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Abstract

Using some theory about the automorphisms of extended quadratic residue
codes, we show that the extended binary Golay code is an ideal in the group al-
gebra of the symmetric group on 4 elements over Z2. We then take advantage of
the additional structure found in a group algebra to get a deeper understanding
of the properties of this code. Finally we use this insight to explore how new
codes may be constructed.
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Sammendrag

Vi viser, ved hjelp av teorien om automorfier til utvidede kvadratiske restkoder,
at den utvidede binære Golay-koden er et ideal i gruppealgebraen til den sym-
metriske gruppen p̊a 4 elementer over Z2. Vi utnytter deretter den ekstra
strukturen som gruppealgebraer kommer med til å f̊a en dypere forst̊aelse av
egenskapene til denne koden. Til slutt bruker vi denne innsikten til å utforske
hvordan nye koder kan konstrueres.
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1 Introduction

This thesis is about error correcting code theory. This theory is concerned
with methods on how to secure that information is safely transferred from one
place to another. More specifically, it focuses on detecting when information
has been compromised and restoring it. A code is thus used to reshape (code)
the information by applying to it a recognizable mathematical structure before
transferring. We want codes that allow for as many errors as possible to be
detected and corrected. This is di↵erent from cryptography, which is the the-
ory concerned with ways of transferring information securely while keeping it
secret from any third part. In error-correcting code theory one generally ig-
nores this problem. In both fields however, there is the question of finding more
e�cient constructions that minimize the computational, and thereby also the
economical and environmental cost. Thus error-correcting code theory is rele-
vant to the United Nations 12th sustainable development goal about responsible
consumption and production.

In this thesis we use one particular example of an error-correcting code,
namely the extended binary Golay code, denoted G24. This code has many nice
properties. There are therefore many equivalent ways of constructing this code,
some examples are the Reed-Solomon code over the field of 8 elements, and
more recent, as a zero divisor code in the group ring Z2D24 [11]. In this thesis
we define it as the extended code of the binary Golay code G23, the latter we
define both with respect to its properties as a cyclic and quadratic residue code.
From there we show that G24 is an idempotent code in the group algebra of the
symmetric group on 4 elements over Z2.

The background for this assignment is the scientific article ”Extended Go-
lay Codes as Ideals” by Bernhardt, Landrock and Manz [2]. It describes the
constructions of the two extended Golay codes, which are the extended binary
Golay code of length 24 and the extended ternary Golay code of length 12, as
ideals in group algebras. These constructions are based on some results about
the automorphism groups of extended quadratic residue codes.

The main and beginning part of this assignment focuses on the results that
are presented in [2]. We first outline the background definitions and results that
apply to the constructions given in the article. We then look specifically at the
case involving G24, embedded in the group algebra Z2S4. The first part involves
some general theory about quadratic residue codes and their automorphisms,
as well as some results concerning the decoding of what is defined as idempotent
codes. Our aim is to give a more thorough introduction to these concepts, in
order for it to be accessible to a more inexperienced reader.

For the second part of this paper, we look at how the endomorphism ring
of the group algebra Z2S4 as a Z2S4-module o↵ers a decomposition of this
algebra that allows us to say more about its structure and the embedding of the
extended binary Golay code inside it. We then make an attempt at applying
these results in the final part, where we see if there could be ways of finding
new codes or new constructions of older codes by starting out with an algebra
with some chosen structural properties. Although we find a way to construct
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submodules of algebras from a subset of basis vectors, this does not o↵er an
obvious way to find generators for those submodules as idempotent codes.

The motivation throughout this thesis is the general mathematical principle
that the more structure we can apply, the more knowledge we have. This is
a particular interest when it comes to finding good algorithms for decoding
codes. We therefore try to outline di↵erent structures as detailed as possible,
and we include those calculations we think have a possibility of o↵ering some
further insights. This approach has proven particularly useful, as it has led us
to discover and correct a mistake in [2] about the element that is defined as a
generator for G24 as an idempotent code.

The contents are divided into the following chapters. In Chapter 2 we define
what is known as quadratic residue codes and present some results about the
automorphisms of these codes. This is the theoretical background for the con-
struction method that we later apply to G24. In Chapter 3 we show that there is
a method of decoding that applies to all idempotent codes. Chapter 4 introduces
the extended Golay code G24 as an extended code of the quadratic residue code
of length 23. We thereby show that G24 can be embedded as an ideal in the
group algebra that is a representation of the symmetric group S4 over the field
Z2 = F2, and that G24 then is an idempotent code. In Chapter 5 we look at the
ring of endomorphisms of Z2S4 as a module over itself and show that this o↵ers
more details about the structural properties of this group algebra. This again
o↵ers more details about the embedding of G24 in Z2S4. Finally, in Chapter 6,
we make an attempt at applying the results found in Chapter 5 in order to see if
we can determine the existence on a code inside another algebra than Z2S4, but
with some of the similar properties for endomorphisms between submodules.
For some of the details that are less relevant in their given context, but might
be interesting all the same, we include an Appendix.

I would very much like to thank my supervisor, Professor Øyvind Solberg,
for being very positive, thorough and easy to communicate with. In addition, I
have to thank Eiolf Kaspersen for his wonderful help and support both in math
and life. A little thank you also goes to Torus, who has, most literary, been by
my side every day.
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2 Quadratic Residue Codes and their Automor-
phisms

We begin with a general presentation of what is known as quadratic residue
codes. In particular, we give some results about the groups formed by automor-
phisms of these codes, as this lays the foundation for a method of constructing
a group algebra around such a code. As mentioned in the introduction, we later
apply these results to the specific case of the extended binary Golay code. The
results established in this chapter are, unless otherwise mentioned, based on
those presented in [2, Chapter 1]. We do however try to give a more thorough
presentation of the coding- and representation theory on which these results are
based.

We start with the basic definition from which quadratic residue codes take
their name.

Definition 2.1. Let r be an odd prime. For a 2 N we say that a is a quadratic
residue modulo r if a is a nonzero square modulo r and that a is a quadratic
nonresidue if a is a nonsquare modulo r. We write

(a/r) =

8
<

:

0 if a ⌘ 0(mod r)
1 if a is a quadratic residue modulo r

�1 if a is a quadratic nonresidue modulo r ,

where (a/r) is called the Legendre symbol.

The sets of quadratic and nonzero non-quadratic residues modulo r are de-
noted as Qr and Nr, respectively.

We now remind the reader of some of the basic notions related to cyclic
codes. Let Fq be a field with q elements, that is q = p

k for some prime p and
positive integer k. Remember that the cyclic codes over Fq of length r are the
ideals of Fq[x]/(xr � 1). We first define the following.

Definition 2.2. [6, page 114] Let 0  s  r. The q-cyclotomic coset of s

modulo r is given as

Cs = {s, sp, . . . , spd�1}(mod r),

where d is the smallest positive integer for which sp
d ⌘ s(mod r).

For the following we refer to Theorem 3.7.6 and Theorem 4.1.1 in [6].

Lemma 2.3. Let 0  s  r where r is a prime. Suppose q is relatively prime
to r and ⇠ is a primitive element in Fq|Cs| . Then the minimal polynomial of ⇠s

over Fq is

M⇠s(x) =
Y

i2Cs

(x� ⇠
i).

The following proposition defines what is known as quadratic residue codes.
In this case we have q = p.

3



Proposition 2.4. Let p be a prime for which p 2 Qr. Let ⇠ be a primitive rth
root of unity in Fpm for some m. If

q(x) =
Y

i2Qr

(x� ⇠
i) and n(x) =

Y

i2Nr

(x� ⇠
i),

then

x
r � 1 = (x� 1)q(x)n(x) 2 Fpm [x].

Moreover, q(x) and n(x) have coe�cients in Fp.

Proof. The factorization of xr � 1 follows directly from the fact that

Fr = Qr [Nr [ {0}.

As for the last part, let p be a prime with p 2 Qr. First note that since p 2 Qr,
then Qr contains

C1 = {1, p, pi, . . . , pd�1}(mod r),

where d is the smallest positive integer such that pd ⌘ 1(mod r). In general, for
any primitive element � in Fr (that is, � is a generator for F⇤

r), if � ⌘ x� (mod r)
for some x�, we have

�
2k ⌘ (xk

�)
2 (mod r) =) �

2k+1 ⌘ (xk
�)

2
x� (mod r),

hence �
2k 2 Qr and �

2k+1 2 Nr. Thus Qr is a cyclic group with �
2 as a

generator. Moreover, since p 2 Qr. then Qr is closed under multiplication by p

since

�
2
p
i ⌘ x

2
�x

2i
p ⌘ (x�x

i
p)

2 (mod r).

In other words, Cs ✓ Qr if and only if s 2 Qr, hence Qr is a disjoint union of
cyclotomic cosets, and so

q(x) =
Y

i2Qr

(x� ⇠
i) =

Y

Cs✓Qr

Y

i2Cs

(x� ⇠
i),

where
Q

i2Cs
(x� ⇠

i) is the minimal polynomial of ⇠s over Fp by Lemma 2.3, i.e
has coe�cients in Fp. Hence q(x) has coe�cients in Fp. By the same logic this
also holds for n(x).

The ideals with minimal generator polynomial either q(x) or n(x) are called
the quadratic residue codes of length r over Fp. These are equivalent codes. Let
C be a quadratic residue code with generating idempotent e(x). If q(x) is the
minimal polynomial for C then

e(x) = a0 +
X

i2Qr

x
i
.
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Otherwise, if C is generated by n(x) then

e(x) = a0 +
X

i2Nr

x
i
.

For the previous facts, see [6, Theorem 6.6.5]. Note that hq(x)i and hn(x)i are
sometimes referred to as the odd-like quadratic residue codes, in which case we
call h(x� 1)q(x)i and h(x� 1)n(x)i the even-like quadratic residue codes.

The extended quadratic residue code is constructed given the more general
definition that follows.

Definition 2.5. If C is cyclic code, then the extended code or extension, of
C, denoted bC, is the code constructed by adding a parity check at a position
labelled 1.

Note that the extended code of a quadratic residue code is not cyclic but
rather a submodule of SpanFp

hx0
, . . . , x

r�1
, x

1i.
As mentioned earlier, the first part of this thesis is concerned with construct-

ing a group ring in which an extended quadratic residue code can be embedded
as an ideal. We choose this group basis using our knowledge about automor-
phism groups of quadratic residue codes.

2.1 Automorphism Groups of Extended Binary Quadratic
Residue Codes

We identify the canonical basis vectors x
0
, . . . x

22
, x

1 with the projective line
given as P (r) = Fr [ {1}. The details of the following definition are later used
in the proof of Lemma 4.4.

Definition 2.6. We define the special linear group and projective special linear
group by

SL2(r) =

⇢✓
a b

c d

◆
| a, b, c, d 2 Fr and ad� bc = 1

�
,

PSL2(r) = SL2(r)/ h�Ii .

These groups come with some additional results, which we can explore after
giving the following definition.

Definition 2.7. [5, Page 210] A group action by a group G on a set X is
transitive if for all x1, x2 2 X there exists some g 2 G such that x1g = x2.
The group action is called 2 - transitive if for all x1, x2, x

0
1, x

0
2 with x1 6= x

0
1 and

x2 6= x
0
2 there exists some g 2 G such that x1g = x2 and x

0
1g = x

0
2.

Note that while r = 8m± 1, then PSL2(r) can also be realized as the group
of all permutations of P (r) of the form

i 7! a · i+ b

c · i+ d
,

5



where a, b, c, d 2 Fr and ad � bc = 1 [10, Chapter 16.5]. This leads to the
following proposition.

Proposition 2.8. Let r be a prime of the form r = 8m± 1. Let � a primitive
element of Fr and for i 2 P (r) define

sr : i 7! i+ 1,

µ : i 7! i�
2
,

↵r+1 : i 7!

8
<

:

j where ij ⌘ �1(mod r) if i 6= 0,1
1 if i = 0
0 if i =1,

as permutations of P (r). Then

PSL2(r) ⇠= hsr, µ,↵r+1i,

where PSL2(r) acts 2-transitively on P (r).

For the proof, see [10, Theorem 9]. Note that the permutation given as ↵r+1

in the above proposition maps elements in Qr to elements in Nr and vice versa.
Now, remember that a monomial matrix is a square matrix with exactly

one nonzero coordinate in any row or column, and that a permutation matrix
is a monomial matrix where all the nonzero coordinates are 1s. Based on these
properties we define two automorphism subgroups of a code C.

Definition 2.9. [6, page 22+26] The permutation automorphism group of a
code C, is the set of all permutations that maps C to itself, denoted PAut(C).
Likewise the monomial automorphism group of C is the group formed by all
monomial transformations being automorphisms of C, denoted MAut(C).

Note that in general, since any permutation can be written in the form
of a monomial matrix, then PAut(C)  MAut(C)  Aut(C), where the latter
denotes the group all automorphisms of C. Furthermore, if C is binary then any
monomial transformation is a permutation matrix, and so the sets are identical.
We now present a special case of what is known as the Gleason-Prange theorem,
which can be found as [10, Theorem 10]. We also refer there for a proof.

Theorem 2.10. Let C be an quadratic residue code of length r = 8m ± 1 for
m 2 N over Z2. Let bC be the extended code of bC. Then

PSL2(r)  PAut(Ĉ).

This concludes the general part about encoding of quadratic residue codes.
For now, it might not be obvious to the reader how the results established so
far directly adds algebraic structure to the vector space of a general (extended)
quadratic residue code. Later when we look at the specific case of the extended
binary Golay code, we see that the properties of this code in particular allow
us to choose a specific subgroup of PSL2(r) as a basis for the group algebra
containing this code.

6



3 Decoding Idempotent Codes

The purpose of building more structure around an error-correcting code, is to
introduce more e�cient methods of decoding received codewords. In this chapter
we show that there is a natural decoding method that applies to any code once
we have shown that the code can be generated by a sum of idempotents. Unless
otherwise stated, these definitions and results are found in [2, Section 4].

We let F be a field, G a finite group with identity 1. Let A := FG; the vector
space with basis G over F. Then A is a group algebra. Note that multiplication
in A is naturally defined from multiplication in F and the binary operation G.
An element a 2 A is a vector that can be written as a =

P
g2G agg. The two

maps given in the following definition will be applied repeatedly in the proofs
in this section. The latter also turns out to be a useful tool in understanding
the structures we later examine in the group algebra Z2S4.

Definition 3.1. For any a 2 A, let ⌧ : A! A and � : A! F be the maps given
as

�(a) = a1,

⌧(a) =
X

g2G

agg
�1

.

The map ⌧ is called the antipode of A.

We use the next definition to prove the subsequent lemma.

Definition 3.2. [3, page 192] A homomorphism � : R ! S is an antiisomor-
phism if � is a bijection and

�(r1 +R r2) = �(r1) +S �(r2) and �(r1 ·R r2) = �(r2) ·S �(r1),

for all r, s 2 R. In the case where R = S, we say that � is an antiautomorphism.

Thus we have the following fact about the function we just defined as ⌧ .

Lemma 3.3. The mapping ⌧ given in (3.1) is an antiautomorphism.

Proof. It is straightforward to check that ⌧ is a homomorphism of vector spaces.
Now consider an arbitrary element a =

P
g2G agg 2 A. Since g is the inverse of

g
�1 then ⌧(⌧(a)) = a and hence ⌧ is an automorphism. In particular,

(⌧ · ⌧)(a) = ⌧(⌧(a)) = ⌧

0

@⌧

0

@
X

g2G

agg

1

A

1

A

= ⌧

0

@
X

g2G

agg
�1

1

A =
X

g2G

agg = a,

7



so ⌧ = ⌧
�1. Now let b =

P
g2G bgg 2 A as well. Then

⌧(a+ b) = ⌧

0

@
X

g2G

(ag + bg)g

1

A =
X

g2G

(ag + bg)g
�1

=
X

g2G

agg
�1 +

X

g2G

bgg
�1 = ⌧(a) + ⌧(b).

Moreover, we have

⌧(a · b) = ⌧

0

@
X

g,h2G

(agbh)gh

1

A =
X

g,h2G

(agbh)(gh)
�1

=
X

g,h2G

(agbh)h
�1

g
�1 = ⌧(b)⌧(a).

Hence ⌧ is an antiautomorphism.

Note also that, if X,Y ✓ A, we have

a 2 ⌧(X) \ ⌧(Y ) =) a 2 ⌧(X) and a 2 ⌧(Y )

=) ⌧(a) 2 X and ⌧(a) 2 Y

=) ⌧(a) 2 X \ Y

=) a 2 ⌧(X \ Y ).

For a, b 2 A, let h·, ·i denote the standard inner product in A, i.e ha, bi =P
g2G agbg. In general, it will be useful to remind ourselves of some of the most

basic definitions and results in vector space theory. The identity given in the
following lemma will be a useful tool for the later proofs.

Lemma 3.4. For any a, b 2 A we have

�(a⌧(b)) = ha, bi.

Proof. Let a =
P

g2G agg and b =
P

h2G bhh in A. Then

a⌧(b) =

 
X

g2G

agg

! 
X

h2G

bhh
�1

!

=
X

g,h2G
g=h

agbhgh
�1 +

X

g,h2G
g 6=h

agbhgh
�1 =

X

g2G

agbg +
X

g,h2G
g 6=h

agbhgh
�1

.

Hence �(a⌧(b)) =
P

g2G agbg = ha, bi.

Note that it follows that �(⌧(a)b) = �(⌧(a)⌧(⌧(b))) = h⌧(a), ⌧(a)i = ha, bi
as well. Likewise, we have

�(ab) = ha, ⌧(b)i = h⌧(a), bi = �(⌧(a)⌧(b)).

We now list a few definitions that will be necessary for establishing the
subsequent result. The following applies to any right or left module over a ring.

8



Definition 3.5. [3, Page 374] Let R be a ring and M a left R-module. The left
annihilator of M is given as

Annl(M) = {l 2 R | lm = 0 for all m 2M} .

Let N be a right R-module. The right annihilator of N is given as

Annr(N) = {r 2 R | nr = 0 for all n 2 N} .

If J is an ideal in R, we let Annl,J(M) = Annl(M) \ J and Annr,J(M) =
Annr(N) \ J . In particular, we can use the above definition for a code C in A.

The rest of this section applies to idempotent codes which we define next.

Definition 3.6. A code C is an idempotent code if C =
Pm

j=1 ejA, where
e1, . . . , em are idempotents in A.

We also use the following notion to build some additional structure around
C inside the group algebra.

Definition 3.7. An idempotent e 2 A is a central idempotent if ea = ae for all
a 2 A.

Note that the dual or orthogonal of C is the code defined as

C? = {a 2 A | a · c = 0 for all c 2 C}

[6, page 6]. In the following two results let " a central idempotent, let B = "A,
and let C =

Pm
j=1 ejA be an idempotent code contained in B.

Lemma 3.8. Assume ⌧(B) = B and C? \B = C. Then

C =
m\

i=1

("� ⌧(ei))A.

Proof. Assume that C = C? \B and B = ⌧(B). We first show that

C? = ⌧(Annl(C)). (1)

For the inclusion from right to left we have

a 2 Annl(C) =) 0 = ac = �(ac) = ha, ⌧(c)i = h⌧(a), ci for all c 2 C
=) ⌧(a) 2 C?

.

Hence ⌧(Annl(C)) ✓ C?. On the other hand,

a 2 C? =) 0 = ha, ci = h⌧(a), ⌧(c)i = �(⌧(a)c) for all c 2 C
=) �(⌧(a)cg) = 0 for all c 2 C and g 2 G

=) the coe�cient of g�1 in ⌧(a)c is 0 for all g 2 G, c 2 C
=) ⌧(a)c = 0 for all c 2 C
=) ⌧(a) 2 Annl(C).

9



Thus ⌧(⌧(a)) = a 2 ⌧(Annl(C)). Hence C? = ⌧(Annl(C)). We next show that

Annl,B(C) =
m\

i=1

Annl,B(eiA). (2)

Remember that C =
Pm

i=1 eiA, with e1, . . . , em orthogonal. Then eja 2 C for
1  j  m, since eja 2 A and thus

Pm
i=1 ei · eja = eja 2 C. The first identity

holds since for b 2 B we have

b 2 Annl,B(C) () b ·
mX

i=1

eiai = 0 for all ai 2 A

() beia = 0 for all 1  i  m, a 2 A

() b 2 Annl,B(eiA) for all 1  i  m

() b 2
m\

i=1

Annl,B(eiA).

For the third part, we show that

Annl,B(eiA) = A("� ei). (3)

Since " is a central idempotent then for any b 2 B = "A we have b = "a = a" for
some a 2 A. But then "b = "

2
a = "a = b = a" = a"

2 = b". Thus "ei = ei = ei"

since ei 2 B . We first show the right inclusion. We have

A("� ei)eiA = A("ei � e
2
i )A

= A(ei � ei)A = 0.

Hence A("� ei) ✓ Annl,B(eiA). On the other hand, suppose b 2 Annl,B(eiA).
Then for any ei we have beia = 0 for all a 2 A, so bei · 1 = bei = 0. Thus

b = b� bei = b("� ei) = a"("� ei)

= a("2 � "ei)

= a("� ei) 2 A("� ei).

and so Annl,B(eiA) ✓ A("� ei). For the final part, we want to show that

⌧(A("� ei)) = ("� ⌧(ei))A. (4)

We see directly that

⌧(A("� ei)) = ⌧("� ei)⌧(A)

= (⌧(")� ⌧(ei))⌧(A) = (⌧(")� ⌧(ei))A.

It remains to show that ⌧(") = ". We see that

⌧(")A = ⌧(")⌧(A) = ⌧(A") = ⌧(B) = B

= ⌧("A) = ⌧(A)⌧(") = A⌧(").

10



Hence b = ⌧(")a = a⌧("), since ⌧(") is a central element in A. But then

⌧(")b = ⌧(")2a = ⌧("2)a = ⌧(")a,

b⌧(") = a⌧(")2 = a⌧("2) = a⌧("),

so we have b = ⌧(")b = b("). But then ⌧(") is the identity on B, which we
already know that " is. Hence ⌧(") = " and so

(⌧(")� ⌧(ei))A = ("� ⌧(ei))A.

Finally, by combining the initial assumptions with (1), (2), (3) and (4), we have

C = C? \B = ⌧(Annl(C)) \ ⌧(B)

= ⌧(Annl,B(C))

= ⌧

 
m\

i=1

Annl,B(eiA)

!

= ⌧

 
m\

i=1

A("� ei)

!

=
m\

i=1

⌧(A("� ei)) =
m\

i=1

("� ⌧(ei))A,

which concludes our proof.

Our last lemma introduces a method for decoding C.

Lemma 3.9. Let B be a basis for B. Suppose C is a d-error correcting code
w.r.t B. Then every b 2 B of weight  d is uniquely determined by ⌧(ei)b for
i = 1, . . . ,m.

Proof. Let b, b
0 2 B be vectors of weight at most d such that ⌧(ei)b = ⌧(ei)b0

for 1  i  m. We have

⌧(ei)b� ⌧(ei)b
0 = 0 =) ⌧(ei)(b� b

0) = 0

=) a⌧(ei)(b� b
0) = 0 for all a 2 A, i = 1, . . . ,m

=) b� b
0 2 Annr,B(A⌧(ei)) for all i = 1, . . . ,m

=) b� b
0 2

m\

i=1

Annr,B(A⌧(ei)).

We next show that for any i = 1, . . . ,m we have

Annr,B(A⌧(ei)) = ("� ⌧(ei))A. (5)

First, we see that

A⌧(ei)("� ⌧(ei))A = A(⌧(ei)"� ⌧(ei)
2)A

= A(⌧(ei)"� ⌧(ei))A since ⌧(ei)
2 = ⌧(e2i ) = ⌧(ei)

= 0.

11



Hence (" � ⌧(ei))A ✓ Annr,B(A⌧(ei)). To show the opposite inclusion, choose
some b

00 2 Annr,B(A⌧(ei)). Then b
00 = "a for some a 2 A and ⌧(ei)b00 = 0.

Hence we have

b
00 = b

00 � ⌧(ei)b
00 = "a� ⌧(ei)"a

= "a� ⌧(ei)a

= ("� ⌧(ei))a 2 ("� ⌧(ei))A,

since ⌧(ei)" = ⌧(ei)⌧(") = ⌧("ei) = ⌧(ei). Hence (5) holds. But then

b� b
0 2

m\

i=1

("� ⌧(ei))A = C. (Lemma 3.8.)

Since b and b
0 both have weight  d, then b� b

0 has weight  2d. But since
C is d-error correcting, then the minimal weight of C is 2d+1. Hence b� b

0 2 C
can only be true if b� b

0 = 0, that is b = b
0.

12



4 The extended binary Golay code G24 as an
ideal in Z2S4

The remaining part of this thesis is based on our study of a particular quadratic
residue code known as the extended binary Golay code, denoted by G24. As
indicated by its name, this code was originally constructed as an extension of
the binary Golay code, which corresponds to the quadratic residue code of length
23. The extended binary Golay has many particularly nice properties. It is self-
dual (self-orthogonal). And it is doubly-even, meaning that the weights of all its
codewords are divisible by 4. Moreover, there are many di↵erent constructions
that yield an ideal which is equivalent to this code.

In this chapter we describe the construction introduced in [2], showing that
G24, as the extended quadratic residue code of length 24, can be embedded as
an ideal in the group algebra Z2S4, where S4 is the symmetric group of 4 digits.
Unless otherwise stated, these definitions and results are found in [2, Section 2].

We introduce G24 as the extension of the binary quadratic residue code of
length 23. Using the notation from Chapter 2, we have q = p = 2 and r = 23.
The sets of quadratic and non-quadratic residues modulo 23 in this case are

Q23 = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18},
N23 = {5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22}.

Moreover, over Z2 we have x
23 � 1 = (x+ 1)q23(x)n23(x), where

q23(x) = 1 + x+ x
5 + x

6 + x
7 + x

9 + x
11
,

n23(x) = 1 + x
2 + x

4 + x
5 + x

6 + x
10 + x

11
.

Hence hq23(x)i and hn23(x)i are QR-codes. Their generating idempotents are
X

i2Qr

x
i and

X

i2Nr

x
i
,

respectively. As stated previously, these are equivalent codes. They both corre-
spond to the code given in the following definition.

Definition 4.1. [6, page 401] The (perfect) binary Golay code G23 is a a linear
(23, 12, 7) - code corresponding to the quadratic residue - code of length 23 over
Z2.

The extended binary Golay code G24 is the (24, 12, 8) - code obtained when
adding a parity check to the codewords of G23.

Now let G24 = bG23 with G23 = hq(x)i. Since
P

i2Qr
x
i and

P22
i=0 x

i are
codewords in G23, we see that

e(x) =
X

i2Qr

x
i + x

1 +
22X

i=0

x
i + x

1

= 1 +
X

i2Nr

x
i
,

13



is a codeword in G24. Note that e(x) is the generating idempotent for the
quadratic residue code h(1 � x)q(x)i in Z2[x]/(x23 � 1) by [6, Theorem 6.6.5].
In order to generate all of G24 however, we use the following set of codewords.

cj = e(x) · xj
, for j = 0, . . . , 22 and c23 = x

1 +
22X

i=0

x
i
. (6)

We describe one way of finding a generator matrix for G24. Let D be the
24⇥ 24 binary matrix whose rows correspond to the codewords c0, . . . , c22, c23.
Note that N23 equals the 2-cyclotomic coset given as C23 = {5 · 2j | j < (23 �
1)/2}. We arrange the columns of D corresponding to x

i in the order given by

i = 1, 5 · 211, . . . , 5 · 2, 5, 0,�5,�5 · 2. . . . ,�5 · 211

= 1, 14, 7, 15, 19, 21, 22, 11, 17, 20, 10, 5, 0, 18, 13, 3, 6, 12, 1, 2, 4, 8, 16, 9.

Now the reduced row echelon form of D with the resulting all zero rows removed
is the matrix

G =

2

6666666666666666664

1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 1
0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 1 0 1 1
0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 0 0

3

7777777777777777775

.

Here the dimension of G24 is given by the row rank of G.
We list some additional properties of G24 that will be used in this thesis. Re-

member that the (maximal) number of errors corrected by a code with minimal
weight d is b(d� 1)/2c. As stated in Definition 4.1, the minimum weight of G24

is 8. Since the code G24 is a rather well-established code with many uses and
constructions, then the following facts are well-known and will therefore not be
explicitly proven.

Lemma 4.2. [6] For the binary Golay code G24 the following hold

(i) It is a self-dual code, meaning that G24 = G?
24.

(ii) It is 3-error correcting and 7-error detecting.

(iii) The weight of any codeword c 2 G24 is divisible by 4.

14



Note that since G24 has minimum weight 8, it follows from the last point in
Lemma 4.2 that the codewords in G24 have weight of either 8, 12, and 16.

Now, in order to construct G24 as an ideal in a group algebra we first need
to construct that algebra from a suitable group basis. We do so by looking at
the subgroups of the group of automorphisms.

4.1 Constructing the group algebra Z2S4 from automor-
phisms of G24

We begin by outlining the knowledge we have about the automorphism groups
of G24 when applying the theory established in Chapter 2.1. It follows from
Proposition 2.4 and Theorem 2.5 that

PSL2(23) ⇠= hs23, µ,↵24i  PAut(G24),

where

s23 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 21, 22),

↵24 = (0,1)(1, 22)(2, 11)(3, 15)(4, 17)(5, 9)(6, 19)(7, 13)(8, 20)(10, 16)(12, 21)

(14, 18).

Note that PAut(G24) is the Mathieu group M24, which is known to have
order 242 · 23 · 22 · 21 · 20 · 2, see [6, page 402]. For the results that remain in
this section to make sense, we need to understand the following property.

Definition 4.3. Let S be a set with a group action from a group G. An
element g 2 G is called fixed-point-free if gs 6= s for all s 2 S. We say that G

acts fixed-point-freely on S if g is fixed-point-free for all g 2 G, g 6= 1.

There is a general result [7, Chapter II, Theorem 8.18] stating that PSL2(r)
contains a copy of S4, the symmetric group of four digits, whenever r

2 � 1 ⌘
0 (mod 16). This holds for r = 23. The following Lemma defines a fixed-point-
free group acting on P (23) that can be embedded in PSL2(23) and is isomorphic
to S4. We denote by ⇡

⇢ the element ⇢�1
⇡⇢ for two elements ⇡ and ⇢ in a group.

Lemma 4.4. Let ↵ = ↵24. Let �, � and � be fixed-point-free permutations on
P (23) such that

1. ↵
2 = �

2 = �
2 = �

3 = 1.

2. ↵
� = �, �� = ↵�, or ↵

� = ↵�, �� = ↵.

3. ↵
� = ↵, �� = ↵�, or ↵

� = �, �� = ↵ or ↵
� = ↵�, �� = �.

Then

S4
⇠= h↵,�, �, �i  PSL2(23).
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A proof that this Lemma holds for a particular choice of ↵, �, �, and � in
PSL2(23) is found in Appendix 7.1.

As of now, we have defined G24 as a SpanZ2
hx0

, . . . , x
1i - module. In order

to find an embedding of G24 inside Z2S4 we evaluate the module structure of
Z2S4. We first show that Z2S4 can be written as a sum of indecomposable right
ideals.

Lemma 4.5. The group algebra Z2S4 can be decomposed into a direct sum of
right projective modules

Z2S4
⇠= P1 � P2 � P3,

where P2
⇠= P3 and dim(P1) = dim(P2) = dim(P3) = 8.

Proof. Let A = Z2S4 and r = rad(A). Then Z2 is a splitting field for A/r, that
is

A/r ⇠= Z2 �M2(Z2)

⇠= Z2 �
✓
1 0
0 0

◆
M2(Z2)�

✓
0 0
0 1

◆
M2(Z2) = L1 � L2 � L3.

for simple modules L1, L2 and L3. Thus A/r is a direct sum of three simple
modules. Recall that for projective modules P and P

0 we have P ⇠= P
0 if and

only if P/P r ⇠= P
0
/P

0r. Let P1, P2, P3 be the projective covers of L1, L2 and
L3, respectively. Thus we have

(P1 � P2 � P3)/(P1 � P2 � P3)r ⇠= P1/P1r� P2/P2r� P3/P3r

= L1 � L2 � L3 = A/r.

Since A is a finite dimensional Z2-algebra then A ⇠= P1 � P2 � P3. Moreover,
since P2 and P3 are projective then P2/P2r = L2

⇠= L3 = P3/P3r implies that
P2
⇠= P3.

We also want to evaluate how these ideals are built according to the irre-
ducible modules in A. From basic group theory we know that K4, the Klein-4-
group, is a subgroup of S4 and that K4 acts trivially on any irreducible Z2S4-
module. Also, S4/K4

⇠= S3, such that any irreducible submodule of Z2S4 is also
an irreducible submodule of Z2S3. It is known that Z2S3 has only two irreducible
submodules, including the trivial one. Hence the only irreducible submodules
of Z2S4 are the trivial module, Z2, and a 2-dimensional Z2S3-module, V . From
Lemma 4.4 we find that K4

⇠= h↵,�i, and S3
⇠= h�, �i. The action of h�, �i

on V must thereby be defined in a way that satisfies �
3 = �

2 = 1. We let
V = SpanZ2

hv, v0i and

� : v 7! v
0
, v

0 7! v + v
0
,

� : v 7! v + v
0
, v

0 7! v
0
.

Our next step is to examine the inclusions of indecomposable submodules in
Z2S4. We make the following definition.
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Definition 4.6. [1, Page 161] 1. The socle of a module M , denoted Soc(M),
is the sum of all simple submodules of M .
2. The socle-series of M is the inclusion series

0 ⇢ Soc(M) ⇢ Soc2(M) ⇢ · · · ⇢ M,

where Soci+1(M) is defined by the identity Soc(M/Soci(M)) = Soci+1(M)/Soci(M).

The socle series is also called the upper Loewy series. It is shown in [8,
Example 15.10 a)] that the composition factors of the socle series of the ideal
P1 are given as

Soci+1(P1)/Soc
i(P1) ⇠=

8
>><

>>:

Z2

Z2 � V

Z2 � V

Z2

for

i = 3
i = 2
i = 1
i = 0.

(7)

Likewise for P2 we have

Soci+1(P2)/Soc
i(P2) ⇠=

8
>><

>>:

V

Z2

Z2 � V

V

for

i = 3
i = 2
i = 1
i = 0.

(8)

We later use this to show that we have found suitable generators for the ideals
in A.

Definition 4.7. [9, Chapter 11] Let G be a finite group, R a commutative ring
and let M be a nonzero RG-module. Then M is called a permutation module if
M is a free R-module and G acts as a permutation group on an R-basis of M .

The following result lays the foundation for our next chapter.

Lemma 4.8. The extended binary Golay code G24 is a right Z2S4-permutation
(sub)module. In particular, G24 is a right ideal in the group algebra Z2S4.

Proof. Let A = Z2S4. We first show that G24 is a A-permutation module. That
is, that G24 is a A-module, a free Z2-module and that S4 acts as a permutation
group on an Z2-basis of G24.

Let X = {1, x, . . . , x22
, x

1}. Then Z2X = SpanZ2
X is by definition a free

Z2-module with basis X, and the same holds for G24 as a submodule of Z2X.
We know that any g 2 S4 is a permutation of the set P (23) = F23 [ {1}.
write g : i 7! ig. We have a bijection between X and P (23) given by the
correspondence

x
i  ! i.

Thus we can let

x
i · g = x

ig .
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Let a =
P

g2S4
agg where ag 2 Z2. Then we have

x
i · a = x

i

 
X

g2S4

agg

!
=
X

g2S4

agx
i
g =

X

g2S4

agx
ig .

Thus for some c =
P

i2P (23) cix
i with ci 2 Z2 then

c · a =
X

i2P (23)

ci

 
X

g2S4

agx
ig

!
=

X

i2P (23)
g2S4

(ciag)x
ig .

Thus G24 is an A-permutation module. It now remains to show that G24 can be
embedded as a ideal in Z2S4. We start by defining a map

X ! S4

x
0 · g 7! g,

for g 2 S4. First we show that this map is well-defined. Suppose that x
0
g =

x
0
g
0. Then x

0
g(g0)�1 = x

0. Since S4 acts fixed point freely on P (23), it also
acts fixed-point freely on X. Hence the only element of S4 keeping any x

0 fixed
is 1. It follows that g(g0)�1 = 1, and thus g = g

0. Since S4 and X also have the
same number of elements, it follows that the action of S4 is transitive. Hence
for any x

i 2 X we can write x
i
g 7! g. We then see that G24 can be identified

with the submodule of Z2S4 by

G24 ,! SpanZ2
X ! Z2S4

x
0 · g 7! g.

Thus G24 is a right ideal in Z2S4.

4.2 The structure of G24 as an ideal in Z2S4

From now on we let A = Z2S4. We want to show that the structure of A allows
for G24 to be embedded into A in such a way that G24 is an idempotent code.
In order for the codewords of G24 to be written as vectors in A, we need to
find a bijection between the 24 canonical basis vectors and the basis elements
of S4

⇠= h↵,�, �, �i. We first need to define all generators of S4 as permutations
of P (23). Remember that

↵ = (0,1)(1, 22)(2, 11)(3, 15)(4, 17)(5, 9)(6, 19)(7, 13)(8, 20)(10, 16)(12, 21)

(14, 18).
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There are many ways of choosing �, � and � that satisfy the identities given in
Lemma 4.4. We here let

� = (0, 11)(1, 20)(2,1)(3, 7)(4, 16)(5, 19)(6, 9)(8, 22)(10, 17)(12, 14)(13, 15)

(18, 21),

� = (0, 18, 9)(1, 10, 3)(2, 21, 5)(4, 7, 22)(6,1, 12)(8, 17, 15)(13, 20, 16)

(11, 14, 19),

� = (0, 15)(1, 19)(2, 7)(3, 11)(4, 21)(5, 22)(6, 20)(8, 9)(10, 14)(12, 16)(13,1)

(17, 18).

Then multiplication in S4 yields

↵
� = ↵�, ↵

� = �, �
� = �� = ↵.

Thus h↵,�, �, �i satisfies the requirements for S4 stated in Lemma 4.4. (Note
that we have defined � and � equal to those given in [2], while our choice of �
equals �� in [2]).

We now look for a bijection between the 24 canonical basis vectors given as
x
0
, . . . , x

22
, x

1 and the 24 group elements of S4 that identifies the result of the
action of any ⇡ 2 S4 on the position of some xi with the result of multiplying on
the right by ⇡ on the element corresponding to i in S4. Let 1 2 S4 correspond
to x

0. Then each ⇡ in h↵,�, �, �i can be identified with the number for which ⇡

permutes 0. We thereby have

0 , 1, 1 , ↵, 11 , �, 2 , ↵�, (9)

18 , �, 12 , ↵�, 14 , ��, 21 , ↵��,

9 , �
2
, 6 , ↵�

2
, 19 , ��

2
, 5 , ↵��

2
,

15 , �, 13 , ↵�, 3 , ��, 7 , ↵��,

17 , ��, 16 , ↵��, 10 , ���, 4 , ↵���,

8 , �
2
�, 20 , ↵�

2
�, 1 , ��

2
�, 22 , ↵��

2
�.

For some of the results in this chapter and onward we use a combination of
computations in GAP and calculations by hand. In those cases we use the
following bijection to identify the elements in the representation h↵,�, �, �i with
original elements in S4.

1 , 1, � , (2, 3, 4), �
2 , (2, 4, 3),

↵ , (1, 4)(2, 3), ↵� , (1, 2, 4), ↵�
2 , (1, 3, 4),

� , (1, 3)(2, 4), �� , (1, 4, 3), ��
2 , (1, 2, 3),

↵� , (1, 2)(3, 4), ↵�� , (1, 3, 2), ↵��
2 , (1, 4, 2),

� , (3, 4), �� , (2, 4), �
2
� , (2, 3),

↵�� , (1, 2), ��� , (1, 3), ↵�
2
� , (1, 4),

↵� , (1, 3, 2, 4), ↵��� , (1, 4, 3, 2), ��
2
� , (1, 2, 4, 3),

�� , (1, 4, 2, 3), ↵�� , (1, 2, 3, 4), ↵��
2
� , (1, 3, 4, 2).
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The purpose of constructing G24 as an ideal in A is to give G24 a structure so it
can be generated by a sum of idempotents. In order to understand this structure
thoroughly we look at the embedding of G24 in relation to the decomposition of
A as given by Lemma 4.5. Now let e1 = 1 + � + �

2 and P1 = e1A. Also let
S = h↵,�, �i (⇠= S4/h�i). Since e1� = �e1 = e1, the dimension of P1 is the same
as that of |S| = 23 = 8. We find that P1 can be spanned by

v1 = e1

X

g2S

g,

v2 = e1(1 + ↵+ � + ↵�),

v3 = e1(1 + ↵+ � + ↵��),

v4 = v3� = e1(1 + ↵� + � + ↵�),

v5 = e1(1 + � + � + ↵�),

v6 = v1� = e1(1 + ↵+ � + ��),

v7 = e1(1 + �),

v8 = e1.

We outline in Appendix 7.2 how v1, . . . , v8 span indecomposable submodules of
P1, and that this yields the same composition factors as those stated by (7).
Note that the socle of P1 is 1-dimensional and spanned by v1. In particular, since
v1 corresponds to the all-one codeword, then v1 2 G24. Further examination
confirms that we have v2, v3, v4 2 G24 as well. We find that

M1 = SpanZ2
{v1, v2, v3, v4},

is an indecomposable submodule of P1 (See Appendix 7.2). Here the maximum
proper indecomposable submodule of M1 is Span{v1, v2}. In particular, since
v3� = v3� = v4, v4� = v4 + v3 + v1 and v4� = v3, it follows that

M1/Span{v1, v2} ⇠= V.

Note that then v3 and v4 are both generators for M1.
Altogether, we find that the composition factors of the socle series of M1

can be given as

Soci+1(M1)/Soc
i(M1) ⇠=

8
<

:

V

Z2

Z2

for
i = 2
i = 1
i = 0.

This shows thatM1 has dimension 4. Now in order to generate the 12-dimensional
module that is G24, we look for some 8-dimensional module that is contained
in G24 but disjoint with P1. We know that any primitive idempotent in G24

generates an ideal that is exactly 8-dimensional. This follows from G24 being
12-dimensional and that A is a disjoint sum of 8-dimensional ideals so any ideal
generated by an idempotent in A must have dimension divisible by 8. We have
confirmed by computation that there are exactly 64 non-zero idempotents in
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G24. We are looking for an idempotent that is orthogonal with e1. One such
idempotent is

e2 = 1 + � + ↵�� + ��� + ↵��� + ↵�
2
� + ��

2
� + ↵��

2
�.

as given in [2]. That is, we have e2 2 G24, e2 = e
2
2, and e1e2 = e2e1 = 0. We let

P2 = e2A. It follows that

G24
⇠= M1 � P2. (10)

We find that the following list of vectors span P2.

w1 = e2(1 + ↵+ � + ↵�),

w2 = w1� = e2(� + ↵� + �� + ↵��),

w3 = e2(1 + ↵+ � + ↵�),

w4 = e2(1 + ↵� + � + ��),

w5 = e2(1 + ↵� + � + ↵�),

w6 = w5� = e2(1 + ↵+ ↵� + ��),

w7 = e2(↵+ � + ↵�),

w8 = w7� = e2�.

The detailed structure of the submodules of P2 as spanned by w1, . . . , w8 is
outlined in Appendix 7.3. We note here that w7 and w8 are both generators for
P2. In particular we find that v4w7 = w7v4 = 0 and v3w8 = w8v3 = 0. So it
follows from (10) that

G24
⇠= (v4 + w7)A ⇠= (v3 + w8)A.

Hence G24 is principal and has at least two generators. However, we want to
find a generator for G24 that is also a sum of idempotents. We first look at the
following idempotent that is given in [2]).

e
0 = 1 + ↵�� + ↵�

2 + ↵��
2 + ↵� + ↵�� + �� + ↵��

2
�.

Our calculations confirm that e0 is an idempotent and that e0 2 G24. Moreover,
we find that (e1 + e2)e0 = e

0 and e1e
0 = v3. Thus M1 ✓ e

0
A ✓ G24, It thereby

follows that

e
0
A+ e2A

⇠= M1 � P2
⇠= G24,

as stated by Lemma 2.5 in [2].
Now, the article also claims that f = e

0 + e2 generates a 12-dimensional
ideal, thus is equal to G24. We however find that

f
0 = e

0 + e2

= (e1 + e2)e
0 + e2

= e1e
0 + e2(e

0 + 1)

= e1(1 + ↵+ � + ↵��) + e2(1 + ↵+ � + ↵�)

= v3 + w3.
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It turns out that w3A is in fact 3-dimensional, which suggests that f
0
A is 7-

dimensional. We have confirmed both by multiplication on the right of f 0 with
elements in S4, and by computer calculation, that this is in fact the case. So
f
0
A is properly contained G24, but f 0 is not a generator for G24.
However, our computations show that such idempotents do exist. In fact,

we find that there are a total of 16 idempotents in G24 with the property that
when adding e2 to that idempotent yields a generator for M1�P2. The shortest
one is

e = 1 + ↵+ ↵� + �� + ↵�� + ��
2 + � + ↵�

2
�.

Calculations show that e1e = v3 + v4, and (e1 + e2)e = e, which confirms that
G24
⇠= eA+ e2A. Now let

f = e+ e2

= ↵+ ↵� + � + �� + ↵�� + ��
2 + � + ↵�� + ��� + ↵��� + ��

2
� + ↵��

2
�.

Further evaluation of f shows that

f = (e1 + e2)e+ e2

= e1e+ e2(1 + e)

= e1(1 + � + � + ��) + e2(1 + ↵+ � + ↵� + ��)

= v1 + v3 + v4 + w1 + w3 + w6 + w8.

We find that f generates v1, . . . , v4, w1, . . . , w8, the details of this argument are
found in Appendix 7.4. This shows that G24 ✓ fA. We thereby conclude that

fA ⇠= G24.

Computations in GAP confirm that fA is indeed 12-dimensional.

4.3 Decoding G24

We will now show how to decode codewords in G24 using the method introduced
in Chapter 3. The following arguments are also given in [2, Section 4.3(a)]. For
an arbitrary codeword c 2 G24, let c

0 = c + � be the received codeword with
error �. Since G24 is 3-error correcting, we assume that � has weight at most
3. It then follows from Lemma 3.9 that ⌧(e)c = 0 = ⌧(e2)c. Hence we have
⌧(e)c0 = ⌧(e)� and ⌧(e2)c0 = ⌧(e2)�. Knowing what these idempotent look
like we can uniquely determine � and thereby find c. We here have that

⌧(e2) = 1 + �
2 + ↵�� + ��� + ↵��� + ↵�

2
� + ��

2
� + ↵��

2
�

⌧(e) = 1 + ↵+ ↵� + ↵�� + ↵�
2 + ��

2 + � + ↵�
2
�.

This gives us all the information we need to decode a received codeword from
G24.
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5 The endomorphism ring of Z2S4

We have established that G24 is an ideal in the group algebra A = Z2S4. A group
algebra comes with a lot of structure and further exploration into the structural
properties of A may o↵er a new and better understanding of G24. The results
outlined in this chapter are based on the following lemma, showing that the ring
of endomorphisms of A as an A-module o↵ers a further decomposition of A.

Lemma 5.1. As rings, there is an isomorphism

A
op ⇠=

2

4
B1,1 B1,2 B1,3

B2,1 B2,2 B2,3

B3,1 B3,1 B3,3

3

5 where Bi,j = eiAej .

Proof. We know that A ⇠= (EndAA)op, meaning that

A
op ⇠= EndAA ⇠= HomA(A,A).

Since A is a direct sum of indecomposable modules with A ⇠= P1�P2�P3 with
Pi = eiA, we have a general result [3, Chapter 19, Theorem 1.1] saying that

HomA(A,A) ⇠= HomA(e1A� e2A� e3A, e1A� e2A� e3A)

⇠=

2

4
HomA(e1A, e1A) HomA(e2A, e1A) HomA(e3A, e1A)
HomA(e1A, e2A) HomA(e2A, e2A) HomA(e3A, e2A)
HomA(e1A, e3A) HomA(e2A, e3A) HomA(e3A, e3A)

3

5 .

But we have HomA(ejA, eiA) = eiAej , hence the Lemma holds.

From Lemma 5.1, let MA denote the given matrix ring, and from the iso-
morphism given in Lemma 5.1 we obtain the isomorphism ' : A ! MA for
which

'(a) =

0

@
e1ae1 e1ae2 e1ae3

e2ae1 e2ae2 e2ae3

e3ae1 e3ae2 e3ae3

1

A .

Since e1 + e2 + e3 = 1 and thereby A = (e1 + e2 + e3)A(e1 + e2 + e3), we have

A ⇠=
3M

i,j=1

Bi,j .

From computations in GAP, we find that the dimension of each of the entries
in A is as illustrated by the matrix

2

4
4 2 2
2 3 3
2 3 3

3

5 . (11)
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In order to find a suitable embedding of G24, we need to find basis elements
for each of the entries Bi,j of MA. We just saw in the proof of Lemma 5.1 that
each right submodule Pi in Lemma 4.5 corresponds to a row of MA. That is,

Pi
⇠= eiA

⇠= Bi,1 �Bi,2 �Bi,3.

Likewise, the columns in MA provide a similar decomposition of A into left
ideals. Thus A ⇠= I1 � I2 � I3 where Ij are indecomposable left ideals and

Ij
⇠= Aej

⇠= B1,j �B2,j �B3,j .

Note that Ai = Bi,i is an algebra for all i = 1, 2, 3 since

Ai = eiAei = HomA(eiA, eiA) = EndA(eiA).

We let P1 = e1A and P2 = e2A be defined by the same idempotent generators
as in Section 4.2. Then the last row of MA corresponds to the ideal P3 = e3A

with

e3 = 1� (e1 + e2)

= 1 + �
2 + ↵�� + ��� + ↵��� + ↵�

2
� + ��

2
� + ↵��

2
�.

As a consequence of how the ei’s and the group generators have been chosen,
we find that, for any b =

P
g2S4

bgg 2 Bi,j where bg 2 Z2 and i = 1, 2, 3, we
can write

b = eid = dej where d =
X

g2S

dgg, dg 2 Z2, S = h↵,�, �i.

Now remember that we defined ⌧ as the antipode of A. That is, for a =P
g2S4

agg then

⌧(a) =
X

g2S4

agg
�1

,

where ⌧(⌧(a)) = a and ⌧(aa0) = ⌧(a0)⌧(a). For b 2 Bi,j in particular we then
have

⌧(b) = ⌧(eidej) = ⌧(ej)⌧(d)⌧(ei).

In general, we see that

⌧(Bi,j) = ⌧(eiAej) = ⌧(ej)⌧(A)⌧(ei) = ⌧(ej)A⌧(ei).

We see that ⌧(e2) = e3 from Section 4.3. Then ⌧(e3) = e2 as well. We also see
that ⌧(e1) = e1. Altogether it follows that

MA
⇠=

2

4
B1,1 B1,2 ⌧(B2,1)
B2,1 B2,2 B2,3

⌧(B1,2) B3,2 ⌧(B2,2)

3

5 .
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In particular, if h = 1� e3 = e1 + e2 and h
0 = ⌧(h) = e1 + e3 we have

⌧(hAh) ⇠= ⌧(hAe1 � hAe2)
⇠= ⌧(hAe1)� ⌧(hAe2)
⇠= ⌧(e1)⌧(A)⌧(h)� ⌧(e2)⌧(A)⌧(h)
⇠= e1Ah

0 � e3Ah
0

⇠= h
0
Ah

0
.

Since A ⇠= e1A�e2A�e3A and e3A
⇠= e2A, then there is a quiver with relations

(�, ⇢) such that ⇤ = Z2�/h⇢i ⇠= hAh. We find that

� : 1 2a1

a2

a3

a4 .

Letting e1 and e2 be trivial paths, we find, by a combination of calculations by
hand and computations in QPA, that the arrows in � can be given as

a1 = e1(1 + �) 2 A1,

a2 = e1(↵+ � + ↵� + ↵��) 2 B1,2,

a3 = e2(↵+ � + ↵� + ↵��) 2 B2,1,

a4 = e2(↵+ � + �� + ↵��) 2 A2.

We can now determine the relations and remaining nonzero paths in ⇤ from
calculation by hand. We find that the set relations in ⇤ can be given as

⇢ = {a21, a2a4, a4a3, a2a3a2, a3a2a3, a34,
a3a2 + a

2
4, a3a1a2 + a

2
4, a1a2a3 + a2a3a1}.

On the other hand, if ⇤0 = Z2�0
/h⇢0i where ⇢

0 = ⌧(⇢) and

�0 : 1 3⌧(a1)

⌧(a3)

⌧(a2)

⌧(a4) ,

it follows that ⇤0 ⇠= h
0
Ah

0. Note that ⌧(a1) = a1. The remaining arrows can be
given as

⌧(a2) = e3(↵+ � + �� + ↵��) 2 B3,1,

⌧(a3) = e1(↵+ � + �� + ↵��) 2 B1,3,

⌧(a4) = e3(↵+ � + ↵� + ↵��) 2 A3.

Given the set of relations in ⇢, we find that the remaining nonzero basis elements
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in A1, B1,2, B2,1 and A2 are the paths

a2a3 = e1(1 + ↵+ � + ↵�), a1a2a3 =
X

g2S4

g,

a1a2 = e1(↵+ ↵� + �� + ↵��),

a3a1 = e2(� + ↵� + �� + ↵��),

a
2
4 = e2(1 + ↵+ � + ↵�).

Similarly, for ⇤0, the remaining basis elements in B1,3, B3,1 and B3,3 can be
defined as the antipode of the nonzero paths in ⇤. We have

a1⌧(a3) = ⌧(a3a1) = e1(� + ↵� + ↵� + ↵��),

⌧(a2)a1 = ⌧(a1a2) = e3(↵+ ↵� + ↵� + ↵��),

⌧(a4)
2 = ⌧(a24) = e3(1 + ↵+ � + ↵�).

Note that the paths that are elements in A1 can be equally defined as the
products of paths in B1,3 and B3,1. Here

⌧(a3)⌧(a2) = ⌧(a2a3) = a2a3

⌧(a3a1)⌧(a2) = ⌧(a3)⌧(a1a2) = ⌧(a1a2a3) = a1a2a3.

We see that U = {e1, a1, a2a3, a1a2a3} can be given as a basis for A1. Thus
A1 has two generators, here a1 and a2a3. From ⇢, we see that a21 = 0, (a2a3)2 = 0
and a1a2a3 = a3a2a1. Hence a basis of A1 can be illustrated as

e1

a1 a2a3 .

a1a2a3

a1 a2a3

a2a3 a1

As for the algebra A2, we see that W = {e2, a4, a24} is a basis and a4 a
single generator. Similarly, A3 is spanned by ⌧(W ) = {⌧(e2), ⌧(a4), ⌧(a24)} with
generator ⌧(a4). Here we have

1

a4

a
2
4 .

a4

a4

It remains to say something about the nature of elements in the modules B2,3

and B3,2. We observe that ⌧(e2) = e3 = �e2� in A3. Thus e2� = �e3 2 B2,3 and
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e3� = �e2 2 B3,2. Hence a basis for B2,3 can be given as W � = {e2�, a4�, �a24}.
Likewise, we have that �W = {�e2, �a4, �a24} is a basis for B3,2. We calculate

a4� = e2(� + ↵� + ↵� + ��), a
2
4� = e2(� + ↵� + �� + ↵��),

�a4 = e3(↵+ ↵� + ↵� + ��), �a
2
4 = e3(� + ↵� + �� + ↵��).

Now let U1 = {e1, a1} ✓ U . Then every ⌧(a) 2 A can be given as a sum of
elements from the entries of the subset of MA given as

2

4
U U1a2 U1⌧(a3)

a3U1 W W �

⌧(a2)U1 �W ⌧(W )

3

5 . (12)

In general multiplication in MA is defined as the collection of all maps of
the form

Bi,k ⌦Bk,j ! Bi,j (13)

b⌦ b
0 7! bb

0
,

where i, j, k = 1, 2, 3. We see that each of the nine modules Bi,j is the codomain
of exactly three of these maps for k = 1, 2, 3, respectively. Hence (13) defines
a total of 27 di↵erent mappings for various values of i, j, k. However, we do
not need to examine all these separately. We see that most of these operations
follow from what we have already found about concatenation of arrows into
paths in ⇤ and ⇤0. However, we make some final notes regarding those maps
that do not involve any of the algebras. We see that B2,1 ⌦ B1,3 ! B2,3 and
B3,1 ⌦B1,2 ! B3,2 yield

a3⌧(a3) = 0, a3⌧(a3a1) = a3a1⌧(a3) = a
2
4�,

⌧(a2)a2 = 0, ⌧(a1a2)a2 = ⌧(a2)a1a2 = �a
2
4.

It may also be useful to note that for B1,2 ⌦ B2,3 ! B1,3, B2,3 ⌦ B3,1 ! B2,1,
B3,2 ⌦B2,1 ! B1,3 and B1,3 ⌦B3,2 ! B1,2 we have

a2� = ⌧(a3) + ⌧(a3a1) () �⌧(a2) = ⌧(a2�) = a3 + a3a1,

�a3 = ⌧(a2) + ⌧(a1a2) () ⌧(a3)� = ⌧(�a3) = a2 + a1a2.

We should now have provided a good understanding of how multiplication in
MA works.

The action of S4 on MA is given by the multiplication on the right by '(g)
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for g 2 S4. The group generators from A in MA can be given as

'(↵) =

0

@
e1 + a2a3 a1a2 ⌧(a3)

a3 e2 + a4 + a
2
4 a4�

⌧(a1a2) 0 ⌧(e2 + a4 + a
2
4)

1

A ,

'(�) =

0

@
e1 + a2a3 a2 ⌧(a3a1)

a3a1 e2 + a4 + a
2
4 0

⌧(a2) �a4 ⌧(e2 + a4 + a
2
4)

1

A ,

'(�) =

0

@
e1 0 0
0 0 (e2 + a

2
4)�

0 �(e2 + a
2
4) e3

1

A ,

'(�) =

0

@
e1 + a1 0 0

0 0 e2�

0 �e2 0

1

A ,

which defines our group basis in MA. The image of all 24 elements in S4 under
' is listed in Appendix 7.5.

5.1 Embedding of G24

We are looking for a suitable basis for G24 in MA. We saw earlier that G24 was
spanned by v1, . . . , v4 2 P1 and w1, . . . , w8 2 P2. Given that v1, . . . v4 span the
module M1, and since v1 generates the socle of P1, we find that

'(v1) =

0

@
a1a2a3 0 0

0 0 0
0 0 0

1

A , '(v2) =

0

@
a2a3 0 0
0 0 0
0 0 0

1

A ,

'(v3 + v1) =

0

@
0 a2 + a1a2 0
0 0 0
0 0 0

1

A , '(v4 + v1) =

0

@
0 0 ⌧(a3)
0 0 0
0 0 0

1

A ,

is a basis for '(M1). Likewise we see that '(P2) is spanned by

'(a3a1) =

0

@
0 0 0

a3a1 0 0
0 0 0

1

A , '(a3) =

0

@
0 0 0
a3 0 0
0 0 0

1

A ,

'(a24) =

0

@
0 0 0
0 a

2
4 0

0 0 0

1

A , '(a24�) =

0

@
0 0 0
0 0 a

2
4�

0 0 0

1

A ,

'(a4) =

0

@
0 0 0
0 a4 0
0 0 0

1

A , '(a4�) =

0

@
0 0 0
0 0 a4�

0 0 0

1

A ,

'(e2) =

0

@
0 0 0
0 e2 0
0 0 0

1

A , '(e2�) =

0

@
0 0 0
0 0 e2�

0 0 0

1

A .
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For the details we refer to Appendix 7.6. It now follows that an arbitrary
element in u 2 G24 can be written on the form

⌧(u) =

0

@
c1a1a2a3 + c2a2a3 c3(a2 + a1a2) c3⌧(a3)
c5a3a1 + c6a3 c7 + c8a4 + c9a

2
4 c10� + c11a4� + c12a

2
4�

0 0 0

1

A .

Note that, since e1 has weight 3 and the codewords in G24 have weight 8, 12, 16
or 24, then any codeword in G24 contained in either the first row or column of
MA has weight divisible by 3. That is, it either corresponds to v1 = a1a2a3, or
has weight 12.

Now that we have defined a way to express any c 2 G24 inside MA, we can
also determine how decoding looks like.

5.1.1 Decoding in MA

We now check that decoding works as intended in MA. For f = e + e2 as a
generating element for G24 we have

'(f) =

0

@
0 a2 + a1a2 ⌧(a3)

a3a1 a
2
4 (e2 + a4 + a

2
4)�

0 0 0

1

A .

Then the idempotent e embedded in MA can be given as

'(e) = '(f + e2) = '(f) + '(e2).

In order to decode inMA we need to determine the antipodes of the idempotents
e and e3. Mapping ⌧(e) into MA yields

'(⌧(e)) =

0

@
a1a2a3 0 ⌧(a3a1)
a3 0 e2� + a4� + a

2
4�

⌧(a2 + a1a2) 0 ⌧(e2 + a
2
4)

1

A .

We now check that ⌧(e)c = 0 in A implies that '(⌧(e)c) = 0 in MA for some
arbitrary codeword c 2 G24 ✓ A. Consider the word c1 as defined in (6). From
(9), we find that the corresponding vector in A is

c1 = 1 + � + � + ↵� + ↵�� + ↵�
2 + � + ↵�� + �

2
� + ↵�

2
� + ��

2
� + ↵��

2
�.

Calculations yield that in MA we have

'(c) =

0

@
0 a2 + a1a2 0

a3a1 a4 + a
2
4 e2� + a

2
4�

0 0 0

1

A .

We see that '(⌧(e)) · '(c) = 0. Now let c0 = c+� be some received codeword
with error � of weight at most 3. Since '(c0) = '(c) + '(�) then

'(⌧(e)) · '(c0) = '(⌧(e)) · '(�) = '(⌧(e)�),

in MA.
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6 Constructing new codes

We want to see if we can start with the decomposition of some group algebra
and from there find an ideal within this new algebra that is an error-correcting
code. We here try two di↵erent cases or strategies. In the first, we begin with the
endomorphism ring M0

A of some unidentified algebra A
0, for which we assume

that M0
A is a 3⇥ 3 - matrix, but with entries of twice the dimensions as that in

MA. In the second case we consider groups of twice the dimension as that of S4,
that is 2 · 24 = 48, in order to find a group algebra with similar decomposition
as A.

For the first case we suppose A is some algebra with the same block de-
composition as in Lemma 4.5 such that the ring of endomorphisms of A0 as a
module over itself is a 3⇥ 3 matrix ring

MA0 =

2

4
A

0
1 B

0
1.2 B

0
1.3

B
0
2.1 A

0
2 B

0
2.3

B
0
3.1 B

0
3.2 A

0
3

3

5 .

We assume that the dimensions of all entries of MA0 is twice of that given in
(11). We then have

|MA0 | =

2

4
8 4 4
4 6 6
4 6 6

3

5 . (14)

We now approach the problem by choosing possible structures for the algebras
A

0
i given that these are algebras of twice the dimensions of the Ais in A = Z2S4

in the previous chapter. We saw that the algebra A1 had 2 generators for a
basis of size 4 = 22. Since A

0
1 has dimension 8 = 23, we let A

0
1 be an algebra

spanned by a basis with 3 generators, and with similar relations as for A1. That
is, we suppose that

A
0
1
⇠= Z2[x1, x2, x3]/(r),

where

r = {x2
1, x

2
2, x

2
3, x1x2 + x2x1, x1x3 + x3x1, x2x3 + x3x2}.

If so, then we have three vectors x1, x2 and x3 in A
0
1, that generate a basis X

for A1 as illustrated by the diagram

e
0
1

x1 x2 x3

x1x2 x1x3 x2x3 ,

x1x2x3
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where e1 is an idempotent generator for the submodule of A corresponding to
the first row in M0

A for A
0
1. Similarly, since 6 is not the power of a smaller

natural number, we let for A
0
2 and A

0
3 be 6-dimensional algebras with a single

generator, that is

A
0
2
⇠= A

0
3
⇠= Z2[y]/(y

6).

Let Y = {e02, y, y2, . . . y5} define a basis for A0
2, and Z = {e02, z, z2, . . . z5} a basis

for A0
3. We suppose that a basis for B1,2 can be defined by some b 2 B1,2 over

a subset of X with four elements, say X2 = {e01, x1, x2, x1x2}. Then altogether,
a basis MA could be given as

2

4
X X2b1 X2b2

b3X2 Y ⌫(Y )
b4X2 ⌫(Z) Z

3

5 ,

where ⌫ is some automorphism in A
0. Let X1 = {e01, x1}. Given what we know

about G24 from the previous section we suggest that a possible code in A could
be that which is spanned by the sets in

2

4
X �X2 X1b1 X1b2

b3X2 Y ⌫(Y )
0 0 0

3

5 .

for b1 2 B
0
1,2 and b2 2 B

0
1,3, b3 2 B

0
1,2 and b4 2 B

0
1,3, where 0 6= b1b3 2 X. If e02

has weight 16, it is reasonable to suggest that this would also be the minimal
weight of the code. However, we see that there is not an obvious way to go from
this construction to thereby find a set of generators that could be identified with
a set canonical basis vectors for a code.

Instead, we choose another approach. We start by looking for a group G

such that if Ã = FG for some field F then MÃ satisfies (14). Since we are
looking for a (non-abelian) group that is the basis of a 48-dimensional group
algebra, a natural place to begin is with groups of order 48 over Z2. We use
GAP to look for groups with the property that

Z2G/rad(Z2G) ⇠= Z2 �M2(Z2). (15)

In total, there are 5 abelian and 47 non-abelian groups of dimension 48 size.
When evaluating their decomposition as algebras over Z2, our output was some-
what inconsistent as to how many of these algebras that satisfy (15). It seems
however, that one such algebra is that with group basis the binary octahedral
group, denoted 2O [4, Chapter 6.5]. This group can be represented as

2O ⇠=
⌦
r, s, t, | r

2 = s
3 = t

4 = rst
↵
,

where (rst)2 = 1. It follows that r = st and t
3 = rs. Moreover, s

2 = tr.
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Altogether the di↵erent group elements of 2O can be listed as

e, t, t
2
, t

3
, r

2
, t

5
, t

6
, t

7
,

s, r, st
2
, st

3
, s

4
, s

4
t, s

4
t
2
, s

4
t
3
,

s
2
, s

2
t, s

2
t
2
, t

5
s, s

5
, s

5
t, s

5
t
2
, ts,

t
2
s, ts

2
, ts

2
t, ts

2
t
2
, t

6
s, t

5
s
2
, t

5
s
2
t, t

5
s
2
t
2
,

st
2
s, t

3
s, t

2
s
2
, t

2
s
2
t, s

4
t
2
s. t

7
s, t

6
s
2
, t

6
s
2
t,

s
2
t
2
s, st

3
s, st

2
s
2
, st

2
s
2
t, s

5
t
2
s, s

4
t
3
s, s

4
t
2
s
2
, s

4
t
2
s
2
t.

Now let Ã = Z22O. Given that (15) holds for Ã, then Ã has a subalgebra that
corresponds to the representation of some quiver with relation (�̃). That is,

⇤̃ = �̃/(⇢) ⇠= Z2 �
✓
1 0
0 0

◆
M2(Z2).

Using QPA we find that this is indeed the case, and that the quiver �̃ can be
given as

�̃ : 1 2 .ã1

ã2

ã3

ã4

We let ẽ1 and ẽ2 be idempotents in Ã representing the trivial paths in vertices
1 and 2, respectively. Now let Ã1 = ẽ1Ãẽ1, Ã2 = ẽ2Ãẽ2, B̃1,2 = ẽ1Ãẽ2 and
B̃2,1 = ẽ2Ãẽ1. Then ã1, ã2, ã3 and ã4 can be given as ã1 2 Ã1, ã2 2 B̃1,2,
ã3 2 B̃2,1 and ã4 2 Ã2. We are outputted the following set of relations in ⇤.

⇢ =

8
>>>><

>>>>:

ã
4
1, ã2ã

2
4, ã3ã2ã4, ã4ã3ã2, ã

2
4ã3, ã

2
1ã2ã3 + ã2ã3ã

2
1,

ã
3
1 + ã2ã4ã3 + ã1ã2ã3ã1, ã

2
1ã2 + ã2ã3ã2, ã

2
1ã2 + ã2ã3ã1ã2,

ã1ã2ã4 + ã
3
1ã2, ã3ã

2
1 + ã3ã2ã3, ã3ã

2
1 + ã3ã1ã2ã3, ã4ã3ã1 + ã3ã

3
1,

ã2ã4 + ã
2
1ã2 + ã1ã2ã4, ã3ã2 + ã3ã1ã2 + ã

3
4, ã4ã3 + ã3ã

2
1 + ã4ã3ã1,

ã
2
1 + ã1ã2ã3 + ã2ã3ã1 + ã1ã2ã3ã1,

9
>>>>=

>>>>;

.

In order to understand the structural properties of Ã and possibly find some
similarities to A = Z2S4 that could o↵er a way to define some code, we look
at relations in Ã1 and Ã2 as given by ⇢. First note that ⇢ yields the following
identities between paths from in B̃1,2 and B̃2,1.

ã
2
1ã2 = ã2ã3ã1ã2 = ã2ã3ã2 = ã2ã4 + ã1ã2ã4,

ã
3
1ã2 = ã1ã2ã3ã2 = ã1ã2v4,

ã3ã
2
1 = ã3ã1ã2ã3 = ã3ã2ã3 = ã4ã3 + b4b3b1,

ã3ã
3
1 = ã3ã2ã3ã1 = ã4ã3ã1.

We see that in Ã1 we then have

ã2ã3ã
2
1 = ã

2
1ã2ã3 = (ã2ã3)

2
.
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From that we deduce that a basis for Ã1 can be given as

Ũ = {ẽ1, ã1, ã21, ã31, ã2ã3 + ã
2
1ã2ã3, ã1ã2ã3 + ã

3
1ã2ã3, ã

2
1ã2ã3, ã

3
1ã2ã3}.

We see that Ã1 then has two nontrivial generating paths, here ã1 and ã2ã3,
which generate a basis for Ã1 according to the following diagram.

ẽ1

ã1 ã2ã3

ã
2
1 ã1ã2ã3

ã
3
1 ã

2
1ã2ã3

ã
3
1ã2ã3 .

ã1

ã2ã3

ã1

ã2ã3

ã1

ã1

ã2ã3

ã1

ã2ã3

ã1

Now for Ã2 we get the following identities.

ã3ã1ã2 = ã3ã2 + ã
3
4,

ã3ã
2
1ã2 = (ã3ã2)

2 = ã
4
4.

From this we see that a basis for Ã2 can be given as

W̃ = {ẽ2, ã4, ã24, ã34, ã44, ã3ã2}.

Now let Ũ1 = {ẽ1, ã1} and Ũ2 = {ẽ1, ã1, ã21, ã31}. Then bases for B̃1,2 and B̃2,1

can be given as

X̃2ã2 = {ã2, ã1ã2, ã21ã2, ã31ã2},
ã3X̃2 = {ã3, ã3ã1, ã3ã21, ã3ã31}.

Let ẽ3 = 1� ẽ1 � ẽ2 where ẽ3Ã
⇠= ẽ2Ã. Assume that ẽ3 = ⌧(ẽ2). Then a basis

for all of MÃ could be given as
2

4
Ũ Ũ2ã2 ⌧(ã3Ũ2)

ã3Ũ2 W̃ W̃g

⌧(Ũ2b2) gW̃ ⌧(W̃ )

3

5 ,

for some g 2 2O such that ⌧(ẽ2) = gẽ2g. Now a natural suggestion for a basis
for some code in Ã, given what we learned in the previous section, is

2

4
Ũ � Ũ2 Ũ1ã2 Ũ1ã2g

ã3Ũ2 W̃ W̃g

0 0 0

3

5 ,

33



Assuming that ⌧(ã2g) 2 B̃2,1, then the above is a right ideal. We see that,
although we would be able to identify the group elements of 2O in MÃ by com-
putations in GAP, there is still not an obvious way to go from this point unless
we already know about some particular code inside Ã. Like in the previous
case we could suggest that the minimal weight of a codeword is 16, and that all
codeword with minimal weight are contained in the second row above. But we
have also seen that Ã has a more complicated structure than A, which suggest
that the same is true for some right ideal or vector space in Ã. We have made
a final attempt by searching for some idempotent ẽ in GAP such that ẽ + ẽ2

generates a 12-dimensional submodule in the first and second row of MÃ. It
turns out there are too many candidates to search through in order to get a
result.
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7 Appendix

7.1 The symmetric group S4 as a subgroup of PSL2(23)

We are going to check that Lemma 4.4 holds for S4
⇠= h↵,�, �, �i, given repre-

sentatives for ↵, �, � and � in PSL2(23). Note that ↵ and � are defined similarly
as in [2, Section 2]. We let

↵ =

✓
0 1
�1 0

◆
, � =

✓
�3 6
6 3

◆
, � =

✓
2 5
4 �1

◆
and � =

✓
�4 �1
�6 4

◆
.

Calculations show that then ↵
2 = �

2 = �
2 =

✓
�1 0
0 �1

◆
and �

3. Moreover, we

have ↵
� = �↵� = � and ↵

y = �
2
↵� = ↵�. This satisfies all three requirements

given in Lemma 4.4.

7.2 A basis for P1

We are going to show that if P1 is an 8-dimensional projective submodule of
A = Z2S4 with socle series

Soci+1(P1)/Soc
i(P1) ⇠=

8
>><

>>:

Z2

Z2 � V

Z2 � V

Z2

for

i = 3
i = 2
i = 1
i = 0.

where P1 = e1A for e1 = 1 + � + �
2, then the following set of vectors is a basis

for P1.

v1 =
X

g2S4

g,

v2 = e1(1 + ↵+ � + ↵�),

v3 = e1(1 + ↵+ � + ↵��),

v4 = v3� = e1(1 + ↵� + � + ↵�),

v5 = e1(1 + � + � + ↵�),

v6 = v5� = e1(1 + ↵+ � + ��),

v7 = e1(1 + �),

v8 = e1.

First note that v1 corresponds to the full-length vector in Z2S4, hence all per-
mutations in S4 act trivially on v1. It follows that {v1} ⇠= Z2. As for v2 we
calculate

v2↵ = v2� = v2� = v2, v2� = v2 + v1.
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Thus SpanZ2
{v1, v2} is closed upon action by S4 and is thereby an indecompos-

able submodule of P1 with composition factors two times Z2. Now for v3 and
v4 we see that

v3↵ = v3 + v1 + v2, v4↵ = v4 + v1,

v3� = v3 + v1, v4� = v4 + v2,

v3� = v4, v4� = v3 + v4 + v1,

v3� = v4, v4� = v3.

Letting M1 = SpanZ2
{v1, v2, v3, v4}, we see that M1 is a 4-dimensional inde-

composable right submodule of P1. Moreover, we have Soc(M1) = SpanZ2
{v1}

and Soc2(M1) = SpanZ2
{v1, v2}. Hence P1 has composition factors given by

Soci+1(M1)/Soc
i(M1) ⇠=

8
<

:

V

Z2

Z2

for
i = 2
i = 1
i = 0.

(16)

Now for v5, v6 and v7 we have

v5↵ = v5 + v1, v6↵ = v6, v7↵ = v7 + v6,

v5� = v5, v6� = v6 + v1, v7� = v7 + v5,

v5� = v6, v6� = v5 + v6 + v1, v7� = v7,

v5� = v6, v6� = v5, v7� = v7.

Thus M2 = SpanZ2
{v1, v5, v6, v7} is an indecomposable module. We have

Soc(M2) = {v1}. and and Soc2(M2) = SpanZ2
= SpanZ2

{v1, v5, v6}. Thus
M2 has composition factors given by

Soci+1(M2)/Soc
i(M2) ⇠=

8
<

:

Z2

V

Z2

for
i = 2
i = 1
i = 0,

(17)

and is thereby 4-dimensional.
Since v8 generate P1, then the largest proper indecomposable submodule of

P1 is M1 +M2. Thus we have Soci(P2) = Soci(M1) + Soci(M2) for i = 1, 2 and
Soc3(P1) = M1 +M2. Hence the iterated socle series is the union of that of M1

and M2, that is

Soc(P1) ⇠= SpanZ2
{v1},

Soc2(P1) ⇠= SpanZ2
{v1, v2, v5, v6},

Soc3(P1) ⇠= SpanZ2
{v1, v2, v5, v6, v3, v4, v7}.

And so the combining (16) and (17) yields the following composition factors

Soci+1(P1)/Soc
i(P1) ⇠=

8
>><

>>:

Z2

Z2 � V

Z2 � V

Z2

for

i = 3
i = 2
i = 1
i = 0.

(7)
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Now the following diagram illustrates the module structure of P1, for which the
arrows are inclusion maps.

M1

Soc2(M1) M1 + Soc2(M2)

(0) Soc(P1) Soc2(P1) Soc3(P1) P1

Soc2(M2) M2 + Soc2(M1)

M2.

VV

V Z2

Z2

V

Z2 V

Z2

Z2

Z2

Z2

V

Z2

The labels of the maps are the cokernel of the inclusion maps, we have for
example that Soc2(M1)/Soc(P1) ⇠= Z2.

7.3 A basis for P2

We are going to show that if P2 = e2A, then P2 is a module such that

Soci+1(P2)/Soc
i(P2) ⇠=

8
>><

>>:

V

Z2

Z2 � V

V

for

i = 3
i = 2
i = 1
i = 0,

and a set of vectors spanning all of P2 is

w1 = e2(1 + ↵+ � + ↵�),

w2 = w1� = e2(� + ↵� + �� + ↵��),

w3 = e2(1 + ↵+ � + ↵�),

w4 = e2(1 + ↵� + � + ��),

w5 = e2(1 + ↵� + � + ↵�),

w6 = w5� = e2(1 + ↵+ ↵� + ��),

w7 = e2(↵+ � + ↵�),

w8 = w7� = e2�.

We first note that h↵,�i acts trivially on w1 and w2, while w1� = w1� = w2,
w2� = w1 + w2 and w2� = w1. Thus V ⇠= SpanZ2

{w1, w2} ✓ Soc(P2). Now for
w3 we find that

w3↵ = w3 + w2, w3� = w3 + w1,

w3� = w3 + w2, w3� = w3.
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Moreover, for w4 we have

w4↵ = w4 + w1, w4� = w4 + w2 + w1,

w4� = w4 + w2, w4� = w4 + w3 + w2 + w1.

Let N1 = SpanZ2
{w1, w2, w3, w4}. Hence N1 is a 4-dimensional indecomposable

right submodule of P2. Moreover, Soc(N1) ⇠= SpanZ2
{w1, w2} and Soc2(N1) ⇠=

{w1, w2, w3}. Thereby, we have

Soci+1(N1)/Soc
i(N1) ⇠=

8
<

:

Z2

Z2

V

for
i = 2
i = 1
i = 0.

(18)

Now for w5 and w6 we find that

w5↵ = w5 + w1 + w2, w6↵ = w6 + w2,

w5� = w5 + w1, w6� = w6 + w1 + w2,

w5� = w6, w6� = w6 + w5,

w5� = w6 + w2, w6� = w5 + w1.

We find that N2
⇠= SpanZ2

{w1, w2, w5, w6} is a 4-dimensional indecomposable
right submodule of P2 with Soc(N2) = SpanZ2

{w1, w2}. Hence N2 has compo-
sition factors given by

Soci+1(N2)/Soc
i(N2) ⇠=

⇢
V

V
for

i = 1
i = 0.

(19)

At last for w7, and w8 we have

w7↵ = w7 + w6 + w5 + w4, w8↵ = w8 + w6 + w3,

w7� = w7 + w5 + w3 + w1, w8� = w8 + w6 + w5 + w4 + w3,

w7� = w8, w8� = w8 + w7,

w7� = w8 + w2, w8� = w7 + w1.

Thus V ⇠= SpanZ2
{w7, w8} ⇠= P2/Soc

3(P2). It follows that the largest indecom-
posable proper right submodule of P2 is N1 +N2 = SpanZ2

{w1, . . . , w6}. Thus
Soci(P2) = Soci(N1) + Soci(N2), meaning that

Soc(P2) ⇠= SpanZ2
{w1, w2},

Soc2(P2) ⇠= SpanZ2
{w1, w2, w3, w5, w6},

Soc3(P2) ⇠= SpanZ2
{w1, w2, w3, w4, w5, w6}.

Thus combining (18) and (19) yields

Soci+1(P2)/Soc
i(P2) ⇠=

8
>><

>>:

V

Z2

Z2 � V

V

for

i = 3
i = 2
i = 1
i = 0.

(8)
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In detail the structure of P2 can then be given by the following diagram.

N1

Soc2(N1) Soc3(P2) P2 .

0 Soc(P2) Soc2(P2)

N2

VZ2

V

V

V

V

Z2

Z2

Z2

Here the arrows illustrate the inclusion maps of the indecomposable submodules,
labeled by the cokernel.

7.4 The element f as a generator for G24

In the end of Chapter 4.2, we claimed that f = e+ e2 generates G24, where G24

is spanned by the vectors v1, . . . , v4, w1, . . . , w8. We find that f generate the
following linearly independent vectors, given as sums of vectors in this basis.

f · 1 = v1 + v3 + v4 + w1 + w3 + w6 + w8,

f · ↵ = v1 + v2 + v3 + v4 + w1 + w8,

f · � = v2 + v3 + v4 + w1 + w2 + w4 + w5 + w8,

f · ↵� = v3 + v4 + w1 + w3 + w4 + w5 + w6 + w8,

f · � = v1 + v3 + v4 + w2 + w3 + w5 + w7,

f · ↵� = v2 + v3 + v4 + w1 + w2 + w7,

f · �� = v1 + v2 + v3 + v4 + w1 + w2 + w3 + w4 + w6 + w7,

f · ↵�� = v3 + v4 + w1 + w2 + w4 + w5 + w6 + w7,

f · � = v3 + w3 + w5 + w6 + w7 + w8,

f · ↵� = v2 + v3 + w2 + w7 + w8,

f · �� = v4 + w3 + w5 + w6 + w7 + w8,

f · ↵�� = v1 + v4 + w2 + w7 + w8.
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We thereby find v1, . . . , v4 and w1, . . . , w8 can be given as

v1 = f(↵+ � + ↵� + �� + �� + ↵��),

v2 = f(↵+ � + ↵� + �� + � + ↵�),

v3 = f(↵+ ↵� + � + �� + ↵��),

v4 = f(↵+ ↵� + ↵��),

w1 = f(� + ↵� + �� + ↵��)

w2 = f(1 + ↵+ � + ↵�),

w3 = f(� + ↵� + �� + ↵�� + �� + ↵��),

w4 = f(1 + ↵+ ↵� + �� + � + ↵� + �� + ↵��),

w5 = f(� + ↵� + � + ↵�),

w6 = f(1 + ↵� + ↵� + ↵�� + � + ↵� + �� + ↵��),

w7 = f(1 + ↵+ ↵�� + � + ↵� + ↵�� + ↵� + ��),

w8 = f(� + ↵� + �� + ↵�� + ↵� + ↵��).

This proves that all the given vectors are generated by f and so the same holds
for G24.

7.5 Embedding of S4 in MA

In Section 5, we defined the homomorphism ' : A ! MA and gave the image
of the generators of S4 under this map. We here do the same for all elements
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in S4. We find that

'(1) =

0

@
e1 0 0
0 e2 0
0 0 e3

1

A , '(�) =

0

@
e1 + a1 0 0

0 0 e2�

0 �e2 0

1

A ,

'(�) =

0

@
e1 0 0
0 0 e2� + a

2
4�

0 �e2 + �a
2
4 e3

1

A ,

'(�2) =

0

@
e1 0 0
0 e2 e2� + a

2
4�

0 �e2 + �a
2
4 0

1

A ,

'(��) =

0

@
e1 + a1 0 0

0 e2 + a
2
4 0

0 �e2 ⌧(e2 + a
2
4)

1

A ,

'(�2
�) =

0

@
e1 + a1 0 0

0 e2 + a
2
4 e2�

0 0 ⌧(e2 + a
2
4)

1

A ,

'(↵) =

0

@
e1 + a2a3 a1a2 ⌧(a3)

a3 e2 + a4 + a
2
4 a4�

⌧(a1a2) 0 ⌧(e2 + a4 + a
2
4)

1

A ,

'(�) =

0

@
e1 + a2a3 a2 ⌧(a3a1)

a3a1 e2 + a4 + a
2
4 0

⌧(a2) �a4 ⌧(e2 + a4 + a
2
4)

1

A ,

'(↵�) =

0

@
e1 + a2a3 a2 + a1a2 ⌧(a3 + a3a1)
a3 + a3a1 e2 + a

2
4 a4�

⌧(a2 + a1a2) �a4 ⌧(e2 + a
2
4),

1

A ,

'(↵�) =

0

@
e1 + a2a3 a2 + a1a2 ⌧(a3 + a3a1)

a3 a4 e2�

⌧(a1a2) �e2 + �a4 ⌧(e2 + a4 + a
2
4)

1

A ,

'(��) =

0

@
e1 + a2a3 a1a2 ⌧(a3)

a3a1 0 e2� + a4�

⌧(a2) �e2 + �a4 ⌧(e2 + a
2
4)

1

A ,

'(↵��) =

0

@
e1 + a2a3 a1 + a1a2 ⌧(a3 + a3x1)
a3 + a3a1 a4 e2� + a4�

⌧(a2 + a1a2) �e2 ⌧(e2 + a4 + a
2
4)

1

A ,
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'(↵�2) =

0

@
e1 + a2a3 a2 ⌧(a3a1)

a3 e2 + a
2
4 e2� + a4�

⌧(a1a2) �e2 + �a4 0

1

A ,

'(��2) =

0

@
e1 + a2a3 a2 + a1a2 ⌧(a3 + a3a1)

a3a1 e2 + a4 + a
2
4 e2� + a4�

⌧(a2) �e2 ⌧(a4)

1

A ,

'(↵��2) =

0

@
e1 + a2a3 a1a2 ⌧(a3)
a3 + a3a1 e2 + a4 + a

2
4 e2�

⌧(a2 + a1a2) �e2 + �a4 ⌧(a4)

1

A ,

'(↵�) =

0

@
e1 + a1 + a2a3 + a1a2a3 a2 + a1a2 ⌧(a3a1)

a3 + a3a1 a4 e2� + a4� + a
2
4�

⌧(a1a2) �e2 + �a4 + �a
2
4 0

1

A ,

'(��) =

0

@
e1 + a1 + a2a3 + a1a2a3 a1a2 ⌧(a3 + a3a1)

a3a1 0 e2� + a4� + a
2
4�

⌧(a2 + a1a2) �e2 + �a4 + �a
2
4 ⌧(a4)

1

A ,

'(↵��) =

0

@
e1 + a1 + a2a3 + a1a2a3 a2 ⌧(a3)

a3 a4 e2� + a
2
4�

⌧(a2) �e2 + �a4 + �a
2
4 ⌧(a4)

1

A ,

'(↵��) =

0

@
e1 + a1 + a2a3 + a1a2a3 a2 ⌧(a3)

a3 + a3a1 e2 a4�

⌧(a1a2) �e2 + �a4 + �a
2
4 ⌧(e2 + a4)

1

A ,

'(���) =

0

@
e1 + a1 + a2a3 + a1a2a3 a2 + a1a2 ⌧(a3a1)

a3a1 e2 + a4 0
⌧(a2 + a1a2) �e2 + �a

2
4 ⌧(e2 + a4)

1

A ,

'(↵���) =

0

@
e1 + a1 + a2a3 + a1a2a3 a1a2 ⌧(a3 + a3a1)

a3 e2 + a4 a4�

⌧(a2) �e2 + �a4 + �a
2
4 ⌧(e2)

1

A ,

'(↵�2
�) =

0

@
e1 + a1 + a2a3 + a1a2a3 a1a2 ⌧(a3 + a3a1)

a3 + a3a1 e2 + a4 e2� + a
2
4�

⌧(a1a2) 0 ⌧(e2 + a4)

1

A ,

'(��2
�) =

0

@
e1 + a1 + a2a3 + a1a2a3 a2 ⌧(a3)

a3a1 e2 + a4 e2� + a4� + a
2
4�

⌧(a2 + a1a2) �e2 ⌧(e2)

1

A ,

'(↵��2
�) =

0

@
e1 + a1 + a2a3 + a1a2a3 a1a2 ⌧(a3a1)

a3 e2 e2� + a4� + a
2
4�

⌧(a2) �a4 ⌧(e2 + a4)

1

A .
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7.6 Bases for P1 and P2 in MA

We have seen that a set of vectors spanning P1 as a right A-module is the set
{v1, . . . , v8}, defined in Chapter (4). We find that these vectors are equal to the
following sums of basis elements for the entries of MA.

v1 = a1a2a3, v2 = a2a3, v3 = a2 + a1a2 + a1a2a3, v4 = ⌧(a3) + a1a2a3,

v5 = a1a2 + a1a2, v6 = ⌧(a3a1) + a1a2a3, v7 = a1, v8 = e1.

Given what we know about the socle layers of P1, as outlined in Appendix 7.2,
we deduce that a basis for '(P1) can be given as

'(v1) =

0

@
a1a2a3 0 0

0 0 0
0 0 0

1

A , '(v2) =

0

@
a2a3 0 0
0 0 0
0 0 0

1

A ,

'(v3 + v5 + v1) =

0

@
0 a2 0
0 0 0
0 0 0

1

A , '(v4 + v1) =

0

@
0 0 ⌧(a3)
0 0 0
0 0 0

1

A ,

'(v5 + v1) =

0

@
0 a1a2 0
0 0 0
0 0 0

1

A , '(v6 + v1) =

0

@
0 0 ⌧(a3a1)
0 0 0
0 0 0

1

A ,

'(v7) =

0

@
a1 0 0
0 0 0
0 0 0

1

A , '(v8) =

0

@
e1 0 0
0 0 0
0 0 0

1

A .

We saw that P2 = e2A as a right module was spanned by the set of vectors
w1, . . . , w8, that are equal to the following sums of basis elements for various
entries in MA.

w1 = a
2
4, w2 = a

2
4�, w3 = a3a1 + a

2
4 + a

2
4�,

w4 = a3 + a
2
4 + a

2
4�, w5 = a4 + a

2
4 + a

2
4�, w6 = a4� + a

2
4 + a

2
4�,

w7 = e2 + a
2
4, w8 = e2�.
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Then, given what we know about the socle layers of P2 from Appendix 7.3, in
particular that w1, w2 2 Soc(P2), then a basis for '(P2) is

'(w1) =

0

@
0 0 0
0 a

2
4 0

0 0 0

1

A , '(w2) =

0

@
0 0 0
0 0 a

2
4�

0 0 0

1

A ,

'(w3 + w2 + w1) =

0

@
0 0 0

a3a1 0 0
0 0 0

1

A , '(w4 + w2 + w1) =

0

@
0 0 0
a3 0 0
0 0 0

1

A ,

'(w5 + w2 + w1) =

0

@
0 0 0
0 a4 0
0 0 0

1

A , '(w6 + w2 + w1) =

0

@
0 0 0
0 0 a4�

0 0 0

1

A ,

'(w7 + w1) =

0

@
0 0 0
0 e2 0
0 0 0

1

A , '(w8) =

0

@
0 0 0
0 0 e2�

0 0 0

1

A .
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