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LATTICE THEORY OF TORSION CLASSES: BEYOND

τ -TILTING THEORY

LAURENT DEMONET, OSAMU IYAMA, NATHAN READING, IDUN REITEN,
AND HUGH THOMAS

Abstract. The aim of this paper is to establish a lattice theoretical frame-
work to study the partially ordered set torsA of torsion classes over a finite-
dimensional algebra A. We show that torsA is a complete lattice which enjoys
very strong properties, as bialgebraicity and complete semidistributivity. Thus
its Hasse quiver carries the important part of its structure, and we introduce
the brick labelling of its Hasse quiver and use it to study lattice congruences
of torsA. In particular, we give a representation-theoretical interpretation of
the so-called forcing order, and we prove that torsA is completely congruence
uniform. When I is a two-sided ideal of A, tors(A/I) is a lattice quotient
of torsA which is called an algebraic quotient, and the corresponding lattice
congruence is called an algebraic congruence. The second part of this pa-
per consists in studying algebraic congruences. We characterize the arrows of
the Hasse quiver of torsA that are contracted by an algebraic congruence in

terms of the brick labelling. In the third part, we study in detail the case
of preprojective algebras Π, for which torsΠ is the Weyl group endowed with
the weak order. In particular, we give a new, more representation theoretical
proof of the isomorphism between torskQ and the Cambrian lattice when Q
is a Dynkin quiver. We also prove that, in type A, the algebraic quotients of
torsΠ are exactly its Hasse-regular lattice quotients.
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1. Introduction

The main object of study in this paper is the collection of torsion classes of
a finite-dimensional algebra. Torsion classes are closely related to the study of
derived categories and their t-structures. The recently developed τ -tilting theory
[AIR,DIJ], itself partly inspired by the cluster algebras of Fomin and Zelevinsky
[FZ], also provides insight into the structure of torsion classes, but is generally forced
to restrict attention to torsion classes which are functorially finite. By contrast, in
this paper, we develop methods to understand the whole lattice of torsion classes.
These methods also shed new light on certain lattices built from Weyl groups, such
as the weak order and Cambrian lattices.

1.1. Algebraic lattice congruences. Let A be a finite-dimensional algebra over
an arbitrary field k and let modA be the category of finitely generated left A-
modules. The main object of this paper is the complete lattice torsA of torsion
classes of modA, ordered by inclusion. Recall that a torsion class T ⊆ modA is
a full subcategory that is closed under extensions and factors. Recall also that a
complete lattice L is a partially ordered set such that, for any subset S, there is a
unique largest element of L smaller than all elements of S, the meet of S, written∧
S, and a unique smallest element of L larger than all elements of S, the join of

S, written
∨
S.

The starting point of this paper is the observation that each factor algebra of A
determines a complete lattice congruence of torsA (an equivalence relation compat-
ible with the complete lattice structure). We describe the correspondence in terms
of the lattices idealA and Conc(torsA). The lattice idealA is the set of two-sided
ideals of A ordered by inclusion. For a lattice L, the lattice Conc L is the set of
complete lattice congruences of L ordered by refinement.

Theorem 1.1 (Theorem 5.12). Let A be a finite-dimensional k-algebra.

(a) For any I ∈ idealA, the map T �→ T ∩mod(A/I) is a surjective morphism
of complete lattices from torsA to tors(A/I).

Thus let ΘI be the complete lattice congruence on torsA setting T ≡ΘI
U if and

only if T ∩mod(A/I) = U ∩mod(A/I).

(b) The map ηA : idealA → Conc(torsA) sending I to ΘI is a morphism of
complete join-semilattices: ηA(

∑
I∈I I) =

∨
I∈I ηA(I) for any subset I ⊆

idealA.

Theorem 1.1((b)) implies in particular that the map ηA : I �→ ΘI is order-
preserving. The map ηA is typically not surjective. We define an algebraic con-
gruence of torsA to be a congruence of the form ΘI for some I ∈ idealA. We
write AlgConA for the set of algebraic congruences of torsA (i.e., the image of
ηA), partially ordered by refinement. Similarly, an algebraic quotient of torsA is
the quotient of torsA modulo an algebraic congruence, so that B �→ torsB is a
surjective map from factor algebras of A to algebraic quotients of torsA. Theorem
1.1(b) implies that AlgConA is a complete lattice.

Recall that the Hasse quiver HasseP of a partially ordered set P has vertex set
P and arrows x → y whenever x > y and there is no z such that x > z > y.



544 DEMONET, IYAMA, READING, REITEN, AND THOMAS

F
i
g
u
r
e
1
.
H
a
ss
e
q
u
iv
er
s
of

th
e
la
tt
ic
es

to
rs
Λ

an
d
to
rs
Λ
′



LATTICES OF TORSION CLASSES 545

Example 1.2. Consider the algebras

Λ := k

⎛
⎝ 1

α �� 2
β

��
3

β∗
��

⎞
⎠/(βα, ββ∗, β∗β) and Λ′ := Λ/(β∗).

We depict Hasse(torsΛ) and Hasse(torsΛ′) in Figure 1. It turns out that, in
this case, each torsion class is of the form FacT for some canonical module T , as
explained in Section 1.3, so we represent FacT by the composition series of T . In
accordance with Theorem 1.1, torsΛ′ is a lattice quotient of torsΛ; the quotient
map identifies torsion classes of Λ connected by double arrows.

1.2. Hasse quiver, brick labelling and forcing order. We start our investi-
gation by giving elementary lattice theoretical properties of torsA. A complete
lattice L is called weakly atomic if, whenever x < y in L, Hasse[x, y] has at least
one arrow. We recall in Section 2.2 the definitions of complete semidistributivity
and bialgebraicity. We prove the following result.

Theorem 1.3 (Theorem 3.1). Let A be a finite-dimensional algebra. The lat-
tice torsA is bialgebraic, and therefore weakly atomic. Moreover, it is completely
semidistributive.

Note that the properties of torsA that are given in Theorem 1.3 are rare for
complete lattices. They can be seen as a kind of discreteness of torsA, even though
it is usually infinite, and even uncountable.

We now introduce a representation theoretical counterpart to the arrows of
Hasse(torsA). Recall that S ∈ modA is called a brick if any non-zero endomor-
phism of S is invertible, i.e. if EndA(S) is a division ring. It turns out that for
each arrow q : T → U of Hasse(torsA), there is a unique brick Sq ∈ T satisfying
HomA(U, Sq) = 0 for any U ∈ U (see Theorem 3.3). In order to relate lattice theory
to representation theory, we label q by Sq. Labels are written on arrows of Figure 1.
Notice that a brick usually labels more than one arrow.

For a complete lattice L, recall that x ∈ L is completely join-irreducible if
it is non-zero and cannot be written non-trivially as the join of other elements.
Equivalently, there is a unique arrow pointing from x in HasseL. A first lattice-
theoretical interpretation of labels is that they naturally parametrize completely
join-irreducible torsion classes.

Theorem 1.4 (Theorem 3.3(c)). There is a bijection from completely join-irredu-
cible torsion classes T to bricks of A mapping T to the label of the unique arrow
pointing from T . There is a dual bijection from completely meet-irreducible torsion
classes to isomorphism classes of bricks of modA.

Theorem 1.4 generalizes a result of [DIJ] about functorially finite torsion classes.
It has been proven independently in [BCZ]. Consider a complete lattice L. A sur-
jective complete lattice morphism L � L′ determines a complete lattice congruence
Θ on L (with congruence classes given by pre-images of elements of L′). Given an
arrow q in HasseL, we say that Θ contracts q if the head and tail of q are congru-
ent modulo Θ. If L is finite, a lattice congruence on L is completely determined
by the set of arrows of HasseL it contracts. For infinite L, this is not generally
true. However, consider the complete meet-sublattice Conca L ⊆ Conc L consist-
ing of arrow-determined complete congruences, i.e. Θ ∈ Conc L such that L/Θ
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is weakly atomic (see Definition 2.5 and Proposition 2.6). An arrow-determined
complete congruence is specified (among all such congruences) by the set of arrows
it contracts.

For two arrows q and q′ of HasseL, we say that q forces q′ and write q � q′ if
any lattice congruence contracting q also contracts q′. Clearly, � is a preorder (a
reflexive, transitive not-necessarily-antisymmetric relation) on Hasse1(L). We call
� the forcing preorder, and the corresponding equivalence relation is called forcing
equivalence. If L is completely semidistributive and bialgebraic, e.g. L = torsA,
then, for a subset S ⊆ Hasse1(L), there is an arrow-determined complete congruence
contracting exactly S if and only if S is closed under forcing (Theorem 2.12).

There is a natural map from the set of completely join-irreducible elements of
L to the forcing equivalence classes, mapping x to the forcing equivalence class of
the arrow pointing from x. Dually, there is a natural map from the completely
meet-irreducible elements of L to the forcing equivalence classes. An important
case for lattice theory occurs when these maps are actually bijective, in which case
L is called completely congruence uniform (congruence uniform if L is finite). A
main theorem of this paper states that torsA is completely congruence uniform:

Theorem 1.5 (Theorem 3.11). Let A be a finite-dimensional algebra.

(a) Two arrows of Hasse(torsA) are forcing equivalent if and only if they are
labelled by isomorphic bricks. Hence there is a bijection between forcing
equivalence classes of arrows of Hasse(torsA) and isomorphism classes of
bricks.

(b) The lattice torsA is completely congruence uniform.

In particular, by Theorem 1.5(a), the forcing preorder induces an order on the
set brickA of bricks that we also denote by � and call the forcing order.

The labelling of Hasse(torsA) by bricks sheds additional light on Theorem 1.1.
Given I ∈ idealA, recall from Theorem 1.1 that ΘI is the complete lattice congru-
ence on torsA corresponding to torsA � tors(A/I). As tors(A/I) is weakly atomic,
ΘI is arrow-determined, so we can characterize ΘI by the set of arrows it contracts.
They are specified in the following theorem.

Theorem 1.6 (Theorem 5.15). Let A be a finite-dimensional k-algebra and I ∈
idealA. An arrow q of Hasse(torsA) is not contracted by ΘI if and only if Sq is
annihilated by I, that is Sq ∈ mod(A/I). Moreover, the labelling of arrows that are
not contracted by ΘI is the same in Hasse(torsA) and Hasse(tors(A/I)).

More generally, if U ⊆ T are in torsA, then T ≡ΘI
U if and only if there is no

arrow of Hasse[U , T ] whose label is in mod(A/I).

Example 1.7. Theorem 1.6 is illustrated in Figure 1 for algebras of Example 1.2.
Indeed, the bricks of modΛ that are not annihilated by I = (β∗) are 3

2
and 1 3

2
.

Given a brick S of A, let annS be the annihilator {a ∈ A | aS = 0} which is a
two-sided ideal of A. As a corollary of Theorem 1.6, we get

Corollary 1.8 (Corollary 5.20). Consider a finite-dimensional k-algebra A and
write I0 for

⋂
S∈brickA annS. Then torsA and tors(A/I0) are canonically isomor-

phic. Moreover, I0 is the biggest ideal of A with this property.

1.3. Functorially finite torsion classes and τ -tilting theory. An important
tool to study torsA consists of basic support τ -tilting A-modules introduced by
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Adachi–Iyama–Reiten [AIR]. A module T ∈ modA is τ -rigid if HomA(T, τT ) = 0
where τ is the Auslander-Reiten translation. It is called τ -tilting if it is τ -rigid
and has n non-isomorphic indecomposable summands where n is the number of
simple A-modules; in fact, this is equivalent to the natural maximality condition
for τ -rigid modules. Finally, we say that T is support τ -tilting if it is a τ -tilting
(A/(e))-module for some idempotent e ∈ A.

The set f-torsA of functorially finite torsion classes of A is a subposet of torsA.
It is proven in [AIR] that there is a bijection from the set sτ -tiltA of isomorphism
classes of basic support τ -tilting A-modules to f-torsA. The bijection sends T ∈
sτ -tiltA to the category FacT consisting of modules obtained as quotients of T � for
any � ∈ Z≥0. It endows sτ -tiltA with the structure of a partially ordered set.

By [DIJ, Theorem 1.3], Hasse(sτ -tiltA) ∼= Hasse(f-torsA) is a full subquiver
of Hasse(torsA), and, by [AIR], arrows of Hasse(sτ -tiltA) are of the form T ⊕
X → T ⊕X∗ where X is indecomposable, X∗ is indecomposable or zero and there

is an exact sequence X
u−→ T ′ → X∗ → 0 where u is a left minimal (addT )-

approximation. The process of moving forwards or backwards along an arrow of
Hasse(sτ -tiltA) is called a mutation. For such an arrow T ⊕X → T ⊕X∗, the label
of q : Fac(T ⊕X) → Fac(T ⊕X∗) is

Sq
∼=

X∑
f∈radA(T⊕X,X) Im f

(see Proposition 4.9).
Recall that by [AIR, Theorem 2.7] and [DIJ, Theorem 1.2], # torsA < ∞ if and

only if f-torsA = torsA if and only if # f-torsA = # sτ -tiltA < ∞. In this case, A
is called τ -tilting finite. Hence, we get in Theorem 5.12 the following corollary of
Theorem 1.1(a).

Corollary 1.9. The class of τ -tilting finite algebras is closed under taking factor
algebras.

For example, local algebras and representation-finite algebras are clearly τ -tilting
finite. We refer to [AAC,EJR, IZ,M] for more examples.

We suppose now that A is τ -tilting finite. An important ingredient for under-
standing Con(torsA) = Conc(torsA) in this case is that torsA has a property called
polygonality (Proposition 4.21), and therefore the forcing preorder can be easily
described combinatorially (Proposition 2.4). Using this ingredient, we give two
algebraic characterizations of the forcing order on bricks. In order to do so, we de-
fine a semibrick as a set of bricks having no non-zero morphisms between distinct
elements. For a semibrick E, we define FiltE as the smallest full subcategory of
modA containing E and closed under extensions. Then the subcategory FiltE is
wide, i.e., closed under extension, kernels and cokernels, [Ri1, Theorem 1.2].

Theorem 1.10 (Theorem 4.23). Let A be a finite-dimensional algebra that is τ -
tilting finite. The forcing order � on brickA is the transitive closure of the relation
�f defined by: S1 �f S2 if there is a semibrick {S1}∪E such that S2 ∈ Filt({S1}∪
E) \ Filt(E).

The relation � can also be defined as the transitive closure of the relation �pf

defined by: S1 �pf S2 if there is a semibrick {S1, S
′
1} such that S2 ∈ Filt({S1, S

′
1})\

{S′
1}.
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Example 1.11. Theorem 1.5(a) implies that the set of arrows contracted in passing
from the left hand side to the right hand side of Figure 1 necessarily consists of all
arrows labelled by some set of bricks, since each arrow labelled by a given brick
forces all the other arrows labelled by that brick. Further, this set must be closed
under the relation �. This is consistent with Figure 1, since 3

2
forces only 1 3

2
,

and 1 3
2

forces nothing.

We give another characterization of the forcing order on bricks under additional
hypotheses on A. The following theorem applies in particular to finite-dimensional
hereditary algebras and preprojective algebras of Dynkin type.

Theorem 1.12 (Theorem 4.30). Let A be a finite-dimensional k-algebra that is
τ -tilting finite satisfying EndA(S) ∼= k and Ext1A(S, S) = 0 for all S ∈ brickA. Then
the forcing order � on brickA is the transitive closure of the relation �d defined
by: S1 �d S2 if there exists a brick S′

1 such that

dimExt1A(S1, S
′
1) = 1 and there is an exact sequence 0 → S′

1 → S2 → S1 →
0

or dimExt1A(S
′
1, S1) = 1 and there is an exact sequence 0 → S1 → S2 → S′

1 →
0.

The transitive closure of �d was introduced in [IRRT] as the doubleton extension
order and Theorem 1.12 was proven for preprojective algebras of Dynkin type.

1.4. Applications to preprojective algebras and Weyl groups. Our remain-
ing results concern the special case of a preprojective algebra Π of Dynkin type (see
Section 6.2 for background). As mentioned above, Π is τ -tilting finite. By a result
of Mizuno (see Theorem 6.2), torsΠ is isomorphic to the corresponding Weyl group
W endowed with the weak order. The next goal is to characterize algebraic lattice
congruences of W .

A partially ordered set P is called Hasse-regular if it has the property that each
vertex of the Hasse quiver has the same degree (as an undirected graph). If A is
τ -tilting finite, then torsA is necessarily Hasse-regular (see Corollary 4.6).

As before, a join-irreducible element of a finite lattice L is an element j with
exactly one arrow from j in HasseL. We say a lattice congruence on L contracts j
if it contracts the unique arrow from j. A join-irreducible element j ∈ L is called
a double join-irreducible element if the unique arrow from j in HasseL goes either
to another join-irreducible element or to the bottom element of L.

Theorem 1.13. Let W be a finite Weyl group of simply-laced type, and Π the
corresponding preprojective algebra. Let Θ be a lattice congruence on W ∼= torsΠ.
Consider the following three conditions on Θ:

(i) Θ is an algebraic congruence on W .
(ii) W/Θ is Hasse-regular.
(iii) There is a set J of double join-irreducible elements such that Θ is the small-

est congruence contracting every element of J .

Then (i) ⇒ (ii) ⇒ (iii). If W is of type An, then all three conditions are equivalent.

It would be interesting to understand the algebraic quotients ofW for any Dynkin
type. Unfortunately, (iii) ⇒ (ii) and (iii) ⇒ (i) are not true in type D as shown in
Example 6.4.
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Figure 2. Hasse(sτ -tiltΛ1), Hasse(sτ -tiltΛ2) and Hasse(sτ -tiltΛ3)

The equivalence of (ii) and (iii) in type An was also proved independently in
[HM, Theorem 26], which also characterizes double join-irreducible elements in
terms of the noncrossing arc diagrams introduced in [R3].

In the following example, we show that in full generality algebraic congruences
do not depend only on the lattice structure of torsA:

Example 1.14. We consider the k-algebras

Λ1 := k
(

1u ��
x �� 2
)
/(u2) and Λ2 := k

(
1

x �� 2 v
�� )

/(v2).

We also consider the R-algebra Λ3 of type B2, constructed as the tensor algebra
of the species R C �� C . The labelled Hasse quivers of their support τ -tilting
modules are depicted in Figure 2. It is an easy application of Theorem 1.6, that an
algebraic congruence on Λ1 that contracts q1 has to contract q2 while the converse
is not true. In the same way, an algebraic congruence on Λ2 that contracts q2 has to
contract q1 while the converse is not true. Finally, for Λ3, an algebraic congruence
contracts q1 if and only if it contracts q2. So the algebraic congruences of these
three isomorphic lattices are not the same. Moreover, it also shows that (iii) in
Theorem 1.13 does not imply (i) in general and in fact that no such combinatorial
criterion can be equivalent to (i) in full generality.

We now give a more explicit description of algebraic lattice quotients of W in
type A. Write ΠAn

for the preprojective algebra of type An, and WAn
for the

corresponding Weyl group, isomorphic to the symmetric group Sn+1.
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We denote by U the set of the following objects, which we can naturally identify:

• Double join-irreducible elements in WAn
.

• Non-revisiting paths. (These are paths in the quiver of ΠAn
which visit

each vertex at most once, including the trivial paths ei.)
• Uniserial ΠAn

-modules. (These are ΠAn
-modules which have unique com-

position series.)

Then U forms a partially ordered set, setting w ≤ w′ if w is a subpath of w′. We
denote by idealU the set of order ideals of U , which consists of subsets S ⊂ U
such that if w ∈ S and w ≤ w′ then w′ ∈ S.

Theorem 1.15. Let us consider the two-sided ideal Icyc of ΠAn
generated by all

2-cycles and ΠAn
:= ΠAn

/Icyc. Then, writing η for ηΠAn
, the following hold.

(a) The ideal I0 defined in Corollary 1.8 coincides with Icyc.
(b) We have lattice isomorphisms

idealU
∼−→ idealΠAn

∼−→ AlgConΠAn

given by S �→ spank S and I �→ η(I).
(c) If I, J ∈ idealΠAn

, we have

η(I) = η(J) ⇔ I + Icyc = J + Icyc ⇔ I ∩ U = J ∩ U .

Based on Theorem 1.15 and some general combinatorial results found in [R5],
we give an explicit combinatorial description of arbitrary algebraic congruences and
quotients in type A. (See Theorems 6.15 and 6.14.)

To conclude the paper, we apply our theory to preprojective algebras to obtain
a new representation-theoretical approach to some results about Cambrian lattices.
We consider a preprojective algebra Π of Dynkin type and the corresponding Weyl
group W endowed with the weak order. We continue to identify the lattice W
with the lattice torsΠ via Mizuno’s isomorphism as mentioned above. To each
Coxeter element c, or equivalently to each orientation Qc of the Dynkin diagram,
corresponds the so-called Cambrian congruence Θc on W (see Section 7). On the
other hand, we can consider the natural surjective lattice morphism W ∼= torsΠ �
tors kQc. Our first result about Cambrian lattices is the following one:

Theorem 1.16 (Theorem 7.2). The Cambrian congruence Θc induces the surjec-
tive lattice morphism torsΠ � tors kQc. In particular, tors kQc is identified with
the Cambrian lattice W/Θc.

The identification of tors kQc with W/Θc in Theorem 1.16 was proved in [IT]
using combinatorial methods. Our proof uses mostly representation theory, by-
passing in particular the sortable elements [R2] used in [IT]. We also give a new
representation-theoretical argument for the following result, proven using sortable
elements in [R2].

Theorem 1.17 (Theorem 7.8). The subset πΘc

↓ W of W consisting of smallest
elements of each Θc-equivalence class is a sublattice of W , canonically isomorphic
to the Cambrian lattice W/Θc.

As explained in the next section, it is a general result that πΘc

↓ W is closed under
joins. The strong part of Theorem 1.17 is that it is also closed under meets.
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2. Lattice congruences and forcing order

2.1. Preliminaries. We give some background material on lattices. Much of this
is in standard lattice-theory books such as [B,G]. Some of the material given here
follows an order-theoretic approach to lattice congruences described in [R4, Sec-
tion 9-5].

Let L be a partially ordered set and let x and y be elements of L. An element
z of L is called the join of x and y and denoted x ∨ y if z ≥ x and z ≥ y and if,
for every element w with w ≥ x and w ≥ y, we have w ≥ z. Thus the join of x and
y, if it exists, is the unique minimal common upper bound of x and y. Dually, the
meet x ∧ y of x and y, if it exists, is the unique maximal common lower bound of
x and y.

A lattice is a partially ordered set L with the property that for every x, y ∈ L the
join x∨ y and the meet x∧ y both exist. The join ∨ is an associative, commutative
operation on L, and for any non-empty finite subset S = {x1, . . . , xk} of L, the
element x1 ∨ · · · ∨ xk is the unique minimal common upper bound for the elements
of S. We write

∨
S for this minimal upper bound. Similarly, ∧ is associative and

we write
∧
S for x1 ∧ · · · ∧ xk, which is the unique maximal lower bound for S.

If S is an infinite subset of L, then there need not exist a unique minimal upper
bound for S in L, even when L is a lattice. (For example, consider the integers
Z under their usual order and take S = Z.) Similarly, S need not have a unique
maximal lower bound. A lattice L is called complete if every subset S of L admits
a unique minimal upper bound

∨
S and a unique maximal lower bound

∧
S. In

this case L has a minimum 0 :=
∨
∅ =
∧
L and a maximum 1 :=

∧
∅ =
∨
L.

Recall that the Hasse quiver HasseL of an ordered set L has set of vertices L and
an arrow x → y if and only if x > y and for any z ∈ L, x ≥ z ≥ y ⇒ x = z or z = y.
If x → y is an arrow in HasseL, then we say that x covers y.

We say that j ∈ L is join-irreducible if there does not exist a finite subset S ⊆ L
such that j =

∨
S and j /∈ S. We say that it is completely join-irreducible if

there does not exist a subset S ⊆ L such that j =
∨
S and j /∈ S. An element

j is completely join-irreducible if and only if there exists an element j∗ satisfying
{x ∈ L | x < j} = {x ∈ L | x ≤ j∗}. In particular, if j is completely join-
irreducible, then it covers exactly one element, j∗. If L is finite, then the converse
is true: if j covers exactly one element, then it is join-irreducible. In the same
way, m ∈ L is meet-irreducible if every finite S ⊆ L with m =

∧
S has m ∈ S.

It is completely meet-irreducible if every S ⊆ L with m =
∧
S has m ∈ S. If m

is completely meet-irreducible, then m is covered by exactly one element m∗. The
converse is true if L is finite. We denote by j-IrrL (j-Irrc L) and m-IrrL (m-Irrc L)
the sets of (completely) join-irreducible and (completely) meet-irreducible elements
in L respectively.

A map η from a lattice L1 to another lattice L2 is called a morphism of lattices
if η(x ∨ y) = η(x) ∨ η(y) and η(x ∧ y) = η(x) ∧ η(y) for every x, y ∈ L1. If
η : L1 → L2 is a morphism of lattices, then η(

∨
S) =
∨
η(S) and η(

∧
S) =
∧
η(S)

for any finite subset S of L1. However, the same property need not hold for infinite
subsets of L1, even when L1 and L2 are both complete lattices. A map η from a
complete lattice L1 to a complete lattice L2 is a morphism of complete lattices if
η(
∨
S) =
∨
η(S) and η(

∧
S) =
∧
η(S) for every subset S of L1. It is more typical

in the lattice theory literature to say “lattice homomorphism” for a morphism of
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lattices and “complete lattice homomorphism” for “morphism of complete lattices”,
but we adopt the more category-theoretical language here.

A join-semilattice is a partially ordered set with a join operation, and a meet-
semilattice is a partially ordered set with a meet operation. A map η : L1 → L2 is
a morphism of join-semilattices if η(x∨ y) = η(x)∨ η(y) for every x, y ∈ L1. It is a
morphism of meet-semilattices if η(x∧ y) = η(x)∧ η(y) for every x, y ∈ L1. A join-
semilattice or meet-semilattice can be complete or not in the sense of the previous
paragraph, and we can similarly define a morphism of complete join-semilattices or
a morphism of complete meet-semilattices.

A join-sublattice (respectively, meet-sublattice) of a join-semilattice (respectively,
meet-semilattice) is a subset that is closed under the join (respectively, meet) op-
eration, and a sublattice of a lattice is a subset that is a join-sublattice and a meet-
sublattice. The image of a morphism η : L1 → L2 of lattices (respectively, join-
semilattices, meet-semilattices) is a sublattice (respectively, join-sublattice, meet-
sublattice) of L2.

We recall the following general definition, and give some properties in the special
case of complete lattices.

Definition 2.1. Let P and Q be posets and let a : P → Q and b : Q → P be
order-preserving maps. We say that (a, b) is an adjoint pair if p ∈ P and q ∈ Q
satisfy a(p) ≤ q if and only if they satisfy p ≤ b(q).

Proposition 2.2. Assume that (a, b) is an adjoint pair, and both P and Q are
complete lattices. The following hold:

(a) The map a is a morphism of complete join-semilattices, and b is a morphism
of complete meet-semilattices.

(b) For any p ∈ P and q ∈ Q, we have p ≤ ba(p) and ab(q) ≤ q.

Proof. (a) We show the assertion for a; the assertion for b is dual. Take any subset
S ⊆ P . To prove

∨
a(S) = a(

∨
S), it is enough to show that q ∈ Q satisfies

a(p) ≤ q for all p ∈ S if and only if a(
∨
S) ≤ q. The condition a(p) ≤ q for all

p ∈ S is equivalent to p ≤ b(q) for all p ∈ S. This is equivalent to
∨
S ≤ b(q),

which is equivalent to a(
∨
S) ≤ q. Thus the assertion follows.

(b) Since a(p) ≤ a(p), we have p ≤ ba(p). Similarly we have ab(q) ≤ q. �

An equivalence relation ≡ on a lattice L is called a (lattice) congruence if and
only if it has the following property: If x1, x2, y1, and y2 are elements of L such that
x1 ≡ y1 and x2 ≡ y2, then also x1∧x2 ≡ y1∧y2 and x1∨x2 ≡ y1∨y2. Given a lattice
congruence Θ on L, the quotient lattice is L/Θ, where the partial order is defined
as follows: A Θ-class C1 is less than or equal to a Θ-class C2 in L/Θ if and only if
there exists an element x1 of C1 and an element x2 of C2 such that x1 ≤ x2 in L.
Equivalently, for any x1 ∈ C1 and x2 ∈ C2, the join of C1 and C2 is the congruence
class containing x1∨x2 and the meet of C1 and C2 is the congruence class containing
x1 ∧ x2. We denote by ConL the set of congruences on L, partially ordered with
the refinement order (Θ ≤ Θ′ if and only if ∀x, x′ ∈ L, x ≡Θ y ⇒ x ≡Θ′ y). This is
a lattice, and in fact it is a sublattice of the lattice of all equivalence relations (or
equivalently the lattice of all set partitions of L). It is also a distributive lattice,
meaning that meet distributes over join and vice versa.

Similarly, we define a complete (lattice) congruence on a complete lattice L to
be an equivalence relation ≡ with the following property: For any indexing set I
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(not necessarily finite) and families {xi}i∈I and {yi}i∈I of elements of L, if xi ≡ yi
for all i ∈ I, then

∧
{xi | i ∈ I} ≡

∧
{yi | i ∈ I} and

∨
{xi | i ∈ I} ≡

∨
{yi | i ∈ I}.

We denote by Conc L the lattice of complete congruences on L.
For a (complete) lattice congruence Θ on L, the map sending each element of

L to its congruence class is a morphism of (complete) lattices from L to L/Θ. On
the other hand, given a morphism of (complete) lattices η : L1 → L2, there is a
(complete) lattice congruence Θη on L1 defined by x ≡Θη

y if and only if η(x) =
η(y). Moreover if η is surjective, then η induces an isomorphism L1/Θη → L2 of
(complete) lattices.

Complete lattice congruences on a complete lattice L are particularly well-
behaved. For the remainder of this subsection, we assume that L is complete and
Θ is a complete congruence. In particular, each congruence class is an interval in L.
(Given x, y ∈ L with x ≤ y, the interval [x, y] in L is the set {z ∈ L | x ≤ z ≤ y}.) In
particular, given an element x of L, the congruence class of x has a unique minimal
element π↓x = πΘ

↓ x and a unique maximal element π↑x = π↑
Θx. The maps π↓ and

π↑ are order-preserving. (See [R4, Proposition 9-5.2] and [R4, Exercise 9.42].) The
finite case of the following proposition is [R4, Proposition 9-5.5], and this version
for complete lattices holds by essentially the same proof. (See [R4, Exercise 9.42].)

Proposition 2.3. Suppose L is a complete lattice and Θ is a complete congruence.
The sets π↓L := {π↓x | x ∈ L} and π↑L :=

{
π↑x | x ∈ L

}
, endowed with the partial

orders induced from the partial order on L, are complete lattices, both isomorphic
to the quotient lattice L/Θ.

The maps π↓ : L → π↓L and π↑ : L → π↑L are morphisms of complete lattices.
However, π↓L and π↑L are not necessarily sublattices of L. In general, π↓L is only a
complete join-sublattice of L, and π↑L is only a complete meet-sublattice. We will
see in Section 7 that in an important example (when Θ is a Cambrian congruence),
the subposets π↓L and π↑L are sublattices of L.

For a complete lattice congruence Θ on L, consider the canonical projection
η : L → L/Θ. For x, y ∈ L, η(x) ≤ η(y) if and only if π↓x ≤ y if and only if
x ≤ π↑y. In particular, the image of an interval in L under η is an interval in L/Θ.
Specifically, for any x ≤ y, we have η([x, y]) = [η(x), η(y)].

Given a complete congruence Θ on a complete lattice L, say that Θ contracts an
arrow y → x in HasseL if x ≡Θ y. As one might expect, arrows cannot be contracted
independently. Rather, if an arrow is contracted by Θ, then Θ is forced to contract
other arrows as well. To formalize this forcing, for each subset S ⊆ Hasse1(L), we
define con(S) to be the minimum lattice congruence that contracts all arrows in S.
(We take con(S) to be the meet of all congruences that contract all arrows in S.
Since ConL is a complete sublattice of the lattice of equivalence relations on L, this
meet also contracts all arrows in S.) We define the forcing equivalence by

a � b ⇐⇒ con(a) = con(b).

We define the forcing preorder on Hasse1(L) by

a � b ⇐⇒ con(a) ≥ con(b) in ConL.

This gives a partial order on the set Hasse1(L)/� of forcing equivalence classes.
For a special class of finite lattices called polygonal lattices, the forcing preorder

on arrows has a simple, local description, as we now explain. A polygon in a finite
lattice L is an interval [x, y] such that {z ∈ L | x < z < y} consists of two disjoint
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non-empty chains. The lattice L is polygonal if the following two conditions hold:
First, if there are arrows y1 → x and y2 → x in the Hasse quiver for distinct
elements y1 and y2, then [x, y1 ∨ y2] is a polygon; and second, if there are arrows
y → x1 and y → x2 in the Hasse quiver for distinct elements x1 and x2, then
[x1 ∧ x2, y] is a polygon.

We define the polygonal preorder �p on arrows of HasseL. In every polygon
labelled as shown here,

(2.1) •
b′

����
���

�
a

�����
���

•
q1

		

•
q�+1

		

q� 		 q�+m		
•

a′ ����
���

� •
b�����
���

•
we have a �p b �p a and a �p qi for all i. We take the transitive closure to obtain
the polygonal preorder. The polygonal equivalence is defined by

a �p b ⇐⇒ a �p b �p a.

Clearly the polygonal preorder gives a partial order on Hasse1(L)/�p which we
call the polygonal order. We have the following general result.

Proposition 2.4 ([R4, Theorem 9-6.5]). Let L be a finite polygonal lattice.

(a) The forcing equivalence coincides with the polygonal equivalence.
(b) The forcing order coincides with the polygonal order.

Proposition 2.4 lets us understand forcing among edges locally, in polygons.

2.2. Bialgebraic completely semidistributive lattices. The aim of this sub-
section is to introduce a well-behaved class of congruences that we call arrow-
determined on a lattice L and to describe them in term of the Hasse quiver of L. It
is known that, if L is finite, ConL can be identified with a sublattice of the powerset
of Hasse1(L), sending a congruence to the set of arrows it contracts, see for example
[R4, 9-5]. We generalize this result for complete lattices in Theorem 2.12. To do so,
we have to restrict our investigation to some well-behaved situations, since there
are usually too many congruences.

Recall from the introduction that the lattice L is weakly atomic if Hasse[x, y]
contains at least one arrow whenever x < y in L. We introduce the following
notion, which is natural with respect to our problem.

Definition 2.5. For a congruence Θ on a lattice L, we say that Θ is arrow-
determined if for any ordered pair x ≤ y of L, y ≡Θ x if and only if all arrows
of Hasse[x, y] are contracted by Θ.

Notice that for a lattice L, the trivial congruence is arrow-determined if and only
if L is weakly atomic. More generally, we have the following characterization.

Proposition 2.6. A complete lattice congruence Θ on a complete lattice L is arrow-
determined if and only if L/Θ is weakly atomic.



LATTICES OF TORSION CLASSES 555

Before proving Proposition 2.6, we introduce some notation that we use all along
this subsection. When Θ is a congruence on a lattice L, we commonly identify L/Θ
with π↓L as in Proposition 2.3. For x ≤ y in π↓L, we denote by [x, y] the interval
of L and by [x, y]↓ the interval of π↓L. Similarly, we denote ∨ and ∧ the lattice
operations of L and ∨↓ and ∧↓ the lattice operations of π↓L, even if ∨ and ∨↓
coincide as explained in Section 2.1.

Proof of Proposition 2.6. First, suppose that Θ is arrow-determined. Consider an
ordered pair x < y in π↓L. As Θ is arrow-determined, there exists an arrow v → u
in Hasse[x, y] that is not contracted by Θ. We claim that π↓v → π↓u is an arrow
in Hasse[x, y]↓. Since π↓ is order-preserving and since v → u is not contracted,
we have x ≤ π↓u < π↓v ≤ y. If there exists z ∈ π↓L with π↓u ≤ z ≤ π↓v, then
(u∨π↓u) ≤ (u∨z) ≤ (u∨π↓v). We easily see that this simplifies to u ≤ (u∨z) ≤ v.
Since v → u is an arrow in HasseL, one of these inequalities must be an equality. If
u = u ∨ z, then z ≤ u, so z = π↓u. On the other hand, if u∨ z = v, then observing
that π↓u ∨ π↓z = z, the fact that π↓ is a lattice morphism implies that z = π↓v.
We have proved the claim, which implies that L/Θ is weakly atomic.

Conversely, suppose that π↓L is weakly atomic and let [x, y] be an interval in L.
Since π↓ is order-preserving, we have π↓x ≤ π↓y. If x ≡Θ y, then all arrows of
Hasse[x, y] are contracted by Θ. If x �≡Θ y, then π↓x < π↓y. We will exhibit an
arrow in Hasse[x, y] that is not contracted by Θ. Since π↓L is weakly atomic, there
exists an arrow v → u in Hasse[π↓x, π↓y]↓. Let u′ =

∨
{w ∈ L | w ≤ v, w ≡Θ u}.

Since Θ is a complete congruence, u′ ≡Θ u. By construction, u′ ≤ v, but since
u �≡Θ v, we have u′ < v. If there exists z such that u′ < z < v, then by the
construction of u′ we have u′ �≡Θ z, and since v ∈ π↓L, we have z �≡Θ v. Thus
u = π↓u

′ < π↓z < π↓v = v, contradicting the fact that v → u is an arrow in
Hasseπ↓L. Thus v → u′ is an arrow in Hasse[x, y] that is not contracted by Θ, so
we have verified that Θ is arrow-determined. �

An arrow-determined complete congruence Θ is completely specified by the set
of arrows it contracts. Namely, x ≡Θ y if and only if all arrows of Hasse[x∧y, x∨y]
are contracted by Θ. We denote by Conca L the set of complete congruences over
L that are arrow-determined. Notice that, if L is finite, we clearly have ConL =
Conc L = Conca L. More generally, we obtain the following result.

Proposition 2.7. The set Conca L is a complete meet-sublattice of Conc L, which is
a complete meet-sublattice of ConL. In particular, Conca L and Conc L are complete
lattices.

Proof. The fact that Conc L is a complete meet-sublattice of ConL is well-known
and elementary. Consider a family (Θi)i∈I of arrow-determined complete congru-
ences, and denote Θ =

∧
i∈I Θi (the meet is computed in Conc L or equivalently

in ConL). Let x ≤ y in L such that x �≡Θ y. By definition, this means that there
exists i ∈ I such that x �≡Θi

y. As Θi is arrow-determined, there exists an arrow
q : u → v in Hasse[x, y] such that u �≡Θi

v. Again by the definition of Θ, this
implies u �≡Θ v. In other words, we have proved that Θ is arrow-determined, hence
Conca L is a complete meet-semilattice of Conc L. �

We now introduce a particularly well-behaved class of complete lattices. We need
several definitions and properties about complete lattices, that we recall briefly.
For a more detailed introduction, we refer to [AN] for completely semidistributive
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lattices and [KL] for algebraic and co-algebraic lattices. The following definition
appears in [CH], where the first bullet point is shown to be equivalent to L being
sectionally pseudocomplemented.

Definition 2.8. A complete lattice L is called completely semidistributive if, for
x ∈ L and S ⊆ L, the following hold:

• If x ∧ y = x ∧ z for all y, z ∈ S, then x ∧ (
∨
S) = x ∧ y for all y ∈ S;

• If x ∨ y = x ∨ z for all y, z ∈ S, then x ∨ (
∧
S) = x ∨ y for all y ∈ S.

Recall also the following definitions.

Definition 2.9. An element x of a complete lattice L is compact if for any set
S ⊆ L such that x ≤

∨
S, there exists a finite subset {x1, x2, . . . , xn} ⊆ S such

that x ≤
∨n

i=1 xi. Then L is algebraic if for any x ∈ L, there exists a set S of
compact elements of L such that x =

∨
S.

Dually, x is co-compact if for any set S ⊆ L such that x ≥
∧
S, there exists a

finite subset {x1, x2, . . . , xn} ⊆ S such that x ≥
∧n

i=1 xi. Then L is co-algebraic if
for any x ∈ L, there exists a set S of co-compact elements of L such that x =

∧
S.

We say that L is bialgebraic if it is algebraic and co-algebraic.

We now state the main results of this subsection. The first result is known. (See,
for example [CD, 2.2] or [N, Theorem 3.6].)

Theorem 2.10. Let L be a complete lattice. If L is algebraic or if L is co-algebraic,
then L is weakly atomic.

Moreover, if we restrict to quotients of completely semidistributive and bialge-
braic complete lattices, then the converse holds in the following sense.

Theorem 2.11. Let L be a complete lattice that is completely semidistributive and
bialgebraic. Then a complete congruence Θ ∈ Conc L is arrow-determined if and
only if L/Θ is weakly atomic if and only if L/Θ is bialgebraic.

We denote by ideal(Hasse1(L)) the set of subsets S ⊆ Hasse1(L) such that for
any q ∈ S and q′ ∈ Hasse1(L), if q � q′ then q′ ∈ S. It is naturally a complete
lattice with respect to inclusion (joins coincide with unions and meets coincide with
intersections).

Theorem 2.12. Let L be a complete lattice that is completely semidistributive and
bialgebraic. Then Conca L is isomorphic to ideal(Hasse1(L)), mapping a congruence
to the set of arrows it contracts. In particular, Conca L is distributive.

Before proving the theorems, we give an example showing that, usually, Conca L
is much smaller than Conc L, even when L is bialgebraic, completely distributive
and arrow separated.

Example 2.13. Consider

L := {(−∞, x) | x ∈ R} ∪ {(−∞, x] | x ∈ R} ∪ {∅,R}
totally ordered by inclusion. It is a complete, completely distributive, lattice. The
arrows of HasseL are (−∞, x] → (−∞, x) for each x ∈ R, so L is weakly atomic.

Moreover, j-Irrc L = {(−∞, x] | x ∈ R} and m-Irrc L = {(−∞, x) | x ∈ R}. The
set of compact elements of L is j-Irrc L ∪ {∅} and the set of co-compact elements is
m-Irrc L∪{R}, hence we see easily that L is bialgebraic. Consider the congruence Θ
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of L identifying (0, x) with (0, x] for each x. It is a complete congruence. Moreover,
L/Θ = R ∪ {−∞,+∞} so Hasse(L/Θ) has no arrows, hence is not weakly atomic.
In particular, Θ ∈ Conc L \ Conca L. More precisely, the only Θ′ ∈ Conca L that is
bigger than Θ identifies all elements of L. Moreover, for each complete congruence
of R ∪ {−∞,+∞}, there is a corresponding complete congruence of L between Θ
and Θ′.

We now give several lemmas.

Lemma 2.14. Suppose that L is completely semidistributive.

(a) Any interval [u, v] of L is completely semidistributive.
(b) For any Θ ∈ Conc L, L/Θ is completely semidistributive.

Proof. (a) The property is immediate as [u, v] is a complete sublattice of L.
(b) Let S ⊆ π↓L and x ∈ π↓L such that for all y, z ∈ S, we have x∨↓ y = x∨↓ z,

or equivalently x ∨ y = x ∨ z, since π↓L is a complete join-sublattice of L. As L is
completely semidistributive, we deduce that, x∨

∧
S = x∨ z for all z ∈ S. Because

π↓ : L → π↓L is a morphism of complete lattices, we deduce π↓x ∨↓
∧

↓{π↓y | y ∈
S} = π↓x ∨↓ π↓z for all z ∈ S. As x ∈ π↓L and S ⊆ π↓L, we have π↓x = x and
π↓z = z for any z ∈ S so x ∨↓

∧
↓ S = x ∨↓ z. The dual argument, using π↑L,

completes the proof. �

Lemma 2.15.

(a) If x ∈ L is compact, then for any interval [u, v] with v ≥ x, we have u ∨ x
compact in [u, v].

(b) If x ∈ L is co-compact, then for any interval [u, v] with u ≤ w, we have
v ∧ x co-compact in [u, v].

(c) If L is algebraic, any interval [u, v] of L is algebraic.
(d) If L is co-algebraic, any interval [u, v] of L is co-algebraic.

Proof. By symmetry, we prove (a) and (c).
(a) Without loss of generality, suppose that x �= 0. Let S ⊆ [u, v] such that

u ∨ x ≤
∨
S. We have x ≤

∨
S so there exists a (non-empty) finite subset F ⊆ S

satisfying x ≤
∨
F . Moreover, as F ⊆ [u, v], u ≤

∨
F so u ∨ x ≤

∨
F .

(c) Let x ∈ [u, v]. As L is algebraic, x =
∨
S for a set S ⊆ L of compact

elements. Then x =
∨
{u ∨ y | y ∈ S}. So, by (a), x is a join of compact elements

of [u, v]. So [u, v] is algebraic. �

Lemma 2.16.

(a) If L is algebraic and x ∈ L is completely join-irreducible, then x is compact.
(b) If L is co-algebraic and x ∈ L is completely meet-irreducible, then x is

co-compact.

Proof. Let us prove (a). As L is algebraic, x =
∨
S for a set S ⊆ L of compact

elements. As x is completely join-irreducible, x ∈ S, so x is compact. �

Lemma 2.17. Let L be a complete lattice and Θ ∈ Conc L.

(a) For u ∈ π↓L, we have u ∈ j-Irrc L if and only if u ∈ j-Irrc(π↓L).
(b) For u ∈ π↑L, we have u ∈ m-Irrc L if and only if u ∈ m-Irrc(π↑L).
(c) For u ∈ π↓L, u is compact in L if and only if it is compact in π↓L.
(d) For u ∈ π↑L, u is co-compact in L if and only if it is co-compact in π↑L.
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Proof. By symmetry, we prove (a) and (c).
(a) Suppose that u ∈ j-Irrc L. Let S ⊆ π↓L such that u =

∨
↓ S, so u =

∨
S,

as π↓L is a complete join-sublattice of L. As u ∈ j-Irrc L, we get u ∈ S. So
u ∈ j-Irrc(π↓L). Conversely, suppose u ∈ j-Irrc(π↓L) and consider S ⊆ L such that
u =
∨
S. As π↓ : L → π↓L is a morphism of complete lattice, we get u = π↓u =∨

↓{π↓x | x ∈ S}. So u = π↓x for some x ∈ S. In particular u ≤ x. As u =
∨
S ≥ x,

we get u = x. Finally, u ∈ j-Irrc L.
(c) Suppose that u is compact in L. Let S ⊆ π↓L such that u ≤

∨
↓ S =
∨
S. As

u is compact in L, there exists a finite subset F ⊆ S such that u ≤
∨
F =
∨

↓ F . So
u is compact in π↓L. Conversely, suppose that u is compact in π↓L and let S ⊆ L
such that u ≤

∨
S. We get u = π↓u ≤

∨
↓{π↓x | x ∈ S}, so u ≤

∨
↓{π↓x | x ∈ F} for

some finite subset F ⊆ S. For any x ∈ F , π↓x ≤ x so u ≤
∨
{π↓x | x ∈ F} ≤

∨
F .

So u is compact in L. �
The following lemma is known. (See, for example, [CD, 6.1] or [AGT, Lemma

2.1].)

Lemma 2.18. Let L be a complete lattice.

(a) If L is co-algebraic, then any x ∈ L is a join of elements of j-Irrc L.
(b) If L is algebraic, then any x ∈ L is a meet of elements of m-Irrc L.

Proof. By symmetry, we prove (a). Consider x′ =
∨
{z ∈ j-Irrc L | z ≤ x}. It

suffices to prove that x′ = x. We have x′ ≤ x. Suppose that x �≤ x′. As L is
co-algebraic, x′ =

∧
S for some subset S ⊆ L of co-compact elements. Then x �≤ x′

implies x �≤ y for some y ∈ S.
Let E = {z ∈ [0, x] | z �≤ y}. As x ∈ E, E is non-empty. If I ⊆ E is non-empty

and totally ordered, then
∧
I ∈ E. Indeed, if

∧
I ≤ y, as y is co-compact, there

exists a non-empty finite subset F ⊆ I such that
∧
F ≤ y. As F is non-empty,

finite and totally ordered,
∧
F ∈ F ⊆ E, which contradicts

∧
F ≤ y. Hence, by

Zorn’s Lemma, E admits a minimal element z. We claim that z is completely join-
irreducible. Indeed, if z =

∨
S ′ for some S ′ ⊆ L, z �≤ y implies z′ �≤ y for some

z′ ∈ S ′. As z′ ≤ z, by minimality of z in E, we have z′ = z.
As z ∈ j-Irrc L and z ≤ x, we have z ≤ x′ by definition. As x′ =

∧
S and y ∈ S,

we get z ≤ y, which contradicts z ∈ E. �
Lemma 2.19. If x ∈ L is compact and x �= 0, then there exists an arrow in HasseL
starting at x.

Proof. Consider the set of chains in {y ∈ L | y < x}, ordered by containment.
This partially ordered set satisfies the hypotheses of Zorn’s Lemma, so there is a
maximal totally ordered subset I of {y ∈ L | y < x}. Let z =

∨
I. We have

z ≤ x, but since x is compact, if z = x then x is a join of finitely many elements
of I. However, since I is totally ordered, this join is strictly below x. By this
contradiction, we see that z < x. If u ∈ L satisfies z ≤ u < x, we get that I ∪ {u}
is a totally ordered subset of {y ∈ L | y < x}, so by maximality of I, u ∈ I so
u ≤ z and u = z. Finally, there is an arrow x → z in HasseL. �

We now prove the first main result of this section.

Proof of Theorem 2.10. By symmetry, we suppose that L is algebraic. Hence, by
Lemma 2.15(c), any interval [u, v] of L is algebraic. If u < v, since v is a join of
compact elements of [u, v], there is an element x �= u in [u, v] that is compact in
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[u, v]. Thus, by Lemma 2.19, Hasse[u, v] contains at least one arrow. So L is weakly
atomic. �

The following proposition generalizes a known result for finite lattices (see for
example [R4, Proposition 9-5.20(i)]).

Proposition 2.20. Suppose that L is completely semidistributive. Let x → y be
an arrow of HasseL. Then

(a) There exists an arrow j → j∗ in HasseL forcing equivalent to x → y with j
completely join-irreducible and j ≤ x, j∗ ≤ y and j �≤ y.

(b) There exists an arrow m∗ → m in HasseL forcing equivalent to x → y with
m completely meet-irreducible and m ≥ y, m∗ ≥ x and m �≥ x.

Proof. By symmetry, we prove (a). We consider the set S := {z ∈ L | y ∨ z =
x} = {z ∈ L | z ≤ x, z �≤ y}. It is not empty as x ∈ S. Let j :=

∧
S. By complete

semidistributivity, y∨j = x, so in particular j ≤ x and j �≤ y. If j is not completely
join-irreducible, then it is a join of elements strictly below j, but then since all of
those elements are also less than y, their join is below y, contradicting y ∨ j = x.
We conclude that j is completely join-irreducible and thus that there is a unique
arrow j → j∗ in HasseL. By definition of j, we have j∗ ≤ y. If a congruence has
y ≡ x then also y ∧ j ≡ x ∧ j = j, so, as y ∧ j ≤ j∗ ≤ j, we get j∗ ≡ j. Conversely,
if j ≡ j∗ then also x = y ∨ j ≡ y ∨ j∗ = y. �

Lemma 2.21. Suppose that L is completely semidistributive, x → y is an arrow
of HasseL and [u, v] is an interval of L.

(a) If L is algebraic, x ≤ v and u ∧ x ≤ y, then there exists an arrow z → t in
[u, v] that forces x → y.

(b) If L is co-algebraic, y ≥ u and v ∨ y ≥ x, then there exists an arrow z → t
in [u, v] that forces x → y.

Proof. By symmetry, we only prove (a). By Lemmas 2.14 and 2.15, [u ∧ x, v]
is completely semidistributive and algebraic, so we can suppose without loss of
generality that u ∧ x = 0 and v = 1. By Proposition 2.20(a), there exists an arrow
j → j∗ in HasseL that is forcing equivalent to x → y such that j is completely
join-irreducible and j ≤ x. As L is algebraic, by Lemma 2.16, j is compact. Hence,
by Lemma 2.15, z := u ∨ j is compact in [u, 1]. As u ∧ x = 0, j ≤ x and j �= 0, we
get that j �≤ u so z > u. Hence, by Lemma 2.19, there exists an arrow z → t in
Hasse[u, 1]. By definition of z, we have t �≥ j. As j is completely join-irreducible, we
deduce t ∧ j ≤ j∗ < j. For any congruence having z ≡ t, we have j = z ∧ j ≡ t ∧ j,
so j ≡ j∗. Hence, (z → t) � (j → j∗) � (x → y). �

Lemma 2.22. Suppose that L is bialgebraic and completely semidistributive. Let
I ∈ ideal(Hasse1 L). Consider two intervals [u, v] and [u′, v′] of L such that

Hasse1[u, v] ⊆ I and Hasse1[u
′, v′] ⊆ I and [u, v] ∩ [u′, v′] �= ∅.

Then we have Hasse1[u ∧ u′, v ∨ v′] ⊆ I.

Proof. By Lemmas 2.14 and 2.15, [u ∧ u′, v ∨ v′] is completely semidistributive
and bialgebraic, so we can suppose without loss of generality that u ∧ u′ = 0 and
v ∨ v′ = 1, and prove that Hasse1 L ⊆ I.

We suppose first that v′ = u, so that u′ = 0 and v = 1. Consider an arrow
x → y of HasseL. By Lemma 2.20, there exists an arrow j → j∗ of HasseL that
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is forcing equivalent to x → y with j completely join-irreducible. If j ≤ v′ = u,
we have (j → j∗) ∈ Hasse1[u

′, v′] ⊆ I. Otherwise, u ∧ j < j, so u ∧ j ≤ j∗ and by
Lemma 2.21(a), there is an arrow in Hasse1[u, 1] ⊆ I that forces j → j∗. So j → j∗
and x → y are in I.

Let us go back to the general case and fix c ∈ [u, v] ∩ [u′, v′]. Consider an arrow
x → y of Hasse[0, u]. We have x ≤ u ≤ c ≤ v′ and u′ ∧ x ≤ u′ ∧ u = 0 ≤ y,
so by Lemma 2.21(a), there is an arrow of Hasse[u′, v′] ⊆ I that forces x → y,
so (x → y) ∈ I. We proved that Hasse1[0, u] ⊆ I. Symmetrically, we get that
Hasse1[v, 1] ⊆ I. So using the first case for the intervals [0, u] and [u, v], we deduce
that Hasse1[0, v] ⊆ I. Using again the first case for [0, v] and [v, 1], we conclude
Hasse1 L ⊆ I. �

Let I ∈ ideal(Hasse1 L) and define the relation ≡ on L by x ≡ y if and only if
Hasse1[x ∧ y, x ∨ y] ⊆ I.

Lemma 2.23. Suppose that L is completely semidistributive and bialgebraic. Then,
the relation ≡ is a complete congruence that is arrow-determined.

Proof. First of all, it is clearly reflexive and symmetric. For the transitivity, suppose
that x ≡ y and y ≡ z. It means that

Hasse1[x ∧ y, x ∨ y] ⊆ I and Hasse1[y ∧ z, y ∨ z] ⊆ I.

As y ∈ [x∧y, x∨y]∩[y∧z, y∨z], by Lemma 2.22, we get Hasse1[x∧y∧z, x∨y∨z] ⊆ I,
so Hasse1[x ∧ z, x ∨ z] ⊆ I, so x ≡ z. Therefore ≡ is an equivalence relation.

We consider an index set S and two families (xi)i∈S and (yi)i∈S such that xi ≡ yi
for all i ∈ S. Let x =

∨
i∈S xi and y =

∨
i∈S yi and let us prove that x ≡ y.

For each i, denote ui = xi ∧ yi and vi = xi ∨ yi, u =
∨

i∈S ui and v =
∨

i∈S vi.
We have [x∧ y, x∨y] ⊆ [u, v], so it suffices to prove that Hasse1[u, v] ⊆ I. Consider
an arrow m∗ → m of Hasse1[u, v] with m completely meet-irreducible in [u, v]. As
m �≥ v, there exists i ∈ S such that m �≥ vi. Then vi ∨m > m. As vi ∨m ∈ [u, v]
and m is completely meet-irreducible in [u, v], we deduce vi ∨ m ≥ m∗. So, by
Lemma 2.21(b), m∗ → m is forced by an arrow of Hasse[ui, vi]. By definition, we
have Hasse1[ui, vi] ⊆ I so (m∗ → m) ∈ I. By Proposition 2.20, each arrow of
Hasse[u, v] is forcing equivalent to an arrow m∗ → m of [u, v] with m completely
meet-irreducible in [u, v]. Hence, Hasse1[u, v] ⊆ I.

The proof that ≡ is compatible with meets is dual. Finally, the fact that ≡ is
arrow-determined is a direct consequence of its definition. �

Proof of Theorem 2.12. There is a well defined, order-preserving map from Conca L
to ideal(Hasse1 L) mapping a congruence to the set of arrows it contracts. By
definition of arrow-determined congruences, this map is injective, and by Lemma
2.23, it is surjective. The inverse map is order-preserving as well, so the map is an
isomorphism of complete lattices. Since ideal(Hasse1 L) is closed under union and
intersection, distributivity of Conca L follows. �

Before proving Theorem 2.11, we need a last lemma.

Lemma 2.24. Consider a complete congruence Θ of L.

(a) Let j ∈ j-Irrc L such that j → j∗ is not contracted by Θ. Then its image j
in L/Θ is completely join-irreducible. If L is algebraic, then j is compact.
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(b) Let m ∈ m-Irrc L such that m∗ → m is not contracted by Θ. Then its image
m in L/Θ is completely meet-irreducible. If L is co-algebraic, then m is
co-compact.

Proof. By symmetry, we prove (a). As j ∈ j-Irrc L is not contracted, j = π↓j ∈ π↓L.
So, by Lemma 2.17(a), j ∈ j-Irrc(π↓L). If L is algebraic, by Lemma 2.16(a), j is
compact in L so by Lemma 2.17(c), j is compact in π↓L. �

Proof of Theorem 2.11. First of all, Θ is arrow-determined if and only if L/Θ is
weakly atomic is Proposition 2.6. Moreover, if L/Θ is bialgebraic, then L/Θ is
weakly atomic by Theorem 2.10.

Conversely, suppose that Θ is arrow-determined. Let x ∈ L and

E = {j ∈ j-Irrc L | j ≤ x and j → j∗ is not contracted by Θ}

and x′ =
∨
E. We have x′ ≤ x. Suppose that x′ �≡Θ x. As Θ is arrow-determined,

there exists an arrow y → z in Hasse[x′, x] that is not contracted by Θ. By Propo-
sition 2.20(a), there exists j → j∗ in HasseL that is forcing equivalent to y → z
such that j ∈ j-Irrc L and j ≤ y ≤ x. In particular, j → j∗ is not contracted by Θ
so j ∈ E. As j �≤ x′, this contradicts the definition of x′. We proved that x′ ≡Θ x.

Moreover, by Lemma 2.24(a), the images of the elements of E are compact in
L/Θ, so any element of L/Θ is a join of compact elements. We proved that L/Θ is
algebraic. Symmetrically, L/Θ is co-algebraic. �

We finish this subsection by noticing that, in our setting, the forcing order coin-
cides with the complete forcing order and the arrow-determined forcing order.

For each subset S ⊆ Hasse1(L), we define conc(S) to be the minimum complete
lattice congruence that contracts all elements of S and conca S to be the minimal
arrow-determined complete lattice congruence that contracts all elements of S. We
define the complete forcing order on Hasse1(L) by

a �c b ⇐⇒ conc(a) ≥ conc(b) in Conc L,

and the arrow-determined forcing order on Hasse1(L) by

a �ca b ⇐⇒ conca(a) ≥ conca(b) in Conca L.

While it is elementary that for S ⊆ Hasse1(L) the congruences con(S), conc(S)
and conca(S) are in general distinct, when L is completely semidistributive and
bialgebraic, we obtain the following proposition.

Proposition 2.25. Suppose that L is completely semidistributive and bialgebraic.
The complete forcing order, the arrow-determined forcing order and the forcing
order coincide.

Proof. First of all, it is immediate that q � q′ ⇒ q �c q
′ ⇒ q �ca q′. Conversely,

let q : x → y and q′ : x′ → y′ be two arrows of HasseL such that q �ca q′. It is
immediate that the arrows contracted by con q form a forcing ideal I. By Theorem
2.12, there exists a complete arrow-determined congruence Θ contracting exactly
the elements of I. As q �ca q′, it means that q′ ∈ I so q � q′. �
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2.3. Complete congruence uniformity. Continuing Section 2.2, we now gener-
alize the notion of congruence uniformity to complete lattices. Let us consider a
complete lattice L. We restrict our attention to an appropriate subset of the arrows
of HasseL. For j ∈ j-Irrc L and Θ ∈ Conc L, we say that Θ contracts j if it contracts
the arrow j → j∗. For m ∈ m-Irrc L, we say that Θ contracts m if it contracts
m∗ → m. In the same way, for j, j′ ∈ j-Irrc L, we say that j forces j′ and we write
j � j′ if j → j∗ forces j′ → j′∗, and for m,m′ ∈ m-Irrc L, we say that m forces m′

and we write m � m′ if m∗ → m forces m′∗ → m′. We denote by ideal(j-Irrc L)
and ideal(m-Irrc L) the ideals of this relation.

Definition 2.26. A complete lattice L is completely congruence uniform if the
following conditions hold.

• Forcing is a partial order on j-Irrc L and the map from Conca L to
ideal(j-Irrc L) sending a congruence to the set of completely join-irreducible
elements it contracts is a bijection.

• Forcing is a partial order on m-Irrc L and the map from Conca L to
ideal(m-Irrc L) sending a congruence to the set of completely meet-
irreducible elements it contracts is a bijection.

Notice that in Definition 2.26, the two bijections Conca L ↔ ideal(j-Irrc L) and
Conca L ↔ ideal(m-Irrc L) are automatically isomorphisms of complete lattices.

Notice that this definition is equivalent to the definition of a congruence uniform
lattice when L is finite. We now give easier criteria for congruence uniformity.

Proposition 2.27. For a complete lattice L, we have (i) ⇒ (ii) ⇒ (iii):

(i) L is completely congruence uniform.
(ii) • The map j-Irrc L → Conca L given by j �→ conca(j → j∗) is a bijection

between j-Irrc L and j-Irrc Conca L.
• The map m-Irrc L → Conca L given by m �→ conca(m∗ → m) is a
bijection between m-Irrc L and j-Irrc Conca L.

(iii) • The map j-Irrc L → Conca L given by j �→ conca(j → j∗) is injective.
• The map m-Irrc L → Conca L given by m �→ conca(m∗ → m) is injec-
tive.

Moreover, if L is completely semidistributive and bialgebraic, then (iii) ⇒ (i).

Proof. By symmetry, we consider the conditions about completely join-irreducible
elements.

(i) ⇒ (ii) For j ∈ j-Irrc L, we write Ij := {j′ ∈ j-Irrc L | j � j′}. Consider a
completely join-irreducible element I of ideal(j-Irrc L). We have I =

∨
j∈I Ij , so,

as I is completely join-irreducible, I = Ij for some j. Conversely, it is immediate
that, for any j ∈ j-Irrc L, no proper subideal of Ij contains j so Ij is completely
join-irreducible. Then, the conclusion follows from the isomorphism Conca L ∼=
ideal(j-Irrc L).

(ii) ⇒ (iii) This is immediate.
We now suppose that L is completely semidistributive and bialgebraic.
(iii) ⇒ (i) First of all, our assumption implies that the forcing on j-Irrc L is a par-

tial order. Second, by Theorem 2.12, there is an isomorphism from ideal(Hasse1(L))
to Conca L, mapping I to

∨
q∈I conca(q). Moreover, by Proposition 2.20, in each

forcing equivalence class of arrows of HasseL, there is an arrow j → j∗ such
that j is completely join-irreducible in L. Thus Conca L ∼= ideal(Hasse1(L)) ∼=
ideal(j-Irrc L). �
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Notice that, in general, (i), (ii) and (iii) of Proposition 2.27 are not equivalent,
as shown in the following example.

Example 2.28.

(a) We take L as in Example 2.13, and define L′ := L ∪ {α} where ∅ < α < R,
but for any x ∈ R, (−∞, x) and (−∞, x] are not comparable with α. We get easily
that j-Irrc L′ = {(−∞, x] | x ∈ R} ∪ {α} and m-Irrc L′ = {(−∞, x) | x ∈ R} ∪ {α},
and as in Example 2.13, L′ is complete and bialgebraic.

Moreover, if we consider the arrow qx : (−∞, x] → (−∞, x) of HasseL′, it is
immediate that conca(qx) contracts only qx. On the other hand, conca(α → ∅) =
conca(R → α) identifies all elements of L′. So L′ satisfies (iii). But conca(α → ∅) is
not completely join-irreducible in Conca L′ as it is equal to

∨
x∈R

conca(qx). So L′

does not satisfy (ii). It follows that L′ is not completely semidistributive.
(b) We now consider the lattice L′′ = L ∪ L̄, where L̄ is a copy of L, where we

identify ∅ and ∅̄ on the one hand, and R and R̄ on the other hand. Moreover, no
other elements of L and L̄ are comparable. As before L′′ is complete and bialgebraic.
For each arrow (x → y) ∈ Hasse1(L

′′), we have x ∈ j-Irrc L′′, y ∈ m-Irrc L′′ and
conca(x → y) contracts only x → y. So L′′ satisfies (ii).

On the other hand, the forcing on j-Irrc L′′ is trivial, so ideal(j-Irrc L′′) = 2j-Irr
c L′′

.
We have a strict inclusion of ideals j-Irrc L � j-Irrc L′′, and∨

j∈j-Irrc L

conca(j → j∗) =
∨

j∈j-Irrc L′′

conca(j → j∗)

is the maximum congruence, so (i) does not hold. As before, it implies that L′′ is
not completely semidistributive.

3. Lattice of torsion classes

3.1. Elementary properties. Let k be a field. We consider an associative, finite-
dimensional k-algebra A with an identity element. We denote by modA the cat-
egory of finitely generated left A-modules. For M ∈ modA, we denote by addM
the full subcategory of modA consisting of direct summands of finite direct sums of
copies of M . For a class C ⊆ modA , we define its orthogonal categories in modA
by

C⊥A = C⊥ := {X ∈ modA | HomA(C, X) = 0},
⊥AC = ⊥C := {X ∈ modA | HomA(X, C) = 0}.

We denote by Filt C the full subcategory of A-modules filtered by modules in C.
Moreover, when C1, . . . , Cn ⊆ modA, Filt(C1, . . . , Cn) := Filt(C1 ∪ · · · ∪ Cn).

We say that a full subcategory T ofmodA is a torsion class (respectively, torsion-
free class) if it is closed under factor modules (respectively, submodules), isomor-
phisms and extensions. For any subcategory C of modA, ⊥C is a torsion class and
C⊥ is a torsion-free class. We denote by torsA (respectively, torf A) the set of tor-
sion classes (respectively, torsion-free classes) in modA. The set torsA is closed
under intersection, so it forms a complete lattice with respect to inclusion, with a
unique maximal element modA and a unique minimal element {0} [IRTT, Propo-
sition 1.3]. The meet is intersection and the join

∨
S of S ⊂ torsA is the meet of

all upper bounds of S. Alternatively,
∨
S is given explicitly as Filt(FacS), the full

subcategory of modA consisting of modules that are filtered by quotients of mod-
ules in S. The set torf A is similarly a complete lattice with respect to inclusion.
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For any subcategory X ⊆ modA, there is a smallest torsion class T(X ) containing
X , namely the meet (i.e. intersection) of all torsion classes containing X . We have
anti-isomorphisms

(−)⊥ : torsA → torf A and ⊥(−) : torf A → torsA

of complete lattices. A torsion pair is a pair (T ,F) of a torsion class T and a
torsion-free class F in modA satisfying T ⊥ = F and T = ⊥F .

We start by proving that the lattice torsA enjoys the properties investigated in
Section 2.2.

Theorem 3.1. Let A be a finite-dimensional algebra.

(a) The lattice torsA is completely semidistributive.
(b) The lattice torsA is bialgebraic, and hence weakly atomic.

Notice that Theorem 3.1(a) is a bit stronger than the semidistributivity proven
in [GM, Theorem 4.5]. We give the following proposition before proving Theorem
3.1.

Proposition 3.2.

(a) For T ∈ torsA, T is compact if and only if T = T(X) for some X ∈ modA.
(b) For T ∈ torsA, T is co-compact if and only if T = ⊥X for some X ∈

modA.

Proof. (a) Suppose that T is compact. As T =
∨

X∈T T(X) holds, there exists

X1, X2, . . . , Xn ∈ T such that T =
∨n

i=1 T(Xi) = T(X1 ⊕X2 ⊕ · · · ⊕Xn).
Conversely, suppose that T = T(X) for some X ∈ modA and let S ⊆ torsA

such that T ⊆
∨
S. We know that

∨
S = Filt (

⋃
S). So X is filtered by elements

of
⋃
S. On the other hand, X is finite-dimensional, so X is filtered by finitely

many elements of
⋃

S. Therefore, there exists {T1, T2, . . . , Tn} ⊆ S such that
X ∈
∨n

i=1 Ti, so T = T(X) ⊆
∨n

i=1 Ti. We proved that T(X) is compact.
(b) The argument of (a) works analogously for torsion-free classes. Then, using

the anti-isomorphism ⊥− : torf A → torsA leads us to the conclusion. �

We now prove Theorem 3.1.

Proof of Theorem 3.1. (a) By duality, we prove only the first condition. Let T ∈
torsA and S ⊆ torsA satisfying T ∩ U = T ∩ V for all U ,V ∈ S. It is enough to
prove that T ∩

∨
S ⊆ T ∩ U for a fixed U ∈ S.

Recall that
∨
S = Filt(

⋃
S) holds. Let X ∈ T ∩

∨
S. We prove by induction on

dimX that X ∈ T ∩ U . If X = 0, it is clear. Otherwise, there exist V ∈ S and a
short exact sequence 0 → V → X → Y → 0 with 0 �= V ∈ V and Y ∈

∨
S. As T

is a torsion class, Y ∈ T , hence by the induction hypothesis, Y ∈ T ∩ U = T ∩ V .
As V is a torsion class, X ∈ V . So X ∈ T ∩ V = T ∩ U .

(b) For any T ∈ torsA, T =
∨

X∈T T(X) and T(X) is compact by Proposition

3.2(a), so torsA is algebraic. Dually, T =
∧

X∈T ⊥(⊥X) is a meet of co-compact
torsion classes by Proposition 3.2(b), so torsA is co-algebraic. By Theorem 2.10,
torsA is weakly atomic. �

3.2. Brick labelling. An important ingredient of this paper, which permits an
understanding of the forcing preorder as well as an understanding of wide sub-
categories is the notion of brick labelling of Hasse(torsA). Note that we do not
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assume that A is τ -tilting finite in this section. Several of the results we give are
generalizations of results that are already known in the τ -tilting finite case.

Recall that a brick is an A-module whose endomorphism algebra is a division
algebra. When U ⊆ T , we denote brick[U , T ] the set of isomorphism classes of
bricks in T ∩ U⊥. This notation will be justified by Theorem 3.4.

Theorem 3.3. Let U ⊆ T be two torsion classes in modA. The following hold:

(a) We have T = U if and only if brick[U , T ] = ∅.
(b) There is an arrow q : T → U in Hasse(torsA) if and only if brick[U , T ]

contains exactly one element Sq. Moreover, T ∩ U⊥ = FiltSq.
(c) There is a bijection j-Irrc(torsA) → brickA that associates to T ′ the brick

Sq for the only arrow q starting at T ′.
(d) There is a bijection m-Irrc(torsA) → brickA that associates to U ′ the brick

Sq for the only arrow q ending at U ′.

We will prove Theorem 3.3 at the end of this subsection. The bijections of The-
orem 3.3(c),(d) have also been established independently using different methods
in [BCZ].

We will need a more general version of Theorem 3.3(c),(d).

Theorem 3.4. Let U ⊆ T be torsion classes in modA. The following hold:

(a) There is a bijection j-Irrc[U , T ] → brick[U , T ] mapping T ′ ∈ j-Irrc[U , T ] to
Sq where q : T ′ → U ′ is the unique arrow of Hasse[U , T ] starting at T ′.
Moreover, T ′ = U ∨ T(Sq) and U ′ = T ′ ∧ ⊥Sq.

(b) There is a bijection m-Irrc[U , T ] → brick[U , T ] mapping U ′ ∈ m-Irrc[U , T ]
to Sq where q : T ′ → U ′ is the unique arrow of Hasse[U , T ] ending at U ′.
Moreover, U ′ = T ∧ ⊥Sq and T ′ = U ′ ∨ T(Sq).

We now define the brick labelling.

Definition 3.5. Let q : T → U be an arrow of Hasse(torsA). The label of q is the
unique brick Sq in T ∩ U⊥, given in Theorem 3.3(b).

We give an example of brick labelling.

Example 3.6. Let k be an algebraically closed field and Q the Kronecker quiver

2
a

��

b



 1

and A = kQ. For (λ, μ) ∈ k2 \ {(0, 0)}, we consider the following brick in modA:

S(λ:μ) =

⎡
⎢⎢⎣

2

μ

��
λ

��
1

⎤
⎥⎥⎦

whose isomorphism class only depends of (λ : μ) ∈ P1(k). Then, for S ⊆ P1(k)
non-empty, we define the torsion class T (S) = Filt(S ∪ {2}). We also define the
torsion class T (∅) =

⋂
S�=∅T (S). Then T : 2P

1(k) → torsA is an injective morphism
of complete lattices from the power set of P1(k) to torsA. We denote by R its
image. Then, using classical knowledge about the Auslander-Reiten quiver of A,
the labelled Hasse quiver of torsA is given by
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Any arrow of HasseR has the form q : T (S) → T (S ′) for some S,S ′ ⊆ P1(k)
satisfying S \ S ′ = {(λ : μ)} for some (λ : μ) ∈ P1(k). The brick that labels this
arrow is Sq = S(λ:μ). To be more explicit, if P is an indecomposable preprojective
module distinct from S1, then FacP contains all indecomposable modules except
the ones that are to its left in the Auslander-Reiten quiver, if I is indecomposable
preinjective, then Fac I contains I and indecomposable modules that are to its right
in the Auslander-Reiten quiver. Finally, T (S) contains no preprojective modules,
all preinjective modules and the tubes that are indexed by elements of S.

In the rest of this subsection, we prove Theorem 3.3. We start by giving a relative
version of [DIJ, Lemma 4.4].

Lemma 3.7. Let U ∈ torsA and S be a brick in U⊥. Then, the following statements
hold.

(a) Every morphism f : X → S in T(U , S) is either zero or surjective.
(b) If a brick S′ in U⊥ satisfies T(U , S) = T(U , S′), then S � S′.

Proof. (a) We show that f �= 0 implies that f is surjective. Since X ∈ T(U , S) =
Filt(U ,FacS), there exists a filtration 0 = X0 ⊂ X1 ⊂ · · · ⊂ Xt = X satisfying
Xi+1/Xi ∈ U or Xi+1/Xi ∈ FacS for any i. We can assume f(X1) �= 0 by
taking a maximal number i satisfying f(Xi) = 0 and replacing X by X/Xi. Since
S ∈ U⊥, we get X1 ∈ FacS, so there exists an epimorphism g : S⊕n → X1. Since
fg : S⊕n → S is non-zero and S is a brick, fg must be a split epimorphism. Thus
f is surjective.

(b) Since S belongs to T(U , S′)∩U⊥, there exists a non-zero morphism f : S′ →
S. This is surjective by (a), and therefore dimk S

′ ≥ dimk S. The same argument
shows the opposite inequality, and therefore f is an isomorphism. �

Next, we give the following elementary lemma:

Lemma 3.8. Let T ,U ∈ torsA and X ∈ T ∩ U⊥ be non-zero. Then there exists
S ∈ brick[U , T ] that is the image of an endomorphism of X.

Proof. We argue by induction on the dimension of X. If X is a brick, it is im-
mediate. Otherwise, X admits a non-zero radical endomorphism f = ιπ where
π is surjective and ι is injective. Then, Im f ∈ FacX ∩ SubX ⊆ T ∩ U⊥ and
0 < dim Im f < dimX, so by induction hypothesis, there is S ∈ brick[U , T ] that is
the image of an endomorphism g of Im f , hence of ιgπ. �

We deduce the following.

Lemma 3.9. Let U ⊆ T be two torsion classes. We have T = Filt(U ∪brick[U , T ]).

Proof. Let X ∈ T . We argue by induction on dimX. If X = 0, the result is
immediate. As (U ,U⊥) is a torsion pair, there exists a short exact sequence

0 → U → X → U ′ → 0
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with U ∈ U and U ′ ∈ U⊥. It suffices to prove U ′ ∈ Filt(U ∪ brick[U , T ]). Suppose
that U ′ �= 0. We have U ′ ∈ T ∩ U⊥, so by Lemma 3.8, there exists a short exact
sequence

0 → S → U ′ → Y → 0

with S ∈ brick[U , T ]. As U ′ ∈ T , we also have Y ∈ T so by induction hypothesis,
Y ∈ Filt(U ∪ brick[U , T ]), hence U ′ ∈ Filt(U ∪ brick[U , T ]). �

We also deduce:

Lemma 3.10. Let U ⊆ T be two torsion classes of modA. Then we have T ∩U⊥ =
Filt brick[U , T ].

Proof. The inclusion ⊇ is immediate, hence we prove the other one. LetX ∈ T ∩U⊥

be indecomposable. We argue by induction on dimX. If X is a brick, the result is
immediate. Otherwise, using Lemma 3.8, there exists a brick S ∈ brick[U , T ] that
is a submodule and a quotient of X. Consider a short exact sequence

0 → S → X → Y → 0.

As S is a brick, the short exact sequence does not split, and, as HomA(X,S) �= 0,
we deduce HomA(Y, S) �= 0 so, as S ∈ U⊥, Y /∈ U .

We fix a short exact sequence 0 → U → Y → U ′ → 0 with U ∈ U and U ′ ∈ U⊥

and consider the following Cartesian diagram:

S �
� �� X ′

� �

		

�� �� U� �

		
S �
� �� X

				

�� �� Y

				
U ′ U ′

As X ∈ U⊥, we get X ′ ∈ U⊥. As S,U ∈ T , we get X ′ ∈ T . We have clearly
U ′ ∈ T ∩ U⊥. Moreover, as S ⊆ X ′, we have X ′ �= 0. As Y /∈ U , U ′ �= 0, so the
dimension of each indecomposable summand of X ′ and U ′ is smaller than dimX.
This allows us to conclude by the induction hypothesis. �

Then, we prove Theorem 3.4.

Proof of Theorem 3.4. (a) Let T ′ = U∨T(S). As S ∈ T and U ⊆ T , it is immediate
that U ⊆ T ′ ⊆ T . Let also U ′ = T ′ ∩ ⊥S. As U ⊆ ⊥S and T ′ �⊆ ⊥S, we have
U ⊆ U ′ � T ′.

If V � T ′, consider X ∈ V and f : X → S. As X ∈ T ′ = T(U , S), if f �= 0 we
get that f is surjective by Lemma 3.7(a), hence S ∈ T(X) ⊆ V so V = T ′, which
is a contradiction. So V ⊆ ⊥S, hence V ⊆ U ′. We proved that T ′ is completely
join-irreducible in [U , T ] and that there is an arrow T ′ → U ′ in Hasse[U , T ].

Let us prove that the only element of brick[U ′, T ′] is S. It is clear that S ∈
brick[U ′, T ′]. Consider S′ ∈ brick[U ′, T ′]. We have T(U , S′) ⊆ T ′ and T(U , S′) �⊆ U ′,
so T(U , S′) = T ′. By Lemma 3.7(b), this implies that S ∼= S′.

Finally, we need to prove the uniqueness of the completely join-irreducible torsion
class. Consider an arrow T ′′ → U ′′ of Hasse[U , T ] such that brick[U ′′, T ′′] = {S}
and T ′′ is completely join-irreducible. As U ⊆ T ′′ and S ∈ T ′′, we have T ′ ⊆ T ′′.
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As S ∈ T ′ and S /∈ U ′′, we have T ′ �⊆ U ′′, so T ′′ = T ′ ∨ U ′′ and, as T ′′ is join-
irreducible, we obtain T ′ = T ′′. By uniqueness of the arrow starting at T ′, we also
have U ′ = U ′′.

(b) It is dual to (a). �
Finally, we prove Theorem 3.3.

Proof of Theorem 3.3. (a) The case T = U is trivial. Suppose that T �= U and let
X ∈ T ∩U⊥ be non-zero. By Lemma 3.8, X admits a quotient that is in brick[U , T ].

(b) First of all, if # brick[U , T ] = 1 and U ⊆ V ⊆ T , by (a), we have U = V or
T = V hence there is an arrow T → U in Hasse(torsA). Conversely, if T → U is
an arrow of Hasse(torsA), by (a) there exists S ∈ brick[U , T ]. Then, by Theorem
3.4(a), there exists an arrow T ′ → U ′ in Hasse[U , T ] such that brick[U ′, T ′] = {S}.
So brick[U , T ] = {S}. Finally, by Lemma 3.10, T ∩ U⊥ = FiltSq.

(c) and (d) It is Theorem 3.4 for U = 0 and T = modA. �
3.3. Complete congruence uniformity of the lattice of torsion classes. The
main result of this subsection is the following.

Theorem 3.11. Let A be a finite-dimensional algebra.

(a) Two arrows of Hasse(torsA) are labelled by the same brick if and only if
they are forcing equivalent.

(b) The lattice torsA is completely congruence uniform.
(c) The brick labelling coincides with the join-irreducible labelling and with the

meet-irreducible labelling under the bijections of Theorem 3.3(c), (d).

In particular, we get:

Corollary 3.12. Let A be a finite-dimensional algebra that is τ -tilting finite. Then
torsA is congruence uniform.

Note that the congruence uniformity of torsA was known only for certain special
classes of algebras: preprojective algebras, via the weak order (see Section 6),
and certain gentle algebras [PPP]. By Theorem 3.11, the forcing preorder � can
be considered as a partial order on brickA. In particular, we get the following
description of Conca(torsA).

Corollary 3.13. The complete lattices Conca(torsA) and ideal(brickA) are isomor-
phic, where ideal(brickA) consists of the sets of bricks that are closed under forcing.

Proof. This is a consequence of Theorem 3.11. �
We need some preparation to prove Theorem 3.11. We associate to each brick

a certain complete congruence. Let S ∈ brickA. We define the relation ≡S in the
following way. For T ,U ∈ torsA, we put T ≡S U if every X ∈ (T ∨ U) ∩ (T ∧ U)⊥
admits S as a subfactor.

Proposition 3.14. The relation ≡S is a complete congruence.

Proof. For simplicity, we write ≡ instead of ≡S . This relation is clearly symmetric
and reflexive.

Let us prove that it is transitive. Suppose that T ≡ U and U ≡ V . Let X ∈
(T ∨ V) ∩ (T ∧ V)⊥ be non-zero. We consider a short exact sequence 0 → U →
X → U ′ → 0 with U ∈ U and U ′ ∈ U⊥. Suppose that U �= 0. We have U ∈
(T ∧ V)⊥ = T ⊥ ∨ V⊥ so U admits a non-zero quotient U ′′ that is in T ⊥ or in V⊥.
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By symmetry, we suppose that U ′′ ∈ T ⊥. So U ′′ ∈ (T ∨ U) ∩ (T ∧ U)⊥, hence it
admits S as a subfactor because T ≡ U , so X admits S as a subfactor. If U ′ �= 0,
it admits a submodule U ′′ that is in T or V and we conclude as before.

Consider now two families (Ui)i∈I and (Ti)i∈I of torsion classes satisfying Ui ≡ Ti
for all i ∈ I. Let U =

∨
i∈I Ui and T =

∨
i∈I Ti. We will prove that U ≡ T . Let

X ∈ (T ∨U)∩ (T ∧U)⊥ be non-zero. As X ∈ T ∨U =
∨

i∈I(Ti ∨Ui), there exists a

non-zero submodule X ′ of X and i0 ∈ I such that X ′ ∈ Ti0 ∨Ui0 . As X ′ ∈ (T ∧U)⊥
and
∨

i∈I(Ti ∧ Ui) ⊆ T ∧ U , we have X ′ ∈
∧

i∈I(Ti ∧ Ui)
⊥ so X ′ ∈ (Ti0 ∧ Ui0)

⊥.
Hence, as Ti0 ≡ Ui0 , X

′ admits S as a factor module, so X does. In the same way,
we prove that

∧
i∈I Ui ≡

∧
i∈I Ti so ≡ is a complete congruence. �

Proposition 3.15. Two arrows q and q′ of Hasse(torsA) are forcing equivalent if
and only if Sq

∼= Sq′ .

Proof. We denote q : T → U and q′ : T ′ → U ′.
First, suppose that S := Sq

∼= Sq′ . Let ≡ be a congruence satisfying T ≡ U . We
have S ∈ T ∧ T ′ and S /∈ U ′ so U ′ � (T ∧ T ′) ∨ U ′ ⊆ T ′. As q′ is an arrow, we
deduce (T ∧T ′)∨U ′ = T ′. We have U∧T ′ ⊆ ⊥S and U ′ ⊆ ⊥S so (U∧T ′)∨U ′ ⊆ ⊥S
and therefore U ′ ⊆ (U ∧T ′)∨U ′ � T ′, so, as before, (U ∧T ′)∨U ′ = U ′. As U ≡ T
and ≡ is a lattice congruence, we deduce T ′ = (T ∧ T ′) ∨ U ′ ≡ (U ∧ T ′) ∨ U ′ = U ′.

Suppose now that q and q′ are forcing equivalent. The congruence ≡Sq
defined

above contracts q, so it contracts q′. Hence, Sq is a subfactor of Sq′ . Conversely,
Sq′ is a subfactor of Sq. Then, Sq′

∼= Sq. �

We can finally prove Theorem 3.11.

Proof of Theorem 3.11. (a) This is Proposition 3.15.
(b) By (a) and Theorem 3.3(c), the forcing equivalence classes in Hasse1(torsA)

correspond bijectively with brickA ∼= j-Irrc(torsA). With this and its dual, we
conclude using Proposition 2.27(ii)⇒(i) together with Theorem 3.1 that torsA is
completely congruence uniform.

(c) This is immediate. �

We end this subsection by giving the following elementary observation about the
forcing order on bricks.

Proposition 3.16.

(a) The arrows incident to 0 in Hasse(torsA) are FiltS → 0 for each simple
A-module S. The label of FiltS → 0 is S.

(b) The arrows incident to modA in Hasse(torsA) are modA → ⊥S for each
simple A-module S. The label of modA → ⊥S is S.

(c) The maximal elements for the forcing order on brickA are simple A-
modules.

(d) For a simple A-module S and a brick S′, S � S′ if and only if S is a
subfactor of S′.

Proof. (a) Any T ∈ torsA \ {0} contains FiltS for a simple module S. Indeed,
let X ∈ T be non-zero and S be a simple factor module of X. Then S ∈ T , so
FiltS ⊆ T . As FiltS ∩ FiltS′ = 0 for S �= S′, the result follows. It is immediate
that S labels FiltS → 0.
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(b) By the dual of (a), arrows incident to 0 in torf A are FiltS → 0 so, as
⊥(−) : torf A → torsA is an anti-isomorphism, arrows incidents to modA in torsA
are modA → ⊥(FiltS) = ⊥S.

(d) Let S be a simple A-module, e be the corresponding primitive idempotent
and B := A/(e). As a very special case of Theorem 5.12(a), π : torsA � torsB,
T �→ T ∩ modB is a surjective morphism of complete lattices. Moreover, in this
case, π splits, as any U ∈ torsB is also a torsion class in modA ⊇ modB, identifying
torsB with a sublattice of torsA.

By (a), qS : FiltS → 0 is an arrow of Hasse(torsA). We have, in torsA, FiltS ∨
modB = modA, so the lattice congruence Θ corresponding to π is con(qS).

Let S′ ∈ brickA. By Theorem 3.3(c), there is an arrow q : T(S′) → U with
Sq

∼= S′ and T(S′) ∈ j-Irrc(torsA). If S is not a subfactor of S′, then S′ ∈ modB, so
that q is an arrow of Hasse(torsB). So q is not contracted by π. Therefore S′ is not
forced by S. If S is a subfactor of S′, π(T(S′)) �= T(S′) so q has to be contracted
by π, hence by con(qS). It implies that S forces S′.

(c) As any non-simple brick admits a strict simple subfactor, any maximal brick
has to be simple by (d). Moreover, by (d) again, a simple module cannot force
another simple module, so all simple modules are maximal. �

4. Functorially finite torsion classes

4.1. Reminders on τ -tilting theory. We recall that a torsion class T of modA
is functorially finite if there exists M ∈ modA such that T = FacM , where FacM
is the full subcategory of modA consisting of factor modules of finite direct sums of
copies of M . We denote by f-torsA the set of all functorially finite torsion classes
in modA.

If X ∈ modA, we denote by |X| the number of non-isomorphic indecomposable
direct summands of X. We say that X is basic if it has no direct summand of the
form Y ⊕ Y for an indecomposable A-module Y .

There is a bijection between f-torsA and a certain class of A-modules. Recall
that M ∈ modA is τ -rigid if HomA(M, τM) = 0 where τ is the Auslander-Reiten
translation. We say that M ∈ modA is τ -tilting if it is τ -rigid and |M | = |A|
holds. We say that M ∈ modA is support τ -tilting if there exists an idempotent
e of A such that M is a τ -tilting (A/(e))-module. We denote by sτ -tiltA the
set of isomorphism classes of basic support τ -tilting A-modules, by τ -rigidA the
set of isomorphism classes of basic τ -rigid A-modules, and by iτ -rigidA the set of
isomorphism classes of indecomposable τ -rigid A-modules. By [AIR, Theorem 2.7],
we have a surjection

(4.1) Fac : τ -rigidA → f-torsA

given by M �→ FacM , which induces a bijection

(4.2) Fac : sτ -tiltA
∼−→ f-torsA.

Sometimes, we use the following characterization of vanishing of HomA(X, τY ):

Proposition 4.1 ([AS, Proposition 5.8]). Let X and Y be two A-modules. Then
HomA(X, τY ) = 0 if and only if Ext1A(Y,X

′) = 0 for all X ′ ∈ FacX.

We also introduce the notion of a τ -rigid pair. A τ -rigid pair over A is a pair
(M,P ) where M is a τ -rigid A-module and P is a projective A-module satisfying
HomA(P,M) = 0. We say that (M,P ) is basic if both M and P are. We denote
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by τ -rigid-pairA the set of isomorphism classes of basic τ -rigid pairs over A and
by iτ -rigid-pairA the subset of τ -rigid-pairA consisting of indecomposable ones (i.e.
(M, 0) with M indecomposable or (0, P ) with P indecomposable). We identify
M ∈ τ -rigidA with (M, 0) ∈ τ -rigid-pairA. We say that a τ -rigid pair (M,P ) is
τ -tilting if, in addition, we have |M |+ |P | = |A|. We denote by τ -tilt-pairA the set
of isomorphism classes of basic τ -tilting pairs. We have a bijection τ -tilt-pairA →
sτ -tiltA mapping (M,P ) to M . Finally, for (M,P ) ∈ τ -rigid-pairA, we denote
by τ -tilt-pair(M,P )A the set of isomorphism classes of basic τ -tilting pairs over A

having (M,P ) as a direct summand.
We recall that the order on τ -tilt-pairA ∼= sτ -tiltA induced by the bijection (4.2)

is characterized in the following way.

Lemma 4.2 ([AIR, Lemma 2.25]). For (T, P ), (U,Q) ∈ τ -tilt-pairA, we have the
inequality (T, P ) ≥ (U,Q) if and only if HomA(U, τT ) = 0 and HomA(P,U) = 0.

Moreover, sτ -tiltA ∼= τ -tilt-pairA is endowed with a mutation, exchanging two
pairs (T1, P1) and (T2, P2), described in Theorem 4.3. We call (T, P ) ∈ τ -rigid-pairA
almost τ -tilting if |T |+ |P | = |A| − 1.

Theorem 4.3.

(a) [AIR, Theorem 2.18] If (T, P ) is an almost τ -tilting pair, then
τ -tilt-pair(T,P )A has exactly two elements (T1, P1) and (T2, P2).

(b) [AIR, Theorem 2.33] The Hasse quiver of τ -tilt-pairA has an arrow linking
(T1, P1) and (T2, P2) of (a) and all arrows occur in this way.

Note that a version of Theorem 4.3(a) was proved in [DF, Proposition 5.7] for
2-term silting complexes.

Any τ -rigid pair has two canonical completions, as shown below.

Theorem 4.4 ([AIR, Theorem 2.10]). If (X,Q) ∈ τ -rigid-pairA, then the subposet
τ -tilt-pair(X,Q) A of τ -tilt-pairA is an interval [(X−, Q−), (X+, Q)]. Moreover, they

are characterized by the identities FacX+ = ⊥(τX) ∩Q⊥ and FacX− = FacX.

In Theorem 4.4, we call (X−, Q−) the co-Bongartz completion of (X,Q) and
(X+, Q) the Bongartz completion of (X,Q). Additionally, we observe the following.

Lemma 4.5. Let (T, P ) ∈ τ -tilt-pairA and X be the minimal direct summand of
T such that FacT = FacX. Then (T, P ) is the Bongartz completion of (T/X, P ).

Proof. First of all, it is immediate that (T, P ) ≤ ((T/X)+, P ). By [DIJ, Theorem
1.3], if (T, P ) was not the Bongartz completion of (T/X, P ), there would be an arrow
(T ′, P ′) → (T, P ) in Hasse(τ -tilt-pairA) such that T/X ∈ addT ′ and P ∈ addP ′.
So P ′ ∼= P and we can decompose T ′ ∼= M ⊕ U and T ∼= M ⊕ V with U and
V indecomposable. We have FacT = FacM . So, as X is the minimal direct
summand of T such that FacT = FacX, addX does not contain V . So V is a
direct summand of T/X, hence M ⊕ U does not have T/X as a direct summand.
It is a contradiction. �

We recall that A is τ -tilting finite if there are only finitely many indecomposable
τ -rigid A-modules. We get the following straightforward corollary of Theorem 4.3.

Corollary 4.6. Let A be a finite-dimensional k-algebra. Then f-torsA is Hasse-
regular. In particular, if A is τ -tilting finite, then torsA is Hasse-regular.
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The following characterizations are shown in [DIJ] and [IRTT]:

Theorem 4.7 ([DIJ, IRTT]). The following conditions are equivalent.

(i) A is τ -tilting finite.
(ii) f-torsA is a finite set.
(iii) f-torsA is a complete lattice.
(iv) f-torsA = torsA.

On the other hand, it is a much more subtle condition for A that f-torsA is a
lattice. It is shown in [IRTT, Theorem 0.3] that for a path algebra kQ of a connected
acyclic quiver Q, f-tors(kQ) is a lattice if and only if Q is either a Dynkin quiver or
has at most 2 vertices.

We have the following description of join-irreducible elements in torsA.

Theorem 4.8 ([IRRT, Theorem 2.7 and following discussion]). Let A be a finite-
dimensional k-algebra.

(a) If A is τ -tilting finite, then the map M �→ FacM of (4.1) restricts to a
bijection

Fac : iτ -rigidA
∼−→ j-Irr(torsA).

(b) More generally, the map M �→ FacM restricts to a bijection

Fac : iτ -rigidA
∼−→ f-torsA ∩ j-Irrc(torsA).

We finish this subsection by interpretations of the brick labelling in terms of
τ -tilting modules. It has been defined by Asai for functorially finite torsion classes.
By [DIJ, Theorem 1.3], Hasse(f-torsA) is a full subquiver of Hasse(torsA). Then
the brick labelling of arrows of Hasse(f-torsA) has the following description.

Proposition 4.9 ([A]). Let q : T → U be an arrow of Hasse(f-torsA). Then

Sq
∼=

X

RadA(T,X) · T

where the basic support τ -tilting modules T and U corresponding to T and U via
the bijection Fac are decomposed as T = X ⊕ M and U = Y ⊕ M for X an
indecomposable A-module and Y an A-module which is indecomposable or zero.

We recall also bijections arising when A is τ -tilting finite. A set {Si}i∈I of bricks
(or its direct sum) is called a semibrick if HomA(Si, Sj) = 0 for any i �= j. We
denote by brickA the set of isomorphism classes of bricks of A, and by sbrickA the
set of isomorphism classes of semibricks.

Proposition 4.10. Let A be a finite-dimensional k-algebra.

(a) [DIJ] There is an injection iτ -rigidA→brickA sending M to M/ radEndA(M) M .
(b) [A] There is an injection sτ -tiltA→sbrickA sending M to M/ radEndA(M) M .

Moreover, if A is τ -tilting finite, these maps are bijections.

Notice that Theorem 3.3(c) given before extends Proposition 4.10(a), using
Proposition 4.9 and Theorem 4.8.
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4.2. Wide subcategories. Let A be a finite-dimensional k-algebra. This sub-
section deals with combinatorial interpretation of wide subcategories in torsA in
terms of bricks. Recall that a full subcategory W ⊆ modA is wide if it is stable by
extension, kernel and cokernel. In particular it is an abelian category. We denote
by wideA the set of wide subcategories of modA.

Before going further, we recall the following relation between semibricks and
wide subcategories of modA.

Proposition 4.11 ([Ri1]). There is a bijection

Filt : sbrickA → wideA

mapping a semibrick S to the full subcategory of A-modules that are filtered by bricks
of S. The inverse bijection associates to W ∈ wideA the set of its simple objects.

For (N,Q) ∈ τ -rigid-pairA, as in Theorem 4.4, we denote by (N+, Q+) and
(N−, Q) the Bongartz and co-Bongartz completions of (N,Q). Then, we consider
the torsion classes

U(N,Q) := FacN− = FacN and T (N,Q) := FacN+ = ⊥(τN) ∩Q⊥,

and the full subcategory

W(N,Q) := T (N,Q) ∩ U(N,Q)⊥ = ⊥(τN) ∩Q⊥ ∩N⊥.

Our starting point is the following, which is mostly in the article of Jasso about
τ -tilting reduction [J].

Theorem 4.12. Let A be a finite-dimensional algebra and (N,Q) ∈ τ -rigid-pairA.

(a) The subcategory W(N,Q) is a wide subcategory of modA.
(b) Let CN,Q := EndA(N

+)/[N ] where [N ] is the ideal consisting of endomor-
phisms that factor through addN . Then there is an equivalence of categories

FN,Q : W(N,Q)
∼−→ modCN,Q,

mapping X to HomA(N
+, X).

(c) There is an isomorphism of lattices

[U(N,Q), T (N,Q)]
ψN,Q−−−→
∼

torsCN,Q

with ψN,Q(V) = FN,Q(V ∩W(N,Q)).
(d) If A is τ -tilting finite, then there is an isomorphism of lattices

τ -tilt-pair(N,Q) A
Fac−−→
∼

[U(N,Q), T (N,Q)].

Proof. (a) As T (N,Q) and U(N,Q)⊥ are stable by extensions, so is W = W(N,Q).
Let f : X → Y be a morphism in W . Let us prove that Ker f ∈ W . We have
Ker f ∈ SubX ⊆ Q⊥ ∩N⊥, so we need to prove that Ker f ∈ ⊥(τN). By applying
HomA(−, τN) to the short exact sequence 0 → Ker f → X → Im f → 0, we get an
exact sequence

0 = HomA(X, τN) → HomA(Ker f, τN) → Ext1A(Im f, τN).

By Auslander-Reiten duality,

Ext1A(Im f, τN) = HomA(N, Im f) ⊆ HomA(N, Y ) = 0,

so we get Ker f ∈ W . Dually, we have Cok f ∈ W .
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(b) Jasso proved the result when Q = 0 in [J, Theorem 1.4]. For the general
case, denote A′ := A/(e) where e is the idempotent corresponding to Q. Then as
a full subcategory of modA, we have modA′ = Q⊥. Therefore, the result of Jasso
for (N, 0) ∈ τ -rigid-pairA′ implies the general result.

(c) As in the proof of (b), this is a consequence of [J, Theorem 1.5] which estab-
lishes the bijection when Q = 0.

(d) This is a consequence of (4.2) and Theorem 4.4. �
We deduce from Theorem 4.12 and (4.2) the compatibility of the brick labelling

with the τ -tilting reduction which is described in Theorem 4.12(b). We keep the
notation of Theorem 4.12.

Proposition 4.13. For (N,Q) ∈ τ -rigid-pairA, consider an arrow q : T → U in
Hasse[U(N,Q), T (N,Q)] and the corresponding arrow q̄ : ψN,Q(T ) → ψN,Q(U) in
Hasse(torsCN,Q). Then we have Sq ∈ W(N,Q) and Sq̄ = FN,Q(Sq).

Proof. By definition, Sq ∈ T ∩ U⊥. As U(N,Q) ⊆ U ⊆ T ⊆ T (N,Q), we get
Sq ∈ T (N,Q)∩U(N,Q)⊥ = W(N,Q). Also Sq ∈ (T ∩W(N,Q))∩(U∩W(N,Q))⊥,
so, as FN,Q is an equivalence of categories, FN,Q(Sq) ∈ ψN,Q(T ) ∩ ψN,Q(U)⊥.
Therefore FN,Q(Sq) is the label of q̄. �
Definition 4.14. A subset of torsA of the form [U(N,Q), T (N,Q)] for some basic
τ -rigid pair (N,Q) is called a polytope or an �-polytope where � := n− |N | − |Q|.
Remark 4.15. Suppose that A is τ -tilting finite. Then 1-polytopes correspond
to arrows of Hasse(torsA). Moreover, an �-polytope is �-Hasse-regular, using the
isomorphism of lattices τ -tilt-pair(N,Q) A

∼= [U(N,Q), T (N,Q)] and Theorem 4.3.
So 2-polytopes are polygons in the sense of Section 2.1. We prove in Proposition 4.21
that the converse holds and torsA is polygonal.

We have the following result about bricks in polytopes of torsA.

Theorem 4.16. Let A be a finite-dimensional algebra. Let (N,Q) be a basic τ -
rigid pair and [U , T ] = [U(N,Q), T (N,Q)] be the corresponding polytope of torsA.
Let W = W(N,Q) ∈ wideA.

(a) The set S of simple objects of W is a semibrick of A satisfying W = FiltS.
(b) Bricks in W are exactly the labels of arrows of Hasse[U , T ] ⊆ Hasse(torsA).
(c) The semibrick S consists of labels of arrows incident to U in Hasse[U , T ].
(d) The semibrick S consists of labels of arrows incident to T in Hasse[U , T ].

We denote S by S[U , T ].

Proof. First, we consider the case where (N,Q) = (0, 0), hence U = 0 and T =
modA. In this case, S consists of simple A-modules, and (a) is immediate as A is a
finite-dimensional algebra and W = modA. By Theorem 3.3(c), all bricks appear
as labels of arrows in Hasse(torsA), so (b) holds. Proposition 3.16 implies (c) and
(d).

For a general (N,Q), let S be the set of simple objects in the abelian categoryW .
As each object of W has finite length, we have FiltS = W . Moreover, Proposition
4.13 tells us that the isomorphism

ψN,Q : [U , T ] ∼= torsCN,Q

is compatible with the brick labelling, via the equivalence FN,Q : W → modCN,Q.
Then, the conclusion for (N,Q) follows the results for (0, 0) ∈ τ -rigid-pairCN,Q. �
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We give the following description of semibricks in terms of arrows in Hasse(torsA).

Proposition 4.17. Let A a finite-dimensional algebra. Let (T, P ) ∈ τ -tilt-pairA
and consider the smallest direct summand X of T such that FacX = FacT .

(a) For an indecomposable direct summand (N,Q) of (T, P ), the mutation of
(T, P ) at (N,Q) is smaller than (T, P ) if and only if N is a direct summand
of X and Q = 0.

(b) We have T/ radEndA(T )(T )=X/ radEndA(X)(X). Moreover, T/ radEndA(T )(T )
is the direct sum of the labels of arrows of Hasse(torsA) starting at FacT .

Proof. (a) By Lemma 4.5, (T, P ) is the Bongartz completion of (T/X, P ). In partic-
ular, if N ∈ addX and Q = 0, the mutation of (T, P ) at (N,Q) contains (T/X, P )
as a direct summand, hence is smaller than (T, P ). If N /∈ addX or Q �= 0, then
FacT/N ⊇ FacX = FacT , hence the mutation of (T, P ) at (N,Q) is bigger than
(T, P ).

(b) We have

T

radEndA(T )(T )
=

X

RadA(T,X) · T ⊕ T/X

RadA(T, T/X) · T .

As FacT = FacX and addX ∩ add(T/X) = 0, there is a radical surjective map π
from X� to T/X for some integer �, hence RadA(T, T/X) ·T ⊇ Imπ = T/X, so the
second term vanishes:

T

radEndA(T )(T )
=

X

RadA(T,X) · T .

This is the direct sum of the labels of arrows starting at (T, P ), by (a) and Propo-
sition 4.9. We have proved the second part of the claim.

We have

RadA(T,X) · T = RadA(X,X) ·X + RadA(T/X,X) · (T/X).

For any f : T/X → X, the image of f coincides with the image of fπ : X� →
X which is radical, as π is. So RadA(T/X,X) · (T/X) ⊆ RadA(X,X) · X, and
RadA(T,X) · T = RadA(X,X) ·X, hence

T

radEndA(T )(T )
=

X

RadA(X,X) ·X =
X

radEndA(X)(X)
. �

We deduce the following bijection between τ -tilt-pairA and wideA when A is
τ -tilting finite.

Theorem 4.18. Let A be a finite-dimensional algebra that is τ -tilting finite. Then
there is a bijection

τ -tilt-pairA
∼−→ wideA

mapping a pair (T, P ) to W(T/X, P ) where X is the minimal summand of T sat-
isfying FacX = FacT .

Proof. By Propositions 4.11 and 4.10(b), there are bijections

τ -tilt-pairA → sbrickA
Filt−−→ wideA,

where the first map maps (T, P ) to T/ radEndA(T )(T ). So it suffices to prove FiltL =
W(T/X, P ) where L := T/ radEndA(T )(T ).
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By Lemma 4.5, (T, P ) is the Bongartz completion of (T/X, P ) so the maximum
of the polytope I := τ -tilt-pair(T/X,P ) A. By Lemma 4.17(a), all arrows starting

at (T, P ) in Hasse(τ -tilt-pairA) are in Hasse I, and by Lemma 4.17(b), they are
labelled by the indecomposable direct summands of L. So, by Theorem 4.16(a)(d),
the indecomposable direct summands of L are the simple objects of W(T/X, P ) .
Therefore, FiltL = W(T/X, P ). �

We give more details about Theorem 4.16(c)(d):

Proposition 4.19. Let [U , T ] be an �-polytope in torsA. Then there exist indexings

• αi : T → Ti, 1 ≤ i ≤ � of arrows pointing from T in [U , T ],
• βi : Ui → U , 1 ≤ i ≤ � of arrows pointing toward U in [U , T ],

such that the following hold:

(a) We have U =
∧�

i=1 Ti;
(b) We have T =

∨�
i=1 Ui;

(c) For i, j ∈ {1, . . . , �}, Ti �⊇ Uj if and only if i = j;
(d) For any i ∈ {1, . . . , �}, the same brick labels αi and βi.

Proof. As in the proof of Theorem 4.16, we only have to consider the case where
U = 0 and T = modA. Let {S1, S2, . . . , S�} be the set of isomorphism classes of
simple A-modules. Then, using Proposition 3.16, putting αi : modA → ⊥Si =: Ti
and βi : Ui := FiltSi → 0, the assertions follow. �

We give also an alternative way to construct polytopes, which is a kind of con-
verse to Proposition 4.19.

Proposition 4.20.

(a) Let T ∈ f-torsA. Consider � distinct arrows αi : T → Ti of Hasse(torsA).

Let U :=
∧�

i=1 Ti. Then [U , T ] is an �-polytope.
(b) Let U ∈ f-torsA. Consider � distinct arrows βi : Ui → U of Hasse(torsA).

Let T :=
∨�

i=1 Ui. Then [U , T ] is an �-polytope.

Proof. By duality, we prove only (b). By [DIJ, Theorem 1.3], all Ui are in f-torsA.
Thanks to Theorem 4.3, the basic τ -tilting pairs corresponding to U , U1, U2, . . . ,
U� admit a maximal common direct summand (N,Q) with |N | + |Q| = |A| − �.

All Ui’s and U appear in the �-polytope [U(N,Q), T (N,Q)], so T =
∨�

i=1 Ui ∈
[U(N,Q), T (N,Q)], and [U , T ] ⊆ [U(N,Q), T (N,Q)].

As the βi are � arrows pointing toward U in Hasse([U(N,Q), T (N,Q)]∩ f-torsA)
and [U(N,Q), T (N,Q)] ∩ f-torsA is �-Hasse-regular, we have U = U(N,Q) and
the βi are all arrows pointing toward U . Hence, by Proposition 4.19(b), we have
T (N,Q) = T . �

Additionally, we show that if A is τ -tilting finite, then torsA is polygonal as
defined in Section 2.1.

Proposition 4.21. Let A be a finite-dimensional algebra that is τ -tilting finite.
The following hold:

(a) The lattice torsA is polygonal. The polygons of torsA are precisely the
2-polytopes.
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(b) Let [U , T ] be a polygon of torsA and S be a brick in T ∩ U⊥. Then:
• if S ∈ S[U , T ], then S labels exactly two arrows of [U , T ];
• if S /∈ S[U , T ], then S labels exactly one arrow of [U , T ].

Proof. (a) Let T1 → U and T2 → U be distinct arrows of Hasse(torsA). By Propo-
sition 4.20, [U , T1 ∨ T2] is a 2-polytope, hence a polygon. The other condition for
polygonality is proved dually. As polygons are of the form [U , T1 ∨ T2] for some
distinct arrows T1 → U and T2 → U , we have also proved that polygons are 2-
polytopes.

(b) By Theorem 4.16(b)(c)(d), S labels at least two arrows if S ∈ S[U , T ] and S
labels at least one arrow otherwise.

If two distinct arrows q1 : T1 → U1 and q2 : T2 → U2 belong to the same path of
Hasse[U , T ], we can suppose without loss of generality that T2 ⊆ U1. Then the label
of q1 is in U⊥

1 and the label of q2 is in T2, so these labels are distinct as U⊥
1 ∩T2 = 0.

As a polygon has two maximal paths, S labels at most two arrows of [U , T ].
Consider the arrows T → V1 and T → V2 in Hasse[U , T ]. If two distinct arrows

q1 : T1 → U1 and q2 : T2 → U2 belong to different paths of Hasse([U , T ] \ {T }), we
can suppose without loss of generality that T1 ⊆ V1 and T2 ⊆ V2. So the label of
q1 is in V1 ∩ U⊥ and the label of q2 is in V2 ∩ U⊥. As V1 ∩ V2 = U , the labels of
q1 and q2 have to be distinct. Combining this assertion with the first one, we have
proved that all labels of arrows of Hasse([U , T ] \ {T }) have to be distinct. So, if
S /∈ S[U , T ], S cannot label two arrows of Hasse[U , T ]. �
4.3. Algebraic characterizations of the forcing order. The aim of this sub-
section is to describe the forcing order on bricks in terms of representation theory.
We start with a characterization which holds for any finite-dimensional algebra that
is τ -tilting finite.

Definition 4.22. Define the filtration order �f on brickA as the transitive closure
of the following.

• S1 �f S2 if there is a semibrick {S1} ∪ E such that S2 ∈ Filt({S1} ∪ E) \
FiltE.

Define the pair filtration order �pf on brickA as the transitive closure of the fol-
lowing.

• S1 �pf S2 if there is a semibrick {S1, S
′
1} such that S2 ∈ Filt{S1, S

′
1}\{S′

1}.
We have the following first main result in this subsection.

Theorem 4.23. Let A be a finite-dimensional k-algebra that is τ -tilting finite. The
forcing order �, the filtration order �f and the pair filtration order �pf coincide.
In particular, for S1, S2 ∈ brickA, if S1 � S2, then S1 is a subfactor of S2.

We start with a lemma:

Lemma 4.24. Let A be a finite-dimensional k-algebra that is τ -tilting finite. If
E ∪ {S1} ∈ sbrickA and S2 ∈ Filt(E ∪ {S1}) \ FiltE is a brick then S1 � S2.

Proof. By Theorem 4.18, there exists (N,Q) ∈ τ -rigid-pairA such that W(N,Q) =
Filt(E∪{S1}). Let us denote U = U(N,Q) and T = T (N,Q). By Theorem 4.16(b),
S2 labels an arrow T1 → T2 of [U , T ].

Let us prove by induction on T2 ∈ [U , T ] that S1 � S2. First of all, if T2 = U ,
then S2 ∈ E ∪ {S1} holds by Theorem 4.16(c). By our assumption, S2 /∈ FiltE, so
S2 = S1.
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Otherwise, suppose that T2 � U . Then there exists an arrow T2 → T3 in [U , T ].
Taking the common summands of the τ -tilting pairs corresponding to T1, T2 and
T3, we obtain a 2-polytope [U ′, T ′] ⊆ [U , T ], hence a polygon, containing the arrows
T1 → T2 and T2 → T3. If T ′ = T1, then S2 labels an arrow ending at U ′ � T2 by
Theorem 4.16(c)(d). By the induction hypothesis, we have S1 � S2.

It remains to consider the case T ′ �= T1. Let S[U ′, T ′] = {S3, S4}. Then S3 � S2

and S4 � S2 hold by Proposition 2.4. Moreover, as Filt(S3, S4) � S2 /∈ FiltE, either
S3 /∈ FiltE or S4 /∈ FiltE holds. Since S3 and S4 label arrows ending at U ′ � T2,
either S1 � S3 or S1 � S4 holds by the induction hypothesis. So S1 � S2

holds. �

Proof of Theorem 4.23. Proposition 4.21(a) says that torsA is polygonal, so by
Proposition 2.4, the forcing order coincides with the polygonal order.

Clearly S1 �pf S2 implies S1 �f S2. Thanks to Lemma 4.24 and by transitivity
of �, S1 �f S2 implies S1 � S2.

We show that S1 � S2 implies S1 �pf S2. As � and �p on Hasse1(torsA)
coincide, where �p is the polygonal forcing, it suffices to consider the case where
there are arrows q1 and q2 labelled by S1 and S2 such that q1 �p q2 in a polygon
[U , T ] of torsA. If q1 �p q2, we have S1

∼= S2, so S1 �pf S2. So we assume that
q1 and q2 are not forcing equivalent. Then q1 is an arrow of Hasse[U , T ] incident
to T or U and q2 is an arrow of Hasse[U , T ] that is not incident to T or U . By
Theorem 4.16, the semibrick S[U , T ] is of the form {S1, S

′
1} and S2 belongs to

Filt{S1, S
′
1}. Then, by Proposition 4.21(b), S2 �∼= S′

1, so S1 �pf S2 holds.
The last statement is clear since � coincides with �f . �

We define a convenient concept.

Definition 4.25. An A-module is multiplicity free if it has no repetition in its
composition series.

Notice that a multiplicity free indecomposable module is a brick. Before giving
more specific characterizations, we give the following elementary observation.

Lemma 4.26. Let {S, S′} ∈ sbrickA with S �∼= S′ and consider a non-split short
exact sequence 0 → S → X → S′ → 0. Then X is a brick.

Proof. Recall that S and S′ are two non-isomorphic simple objects in the abelian
category W := Filt(S, S′). By assumption, X has length 2 in W and is not isomor-
phic to S⊕S′. Thus X is indecomposable and multiplicity free in W , and hence it
is a brick. �

For multiplicity free bricks, the forcing order is described in a very simple way.

Corollary 4.27. Let A be a finite-dimensional algebra that is τ -tilting finite. Con-
sider X,Y ∈ brickA, such that Y is multiplicity free. Then X � Y if and only if
X is a subfactor of Y .

Proof. By Theorem 4.23, it suffices to prove ‘if’ part. Suppose that X is a subfactor
of Y . We show by induction on dimY − dimX that X forces Y . This is clear if
dimY = dimX. Suppose dimY > dimX. Then there exists a subfactor X ′ of Y ,
a simple A-module S and a non-split short exact sequence of one of the following
forms:

ξ : 0 → S → X ′ → X → 0 or ξ′ : 0 → X → X ′ → S → 0.
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As X ′ is a subfactor of Y , it is also multiplicity free and hence {X,S} is a semibrick.
By Lemma 4.26, X ′ is a brick and by Theorem 4.23, X forces X ′. On the other
hand, by induction hypothesis, X ′ forces Y . Therefore X forces Y . �

In [IRRT], the forcing order is shown to be equivalent to the doubleton extension
order when A is a preprojective algebras of Dynkin type. We end this section by
proving this for a much more general class of algebras.

Definition 4.28 ([IRRT]). The doubleton extension order on brickA is the transi-
tive closure �d of the relation defined by: S1 �d S2 if there exists a brick S′

1 such
that

dimExt1A(S1, S
′
1) = 1 and there is an exact sequence 0 → S′

1 → S2 → S1 →
0;

or dimExt1A(S
′
1, S1) = 1 and there is an exact sequence 0 → S1 → S2 → S′

1 →
0.

We will consider bricks having the following stronger property.

Definition 4.29. A brick S ∈ modA is called a stone if Ext1A(S, S) = 0. It is called
a k-stone if additionally EndA(S) ∼= k.

We give the following characterization that is the second main theorem of this
subsection.

Theorem 4.30. Let A be a finite-dimensional k-algebra that is τ -tilting finite such
that all bricks of modA are k-stones. Then the forcing order � on brickA coincides
with the doubleton extension order �d.

From now on, until the end of this subsection, we suppose that A is τ -tilting
finite and all bricks are k-stones. We start with the following observation.

Lemma 4.31. Let {S, S′} be a semibrick of A. Then dimExt1A(S
′, S) is 0 or 1. In

the latter case, the non-split short exact sequence 0 → S → X → S′ → 0 satisfies:

(a) HomA(X,S) = HomA(S
′, X) = Ext1A(X,S) = Ext1A(S

′, X) = 0;
(b) dimHomA(S,X) = dimHomA(X,S′) = 1;

(c) dimExt1A(S,X) is either 0 or 1;
(d) dimExt1A(X,S′) is either 0 or 1.

Proof. We suppose that Ext1A(S
′, S) �= 0. Let us consider a non-split short exact

sequence

ξ : 0 → S → X → S′ → 0.

According to Lemma 4.26, X is also a brick and hence a k-stone. Applying
HomA(−, S′) to ξ gives dimHomA(X,S′) = 1. Applying HomA(−, S) to ξ gives
the exact sequence

(4.3) 0 → HomA(X,S) → HomA(S, S) → Ext1A(S
′, S) → Ext1A(X,S) → 0.

Because ξ does not split and EndA(S) ∼= k, we obtain HomA(X,S) = 0. Then,
applying HomA(X,−) to ξ yields the exact sequence

0 =HomA(X,S) → HomA(X,X) → HomA(X,S′)

→Ext1A(X,S) → Ext1A(X,X) = 0.
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Since dimHomA(X,S′) = 1, HomA(X,X) → HomA(X,S′) is surjective, therefore
Ext1A(X,S) = 0. Again by (4.3), we get dimExt1A(S

′, S) = 1. The dual reasoning

implies that dimHomA(S,X) = 1 and HomA(S
′, X) = Ext1A(S

′, X) = 0.
We proved the first part of the Lemma, (a) and (b). For (c), applying HomA(S,−)

to ξ gives the exact sequence

0 = Ext1A(S, S) → Ext1A(S,X) → Ext1A(S, S
′).

Exchanging the role of S and S′, we have already proven that dimExt1A(S, S
′) is 0

or 1, so (c) holds. Finally, (d) is dual to (c). �
We deduce a description of Filt(S0, S1):

Lemma 4.32. Let {S0, S1} be a semibrick with S0 �∼= S1. Then we have an equiv-
alence of categories Filt(S0, S1) ∼= mod(kQ/I) where

Q =
(
• �� •��

)
and I is an ideal satisfying (QN

1 ) ⊆ I ⊆ (Q1) for N big enough, where (Q�
1) is

the two-sided ideal generated by paths of length �. Moreover, S0 and S1 correspond
to the simple kQ/I modules.

Proof. We start with the case where A is basic with two isomorphism classes of
simple A-modules S0 and S1. Denote E = A/ radA. As A-modules, we have
E ∼= S0 ⊕ S1. So, as modE ⊆ modA is fully faithful and S0 and S1 are k-stones,
we get E ∼= EndE(E) ∼= EndA(E) ∼= k × k as k-algebras. So A is elementary in the
sense of [ARS, Section III.1]. We consider the E-bimodule F := radA/ rad2 A. By
[ARS, Theorem III.1.9(b)], there is a surjective morphism φ : TE(F ) � A where
TE(F ) is the tensor algebra

⊕
n≥0 F

⊗En and (FN ) ⊆ Ker φ ⊆ (F 2). Let e0 and
e1 be orthogonal primitive idempotents corresponding to S0 and S1 respectively.
For i, j ∈ {0, 1}, dim eiFej is the multiplicity of Si as a direct summand of the

E-module Fej , that is, by [ARS, Proposition III.1.15(a)], dimExt1A(Sj , Si). As S0

and S1 are stones, Ext1A(S0, S0) = 0 = Ext1A(S1, S1). Moreover, by Lemma 4.31,

dimExt1A(S0, S1) ≤ 1, and dimExt1A(S1, S0) ≤ 1, so we deduce from the above
discussion that TE(F ) is a quotient of kQ. The result follows in this case.

Consider now the general case. We know that W := Filt(S0, S1) is a wide subcat-
egory. Moreover, as modA is τ -tilting finite, using Theorem 4.16, W is functorially
finite. Hence, it is easy that a minimal left W-approximation P of A is a pro-
generator of W . So, by Morita theory, W ∼= modB for B = EndA(P ), which is
a basic finite-dimensional k-algebra and satisfies the assumptions of the previous
paragraph. The conclusion follows. �

From the above, we deduce the following characterization of polygons in torsA:

Proposition 4.33. Suppose that [U , T ] is a polygon of torsA, and let {S0, S1} =
S[U , T ]. Depending on (dimExt1A(S1, S0), dimExt1A(S0, S1)), the polygon [U , T ] is
labelled in the following way, where Xi is the non-trivial extension of S1−i by Si:
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���
��
��
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��
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Proof. By Lemma 4.32, W = Filt(S0, S1) ∼= mod(kQ/I) where

Q =
(
• �� •��

)

and I is an ideal satisfying (QN
1 ) ⊆ I ⊆ (Q1) for N big enough. According to

Proposition 4.13, the labels in Hasse[U , T ] coincide with the labels in mod(kQ/I)
via the equivalence above. Therefore, we can suppose that A = kQ/I. Then the
computation of Hasse(sτ -tiltA) is straightforward as A is a Nakayama algebra with
two simple modules. �

We deduce the following proposition.

Proposition 4.34. For S1, S2 ∈ brickA, the following are equivalent:

(i) There exists a semibrick {S1, S
′
1} such that S2 ∈ Filt{S1, S

′
1} \ {S′

1};
(ii) S1

∼= S2 or there exists a brick S′
1 ∈ modA such that one of the following

situations occurs:
• dimExt1A(S1, S

′
1) = 1 and there is an extension 0 → S′

1 → S2 → S1 →
0;

• dimExt1A(S
′
1, S1) = 1 and there is an extension 0 → S1 → S2 → S′

1 →
0.

Moreover, in (ii), {S1, S
′
1} is automatically a semibrick.

Proof. (i) ⇒ (ii). If S1 �∼= S2, this is an immediate consequence of Proposition 4.33.
(ii) ⇒ (i). Suppose that there exists a short exact sequence

ξ : 0 → S1 → S2 → S′
1 → 0.

Applying HomA(S
′
1,−) to ξ gives the long exact sequence

0 → HomA(S
′
1, S1) → HomA(S

′
1, S2) → HomA(S

′
1, S

′
1)

→ Ext1A(S
′
1, S1) → Ext1A(S

′
1, S2) → Ext1A(S

′
1, S

′
1) = 0.(4.4)

Therefore, as dimExt1A(S
′
1, S1) = 1 and ξ does not split, we get Ext1A(S

′
1, S2) = 0.

Then, applying HomA(−, S2) to ξ gives the exact sequence

0 → HomA(S
′
1, S2) → HomA(S2, S2) → HomA(S1, S2) → Ext1A(S

′
1, S2) = 0,

so HomA(S
′
1, S2) = 0 and dimHomA(S1, S2) = 1. Using (4.4) again, we obtain

HomA(S
′
1, S1) = 0. Applying HomA(S1,−) to ξ gives HomA(S1, S

′
1) = 0. So S1 and

S′
1 are orthogonal, and we have the assertion. �

Proof of Theorem 4.30. By Proposition 4.34, we get that �pf and �d coincide.
As, by Theorem 4.23, � and �pf coincide, the result follows. �

The following useful observation will be used in Section 7.

Proposition 4.35. Let A be a finite-dimensional k-algebra that is τ -tilting finite
such that all bricks of modA are k-stones. Then for S ∈ brickA that is not simple,
there is a semibrick {S1, S2} such that dimExt1A(S2, S1) = 1 and a short exact
sequence 0 → S1 → S → S2 → 0.

Proof. By Proposition 3.16, there is a simple A-module S0 such that S0 � S. By
Theorem 4.30, S0 �d S. As S0 �∼= S, by definition of the doubleton extension
order, there exist two bricks S1 and S2 with dimExt1A(S2, S1) = 1 and a short exact
sequence 0 → S1 → S → S2 → 0. By Proposition 4.34, {S1, S2} is a semibrick. �
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5. Algebraic lattice congruences on torsion classes

5.1. General results on morphisms of algebras. Let A be an abelian category.
A full subcategory T of A is a torsion class in A if it is closed under factor objects
and extensions. Dually we define a torsion-free class in A. The classes torsA of
torsion classes and torfA of torsion-free classes in A are ordered by inclusion.

The following observation is a starting point of this section.

Proposition 5.1. Let A and B be abelian categories.

(a) Let F : A → B be a right exact functor. Then we have order-preserving
maps F ∗ : torsB → torsA and F∗ : torf B → torfA given by

F ∗(T ) := {X ∈ A | F (X) ∈ T } and F∗(F) := F ∗(⊥BF)⊥A .

(b) Let G : B → A be a left exact functor. Then we have order-preserving maps
G∗ : torfA → torf B and G∗ : torsA → torsB given by

G∗(F) := {X ∈ B | G(X) ∈ F} and G∗(T ) := ⊥BG∗(T ⊥A).

Proof. (a) Fix T ∈ torsB. Let 0 → X
ι−→ Y → Z → 0 be an exact sequence in

A. Then F (X) → F (Y ) → F (Z) → 0 is an exact sequence in B. If Y ∈ F ∗(T ),
then F (Y ) ∈ T , so F (Z) ∈ T . Thus Z ∈ F ∗(T ). Similarly, if X,Z ∈ F ∗(T ), then
F (X), F (Z) ∈ T and hence ImF (ι) ∈ T so F (Y ) ∈ T . Thus Y ∈ F ∗(T ). Clearly
F ∗ is order-preserving.

Let F ∈ torf B. Clearly F∗(F) is a torsion class in A since it is defined by (−)⊥A .
Since ⊥B(−) : torf B → torsB and (−)⊥A : torsA → torfA are order-reversing, F∗
is also order-preserving.

(b) This is dual to (a). �

A torsion pair is a pair (T ,F) consisting of a torsion class T in A and a torsion-
free class F in A such that HomA(T ,F) = 0, and for any X ∈ A, there exists a
short exact sequence 0 → T → X → F → 0 with T ∈ T and F ∈ F . In this case,
we have T = ⊥AF and F = T ⊥A .

We say that A has enough torsion-free classes if for any torsion class T in A,
there exists a torsion-free class F in A such that (T ,F) is a torsion pair. Dually we
define for A to have enough torsion classes in an obvious way. Finally, we say that
A has enough torsion pairs if is has enough torsion classes and enough torsion-free
classes.

In Definition 2.1, we gave the concept of adjoint pairs of order-preserving maps.
Any adjoint pair of functors induces an adjoint pair of order-preserving maps.

Proposition 5.2. Let A and B be abelian categories, and (F : A → B, G : B → A)
be an adjoint pair of functors.

(a) If B has enough torsion pairs, then (G∗ : torsA → torsB, F ∗ : torsB →
torsA) is an adjoint pair.

(b) If A has enough torsion pairs, then (F∗ : torf B → torfA, G∗ : torfA →
torf B) is an adjoint pair.

Proof. (a) For S ∈ torsB, we take a torsion pair (S,F) in B. Then, for T ∈ torsA,
we have T ⊆ F ∗(S) if and only if F (T ) ⊆ S if and only if HomB(F (T ),F) = 0.
Since (F,G) is an adjoint pair, this is equivalent to HomA(T , G(F)) = 0. This
holds if and only if G∗(T ⊥A) ⊇ F . As B has enough torsion classes, we have
F = (⊥BF)⊥B and G∗(T ⊥A) = (⊥BG∗(T ⊥A))⊥B . Therefore, G∗(T ⊥A) ⊇ F if and
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only if G∗(T ) = ⊥BG∗(T ⊥A) ⊆ ⊥BF = S. We have shown that (G∗, F
∗) is an

adjoint pair.
(b) For opposite categories Aop and Bop, we have an adjoint pair (Gop : Bop →

Aop, F op : Aop → Bop). By (a), this gives rise to an adjoint pair (F op
∗ : torsBop →

torsAop, Gop∗ : torsAop → torsBop). Using natural identifications torsBop = torf B
and torsAop = torfA, the desired assertion follows. �

We apply these observations to morphisms of algebras. It is immediate that,
for a finite-dimensional k-algebra A, modA has enough torsion classes and enough
torsion-free classes. In the rest of this subsection, let φ : A → B be a morphism of
finite-dimensional k-algebras. We denote the associated restriction functor by

E := A(−) : modB → modA,

which is an exact functor. Moreover we have a right exact functor Eλ and a left
exact functor Eρ given by

Eλ := B⊗A −: modA → modB and Eρ := HomA(B,−) : modA → modB,

which give rise to adjoint pairs (Eλ, E) and (E,Eρ). For T ∈ torsA and S ∈ torsB,
we define:

φ−(T ) := E∗(T ) = {Y ∈ modB | AY ∈ T },
φ+(T ) := E∗(T ) = ⊥B{Y ∈ modB | AY ∈ T ⊥A},
φ+(S) := E∗

λ(S) = {X ∈ modA | B ⊗A X ∈ S},
φ−(S) := Eρ∗(S) = ⊥A{X ∈ modA | HomA(B,X) ∈ S⊥B}.

We summarize the following basic properties.

Theorem 5.3.

(a) φ− and φ+ are order-preserving maps torsA → torsB.
(b) φ+ and φ− are order-preserving maps torsB → torsA.
(c) (φ+ : torsA → torsB, φ+ : torsB → torsA) is an adjoint pair.
(d) (φ− : torsB → torsA, φ− : torsA → torsB) is an adjoint pair.
(e) The maps φ− : torsA → torsB and φ+ : torsB → torsA are morphisms of

complete meet-semilattices.
(f) The maps φ+ : torsA → torsB and φ− : torsB → torsA are morphisms of

complete join-semilattices.
(g) For any T ∈ torsA, we have φ−(T ) ⊆ φ+(T ).

Proof. ((a))((b)) These are shown in Proposition 5.1.
((c))((d)) These are shown in Proposition 5.2.
((e))((f)) These follow from ((c)), ((d)) and Propositions 2.2.
((g)) Let Y ∈ φ−(T ), i.e. AY ∈ T . Then we have, for all Z ∈ modB satisfying

AZ ∈ T ⊥A , HomB(Y, Z) ⊆ HomA(AY,AZ) = 0. Therefore

Y ∈ ⊥B{Z ∈ modB | AZ ∈ T ⊥A} = φ+(T ). �

We will observe in Example 5.5(a) below that, contrary to what one might have
expected given Theorem 5.3((g)), φ−(S) ⊆ φ+(S) does not necessarily hold for
S ∈ torsB in general. We give a sufficient condition for this to hold.

Recall that we call a morphism φ : A → B of finite-dimensional k-algebras an



584 DEMONET, IYAMA, READING, REITEN, AND THOMAS

epimorphism if it satisfies the following three equivalent conditions [Sto, Proposi-
tions 1.1, 1.2], [Si, Proposition 1.1], see also [Ste]:

• φ is an epimorphism in the category of rings;
• B ⊗A B ∼= B through multiplication;
• the functor A(−) : modB → modA is fully faithful.

Note that, while a surjective morphism of rings is an epimorphism, the converse is
far from being true, e.g. the following inclusion is a ring epimorphism:

φ :

[
k k
0 k

]
↪→
[
k k
k k

]
.

For ring epimorphisms, we have the following property.

Proposition 5.4. Let φ : A → B be an epimorphism of finite-dimensional k-
algebras. For any S ∈ torsB, we have φ−(S) ⊆ φ+(S).

Proof. Let S ∈ torsB and F := S⊥B . Since φ is an epimorphism, we have
HomA(B,A(−)) = HomB(B,−) = idmodB and hence

AF ⊆ {Y ∈ modA | HomA(B, Y ) ∈ F}.

Assume X ∈ φ−(S), that is, HomA(X,Y ) = 0 holds for any Y ∈ modA satisfying
HomA(B, Y ) ∈ F . Thus HomB(B ⊗A X,F) = HomA(X,AF) = 0 holds. Therefore
B ⊗A X ∈ S and we have X ∈ φ+(S). �

The following example shows that φ+ and φ− are not necessarily morphisms of
join-semilattices, and φ− and φ+ are not necessarily morphisms of meet-semilattices.

Example 5.5.

(a) Let A = k and B be an arbitrary finite-dimensional k-algebra with n ≥ 2
non-isomorphic simple modules S1, S2, . . . , Sn. For any S ∈ torsB, it is
easy to check that

φ+(S) =
{

0 if S �= modB
modA if S = modB

and φ−(S) =
{

0 if S = 0
modA if S �= 0.

For all i = 1, . . . , n, FiltSi �= modB, while
∨

i FiltSi = modB so φ+ is
not a morphism of join-semilattices. In the same way, for all i = 1, . . . , n,
⊥Si �= 0, while

∧
i
⊥Si = 0 so φ− is not a morphism of meet-semilattices.

(b) Let A be a finite-dimensional algebra with n ≥ 2 non-isomorphic simple
modules S1, S2, . . . , Sn. We consider an embedding φ : A ↪→ B where B is
a matrix algebra B, which is simple. The only torsion classes in modB are
0 and modB. For T ∈ torsA, by Theorem 5.3((c)), we have φ+(T ) = 0 if
and only of T ⊆ φ+(0) if and only if B ⊗A T = 0. So we have

φ+(T ) =

{
0 if B ⊗A T = 0
modB if B ⊗A T �= 0

and φ−(T ) =

{
0 if AB /∈ T
modB if AB ∈ T .

For any i = 1, . . . , n, as ⊥Si contains the projective cover Pj of Sj for j �= i.
AsB⊗APj �= 0, we have φ+(

⊥Si) = modB. On the other hand,
∧

i
⊥Si = 0,

so φ+ is not a morphism of meet-semilattices. Since B is sincere as an A-
module and n ≥ 2, we have AB /∈ FiltSi, so φ−(FiltSi) = 0. On the other
hand,
∨

i FiltSi = modA, so φ− is not a morphism of join-semilattices.
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Let us fix a surjective morphism φ : A → B of finite-dimensional k-algebras. In
this case, the functor A(−) : modB → modA is fully faithful, and we can regard
modB as a full subcategory of modA consisting of A-modules annihilated by Ker φ.
Then modB is closed under submodules and factor modules in modA. We have

(B ⊗A −) ◦ A(−) = idmodB = HomA(B,−) ◦ A(−).

For a subcategory C of modA, we consider the subcategory

C := C ∩modB ⊆ modB.

We get the following basic properties.

Proposition 5.6.

(a) If X is a τ -rigid A-module, then B ⊗A X is a τ -rigid B-module.
(b) There is a commutative diagram

τ -rigidA
Fac− ��

B⊗A−
		

f-torsA

(−)

		
τ -rigidB

Fac− �� f-torsB.

Proof. (a) Let P1 → P0 → X → 0 be a minimal projective presentation of X in
modA. ThenX is τ -rigid if and only if the induced map Hom(P0, X) → Hom(P1, X)
is surjective, see [AIR, Proposition 2.4]. Using this, it is easy to see that if X is a
τ -rigid A-module, then B ⊗A X is a τ -rigid B-module.

(b) Suppose X is a τ -rigid A-module. By (a), B⊗A X is a τ -rigid B-module. It
is clear that Fac(B⊗AX) ⊆ FacX. On the other hand, if Y ∈ FacX, the surjective
map Xr � Y factors through B ⊗A Xr, showing that Y is in Fac(B ⊗A X). �

Proposition 5.7. Let φ : A → B be a surjective morphism of finite-dimensional
k-algebras.

(a) If (T ,F) is a torsion pair in modA, then (T ,F) is a torsion pair in modB.

(b) φ+ = (−) = φ−.

(c) (−) ◦ φ+ = idtorsB = (−) ◦ φ−.

(d) (−) : torsA → torsB is a surjective morphism of complete lattices.
(e) For any S∈ torsB, the set {T ∈ torsA | T =S} is the interval [φ−(S), φ+(S)]

in torsA. Therefore π↓ = φ− and π↑ = φ+.

Proof. ((a)) Since T ⊆ T and F ⊆ F , we have HomB(T ,F) = 0. For any X ∈
modB, take an exact sequence 0 → T → X → F → 0 with T ∈ T and F ∈ F .
Since modB is closed under submodules and factor modules in modA, we have
T ∈ T and F ∈ F . Thus the assertion follows.

((b)) The equation φ−(T ) = T is clear. Let F := T ⊥A . Then {Y ∈ modB |
AY ∈ F} = F holds. Thus φ+(T ) = ⊥BF = T holds by ((a)).

((c)) Suppose S ∈ torsB. Since (B⊗A−)◦A(−) = idmodB , we have AS ⊆ φ+(S).
Thus by the definition of (−), we have S ⊆ φ+(S). On the other hand, since

((−), φ+) = (φ+, φ
+) is an adjoint pair by Proposition 5.3((c)), we have φ+(S) ⊆ S

by Proposition 2.2. Thus φ+(S) = S holds.

The adjoint pair (φ−, (−)) = (φ−, φ−) gives φ−(S) ⊇ S. We have

S⊥B ⊆ F := {X ∈ modA | HomA(B,X) ∈ S⊥B},
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and hence φ−(S) = modB ∩ ⊥AF ⊆ ⊥B (S⊥B ) = S.
((d)) By Theorem 5.3((e))((f)), (−) is a morphism of complete lattices. By ((c)),

(−) is surjective.
((e)) Suppose T = S. Then in particular, φ+(T ) = T ⊆ S, so since (φ+, φ

+) is
an adjoint pair by Proposition 5.3((c)), we have T ⊆ φ+(S). Similarly, since S ⊆
φ−(T ) and (φ−, φ−) is an adjoint pair by Proposition 5.3((d)), we have φ−(S) ⊆
T . �

As we saw, when φ : A → B is surjective, φ− = φ+ = (−) is automatically a
morphism of complete lattice. We give an open problem about φ+ and φ−, which
are much more difficult to understand.

Problem 5.8. Characterize the surjective morphisms φ : A � B of k-algebras for
which φ+ : torsB → torsA and φ− : torsB → torsA are morphisms of complete
lattices.

We know that when φ : A → B is surjective, then φ− = φ+ = (−) preserves
functorial finiteness. A question of interest is the following one.

Problem 5.9. For a morphism φ : A → B of k-algebras, for each of φ+, φ−, φ+

and φ−, characterize when they preserve functorial finiteness.

We give an example of a non-τ -tilting finite algebra such that Problem 5.8 has
a positive answer, which also shows some difficulty to solve the problem in general.
Moreover, this example shows that the answer to Problem 5.9 is not always positive.

Example 5.10. Let k be an algebraically closed field and Qm the m-Kronecker
quiver

2

a1
��

am



 1

for m ≥ 2 and Am = kQm. The Hasse quiver of sτ -tiltAm
∼= f-torsAm is given by

P1



�������
��������

��������
�������

Am = P1 ⊕ P2

��			
			

��

























0

P2 ⊕ P3
�� P3 ⊕ P4

�� · · · �� I2 ⊕ I3 �� I1 ⊕ I2 �� I1

������

where P2i+1 := τ−i(Ame1) and P2i+2 := τ−i(Ame2) are preprojective modules,
and I2i+1 := τ i(D(e2Am)) and I2i+2 := τ i(D(e1Am)) are preinjective modules
where D = Homk(−, k). See also Example 3.6 for a more detailed description of
Hasse(torsA) when m = 2.

Let B := A2/(a2). Then we have modA2 = modB, FacP1 = addP1 and 0 = 0.
Any torsion class T corresponding to the preprojective τ -tilting modules except

A2 satisfies T = S := add(Be2 ⊕ S2). In this case, φ+(S) = Fac(P2 ⊕ P3) belongs
to f-torsA2, but φ

−(S) /∈ f-torsA2. Indeed, φ−(S) = T(X(1,0)) where X(1,0) is the
regular module of dimension vector (1, 1), a1 acting as 1 and a2 acting as 0.

Similarly, any torsion class T corresponding to the preinjective support τ -tilting
modules except 0 satisfies T = S ′ := addS2. In this case φ−(S ′) = addS2 ∈
f-torsA2, but φ

+(S ′) /∈ f-torsA2. Indeed, φ
+(S ′) consists of X ∈ modA2 such that

a2X = e1X, that is φ+(S ′) = T({X(λ,μ)}μ �=0), using the above notation.
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Suppose that φ : A → B is a surjective morphism of k-algebras. If A is τ -
tilting finite, by Proposition 5.7((d)), (−) : f-torsA → f-torsB is surjective as
f-torsA = torsA. However, if we drop the assumption that A is τ -tilting finite,
then it is not necessarily surjective, as shown by the following example, developed
by the second author with Yingying Zhang.

Example 5.11. Keeping the notation of Example 5.10, consider the two algebras
A = A3 and B = A2 = A3/(a3). Then (−) : f-torsA → f-torsB is not surjective.
Indeed, consider T ∈ f-torsA. Then T = FacT for some T ∈ sτ -tiltA. By immedi-
ate inspection of the Auslander-Reiten quiver of modA in Example 5.10, there are
three possibilities, excluding the case T = 0 or T = A:

• T = P1 = S1. In this case, T = addS1.
• T = I�⊕I�+1 for � ≥ 0 (with I0 = 0). In this case, T = T ∩modB = addS2.
Indeed T = add(Ii)i≤� and, for i > 0, Ii ∈ modB if and only if a3Ii = 0 if
and only if i = 1 and hence Ii = I1 = S2.

• T = P�⊕P�+1 for � ≥ 2. In this case, T = FacP2 holds. Indeed T contains
all indecomposable A-modules except Pi for i < �, and the result follows
by a similar argument as above.

So the image of (−) consists of modB, FacP2, addS1, addS2 and 0.

5.2. Algebraic lattice quotients. We are now interested in lattice quotients of
the form torsA � tors(A/I). We recall that the congruence corresponding to such
a lattice quotient is called algebraic.

We summarize some results of Section 5.1 in lattice-theoretical language in the
following result.

Theorem 5.12. Let A be a finite-dimensional k-algebra.

(a) For any I ∈ idealA, the map T �→ T ∩mod(A/I) is a surjective morphism
of complete lattices from torsA to tors(A/I).

(b) The congruence ΘI inducing torsA � tors(A/I) is an arrow-determined
complete congruence.

(c) The map ηA : idealA → Con(torsA) sending I to ΘI is a morphism of
complete join-semilattices.

(d) The class of τ -tilting finite algebras is closed under taking factor algebras.

Proof. (a) This is Proposition 5.7(d).
(b) It is complete by (a). Then it is arrow-determined by Theorem 3.1(b) and

Proposition 2.6.
(c) Let I ⊆ idealA. We will write

∑
I for
∑

I∈I I. For I ∈ I, we have
mod(A/

∑
I) ⊆ mod(A/I). So if T ,U ∈ torsA satisfy T ≡ΘI

U (that is T ∩
mod(A/I) = U∩mod(A/I)), they also satisfy T ∩mod(A/

∑
I) = U∩mod(A/

∑
I),

so T ≡Θ∑ I U . We proved that ΘI ≤ Θ∑
I for any I ∈ I. So

∨
I∈I ΘI ≤ Θ∑

I . In
the rest, we prove the opposite inequality.

For I ∈ idealA and T ∈ torsA, let T I := π↑
ΘI

(T ) for simplicity. By Proposition
5.7((e)), we get

T I = {X ∈ modA | (A/I)⊗A X ∈ T ∩mod(A/I)} = {X ∈ modA | X/IX ∈ T }.
Let now I, J ∈ idealA. For T ∈ torsA, we have

(T I)J = {X ∈ modA | (X/JX)/(I(X/JX)) ∈ T }
= {X ∈ modA | X/(I + J)X ∈ T } = T (I+J).
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Therefore, if T ,U ∈ torsA satisfy T ≡ΘI+J
U , we have (T I)J = (UI)J . So T I ≡ΘJ

UI . Finally, we get the sequence

T ≡ΘI
T I ≡ΘJ

UI ≡ΘI
U ,

so T ≡ΘI∨ΘJ
U . We have proved that ΘI ∨ΘJ = ΘI+J .

As A is finite-dimensional, there exists I ′ ⊆ I finite such that
∑

I ′ =
∑

I. So

Θ∑
I = Θ∑

I′ =
∨
I∈I′

ΘI ≤
∨
I∈I

ΘI .

(d) This is an immediate consequence of (a). �

Thanks to Theorem 5.12, we have a morphism of complete join-semilattices
ηA : idealA → Conc(torsA), I �→ ΘI . As this map is usually not surjective, and as
the case of lattice quotients coming from algebra quotients is of particular interest,
we study the image AlgConA of ηA. As a consequence of Theorem 5.12, we get:

Theorem 5.13. The set AlgConA of algebraic congruences is a complete join-
sublattice of Con(torsA), of Conc(torsA), and of Conca(torsA). Hence it is a com-
plete lattice.

Proof. By Theorem 5.12(c), ηA is a morphism of complete join-semilattices. Hence
its image AlgConA is a complete join-sublattice of Con(torsA), and hence itself
a complete lattice. Consider I ⊆ idealA. We know that Θ∑

I is the smallest
congruence that is bigger than all ΘI for I ∈ I. Additionally, by Theorem 5.12(b),
Θ∑

I ∈ Conca(torsA) ⊆ Conc(torsA) ⊆ Con(torsA) so Θ∑
I is also the smallest

complete congruence and the smallest arrow-determined complete congruence that
is bigger than all ΘI for I ∈ I. So AlgConA is also a complete join-sublattice of
Conc(torsA) and Conca(torsA). �

Recall that by Proposition 2.7, Conca(torsA) is a complete meet-sublattice of
Conc(torsA) which is in turn a complete meet-sublattice of Con(torsA). In both
cases, it is clear that they are not complete join-sublattices, so the three statements
of Theorem 5.13 are not just obtained by composition of morphisms of complete
join-semilattices.

Note that ηA is not necessarily a morphism of lattices:

Example 5.14. Let A be the path algebra of the quiver

1 2
a�� b �� 3 ,

and let I1 := (a) and I2 := (b). Then I1 ∩ I2 = 0 holds. Notice that Hasse(torsA)
contains an arrow FacP2 → Fac(P2/S1 ⊕ P2/S3), that is contracted by ΘI1 and
ΘI2 hence by ΘI1 ∧ΘI2 . So we have ΘI1∩I2 = Θ0 �= ΘI1 ∧ΘI2 . This example also
shows that AlgConA is not a sublattice of Con(torsA) since it is easy to check that
ΘI1 ∧ΘI2 is not an algebraic congruence.

We get the following important characterization of an algebraic congruence ΘI in
terms of bricks. As mod(A/I) is a full subcategory of modA, we naturally identify
brick(A/I) with the subset {S ∈ brickA | IS = 0} of brickA.
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Theorem 5.15. Let A be a finite-dimensional k-algebra and I ∈ idealA. Then the
following hold:

(a) An arrow q in Hasse(torsA) is not contracted by ΘI if and only if Sq is in
mod(A/I). Moreover, in this case, it has the same label in Hasse(torsA)
and Hasse(tors(A/I)).

(b) Consider two torsion classes U ⊆ T in modA. We have T ≡ΘI
U if and

only if, for every brick S in T ∩ U⊥, IS �= 0.

We start by a lemma.

Lemma 5.16. Under the assumptions of Theorem 5.15(b), the bricks in T ∩ U⊥

are exactly the bricks of mod(A/I) that are in T ∩ U⊥.

Proof. Recall that T = T ∩ mod(A/I) and U = U ∩ mod(A/I). It is immediate

that U⊥
= U⊥ ∩ mod(A/I) and brick(A/I) = brickA ∩ mod(A/I), so the result

follows. �

Proof of Theorem 5.15. (b) By definition, T ≡ΘI
U if and only if T = U . According

to Theorem 3.3(a), this holds if and only if T ∩ U⊥
contains no brick. So, by Lemma

5.16, T ≡ΘI
U if and only if no brick of T ∩ U⊥ is in mod(A/I), and the result

follows.
(a) Let q : T → U be an arrow in Hasse(torsA). By definition, Sq is the unique

brick in T ∩ U⊥. Hence, by (b), q is contracted, that is T = U , if and only if
ISq �= 0, if and only if Sq /∈ mod(A/I). If it is not the case, according to Lemma

5.16, T ∩ U⊥
contains only the brick Sq, hence the arrow T → U is labelled by

Sq. �

Recall that the lattice ConL of congruences on a lattice L has Φ ≤ Θ if and only
if for x, y ∈ L, if x ≡Φ y implies x ≡Θ y. When Φ and Θ are arrow-determined,
Φ ≤ Θ if and only if the set of Hasse arrows contracted by Φ is contained in the
set of arrows contracted by Θ. As an immediate consequence of Theorems 5.12
and 5.15, we have the following characterization of AlgConA, the restriction of
Con(torsA) to algebraic congruences.

Corollary 5.17. Let A be a finite-dimensional k-algebra. Then I, J ∈ idealA
satisfy ΘI ≤ ΘJ in AlgConA if and only if brick(A/I) ⊇ brick(A/J).

Proof. First, if brick(A/I) ⊇ brick(A/J), by Theorem 5.15(b), arrows contracted
by ΘI are also contracted by ΘJ , hence we get ΘI ≤ ΘJ as ΘI and ΘJ are arrow-
determined by Theorem 5.12(b).

Suppose now that ΘI ≤ ΘJ and let S ∈ brick(A/J). By Theorem 3.3(c), there
exists an arrow T → U in Hasse(torsA) labelled by S. By Theorem 5.15(b), S ∈
brick(A/J) implies that T �≡ΘJ

U , hence, as ΘI ≤ ΘJ , T �≡ΘI
U so, again by

Theorem 5.15(b), there is a brick in T ∩ U⊥ that is in mod(A/I). As S is the only
brick in T ∩ U⊥, S ∈ brick(A/I). �

We now relate AlgConA and AlgCon(A/I) for an ideal I of A.
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Proposition 5.18. Let A be a finite-dimensional k-algebra and I ∈ idealA. Then
there exist two unique maps ιI and εI making the following diagram commutative:

ideal(A/I) �
� φ−1

��

ηA/I

				

idealA
J �→J+I �� ��

ηA

				

ideal(A/I)

ηA/I

				
AlgCon(A/I) �

�

ιI
�� AlgConA εI

�� �� AlgCon(A/I),

where φ : A → A/I is the canonical surjection. Moreover,

(a) εI ◦ ιI = idAlgCon(A/I) ;
(b) ιI ◦ εI(Θ) = Θ ∨ΘI for any Θ ∈ AlgConA ;
(c) Im ιI = [ΘI ,ΘA] (ΘA identifies all torsion classes) ;
(d) ιI is a morphism of complete lattices ;
(e) εI is a morphism of complete join-semilattices.

Proof. Let J be an ideal of A/I. The congruence ηA(φ
−1(J)) corresponds to the

surjective complete lattice morphism

torsA � tors(A/I) � tors((A/I)/J) = tors(A/φ−1(J))

so it only depends on ηA/I(J), so ιI exists. As ηA/I is surjective, ιI is unique.
Suppose that J1, J2 ∈ idealA satisfy ηA(J1) = ηA(J2). By Corollary 5.17, this is

equivalent to brick(A/J1) = brick(A/J2). This implies

brick(A/(I + J1)) = {S ∈ brick(A/J1) | IS = 0}
= {S ∈ brick(A/J2) | IS = 0} = brick(A/(I + J2)),

so by Corollary 5.17 again, ηA/I(J1+ I) = ηA/I(J2+ I) and εI exists and is unique
as before.

(a) As the composition of the two maps of the upper row is the identity of
ideal(A/I), and ηA/I is surjective, εI ◦ ιI = idAlgCon(A/I).

(b) For J ∈ idealA, φ−1(J + I) = J + I, so, as ηA is a morphism of complete
join-semilattices, ηA(φ

−1(J+I)) = ηA(J)∨ηA(I) = ηA(J)∨ΘI . On the other hand,
using the commutative diagram, ηA(φ

−1(J + I)) = ιI(εI(ηA(J))), so the assertion
follows as ηA is surjective.

(c) This is a clear consequence of (b).
(d) By (a) and (c), ιI is an inclusion, with image a complete sublattice, hence ιI

is a morphism of complete lattices.
(e) By Theorem 5.12(c), ηA and ηA/I are both morphisms of complete join-

semilattices. Moreover, it is elementary that J �→ J + I is a morphism of com-
plete join-semilattices. It follows easily that εI is a morphism of complete join-
semilattices. �

Remark 5.19. In Proposition 5.18, εI is not a morphism of lattices in general. For
example, consider the Kronecker quiver as in Example 3.6. Let I = (a), J = (b)
and J ′ = (a− b). As ηA is a morphism of complete join-semilattices, we get easily
εI(ΘJ ) = εI(ΘJ′) = Θ(b). On the other hand, JS(1:0) = 0 and J ′S(1:1) = 0. It is
immediate that the only ideal that annihilates both S(1:0) and S(1:1) is 0, so, by
Theorem 5.15, ΘJ ∧ΘJ′ = 0. Finally, εI(ΘJ ∧ΘJ′) = 0 �= Θ(b) = εI(ΘJ)∧ εI(ΘJ′).

We get the following corollary of Theorem 5.15.
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Corollary 5.20. Let A be a finite-dimensional k-algebra and I ∈ idealA. Then
the following are equivalent:

(i) I ⊆ I0 :=
⋂

S∈brickA annS where annS := {a ∈ A | aS = 0};
(ii) ηA(I) is the trivial congruence;
(iii) The map T �→ T ∩mod(A/I) is an isomorphism from torsA to tors(A/I).
(iv) The maps ιI and εA of Proposition 5.18 are inverse of each other.

Moreover, (i), (ii), (iii), (iv) imply:

(v) The lattices AlgCon(A/I) and AlgConA are isomorphic.

and (v) implies (i), (ii), (iii), (iv) if A is τ -tilting finite.
In particular, I0 is the maximum of idealA satisfying each of these properties.

Proof. (i) ⇔ (ii) It is an immediate consequence of Corollary 5.17.
(ii) ⇔ (iii) It is true by definition of ηA(I).
(ii) ⇔ (iv) By Proposition 5.18(a) and (b), ιI and εI are inverse of each other if

and only if ΘI = ηA(I) is trivial.
(iv) ⇒ (v) It is trivial.
(v) ⇐ (iv) If A is τ -tilting finite, hence # torsA < ∞ by Theorem 4.7, we have

#AlgConA ≤ #ConA < ∞. Therefore, if AlgCon(A/I) ∼= AlgConA, (iv) holds by
Proposition 5.18(a). �

We get the following corollary, extending a result of [EJR].

Corollary 5.21. Let A be a finite-dimensional k-algebra and Z the center of A.
Then for any I ⊂ A radZ, ηA(I) is the trivial congruence.

Proof. Fix a ∈ radZ. For any A-module X, we have an endomorphism a : X → X
which is not an isomorphism. If X is a brick, this has to be zero. Thus any
S ∈ brickA is annihilated by a, so ηA(radZ) is trivial by Corollary 5.20. �

Corollary 5.21 immediately implies that if I ⊂ A radZ, the projection sτ -tiltA �
sτ -tilt(A/I) is an isomorphism, which is the original result of [EJR].

By Theorem 5.12 and Corollary 5.20, there is a surjective complete lattice mor-
phism ideal(A/I0) → AlgConA. Notice that it is not necessarily an isomorphism:

Example 5.22. Consider

A := k

(
1u ��

x



 2 v
��

y
��

)
/(yx, xy, u2, v2, xvy, vyu, yux, uxv).

Then A has 10 support τ -tilting modules. We depicted Hasse(torsA) and its brick
labelling in Figure 3. Moreover, it is easy to see that I0 = 0, and, however, there is
a family of ideals indexed by P1: I(λ:μ) = (λxv + μux).

6. The preprojective algebra and the weak order

In this section we give background on the weak order on a Weyl group, on prepro-
jective algebras, and on the connection between the weak order and preprojective
algebras.
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Figure 3. An example where ideal(A/I0) �∼= AlgConA

6.1. Weak order on Weyl groups. Let Q be a Dynkin quiver, that is, a quiver
whose underlying graph is one of the following simply laced diagrams:

An 1 2 3 (n− 2) (n− 1) n;

n

Dn 1 2 3 (n− 2) (n− 1);

4

E6 1 2 3 5 6;

7

E7 1 2 3 4 5 6;

8

E8 1 2 3 4 5 6 7.



LATTICES OF TORSION CLASSES 593

4321

4312
��






4231
		

3421
��
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��
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��
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��
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��

����
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��

����
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��
����
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��
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����
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��
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��
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��
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��
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��
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����
1342
��
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2143
��







3124
��
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2314
��





 ��
����
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��

���� ��





1324
��

���� ��





2134
��

���� ��






1234
��

���� 		 ��






Figure 4. The weak order on S4

The Dynkin quiver Q determines a group called the Weyl group W of Q, which
depends only on the underlying undirected graph of Q. We label the vertices of Q
as above and let S := {s1, . . . , sn}. The Weyl group W of Q is the group given by
the presentation

W =

〈
S

∣∣∣∣∣∣
s2i = 1 for all i = 1, . . . , n
sisjsi = sjsisj for all i and j adjacent in Q
sisj = sjsi for all i and j not adjacent in Q

〉
.

The best known example of a Weyl group is the symmetric group Sn+1, which is
the Weyl group associated to a quiver of type An. The generators s1, . . . , sn are
the simple transpositions (1, 2) through (n, n+ 1). We represent each element σ of
Sn+1 by its one-line notation σ(1) · · ·σ(n+ 1). Background on the combinatorics
of Coxeter groups can be found in [BB].

We will call an expression si1 · · · sik a word for w if w = si1 · · · sik holds in W .
The minimal length (number of letters) of a word for w is called the length of w
and denoted �(w). A word for w having exactly �(w) letters is called a reduced word
for w.

The (right) weak order on W is the partial order on W setting v ≤ w if and only
if there exists a reduced word si1 · · · sik for w such that, for some j ≤ k, the word
si1 · · · sij is a reduced word for v. Importantly for our purposes, the weak order on
W is a lattice (see, for example, [BB, Theorem 3.2.1]). Arrows of HasseW are of
the form ws → w for s ∈ S whenever �(ws) > �(w).

As an example, we describe the weak order on permutations. An inversion of
σ ∈ Sn+1 is a pair (σ(i), σ(j)) such that 1 ≤ i < j ≤ n + 1 and σ(i) > σ(j). The
length of σ is the number of inversions of σ. The weak order on Sn+1 corresponds
to containment of inversion sets. Hasse arrows are τ → σ were τ is obtained from
σ by swapping two adjacent entries σ(i) < σ(i + 1). We illustrate the weak order
on S4 in Figure 4.

We are interested in lattice congruences on and lattice quotients of the weak
order. Background on congruences and quotients of the weak order can be found
in [R4,R5].
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There is a hyperplane arrangement associated to W which will play a role in
what follows. Specifically, Rn can be equipped with a positive-definite symmetric
bilinear form such that each element si acts as reflection in a hyperplane Hi. It
follows that any element of the form wsiw

−1 acts as reflection in some hyperplane.
It is less obvious, but still known, that every element of W that acts as a reflection is
conjugate to some si. The collection of all these hyperplanes is called the reflection
arrangement.

The complement of the reflection arrangement is a union of open cones. We refer
to the closure of each of these cones as a chamber. We can view the collection of
the chambers and their faces as a fan F , the Coxeter fan. Fix a chamber D in the
Coxeter fan whose facets are given by H1, . . . , Hn. We call this cone the dominant
chamber. There is a natural bijection between the chambers of the Coxeter fan and
the elements of W , given by sending w to the chamber wD.

For any lattice congruence Θ on W , there is a corresponding coarsening of the
Coxeter fan: Since elements of W correspond to chambers, each congruence class
is a set of chambers. The union of the chambers corresponding to a congruence
class is itself a convex cone, and the set of such cones is a complete fan FΘ that
coarsens F . (See [R1, Theorem 1.1].) By definition, the maximal cones of FΘ

are in bijection with the elements of the quotient W/Θ. In fact, the arrows in
the Hasse quiver of W/Θ correspond bijectively to the pairs of adjacent maximal
cones in FΘ. (This result can be obtained by concatenating [R1, Theorem 1.1] and
[R1, Proposition 3.3] or by interpreting [R4, Proposition 9-8.6] in the special case
of the weak order on W .) As an immediate consequence, we have the following
proposition, in which a fan is said to be simplicial if for each of its maximal cones,
the facet normals for the cone are linearly independent.

Proposition 6.1. Given a lattice congruence Θ on W , the quotient W/Θ is Hasse-
regular if and only if the fan FΘ is simplicial.

6.2. Preprojective algebras and Weyl groups. Let Q = (Q0, Q1) be an acyclic
quiver with set of vertices Q0 and set of arrows Q1. We define a new quiver Q by
adding a new arrow a∗ : j → i for each arrow a : i → j in Q. The preprojective
algebra of Q is defined as

Π = ΠQ := kQ

/⎛⎝∑
a∈Q1

(aa∗ − a∗a)

⎞
⎠ .

Then, up to isomorphism, Π does not depend on the choice of orientation of the
quiver Q. It is well-known that Π is finite-dimensional if and only if Q is a Dynkin
quiver.

Now we assume that Q is a Dynkin quiver, and let W be the corresponding Weyl
group. For a vertex i ∈ Q0, we denote by ei the corresponding idempotent of Π.
We denote by Ii the two-sided ideal of Π generated by the idempotent 1− ei. Then
Ii is a maximal left ideal and a maximal right ideal of Π since Q has no loops. For
each element w ∈ W , we take a reduced word w = si1 · · · sik for w, and let

Iw := Ii1 · · · Iik .

The following result due to Mizuno is the starting point of this section.
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Figure 5. sτ -tilt(Π) in type A3

Theorem 6.2.

(a) [BIRS, Theorem III.1.9] Iw does not depend on the choice of the reduced
word for w.

(b) [M, Theorem 2.14] Π is τ -tilting finite, and we have bijections

(6.1) W
∼−→ sτ -tiltΠ

∼−→ torsΠ

given by w �→ Iw �→ Fac Iw.
(c) [M, Theorem 2.21] The bijections (6.1) give isomorphisms of lattices

(W,≤op)
∼−→ (sτ -tiltΠ,≤)

∼−→ (torsΠ,⊆).

Note that in [M], right modules are considered rather than left modules, which
has the consequence that [M] works with left weak order on W rather than right
weak order.

In type A3, the weak order on W = S4 is displayed in Figure 4. The corre-
sponding support τ -tilting modules are shown in Figure 5.

Recall that a join-irreducible element is called a double join-irreducible element
if the unique element which it covers is either join-irreducible or the bottom element
of the lattice. Theorem 1.13 asserts that if W is a finite Weyl group of simply-laced
type and Θ is a lattice congruence on W , then the following conditions satisfy the
implications (i) ⇒ (ii) ⇒ (iii):

(i) Θ is an algebraic congruence.
(ii) W/Θ is Hasse-regular.
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(iii) There is a set J of double join-irreducible elements such that Θ is the
smallest congruence contracting every element of J .

The theorem also asserts that (iii) ⇒ (i) when W is of type A. At the end of this
subsection, we show that (iii) ⇒ (ii) and (iii) ⇒ (i) are not true for the preprojective
algebra of type D4.

We now prove Theorem 1.13, except for the assertion that is specific to type A,
which is proved in Section 6.3. By the definition, any algebraic lattice quotient
of torsA is tors(A/I) for some I ∈ idealA. Thus the quotient is Hasse-regular by
Corollary 4.6. We see that (i) implies (ii).

It is easy to construct non-Hasse-regular quotients of the weak order, which
are therefore not algebraic quotients. For example, in S4, each one of the sets
{2413 → 2143}, {3412 → 3142}, and {2413 → 2143, 3412 → 3142} is closed under
polygonal forcing (see Figure 4), so by Proposition 2.4, each defines a lattice con-
gruence. However, the corresponding quotients are not Hasse-regular (each has one
or more vertices of degree 4 in the Hasse quiver).

The following theorem shows that (ii) implies (iii).

Theorem 6.3. Let W be a simply-laced finite Weyl group, and suppose that Θ is
a lattice congruence on W such that W/Θ is Hasse-regular. Then there exists a set
S of double join-irreducible elements in W such that Θ = con(S).
Proof. Let x be a join-irreducible element that is maximal in the forcing order
among join-irreducible elements contracted by Θ. It suffices to show that x is
double join-irreducible.

For w ∈ W , write D(w) for the right descents of w, the set of simple reflections
which can occur as the rightmost letter in a reduced word for w. The set of elements
covered by w is {wsi : si ∈ D(w)}.

Suppose x is join-irreducible and let x → x∗ be the unique arrow of HasseW
starting at x. Thus x∗ = xsj where sj is the unique element of D(x). If D(x∗)
contains some element si, then si and sj do not commute (otherwise, si ∈ D(x)).
Thus i and j are adjacent in the Dynkin diagram of W . Furthermore, since si /∈
D(w), there is an arrow xsi → x in HasseW .

Now suppose that x∗ is not join-irreducible, and not equal to e. Then D(x∗)
contains at least two distinct simple reflections si and sk, with i and k each adjacent
to j in the Dynkin diagram. The arrow x → xsj is a side arrow in two distinct
hexagons, namely the intervals [xsjsi, xsi] and [xsjsk, xsk], as shown below:

xsi

�����
��

β1 ##






 xsk

β3$$��
��

����
���

xsisj

		

x
β
		

xsksj

		
xsisjsi

����
���

xsj
β2

%%���
� β4

##







xsksjsk

�����
��

xsjsi xsjsk

None of the arrows up from x or down from xsj in these hexagons are contracted by
Θ, because such a contraction would also force the contraction of x → xsj , contra-
dicting our assumption that x is maximal in forcing order among join-irreducible
elements contracted by Θ. Since these arrows are not contracted, the cone C in FΘ

corresponding to the Θ-class of x and xsj has walls that contain the walls of the
Coxeter fan separating xD from xsiD and from xskD and separating xsjD from
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xsjsiD and xsjskD. Thus the normal vectors to C include the four vectors normal
to these four walls. Call these vectors β1, β2, β3, and β4, associated to walls in
the Coxeter fan (and thus to arrows in the weak order) as indicated in the diagram
above. Also, write β for the vector normal to the wall separating xD from xsjD
(which is not a wall of C).

All the Coxeter-fan walls associated to the hexagon [xsjsi, xsi] contain a common
codimension-2 face. Thus in particular β is in the linear span of β1 and β2. Similarly,
β is in the linear span of β3 and β4. We have found a non-trivial linear relation on
the set {β1, β2, β3, β4}. This is a subset of the set of normal vectors to walls of C,
and we conclude that C is not simplicial. So Proposition 6.1 implies that W/Θ is
not Hasse-regular. �

We explain in the following example why we cannot have (iii) ⇒ (i) or (iii) ⇒ (ii)
in other Dynkin types (see also Example 1.14 for an easier counterexample to
(iii) ⇒ (i) for a different finite-dimensional algebra):

Example 6.4. We consider the case D4 indexed as in the beginning of the section:

Q =

4

γ

��
1

α
��
2

α∗
��

γ∗

&&

β∗

��
3

β

��

We consider the bricks

S =
1
2
3 4

and S′ =
1
2
3

and S′′ =
1
2
4
.

Then we claim:

(a) S does not force S′, and S does not force S′′.
(b) Any algebraic congruence contracting S contracts at least one of S′ and

S′′.
(c) The smallest congruence contracting S is not algebraic.
(d) Let w = s2s4s3s2s4s3s1. Then Iw is a double join-irreducible element and

the corresponding brick is S.

Together, these imply that (iii) �⇒ (i), taking J = {S}. Further, one can observe
that the quotient by the smallest congruence contracting S is not Hasse-regular,
proving that (iii) �⇒ (ii). This, of course, also constitutes a proof that (i) does not
hold for this quotient, by Corollary 4.6. However, since this is a somewhat involved
calculation, we prefer the more conceptual argument for the non-algebraicity of the
quotient outlined above, and which we detail below.

Proof. (a) For (λ : μ) ∈ P1(k), let I(λ:μ) := (λαβ∗ + μαγ∗) ⊆ Π. Then I(0:1)S �= 0
and I(0:1)S

′ = 0. Thus ΘI(0:1) contracts S but does not contract S′. So S does not
force S′. In the same way, using I(1:0), S does not force S′′. Alternatively, the fact
that S forces neither S′ nor S′′ follows immediately from Theorem 4.23.

(b) Since S′⊕S′′ ∈ FacS and S ∈ Sub(S′⊕S′′), we have ann(S) = ann(S′⊕S′′) =
ann(S′)∩ann(S′′). Let I be an ideal of Π such that ΘI contracts S. Then I �⊆ ann(S)
by Theorem 5.15(a). Thus, at least one of I �⊆ ann(S′) and I �⊆ ann(S′′) holds.
Again by Theorem 5.15(a), ΘI contracts at least one of S′ and S′′.
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(c) By (a), the smallest congruence contracting S contracts neither S′ nor S′′,
so it is not algebraic by (b).

(d) Let w0 be the longest element ofW . As all reduced expressions of ww0, which
are s2s4s3s2s1 and s2s3s4s2s1, terminate by s2s1, ww0 is double join-irreducible in
W . So, by Theorem 6.2, and because u �→ uw0 is an anti-automorphism of W , we
get that Iw is join-irreducible in sτ -tiltΠ. We easily compute

Iw = 1 ⊕
1
2
4 3 1
2

⊕
1
2
3

⊕
1
2
4

and the brick labelling the arrow q starting at Iw is S by Proposition 4.9. �

6.3. The preprojective algebra and the weak order in type A. We continue
our discussion of the preprojective algebra of type A in Section 5 in [IRRT]. The
goal of this section is to provide more combinatorial and algebraic details about
the type A case. Some related results can be found in the recent preprint [K].
Throughout this section, let Π be the preprojective algebra of type An, that is
given by the quiver

Q := 1
x1 �� 2

x2 ��
y2

�� 3
x3 ��

y3

��
y4

��
xn−2 �� n− 1

xn−1 ��
yn−1

�� n
yn

��

with relations x1y2 = 0, xiyi+1 = yixi−1 for 2 ≤ i ≤ n − 1 and ynxn−1 = 0. We
identify the corresponding Weyl group W , sτ -tiltΠ and torsΠ by bijections (6.1).

We denote by S the set of non-revisiting walks on the double quiver Q. By
definition, these are walks in Q which follow a sequence of arrows either with or
against the direction of the arrow, and which do not visit any vertex more than
once. We identify a walk and its reverse walk (for instance x2y

−1
4 is identified with

y4x
−1
2 ). We also include length 0 walks starting and ending at the same vertex.
We give a definition of string modules that fits this context. For a more general

version, see [WW]. For each S ∈ S , there is a string module XS ∈ modΠ satisfying

• for i ∈ Q0, eiXS = k if S contains i and eiXS = 0 otherwise;
• for q ∈ Q1, q acts as idk if S contains q and acts as 0 otherwise.

The set U of non-revisiting paths defined in the introduction is the subset of S
corresponding to uniserial modules.

The main result of this section is the following.

Theorem 6.5.

(a) Bricks of modΠ are exactly the string modules.
(b) For two bricks S and S′, we have S � S′ if and only if S is a subfactor of

S′.

We give an easy example.
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Example 6.6. The Hasse quiver of (brickΠ,�) for n = 3 is:

1

����
��
�

����
���

���
���

� 2

�����
���

���
���

�

����
��
��

���
��
��
�

����
���

���
���

�� 3

�����
���

���
���

�

���
��
��
�

1
2

��
����

���
���

���
���

��
3

2

����
��
��
��

��

2
1

����
��
��
��

		�
��

��
��

�
2
3

����
��
��
��

��
1 3
2

3
2

1

1
2
3

2
1 3

Recall that Icyc is the ideal of Π generated by all 2-cycles and define

Π := Π/Icyc.

Proposition 6.7.

(a) We have Icyc =
⋂

S∈brickΠ annS.
(b) There is an isomorphism of lattices

(−) : torsΠ → torsΠ, T �→ T ∩modΠ.

(c) We have brickΠ = brickΠ.

For the proof of the proposition, we need an elementary lemma about ideals of Π:

Lemma 6.8. For I ∈ idealΠ, I = spank(I ∩ U )⊕ (I ∩ Icyc) as k-vector spaces.

Proof. As we have Π = spank U ⊕ Icyc, it suffices to prove I ⊆ spank(I ∩U )+ Icyc.
Let i, j ∈ Q0. Using relations for Π, we have eiΠej = pejΠej where p ∈ U is

the shortest path from i to j in Q. As ejΠej is a local ring with maximal ideal
ejIcycej , we get that either eiIej = eiΠej or eiIej ⊆ pejIcycej ⊆ eiIcycej . Therefore
eiIej ⊆ spank(I ∩ {p})⊕ eiIcycej . Thus, I ⊆ spank(I ∩ U ) + Icyc holds. �

Proof of Proposition 6.7. (a) Any x ∈ U is outside of the annihilator of the cor-
responding uniserial module. As any uniserial module is multiplicity free, hence a
brick, we deduce that U ∩

⋂
S∈brickΠ annS = ∅. Hence by Lemma 6.8,⋂

S∈brickΠ

annS ⊆ Icyc.

Let ω := x1y2 + x2y3 + · · · + xn−1yn. This is clearly a generator of Icyc which is
central in Π. Hence by Corollaries 5.20 and 5.21, Icyc ⊆

⋂
S∈brickΠ annS.

(b) and (c) are immediate consequences of (a) and Corollary 5.20. �

Because of this proposition, from the point of view of this paper, we can restrict
our study to Π.

We recall that an algebra presented by a quiver and relations kQ/I is gentle if

• every x ∈ Q0 has at most two incoming and at most two outgoing arrows;
• the ideal I is generated by paths of length 2;
• for any q ∈ Q1, there is at most one q′ ∈ Q1 with qq′ /∈ I;
• for any q ∈ Q1, there is at most one q′ ∈ Q1 with q′q /∈ I;
• if q, q′, q′′ ∈ Q1 with t(q′) = t(q′′) = s(q) and q′ �= q′′, we have q′q /∈ I or
q′′q /∈ I;

• if q, q′, q′′ ∈ Q1 with s(q′) = s(q′′) = t(q) and q′ �= q′′, we have qq′ /∈ I or
qq′′ /∈ I.
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Then we get the following.

Proposition 6.9.

(a) The algebra Π is gentle.
(b) There is a commutative diagram of bijections:

iτ -rigidΠ ∼
4.10(a)��

�Π⊗Π−
		

brickΠ

S ∼
X− �� indΠ iτ -rigidΠ brickΠ

Proof. (a) As, clearly, Π = kQ/Icyc, this is immediate from the definition.

(b) As Π is gentle, it is special biserial. Therefore, by [WW], an indecomposable
Π-module X is a string module or a band module. It is an easy verification that S
is the set of strings, hence string modules are exactly the XS ’s. It is also easy that
there are no bands. Thus we obtain the bijection from S to indΠ. Using this, it
is immediate that indΠ = brickΠ holds. In particular, the bijection of Proposition
4.10(a) becomes an equality iτ -rigidΠ = brickΠ. We have brickΠ = brickΠ by
Proposition 6.7(c).

Let T ∈ iτ -rigidΠ. By Proposition 5.6(b), FacT ∩ modΠ = Fac(Π ⊗Π T ), so
by Theorem 5.15(a), the labels of the arrow starting at FacT ∈ j-Irrc(torsΠ) and
the arrow starting at Fac(Π ⊗Π T ) ∈ j-Irrc(torsΠ) coincide. Thus the diagram
commutes. �

Proof of Theorem 6.5. (a) It follows from Proposition 6.9.
(b) This is shown in Corollary 4.27. �

Proposition 6.10. Let Π be a preprojective algebra of type A and let Π be as above.

(a) We have an isomorphism of lattices idealU → idealΠ sending S to spank S.
(b) The map ηΠ : idealΠ → ConW is injective.

(c) The morphism ηΠ is an isomorphism of lattices idealΠ ∼= AlgConΠ.

Proof. (a) It is an immediate consequence of Lemma 6.8.
(b) For S ∈ idealU , by Theorem 5.15(a), bricks contracted by ηΠ(spank S) are

those that are not annihilated by spank S. In particular, S corresponds to the set
of uniserial bricks that are contracted by ηΠ(spank S). Using (a), it implies that

I ∈ idealΠ is determined by ηΠ(I).
(c) By definition AlgConΠ is the image of ηΠ. So we have a bijection by (b). It

is order-preserving, so it has to be an isomorphism of lattices. �

We now prove Theorem 1.15.

Proof of Theorem 1.15. (a) This is Proposition 6.7(a).
(b) This is Proposition 6.10.
(c) By Propositions 6.7, 5.18 and Corollary 5.20, ηΠ(I) = ηΠ(J) if and only if

ηΠ(I + Icyc) = ηΠ(J + Icyc). By Proposition 6.10(b), this happens if and only if
I + Icyc = J + Icyc. By Lemma 6.8, we have I + Icyc = spank((I + Icyc)∩U )⊕ Icyc
and J + Icyc = spank((J + Icyc) ∩U )⊕ Icyc. Therefore, ηΠ(I) = ηΠ(J) if and only
if (I + Icyc) ∩ U = (J + Icyc) ∩ U .
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To conclude the proof, it suffices to prove that (I + Icyc) ∩U = I ∩U (and, by
symmetry, (J + Icyc)∩U = J ∩U ). By Lemma 6.8, we have Π = spank(U )⊕ Icyc
and I + Icyc = spank(I ∩ U )⊕ Icyc. Thus the desired equality holds. �

We conclude by proving the part of Theorem 1.13 that is specific for type A.
Before that, we give an explicit description of double join-irreducible elements of
W = Sn+1. For 1 ≤ i ≤ j ≤ n, we define di,j := sisi+1 · · · sj and for 1 ≤ j ≤ i ≤ n,
we define di,j := sisi−1 · · · sj where the si are the standard generators of Sn+1.

Proposition 6.11. Double join-irreducible elements of Sn+1 are exactly elements
di,j for 1 ≤ i, j ≤ n.

Proof. Let σ ∈ Sn+1 be double join-irreducible. Let sj be the rightmost simple
reflection in a reduced word for σ. Since σ is join-irreducible, this simple reflection
is unique. If σ �= sj , then since σ is double join-irreducible, the rightmost simple
reflection of σsj must also be unique. This simple reflection cannot commute with
sj , or else there would be two possible rightmost simple reflections for σ. Thus,
this reflection is sj−1 or sj+1. By symmetry, we can assume that it is sj−1.

If σ �= sj−1sj , then consider the previous simple reflection in a reduced word
for σ. As before, because σsj is join-irreducible, it does not commute with sj−1,
hence it is sj−2 or sj . If it was sj , as sjsj−1sj = sj−1sjsj−1, it would contradict
the uniqueness of sj . So the only possibility is sj−2. In particular, it is unique,
hence σsjsj−1 is also join-irreducible, so σsj is double join-irreducible. Then, by
an immediate induction, we get σ = di,j for some i ≤ j. �

Using Proposition 6.11, we associate to each double join-irreducible element di,j
of W the non-revisiting path udi,j

∈ U starting at i and ending at j. Via the lattice

isomorphism W ∼= torsΠ that sends w to Π ⊗Π Iww0
, the unique arrow pointing

from di,j in HasseW is labelled by Xudi,j
.

Proposition 6.12. Let J be a set of double join-irreducible elements of W . We
consider the ideal I = (uσ)σ∈J of Π. Then we have ηΠ(I) = con J .

Proof. For σ ∈ J , the uniserial module Xuσ
is not annihilated by uσ, so it is

not annihilated by I. Therefore, by Theorem 5.15(a), σ is contracted by ηΠ(I).

Consider now S ∈ brickΠ that is contracted by ηΠ(I). By Theorem 5.15(a) again,
we have IS �= 0. So there exists σ ∈ J such that uσS �= 0. As uσ is a non-revisiting
path, it implies that Xuσ

is a subfactor of S, so by Theorem 6.5(b), we get that S
is contracted by conJ . �

Proof of Theorem 1.13 (iii) ⇒ (i). It follows from Proposition 6.12. �

6.4. Combinatorial realizations. We now discuss the combinatorics of algebraic
congruences and quotients in type An. Specifically, we describe which arrows are
contracted by a given algebraic congruence, and describe the quotient explicitly as
a subposet of the weak order.

Recall that s� is the transposition (�, � + 1) and that the arrows in HasseSn+1

are σ → τ such that σ = τs� for � with τ (�) < τ (� + 1). It is immediate that
σ ∈ Sn+1 is join-irreducible if and only if

(6.2) σ(1) < σ(2) < · · · < σ(�) > σ(�+ 1) < σ(�+ 2) < · · · < σ(n+ 1)

for some � ∈ {1, 2, . . . , n}.
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The following observation is an easy consequence of [IRRT, Subsection 6.1].
We fix Π as in Section 6.3. Until the end of this subsection, in order to get an
isomorphism of partially ordered sets betweenSn+1 and sτ -tiltΠ (see Theorem 6.2),
we identify σ ∈ Sn+1 with Iσw0

∈ sτ -tiltΠ, where w0 is the longest element in Sn+1

(i.e. w0(i) = n+ 2− i).

Proposition 6.13 (Corollary of [IRRT]). Let σ be join-irreducible and � as before.
Then the arrow starting at σ in HasseSn+1, that is σ → σs�, is labelled by the
following brick in modΠ, depicted in composition series notation:⎛
⎜⎜⎜⎜⎜⎝

σ(� + 1) �� σ(� + 1) + 1 �� σ(� + 2) − 1

σ(� + 2)

����������������� �� σ(� + 2) + 1 �� σ(� + 3) − 1

σ(�M )

��

�� σ(�M ) + 1 �� �M − 1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

σ(�m) − 1

��

�� σ(�m) − 2 �� �m

σ(� − 1) − 1

������
�����

�����
�

�� σ(� − 1) − 2 �� σ(� − 2)

σ(�) − 1 �� σ(�) − 2 �� σ(� − 1)

⎞
⎟⎟⎟⎟⎟⎠

where �M is the biggest index satisfying σ(�M ) < �M and �m is the smallest satis-
fying σ(�m) > �m. Notice that �M = σ(�) and �m = σ(�+ 1).

To reformulate Proposition 6.13, and justify the equality of the two string mod-
ules, the label of σ → σs� corresponds to the non-revisiting walk supported by
vertices �m = σ(�+ 1), �m + 1, . . . , �M − 1 = σ(�)− 1, traveling through the arrow
xi−1 = (i− 1 → i) if i ∈ σ({1, 2, . . . , �}) and through the arrow yi = (i− 1 ← i) if
i ∈ σ({�+ 1, �+ 2, . . . , n+ 1}).

Just before Proposition 6.11, we defined double join-irreducible permutations
di,j ∈ Sn+1 for 1 ≤ i, j ≤ n. Given di,j and a permutation σ, define a di,j-pattern
in σ to be a pair σ(�)σ(�+ 1) with σ(�) > σ(�+ 1) such that

[i+ 1, j] ⊆ σ([1, �− 1]) if i ≤ j and [j + 1, i] ⊆ σ([�+ 2, n+ 1]) if i ≥ j.

We say that σ avoids di,j if it contains no di,j-pattern. The following is a special
case of [R3, Corollary 4.6] and Proposition 2.3.

Theorem 6.14. Let D be a set of double join-irreducible elements of Sn+1 and let
ΘD be the smallest congruence on Sn+1 that contracts the elements of D. Then
the quotient Sn+1/ΘD is isomorphic to the subposet of Sn+1 induced by the per-
mutations σ that avoid di,j for all di,j ∈ D.

We can also say explicitly which arrows of HasseSn+1 are contracted by ΘD.
The following theorem is a consequence of Theorem 6.14 and [R3, Theorem 2.4].

Theorem 6.15. Let D be a set of double join-irreducible elements of Sn+1 and let
ΘD be the smallest congruence on Sn+1 that contracts the elements of D. Then
an arrow σ → τ with σ = τs� is contracted by ΘD if and only if σ(�)σ(�+ 1) is a
di,j-pattern.

7. Cambrian and biCambrian lattices

In this section, we use the results of this paper to re-derive the known connection
between hereditary algebras of Dynkin type and Cambrian lattices. We also give an
algebraic/lattice-theoretic proof of another known fact, namely that each Cambrian
lattice is a sublattice of the weak order. Both of our proofs bypass the combinatorics
of sortable elements, which is needed in the previously known proofs. We also
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Figure 6. A Cambrian congruence and Cambrian lattice

analyze the biCambrian congruence of Barnard and Reading [BR] and show that
it is algebraic.

7.1. A representation-theoretic interpretation of Cambrian lattices. Let
Q be a simply-laced Dynkin quiver and let W be the corresponding Weyl group. A
Coxeter element of W is an element c obtained as the product in any order of the
generators S = {s1, . . . , sn}. The quiver Q defines a Coxeter element given by an
expression c = si1si2 · · · sin such that if there is an arrow i ← j in Q then si appears
before sj in the expression si1si2 · · · sin . There may be several expressions having
this property, but they all define the same Coxeter element of W because if i and j
are not related by an arrow of Q, the generators si and sj commute. Conversely a
Coxeter element c uniquely determines an orientation of the Dynkin diagram such
that an edge i — j is oriented i ← j if si precedes sj in some (equivalently, every)
reduced word for c.

We use Q (or equivalently c) to define a lattice congruence Θc on W called the
c-Cambrian congruence. We consider the set Ec := {sjsi → sj | i ← j ∈ Q1}
of arrows of HasseW and the congruence Θc := con Ec. The full set of arrows
contracted by Θc can be computed using polygon forcing as in Section 2.1.

The Cambrian congruence Θc is illustrated in the left picture of Figure 6 for
W = S4 and c = s2s1s3. (The edges contracted by Θc are doubled.) Thus Θc is the
smallest congruence on S4 contracting the arrows 2314 → 2134 and 1423 → 1243.

The quotientW/Θc is called the c-Cambrian lattice. The Cambrian latticeW/Θc

for W = S4 and c = s2s1s3 is drawn on the right of Figure 6. As a special case
of Proposition 2.3, the Cambrian lattice is isomorphic to the subposet πc

↓ W of W
consisting of bottom elements of Θc-classes. These bottom elements were charac-
terized combinatorially in [R2, Theorems 1.1, 1.4] as the c-sortable elements. By
definition, an element of W is c-sortable if it admits a reduced expression u1u2 . . . u�

where, for each i = 1, . . . , � − 1, ui+1 is a subword of ui (e.g. s2s3s5 is a subword
of s1s2s3s4s5) and u1 is a subword of a reduced expression u for c.

The connection between torsion classes and Cambrian lattices was established
in [IT]:
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Theorem 7.1. Let Q be a quiver of simply-laced Dynkin type, and c the corre-
sponding Coxeter element. Then tors kQ is isomorphic to the c-Cambrian lattice.

This theorem was proved by showing that tors kQ is isomorphic to the sublattice
ofW consisting of the c-sortable elements. We will now give a direct representation-
theoretical argument in Theorem 7.2 using the lattice-theoretic definition of the c-
Cambrian lattice rather than the combinatorial realization via c-sortable elements.
Let Π = ΠQ be a preprojective algebra and I be the ideal (a∗ | a ∈ Q1) of Π. Then,
we identify kQ with Π/I and consider the canonical projection

φ : Π → Π/I = kQ.

Theorem 7.2. The congruences Θc and ΘI of W ∼= torsΠ coincide. Thus, there
is a lattice isomorphism W/Θc

∼= tors kQ making the following square commute:

W ��

		

W/Θc

		
torsΠ

(−) �� tors kQ.

We prepare now for the proof of Theorem 7.2.

Lemma 7.3 (Corollary of [H, Proposition 6.4], [J, Corollary 3.19]). Let A be a
finite-dimensional hereditary algebra. If (M,P ) ∈ τ -rigid-pairA then W(M,P ) is
equivalent to modH where H is a finite-dimensional hereditary algebra.

Proof. We have W(M,P ) = ⊥(τM)∩P⊥∩M⊥. First, up to replacing A by A/(e),
where e is the idempotent that corresponds to the projective P , we can suppose
that P = 0. Then, as A is hereditary, by Auslander-Reiten duality, we have

W(M, 0) = {X ∈ modA | Ext1A(M,X) = HomA(M,X) = 0}.
We have Ext1A(M,M) = 0, so ifM is indecomposable, again because A is hereditary,
by Kac’s Theorem, we get EndA(M) ∼= k. Hence, the result follows [H, Proposition
6.4] if M is indecomposable.

If M is not indecomposable, the result is proven by induction on the number of
indecomposable direct summands of M , using that rigid objects of modA are rigid
in W(M ′, 0) for an indecomposable direct summand M ′ of M . �
Lemma 7.4. Let Q be a finite union of Dynkin quivers. Let {S1, S2} be a semibrick
of mod kQ such that Ext1kQ(S1, S2) �= 0 and dimS1 + dimS2 ≥ 3. Then one of the
following holds in mod kQ:

• There is a semibrick {S′
1, S

′′
1 , S2} and an exact sequence 0 → S′

1 → S1 →
S′′
1 → 0.

• There is a semibrick {S1, S
′
2, S

′′
2 } and an exact sequence 0 → S′

2 → S2 →
S′′
2 → 0.

Proof. First of all, if #Q0 ≤ 2, then Q is of type A1 × A1 or A2 and there is no
semibrick {S1, S2} with dimS1 + dimS2 ≥ 3. We start with the case #Q0 = 3.
As Ext1kQ(S1, S2) �= 0, there is a non-split extension 0 → S2 → S → S1 → 0. By
Lemma 4.26, S is a brick with dimS = dimS1 + dimS2 ≥ 3. Thus, Q has to be
of type A3, and {dimS1, dimS2} = {1, 2}. Thus the simple kQ-modules form the
desired semibrick.

Let us return to the general case. We illustrate the following reasoning in Figure
7. By Proposition 4.10(b), there exists (M,P ) ∈ τ -tilt-pair kQ such that S1 ⊕
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(M+
0 , P0)

(M,P )

��������S1
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′
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��������S1
��

����
(M−

0 , P−
0 )

Figure 7. Hasse quiver of W(M0, P0)

S2 = M/ radEndkQ(M) M . Equivalently, FacM is the smallest torsion class T(S1, S2)
containing S1 and S2. In particular, there are exactly two arrows q1 : (M,P ) →
(M1, P1) and q2 : (M,P ) → (M2, P2) starting at (M,P ) in Hasse(τ -tilt-pair kQ),
q1 being labelled by S1 and q2 by S2. We consider the polygon [(M ′, P ′), (M,P )]
where (M ′, P ′) = (M1, P1) ∧ (M2, P2).

As at least one of S1 and S2 is not simple and labels an arrow pointing toward
(M ′, P ′), by Proposition 3.16, we get that (M ′, P ′) �= (0, kQ). So there exists an
arrow (M ′, P ′) → (M ′′, P ′′) in Hasse(tors kQ). Let (M0, P0) be the biggest common
direct summands of (M,P ), (M ′, P ′) and (M ′′, P ′′). By mutation theory, (M0, P0)
has exactly #Q0 − 3 non-isomorphic indecomposable direct summands.

Let (M+
0 , P0) be the Bongartz completion of (M0, P0) and (M−

0 , P−
0 ) be its co-

Bongartz completion. The interval [(M−
0 , P−

0 ), (M+
0 , P0)] is a 3-polytope as defined

in Definition 4.14. By Theorem 4.16(a), W := W(M0, P0) is a wide subcategory of
mod kQ and by Theorem 4.16(e), the labels of arrows of Hasse[(M−

0 , P−
0 ), (M+

0 , P0)]
are exactly the bricks that are contained in W . The set S of simple objects of W
is a semibrick with #S = 3. We will prove that S is the desired semibrick.

Suppose first that {S1, S2} ⊆ S. We have a polygon [(M−
0 , P−

0 ), (M ′′′, P ′′′)]
containing two arrows ending at (M−

0 , P−
0 ) labelled by S1 and S2 and two ar-

rows starting at (M ′′′, P ′′′) labelled by S1 and S2. Since FacM ′′′ ⊃ T (S1, S2) =
FacM , (M,P ) belongs to the polygon [(M−

0 , P−
0 ), (M ′′′, P ′′′)], and hence (M,P ) =

(M ′′′, P ′′′) and (M ′, P ′) = (M−
0 , P−

0 ) hold. This is a contradiction since (M ′, P ′)
is not the minimum element of [(M−

0 , P−
0 ), (M+

0 , P0)]. So {S1, S2} �⊆ S.
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By Lemma 7.3, there is an equivalence ψ : W ∼= mod kQ′ for a quiver Q′.
Moreover, asW ⊆ mod kQ has finitely many isomorphism classes of indecomposable
objects, by Gabriel’s theorem, Q′ is a union of Dynkin quivers with #Q′

0 = 3. As
{S1, S2} �⊆ S, it means that ψ(S1) and ψ(S2) are not both simple in modQ′.
So dimψ(S1) + dimψ(S2) ≥ 3 and the result has already been proven in W ∼=
mod kQ′. �

Recall that, as kQ is hereditary, the Auslander-Reiten translation τ : mod kQ →
mod kQ is a functor. Then, we recall the following alternative description of modΠ:

Definition 7.5 ([Ri2]). We define the category (mod kQ)(1, τ ) in the following way:
an object of (mod kQ)(1, τ ) is a pair (M,α) where M ∈ mod kQ and α : M → τM
is a morphism. A morphism from (M,α) to (N, β) is a morphism f : M → N in
mod kQ satisfying β ◦ f = (τf) ◦ α.

Theorem 7.6 ([Ri2, Theorem B]). There is an equivalence of categories between
modΠ and (mod kQ)(1, τ ) such that, via this equivalence,

(a) The restriction modΠ → mod kQ along kQ ↪→ Π is given by (M,α) �→ M ;
(b) The restriction mod kQ → modΠ along Π � kQ is given by M �→ (M, 0).

Lemma 7.7. Let S ∈ brickΠ such that S /∈ mod kQ and dimS ≥ 3. Then there
exists a semibrick {S1, S2} of modΠ and a short exact sequence 0 → S1 → S →
S2 → 0 such that at least one of S1 and S2 is not in mod kQ.

Proof. By [IRRT, Theorem 1.2], all bricks in modΠ are stones. Then they are
clearly k-stones. So, by Proposition 4.35, there exist a semibrick {S′

1, S
′
2} in modΠ

and a short exact sequence

χ : 0 → S′
1 → S → S′

2 → 0

such that dimExt1Π(S
′
2, S

′
1) = 1.

If at least one of S′
1 and S′

2 is not in mod kQ, we have our conclusion, so we
suppose that S′

1, S
′
2 ∈ mod kQ. As dimExt1Π(S

′
2, S

′
1) = 1 and S /∈ mod kQ, we have

Ext1kQ(S
′
2, S

′
1) = 0 and χ splits as an exact sequence of kQ-modules. So, via the

equivalence of Theorem 7.6, χ can be rewritten as

χ : 0 → (S′
1, 0)

u−→ (S′
1 ⊕ S′

2, α)
v−→ (S′

2, 0) → 0.

As u and v are morphisms, we have

α =

[
0 β
0 0

]
,

where β is a morphism from S′
2 to τS′

1. As χ does not split, β �= 0. Hence by
Auslander-Reiten duality for hereditary algebras,

dimExt1kQ(S
′
1, S

′
2) = dimHomkQ(S

′
2, τS

′
1) ≥ 1.

So we can apply Lemma 7.4. By symmetry, we suppose that we are in the first
case: There is a semibrick {S′′

1 , S
′′
2 , S

′
2} and a short exact sequence

ξ : 0 → S′′
1

f−→ S′
1

g−→ S′′
2 → 0

in mod kQ. Applying HomkQ(S
′
2,−) to ξ gives the exact sequence

0 = HomkQ(S
′
2, S

′′
2 ) → Ext1kQ(S

′
2, S

′′
1 ) → Ext1kQ(S

′
2, S

′
1) = 0 → Ext1kQ(S

′
2, S

′′
2 ) → 0,
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so Ext1kQ(S
′
2, S

′′
1 ) = 0 = Ext1kQ(S

′
2, S

′′
2 ). Let us consider two possibilities, depending

on the image gχ ∈ Ext1Π(S
′
2, S

′′
2 ) of χ.

• If gχ �= 0. In this case, we get the following Cartesian diagram where the
last row does not split:

S′′
1� �

f

		

S′′
1� �

		
χ : S′

1

g
				

� � �� S

				

�� �� S′
2

gχ : S′′
2
� � �� S2

�� �� S′
2.

As {S′′
1 , S

′′
2 , S

′
2} is a semibrick, Lemma 4.26 implies that S2 is a brick. We

also deduce that {S′′
1 , S2} is a semibrick. As Ext1kQ(S

′
2, S

′′
2 ) = 0, we have

S2 /∈ mod kQ, so the middle vertical sequence satisfies our requirements.
• If gχ = 0. In this case, we get the following Cartesian diagram:

χ′ : S′′
1
� � ��
� �

f

		

S1
�� ��

� �

		

S′
2

χ = fχ′ : S′
1

g
				

� � �� S

				

�� �� S′
2

S′′
2 S′′

2

As before, {S1, S
′′
2 } is a semibrick. As Ext1kQ(S

′
2, S

′′
1 ) = 0, we get S1 /∈

mod kQ, so the middle vertical sequence satisfies our requirements. �

Then we can prove Theorem 7.2:

Proof of Theorem 7.2. For an arrow i → j of Q, we denote by Xi,j the indecom-
posable Π-module of length 2 with top topAei and socle topAej . By definition,
Θc = conE where E := {Xj,i | (j → i) /∈ Q1}. For X ∈ E, we have IX �= 0, hence
by Theorem 5.15(a), X is contracted by ΘI , so ΘI ≥ Θc.

By Theorem 5.15(a), bricks S contracted by ΘI are exactly the ones satisfying
S /∈ mod kQ. So to prove that ΘI ≤ Θc, it suffices to prove that such a brick S is
contracted by Θc. We argue by induction on dimS. If dimS = 2, then S ∈ E, so
S is contracted by Θc. Otherwise, dimS ≥ 3 and by Lemma 7.7, there is a short
exact sequence 0 → S1 → S → S2 → 0 such that {S1, S2} is a semibrick of Π
that is not in mod kQ. So, by the induction hypothesis, Θc contracts S1 or S2. By
Theorem 4.23, both S1 and S2 force S, so Θc contracts S. �

Recall from Section 2.1 that for a general congruence on a finite lattice L, the set
of bottom elements of congruence classes are a join-sublattice of L, but need not be
a sublattice of L. The bottom elements can fail to be a sublattice even when L is
W and even when the congruence is algebraic. As an example, one can consider the
algebraic congruence generated by contracting the double join-irreducible element
s1s2s3 in S4. However, the c-Cambrian congruence is an exception: the following
is [R2, Theorem 1.2].
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Theorem 7.8. For any Coxeter element c of W , the set πc
↓ W , which consists of

c-sortable elements, is a sublattice of W .

We now give a new, representation-theoretical proof of Theorem 7.8.
As before, we consider the projection φ : Π � kQ. We also consider the natural

inclusion i : kQ ↪→ Π. It gives a fully faithful functor mod kQ ↪→ modΠ that we
denote implicitly or by M �→ ΠM if necessary, and a faithful functor modΠ →
mod kQ that we denote by X �→ kQX. We start with a lemma.

Lemma 7.9. The following hold:

(a) Let X,Y ∈ modΠ. Then there is an exact sequence

0 → HomΠ(X,Y ) → HomkQ(kQX, kQY )
u−→ HomkQ(kQX, τ (kQY )),

where the first map is the canonical inclusion and u(f) = (τf) ◦ α − β ◦ f
where X = (M,α) and Y = (N, β) via the equivalence of Theorem 7.6.

(b) Let X ∈ modΠ. There exists a filtration

0 = X0 � X1 � X2 � · · · � X�−1 � X� = X

of X by Π-submodules such that Π(kQX) ∼=
⊕�

i=1 Xi/Xi−1.

Proof. (a) This is an immediate consequence of Theorem 7.6.
(b) We prove the statement by induction on dimX. Consider the indecompos-

able direct summand N of kQX that is leftmost in the Auslander-Reiten quiver
of mod kQ. Then, HomkQ(kQX, τN) = 0, so by (a), the canonical projection of
kQ-modules π : X � N is a morphism of Π-modules. By the induction hypothesis,
Ker π has a filtration of the desired form, which is easily extended to X. �

Proof of Theorem 7.8. It is proven in Theorem 5.3((e))((f)) that φ− is a morphism
of join-semilattices and i− is a morphism of meet-semilattices. We also know from
Proposition 5.7(e) that the image of φ− is πc

↓W .
We conclude by proving that φ− = i− so that φ− is a morphism of lattices and

πc
↓W is a sublattice of W . Let T ∈ tors kQ. By Proposition 5.7((e)), φ−(T ) is

minimal such that φ−(T ) = T , hence φ−(T ) is the minimal torsion class in modΠ
containing T . By definition, i−(T ) consists of all Π-modules that are in T as kQ-
modules. Hence φ−(T ) ⊆ i−(T ) clearly. Moreover, by Lemma 7.9, any X ∈ i−(T )
is filtered by modules in T , hence is in φ−(T ). It concludes the proof. �

7.2. The bipartite biCambrian congruence. Let W be a finite Coxeter group.
The bipartite biCambrian congruence on W , defined in [BR], is the lattice congru-
ence ΘbiC = Θc ∧ Θc−1 , where Θc is the Cambrian congruence from Section 7.1
and c is a bipartite Coxeter element. We will prove [BR, Conjecture 2.11], which
asserts that W/ΘbiC is Hasse-regular.

Theorem 7.10. Suppose W is a simply-laced finite Coxeter group and Π is the
associated preprojective algebra. Identifying W with torsΠ as before, ΘbiC coincides
with ΘI , where I is the ideal in Π generated by all paths of length 2.

Proof. The condition that c is bipartite means that the corresponding orientation of
the Dynkin diagram Q has only sinks and sources. As we have showed, the bricks
contracted by Θc are the bricks which are not representations of Q, while the
bricks contracted by Θc−1 are those which are not representations of Qop. Consider
a path p of length 2 in the doubled quiver. It necessarily uses one arrow from Q
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and one arrow from Qop. Therefore, for S a brick, if pS �= 0, then S is neither a
representation of Q nor a representation of Qop. Thus, S is contracted by both Θc

and Θc−1 , and thus is contracted by ΘbiC = Θc ∧Θc−1 .
On the other hand, for a brick S, the following properties are equivalent:

• S is not contracted by ΘI ,
• IS = 0,
• The Loewy length of S is at most 2,
• S is a representation of Q or of Qop.

Thus, if S is not contracted by ΘI , then S is a representation of Q or of Qop, and
therefore is not contracted by Θc or by Θc−1 respectively, and thus is not contracted
by ΘbiC. �

The following corollary is now immediate from Corollary 4.6.

Corollary 7.11. If W is a simply-laced finite Coxeter group, then W/ΘbiC is
Hasse-regular.

Corollary 7.11 is the simply-laced case of [BR, Conjecture 2.11]. The general case
follows by a folding argument, as explained in the type-B case in [BR, Section 3.6].

Remark 7.12. As pointed out in [BR], when c is not bipartite, Θc ∧ Θc−1 is less
well-behaved. From our point of view, the point is that, for more general c, the
congruence Θc ∧Θc−1 need not be algebraic. Indeed, in type A3, for c = s1s2s3, it
is apparent in [BR, Figure 4] that the fan associated to Θc ∧Θc−1 is not simplicial,
and thus the quotient of W modulo this congruence is not Hasse-regular.
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[WW] Burkhard Wald and Josef Waschbüsch, Tame biserial algebras, J. Algebra 95 (1985), no. 2,
480–500, DOI 10.1016/0021-8693(85)90119-X. MR801283

https://www.ams.org/mathscinet-getitem?mr=3690407
https://www.ams.org/mathscinet-getitem?mr=3330594
https://www.ams.org/mathscinet-getitem?mr=3229959
http://www.math.hawaii.edu/~jb/books.html
https://www.ams.org/mathscinet-getitem?mr=4346482
https://www.ams.org/mathscinet-getitem?mr=2142177
https://www.ams.org/mathscinet-getitem?mr=2318219
https://www.ams.org/mathscinet-getitem?mr=3335492
https://www.ams.org/mathscinet-getitem?mr=3645055
https://www.ams.org/mathscinet-getitem?mr=3645056
https://www.ams.org/mathscinet-getitem?mr=422350
https://www.ams.org/mathscinet-getitem?mr=1648647
https://www.ams.org/mathscinet-getitem?mr=217114
https://www.ams.org/mathscinet-getitem?mr=0389953
https://www.ams.org/mathscinet-getitem?mr=321977
https://www.ams.org/mathscinet-getitem?mr=801283


612 DEMONET, IYAMA, READING, REITEN, AND THOMAS

Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602,

Japan

Email address: Laurent.Demonet@normalesup.org
URL: http://www.math.nagoya-u.ac.jp/~demonet/

Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602,

Japan

Current address: Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1
Komaba Meguro-ku Tokyo 153-8914, Japan

Email address: iyama@ms.u-tokyo.ac.jp
URL: https://www.ms.u-tokyo.ac.jp/~iyama/

Department of Mathematics, North Carolina State University, Raleigh, North Car-

olina 27695-8205

Email address: reading@math.ncsu.edu
URL: http://www4.ncsu.edu/~nreadin/

Department of Mathematical Sciences, Norges teknisk-naturvitenskapelige univer-

sitet, 7491 Trondheim, Norway
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