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Abstract

The advent of virtual driving instructors has the potential to revolutionize driver

education by providing real-time, unbiased feedback to learner drivers. This

paradigm shift aims to mitigate the innate subjectivity associated with human

evaluations. Our research focused on the creation of a virtual driving instructor

capable of assessing a learner driver’s performance in real-time, with an empha-

sis on eliminating the inherent biases associated with human evaluations. Our

approach involved the development of a rule-based assessment system, employ-

ing a multi-agent system based on the subsumption architecture. Each agent in

the system was tasked with assessing a specific aspect of driving performance.

Additionally, we utilized a knowledge graph to maintain a continuous under-

standing of the situational context, further enhancing the system’s assessment

capabilities. We posited that our system, given its methodical structure and

objective rule-based framework, would be able to accurately and objectively

assess various driving scenarios. Further, we hypothesized that our system’s

performance would be on par with expert human evaluations. The validation of

our system was conducted using real driving sessions in simulators with actual

students. The system was tested on various scenarios including intersections,

roundabouts, and overtakes. The assessment results aligned closely with expert
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consensus, showcasing the system’s capacity to match the evaluative precision

of human experts.

Keywords: Virtual driving instructor, multi-agent system, knowledge graph,

ontology, real-time assessment, driver education, traffic situation awareness,

driving simulation
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1. Introduction

According to the World Health Organization (WHO), an estimated 1.35 mil-

lion people lost their lives in road crashes in 2016 (World Health Organization,

2018). Tragically, road traffic injuries were the leading cause of death for chil-

dren and young adults aged 5-29 years. Every small improvement in road safety

has the potential to save many lives, which is why the European Union has set

an ambitious goal of reducing road fatalities to close to zero by 2050 (European

Commission, 2011).

One way to improve road safety is to improve driver education. Young

drivers are especially exposed, as deaths by traffic accidents account for 23% of

deaths for young adults that are between 18 and 24 years old (Gicquel et al.,

2017). The rapid technology advancements and reduced hardware cost mean

that it is viable to provide driver education in simulators with virtual driving

instructors (VDI). Driving simulators enable safe learning for both the driver

and the environment, which means that risky situations can be experienced

without any concerns for safety. VDIs on the other hand can help to both

personalize and standardize driver education. As the virtual environment can

be changed dynamically, education can be personalized by presenting driving

situations that will optimize learning for individual students. The VDI can

choose traffic situations that will train the skills where the student has most to

gain and improve learning reducing the complexity of a situation by removing

traffic if the student is stressed, as stress reduces the student’s capacity for

learning (Vogel & Schwabe, 2016). Also, feedback can be personalized, as it

can be tailored to the learning style that suits the student best. A VDI enables

standardization of driver education as a student’s skill level can be quantified,

which is not practically possible when a driver instructor sits inside a car with

a student driving in real-world traffic. Finally, a VDI can ensure that a driver

has experienced all types of situations. This includes scenarios that cannot be

safely triggered in real-world traffic, ensuring that students master them to the

desired degree.
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Fully automating driver education is also advantageous as it decreases the

cost of training. The cost-driver of high-quality driver education, so-called grad-

uated drivers licensing, which has shown to be effective in reducing accidents

O’Neill (2020), is that it is done one-on-one with one instructor per student.

Automation reduces labor costs, which are particularly high in countries where

graduated driver licensing is most prevalent.

In this paper, we describe a VDI that can sense the simulation environment,

analyze traffic situations, and provide feedback to both driving students and

instructors. This system is composed of two sub-systems: 1) the assessment

system and 2) the tutoring system. The assessment system evaluates the driv-

ing performance of the student, determining what was done correctly and what

was done incorrectly, while the tutoring system uses this information from the

assessment system for providing feedback to the student. Additionally, the tu-

toring system is responsible to provide situation awareness and decision support

to a driving instructor who can monitor several students in parallel.

The main focus of this paper is the assessment system. The assessment

system is largely designed as a rule-based system, a type of artificial intelligence

system that uses predefined rules or heuristics to make decisions (Shu-Hsien Liao

(2005)). This is different from the learning-based methods commonly used in

intelligent agents today. Rule-based systems can be challenging when it comes

to mapping the sensed environment to a symbolic representation (Wooldridge

(2009)). In contrast, learning-based methods such as reinforcement learning

(Ndousse et al. (2021), Baker et al. (2019)) and imitation learning (Onishi et al.

(2019), Codevilla et al. (2018)) are well-suited to handle uncertainties, which

are common in real-world problems. However, these methods have two crucial

disadvantages for the assessment system.

First, training machine learning models requires a large amount of labeled

data (Hestness et al. (2019)). In the case of imitation learning, not only is

raw driving data required, but also additional ground truth data generated by

human experts evaluating each driving situation (Ross et al. (2011)). Second,

learning-based methods are black box systems (Rudin (2019)). In the case of the
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VDI, explainability is key. The VDI must not only output performance scores

for certain driving skills, but also provide explanations (Gunning & Aha (2019))

for why the performance was assessed as high or low, and what the student needs

to improve. A rule-based system can easily trace back the reasoning behind its

decisions, whereas making the decisions of black box systems explainable adds

a lot of complexity (Kim et al.; Goodman & Flaxman (2017)).

The research question we seek to answer is: Can we develop a hybrid AI

system, combining the advantages of both rule-based and learning-based methods,

that can assess traffic situations with performance on par with human experts?

Our contributions are as follows:

• We present an innovative driving assessment system integrating a multi-

agent framework with a knowledge graph that evaluates driving students

in real-time.

• We perform a thorough evaluation of the VDI where its performance in

evaluating advanced traffic situations is compared to the performance of

human experts showing that the VDI is on par with human experts.

In previous publications, we have presented the architecture design of the

assessment system (Sandberg et al., 2020), the deployment and the student’s

experience of using the simulator (Rehm et al., 2024), a method for utilizing driv-

ing context to improve annotation efficiency of driver gaze image data (Rehm

et al., 2021) and automatic generation of driving lessons in the virtual world

(Bjørnland et al., 2024).

2. Related work

Virtual driving instruction represents a rich and varied field of study, with

diverse methodologies and approaches being employed to enhance the learning

experience. One such study by Ropelato et al. (2018) involves the use of an in-

telligent tutoring system (ITS) incorporated into a virtual reality head-mounted

display-based driving simulator.
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This adaptive system delivers new activities to learners, optimized for max-

imizing their expected learning progress. The ITS primarily assesses basic driv-

ing skills, such as maintaining lane discipline and regulating constant speed.

The evaluation of this system, however, is principally done through partici-

pant feedback from a questionnaire, which focuses on the level of immersion

experienced by the participants and whether the simulator induced so-called

simulator-sickness Kolasinski (1995). While this study makes a valuable con-

tribution to the field, it lacks extensive details about the exact mechanisms

employed in the skills assessment, as well as the comprehensive evaluation of

the intelligent tutoring system itself. Consequently, a detailed exploration of

these aspects could offer avenues for further development and refinement in the

realm of virtual driving instruction.

Another study that is closely aligned with our work is Weevers et al. (2003).

They also concentrate on the concept of a VDI. This study, akin to ours, adopts a

multi-agent system for the design of its intelligent tutoring system. This system

is composed of three distinct agents: the situation agent, the presentation agent,

and the curriculum agent, each playing a crucial role within the ITS. However,

the research provides only a high-level summary of the system without delving

into the specifics of the individual agents or their operations. Furthermore, it

lacks empirical validation, as no experiments are presented to substantiate the

effectiveness of the approach. This absence of detailed operational information

and empirical data highlights areas where further research could significantly

contribute to the development of virtual driving instruction.

Sharon et al. (2005) diverges somewhat from our approach, targeting their

research towards the continued education of already licensed drivers, rather than

novice learners. Their system, CarCoach, is implemented in an actual vehicle

environment rather than a simulator. The effectiveness of CarCoach was subse-

quently evaluated in a study by Arroyo et al. (2006), who assessed participants’

levels of frustration in response to feedback from the system. While this evalua-

tion approach lends insight into user experience, it does not extensively explore

more objective performance metrics.
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Performance assessment in simulators often involves both qualitative and

quantitative measures. However, the reliance on human input for qualitative

measures complicates automation. Therefore, robust quantitative measures are

critical, as Ekanayake et al. (2011) demonstrate. They propose a competency

formula based on quantifiable outcomes and effort. ’Good speed’ is a positive

outcome, off-road driving, and crashes are negatives, and effort is gauged via

physical pressure on the hand controller. The study involved seven licensed

drivers in two racing simulator sessions, correlating their quantitative approach

with a qualitative assessment by an experienced driver. While this underscores

the viability of quantitative assessment, the study’s methodology poses some

challenges when contrasted with our objectives. Favorable and unfavorable

outcomes in regular, non-racing driving could be more nuanced than speed

or crashes, incorporating factors like yielding errors or unsteady lane adher-

ence. Furthermore, typical driver competency evaluations do not involve effort

metrics. Lastly, a more reliable qualitative assessment would be conducted by

seasoned professionals.

In a study of simulator efficacy, de Winter et al. (2009) demonstrated a

meaningful connection between simulator performance and subsequent results

on actual on-road driving tests. They found that learners making fewer steer-

ing errors in the simulator were more likely to pass their first on-road driving

test, signifying that skills honed in a virtual environment could transfer to real-

life driving. Yet, despite these promising findings, they underscored the need

for more extensive research to affirm the reliability and validity of simulator

training, highlighting an area that our work aims to address.

De Winter et al. (2012) provide an overview of the potential of driving simu-

lation technology, citing its benefits and drawbacks. Simulators’ controllability,

reproducibility, and safety are advantageous, but their limited fidelity, scarce

validation research, and potential for user discomfort present challenges. With

the anticipated rise of affordable virtual-reality applications, the need for ad-

dressing these challenges, particularly the validation aspect, is evident. Our

work targets this unmet need, aiming to develop a rigorously validated, auto-
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mated assessment system.

In the preceding discussions on virtual driving instruction, several techniques

and methodologies have been highlighted. Approaches range from intelligent

tutoring systems and multi-agent systems to using actual vehicle environments

for feedback. These methodologies are integral to our goal of creating a well-

validated, automated assessment system for virtual driver education.

On a technical front, it’s worth noting the prominent role of ontologies

(Uschold & Gruninger (1996)) and rule-based multi-agent systems (Dorri et al.

(2018)) in such applications. These methodologies, also used in autonomous

driving and ADAS applications, provide the required higher-level reasoning for

achieving situation awareness (Endsley, 1995).

The study by Hülsen et al. (2011b) presents an innovative method for creat-

ing comprehensive traffic situation descriptions for advanced driver assistance

systems. Leveraging description logic as a knowledge representation language,

their model utilizes logical reasoning to interpret intricate traffic situations and

associated rules. This strategic application of logic offers an advanced way to

comprehend and navigate complex traffic scenarios. They test this system in a

real-time simulation framework in Hülsen et al. (2011a). Buechel et al. (2017)

developed an ontology-based system to model traffic scenarios semantically. The

system leverages the OWL 2 Web Ontology Language and the Pellet reasoner

to encapsulate key traffic aspects. The authors further link the traffic situations

to their corresponding rules, thereby facilitating enhanced situational awareness

and decision-making in autonomous vehicles. Suryawanshi et al. (2019) present

an ontology-based approach for modeling dynamic road data in Advanced Driver

Assistance Systems. Their system uses dual-ontologies and SWRL rules to flex-

ibly process map data, and they validate three techniques for predicting a ve-

hicle’s most probable path using a simulation, demonstrating efficient query

response times and manageable system complexity.

Regele (2008) presents a novel abstract world model for traffic coordination

in autonomous driving, distinguishing between trajectory planning and traffic

coordination, and addressing the latter via a hierarchical, graph-like network of
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lanes, vehicles, and objects, thereby simplifying high-level control development

and enabling efficient traffic management in conflicting scenarios such as inter-

sections and multi-lane roads. Halilaj et al. (2021) propose a knowledge graph

(KG)-based approach for representing and utilizing information relevant to traf-

fic situations in driver assistance and automated driving systems. The approach

is evaluated using a synthetically generated dataset and compared with tradi-

tional vector-based feature representations. The results show the advantages of

the KG-based approach in situation classification tasks, indicating its potential

for improving interaction modeling and decision-making in autonomous vehi-

cles. Zamora et al. (2017) introduce a rule-based multi-agent architecture for

an intelligent ADAS system assisting a driver in an urban environment. This

proposal has later been implemented and experimentally validated in Sipele

et al. (2018). Both works are based on the multi-agent approach described in

Gutierrez et al. (2014). Ontologies are also widely used in traffic management

systems like BeAware! which is discussed in multiple publications. Baum-

gartner et al. (2014, 2010) include spatio-temporal reasoning concepts in their

situation awareness framework. Salfinger et al. (2014) extended this frame-

work by tracking the evolution of situations. Ontologies, knowledge graphs,

and multi-agent systems are not the only way to get an understanding of traffic

situations. Vacek et al. (2007) use case-based reasoning to interpret traffic situ-

ations. Platho et al. (2012) assess complex traffic situations by checking at any

moment in time in which configuration a car is. They use a Bayesian network

to classify in which configuration the reference entity is currently.

However, there is a lack of research in the field of AI driving education in

the recent years. Related fields that are more active are self-driving cars (Badue

et al., 2021) and AI in classroom education (Huang et al., 2021). The existing

research on ITS for driving education reveals gaps and unmet needs, especially

around the detailed mechanisms of skill assessment, comprehensive evaluation

of tutoring systems, and empirical validation of simulator training. Our work,

which seeks to develop an automated, rigorously validated, and explainable

assessment system for virtual driver education, aims to address these challenges
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and contribute to the ongoing evolution of virtual driving instruction and traffic

understanding systems.

3. Architecture of the Virtual Driving Instructor

3.1. Overview

The VDI is a hybrid AI system that is integrated seamlessly with a traffic

simulator. While currently confined to simulated environments, it is theoreti-

cally feasible to implement the VDI in a real-world vehicle, navigating public

roads. This implementation would, of course, hinge on the presence of specific

technical components: a sophisticated perception system for real-time under-

standing of the environment (Badue et al. (2021)), high-definition (HD) maps

(Bao et al. (2022)) for in-depth environmental representations, and potentially

reliable vehicle-to-everything (V2X) communication technology (Noor-A-Rahim

et al. (2022)) for an enhanced, information-rich situational awareness. In the

following sections, we delve into the specifics of the existing simulator system

and explore how the VDI interacts within this virtual traffic environment.

The simulator setup is shown in Figure 1. A real car is mounted on a motion

platform and the simulation visuals are displayed at 360° around the car by off-

the-shelf projectors. This setup can be classified as a simulator type with the

highest fidelity level according to Allen et al. (2007).

In Figure 2, an overview of the complete system is given. The traffic sim-

ulator is composed of three main components. The Virtual Reality (VR) en-

vironment encompasses both the simulation engine and the traffic manager. It

uses the Unity game engine (Unity Technologies (2022)) which provides a ro-

bust platform for designing realistic virtual environments. All visual rendering

takes place within this VR environment, ensuring immersive and engaging visu-

als for users. The traffic manager is responsible for the creation, deletion, and

movement of all dynamic objects, such as vehicles and pedestrians, within the

simulation. In addition to controlling object interactions, the traffic manager

maintains real-time data for each object in the dynamic environment, storing
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it as time-series data in a shared memory. This information is updated at reg-

ular intervals, ensuring the system remains synchronized and responsive to the

evolving virtual landscape.

The student sits in a real car and operates it using the pedals and steer-

ing wheel. The car’s control data, including pedal inputs and steering wheel

movements, is made available to the traffic manager by incorporating it into the

shared memory for time-series data as shown in Figure 2. This seamless inte-

gration ensures accurate and responsive synchronization between the student’s

actions and the virtual environment.

A camera is positioned in the car to capture the student’s actions, with its

video stream shared with the VDI. This setup allows the VDI to monitor the

student’s gaze, providing valuable insights into where their attention is focused

during the simulation.

Every 20ms the VDI copies a snapshot of the time-series data and updates

the knowledge graph in real-time, which is described in more detail in subsec-

tion 3.2.

The VDI communicates with the student through a multimodal interface

(Philippe et al. (2020)) that includes text, graphics, and audio. The VDI au-

tonomously decides what feedback to provide, when to provide it, and in what

form. Timing is critical in this process, as students can be stressed while driv-

ing, which can reduce their ability to absorb information due to an increased

level of cognitive load (Sweller et al. (2019)).
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Figure 1: High-fidelity traffic simulator developed at Way AS. A real car is mounted on the

motion platform in the center. Surrounding the car is a projection screen wall with six different

view channels projected at the driver’s front.

Tutor

Student

Video 
streaming

Camera

Time-series data

Car

VR 
environment

Agent system

Knowledge graph

Traffic 
manager

Simulation 
engine

Figure 2: Overview of the system containing the driving student in red, all the simulator

components in blue, shared data in green and the VDI components in orange
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3.2. Knowledge graph

To provide comprehensive explanations of traffic situations, our VDI neces-

sitates a thorough understanding of the environment. To accomplish this, we

have designed a knowledge graph. Grounded in the conceptual framework de-

tailed in Hogan et al. (2021), we adopted a property graph model. In this model,

both nodes and relationships are characterized by attributes, which enables the

VDI to maintain comprehensive situational awareness. We are using an ontol-

ogy to provide a structured vocabulary for the knowledge graph. The ontology

is based on Sandberg et al. (2020) and the core ontology for situation awareness

(Matheus et al. (2003)). This structure allows us to account for changes in the

values of attributes and relationships over time as the knowledge graph evolves.

This evolving knowledge graph, furnished by our ontology, forms the base

for representing situations and situation objects, which are the central entities

in our design. Mirroring the framework laid out in Matheus et al. (2003), every

object is a node in the graph, and a situation constitutes a sub-graph. Each

assessment made by the VDI is based on a situation, such as approaching and

passing through an intersection. A situation has a start and end time and is

comprised of all objects that are relevant to the situation. A pre-filtering step is

required to identify these objects, as only those that can influence the assessment

of the situation are considered relevant. For example, a car on a lane that has

no connection to the intersection is not considered relevant to the intersection

situation. This strategic exclusion ensures an efficient, focused, and real-time

assessment process.

The assessment system performs its reasoning once the situation is over,

allowing it to have full knowledge of the situation and avoiding any uncertainties

related to predicting future states. In the traffic simulator, the VDI only needs

to react to the student’s actions, which makes the task of developing such an

agent simpler than developing a self-driving agent. A self-driving car needs to

plan ahead and anticipate any future dangers (Montemerlo et al. (2008); Suh

et al. (2018)), whereas the VDI only needs to plan when to provide feedback. A

situation can also be divided into sub-situations, allowing the tutoring system
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to react to mistakes made by the student earlier in the situation, without having

to wait until the complete situation is over.

The complete knowledge graph is too big to be described in full detail here.

Figure 4 shows a subset of the ontology, focusing on situation objects typically

found in an intersection or roundabout scenario. Situation objects can have

attributes, such as the type of a road sign, and can have relationships with each

other, such as a lane and an intersection having the relationship IsIncoming,

meaning that the lane is directly connected to the intersection entry and the

driving direction is going towards the intersection.

Situation objects are divided into dynamic and static objects. The static

objects define a detailed road network, including roads, lanes, and road signs.

This part of the knowledge graph is generated offline as it does not change

during a driving session. It also includes higher-level information, such as the

priority of one path through an intersection over another. The yielding rules for

each path through an intersection are automatically pre-computed and stored

in the knowledge graph after creating the road network using the road geometry

and road signs.

The dynamic objects can appear and disappear in a situation and their

information is received through the interface with the traffic simulator. A change

in a dynamic object is expressed by adding a property value with a timestamp

to the changed object attribute, such as the position or speed of a car. The same

applies to changes in a relationship between two objects, where a property value

is added to the relationship. This allows for reasoning about past situations after

the situation is over, as no information is lost.

Consider, for instance, a lane change scenario as depicted in Figure 3. This

situation engages various static situation objects such as lane T1 M4, lane

T1 M3, and the road R T1 M, in addition to the dynamic situation object,

Ego 0 vehicle. The static objects interrelate – both lanes T1 M4 and T1 M3

belong to road R T1 M, and lane T1 M4 lies adjacent to T1 M3 with a solid line

in between the two as a lane separation. Meanwhile, dynamic relations evolve

over time, exemplified by the Ego 0 vehicle initially occupying lane T1 M4 be-
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fore transitioning to lane T1 M3 at the simulation timestamp of 435734ms from

the simulation’s onset. Drawing on this data, the agent system (as discussed in

subsection 3.3) deduces a lane change action. This action is then documented

within the knowledge graph as a new relationship and the system identifies a

driving error as it is not allowed to cross the solid line.

Ego_0 : Vehicle

width = 1.68m

length = 3.73m

T1_M4 : Lane

width = 3.5m

vertices = [...]

limit = 80 km/h 

T1_M3 : Lane

width = 3.5m

vertices = [...]

limit = 80 km/h 

R_T1_M : Road

name = E6

isOn

start =  423356ms

isOn

start = 435734ms

isAdjacent

separation = Solid
laneChange

time = 435734ms

previous = T1_M4

belongsTo

belongsTo

Figure 3: Instance of a property sub-graph for a lane change situation. The graph includes

situation objects (Vehicle, Lane, Road) as nodes and their static and dynamic relations. The

Ego 0’s transition from lane T1 M4 to T1 M3 is inferred as a ’laneChange’.
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SituationObject

RoadDriver

Ego

Attribute

1

1

LaneCar 1...*

TurnIndicator

1

SpeedGaze

Junction

Intersection Roundabout

RoadSign

TrafficLight

Relation

isAdjacentIsIncomingIsParent belongsTo

a)

Type
1

State
1

DynamicObject StaticObject

b)

Figure 4: Ontology: a) Subset of the ontology used to assess correct behavior at intersections

and roundabouts. Situation objects (orange boxes) can have multiple attributes (green boxes).

b) Examples of relations between situation objects (red boxes)

3.3. Agent system

The assessment system is designed as a multi-agent system. Over 70 agents

are organized in a layered structure following the principles of subsumption ar-

chitecture as proposed by Brooks (1991). Each layer of agents is responsible for

specific behaviors or tasks, with lower layers handling basic reactive behaviors

and higher layers managing more complex tasks through the integration and

interpretation of the outputs from these lower layers.

The layered structure of the subsumption architecture allows for the easy

modularization of tasks, with each layer of agents specializing in certain behav-

iors. This greatly simplifies the problem-solving process, as each agent can focus

on a specific subset of tasks without needing to be aware of the entire system.

Moreover, new functionalities can be introduced seamlessly as new agents, fur-

ther enriching the system’s capabilities without causing disruptions. In addition

to facilitating system growth and adaptability, this architecture enhances the
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overall system robustness, as the independent operation of each agent mitigates

the risk of system-wide failures.

In this system, agents operate within a game loop-style execution process,

executing updates in serial on the main thread. Some computationally heavy

agents, such as the gaze estimation agent, run in parallel on their own threads.

Once an agent completes its tasks, it updates the knowledge graph with new

results, if available.

The knowledge graph serves as a shared representation of the environment

and the agents’ internal states. Agents can access and modify this knowledge

graph, enabling them to communicate, coordinate, and collaborate. This ap-

proach allows agents to share information and work together to achieve complex

behaviors.

To illustrate, the TurnIndicatorAgent, a lower-level agent, processes sensor

data related to turn signaling. Higher-level agents, such as the JunctionAp-

proachingAgent, then collate and analyze data from the TurnIndicatorAgent,

the LanePositioningAgent, the GazeEstimationAgent, and others. In doing so,

they effectively assess and provide feedback on a student’s performance at an

intersection.

Our design shares similarities with a traditional blackboard system, with

agents accessing a shared knowledge source, thus fostering collective problem-

solving. This approach effectively circumvents bottlenecks, even with numerous

agents, while preserving a common domain understanding. Parts of this archi-

tecture are illustrated in Figure 5. Here, the central role of the blackboard-like

system (Erman et al. (1980)) that facilitates communication between all agents

is highlighted. It manages the producers and consumers of all the data, ensuring

there is only one producer for each type of data, and agents can subscribe as

consumers to the data they need.

However, the traditional blackboard architecture has some shortcomings as

mentioned e.g. by Nwana et al. (1996). To avoid these pitfalls, our implemen-

tation ensures:
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• No master agent controls access to the blackboard.

• Concurrency and robustness are preserved, as every part of the knowledge

graph has a unique producing agent.

• Information is exclusively appended to the knowledge graph. Deletions

occur only after all consuming agents have processed the data set for

removal.

• The controller’s role is limited to defining agent roles as producers or

consumers, avoiding subsequent operational overhead.

The RoadNetworkAgent plays a crucial role in the overall system. It uses

a digital street map of the simulated driving environment from the static part

of the knowledge graph to track the real-time location of the ego car and other

traffic participants. This real-time locational information is then relayed back

to the dynamic part of the knowledge graph, where higher-level agents integrate

this information to assess complex tasks, such as the vehicle’s position within a

lane or yielding behaviors.

In this assessment system based on subsumption architecture and knowl-

edge graphs, complex behaviors and system-level intelligence emerge from the

interactions between simpler agents at different layers. This layered, emergent

approach enables the system to provide detailed information, to be used to

create context-specific feedback and instruction.
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Figure 5: The architecture of the Assessment System. The system is comprised of a multitude

of agents each responsible for different traffic situation awareness aspects: RoadNetworkAgent,

TurnIndicatorAgent, LaneChangeAgent, JunctionApproachingAgent, and RightOfWayAgent,

along with many others in the complete system. Each of these agents interfaces with the

Blackboard, a central component that hosts the knowledge graph and facilitates the provi-

sion of SubKnowledgeGraphs for data producers and consumers. The Blackboard effectively

governs concurrent data access, ensuring seamless information exchange. The agents serve

specific roles either as KGDataProducers, contributing data to a subgraph, or as KGData-

Consumers, extracting information from a subgraph. In addition, the RoadNetworkAgent and

TurnIndicatorAgent are able to access the most recent simulation data through the Simula-

torSharedMemoryAPI, allowing real-time interaction with the simulated environment.

3.3.1. Detailed Descriptions of Agents

This section provides an overview of specific agents discussed in this paper,

selected for their relevance to our study. Each agent plays a vital role in moni-

toring and assessing different aspects of the student’s driving performance. Let
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us delve into the specific responsibilities and functionalities of each agent in

Table 1.

Agent name Description

TurnIndicator A straightforward agent responsible for monitoring

the activation status of the Ego vehicle’s turn signals.

Braking An agent dedicated to examining the smoothness and

appropriateness of the braking actions executed by

the student.

GazeEstimation This agent interprets the student’s head pose and

gaze direction captured by the driver-facing camera.

It uses this data to evaluate the student’s attention

to mirrors and blind spots.

Stop This agent assesses the student’s stopping perfor-

mance at designated stop positions. Its assessment

criteria include the student’s accuracy in stopping

at the stop line and the smoothness of braking, as

informed by the BrakingAgent.

RoadNetwork A key agent that identifies the positions of all traf-

fic participants on the map and calculates distances

along lanes to nearby vehicles.

LanePositioning This agent is in charge of evaluating the student’s

lateral positioning within the lane, including whether

the student is on the left, in the middle, or on the

right of the lane.

RightOfWay This agent inspects if the student correctly yielded

when needed while entering the intersection, thus

checking for potential right-of-way violations.

IntersectionPath This agent determines the path that the student

chose while traversing the intersection.
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JunctionApproaching The assessments of all agents relevant for the phase

of approaching intersections or roundabouts are ag-

gregated by this agent.

JunctionPassing The assessments of all agents pertinent to the phase

of passing through intersections or roundabouts are

accumulated in this agent.

Junction This agent integrates the results of the JunctionAp-

proachingAgent and JunctionPassingAgent.

Tutoring This agent takes into account all the assessments pro-

vided by the higher-level agents and determines the

most suitable feedback to offer to the student.

Table 1: List of agents discussed in this work and their description

3.4. Collaborative development with traffic instructors

The development of our intelligent driver assessment system was a collabo-

rative endeavor between our research team and a group of professional traffic

instructors. This approach was chosen to ensure that the system is not only

technologically sound but also pedagogically effective and relevant in the con-

text of real-world driver education.

Traffic instructors possess a deep understanding of the complexities of driv-

ing skills, which are a blend of cognitive, motor, and perceptual abilities. They

also have vast practical experience in observing, assessing, and instructing stu-

dent drivers. As such, their input was invaluable in defining what to assess and

how to assess it, grounding our system in the realities of driving instruction.

The instructors were actively involved in several key stages of system devel-

opment. Firstly, they helped to identify the crucial driving skills and behaviors

that the system should evaluate. Their expertise informed the system’s focus

on elements such as lane positioning, turn signaling, braking, overtaking, and

approaching and passing intersections.

Secondly, they guided the development of the evaluation criteria and scoring
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methodologies for each skill. For instance, they provided insights into the sub-

tleties of assessing a student’s performance in complex maneuvers like overtaking

or navigating intersections. Their understanding of common student mistakes

and difficulties also helped to calibrate the system’s sensitivity to specific errors

and omissions.

Lastly, the instructors played a significant role in the system’s testing and

refinement phases. They participated in the evaluation of the system, provided

feedback on its accuracy and effectiveness, and helped to correct potential er-

roneous assessments.

The collaboration with traffic instructors ensured that our system is designed

to accurately mirror the nuanced process of human driver assessment. It’s a

crucial aspect of our approach, reinforcing the system’s potential to serve as an

effective tool in driver education.

4. Reasoning example: Intersection situation

In order to elucidate how the VDI processes and interprets traffic situations,

we describe a specific example where the VDI is tasked with assessing a driver’s

behavior at an intersection. Intersections are one of the most complex scenarios

that drivers face on public roads. They can be controlled by signs, or traffic

lights, or be uncontrolled, in which case vehicles have to yield to traffic coming

from the right (United Nations (1968)). Drivers are expected to not only respect

yielding rules but also to observe traffic and signal their intentions.

For example, signaling the intention to take a particular path through an

intersection requires the use of turn signals, as well as driving in the correct lane

and positioning the vehicle correctly within the lane. The VDI needs to assess

if the driver is following these procedures. The VDI can make this assessment

by using the information in the knowledge graph about the situation and the

situation objects, such as the road signs, traffic lights, and the positions and

speeds of other vehicles.

By dividing the correct behavior at intersections into three sub-situations
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(approaching, passing, and exiting), the VDI can assess the student’s driving

performance in a more granular and detailed manner. This allows for a more ac-

curate assessment of the student’s performance and gives the ability to provide

targeted feedback to improve their driving skills. For example, when approach-

ing the intersection, the student driver has to

• observe the traffic ahead and look in the rearview mirror,

• indicate the path through the intersection by placing the car on the correct

lane or on the correct side of the lane and by turn signaling,

• adjust the speed including smooth braking and stopping at the correct

stop position if needed,

• respect the right of way of other vehicles but also enter the intersection in

time when the gap is big enough or the ego car has priority.

4.1. Yielding violation

A yielding violation can occur when two road users cross an intersection on

different overlapping paths, with one path having priority over the other. The

intersection paths, which are defined in the ontology as static situation objects

are derived from the lane situation object. These paths consist of a set of lane

vertex points and are connected to a lane leading into the intersection and to a

lane leading out of the intersection. The right-of-way can be inferred either from

road signs or through the priority to the right rule, with the priorities already

defined in the knowledge graph as described in subsection 3.2.

Thus, we can define a yielding violation as follows. Consider two intersection

paths, pa and pb, where pb has priority over pa, as defined by the relation

hasPriority(pb, pa). An illustrative depiction of such a situation is presented in

Figure 6. Suppose that a car, cA, is on pa and another car, cB , is on pb. Let T

be the set of time points during which the environment was sampled when cA

was crossing the intersection path pb. cA violates the right-of-way towards cB if

there is a collision risk between the two cars at any time point in T, or if cB was
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required to slow down to avoid a collision risk. It is important to note that this

definition is general and applies to any number of intersection paths and traffic

participants. The assessment system must evaluate possible yielding violations

for all possible combinations of intersection paths and traffic participants.

Hence, the assessment of potential yielding violations necessitates the iden-

tification of traffic participants on intersecting paths within the context of the

situation and the determination of the time frame T = t0, t1, ..., tN . After that,

the collision risk must be estimated at every time step within T.

To assess possible yielding violations of the Ego car cEGO , the first step is

to query the knowledge graph for all other road participants vi ∈ V that are

approaching or crossing the same intersection as cEGO is entering at t0. This

allows for filtering out most of the traffic participants and only considering the

relevant ones.

∀vi ∈ V isTrafficParticipant(vi) ∧ isIntersection(s)

∧ isEntering(cEGO , s, t0)

∧ (isApproaching(vi, s, t0) ∨ isCrossing(vi, s, t0))

⇒ atSameIntersectionWhileEntering (vi, cEGO , s, t0) . (1)

Equation 1 represents a first-order logic rule that can be read as follows: For

every vehicle vi within the set of vehicles V, if vi is recognized as a traffic

participant and is either approaching or already crossing the intersection s at

the same time t0 as the Ego vehicle cEGO is entering s, then vi is considered to

be at the same intersection while cEGO is entering.

This method enables us to filter out most of the traffic participants in the

environment and restricts further processing to only the ones relevant in the

situation. After filtering out irrelevant road participants using rule (1), the

RightOfWayAgent checks if the traffic participants vi that are at the same

intersection vi ∈ Vs like cEGO are actually on conflicting paths and if cEGO

potentially needs to yield for any of them as they are on an intersection path
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with priority over the path of cEGO using rule (2)

∀vi ∈ Vs,∀tj ∈ T

atSameIntersectionWhileEntering(vi, cEGO , s, tj)

∧ isOnIntersectionPath(cEGO , pEGO , tj)

∧ isOnIntersectionPath(vi, pv,i, tj) ∧ isConflicting(pEGO , pv )

∧ hasPriority(pv , pEGO) ⇒ hasToYield(cEGO , vi, s, tj). (2)

Equation 2 can be read as follows: For each vehicle vi at the same intersection

as the Ego vehicle cEGO at any time tj within the set of time points T, if both

cEGO and vi are on their respective intersection paths at time tj and if the

paths are in conflict with each other, with vi’s path having priority, then the

Ego vehicle cEGO must yield to the vehicle vi at the intersection.

All these inferences can be made by querying the knowledge graph and per-

forming logical reasoning. However, to determine if cEGO has violated the right

of way of any of the other traffic participants vi, the collision risk needs to be

calculated

∀vi ∈ Vy,∀tj ∈ T hasToYield(cEGO , vi, s, tj)

∧ hasCollisionRisk(vi, cEGO , tj , t0)

⇒ hasViolatedRightOfWay(cEGO , vi, tj). (3)

This rule asserts that if cEGO is obligated to yield to the vehicle vi at the

intersection and a collision risk is present, then a right-of-way violation against

the vehicle vi by cEGO is confirmed at time tj .

To be able to infer if there is a collision risk between vehicles by symbolic

reasoning, the problem needs to be translated into symbols. This process is

described in the following. The conflicting vehicle vi could actively avoid a

collision risk by braking down when it sees cEGO entering the intersection. In

that case, it can still be a yielding violation of cEGO even if it did not lead to

a collision. Thus, we predict the velocity of vi on its path from the time cEGO
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enters the intersection till it leaves the intersection while being not influenced

by cEGO . We calculate the collision risk of this predicted path with the actual

path of cEGO . For simplicity, in this work, we just assume that vi keeps the

current velocity constant. In the next step, the RightOfWayAgent checks the

position of cEGO for all time points Tc in which cEGO is on the intersection path

of vi, pv,i. We also check the time points Tv when v reaches the positions of

cEGO in Tc. A collision risk is present if

∃j, tv,j − tc,j < dc ⇒ hasCollisionRisk(vi, cEGO , tj , t0) (4)

while dc is the minimum time difference required between the time cEGO is at

a certain position (tc,j) and vi is predicted to reach this position (tv,j). In our

experiments, we set dc to 3 seconds. Similarly, the set of rules are defined for

all other situation assessments.
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Figure 6: Depiction of an intersection situation where the green vehicle, denoted as cA on

intersection path pa, is required to abide by the ’priority to the right’ rule. Therefore, it must

yield to the red vehicle cB on the conflicting intersection path pb to avert a potential collision.

The collision risk is projected to occur at time point t3 if the rule is not adhered to.
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4.2. Intersection assessment timeline

As mentioned earlier, driving maneuvers are assessed within specific situa-

tions, such as an intersection situation. An intersection situation begins when

the Ego vehicle approaches the intersection and ends after it exits. The entire

process is illustrated in Figure 7. The IntersectionPathAgent infers the start

and end times for this situation. When the Ego vehicle is 50 meters away from

the next intersection, the agent signals that it is approaching the intersection.

The agent also signals when the Ego vehicle crosses the intersection stop line

and enters the intersection. Once the Ego vehicle exits the intersection, this

event is signaled as well.

The exact path through the intersection is determined by the Intersection-

PathAgent when the Ego vehicle exits the intersection. At this point, the agent

can be certain of the specific path that the vehicle has taken and that it should

have taken, even in cases where lanes partially overlap. This information is

deduced by querying the knowledge graph, which contains details about which

intersection paths connect the entry and exit lanes. Once the correct path is

known, the system can then accurately infer the correct entry lane and the

appropriate positioning within this lane, along with other factors such as the

required direction for turn signaling.

This is where the high-level reasoning of the JunctionApproachingAgent

comes into play. This agent interacts with the knowledge graph to gather infor-

mation from a plethora of other agents. Whenever the JunctionPassingAgent

detects that an intersection has been crossed, it updates the knowledge graph

with relevant information. The JunctionApproachingAgent then queries the

knowledge graph to obtain data from other agents involved in approaching an

intersection or roundabout, such as turn indicator data from the TurnIndicator-

Agent, lane, and lane positioning data from the LanePositioningAgent, braking

data from the BrakingAgent, yielding data from the RightOfWayAgent, and

gaze estimation data from the GazeEstimationAgent.

Using this data gathered from the knowledge graph, the JunctionApproachin-

gAgent performs logical reasoning to determine the successes and mistakes made
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by the student in the junction-approaching situation. This explanatory data is

then added to the knowledge graph, where it can be consumed by the Tu-

toringAgent to provide appropriate feedback.

Given this structure, the JunctionApproachingAgent and other agents wait

until the IntersectionPathAgent signals the intersection exit before assessing the

student’s correct or incorrect behavior while approaching the intersection. For

example, the RightOfWayAgent checks for yielding violations.

Other agents that do not require information about the exact intersection

path assess the situation immediately. For instance, if the Ego vehicle stops

before the intersection, the StopAgent evaluates how accurately the vehicle

stopped at the stop line and how smooth the braking was.

Ultimately, the JunctionApproachingAgent combines all this information to

calculate an overall performance score for the student. A similar process is

followed by the JunctionPassingAgent. The JunctionAgent then combines the

results from both the JunctionApproachingAgent and JunctionPassingAgent to

obtain an overall junction performance score.
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50m away from intersection
IntersectionPathAgent

signals "approaching intersection"

Mirror and blindspot checks,
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Stopping at intersection stop
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Entering intersection

Exiting Intersection

IntersectionPathAgent
signals "crossed intersection"

IntersectionPathAgent
signals "exited intersection"

RightOfWayAgent
checks for yielding violations

JunctionApproachingAgent
calculates performance

Multiple other agents
assessing situation

StopAgent
assesses stopping performance

Multiple other agents
assessing situation

Figure 7: Intersection assessment timeline
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5. Experiments and results analysis

In this section, we systematically analyze the experiments conducted and

the results obtained. First, we present our experimental procedure, outlining

the structure and components of the driving sessions. Then, we delve into the

experts’ evaluation procedure, explaining how experts assessed student perfor-

mances and reached a consensus. We further perform a comparison between the

expert consensus and the outputs of our VDI’s automated assessment system,

followed by an in-depth look into the assessment system agreement with single

experts. We conclude with a discussion on the challenges for students and the

level of consensus achieved amongst expert evaluators.

To the best of our knowledge, no existing work validates the VDI as thor-

oughly as we do in this paper. This lack of comprehensive validation in existing

literature limits our ability to make direct comparisons with other studies.

5.1. Experimental procedure

Our system was put to the test with real students driving in the simulator.

To guarantee the reproducibility of our experiment and allow for offline data

processing, all driving sessions were recorded. The evaluation of our system was

subsequently conducted on the resulting dataset derived from these recordings.

The experimental setup employed a replay system capable of playing back these

recorded driving sessions, effectively emulating the live system’s functioning.

The participants of the experiment were students at Way AS, a commercial

driving school in Norway that also develops its own high-fidelity simulators.

The experiment included participants with varying levels of experience in both

simulator driving and real-world driving. This diversity enabled us to evaluate

our system across a range of driving proficiencies and a wide array of distinct

driving errors.

Each participant drove three different lessons in the simulator:

• Overtakes: A circular track with a two-way street that features long

stretches for overtaking other cars, as well as curves and hills that obstruct
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the view. The experiment includes 18 recorded overtake sessions with a

total of 74 overtake situations. Each situation was evaluated by an average

of 3.5 experts.

• City driving: An artificial city scenario with complex multi-lane inter-

sections that are primarily controlled by traffic lights. The experiment

includes 18 recorded city driving sessions with a total of 157 intersection

situations. Each situation was evaluated by 2 experts.

• Town driving: A real town in Norway was recreated in the simulation,

featuring many roundabouts and smaller streets with the priority-to-the-

right rule. The experiment includes 16 recorded town driving sessions with

a total of 158 intersection situations and 87 roundabout situations. Each

situation was evaluated by an average of 3.4 experts.

The experimental procedure was executed in the following stages:

1. Design and planning: This stage involved conceptualizing the experi-

ment and outlining the procedure.

Output: Experiment design.

2. Simulator driving by students: In this phase, students drove in the

simulator, generating the driving sessions dataset that forms the basis of

our experiment.

Output: Student driving sessions.

3. Evaluation by driving experts: Experts meticulously assessed each

driving session, with multiple experts evaluating each situation. The re-

sult is the expert evaluations of each driving situation for all the driving

sessions. Output: Expert evaluations.

4. Quality assurance: The expert evaluations underwent a thorough re-

view process by an expert committee, which revised expert evaluations

that raised questions or doubts, culminating in the revised expert evalua-

tions. Based on the revised expert evaluations, an expert consensus was

computed.

Output: Expert consensus.
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5. Optimization: The assessment system was optimized based on the ex-

pert consensus.

Output: Optimized assessment system used in experiments

6. Experiments: The optimized assessment system was run on all driving

sessions to produce VDI assessments for all driving situations experienced

by the students.

Output: VDI assessments

7. Analysis: Finally, we computed the result metrics by comparing the VDI

assessments to the expert consensus.

Output: Results metrics

This methodical approach ensured a rigorous evaluation of the assessment

system, thereby enhancing the reliability of our findings.

5.2. Experts evaluation procedure

The driving sessions are evaluated by different experts in the field. This in-

cludes experienced driving instructors, traffic education researchers, and official

driving examiners. The driving sessions were presented to the experts in a web

platform for evaluation which is based on Rehm et al. (2021). Each driving

session encompasses a variety of situations, with our evaluation focusing specif-

ically on overtaking, intersections, and roundabout scenarios. We distinguish

between a ’scenario’, which is defined as a specific class of driving maneuvers,

and a ’situation’, which is an instance of these maneuvers occurring in real-time.

Every situation within these key areas is scrutinized through multiple evalua-

tion items, which remain consistent across each unique scenario. To provide an

example, an evaluation item might be whether a student has properly used their

turn signal before initiating a lane change. This evaluation takes into account

whether the signal was engaged at the appropriate time, discontinued suitably

after the lane change was completed, and correctly indicated the intended di-

rection. The evaluation items are evaluated as ’passed’ or ’failed’. The web

interface used for this process is showcased in Figure 8.
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Figure 8: Screenshot of the evaluation web frontend. Features include: 1. Navigation menu

for ease of access; 2. Camera stream showing the student’s face (blurred for privacy); 3. Live

replay stream of simulation visuals; 4. Controls for playing/pausing and navigating between

different situations; 5. Evaluation input form with checkboxes for marking mistakes, as well

as other options.

Each evaluation item within each situation was assessed by multiple experts.

Subsequently, we conducted a quality control review of all evaluations to identify

any potential errors. There are various reasons for such mistakes, and we have

listed a few of them here:

• Oversights / forgotten evaluation items: In the process of evaluating com-

plex driving scenarios, there may be instances where experts overlook or

forget certain evaluation items. This could be due to the multitasking

nature of evaluation, which involves experts needing to simultaneously

observe and assess multiple aspects of the student’s performance.

• Mistakes while using the evaluation tool: Errors can also arise from im-

proper use of the evaluation tool. For instance, an expert might inad-

vertently select an incorrect option or input erroneous data, leading to

imprecise evaluations.

• Misunderstanding of evaluation items: Misinterpretations can extend be-

yond differing opinions on specific situations. In some cases, experts may
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incorrectly attribute mistakes to evaluation items that are not entirely

relevant.

For quality control, we convened a committee consisting of one technical expert

and three experienced simulator driving instructors. This group collaboratively

discussed each potential erroneous evaluation case and made corrections. By

integrating the expert evaluations with the corrections from the committee, a

consensus was reached for every evaluation item across all driving situations.

The culmination of this process is the expert consensus dataset. We use this

dataset as a standard to compare the assessment system’s performance, as shown

in Tables Table 5, Table 6, and Table 7.

5.3. Single experts agreement with expert consensus dataset

The results presented in Table 2 compare the agreement of individual experts

with the consensus drawn from the expert consensus dataset. Each cell of the

table comprises two values: The first number signifies the True Positive Rate

(TPR), which represents the proportion of actual positive cases (i.e., driving

mistakes as per expert consensus) correctly identified as such by the respective

expert. The second number indicates the True Negative Rate (TNR), or the

proportion of actual negative cases (i.e., correct driving maneuvers as per expert

consensus) correctly identified as negatives by the respective expert.

A critical observation derived from the table is the relatively low TPR values

compared to the TNR across all experts and driving contexts. This pattern

suggests that experts might have overlooked a considerable number of error

instances during their assessments. The intricacies and subjective nature of

driving skills assessment can contribute to such oversights. Despite this, it’s

important to note that the experts generally align well with the consensus,

particularly in terms of TNR, highlighting the overall reliability of our expert

panel in identifying correct driving behaviors.

Our analysis further delved into how much experts agreed with each other

on the different evaluation items. The data indicates that agreement rates are

influenced by the balance of pass and fail instances, with lower consensus in
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more evenly split scenarios. Moreover, items such as mirror checks pose signifi-

cant challenges due to their subtle nature, suggesting the utility of eye-tracking

technology for more consistent assessments. Details about this evaluation can

be found in Appendix A.

We also analyzed the expert agreement in conjunction with the perceived

difficulty by the experts of driving maneuvers and discovered that there is no

substantial correlation between the two, suggesting that the nature of the eval-

uation items has a greater impact on consensus than their difficulty. Specific

statistical distributions and further details of this analysis are available in Ap-

pendix B.

Name Overtakes Town Driving City Driving

TPR / TNR TPR / TNR TPR / TNR

Expert 1 0.73 / 0.94 0.47 / 0.97 0.46 / 0.98

Expert 2 0.80 / 0.88 0.68 / 0.94 –

Expert 3 – – 0.57 / 0.94

Expert 4 0.58 / 0.95 0.63 / 0.95 –

Expert 5 0.66 / 0.82 0.44 / 0.98 –

Expert 6 0.60 / 0.93 0.35 / 0.97 –

Expert 7 0.90 / 0.91 0.78 / 0.91 –

Table 2: Single expert agreements with consensus from expert consensus dataset. First number

is TPR (rate of agreement that it is a mistake). Second number is TNR (rate of agreement

that it is no mistake)

5.4. Challenges for students

In the process of learning to drive, students face various challenges that often

manifest as mistakes during their practice sessions. This section delves into

the specific challenges students face in different driving scenarios, highlighting

the frequency of these errors and discussing potential causes. For a detailed

breakdown of these findings, please refer to Table 3.
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Here, we distinguish between driving mistakes and observation mistakes.

Observation mistakes encompass missed mirror checks, overlooked intersection

observations, and any other errors related to visual attention. Conversely, driv-

ing mistakes constitute all other types of errors.

The highest frequency of mistakes per situation was found during overtaking

maneuvers, with students committing an average of 2.4 driving mistakes and 3

observation mistakes per overtake. In contrast, in the complex city environment,

students averaged only one driving mistake and 1.4 observation mistakes per

intersection. Roundabouts also posed observational challenges for students, with

an average of 3.3 observation mistakes and 0.9 driving mistakes per roundabout.

The relatively high number of mistakes during overtakes could be attributed

to the fact that intersections and roundabouts receive more emphasis during

driver’s education due to their critical role in the driving examination. Over-

taking maneuvers, however, are generally not part of the driver’s exam require-

ments, leading to less practice in this area. Additionally, driving in the opposing

lane induces significant stress for students, which is reflected in the fact that 2

out of the 2.4 average driving mistakes occur while the student is in the opposing

lane.

Generally, the high occurrence of observation mistakes underscores the im-

portance of incorporating reliable eye-tracking technology into such an assess-

ment system. This would enhance the system’s capability to accurately identify

and address these types of errors.

The insights derived from this analysis underscore again the importance of

comprehensive training and the potential value of standardized and automatic

driving assessment.
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Mistakes

Lessons Driving Observation

Overtakes 2.4 3.0

City Driving 1.0 1.4

Town Driving (roundabouts) 0.9 3.3

Town Driving (intersections) 0.3 1.2

Table 3: Average driving and observation mistakes per situation according to the expert

consensus

5.5. Comparison of the expert consensus and the VDI assessments

The performance of the assessment system is compared to the evaluations

from the Expert consensus. It is important to note that at the time of this

study, a reliable eye-tracking system had not yet been implemented. Conse-

quently, evaluation items that require the assessment of visual attention, such

as intersection observation and mirror or blind spot checks, were not included

in the analysis. Some evaluation items did not have a single mistake according

to the evaluations in the expert consensus dataset. An example of that is the

correct lane choice. The town lesson does not have intersections with multiple

lanes from one road going into the intersection. So students cannot chose the

wrong lane. To keep the results concise and relevant, these evaluation items are

excluded, as it is not possible to calculate a true positive rate for these.

The properties of the dataset, in particular, an inherent imbalance between

the mistake and no-mistake classes, renders the most basic performance metric,

the accuracy, as not sufficient in our task of evaluating how close the assessment

system is to the expert consensus. The accuracy metric is defined as

Accuracy =
Sagreed

Sconsensus
(5)

where Sagreed is the number of situations in which the expert consensus agreed

with the evaluation of the assessment system while Sconsensus is the number of

situations with expert consensus.
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In cases where driving mistakes are very rare, high accuracy can be achieved

by just always classifying it as no mistake. This issue is described in more detail

in He & Garcia (2009). Therefore, we need to take into account all combinations

of the assessment classification outcome vs expert consensus. We define a true

positive (TP) as a case where the majority of the human evaluators and the

assessment system evaluated an evaluation item in a specific situation as a

driving mistake. False positives (FP), false negatives (FN) and true negatives

(TN) are defined accordingly as depicted in Table 4

Assessment System

Mistake No mistake

Human Evaluator

Consensus

Mistake TP FN

No mistake FP TN

Table 4: Definition of true positives (TP), false positives (FP), false negatives (FN) and true

negatives (TN) for all the combinations where the majority of the human evaluators and / or

the assessment system evaluated an evaluation item in a specific situation as a driving mistake

or not.

Our research aims to evaluate the accuracy of our system in driving mistake

detection while ensuring it does not erroneously identify non-mistakes as failed in

the context of student driving. False-positive alerts could lead to unwarranted

mistrust in the system due to students receiving incorrect negative feedback.

Furthermore, such misleading alerts carry the risk of fostering incorrect learning.

This is why we look at the true positive rate and the true negative rate and

not at recall and precision as they disregard the true negatives and focus only

on the positive cases (Powers (2011)). They are defined as follows.

True positive rate (sensitivity)

TPR =
TP

TP+ FN
(6)
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True negative rate (specificity)

TNR =
TN

TN+ FP
(7)

A disagreement between the assessment system and the expert consensus

does not automatically mean that the assessment system made a mistake. How-

ever, if the sensitivity and specificity are low and the expert agreement score is

high, it would be a strong indication that the assessment system performance

is poor.

An overview of the results for the city driving lesson is presented in Table 5

and its corresponding bar plot in Figure 9. The results for the town driving

lesson are detailed in Table 6 and illustrated in the bar plot Figure 10. Results

of the overtakes lesson can be observed in Table 7 and the associated bar plot

Figure 11.

Apart from accuracy, TPR, and TNR, the tables also include the number of

instances considered as failed (driving mistake) and passed (no driving mistake)

for each evaluation item. The total number of instances for each evaluation item

may vary slightly because instances lacking expert consensus – where experts

are evenly split on whether it is a mistake – are excluded.

By optimizing the assessment system using the consensus data, we strived

to align its output closely with the consensus of expert evaluations. Generally,

as can be seen in Table 5, Table 6 and Table 7, the true positive rates tend to

be significantly lower than the true negative rates. At first glance, this might

suggest that the assessment system is primarily optimized for overall accuracy.

As posited by He & Garcia (2009), classifiers optimized for overall accuracy are

likely to yield high accuracy for the majority class while underperforming for

the minority class.

Though we cannot completely dismiss potential bias, we contend that the

primary reason for this phenomenon is that instances without mistakes are

generally less ambiguous and potentially also easier to assess than those with

mistakes. Given the absence of a definitive ground truth for distinguishing

between mistakes and non-mistakes, we rely on expert opinions. While there
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are clearly identifiable mistake cases, others fall into a grey area, regarded as

mistakes by some experts and dismissed by others. If the proportion of clear

non-mistake cases greatly surpasses that of ambiguous or obvious mistake cases,

the former will be less ambiguous and easier to assess on average.

However, the high true negative rates show that the number of false positives

is relatively low. That means our goal to have a very low number of false alarms

is achieved.

Let us start diving into a few specific results in more detail. Evaluation items

such as ”waited too long before entering” an intersection or roundabout exhibit

rather low true positive rates, as evidenced by the city driving lesson (a rate of

0.78, as per Table 5) and town driving lesson (a rate of 0.0, see Table 6). This

discrepancy can be attributed to the inherent subjectivity involved in evaluating

these instances – there is no definitive rule to determine when a driver has waited

excessively before entering a junction. As a consequence, there is a prevalence

of ambiguous cases compared to clearly identifiable mistakes, which further

elucidates why none of the three mistake cases, despite achieving consensus

among the experts, were identified as mistakes by the assessment system. The

assessment system follows a clear rule that if a student waits for more than 5

seconds when a gap in traffic is considered sufficiently large to proceed, it is

classified as a case of the student waiting too long before entering.

Moving to a different context, the evaluation of turn signaling, particularly

when students change lanes to the right, has shown some interesting patterns.

This aspect assesses whether drivers appropriately and timely activate their

turn signals before executing the lane change back to the right at the end of an

overtake. Our empirical observations indicate a noticeable frequency of student

drivers initiating their right turn signal relatively late prior to transitioning

back to the right lane. One potential explanation for this pattern could be

the driver’s heightened concentration on the ongoing events in the oncoming

lane while overtaking, leading to the activation of the turn signal just prior to

the actual lane change. While human evaluators might demonstrate flexibility

towards this behavior due to the context, the system, conversely, does not take

41



into account the specific situation necessitating the turn signal, thus enforcing

uniform standards.

Next, we shift our attention to the evaluation of right of way situations

i.e., whether there was a yielding violation or not. Here, the assessment system

demonstrated very good concurrence with the expert consensus. Among the 474

instances examined, a discrepancy was found in just 6 cases. The RightOfWay

agent, tasked with this particular assessment, was not only the most complex

to construct but also subjected to the most exhaustive testing. As a result, its

proficiency on the expert consensus dataset is quite high.

A notable limitation of the current evaluation system pertains to speed as-

sessment. As it stands, under-speeding is only evaluated on rural roads and high-

ways. Determining if a driver exceeds the speed limit is a relatively straightfor-

ward assessment. However, identifying instances where learner drivers maintain

speeds excessively below the norm is crucial, given its potential impact on traf-

fic flow. The ideal speed is highly contingent on context, influenced by factors

such as road width and curvature, obstructions due to buildings or parked cars,

and unpredictable pedestrian movements, particularly those involving children.

Moreover, this context-dependent complexity is not unique to speed assessment.

Many other evaluation items in the system share this characteristic. Therefore,

addressing this aspect presents a significant challenge in the development of

a robust rule-based evaluation system for what could superficially be seen as

straightforward items to assess.
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Acc. TPR TNR #pass #fail ξ ξf

Intersection entering:

Turn signaling 0.91 0.86 0.93 113 36 0.92 0.70

Lane positioning 0.92 0.86 0.94 111 36 0.92 0.72

Lane choice 1.00 1.00 1.00 146 4 0.96 0.68

Smooth braking 0.80 0.95 0.78 132 20 0.93 0.63

Stop accuracy 0.96 0.87 0.99 106 31 0.92 0.61

Right of way 1.00 1.00 1.00 143 9 0.98 0.50

Waited too long 0.96 0.78 0.97 142 9 0.98 0.70

Intersection passing:

Speed intersection 0.95 0.50 0.98 141 8 0.94 0.57

Total 0.94 0.86 0.95 1034 153 0.94 0.64

Table 5: Results of the city driving lesson. The table presents the performance metrics of

all driving sessions, calculated based on the expert consensus dataset, with the exception of ’ξ’

which is derived from the expert evaluations prior to the quality assurance step. ’Acc.’ refers

to Accuracy, ’TPR’ to True Positive Rate (indicating correctly identified driving mistakes),

and ’TNR’ to True Negative Rate (indicating correctly identified non-mistakes). ’#pass’ and

’#fail’ represent the number of situations marked as ’passed’ (no driving mistake) and ’failed’

(presence of a driving mistake) respectively according to the expert consensus. ’ξ’ denotes the

agreement score among experts and ξf denotes the agreement score for all instances which

have at least one fail vote.
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Figure 9: Bar plot of the results of the city driving lesson. The chart shows the True

Positive Rate (TPR), indicating correctly identified driving mistakes, and the True Negative

Rate (TNR), indicating correctly identified non-mistakes.

44



Acc. TPR TNR #pass #fail ξ ξf

Roundabout entering:

Lane positioning 0.85 0.83 0.85 72 12 0.91 0.71

Lane choice 0.98 0.67 0.99 81 3 0.93 0.71

Smooth braking 0.82 1.00 0.79 70 14 0.93 0.68

Right of way 0.96 0.67 0.97 80 3 0.97 0.67

Waited too long 0.96 0.00 1.00 80 3 0.95 0.69

Inside roundabout:

Lane positioning 0.92 0.67 0.95 75 9 0.90 0.72

Lane changes 1.00 1.00 1.00 70 14 0.94 0.72

Speed 0.94 0.50 0.96 79 4 0.94 0.69

Right of way 0.98 1.00 0.97 80 3 0.97 0.74

Roundabout exiting:

Turn signaling 0.95 0.85 0.97 70 13 0.88 0.72

Intersection entering:

Turn signaling 0.94 1.00 0.94 148 9 0.98 0.73

Lane positioning 0.95 0.83 0.96 138 18 0.95 0.71

Right of way 0.99 1.00 0.99 148 8 0.97 0.68

Intersection passing:

Speed 0.97 0.80 0.98 150 5 0.92 0.66

Total 0.95 0.85 0.96 1341 118 0.95 0.70

Table 6: Results of the town driving lesson. The table presents the performance metrics of

all driving sessions, calculated based on the expert consensus dataset, with the exception of ’ξ’

which is derived from the expert evaluations prior to the quality assurance step. ’Acc.’ refers

to Accuracy, ’TPR’ to True Positive Rate (indicating correctly identified driving mistakes),

and ’TNR’ to True Negative Rate (indicating correctly identified non-mistakes). ’#pass’ and

’#fail’ represent the number of situations marked as ’passed’ (no driving mistake) and ’failed’

(presence of a driving mistake) respectively according to the expert consensus. ’ξ’ denotes

the agreement score among experts and ξf denotes the agreement score for all instance which

have at least one fail vote.
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Acc. TPR TNR #pass #fail ξ ξf

Initiation of overtake (lane change left):

Turn signaling 0.99 0.91 1.00 58 11 0.87 0.71

Distance vehicle ahead 0.95 0.92 0.95 61 12 0.89 0.74

Lane separation 0.97 0.00 1.00 72 2 0.99 0.77

Execution of overtake:

Visibility 0.97 0.80 0.99 68 5 0.92 0.71

Head on collision risk 0.95 0.83 0.97 61 12 0.87 0.73

Speed 0.85 0.86 0.84 44 28 0.87 0.80

Closeness to intersection 0.97 1.00 0.96 57 12 0.90 0.73

Lateral distance 0.96 0.96 0.96 46 26 0.89 0.75

Completion of overtake (lane change right):

Turn signaling 0.96 0.94 0.97 34 35 0.86 0.77

Distance vehicle behind 0.85 0.89 0.81 31 36 0.82 0.77

Total 0.88 0.90 0.95 532 179 0.90 0.75

Table 7: Results of the overtakes lesson. The table presents the performance metrics of all

driving sessions, calculated based on the expert consensus dataset, with the exception of ’ξ’

which is derived from the expert evaluations prior to the quality assurance step. ’Acc.’ refers

to Accuracy, ’TPR’ to True Positive Rate (indicating correctly identified driving mistakes),

and ’TNR’ to True Negative Rate (indicating correctly identified non-mistakes). ’#pass’ and

’#fail’ represent the number of situations marked as ’passed’ (no driving mistake) and ’failed’

(presence of a driving mistake) respectively according to the expert consensus. ’ξ’ denotes

the agreement score among experts and ξf denotes the agreement score for all instance which

have at least one fail vote.

6. Conclusion

This research aimed to develop a system capable of assessing traffic situ-

ations with accuracy comparable to human experts. Utilizing a subsumption

architecture within a multi-agent system, our detailed approach employed a
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Figure 10: Bar plot of the results of the town driving lesson. The chart shows the True

Positive Rate (TPR), indicating correctly identified driving mistakes, and the True Negative

Rate (TNR), indicating correctly identified non-mistakes.
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Figure 11: Bar plot of the results of the overtakes lesson. The chart shows the True

Positive Rate (TPR), indicating correctly identified driving mistakes, and the True Negative

Rate (TNR), indicating correctly identified non-mistakes.
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knowledge graph for continuous situational awareness and precise driving be-

havior assessments.

Our validation process involved 477 driving scenarios, evaluated by 7 experts

and undertaken by 21 students across three lessons. The system demonstrated

a notable true positive rate of at least 0.85 and a true negative rate of at least

0.95, depending on the scenario. The results show a notable alignment with the

assessments of professional driving educators, reinforcing our system’s ability to

accurately identify both appropriate driving actions and mistakes. These met-

rics answer our research question affirmatively for intersections, roundabouts,

and overtaking maneuvers which are arguably among the most difficult scenarios

in the driver’s education. We are thereby contributing to closing the research

gap in detailed evaluations and empirical validation of simulator training in

driving education.

However, it’s important to acknowledge inherent limitations. As with any

rule-based system, our platform encounters challenges associated with rule com-

plexity. This includes the demanding process of developing and managing a

comprehensive rule set that accurately reflects the nuanced situations encoun-

tered in driving assessments. The intricacy of these rules increases with the

contextual depth required for precise situation evaluation, making the system’s

development and maintenance both time-consuming and costly. Despite these

challenges, we maintain that our approach, specifically in the context of AI-

driven driving instruction, is more efficient as compared to machine learning

alternatives, especially in terms of the data generation required for achieving

similar levels of proficiency.

Looking forward, we plan to enhance our system with advanced eye-tracking

technologies, using the latest virtual and mixed-reality headsets. This integra-

tion, along with refining our feedback mechanisms through the established as-

sessment framework, will allow for more personalized and effective driver train-

ing. Additionally, by tracking student progress over time, we aim to develop

tailored learning materials targeting individual improvement areas. These future

developments are based on the strong foundation laid by our current findings,
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underscoring our commitment to promoting safer driving practices through ar-

tificial intelligence. Ultimately, this research illuminates the vast potential of

AI in revolutionizing traffic education and related fields.
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Appendix A. Agreement on evaluations between experts

In this section, we examine the agreement between experts in their assess-

ments of driving skills. Our analysis leverages the individual expert evaluation

dataset (subsection 5.1), which encompasses the unique evaluations given by

each expert.

One widely recognized measure of inter-rater reliability, Krippendorff’s alpha

(Hayes & Krippendorff (2007)), exhibits certain limitations within the context of

our project. Specifically, our evaluation includes items that exhibit an extremely

small number of failed cases, resulting in a highly skewed distribution. This im-

balance in category representation significantly complicates the interpretation

of Krippendorff’s alpha. In particular, when a category is considerably rare,

any disagreement pertaining to that category can disproportionately deflate the

value of the alpha. To better accommodate these challenges, we have developed

a custom agreement score that is more congruent with our dataset character-

istics and the evaluation nuances, thus providing a more accurate representation

of the expert agreement.

Firstly, all assessment values are numerically represented as follows: {’Pass’:

1, ’Fail’: 0}. Unassigned values are denoted as NaN. For each item instance, a

consensus value is computed as the median of all expert evaluations, discarding

NaNs. Subsequently, an individual agreement score sι,τ for each item instance

and for each expert is computed using the formula:

sι,τ = 1− |cι − vι,τ | (A.1)

where cι denotes the consensus value and vι,τ represents the value assigned by

the expert. The individual agreement score ranges from 0 to 1, with 0 implying

total disagreement with the consensus and 1 indicating complete agreement.

The agreement scores sι,τ are then grouped by item, and such sets contain

expert agreement scores for all instances of a particular item.

Let’s denote such sets Ωitem. Finally, the agreement score ξitem for each item
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is computed as the average of the distinct agreement scores:

ξitem =

∑
sι,τ∈Ωitem

sι,τ

|Ωitem|
(A.2)

This score offers a measure of grading difficulty for experts across different

driving evaluation items, reflecting the extent of consensus among evaluations

(see Table 5, Table 6 and Table 7).

As indicated by the tables, there’s a strong correlation between agreement

rates and the ratio of ’passed’ to ’failed’ cases. The lowest agreement scores

are apparent for the two evaluation items in the ’Completion of Overtake’ part

(refer to Table 7), where the counts of ’failed’ instances are roughly equivalent

to those of ’passed’ cases.

Conventionally, we can categorize situation evaluations into three groups:

clear mistakes, clear non-mistakes, and uncertain cases. High agreement rates

are expected among the experts for the first two groups and low for the latter. It

seems that, for numerous evaluation items, the number of clear non-mistake in-

stances is considerably higher than the combined count of the other two groups.

If this observation holds true, the agreement rate calculated only for in-

stances that received at least one ’failed’ vote (represented as ξf in the tables)

should be significantly lower. In line with this conjecture, ξf values in the tables

Table 5, Table 6, and Table 7 are indeed substantially lower than their corre-

sponding ξ values for virtually all evaluation items, corroborating our initial

premise.

This metric reveals (Figure A.12) the biggest difficulty in the assessment of

driver performance for the experts: the difficulty in uniformly assessing a driver’s

adherence to safety protocols such as mirror checks and blind spot observations

(we do not have them listed in the results tables as we do not have results

on them for the assessment system). These evaluation items consistently rank

among the lowest in terms of agreement score, falling below 81%. Figure A.12

also shows that the evaluation items with low agreement scores tend to cluster

vertically, which suggests that the agreement score depends more on the nature
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of the maneuver rather than on a specific driving session.

With respect to mirror checks and blind spot observations, the challenge of

assessment is further compounded by the subtlety of the actions involved and the

fleeting duration of such observations, making it inherently difficult for human

evaluators to accurately appraise. The use of a highly accurate eye-tracking

system will offer great potential for the automation of such tasks.
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Figure A.12: Expert agreement score in the Town Driving lesson.

The horizontal axis (Nitem) corresponds to all evaluation items relevant to the Town Driving

lesson. The items are numbered for brevity, the mapping can be seen in the supplementary

material.

The vertical axis corresponds to distinct driving sessions (each with a different driver).

Examples of evaluation items with low agreement score across the driving sessions are ”Observ-

ing a roundabout upon approach” (Nitem=0), ”Rearview mirror: approaching a roundabout”

(Nitem=1), ”Side mirror: approaching a roundabout” (Nitem=3), ”Blind spot: approaching a

roundabout” (Nitem=4), ”Side mirror inside a roundabout” (Nitem=15), ”Blind spot: inside

a roundabout” (Nitem=16) and ”Rearview mirror: approaching an intersection” (Nitem=23).

Appendix B. Expert agreement and evaluation instance difficulty

One interesting point to explore is whether the difficulty of a maneuver as

perceived by the experts affects the experts’ agreement score distribution. An

evaluation instance refers to a specific application of an evaluation item, used
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to assess a learner’s performance in a distinct situation during a driving session.

An intuitive hypothesis would be that the more difficult an evaluation instance

looks to the experts, the harder it is for them to agree on how to assess it. It

is also reasonable to expect that evaluation instances, where there is no clear

agreement on the difficulty, will also have a lower overall agreement score.

In addition to the initial hypothesis, examining this relationship could help

identify certain blind spots or biases in experts’ assessment methods. If experts

consistently disagree on scores for particular maneuvers perceived as difficult,

it may indicate that the criteria they’re using to evaluate those maneuvers are

ambiguous or subject to individual interpretation and will benefit the most from

a standardized AI-based assessment system.

Furthermore, this analysis could help improve the training and evaluation

processes. If certain maneuvers consistently present difficulty for both students

and evaluators, these maneuvers might require a more thorough teaching ap-

proach or clearer assessment guidelines. These improvements could lead to a

better understanding of the learning curve.

In this analysis, we use the Python SciPy (Jones et al. (2001–)) implementa-

tion of the A-D k-sample test to distinguish between distributions of the expert

agreement score associated with different difficulty consensus classes.

The Anderson-Darling (A-D) k-sample test is a non-parametric statistical

methodology designed to examine whether multiple independent samples are

drawn from the same distribution. An extension of the traditional Anderson-

Darling test, this variant provides an edge in identifying deviations in distribu-

tions defined by a finite number of data points (Scholz & Stephens (1987)).

Kullback-Leibler (K-L) divergence, or relative entropy, is a measure of the

dissimilarity between two probability distributions (Csiszar (1975)). However,

unlike the A-D k-sample test, the K-L divergence is not a statistical test and

is not specifically designed to handle finite, empirical data sets. It operates

asymmetrically, and its output can become infinite if a value with non-zero

probability in the expected distribution has zero probability in the observed

distribution. Thus, K-L divergence may not be optimal for comparing empirical
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distributions derived from finite samples.

In contrast, the Kolmogorov-Smirnov (K-S) test is another non-parametric

tool used for assessing whether two samples are drawn from the same distri-

bution (Feller (1948)). Despite being a powerful tool for analyzing arbitrary

distributions, the K-S test is less sensitive to deviations in the tails of the dis-

tributions, which may lead to overlooked discrepancies in these critical regions.

The interpretation of the A-D k-sample test statistics value is not straightfor-

ward. However, these can be mapped onto the p-values which can be interpreted

as the probability that all samples have been drawn from the same distribution

by chance.

It is important to note that the number of evaluation instances N (which

is the number of situations multiplied by the number of evaluation items per

situation) deemed to be of Expert difficulty is relatively low (NCD = 90, NTD =

36, NO = 44) in all three lessons (CD = city driving lesson, TD = town driving

lesson and O = overtakes lesson), and there exists a large imbalance between

the rest of the classes. In the city and town driving lessons, moderately difficult

(NCD = 1980, NTD = 3782) evaluation instances vastly outnumber Beginner

(NCD = 83, NTD = 258), Mid-Moderate (NCD = 240, NTD = 574), and Mid-

Expert levels (NCD = 540, NTD = 108) evaluation instances. In contrast, in the

overtakes lesson, the Beginner-level evaluation instances (NO = 1133) dominate

the Mid-Moderate (NO = 316) and Moderate (NO = 509). The Mid-Expert

level has no samples in this lesson.

The town driving lesson (Table B.8) has the most distinguishable difficulty

classes with several distribution pairs achieving p=value below 0.05. The city

driving (Table B.9) and overtakes (Table B.10) lessons have fewer distinguish-

able classes. Even in the case of apparent statistical significance of the difference

between the distributions, the accuracy of the test is expected to be lower due

to the large imbalance between the number of samples. Therefore, we conclude

that there is no good basis to claim that the expert agreement score has a large

correlation with the perceived difficulty, and instead depends mostly on the

nature of the evaluation item, as suggested in Figure A.12.
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A-D k-sample test statistic p-value

Beginner/Mid-Moderate 2.45 0.03

Beginner/Moderate 3.50 0.01

Beginner/Mid-Expert 6.30 < 0.01

Beginner/Expert 2.89 0.02

Mid-Moderate/Moderate 0.61 0.19

Mid-Moderate/Mid-Expert 4.19 0.01

Mid-Moderate/Expert 1.70 0.06

Moderate/Mid-Expert 2.75 0.02

Moderate/Expert 1.01 0.13

Mid-Expert/Expert -1.04 Large

Table B.8: Town driving lesson: difference between agreement score distributions associated

with the difficulty consensus: Beginner (N = 258), Mid-Moderate (N = 574), Moderate

(N = 3782), Mid-Expert (N = 108), Expert (N = 36).

The calculation of the p-value is capped at 0.25, so anything above this value can be interpreted

as the absence of meaningful difference. We denote such values as ”Large”.
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A-D k-sample test statistic p-value

Beginner-Mid-Moderate 1.09 0.12

Beginner-Moderate 1.26 0.10

Beginner-Mid-Expert 3.49 0.01

Beginner-Expert -0.97 Large

Mid-Moderate-Moderate -1.30 Large

Mid-Moderate-Mid-Expert -0.18 Large

Mid-Moderate-Expert -0.41 Large

Moderate-Mid-Expert 2.62 0.03

Moderate-Expert -0.35 Large

Mid-Expert-Expert 1.44 0.08

Table B.9: City driving lesson: the difference between agreement score distributions associated

with the difficulty consensus: Beginner (N = 83), Mid-Moderate (N = 240), Moderate (N =

1980), Mid-Expert (N = 540), Expert (N = 90).

The calculation of the p-value is capped at 0.25, so anything above this value can be interpreted

as the absence of meaningful difference. We denote such values as ”Large”.

A-D k-sample test statistic p-value

Beginner-Mid-Moderate 2.58 0.03

Beginner-Moderate 0.92 0.14

Beginner-Expert 0.28 Large

Mid-Moderate-Moderate -0.25 Large

Mid-Moderate-Expert -0.92 Large

Moderate-Expert 0.13 Large

Table B.10: Overtakes lesson: the difference between agreement score distributions associated

with the difficulty consensus: Beginner (N = 1133), Mid-Moderate (N = 316), Moderate

(N = 509), Mid-Expert (N = 0), Expert (N = 44).

The calculation of the p-value is capped at 0.25, so anything above this value can be interpreted

as the absence of meaningful difference. We denote such values as ”Large”.
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