useful [11,12,79,80].

In the meta-analyses, the pooled effect for ML model was higher than traditional models.

However, while the proportion of heterogeneity was similar for both modelling types (I2:>

99%), the scale was far higher for ML models. As such, the 95% prediction interval for new risk

models using ML was wider, limiting its usefulness. Traditional models had lower mean effect

and a narrower prediction interval, suggesting it as a more conservative approach. However,

we note that the scale of heterogeneity is likely to also be affected by our selection of model

results. While only 13 of 47 studies included in meta-analyses used machine learning models,

we included 53 results from these. This was far more results per study compared to the 46

results from 39 studies using traditional regression-based models.

The few studies applying machine learning may partly explain why only one moderator was

found significant in explaining heterogeneity. As moderators largely described study charac-

teristics, the actual number of unique datapoints for these were 13, i.e., the number of studies

applying ML. Using the three-level model, the repeated moderator values were accounted for

to some extent, as shown by the more even distribution of influence of each study on the

pooled estimates.

For studies applying traditional models, time from baseline to outcome determination, out-

come rate, and the median/mean age of the cohort at baseline was found significant when

included as individual moderators, with only baseline age significant upon including all. Base-

line age was also significant as a moderator for the Framingham external validations.

Studies with younger individuals in their cohorts reported better results. Increased age is a

known risk factor for developing hypertension, hence it’s closely connected to both outcome-

rate and follow-up time. Older individuals will have higher outcome-rate, and time from base-

line to outcome determination is simply the age-delta of the cohort from baseline to endpoint

[2]. Nevertheless, the inclusion of moderators barely explained any heterogeneity in any case,

reducing I2 by less than 2%. While other known risk factors of hypertension could be relevant

as moderators, e.g., baseline blood pressure, their reporting was inadequate to be tested as

moderators without excluding large parts of the included results.

Using the three-level model, analyses estimated considerable correlation within studies for

both traditional and ML models. This similarity within studies suggests within-study compari-

sons using meaningful alternatives are needed for making judgment on the effect of various
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modelling choices. Hence, the effect of using a machine learning model, the utility of different

data sources, or the inclusion of a new sub-group of individuals can only be assessed meaning-

fully when compared against alternatives within the same study.

As we meta-analyzed the external validations of the Framingham risk model, we could

investigate a case independent of variation in model development methods. Even so, heteroge-

neity was estimated to account for more than 99% of the variation in results, with baseline age

as the only significant moderator. As model development was not relevant, the persistent high

heterogeneity suggests that heterogeneity was more related to other aspects, e.g., cohort char-

acteristics or the recording of data. While noting that only a single model was considered, this

underlines that confidence intervals of results presented in studies should only be considered

relevant within the context of the study it is reported in. To exemplify, the external validation

AUC/C-stat. reported for the Framingham risk model ranged from 0.537 to 0.84. This was a

far higher variation than suggested by the bootstrapped optimism of 0.0003 or the 95% confi-

dence interval of 0.733 to 0.803 reported in its development article [18].

In 13 of the 16 studies that externally validated a model, a new risk model was presented as

well. External validation of a risk model can go beyond simple application of the model in a

new population. Several methods may be tested to see if an external model can be made effec-

tive in a new population with relatively little effort, e.g., by recalibration or re-estimation of

coefficients [81]. The advantage of a thorough external validation of existing models when a

new risk model is proposed is two-fold: Failing to obtain favorable results using external mod-

els would argue for the creation of a new risk model. Simultaneously, a thorough development

of a new risk model will likely produce a best-case scenario performance-wise, which could

serve as context for the external validation. Lastly, we note that four of the included studies val-

idated multiple models [30,43,69,74].

External validations are useful for testing performance outside of the development cohort

and require that risk models are made available. Only four studies applying machine learning

had made one of their final models readily available for external researchers, likely explaining

partly why no machine learning models were found to be externally validated by independent

researchers. The four ML models that were available had low complexity, allowing a full graph-

ical presentation, e.g., a Bayesian network or a decision tree [34,42,45,52]. No models were

found to be shared by online resources. Traditional models are easier to share without resort-

ing to online resources. Several studies specifically emphasized application in clinical practice

as a motivation and presented simplified versions of their risk model for easier use by clini-

cians in the form of nomograms, risk scores or decision rules.

Another aspect that challenges external validation and reproducibility, is the increasing use of

datasets derived from Electronic Medical Records (EMR). These often exceed traditional study

cohorts in both number of participants and the amount of clinical information, increasing the

information load underlying any risk model development. This suggests that reporting should be

even more rigorous. As an example of the opposite, in three studies [50,53,70] developing risk

models using EHRs, a complete list of variables used in the final models was not reported.

Most included studies only reported discrimination performance measures, especially in

studies where ML models were developed. Neglecting other performance measures such as cal-

ibration or clinical impact is common, although discrimination ultimately only provides a par-

tial view of a model’s total performance [6–8,82,83].

Limitations of our study

We note that we have included fewer studies than earlier, relevant reviews. While our inclusion

criteria were more restrictive, there can be variation in distinguishing prediction model
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development from association studies due to similarities in how models are developed,

reported, and assessed. We excluded several studies with prognostic models where the focus

was fixed on one or a specific set of similar variables as none of these followed recommended

procedures for creating risk models. Further, they were often exclusively focused on their spe-

cific research niche, implying exponentially more effort would be needed to identify all such

studies. Most included studies using genetic information were edge-cases in this sense but

were included as they were explicitly labeled as risk scores or risk models for incident

hypertension.

Applying the original PROBAST framework upon studies developing ML models may be

ill-advised. However, we deemed it relevant as all models were developed for a similar purpose

as the traditional models. With the publication of the PROBAST-AI framework, better assess-

ment of risk models based on ML will likely be possible [65].

A significant limiting factor was that we only focused on the performance measure of AUC/

C-statistic. Both discrimination and calibration should be assessed simultaneously in meta-

analysis to increase power of the analysis [9]. Incomplete reporting as well as variation in

methods used meant we were unable to incorporate it into our meta-analyses [14,82].

Lastly, we did not assess publication bias of our included results, similar to an earlier, rele-

vant review [8]. Assessing publication bias was not emphasized in a methodological guideline

for systematic reviews on prediction models [9].

Conclusion

The increase in the number of articles and research-effort relevant for hypertension risk

modelling may produce insights on creating better models, highlight limitations of existing

ones, and contribute to determine how well risk may be predicted in different populations.

We found 53 studies focused on developing or validating a prognostic risk model for inci-

dent hypertension. There was rich diversity in cohort origin, methods applied, and subsequent

results obtained. The quality of studies was found to be poor, with only a small minority

assessed as low risk of bias using the PROBAST framework. Moreover, specific issues for the

studies developing ML models were developed models not being made available and incom-

plete reporting of the used input variables.

We applied a three-level model meta-regression to analyze the reported AUC/C-statistics,

as it was the only performance measure reported to a sufficient degree. Model discrimination

was found to be acceptable to good in many cases, and seemingly higher for ML models than

traditional models. However, high heterogeneity was seen for both model groups. This sug-

gests considerable variability in the performance of new models.

Only one model, the Framingham risk model, had been externally validated more than

three times, and we found large heterogeneity in these external validations. This indicates that

there is also large variability in how well models translate to new populations. Despite this,

only 16 of 53 included studies reported doing an external validation of an existing model.

Based on our findings, we have identified several items that can enable the research com-

munity to better assess hypertension risk models. Broader adherence to existing guidelines for

reporting and developing risk models like TRIPOD, and specifically reporting appropriate per-

formance measures beyond discrimination, can help improve the quality of reporting. Further,

we recommend a stronger focus on validation so that sources of improvement in risk model-

ling are identifiable and existing risk models are evaluated. This implies considering reason-

able baseline models and performing external validations of existing models. To enable this,

any developed risk models and required information for practical use need to be made avail-

able for external researchers.
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