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Abstract: The autonomous shipping industry is increasingly focusing on enhancing the safety and
reliability of software-based systems. Conducting a risk assessment is a requirement for demon-
strating the safety equivalence of autonomous ships based on such systems to conventional vessels.
Traditional risk assessment models, however, primarily focus on hardware failures, often overlooking
potential software-related failures and functional inadequacies. This study proposes a framework
integrating Software Failure Mode and Effects Analysis (FMEA), System–Theoretic Process Analysis
(STPA), and Bayesian Network (BN) for risk identification of autonomous ship software systems. The
results of a case study reveal that the framework sufficiently addresses the multifaceted nature of
risks related to software in autonomous ships. Based on the findings of this study, we suggest the
need for standardization of software architecture development in the autonomous ship industry and
highlight the necessity for an enhanced understanding of AI-specific risks and the development of
tailored risk assessment methodologies.

Keywords: autonomous ship; software risk assessment; STPA; Software FMEA

1. Introduction

Autonomous ships, outfitted with cutting-edge software and automation technologies,
are currently undergoing sea trials and operational testing. In 2022, Yara Birkland, the first
fully autonomous electric container ship, embarked on a two-year trial aimed at certification.
Initially, the vessel operated semi-autonomously with a full crew, but plans are in place
for complete autonomy in navigation and loading/unloading by the trial’s end [1]. The
Norwegian University of Science and Technology (NTNU) has successfully conducted
operational trials for the second-generation autonomous monohull ferry, milliAmpere
2. This ferry is equipped with a range of sensors, including rangefinders, cameras, laser
vision, and radar, providing the autonomous control system and the Shore Control Centre
(SCC) with comprehensive navigational and environmental data. The ferry operates fully
autonomously, with an option for the SCC to intervene if necessary. In China, the 117
m electric container ship Zhi Fei showcased autonomous and remote-control navigation,
traveling between two ports in Shandong province [2]. Meanwhile, in 2023, Samsung Heavy
Industries demonstrated the prowess of its Samsung Autonomous Ship (SAS) navigation
system during a 1500 km sea trial from Geoje to Jeju Island and Kaohsiung Port in Taiwan.
Subsequently, Korealine LNG, fitted with AI-powered Integrated Condition Diagnosis
Solution (HiCBM) and Integrated Safety Control Solution (HiCAMS), was delivered to and
received approval for autonomous sailing from Panama [3].
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In general, the emergence of autonomous ships signifies a substantial advancement
within the maritime sector. Compared with conventional ships, autonomous ships are
generally anticipated to have lower emissions, reduced operational costs, and enhanced
safety [4,5]. However, it is imperative to acknowledge that the critical technologies under-
pinning these autonomous systems are still in the process of maturation, and safety and
security challenges remain [6]. Therefore, risk assessment is essential for demonstrating
the safety equivalence of autonomous ships to conventional vessels [7–12].

Several studies have discussed and proposed methods applicable for the risk assess-
ment for autonomous ships, given their complex nature. Wróbel et al. [13,14] were one of
the pioneers in applying System–Theoretic Process Analysis (STPA) to assess the safety
of remotely controlled merchant ships and fully autonomous merchant ships. Valdez
Banda et al. [15] proposed a hazard analysis and management process based on STPA
and applied the method to two autonomous vessel concepts for urban transport in Fin-
land. Johansen et al. [16] developed an online risk model based on the Bayesian Belief
Network (BBN) that was derived from STPA. The model was integrated with an electronic
navigation chart module to obtain accurate environmental information. Basnet et al. [17]
proposed a risk analysis method that combines STPA, Bayesian network (BN), and Noisy-
OR gates, as well as a Parent Divorcing technique for remote pilotage operations. Carreras
Guzman et al. [18] compared the new extensions of System–Theoretic Process Analysis
(STPA-Extension) and Uncontrolled Flow of Information and Energy (UFoI-E) methods
and developed a tailored combination of both methods to carry out risk analysis for
autonomous ships. Zhang et al. [19] utilized the Hybrid Causal Logic (HCL) method
on a remote-controlled ship based on both operational data from traditional ships and
autonomous ship experiments. Tusher et al. [20] proposed a framework for assessing
cybersecurity risks in an anonymous shipping environment. They employed the Bayesian
Best–Worst Method (BWM) to collect and analyse expert survey data, ranking them based
on the perceived vulnerability to network threats for different types of devices and systems.
Zhang and Zhang [21] proposed a quantitative assessment method based on the Entropy-
TOPSIS-Coupling coordination model to analyse the risks of autonomous ship navigation
from the perspective of human–ship–environment–management.

In general, it is acknowledged that the traditional risk assessment models/methods
centred around hardware failures are not suitable for autonomous ships that are char-
acterized by complex interactions among systems. The aforementioned studies have
attempted to solve the associated challenges; however, little attention has been paid to
integrating software-related failures and functional inadequacies into the risk assessment
process [22–25]. Thieme et al. [24] suggested that risk models for autonomous ships should
focus more on assessing the control and software systems of the ship, and system–theoretic
methods such as STPA and Functional Resonance Analysis Method (FRAM) could be more
applicable compared to traditional methods. Thieme et al. [26] further proposed a frame-
work to analyse functional software failures, their propagation, and their integration into
traditional risk analysis methods. The method has been demonstrated in an Autonomous
Remotely Operated Vehicle (AROV) and has the potential to be applied to autonomous
ships. Nevertheless, elucidating the causes of failure and how different modules interact
and communicate with each other is a task awaiting further study. Chang et al. [27] used
Failure Mode and Effects Analysis (FMEA) in conjunction with an Evidential Reasoning
and Rule-based Bayesian Network to quantify the risk level of autonomous ships in general.
The focus of risk sources is mainly on human error, ships and objects, physical environ-
ment, communication failures, cyberattacks, and equipment failures, and software is not
sufficiently considered within that framework. Yang and Utne [28] examined various
existing risk analysis methods, namely, Preliminary Hazard Analysis, STPA, and Hazard
and Operability Study (HAZOP), to understand how they contribute to meeting standards
for online risk modelling of autonomous maritime systems. It was concluded that the STPA
is a good foundation for developing online risk models that handle interactions between
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systems and software failures, although its demonstration was limited to Autonomous
Underwater Vehicles (AUVs).

The issue of potential accidents arising from software functional failures has attracted
considerable attention within the autonomous shipping industry. Multiple classification
societies have responded by raising verification and validation requirements for ensuring
the quality and reliability of software-based systems in autonomous ships [7–9]. The in-
tegration of intricate software systems and AI technology into these vessels introduces a
host of new vulnerabilities and potential risks, which could have severe consequences [9].
Experience from other industries that have adopted AI-based autonomous systems prior
to the shipping sector underscores the inherent risks associated with software faults. A
database tracking AI-related accidents reports more than 1000 incidents [29]. These inci-
dents include object detection failures in autonomous vehicles, resulting in tragic pedestrian
fatalities [30,31]; collision accidents stemming from the inability to recognize sudden lane
changes by a fire truck in front [31]; and accidents resulting in a driver’s fatality due to
the failure to recognize a white trailer under strong sunlight [9]. Although the potential
for accidents due to software functional failures has increasingly attracted academic at-
tention [24,32], there remains a lack of in-depth research into the causes and impact of
software failure or functional inadequacies on the navigation safety of autonomous ships.
This research aims to address this gap, and the novelties of the study are summarized as
follows:

■ In this paper, we propose a framework that leverages Software FMEA and STPA for
identifying potential functional failures in software modules and their interactions.
While the Software FMEA emphasizes internal software reliability and potential
software failures, such as unstable algorithms and inadequate coverage, STPA offers
insights into the interactions among software modules, highlighting issues such as
inconsistent or incomplete data flows. These findings are crucial for evaluating the
risks associated with the software involved in the autonomous control process.

■ The complementary results from Software FMEA and STPA are directly converted into
BN, which enhances the development of the software risk assessment model by speci-
fying the nodes included in the BN and the structural relationships between the nodes.
Such a framework enables a combination of diverse hazard sources and facilitates the
quantification of uncertainties and dependencies within complex, software-intensive
systems.

Overall, the scientific contribution of this paper lies in demonstrating how software
functional failures, as well as the complex interactions and dependencies among software
modules, can be identified and modelled. This approach enhances the software risk
assessment process for software-intensive systems, offering a more thorough understanding
of potential software-related risks.

The rest of this paper is structured as follows. Section 2 introduces the proposed
framework for software risk assessment of autonomous ships. Details of a case study
conducted on the autonomous navigation system are provided in Section 3. The main
results and key findings from the case study are provided in Section 4. The implications
of the proposed framework and limitations are discussed in Section 5. Finally, Section 6
provides the conclusions drawn from this study.

2. Methods
2.1. Software FMEA

FMEA is a bottom-up, inductive, static analysis method that focuses on how each
component can fail, how failures propagate within a system, and whether they could lead
to hazards [33]. Software FMEA is an extension of FMEA that is specifically designed
for software reliability and safety and is focused on identifying weaknesses in software
design by analysing failure modes, potential failure causes, their impact and consequences
on the system. This process involves causal reasoning and inductive summarization,
with the offering of recommendations to enhance software product quality. In Software
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FMEA, all failures are linked to design aspects, including misinterpretation of requirements,
algorithmic code errors, and insufficient memory allocation, among others. The analysis
begins with identifying the software modules, assessing their potential failure modes and
failure effects, and understanding the possible failure causes, as illustrated in Figure 1. This
comprehensive approach helps in identifying vulnerabilities in software systems.
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Figure 1. General software failure model for a component software unit [33].

2.2. STPA

STPA is a method designed for evaluating the safety of complex, software-intensive
systems that focus on establishing safety constraints and requirements. Unlike traditional
methods that only consider component failures, STPA assumes that accidents may also be
caused by unsafe interactions among system components in cases where none of the com-
ponents have failed [33]. STPA follows a top-down approach, starting from a high abstract
level, to model the system as a set of control actions and feedback control loops capturing
functional relationships and interactions. It identifies unsafe control actions (UCAs) and
their associated loss scenarios. The output from STPA can be used for formulating hazard
control measures, improving system architecture, proposing design recommendations,
evaluating existing design decisions, and forming leading risk indicators. An overview of
the method is shown in Figure 2.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 4 of 29 
 

 

the offering of recommendations to enhance software product quality. In Software FMEA, 

all failures are linked to design aspects, including misinterpretation of requirements, al-

gorithmic code errors, and insufficient memory allocation, among others. The analysis be-

gins with identifying the software modules, assessing their potential failure modes and 

failure effects, and understanding the possible failure causes, as illustrated in Figure 1. 

This comprehensive approach helps in identifying vulnerabilities in software systems. 

 

Figure 1. General software failure model for a component software unit [33]. 

2.2. STPA 

STPA is a method designed for evaluating the safety of complex, software-intensive 

systems that focus on establishing safety constraints and requirements. Unlike traditional 

methods that only consider component failures, STPA assumes that accidents may also be 

caused by unsafe interactions among system components in cases where none of the com-

ponents have failed [33]. STPA follows a top-down approach, starting from a high abstract 

level, to model the system as a set of control actions and feedback control loops capturing 

functional relationships and interactions. It identifies unsafe control actions (UCAs) and 

their associated loss scenarios. The output from STPA can be used for formulating hazard 

control measures, improving system architecture, proposing design recommendations, 

evaluating existing design decisions, and forming leading risk indicators. An overview of 

the method is shown in Figure 2. 

 

Figure 2. Overview of the STPA method [34]. Figure 2. Overview of the STPA method [34].



J. Mar. Sci. Eng. 2024, 12, 4 5 of 27

2.3. Bayesian Networks

A Bayesian Network (BN) is a directed acyclic graph featuring multiple nodes and
directed arcs [35]. These elements graphically represent the joint probability distribution of
variables, as shown in Equation (1).

p(x1, . . . , xD) =
D

∏
i=1

p(xi|pa(xi)) (1)

where p(x1, . . ., xD) is a joint probability distribution and pa(xi) is the parent set of the
variable [36].

The BN serves as a powerful knowledge representation tool, which is capable of
performing reasoning based on expert knowledge and incomplete data [37]. It has been
widely used in the risk assessment domain in recent years [38–43] and has gained popularity
for assessing risk related to autonomous ships [16,27,44–48]. The main components of a
network structure include nodes, directed arcs and arrows that indicate causal relationships
between the nodes, and the Conditional Probability Table (CPT). The CPT holds conditional
probabilities for each node state, quantifying their interrelations. In this structure, root
nodes, without parent nodes, are assigned prior probabilities. Meanwhile, intermediate
nodes are endowed with conditional probabilities outlined in CPTs [49]. According to Bayes’
theorem, the prior probabilities of root nodes can be updated with new observations, which
are referred to as evidence, yielding posterior probabilities. The integration of posterior
probabilities facilitates further inferential analysis [50,51].

The BN excels in visually representing relationships between variables and offers a
high level of precision, even when dealing with partially missing data, thereby enabling
accurate analysis [37]. To construct BN models, a data-driven approach is the most prefer-
able method as it produces relatively accurate network structures and corresponding node
parameters in large, complex systems. However, obtaining sufficient data samples is often
challenging. Therefore, expert-based modelling is also widely applied to construct BN struc-
tures and obtain CPTs, especially for systems that are overly complex. For systems with
limited data samples available, it is possible to apply a hybrid approach, which involves
compromises between the above two approaches. BN nodes can be determined based
on expert knowledge, followed by structural inference and construction using relevant
methods. For an in-depth exploration of how a BN is applied to safety, reliability, and risk
assessment, please refer to [41].

2.4. The Proposed Framework in the Context of Software Risk Assessment for Autonomous Ships

Outlined in this section is the three-phase framework combining Software FMEA,
STPA, and BN, which is aimed towards assessing the software risk for autonomous ships.
Software FMEA focuses on identifying the failure modes, failure effects, and potential
failure causes of the software while taking the operating conditions into consideration.
However, it does not address functional dependencies, sequences of events, or combinations
of events [33]. STPA therefore complements by providing a structured approach to uncover
hazards from interactions between modules and complex causation pathways in the system.
Therefore, the integration of Software FMEA and STPA can be used towards addressing the
multifaceted nature of software risks in autonomous ships by combining detailed failure
analysis with a broader systemic perspective, offering a comprehensive and proactive
approach to enhancing the safety and reliability of these advanced maritime systems.
Figure 3 provides an overview of the three phases and steps of the proposed framework
and how the outcome of Software FMEA and STPA relates to the risk model constructed
based on the BN. Each of the phases and steps is described in the following subsections.
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2.4.1. Phase 1: Analyse Software Failure Modes and Their Impacts Based on
Software FMEA

Phase 1 consists of three steps:

• Step 1.1: Analyse the software architecture to decompose the software into modules
for further analysis.

• Step 1.2: Identify potential failure modes, detection methods, their causes, and local
and final effects for the objects of analysis. The possible software failure modes and
causes could cover data, timing, interface, logic or computation, resources, assump-
tions, operating conditions, etc. [52]. The detection methods are means to identify the
failure modes, which are the existing measures by allowing operators to intervene and
reduce the likelihood of failures or mitigate adverse effects [33].

• Step 1.3: Evaluate the relative importance of failure modes, including determining the
severity of the failure’s final effect and the likelihood of a failure mode. The criticality
can be determined using Risk Priority Number (RPN) by evaluating the severity,
occurrence, and detectability of software failure effects (S, O, and D, respectively)
(Equation (2)).

RPN = S × O × D (2)

• Severity (S): Determine the severity value while considering potential failure conse-
quences.

• Occurrence (O): Assess the likelihood of occurrence, factoring in complexity, potential
failure modes, and causes.

• Detectability (D): The detectability hinges on the intricacy of hardware/software
components and potential failure causes.

2.4.2. Phase 2: Identify Interaction Defects between Software Modules

This phase consists of the following main steps:

• Step 2.1: Define the purpose of the analysis. The initial step involves defining the
study’s purpose and system boundaries. It encompasses identifying potential losses
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(Ls), system-level hazards (Hs), and system constraints (SCs). Safety constraints, which
are crucial for ensuring system safety, are established as mandatory conditions or rules
that the system must adhere to.

• Step 2.2: Model the control structure. This step involves constructing a control
structure comprising controllers, control actions, and a feedback loop, which are
supplemented by additional inputs and outputs from various system components.
Responsibilities are assigned to each controller to ensure effective system management.

• Step 2.3: Identify unsafe control actions (UCAs). This process entails pinpointing
control actions that, under certain circumstances or in extreme cases, might lead to
hazards. The objective is to explore how these UCAs could result in the hazards
initially identified. Each UCA is characterized by five critical aspects: the responsible
controller, the context of occurrence, the type of UCA, the specific action or command,
and the potential hazards or sub-hazards it might activate. Additionally, controller
constraints are established to outline necessary behaviours to prevent UCAs.

• Step 2.4: Identify loss scenarios. This step involves outlining scenarios that could lead
to UCAs and subsequently result in hazards. Two primary scenarios are scrutinized—
those explaining UCAs’ emergence and those detailing flawed or missing execution of
UCAs leading to hazards. To identify these scenarios, the process often involves tracing
back from the UCA to determine the influencing factors acting on the controller’s
decisions regarding control actions.

2.4.3. Phase 3: Develop Risk Models Using a BN Based on Results from Software FMEA
and STPA

At this phase, the results from STPA and Software FMEA are converted to a BN to
develop the software risk assessment model. Figure 3 provides an overview of the process.
This primarily involves the following steps:

• Step 3.1: Define nodes included in the software risk assessment model. The outcomes
from STPA that are considered for modelling are losses (Ls), system-level hazards (Hs),
UCAs, loss scenarios for UCAs, and causal factors [7]. Nodes for failure modes (FMs),
failure causes (FCs), detection methods (DMs), and failure effects (FEs) derived from
Software FMEA are also created as variables in the BN. Common hazards and causes
may be identified from both methods, as revealed by [53]. Therefore, the findings
should be consolidated to merge similar modes and harmonize the different ones.

• Step 3.2: Define the relationship among nodes and the BN structure. Establish direc-
tional links between nodes that have a causal relationship. The target node is defined
as the losses from STPA, which are caused by system-level hazards as the succeeding
layer (see Figure 4). The hazards are caused by UCAs, and the UCAs are caused
by causal scenarios. In cases where the failure effects identified by Software FMEA
complement the list of system-level hazards, they are modelled at the same level. The
same applies to failure modes and failure causes. The detection method is considered
a causal factor for failure modes.

The hierarchical structure of the BN is illustrated in Figure 4. The process will be
further explained in the case study presented in the following section.
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3. Illustrative Case Study

Detailed in this section is an illustrative case study of software modules of an au-
tonomous navigation system to exemplify the proposed framework.

3.1. System Description

The software design favours units of modularity [54]. In this case study, the au-
tonomous navigation software system (ANSS) is constructed of three high-level modules
according to Fossen [55], termed guidance, navigation, and control. The autonomous ships
are provided with a destination for the leg of a voyage. The guidance module is involved
in the process of directing a ship to ensure safe operations. The process includes adher-
ing to maritime regulations, responding to emergencies, and manoeuvring in complex
environments—tasks currently undertaken by the Officer on Watch (OOW). The navigation
module supplies critical information such as position, velocity, water depth, environmental
data, and other maritime-specific measurements. The control module involves calculating
the required control forces and moments that the vessel must exert to achieve specific navi-
gational objectives. In general, when compared to conventional vessels, the subsystems of
an autonomous navigation system that are distinct are sensor fusion, collision risk analysis
(CRA), collision avoidance, motion planning, and control [56].

3.2. Phase 1—Software FMEA
3.2.1. Decompose the Software System

As described in Section 3.1, the ANSS of autonomous ships is decomposed into
modules and sub-modules, as shown in Figure 5. Since there is no consensus on the
software architecture of the ANSS, as far as we know, the breakdown was implemented
based on the related literature and expert knowledge. The submodules are described in
detail in Table 1.

3.2.2. Identify Failure Mode, Failure Causes, Detection Method, and Effects

The potential failure modes, failure causes, and failure effects that may lead to a
hazardous state are analysed in this step. Due to limited space, the case study only focuses
on the obstacle detection module. The goal of the obstacle detection module is to accurately
and reliably identify and classify obstacles in its operating environment. This function
includes detecting obstacles, classifying obstacles, estimating the position and velocity of
the detected obstacles, and so forth.
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Table 1. Decomposition of an autonomous navigation software system.

System Module Sub-Module Description Ref.

Guidance
Module

Path planning
Route planning The task of route planning is to plan a collision-free route from the starting point to the target

point. [57]

Route optimization For route optimization, different route alternatives are compared in the process of identifying
the route that meets the optimization goals. [58]

Motion planning

Local path planning/re-planning Dynamic (online) adjustment or re-planning of intermediate waypoints during path tracking
of pre-planned routes. [59]

Collision risk analysis
By establishing an effective and systematic model to monitor parameter status, collision risk
can be continuously evaluated, which can serve as the basis for collision prevention models
and provide input for navigation safety and autonomous navigation.

[60]

Collision avoidance Ability to modify planned paths or trajectories to avoid dynamic obstacles and make safe and
reliable decisions in dangerous situations. [61,62]

Navigation
Module

Sensor fusion

State estimation
(position, speed, etc.) Obtaining own ship’s state information, including position, speed, etc. [56]

Ship attitude estimation Obtaining own ship’s attitude information. [56]

Obstacle detection Detect and classify obstacles within the range of ship sensors and can be used in conjunction
with cameras, AIS, LiDAR, and sound sensors in terms of type, position, speed, heading, etc. [63,64]

Environmental stress evaluation Evaluation based on the maneuvering environment and traffic environment, etc. [65]

Observer
Data processing (data fusion)

Process data obtained from cameras, AIS, radar, LiDAR, AIS, GPS, etc., and attempt to
average the redundant and possibly conflicting data with their inherent errors to construct a
best-perceived truth of the environment.

[63,66]

Collision prediction Predicting obstacle collisions with unknown trajectories. [67]

Control
Module

Stabilization control
Anti-rolling control

Ship anti-rolling control achieves a wide range of ship speeds and efficient anti-rolling
capabilities. In particular, effectively reducing the rolling motions of ships to improve their
seakeeping performance.

[68]

Dynamic positioning (DP)
control

The DP system enables ships to maintain their position and advance solely through thrusters
in the presence of wind, current, and wave interference. [69]

Regulation control

Course control
When the ship needs to avoid other ships or obstacles while sailing on a predetermined route,
or navigating within a limited channel, it is necessary to change the speed and course in time,
which is the ship course mobility.

[70]

Speed control Speed control is mainly to control the rotation speed of the propeller, which can be adjusted
arbitrarily in a certain range. [70]

Path-following Path-following is geometric position tracking without considering time. [70]

Trajectory tracking In addition to following the path, trajectory tracking requires the system to arrive at a
specified location at a specified time. [70]
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3.2.3. Evaluate Relative Importance of Failure Modes

In order to evaluate risk and calculate RPN, the likelihood of their occurrence, the
severity of the failure effect, and the detectability of the failure causes are assessed first.
The likelihood of occurrence is assessed based on a three-point scale, starting from 1 (low)
and going to 3 (very high). A five-point scale is used for severity, ranging from 1 (very low)
to 5 (very high), which refers to the potential to have a collision accident. The detectability
depends mainly on the complexity of the software modules and the causes of the failure.
The higher the detection number, the less likely the detection [33]. Therefore, the number
for detectability ranges from 1 (very certain) to 5 (improbable). The definitions of the scales
from [71,72] are adopted in this study and are shown in Tables 2–4.

Table 2. Likelihood of the existence of failure modes [71].

Level Likelihood of
Occurrence

Affected Software
Design Past History Domain Expertise

3 High Very complex or
problematic

Has happened in every past
system or is known to be present

No experience with this
feature or product

2 Moderate Average complexity Has happened at least once in
the past

Some experience with this
feature or product

1 Low Very simple, not
problematic

Has not happened in the past
and there is no reason to believe
it will happen on this system

Significant experience with
this feature or product

Table 3. Severity of failure modes [72].

Level Severity Severity Level Description

5 Very high A failure that may cause system loss.
4 High A failure that may cause major system damage resulting in loss of the mission.

3 Moderate A failure that may cause minor system damage resulting in a delay, loss of availability, or mission
degradation.

2 Low A failure that is not serious enough to cause system damage but will result in unscheduled
maintenance.

1 Very low No impact on the system.



J. Mar. Sci. Eng. 2024, 12, 4 11 of 27

Table 4. Detectability for each failure mode [71].

Level Likelihood Detection Level Description

5 Improbable The failure mode cannot be reproduced in a development or test environment.

4 Low
probability The failure model is visible and detectable only with fault injection.

3 Moderate
probability The failure mode is visible and detectable with off-nominal testing.

2 High
probability The failure mode is visible and detectable with requirements-based testing.

1 Almost
certain The failure mode is visible and detectable under any set of conditions.

The PRN is then calculated following Equation (2), with a range from 1 to 75.
In this study, expert knowledge was utilized to assess the severity (S), occurrence prob-

ability (O), and detectability (D) of failure modes in an ANSS. Four experts were invited for
the assessment: a ship captain, a chief mate of conventional ships, and two associate profes-
sors with over 5 years of research experience within field of autonomous navigation safety.
One of the associate professors has software development experience. These experts as-
sessed SODs based on their practical experience, references from the international literature,
and personal judgments. The results are summarized in the last four columns of Table 5. It
is worth noting that the assessment was conducted for demonstration purposes only. When
applying the framework to a practical software development process, a Software FMEA
facilitator, system engineers, and software engineers should also be involved.

3.3. Phase 2—STPA
3.3.1. Define the Purpose of the Analysis

The system boundary of this case study is limited to the safe navigation of autonomous
ships during voyages. The potential losses could be the following:

L-1: Causality or injury of seafarers onboard
L-2: Loss or damage of the ship
L-3: Damage to the environment
The primary accident that could lead to these losses is a collision during navigation

(L-1, L-2, L-3). The following system-level hazards are selected for further discussion:

• H1: Entry of other vessels into the ship’s safety domain
• H2: Intrusion of static obstacles into the ship’s safety domain

The safety constraints to prevent hazards from happening and developing into acci-
dents are described in Table 6.
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Table 5. Software FMEA analysis of an obstacle detection module.

No. Failure Mode Local Effect Failure Effect Detection Method/Existing Controls Failure Cause S O D RPN

1 False negative
(Missed detection)

Missed obstacles
in immediate
vicinity

Obstacles enter
safety domain
unnoticed

Regular calibration of sensors
Algorithm testing in varied conditions in
the simulations
Sensitivity adjustment
Generation of sufficient test cases which
reflect environmental characteristics

Sensor malfunction
Inadequate sensor range
Poor sensitivity of the algorithm
Low visibility due to fog or heavy rain,
etc.
Confusion with textured background

4 2 2 16

2 False positive
(False detection)

Unnecessary
navigational
adjustments

Reduced
operational
efficiency
Increased risk of
inappropriate
manoeuvres

Enhance accuracy of data fusion
algorithms to corroborate multiple
sensors and data sources
Generation of sufficient test cases which
reflect environmental characteristics

Sensor noises
Misinterpretation of environmental
features (e.g., waves, reflections, birds,
etc) as obstacles
Over-sensitive algorithm
Confusion with textured background

1 2 2 4

3 Incorrect
classification

Erroneous
identification of
the type or size
of an obstacle

Increased
probability of
obstacles enters
safety domain
Inappropriate
navigational
responses

Increase diversity of training dataset
Algorithm testing in varied conditions in
the simulations
Generation of sufficient test cases which
reflect environmental characteristics

Limited training data diversity
Inability of the algorithm to distinguish
between different object types or judge
sizes

4 3 2 24

4 Latency issues

Delayed
response to
detected
obstacles

Obstacles enter
safety domain
without notice
Reduced time for
decision-making
and action

Optimization of algorithms
Upgrading hardware if latency issue is
too severe

Processing delays
Inefficient algorithm design
Hardware constraints

2 3 2 12

5 Instable algorithm
Inconsistent
obstacle
detection

Unpredictable
system reliability
Increased need for
manual intervention

Comprehensive software testing
Regular updates and maintenance of
sensors

Software bugs
Fluctuating sensor performance
Fast-changing environmental conditions

2 3 1 6
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Table 5. Cont.

No. Failure Mode Local Effect Failure Effect Detection Method/Existing
Controls Failure Cause S O D RPN

6

Degraded
performance in

adverse
conditions

Reduced
detection
effectiveness in
specific
conditions

Lowered system
reliability in diverse
environment

Implementation of
adaptive algorithms
Simulation testing in
various environmental
conditions

Poor visibility
Extreme weather
High sea clutter

2 3 2 12

7 Inadequate
coverage

Missed
detections in
certain areas

Obstacles enter
safety domain
unnoticed

Strategic placement of
sensors, and regular
adjustment in case of
misplacement
Test for algorithm’s
coverage

Sensor blind spots
Limited scope of
algorithms

3 2 3 18
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Table 6. Lists of safety constraints for preventing system-level hazards.

ID System-Level Safety Constraints System-Level Hazards

SC1 Ensure a safe distance is maintained from other vessels. H1

SC2
In the event of another vessel entering the safety domain,
predict its trajectory, replan the plan, and execute collision
avoidance actions.

H1

SC3 Keep a safe distance from static obstacles like islands and
oil platforms. H2

SC4 Should a static obstacle enter the safety zone, replan the
path, and undertake collision avoidance actions. H2

3.3.2. Model the Control Structure

In this step, the control structure for the ANSS is constructed, emphasizing software
controls. This model includes the software modules, sub-modules, and the interactions in
between, as shown in Figure 6.
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3.3.3. Identify Unsafe Control Actions (UCAs) and Loss Scenarios

This section outlines examples of identified UCAs related to control operations, with
a special focus on obstacle detection. The obstacle detection module (ODM) takes in pro-
cessed data from a data processing module (DPM). The data processing module processes
data obtained from cameras, AIS, radar, LiDAR, AIS, GPS, etc., and attempts to handle
the redundant and possibly conflicting data with their inherent errors to construct a best-
perceived truth of the environment. The obstacle detection module provides a collision
prediction module with obstacle information, including the type of obstacles, position,
speed, heading, and so forth. The UCAs related to the obstacle detection module are
defined in Table 7, with loss scenarios and causal factors described in detail. Loss scenarios
describe the conditions under which the considered UCA may occur, while causal factors
are the prerequisites leading to the occurrence of loss scenarios. Any factors that could
cause a shift in behaviour from “normal” to “abnormal” have the potential to constitute a
part of the loss scenario. Taking UCA-6 as an example, the design failures or programming
errors in the ODM algorithm may cause loss scenario LS-17, wherein the DPM algorithm
processing time is prolonged. As a result, the loss scenario may lead to UCA-6, specifically,
the delayed transmission of obstacle information by ODM.
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Table 7. The unsafe control actions.

Control
Action Type of UCA UCAs Loss Scenarios Causal Factors

Obstacle information

Not provided
UCA-1: ODM does not provide
obstacle information when the
obstacle is in the immediate vicinity.

LS-1: ODM does not receive processed operational
data.

• Communication failures
• DPM algorithm errors
• Sensor failures or malfunctions

LS-2: ODM receives but does not handle the
processed operational data.

• The guard for misprocessing is wrongly on

LS-3: ODM receives the processed operational data,
and ODM handled the data but does not provide
output.

• ODM algorithm errors

Provide

UCA-2: ODM provides information
indicating there is an obstacle in
immediate vicinity when there
actually is not.

LS-4: The processed operational data received from
DPM are wrong.

• Communication failures
• Poor data quality from sensors (e.g., due to

sensor malfunctions or environmental issues
affecting sensor performance)

• DPM algorithm errors (e.g., data fusion)

LS-5: The processed operational data are provided,
but the ODM algorithm is wrong.

• ODM algorithm design failure
• Programming errors

LS-6: The obstacle detection and classification
algorithm are implemented correctly, but the
output is wrong.

• Programming errors

UCA-3: ODM provides obstacle
information, but the information is
wrong after obstacle detection (e.g.,
wrong type of obstacles).

LS-7: The processed operational data received from
DPM are wrong.

• Communication failures
• Poor data quality from sensors (e.g., due to

sensor malfunctions or environmental issues
affecting sensor performance)

• DPM algorithm errors (e.g., data fusion)

LS-8: The processed operational data are provided,
but the classification algorithm is wrong.

• Limited training data diversity
• ODM algorithm design failure
• Programming errors



J. Mar. Sci. Eng. 2024, 12, 4 16 of 27

Table 7. Cont.

Control
Action Type of UCA UCAs Loss Scenarios Causal Factors

LS-9: The obstacle detection and classification
algorithm are implemented correctly, but the
output is wrong.

• Programming errors

UCA-4: ODM provides obstacle
information, but the information is
incomplete after an obstacle is
detected.

LS-10: The processed operational data received
from DPM are incomplete.

• Communication failures
• Incomplete data received from sensors (e.g.,

due to sensor malfunctions or environmental
issues affecting sensor performance

• DPM algorithm errors

LS-11: The processed operational data received
from DPM are complete, but the ODM algorithm is
wrong.

• ODM algorithm design failure
• Programming errors

LS-12: The ODM algorithm is correct, but the
provided output is incomplete.

• Programming errors

Obstacle
information

Provide

t UCA-5: ODM provides obstacle
information, but the data are
inconsistent, where an object might
be detected in one instance and
missed in another.

LS-13: The processed operational data received
from DPM are inconsistent.

• Intermittent sensor connectivity
• Degraded sensor performance due to varying

environmental conditions
• DPM algorithm inability to deal with

navigational dynamics

LS-14: The operational data received from DPM are
consistent, but the ODM algorithm is wrong.

• ODM algorithm design failure
• Programming errors

LS-15: The ODM algorithm is correct, but the
provided output is inconsistent.

• Programming errors

Too early, too late,
out of order

UCA-6: ODM sends out obstacle
information too late.

LS-16: The processed operational data are received
from DPM too late.

• DPM algorithm processing time is too long

LS-17: The operational data received from DPM are
timely, but the ODM algorithm processing time is
too long.

• ODM algorithm design failure
• Programming errors
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Table 7. Cont.

Stop too soon,
applied too long

UCA-7: ODM provides obstacle
information for too long a time
without updating upon new
obstacles entering into view.

LS-19: The operational data received from DPM are
not updated.

• Sensor malfunction
• Degraded sensor performance due to varying

environmental conditions
• DPM algorithm fails to respond to updates

LS-20: The operational data received form DPM
are updated, but the buffer for ODM processing is
not refreshed.

• Programming errors

LS-21: The ODM algorithm provides updated
obstacle information, but the buffer for output is
not refreshed.

• Programming errors
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3.4. Phase 3—BN
3.4.1. Define Nodes Included in the Software Risk Assessment Model

The software risk assessment model based on the BN includes identified losses (Ls),
system-level hazards (Hs), unsafe control actions (UCAs), loss scenarios (LSs), and causal
factors (CFs) from STPA as well as failure modes (FMs), failure effects (FEs), failure causes
(FCs), and detection methods (DMs) from Software FMEA. Orange nodes represent com-
mon items identified from both Software FMEA and STPA. For example, FE-1/FE-4/FE-
6/FE-11/H-1/H-2 all represent “Obstacle enters safety domain”, and as such, they are
combined into a single node. This is also applicable to UCA-6/FM-4, representing “ODM
provides required obstacle information too late while an obstacle has entered the safety
domain already”, where similar causes and failure reasons are merged into a single node,
such as “Sensor performance” and “Algorithm design”. Green nodes represent items
identified solely from Software FMEA, while blue nodes are items identified solely from
STPA. Due to space limitations, not all UCAs and FMs have undergone further modelling
and are represented in grey nodes. The node descriptions are provided in Table 9.

3.4.2. Define the Relationship among Nodes and the BN Structure

The BN constructed based on the results identified from Software FMEA in Table 5
and STPA in Table 7 is depicted in Figure 7. From the figure, it is evident that a software
failure mode such as FM-5 “Instable algorithm” will result in FE-8 “Unpredictable sys-
tem reliability”. There are multiple causes of software failure, including failure of DM-1
“Comprehensive software testing” or FC “Software bugs”, all of which can lead to software
failure. Similar relationships exist for other nodes in the model. In the BN, directed arcs
represent dependencies between nodes, thus arrows are used to illustrate their causal rela-
tionships. Figure 7 represents the constructed BN model. The illustrative initial definitions
of states for each node are defined in Table 9 based on the interpretation of the results from
Software FMEA and STPA.
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Table 8. The description of nodes in constructed BN.

Type Nodes States Type Nodes States

Loss L-1: Causality or injury of seafarers
onboard Yes/No Loss L-2: Loss or damage of the ship Yes/No

Loss L-3: Damage to environment Yes/No Failure Effect
/Hazard

FE-1/FE-4/FE-6/FE-11/H-1/H-2: Obstacles
enter safety domain Yes/No

Failure Effect FE-2: Reduced operational efficiency Yes/No Failure Effect FE-3: Increased risk of inappropriate
manoeuvres Yes/No

Failure Effect FE-5: Inappropriate navigation-al
responses Yes/No Failure Effect FE-7: Reduced time for decision-making and

action Yes/No

Failure Effect FE-8: Unpredictable system reliability Yes/No Failure Effect FE-9: Increased need for manual intervention Yes/No

Failure Effect FE-10: Lowered system reliability in
diverse environments Yes/No Failure Mode /UCA FM-1/UCA-1/UCA-5: ODM misses detections

when obstacles are in the immediate vicinity Yes/No

Failure Mode/UCA
FM-2/FM-3/UCA-2/UCA-3: ODM falsely
detects obstacles when they are in the
immediate vicinity

Yes/No Failure Mode /UCA
FM-4/UCA-6: ODM provides required obstacle
information too late while an obstacle has
entered the safety domain already

Yes/No

Failure Mode FM-5: Instable algorithm Yes/No Failure Mode FM-6: Degraded performance in adverse
conditions Yes/No

Failure Mode FM-7: Inadequate coverage Yes/No UCA
UCA-4: ODM provides obstacle information,
but the information is incomplete after an
obstacle is detected

Incomplete/
Complete

UCA

UCA-7: ODM provides obstacle
information for too short a time before the
updates such that DPM does not have
enough time to recognize the obstacle

Too short/Normal Loss Scenario LS-16: The processed operational data are
received from DPM too late Too late/Normal

Loss Scenario
LS-17: The operational data received from
DPM are timely, but ODM algorithm
processing time is too long

Too long/Normal Loss Scenario LS-18: The ODM algorithm is correct, but the
output is provided too late Too late/Normal

Loss Scenario LS-19: The operational data received from
DPM are not updated Updated/Not updated Loss Scenario

LS-20: The operational data received form DPM
are updated, but the buffer for ODM processing
is not refreshed

Not refreshed/
Refreshed

Loss Scenario
LS-21: The ODM algorithm provides
updated obstacle information, but the
buffer for output is not refreshed

Not refreshed/
Refreshed Detection Method DM-1: Comprehensive software testing Not exist/Exist

Detection Method DM-2: Simulation testing in various
environmental conditions Not exist/Exist Detection Method DM-3: Test for the algorithm’s coverage Not exist/Exist
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Table 9. The description of nodes in constructed BN.

Type Nodes States Type Nodes States

Existing Control EC-1: Optimization of algorithms Not exist/Exist Existing Control EC-2: Upgrading hardware if latency issue is
too severe Not exist/ Exist

Existing Control EC-3: Regular updates and maintenance of
sensors Not exist/Exist Existing Control EC-4: Implementation of adaptive algorithms Not exist/ Exist

Existing Control
EC-5: Strategic placement of sensors, and
regular adjustment in case of
misplacement

Not exist/Exist Failure Cause/ Causal
factor FC/CF: Algorithm design Inappropriate/

Appropriate

Failure Cause&
Causal Factor FC/CF: Sensor performance Bad/Good Failure Cause FC: Software bugs Bugs/No bugs

Failure Cause FC: Fast-changing environmental
conditions Fast/Normal Failure Cause FC: Poor visibility Poor/Normal

Failure Cause FC: High sea clutter High/Normal Failure Cause FC: Extreme weather Extreme/Normal

Failure Cause FC: Processing delays Delay/Normal Failure Cause FC: Hardware constraints Constraints/No
constraints

Failure Cause FC: Hardware constraints Constraints/No
constraints Causal factor CF: Algorithm processing time Too long/Normal

Causal factor CF: Programming Incorrect/Correct
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4. Main Results and Key Findings from the Case Study

This section outlines the main findings, drawing on the comprehensive analysis results
detailed in Section 3 (Tables 1–7 and 9 and Figures 6 and 7).

4.1. Key Findings from Phase 1

In the first phase of the method, Software FMEA is applied to the autonomous nav-
igation software system. The software is broken down into guidance, navigation, and
control modules and further decomposed into sub-modules. The case study is specifically
focused on the obstacle detection module, aiming to identify failure modes, local and
global failure effects, detection methods and existing controls, and failure causes. The
RPN is also calculated based on expert judgment by multiplying the severity, occurrence,
and detectability of the failure mode. The identified failure modes include false negatives
(missed detection), false positives (false detection), incorrect classification, latency issues,
unstable algorithms, degraded performance in adverse conditions, and inadequate cover-
age. For instance, the failure mode “incorrect classification” could cause an “Inability of the
algorithm to distinguish between different object types or judge sizes” and a local effect of
“erroneous identification of the type or size of an obstacle”. The global effect could be that
an “increased probability of obstacles enters safety domain” and eventually results in a
collision or “inappropriate navigational responses”. The causes could be “limited training
data diversity”, namely, that certain situations were not trained for the learning process.
The cause may also be rooted in the algorithm itself, that is, the algorithm itself is not able
to distinguish between different obstacle types or judge sizes. The method also identifies
the failure mode “false positive”, wherein a false alarm is generated. The failure itself may
not threaten navigation safety; however, it may result in “reduced operational efficiency”,
especially when the occurrence is high.

4.2. Key Findings from Phase 2

The second phase is focused on establishing a control structure for the ANSS, and
the case study continued with identifying UCAs, loss scenarios, and causal factors for the
obstacle detection module. The control structure (Figure 6) reveals the complexity of the
whole control process, with the inclusion of 18 sub-modules that interact with each other.
However, it is worth noting that the control structure is neither a physical model nor an
executable model [34]. The components do not necessarily exist, but they can be used to
derive the necessary specifications requiring enforcement. The connections in between also
do not necessarily correspond to physical connection but, rather, information that can be
sent or received. The analysis focused on control action “providing obstacle information”
and identified 10 UCAs, with 20 loss scenarios that contribute to the UCAs. One example is
“UCA-3: ODM provides obstacle information, but the information is wrong”. The wrong
information could be the wrong type of obstacle or the wrong size of the obstacle. The
loss scenarios that lead to this UCA could be that the data received from DPM are wrong,
the ODM algorithm is defective, or simply the output is wrong. The causes may be the
limited training data diversity for obstacle classification, ODM algorithm design failures,
or programming errors.

4.3. Key Findings from Phase 3

The third phase in this study involves converting the results from Software FMEA and
STPA to a BN, as illustrated in Figure 7. The results show that there are common hazards
identified from both methods in addition to distinct hazards that could only be identified
from one analysis method, either Software FMEA or STPA. Software FMEA focuses more
on the internal reliability and potential failures of the software, which can be observed
from the failure modes “FM-5: Instable algorithm” and “FM-7: inadequate coverage”,
which may result in “unpredictable system reliability” and “obstacles enter safety domain”.
The results have implications for software improvement for the obstacle identification
module. The detection methods and existing controls are distinct items identified by
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Software FMEA. These function as safety barriers to reduce the probability of failure modes
and mitigate the failures by detection for timely recovery. These safety barriers are not
emphasized in STPA, since STPA is a worst-case analysis method [34]. It assumes the
safeguards may be insufficient or ineffective for the situation, or not operate as intended.
On the other hand, the guidewords for the identification of UCAs in STPA provide a
more comprehensive understanding of how the information flow between modules may
fail. For instance, “UCA-4: ODM provides obstacle information, but the information is
incomplete after an obstacle is detected” and “UCA-5: ODM provides obstacle information,
but the data are inconsistent, where an object might be detected in one instance and missed
in another” are not identified in Software FMEA. Consequently, Software FMEA and
STPA complement each other to provide a more inclusive software risk for safety and
reliability improvement. The BN combines insights from both perspectives and offers
a good integration of diverse hazard sources. Even though the quantification remains
to be addressed in further work, the BN uses probabilistic reasoning, which allows for
quantifying uncertainties and dependencies between the various factors identified from
both methods. This is particularly valuable in complex software systems, where interactions
and dependencies are not always straightforward.

5. Discussion
5.1. Industrial Implications for Software Development Related to Autonomous Ships
5.1.1. Enhancing Hazard Identification in Autonomous Ship Software Development
through Software FMEA and STPA Integration

The key findings of this study show the potential of integrating Software FMEA and
STPA to provide a more comprehensive approach to hazard identification, which is crucial
for risk assessment in software systems for autonomous ships. Software FMEA is recom-
mended by ISO 26262 as one of the main methods to carry out safety-oriented software
analysis for autonomous drive (AD) vehicles. ISO 26262 is the functional safety standard for
electrical/electronic systems in automobiles and addresses the software requirements for
road vehicles [52]. Highlighted by the standard is the importance of a proactive approach
in assessing system risks. It emphasizes the crucial role of software in autonomous vehicle
safety and integrates strategies to mitigate these risks as a fundamental aspect of system
development. A notable limitation of FMEA is inherent in its design, namely, to primarily
consider single causes for any given effect. This constraint may lead to an incomplete
risk assessment as it does not account for the possibility of multiple concurrent causes
leading to a failure. STPA adopts a more holistic view, putting more emphasis on unsafe
interactions that could lead to functional failure of the software. In an IMO seminar on the
development of a regulatory framework for autonomous ships (2022), Japan reported on
their successful application of STPA in autonomous ship development [73]. STPA enhances
Software FMEA by offering insights grounded in system theory, control structures, and
complex functional interactions. It identifies issues that might escape Software FMEA,
enabling a thorough safety analysis. Therefore, industrial application for the proposed
framework should be further explored.

5.1.2. Need for Standardization of Software Architecture for Autonomous Ships

It is worth noting that there is no established standard for autonomous navigation
software architecture, and various systems may have different software architectures. For
instance, the AUTOSEA project (sensor fusion and collision avoidance for autonomous
surface vehicles) has presented a concept focusing on a collision avoidance module that
includes collision detection, collision avoidance, and guidance. Target tracking is another
sub-module providing input for collision detection [74]. In this study, the decomposition
of the autonomous navigation software based on GNC control theory was quite time-
consuming. This is due to the fact that the existing literature mainly presents examples
of past developments where the architectural solutions are often an “aftermath” from the
evolution of an existing system. The main issue is that the requirements are difficult to
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trace with respect to functional components. In the automotive industry, efforts have been
focused on developing standard functional software architecture for fully autonomous
vehicles such that the development process can be standardized and simplified [75]. Such
standardization will allow different systems from various manufacturers to work seamlessly
together, improve safety through consistent application of best practices, and ease the
process to meet regulatory requirements. Therefore, whether there is a comparable need
for standardization for the development of the autonomous navigation software industry
requires further discussion.

5.1.3. Risk Assessment for AI-Based Autonomous Systems

The advancement of autonomous ships is becoming increasingly reliant on AI tech-
nology. In the case study, the primary purpose of the AI techniques was to fuse the sensor
data and classify the obstacles in the environment. As indicated by Thombre et al. [63],
deep learning and Gaussian processes represent the state of the art for obstacle classifi-
cation. Along with the industrial deployment of AI-based autonomous systems, the risk
brought by AI techniques is beginning to draw attention. Veitch and Andreas Alsos [76]
underpin AI brittleness, represented by “adversarial attack” in computer vision and “tail
risk” introduced by low-probability events, which is a new type of risk for autonomous
cars. Thombre et al. [63] discussed the requirements for AI software and machine learning
functions for sensor technologies for autonomous ships. Their focus, however, is more on
suitable sensors and relevant AI techniques for an operational sensor system rather than
risk assessment of the software. In the case study, the Software FMEA identified “limited
training data diversity” and/or “inability of the algorithm to distinguish between different
object types or judge sizes” for the failure mode “incorrect classification”. However, other
significant concerns such as incorrect labelling, bias in data handling, choice of machine
learning algorithms, etc., also bring risks for safe autonomous ship navigation. While
traditional risk assessment methods could identify some associated hazards, there is a need
for an enhanced understanding of AI-specific risks. Moreover, there is a need for more
developed risk assessment methodologies and frameworks tailored to AI-based systems,
along with research into a standardization process in risk assessment for these systems.

5.2. Quantification Based on BN

In the case study, the states of each node are defined; however, obtaining sufficient
data samples for the defined nodes is challenging, especially in the field of software
development. Consequently, a quantification process was not implemented for the case
study, and this is a limitation of our study. Considering that expert-based modelling is also
prevalent—particularly for highly complex systems—to establish CPTs, expert judgment
will be employed for quantification in further work.

5.3. Limitation and Further Work

The proposed framework combines Software FMEA, STPA and the BN for software risk
analysis of autonomous ships and is, therefore, subject to the limitations of these methods.
The challenges include the time-consuming nature of the analysis, heavy dependency on
the expertise and judgment of analysts, and difficulties in quantification and probability
assessment of the constructed BN [16,18,25,77]. AI brittleness is emphasized as a challenge
in this study; however, the AI-specific risks have not yet been fully addressed in the
framework. The limitations highlight the need for further refinement of the framework
towards developing more robust, effective, and comprehensive risk assessment strategies
in the rapidly evolving field of software-intensive autonomous systems.

6. Conclusions

The safety and reliability of software-intensive autonomous systems are gaining
increasing attention in the autonomous shipping industry. Comprehensive risk assessment
is a requirement of various classification societies for demonstrating that autonomous
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ships have equivalent safety to conventional vessels. The complex nature of software is
a challenge for traditional risk assessment, which is often focused on hardware failures
and failure mechanisms. In this study, a framework is proposed that integrates Software
FMEA, STPA and a BN for risk analysis of software systems in autonomous ships. To
illustrate the framework, a case study was carried out to explore the risks associated with
the autonomous navigation software system, with a specific focus on the obstacle detection
module. By converting the results from Software FMEA and STPA, including failure effects
(FE), unsafe control actions (UCAs), error causes (ECs), control flows (CFs), failure causes
(FCs), etc., to a BN, an enhanced risk assessment model was developed. The results show
that Software FMEA emphasized internal software reliability and potential failures, such as
unstable algorithms and inadequate coverage, while STPA offered insights into interactions
among modules such as inconsistent or incomplete data flows. The integration of these
methods into the BN results in a comprehensive risk analysis framework, combining diverse
hazard sources and allowing for the quantification of uncertainties and dependencies in
complex software systems. The findings suggest the need for a standards-driven process
for the development of software architecture and an enhanced understanding of AI-specific
risks, along with the development of tailored risk assessment methodologies. However, the
framework’s limitations, including the time-intensive analysis, reliance on expert judgment,
and quantification challenges, indicate the need for improvement through further research.
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