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Abstract

Understanding how different taxa respond to abiotic characteristics of the environ-
ment is of key interest for understanding the assembly of communities. Yet, whether 
eDNA data will suffice to accurately capture environmental imprints has been the topic 
of some debate. In this study, we characterised patterns of species occurrences and 
co-occurrences in Zackenberg in northeast Greenland using environmental DNA. To ex-
plore the potential for extracting ecological signals from eDNA data alone, we compared 
two approaches (visual vegetation surveys and soil eDNA metabarcoding) to describing 
plant communities and their responses to abiotic conditions. We then examined plant 
associations with microbes using a joint species distribution model. We found that most 
(68%) of plant genera were detectable by both vegetation surveys and eDNA signatures. 
Species-specific occurrence data revealed how plants, bacteria and fungi responded to 
their abiotic environment – with plants, bacteria and fungi all responding similarly to 
soil moisture. Nonetheless, a large proportion of fungi decreased in occurrences with 
increasing soil temperature. Regarding biotic associations, the nature and proportion of 
the plant-microbe associations detected were consistent between plant data identified 
via vegetation surveys and eDNA. Of pairs of plants and microbe genera showing sta-
tistically supported associations (while accounting for joint responses to the environ-
ment), plants and bacteria mainly showed negative associations, whereas plants and 
fungi mainly showed positive associations. Ample ecological signals detected by both 
vegetation surveys and by eDNA-based methods and a general correspondence in biotic 
associations inferred by both methods, suggested that purely eDNA-based approaches 
constitute a promising and easily applicable tool for studying plant-soil microbial asso-
ciations in the Arctic and elsewhere.
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Introduction

Plants and animals can be considered as “metaorganisms”, forming close re-
lationships with myriad associated microbes, such as soil fungi and bacteria. 
Within each plant individual, the various tissues may possess a distinct micro-
biome (Ho et al. 2017). Mutualistic and pathogenic associations between root 
and soil microbes are known to differ in specificity, ranging from highly specific 
associations between some plant hosts and their mycorrhizal fungi to cosmo-
politan associations between plants and some rhizosphere bacteria (Sepp et 
al. 2019). The associations between roots and soil microbiota may be particu-
larly important for plants by affecting their survival and fitness (i.e. parameters 
like their germination success and growth) and, hence, shape plant-microbe 
co-existence (Bever et al. 2010).

Given the importance of microbes to plants, interest in the role of soil mi-
crobial communities in structuring plant communities has a long history and 
continues to be an active area of study (Bever et al. 2010; Classen et al. 2015; 
Lekberg et al. 2018). Since soil microbial communities may include both an-
tagonistic and beneficial microbes and since individual microbes may form 
different associations with different plant taxa, there is a strong potential for 
community-level microbial effects on plant community assembly (Hawkins and 
Crawford 2018). Indeed, there is substantial evidence for the role of plant-soil 
microbe interactions in shaping realised patterns in plant communities across 
environmental gradients (Schweitzer et al. 2018; Bennett and Classen 2020; Li 
et al. 2020; Geml et al. 2021). However, the outcomes of interactions between 
plants and soil microbes may depend on their abiotic and biotic context (David 
et al. 2018; Hawkins and Crawford 2018; Rudgers et al. 2020). Additionally, 
soil microbial communities can respond rapidly to environmental changes, 
with subsequent effects on plant-microbe interactions and plant-plant interac-
tions (Classen et al. 2015; Collins et al. 2019). Thus, to understand the mech-
anisms behind (and the microbes involved in) the responses of plant-microbe 
interactions to environmental conditions, it is essential to separate abiotic and 
biotic impacts on vegetation composition (Mohan et al. 2014; Bennett and 
Klironomos 2019).

A biome in which the impact of abiotic gradients is likely to be particularly 
pronounced is the Arctic. Here, both plants and microbes are subject to extreme 
temperatures, periods of prolonged drought and long periods of snow-cover 
blocking access to photosynthetically-active sunlight (Starr et al. 2008; Bhatt 
et al. 2013). This may accentuate both abiotic impacts and the imprint of any 
biotic interactions on top of such abiotic effects (Abrego et al. 2020). To ac-
count for variation in the strength and the nature of the biotic interactions in 
response to abiotic gradients, different processes have been invoked. As an 
example, the stress-gradient hypothesis (Bertness and Callaway 1994) posits 
that biotic associations become increasingly positive with increasingly adverse 
environmental conditions, thereby allowing species to deal with their challeng-
ing environment. However, the latest tests have offered limited support for this 
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hypothesis (David et al. 2020; Rasmussen et al. 2022), thus questioning its gen-
eral validity. Numerous recent studies (Gravel et al. 2019; Junker et al. 2019; 
Eitzinger et al. 2021) have focused on another aspect of communities, i.e. two 
complementary dimensions of the “niche” concept – the Grinnellian niche, de-
fined as the set of abiotic conditions that maintains a viable population and 
the Eltonian niche, defined as the relationship between a species and its biotic 
environment (Grinnell 1917; Elton 1926). To quantify both aspects, promising 
analytical tools, such as joint species distribution models (JSDMs), are now 
available to community ecologists. These models explicitly embrace the mul-
tivariate nature of communities by assuming that species simultaneously re-
spond to their abiotic environment and to each other (i.e. to both the Eltonian 
and Grinnellian dimensions of the niche). As belowground systems in the Arctic 
are still poorly known, such models (Ovaskainen et al. 2017; Tikhonov et al. 
2020) can be used to disentangle the abiotic and biotic signatures of plant-soil 
microbial interactions in this region.

Historically, our basic knowledge about soil communities and, especially, 
about root-associated fungi of Arctic plants, was based on microscopic inves-
tigations (Gardes and Dahlberg 1996). Yet, it is impossible to determine which 
specific fungi or bacteria are involved using microscopy alone. Only recently, 
organismal DNA found in organismal tissues or in the soil (i.e. eDNA, stand-
ing for environmental DNA) has made it possible to study microbial commu-
nities comprehensively, at high resolution and at affordable costs in remote 
ecosystems, such as the Arctic region (Gardes and Bruns 1993; Horton and 
Bruns 2001; Ekblom and Galindo 2011; Thomsen and Willerslev 2015). Soil 
eDNA has already been used to assess plant diversity in Arctic and boreal re-
gions, where the low temperature promotes DNA preservation (Zielinska 2017; 
Edwards et al. 2018).

As the root biomass (and the rhizosphere) of Arctic plants is typically large 
(Iversen et al. 2015, soil eDNA may be more representative of the belowground 
community, by detecting plant DNA originating from the roots, than are surveys 
of the aboveground vegetation. Thus, soil eDNA represents a promising ap-
proach to characterising both plant and microbial communities in Arctic eco-
systems (Botnen et al. 2020). Yet to date, only few studies have addressed the 
relationship between ecological signal recovered when species are detected 
by eDNA and the presence of organisms detectable by observation (Carrasco-
Puga et al. 2021; Ariza et al. 2023). Given the rising number of communities 
described by DNA-based approaches in ecology, assessing how the survey 
method affects our inference regarding what species are present and how they 
are associated with each other is a crucial task (Saine et al. 2020).

In this study, we used a combination of morphological and molecular in-
ventory methods to infer the presence and associations of plants and soil mi-
crobes in a high-Arctic environment. Targeting a total of 200 plots across the 
Zackenberg Valley in northeast Greenland, we characterised the vegetation 
composition by both visual observations of plant individuals and by eDNA in 
soil samples. From each soil sample, we characterised the soil microbes by 
identifying them from the soil eDNA, then assigned them to functional groups. 
Subsequently, we used a joint species distribution model to quantify the relative 
importance of the abiotic and biotic environment in shaping the composition of 
plant and microbial communities. More specifically, we aimed to:
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1.	Compare how our perception of site-specific vegetation composition and 
of taxon-specific distribution patterns amongst plants, differ depending 
on the type of identification method used (i.e. visual observation vs. 
eDNA surveys);

2.	Examine how the distributions of plants and their associated microbes 
co-vary across local environmental gradients. To do so, we established 
species responses to environmental conditions;

3.	Assess whether ecological patterns of biotic plant-plant and plant-mi-
crobe associations, based on the two methods, were in accordance with 
each other and consistent with functional classifications.

Materials and methods

Study site

The study was conducted in the Zackenberg Valley in northeast Greenland 
(74°28'N, 21°33'W). The Valley is located in the high Arctic, with a mean an-
nual air temperature of -8.6 °C (measured between 1996 and the year of data 
collection 2013; Hansen et al. (2017)). Precipitation falls mainly as snow and 
snow depths vary considerably from year to year (Pedersen et al. 2016). The 
area is ca. 25 km2 in size and is covered by a mosaic of tundra vegetation 
types (Bay 1998).

Ecological research in this region is supported by two important resources. 
First, the long-term Greenland Ecosystem Monitoring programme documents 
inter-annual variation as well as long-term trends in plant and animal biodiver-
sity (Schmidt et al. 2019). Second, floristic work in the region is greatly facili-
tated by a comprehensive DNA barcode library encompassing more than 80% 
of the local diversity of vascular plant taxa. Established by Wirta et al. (2015), 
this library comprises the rbcLa and ITS2 gene regions of all plant species for 
which samples could be acquired. Thus, the Zackenberg Valley offers major 
advantages for exploring the representation of plant DNA in soil samples, for 
comparison with plant communities observed aboveground and for establish-
ing plant-microbe associations, based on both types of data.

Vegetation and soil sampling

To assess the linkages between plant community composition and soil mi-
crobes and to compare observational and eDNA based methods, we used an 
existing dataset from 2013 collected by Stewart et al. (2018). In 2013, Stewart 
et al. (2018) recorded the vegetation composition in 200 plots across a large-
scale environmental gradient. The sampling area extends from sea level (7 m 
a.s.l.) to the upper slopes of the Aucella Mountain at 770 m a.s.l. The sites were 
selected using a random stratified design (Hirzel and Guisan 2002), with all 
sites marked by aluminium pegs for future re‐analyses.

Plant communities were examined within a circle of 1 m2 at the centre of each 
plot. Within each circle, a list of all vascular plant species was compiled, using 
the taxonomy and nomenclature of the Annotated Checklist of the Panarctic 
Flora (PAF; Elven et al. (2011)). This material is henceforth referred to as ‘obser-
vations’ (of the vegetation). For each plot, each plant species encountered was 
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first scored on a binary presence/absence scale and then on a semi-quantita-
tive scale, based on species cover with the following categories: rare (less than 
two individuals), < 1%, 1–5%, 6–13%, 14–25%, 26–50%, 51–75% and 76–100% 
(for more information, see Stewart et al. (2018)).

In 2017, we revisited the 200 plots examined by Stewart et al. (2018) to 
characterise the plant community by molecular means and to characterise 
the local community of associated microbes. We note that vegetation turn-
over in the area is very slow (Schmidt et al. 2012) and that the aboveground 
plant community is thereby likely to have changed only very little between 
the two field campaigns. Moreover, low temperature promotes DNA preser-
vation in the soil, which provides optimal conditions to assess plant diversity 
through eDNA metabarcoding of soil samples (Edwards et al. 2018). During 
this second visit, a soil core containing 5–10 g of soil was sampled within 
each of the 200 plots. For this purpose, we used a 5-cc sterile syringe which 
was twisted into the soil by hand to the depth of ca. 5 cm. For each one-m2 
plot, only one soil core was sampled to minimize the disturbance and placed 
in a ziplock bag. Samples were stored on ice in the field and frozen at -20 °C 
at the end of each field day. Samples were then transported frozen in coolers 
from the field to storage at -20 °C until further isolation and for characterisa-
tion of their DNA.

Environmental co-variates

To characterise the abiotic environment, Stewart et al. (2018) focused on 
four characteristics found relevant for plant growth and vegetation dynamics 
(Chapin 1983; Ehrenfeld et al. 2005; Aalto et al. 2013): temperature, moisture 
and soil pH, as well as soil type. For the current study, we used the existing abi-
otic data measured in 2013, collected by Stewart et al. (2018). Soil temperature 
at a depth of 10 cm was measured during the monitoring of each plot, using a 
General digital soil thermometer model 6300 (Secaucus, NJ, USA). Soil mois-
ture was recorded by Fieldscout TDR300 with 10-cm probes (Chicago, IL, USA) 
and pH by a Fieldscout Soil stick at a depth of 5–10 cm (Chicago, IL, USA). Soil 
type was scored, based on visual examination of soil texture using the follow-
ing categories: Clay; Silt; Fine sand; Coarse sand; Gravel; Humus; Peat. Even 
though snow cover represents an important variable for vegetation in the Arctic 
(Niittynen et al. 2020), we were unable to include such data at the resolution 
targeted in this study (1 m2). For detailed methods on the environmental mea-
surements, see Stewart et al. (2018).

Metabarcoding of community contents

For DNA extraction, 250 mg of each homogenised soil sample was extracted and 
then purified using the Qiagen DNeasy PowerSoil Pro Kit (QIAGEN, Germany). 
Samples of DNA-free water were included as blank controls of the extraction 
protocol. To avoid contamination, all laboratory steps were performed in a lam-
inar flow hood, which was wiped with 70% ethanol and cleansed of potential 
contaminating DNA with one-hour exposure to mid-range UV light each night. 
Molecular grade (DNA/RNA-free) tubes, pipette tips, PCR plates and water were 
used in all protocols.
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Our PCR amplification protocols followed those of Wirta et al. (2021), with 
an initial PCR to amplify the targeted gene region and a second PCR to at-
tach unique indexes with Illumina-specific adapters to the targeted regions. 
The initial amplifications for each sample were done with a total volume of 
10 μl, each containing 5 μl MyTaq Red Mix (Bioline, UK), 1.3 μl DNA-free wa-
ter (Labnet, Finland), 0.3 μl of each primer (10 μM) and 3 μl of DNA extract.

In order to identify plant taxa from the samples, we amplified the marker ITS2 
by using the pair of primers tagF_ITS2-F (5’-ATGCGATACTTGGTGTGAAT-3’) 
and tagR_ITS2-R (5’-TCCTCCGCTTATTGATATGC-3’) (White et al. 1990; 
Chen et al. 2010). To amplify the gene region rbcLa, we used tagF_rb-
cLa-F (5’-ATGTCACCACAAACAGAGACTAAAGC-3’) and tagR_rbcLa-R 
(5’-CGGTCCAYACAGYBGTCCAKGTACC-3’) (Levin et al. 2003; Ivanova et al. 2016).

For fungi, we assessed part of ITS2 marker by using the pair of 
primers tagF_ITS3_KYO2 (5’-AHCGATGAAGAACRYAG-3’) and tagR_
ITS4_KYO3 (5’-CTBTTVCCKCTTCACTCG-3’) (Toju et al. 2012). For 
bacteria, we amplified a part of 16S (i.e. V4 and V4–5) using tag-
F_16S_515FB (5’-GTGYCAGCMGCCGCGGTAA-3’) and tagR_16S_806RB 
(5’-GGACTACNVGGGTWTCTAAT-3’) (Walters et al. 2016).

The PCR cycling conditions were as follows for the first PCR: the initial de-
naturation was for 3 min at 95 °C, followed by cycles of 30 s at 95 °C (dena-
turation), 30 s at 47–55 °C (annealing) and 30 s at 72 °C (extension), ending 
with final extension for 7 min at 72 °C. For each primer pair, we used a different 
annealing temperature following Wirta et al. (2021). For plants we, used 55 °C, 
47 °C for fungi and 50 °C for bacteria. To amplify plant DNA, we used 35 cycles 
and 28 cycles were used for fungi and bacteria. To minimise initial amplifica-
tion bias, each reaction was carried out in two replicates. All the amplicons 
were checked on a 1% agarose gel and imaged with a BioRad imager to check 
that the reaction had worked and that the DNA and PCR controls were clean. 
The PCR replicates were then combined for the second PCR, using 1.3 μl of 
each PCR product replicate. In the second PCR Illumina‐specific adapters and 
unique dual‐index combinations for each sample was added to each sample 
(Vesterinen et al. 2018). The second PCR had a total volume of 10 μl, each 
containing 5 μl MyTaq Red Mix (Bioline, UK), 0.3 μM of reverse primer, 0.3 μM 
of forward primer and 2.6 μl of the locus-specific combined PCR product from 
the first PCR. PCR cycling conditions were the same for all gene regions for 
the second PCR, starting with 4 min at 95 °C (denaturation), followed by 15 
cycles of 20 s at 98 °C (denaturation), 15 s at 60 °C (annealing) and 30 s at 
72 °C (extension) and ending with final extension of 3 min at 72 °C. The prod-
ucts of the second PCR were pooled per gene region and per 96 sample plate 
before concentration using an SPRI bead protocol. The concentrated pooled 
samples were loaded on a 1% agarose gel and run with 90 V for 120 minutes. 
The target bands were cut under UV light and the pooled sample was cleaned 
from gel with the PCR and Gel CleanUp Kit (Macherey-Nagel) and diluted in 2 
× 20 μl of the elution buffer. The DNA concentration of the cleaned pools were 
measured with Qubit 2.0 (dsHS DNA Kit, ThermoFisher Scientific). Based on 
the compatible lengths of the targeted gene regions, pools of 96 samples were 
combined in equimolar ratios, with addition of 25% PhiX and sequenced in two 
MiSeq v.3 2 × 300 runs at the Biomedicum Functional Genomics Unit (FuGU) of 
the University of Helsinki.
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Bioinformatics

The raw sequences for the plant gene regions ITS2 and rbcLa and the fungal 
gene region ITS were processed by merging R1 and R2 reads using “pear” (ver-
sion 0.9.6-bin-64; Zhang et al. 2014), with default values. The resulting merged 
read pairs were then trimmed using “cutadapt” (version 2.9; Martin 2011) with 
quality threshold 20 (Phred quality score) and a minimum length of 100 bp.

The taxonomic assignment of plant gene regions ITS2 and rbcLa was done 
using the local reference databases for the vascular plants of Zackenberg, 
generated by Wirta et al. (2015). The sequences were assigned to taxa using 
PROTAX following Somervuo et al. (2016). PROTAX was trained for five taxo-
nomic levels (class, order, family, genus, species) for the relevant plant gene re-
gions (Somervuo et al. 2016). For both gene regions, ITS2 and rbcLa, a separate 
PROTAX model was built following Roslin et al. (2021). For each taxonomic 
level, we constructed two community matrices at each taxonomic level, using 
two probability thresholds, 90% (reliable) and 50% (plausible), for establishing 
reliable identification.

For the rbcLa gene region, the number of sequences reliably assigned to 
species proved substantially lower than for ITS2 (Table 1). With a lower prob-
ability threshold for species-level taxonomic assignment (Pr > 0.5; plausible), 
71.4% of the total of ITS2 reads were assigned to plant species (Suppl. material 
1: table S1) compared to 46.4% with the higher threshold of Pr > 0.9 (reliable; 
Table 1). rbcLa showed a significantly lower success than ITS2 with only 0.1% 
of the total reads being assigned to species even with this lower threshold 
(Table 1; for more information on how the assignments varied in relation to the 
two thresholds, see Suppl. material 1: table S1).

The poor taxonomic assignment success observed for rbcLa resulted in 
data so sparse that we decided to combine it with data from ITS2, thereby us-
ing evidence from both loci to establish species presence (henceforth referred 
as “eDNA”). For the final community matrix and statistical analysis, we used the 
community matrix, based on the 90% probability threshold with species-level tax-
onomy. Here, the read count reflected the number of reads that was reliably as-
signed to a specific taxon with a high confidence (Pr > 0.9) for ITS2, rbcLa or both.

For both bacteria (16S) and fungi (ITS), we used an alternative approach for 
bioinformatic analysis and taxonomic assignment. Generally, trimming and qual-
ity control of the sequences was conducted according to Vesterinen et al. (2018) 
and Koskinen et al. (2022). Paired-end reads were trimmed and merged using 
USEARCH with the “fastq_maxee_rate” algorithm with threshold 1 (Edgar 2010). 
Primers were removed using software “cutadapt” (version 2.9; Martin (2011)), 
allowing 20% mismatches and with the minimum length set to 100 bp. Primer-
trimmed reads were dereplicated using the USEARCH “fastx_uniques” algorithm 
with option “minuniquesize 10”, after unique reads were denoised using VSEARCH 
(Rognes et al. 2016) and uchime3_denovo algorithm used to remove chimeric 
reads. Then, the denoised unique reads were clustered into operational taxonom-
ic units (OTUs) using the VSEARCH “cluster_fast” algorithm with 97% threshold 
(Rognes et al. 2016). Finally, reads were mapped back to the original trimmed 
reads to establish the total number of reads in each sample using the USEARCH 
“usearch_global” algorithm (~ 93% successfully mapped). OTUs longer than 430 
bp with at least 97.0% similarity to the reference database were kept.
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For all gene regions, a small number of reads was found in the DNA extraction 
and PCR controls. Hence, we subtracted the maximum number of reads for a 
negative sample from all the samples for each OTUs. All samples with fewer than 
50 reads in total were subsequently removed. For each sample, OTUs with less 
than 20 reads per were omitted. Finally, from each sample, we removed OTUs rep-
resenting less than 0.05% of the total number of reads in the respective sample.

Microbial OTUs were taxonomically assigned to genera using the UNITE 
usearch/utax database for fungi (Abarenkov et al. 2020) and the Silva data-
base for bacteria (version.123; Quast et al. (2013)). To then assign a functional 
group to each fungal OTU, we used the microeco package in R, matching tax-
onomic assignment against FUNGuild (Nguyen et al. 2016). For bacteria, we 
matched taxonomic assignment against the FAPROTAX database (Louca et al. 
2016) following the authors’ instructions (Liu et al. 2023), thereby obtaining the 
functional role of each bacterial OTU.

The DNA sequencing produced a total of 11.7 M raw sequences, of which 
10.8 M passed the quality filters and were assigned to the targeted taxonomic 
groups (plants, fungi, bacteria; for exact numbers and taxonomic assignment 
success, see Table 1). Rarefaction curves of fungi and bacteria showed that 
the sequencing effort was largely sufficient (with all samples recovering full 
microbial communities; Suppl. material 1: fig. S1).

Overall, out of 9904 microbial OTUs encountered, 2503 were assigned to a spe-
cific functional group, with 2099 OTUs of 409 bacterial genera and 404 OTUs of 153 
fungal genera successfully assigned a functional role. We grouped the functions 
assigned into presumptive mutualistic (positive) associations and likely antago-
nistic (negative) biotic associations, as based on the classification and description 
given by the FunGUILD database and using the literature for bacteria. Genera as-
signed multiple functions yielding conflicting assignment to antagonistic versus 
mutualistic groups were classified into a separate group, “neutral” (or mixed).

Table 1. Summary of sequencing as well as taxonomic and functional assignment success for different loci. Each entry 
identifies the number of sequences reliably assigned at the respective taxonomic level for the locus in question (i.e. 
assigned with a probability of correct assignment above 0.9). Column “% read assigned” represents the percentage of 
sequences identified to a given taxonomic rank, as a proportion of the original, “raw” number of reads. ITS2 and rbcLa 
represent the loci used to identify plants, ITS the locus for identifying fungi and 16S for bacteria.

Plant Fungi Bacteria

ITS2 rbcLa ITS 16S

Total % reads Number 
reads assigned of taxa

Total % reads Number 
reads assigned of taxa

Total % reads Number 
reads assigned of taxa

Total 
reads

% reads 
assigned

Number 
of taxa

Raw reads 2.8M 5.1M 559K 3.1M

OTU 483K 86.4 1356 2.5M 79.1 8548

Phylum 352K 63.0 8 2.5M 79.0 22

Class 2.5M 89.3 2 3.34M 65.5 2 340K 60.8 30 2.5M 78.6 90

Order 2.5M 89.3 13 3.28M 64.3 16 319K 57.0 72 2.2M 69.6 97

Family 2.5M 89.3 25 3.21M 62.9 25 259K 46.3 124 1.8M 58.0 247

Genus 2.28M 81.4 46 656K 12.9 23 222K 39.7 171 1.1M 35.3 754

Taxa Assigned 
to function

109K 19.4 153 602K 20.0 409

Species 1.3M 46.4 82 | 5K 0.1 25 104K 18.8 150 185K 5.8 110
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Statistical analyses

To characterise species responses to environmental conditions and to each 
other, we used Hierarchical Modelling of Species Communities (HMSC, 
Ovaskainen et al. (2017); Ovaskainen and Abrego (2020)). In this multivariate 
framework, a matrix of taxon-by-sample observations (the Y community-ma-
trix, with entries yij for taxon j at plot i) is modelled as a function of a matrix of 
plots by environmental covariates (the X matrix, with entries xik for covariate k 
at plot i).

We furthermore separated the different types of response data by treat-
ing the observation vs. eDNA methods used to identify each taxon as a tax-
on-and-method-specific trait (summarised in the T matrix, with entries “OBS” 
for plant species described by Observation and “eDNA” for plants detected, 
based on DNA. For plants, we drew on the combined evidence from two loci: 
ITS2 and rbcLa. For fungal and bacterial OTUs, we drew on the loci ITS vs. 16S, 
respectively. In other words, any plant species i could potentially occur two 
times in the Y community-matrix, if recorded as present by ITS2 and/or rbcLa 
(thus, by eDNA; see Bioinformatics) and by human observation, respectively. 
Any plant species would then be associated with two different trait states. Our 
key interest was in testing whether the sampling methodology (i.e. the trait 
state) affected our estimates of species-specific responses to the environment 
and species-specific associations with other taxa.

We modelled the taxon presence/absence matrix Y with a generalised linear 
HMSC model with a probit link (Ovaskainen and Abrego 2020). The occurrenc-
es of taxa were modelled as a function of environmental conditions (soil pH, 
temperature and soil moisture). To control for variation in observation effort re-
sulting from variable sequencing coverage, we included log(sequencing depth) 
as a taxon-specific co-variate. For plant species described by observation, the 
value of this co-variate was set to 0.

All co-variates were scaled to a mean of 0 and a variance of 1. Soil type (with 
six levels, see Environmental co-variates) was included as a random effect. 
To account for spatial autocorrelation, a spatially structured plot-level random 
effect was also included and this was modelled, based on the Gaussian pre-
dictive process for big spatial data (Tikhonov et al. 2020). However, the spatial 
structure was negligible, as evidenced by no detectable influence on the mod-
el’s explanatory power and no detectable impact on the fixed effects of environ-
mental responses. Spatial structure was, thus, discarded from the downstream 
analysis. Associations between taxa were examined, based on the residual 
variance-covariance matrix inspected at the plot level. In the model results, the 
responses of taxa to fixed effects representing abiotic conditions informed us 
about individual estimates of environmental responses, whereas the residual 
variance-covariance matrix informed us about their biotic associations.

Since we explicitly wanted to compare our estimates of taxon-to-taxon associ-
ations (i.e. any entries in the residual variance-covariance matrix) to a priori knowl-
edge on the type of association to be expected (positive, i.e. mutualistic or neg-
ative, i.e. antagonistic), we only included microbial genera assigned to a specific 
functional group (see Bioinformatics). Moreover, since taxa with a very low or a 
very high incidence will contain little information on factors affecting their occur-
rence, we removed species and OTUs that were present at or absent from less 
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than 5% (n = 10) of the plots (n = 200). Thus, a final set of 44 observed plant spe-
cies OBS, 37 plants detected by eDNA (out of which 19 species were also observed 
aboveground), 222 bacterial OTUs and 29 fungal OTUs were included in the model.

The HMSC models were fitted with the R-package Hmsc (Ovaskainen and 
Abrego 2020; Tikhonov et al. 2020). The models were fitted with four chains 
and 1,000,000 samples each, which we thinned by 4,000 to yield 250 samples 
per chain and hence 1,000 samples in total. Since our Y matrix was large and 
included several different taxonomic groups, we prevented overfitting by mod-
ifying the Multiplicative Gamma Process Shrinking Prior parameters a1 and a2 
(i.e. the parameters setting control on the level of shrinkage for the species 
association matrix Omega) to 100 and 100, respectively (for a full justification, 
see Suppl. material 1: text S1).

MCMC convergence was assessed by examining the potential scale reduc-
tion factors of the model parameters. The discriminatory power of the probit 
model was measured by calculating two different metrics, i.e. species-specif-
ic “areas under the curve”, abbreviated as AUC (Pearce and Ferrier 2000) and 
Tjur’s coefficient of discrimination, henceforth Tjur’s R2 (Tjur 2012). These two 
metrics provide alternative measures of discrimination in the context of pres-
ence-absence data, i.e. measures of how well a model discriminates between 
sampling units where a focal species is present and sampling units from which 
it is absent (Tjur 2009; Jiménez-Valverde 2012; Norberg et al. 2019).

AUC has become the most commonly applied measure for evaluating model 
fit of presence-absence species distribution models (Pearce and Ferrier 2000; 
Elith et al. 2006; Liu et al. 2011). In brief, the AUC equals the proportion of cases 
for which the occurrence probability for a randomly chosen occupied sampling 
unit is higher than the occurrence probability for a randomly chosen empty sam-
pling unit or (equivalently) the integral of the Receiver Operating Characteristic 
(ROC) curve (Hanley and McNeil 1982). An advantage of AUC is that it is not 
based on any single probability threshold for converting the model predictions 
into presences or absences, but integrates over all possible such thresholds 
(Fielding and Bell 1997; Manel et al. 2001). Moreover, it is relatively insensitive to 
the prevalence of the focal species, i.e. to the fraction of sampling units occupied 
by the species (Manel et al. 2001; McPherson et al. 2004; Franklin et al. 2009).

A more recent measure of discrimination for presence-absence models is 
Tjur’s R2 (Tjur 2009). This metric was developed as an alternative to other co-
efficients of determination for logistic regression models (Tjur 2009) and intro-
duced in the SDM literature by Ovaskainen et al. (2016). Tjur’s R2 is defined as 
the difference in the average occupancy probabilities between occupied and 
empty sampling units (Tjur 2009). One advantage of Tjur’s R2 is its resemblance 
to the “traditional” R2 of the linear model, allowing its interpretation as the pro-
portion of variance explained by the model. This proportion can further be par-
titioned into the portions explained by each of the co-variates included in the 
model (Ovaskainen et al. 2017). As a challenge, values of Tjur’s R2 will typically 
be (much) lower than a traditional R2, urging caution in any comparison to tra-
ditional R2 values. While Tjur’s R2 is still less commonly used than AUC, it has 
recently gained increasing popularity as a measure of model fit in SDM (e.g. 
Mang et al. (2018); Zhang et al. (2018); Kotta et al. (2019)).

In attempts to provide clear guidelines for how to assess model fit, AUC 
values have been split into various “performance classes”, with AUC > 0.9 
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corresponding to “excellent”, 0.8 < AUC < 0.9 to “good”, 0.7 < AUC < 0.8 to “fair”, 
0.6 < AUC < 0.7 to “poor” and 0.5 < AUC < 0.6 to “fail” (Araújo et al. 2005). 
Such rules-of-thumb for evaluating model fit have been adopted as a common 
standard (e.g. Thuiller et al. (2006); Marmion et al. (2009); Smolik et al. (2010); 
Gogol-Prokurat (2011); Wang et al. (2020)). By comparison, values of Tjur’s R2 
have remained less familiar to ecologists. Since this metric generally achieves 
lower values than either AUC values of presence-absence models or R2 values 
of linear models, it has often been met with scepticism by ecologists seeking a 
“good” model fit without appreciating the actual information value of the metric.

Both measures of discrimination can be used for two mutually complemen-
tary purposes: on the one hand, we can evaluate the model’s explanatory per-
formance, on the other hand, its predictive performance. In the first case, we 
ask how well the model is able to predict the same data that it was originally fit-
ted to (explanatory power), in the second we ask how well it predicts validation 
data independent from the training data used for model fitting (predictive pow-
er). To compute explanatory power, model predictions were based on models 
fitted to all data. To compute predictive power, a four-fold cross-validation was 
performed, in which the sampling units were assigned randomly to three folds 
and predictions for each fold were based on a model fitted to data on the re-
maining four folds. Due to long computational times, cross-validation was run 
with 25% of the number of iterations used in model fitting. To quantify the rel-
ative importance of the various drivers structuring the communities, explained 
variation was partitioned amongst the fixed and random effects included in 
the model. To examine each taxon’s response to the model covariates, we as-
sessed the beta parameters (i.e. species- or OTU-specific estimates of envi-
ronmental responses, equivalent to regression coefficients) in terms of their 
posterior support and direction (positive vs. negative).

Results

Consistency in the detection of plant taxa by direct observations vs. 
eDNA

Altogether, we detected 57 plant genera across 24 families. Of these, 68% were 
identified by both eDNA and direct observation. Fifty-one plant genera were 
detected by observations and 45 genera by eDNA. Almost a quarter of the gen-
era (21%) were only detected by observation, as compared to six plant genera 
detected by eDNA alone (Suppl. material 1: fig. S2). Genus-level distribution 
patterns across the mountain slope were highly similar when established by 
observation and eDNA (Suppl. material 1: fig. S3).

In total, 107 plant species were detected by observations and 82 by eDNA. Of 
these, 60 species (46% of the total) were detected by both methods and 47 spe-
cies (36% of the total) were detected by observation only. Of these 47 species, 
15 were not present in the reference barcoding database and, therefore, not 
detectable by eDNA. In contrast, 27 plant species were detected by eDNA alone. 
Most plant species were, hence, either efficiently detected by both eDNA and ob-
servation or not detected at all by eDNA. The higher the coverage of a plant in a 
plot, the higher the chance that the same plant species was also detected in soil 
eDNA (Suppl. material 1: fig. S4). Correspondingly, we found that the frequency 
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at which a species was detected by eDNA was lower for plots in which the plant 
was scored as absent by direct observation (Suppl. material 1: fig. S5).

Multivariate ordination (NMDS) highlighted partial overlap, but also import-
ant differences between observed and eDNA-based plant community compo-
sition (Fig. 1A). Plant species composition appeared more homogeneous be-
lowground than aboveground (Fig. 1A) and the belowground samples captured 
only a subset of the variety in plant species composition that was seen abo-
veground. A Mantel test of two distance matrices – that of pairwise similarity 
amongst plots in terms of plants described by observation and that of pairwise 
similarity amongst plots in terms of plants detected by eDNA – revealed a sig-
nificant correlation (r = 0.08; p-value = 0.03; number of permutations = 999). 
Species that were detected by both methods represented, on average, between 
half and three quarters of all species detected within a plot (Fig. 1B).

In total, 62 plant species (Fig. 2) were found in 5–95% of the plots (and were 
thereby included in subsequent analyses, see Statistical analysis). Of these, 25 
species were only detected by observation, 18 species were exclusively detected 
by eDNA and 19 species were detected by both methods (Fig. 2). For seven gen-
era, both observations and eDNA indicated a similar incidence amongst plots 
(Fig. 2; for species-specific distribution patterns, see Suppl. material 1: fig. S3).

Overall, the scoring of a species as locally common or rare (i.e. as having a 
high or low incidence, equalling occurrence in 10 plots) was roughly consistent 
between methods (Fig. 2). However, the average number of species detected 
per plot was significantly higher by eDNA than by observation (11.6 species 
detected by eDNA vs. 9.4 species by observation, on average; Wilcoxon test; 
p < 0.05; Suppl. material 1: fig. S4). While species “distributions” (i.e. where a 
species was recorded in the landscape) differed between methods, there were 
no signs of DNA “seepage” downslope from where species were observed 
(Suppl. material 1: fig. S3). For spatial patterns in species distribution amongst 
methods of identification and how taxon-specific detectability varied across 
methods, see Suppl. material 1: fig. S3.

Model performance

The HMSC model was successfully fitted to the data. MCMC convergence was 
satisfactory and the potential scale reduction factors were close to the theoret-
ical optimum of one (see Suppl. material 1: fig. S6A). The model achieved good 
discriminatory performance with a mean Tjur R2 of 0.30 and a mean AUC value 
of 0.89. However, explanatory power (Tjur R2) was highly variable amongst taxa 
(Suppl. material 1: fig. S6B) and the observational data revealed a stronger sig-
nal-to-noise ratio than did the eDNA data (OBS mean Tjur R2 = 0.20, AUC = 0.84; 
eDNA mean Tjur R2 = 0.08, AUC = 0.75; Suppl. material 1: fig. S6B). The signal 
was stronger for bacteria than fungi (Bacteria: mean Tjur R2 = 0.38, AUC = 0.92; 
Fungi: mean Tjur R2 = 0.17, AUC = 0.85; Suppl. material 1: fig. S6B). Predictive 
performance assessed by cross-validation was lower than explanatory perfor-
mance (mean cvTjur R2 = 0.08, mean cvAUC = 0.69). On average, it was highest 
for plants scored by direct observation (mean cvTjur R2 = 0.1, cvAUC = 0.72) 
followed by bacteria (mean cvTjur R2 = 0.09, cvAUC = 0.71), fungi (mean cvTjur 
R2 = 0.04, cvAUC = 0.64) and lowest for plants scored by eDNA (mean cvTjur 
R2 = 0.03, cvAUC = 0.56; Suppl. material 1: fig. S6B).
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Figure 1. Consistency in community composition observed by eDNA vs. observation. Panel A shows a multivariate ordina-
tion (NMDS) of plant community composition across the 200 sample plots, based on observations (blue) vs. eDNA (red). 
Ellipses summarise the within-community variability (75%) of each method. The NMDS was performed on species pres-
ence-absence data using the Jaccard distance. The stress value of the NMDS is 0.185; number of permutations = 999, 2 
dimensions, R2 = 0.87. In Panel B, the pie charts represent the spatial locations of each plot, and the proportions of plant 
species detected within each plot by observations only (in blue), by eDNA only (in red) and by both methods (in grey).



168Metabarcoding and Metagenomics 7: 155–193 (2023), DOI: 10.3897/mbmg.7.99979

Bastien Parisy et al.: Plant-microbe ecology are consistent across eDNA and vegetation surveys

Do different organism groups and plant data produced by different 
sampling methods, differ in their responses to environmental factors?

The best predictor of the presence/absence of plant species as described by 
eDNA was the random effect of the site (accounting for 3% of the total variance; 

Figure 2. Plant species-specific incidence as scored by the two different methods of identification (observation or eDNA). 
Bar pairs represent the number of plots where a plant species was detected, with separate colours for detection by direct 
observation (blue) and/or eDNA (red). Species are sorted according to family (see legend on the left).
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Suppl. material 1: fig. S6B) followed by read count, soil moisture and, equally, 
soil temperature and the random effect of the soil type (accounting for an aver-
age of 2.3%, 1.2% and 0.6%, respectively; Suppl. material 1: fig. S6B). Similarly, 
for plants described by observation, the random effect of the site accounted 
for the highest proportion of variation, followed by soil moisture (explaining 
4.6% of the total variance), random effect of the soil type (explaining 3.8% of 
the total variance) and soil pH (explaining 1.9%; Suppl. material 1: fig. S6B). 
Beyond the random effect, we found that sequencing depth (i.e. read count) 
accounted for the largest proportion of the total variation amongst bacteria 
(11.8%) and for a significant part of the variance amongst fungi (3.3%; Suppl. 
material 1: fig. S6B). Amongst environmental properties, soil pH and soil mois-
ture accounted for 4.9% and 3.8% of the total variance for bacteria and fungi, 
respectively (Suppl. material 1: fig. S6B). Soil temperature and the random ef-
fect of the soil type moisture accounted for 2.7% and 1.7% of the total variance 
for fungi and bacteria, respectively (Suppl. material 1: fig. S6B).

At the level of individual plant taxa, we found posterior support for a sig-
nificant directional effect of sampling method on taxon-specific responses to 
environmental variables (Suppl. material 1: fig. S7A), with stronger responses 
for data scored by direct observation (Suppl. material 1: fig. S8). When scored 
by direct observation, a scant majority of plant species showed a negative 
response to increasing soil pH, whereas when scored by eDNA, no species 
showed any statistically detectable response to pH (Suppl. material 1: fig. S8). 
In contrast, plants scored by eDNA exhibited stronger and more positive re-
sponses to soil temperature than plants scored by observation. Amongst fun-
gi and bacteria, no individual species responded to soil temperature, whereas 
both fungal and bacterial species showed a negative response to increasing 
soil temperature, with stronger responses detected amongst fungi than bacte-
ria (Suppl. material 1: fig. S8).

Relative consistency in species-level responses within organism groups was 
reflected in general gradients in predicted species richness along environmen-
tal gradients. (Suppl. material 1: fig. S9). Overall, plant species richness was 
predicted to increase across gradients of soil temperature and soil moisture, 
with generally consistent patterns across data scored by direct observations 
and eDNA (Fig. 3). For soil pH, both scoring methods suggested no response or 
a slight decrease (Fig. 3). Across organism groups, predicted fungal richness 
showed a pattern deviating from that in other organism groups, with a pro-
nounced decrease in richness with increasing soil temperature (Fig. 3).

Do different types of data suggest different patterns of plant-plant 
associations?

To evaluate biotic associations, we first examined residual associations 
amongst plant taxa across the sample plots, i.e. patterns of co-occurrence 
unexplained by local soil properties. Plant species-to-species associations 
were more frequently detected by data generated by direct observations than 
through eDNA (20% vs. 6% of all possible pairwise associations, respectively). 
From the subset of plant-to-plant species described by both methods, we found 
that 75% of the statistically supported interspecific associations detected 
when plants were recorded by direct observation were not supported when the 
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same species were recorded by eDNA (Fig. 4). The decrease in supported as-
sociations primarily concerned positive associations, with a decrease of 82.6% 
and a decrease of 25% for negative associations detected (Fig. 4). The signs of 
residual associations detected between plant pairs were generally consistent 
between the two methods of scoring, with no direct reversal of the estimated 
sign of the association (Fig. 4).

Do different types of data suggest different patterns of plant-microbe 
associations?

Pairwise associations amongst plant species and microbial taxa were largely 
consistent when characterised by direct observation and eDNA. Amongst the 
large number of taxon-pairs, the majority received no statistical support after 
accounting for environmental impacts. Associations between plant species 
and fungi were more frequently detected by data generated by direct observa-
tions than through eDNA (27% vs. 13% of all possible pairwise associations, 
respectively; Suppl. material 1: fig. S10A).

Amongst the pairs showing statistical support, the signs of the associations 
were largely consistent with a priori expectations. Amongst plants and fungi that 
were anticipated to have mutualistic interactions (i.e. ectomycorrhizal fungi, 

Figure 3. Predicted numbers of plant species and fungal and bacterial orders in relation to each environmental co-variate 
studied a soil temperature b soil pH and c soil moisture. The lines show the predicted relationship, the shaded areas 
the 95% credible intervals of the predicted relationship. Solid lines represent trends for which there is strong posterior 
probability (P > 0.95 or P < 0.05). “OBS” stands for plants detected by direct observation, “eDNA” for plants detected by 
metabarcoding of loci ITS2 and rbcLa, “ITSF” for fungi detected by metabarcoding of locus ITS in fungi and “16S” for 
bacteria detected by metabarcoding of locus 16S.

a) b)

c)
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endophytes and epiphytes symbiotroph which receive nutrients by exchanging 
resources with host cells), we found three times more positive (17.5%) than 
negative associations (5.3%) when the plants were scored by direct observa-
tion, whereas for eDNA, the number of negative associations (5.3%) equalled 
that of positive associations (Fig. 5).

Amongst plants and fungi forming presumptively neutral or mixed interac-
tions (i.e. lichens, fungi with imprecise functions, insect pathogens or sap-
rotrophs that receive nutrients by breaking down dead host cells), we found 
a higher proportion of positive associations (16.5%) than negative associa-
tions (8.3%) when plants were scored by direct observation (Suppl. material 

Figure 4. Estimated pairwise residual associations amongst plant species at the plot level. Species are ordered by tax-
onomic groups and by the method of detection (“OBS” for direct observation, “eDNA” for metabarcoding, based on ITS2 
and rbcLa). Estimates of taxon-to -taxon associations focus on the 19 plant species identified by both methods. Each 
plant species is shown as a line and a column within its taxonomic group, with taxa sorted in the same order. Filled cells 
indicate species pairs showing association with at least 90% posterior probability, with blue for negative associations, 
red for positive associations.
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Figure 5. Residual associations detected amongst plants and different functional groups of fungi. Here, each plant 
species is shown as a column, including only the 19 plant species identified by both direct observation and eDNA and, 
thus, allowing direct comparisons. Rows correspond to individual microbial genera, as sorted by functional groups. Red 
fields indicate antagonistic relationships, blue fields mutualistic interactions and grey fields indicate neutral or mixed 
interactions (i.e. the same genus being associated with several different functions). For visual comparison, each cell 
is divided into two, with the upper part describing the association estimated when plant occurrence was detected by 
eDNA and the bottom part describing the association estimated when plant occurrence was detected by Observation. G 
corresponds to the functional group, F to the Fungal taxon and P to the plants taxon. For the identity of individual taxa, 
see key in Suppl. material 2.
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1: figs S10B, S11A). When plants were detected by eDNA, we found a low-
er number of statistically supported associations. Yet, only one discrepan-
cy between scoring methods was observed in the sign of the association 
(that between Silene acaulis and one fungal genus F15 in the Heliotaceae 
family; Fig. 5).

Amongst bacterial genera and plants assumed to engage in antagonistic 
associations (i.e. plant pathogens or intracellular parasites), the associations 
estimated were fully consistent whether characterised, based on observation-
al or eDNA data (Fig. 5). Unexpectedly, within this group, we found a prepon-
derance of positive (19.8% of taxon-pairs) over negative (9.6%) associations 
(Fig. 5). For presumptively mutualistic interactions (i.e. bacteria involved in ni-
trification or denitrification, as indispensable for plants nutrition), we estimat-
ed a dominance of positive associations (Fig. 5), with only one discrepancy 
between the two methods of scoring plants (for Silene acaulis vs. bacterium 
B252 in Sphingobacteriales; Fig. 5). Amongst plants and bacteria forming pre-
sumptively neutral associations (i.e. bacteria involved in hydrogen oxidation, 
fermentation or ureolysis that can affect the carbon cycle), we found no con-
flict between plants scored by direct observation or eDNA (Suppl. material 1: 
figs S10B, S11B).

Discussion

Whether or not DNA-based analyses of bulk samples can reliably character-
ise both the distribution of species and their associations with each other has 
been the subject of some debate (Yoccoz 2012; Clare et al. 2019; Roslin et al. 
2019; Saine et al. 2020; Ariza et al. 2023). Given the rising number and types 
of communities described by DNA-based approaches in ecology, the question 
of how such survey methods affect our understanding of which species are 
present where and how they are associated with other taxa is more topical than 
ever. In this study, we demonstrated that eDNA-based analysis of soil sam-
ples does, indeed, provide information on both the individual species’ niches 
to their abiotic environment and on plants’ interactions with microbes. Overall, 
plant genera observed in vegetation surveys were consistently detected by soil 
eDNA. At the species level, though, only a third of the taxa were typically de-
tected by both methods, attesting to important limitations in detection rates. In 
terms of the distribution of organisms in the environment and their responses 
to abiotic variables, we did find variation in the composition of the plot-specific 
plant communities with the two methods of identification. Different methods of 
recording the taxa were also reflected in somewhat variable estimates of their 
responses to environmental properties. Nonetheless, in terms of overall spe-
cies richness, predictions were largely consistent amongst methods. In terms 
of species’ interactions with other taxa, we found a general agreement between 
methods. Here, the sign and perceived prevalence of plant associations with 
microbes were largely consistent regardless of the mode of plant detection 
(direct observation or soil eDNA). Overall, the ecological signal recovered be-
tween plants and their abiotic and biotic environment adds credence to a ful-
ly DNA-based dissection of species associations within communities – while 
also pointing to remaining challenges. Below, we will discuss each of the above 
findings in turn.
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Plant detection by soil eDNA

In terms of diversity of plants at the landscape scale, the traditional scoring 
of plant presence by direct observation detected more plant species than did 
scoring through eDNA. However, the number of plant species detected per plot 
was, on average, slightly higher when using eDNA than when using direct ob-
servation of plant individuals. Plant prevalence (i.e. the number of times a plant 
was recorded across the landscape) was also typically higher when assessed 
using eDNA rather than direct observations. This suggests that, per plot, ap-
proaches based on eDNA may be more sensitive in detecting plant species 
than are aboveground surveys. This difference may be due to plant DNA com-
monly being present in the soil even in the absence of the organism in its life 
stage(s) that can be readily identified (Taberlet et al. 2012; Deiner et al. 2017). 
Such differences in the plant communities perceived by different methods of 
scoring may be caused by, for example, the presence of a seed bank or by 
clonal reproductive structures in the soil. The belowground DNA from roots 
and tissues is also typically the least degraded and, therefore, might detect 
past signals up from 30 years (Foucher et al. 2020; Ariza et al. 2023). However, 
at this point, we cannot distinguish the relative contributions of DNA from four 
potential sources: plants undetected by observation; plants lying dormant in 
the soil; locally extinct plants conserved in the soil; and/or plant parts (e.g. 
seeds or pollen) potentially transported from elsewhere. False positives due 
to species misidentifications are also typical of data derived from DNA-based 
methods and represent a topical question in this field of research (Ficetola et 
al. 2015; Buxton et al. 2022). Despite these shortcomings, we were able to rule 
out one potential source of exogenous DNA in soil samples, as we detected no 
signs of DNA for specific species downslope from where they were observed 
(Fig. 1B, Suppl. material 1: fig. S3). Thus, the transport of DNA with seepage 
water (Pedersen et al. 2015; Barnes and Turner 2016) seems not to muddle 
plant distributions in our study region.

Our success rates in the eDNA-based taxonomic assignment and the overlap 
of the taxon lists between eDNA and the plants described by observation were 
similar to those in other studies in northern ecosystems (Vasar et al. 2023). 
The match in detection probabilities was particularly good at the genus level. A 
large proportion of all plant genera detected by observation was also detected 
via eDNA. This adds credence to eDNA-based tools as sensitive descriptors of 
the vegetation – which is hope-inspiring, since while expert botanists will have 
little trouble in characterising an Arctic vegetation plot, such botanists are in 
short supply. Moreover, the time during which plants can be reliably identified at 
the high latitude of our target community is only some months per year, making 
the characterisation of ecologically-informative numbers of plots a true chal-
lenge. Quick sampling of the local community by a single syringe-full of soil is 
then an attractive alternative.

Importantly, the discrepancy between plant data scored by observation and 
data recovered by eDNA became much more pronounced when examined at 
the species level. Here, a large proportion of taxa detected by observation were 
lacking from the species lists generated by eDNA-based tools and these false 
absences were particularly centred on selected taxa, such as Cyperaceae or 
Poaceae (Fig. 2). While the absence of 15 plant taxa could be attributed to an 
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incomplete reference library, most of the species detected by observation in our 
study (93 species) were also represented in the reference database (Wirta et al. 
2015). Thus, database bias is likely to be minor in our case. A main reason for the 
contrast between genus- and species-level consistency is likely to be found in the 
probabilistic taxonomic assignment method employed, where only assignments 
with a confidence level of at least 90% were accepted. In taxa such as grasses, 
the occurrence of multiple related species in the Zackenberg flora might have 
meant that no single species passed this threshold – even when we were reason-
ably sure about the genus. For this reason, a much larger number of sequences 
was assigned to genera than to species (Table 1). This interpretation is support-
ed by the higher taxonomic assignment success achieved at species-level when 
applying a lower confidence threshold (i.e. 0.5; Suppl. material 1: table S1).

As another important methodological consideration, different markers will 
provide widely differing levels of taxonomic detection. This was illustrated by 
remarkable variation in taxonomic assignment success when using locus rb-
cLa for taxonomic assignment to different levels. Here, assignment success 
dropped markedly from the genus to the species level (Table 1). This is only to 
be expected, given the poor taxonomic resolution provided by this gene region 
for Zackenberg plants (Wirta et al. 2015; Foster et al. 2021). Multiple studies 
suggest that the gene region amplified by rbcLa universal primers contains lit-
tle species-level variation, resulting in low discrimination power amongst plant 
species (Costion et al. 2011; Foster et al. 2021; Trujillo-Argueta et al. 2022). In 
contrast, at a larger scale and at higher taxonomic levels, rbcLa has been report-
ed to successfully identify all families and nearly all genera, with species iden-
tification rates varying significantly amongst plant groups (Dong et al. 2014).

For the current flora of our high-Arctic study site, we suggest that the marker 
ITS2 alone may be sufficient to produce reliable data on species’ distributions 
across the landscape.

Soil eDNA reveals abiotic imprints on plants and microbes

In terms of species responses to abiotic drivers, our data revealed ample eco-
logical signal in samples from across the landscape. Nonetheless, the meth-
od of identification generated some variation in estimates of the intensity of 
the abiotic imprints on individual species and predictions of overall response. 
For plants described by observation, soil pH emerged as an important factor, 
with predominantly negative responses to increasing pH. However, when plants 
were scored by eDNA, we found no matching pattern. Plant responses to in-
creasing soil moisture were more consistent across methods.

Beyond the detailed descriptions of the various plant species’ ecological 
niches (above), the same soil samples also sufficed to characterise the distri-
butions of microbial taxa. When examining the abiotic imprints on our different 
organisms in further detail, our results reveal some interesting taxon-specific 
patterns. Our results indicated that, in general, bacterial and fungal community 
diversity patterns were modulated by distinct ecological drivers. To summarise 
the relevant discrepancies amongst kingdoms, soil moisture appeared to be 
a factor relevant to all groups of organisms. This is only to be expected, as 
high-Arctic ecosystems are typically arid or semi-arid, where soil water is a lim-
iting resource for plant growth as well as for microbial activity (Griffiths et al. 
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2003; Liu et al. 2010; Nabe-Nielsen et al. 2017). However, bacterial responses 
to moisture varied between being positive and negative and, hence, these pat-
terns did not translate into any overall trend in predicted taxonomic richness 
along the soil moisture gradient. Previous studies have shown that bacterial 
communities are sensitive to water addition and soil moisture (Kaisermann et 
al. 2015; Umair et al. 2020; Jaeger et al. 2023). Importantly, such responses 
may also translate into knock-on effects on nutrient availability. In this study, 
we found that a majority of bacteria that showed a positive significant relation-
ship with soil moisture were associated with denitrification and/or nitrification 
(Fig. 5). This result was well in line with previous literature showing that, in 
high-Arctic wet sedge meadows and heath tundra soils, denitrification is mainly 
controlled by soil moisture (Siciliano et al. 2009; Blaud et al. 2015).

Amongst fungi, soil temperature proved a strong predictor of the occurrences 
of a third of the individual taxa and a driver of overall fungal richness (Fig. 3; Suppl. 
material 1: fig. S8). Bacteria, in contrast, showed no overall richness trend with 
soil temperature (Fig. 3). This finding agreed with previous studies showing that, 
indeed, fungal activity is more sensitive than bacterial activity to soil temperature 
(Suppl. material 1: fig. S8). Overall, fungi seem to be more adapted to low-tempera-
ture conditions than are bacteria (Pietikäinen et al. 2005; Bárcenas-Moreno et al. 
2009). As a consequence, bacterial community composition may be dependent on 
long-term trends in near-ground temperatures and soil moisture regimes (Frindte 
et al. 2019). However, the effects of fine-scale heterogeneity and potential inter-
active effects between temperature and soil moisture regimes on microbial taxa 
remains unclear (Perez-Mon et al. 2020). In soils subjected to frequent freeze-thaw 
cycles, such as those typical of Greenland, we tend to find microbial communities 
better adapted to variation in temperature and moisture (Perez-Mon et al. 2020).

Our results suggested the local fungi to show little response to soil pH. This 
finding contrasts with previous studies, which identified pH as one of the main 
determinants of elevational diversity patterns amongst many bacterial and fun-
gal communities across Arctic and similar ecosystems (Timling et al. 2014; 
Shen et al. 2015; Zhang et al. 2016; Canini et al. 2019). In a similar vein, Fierer 
and Jackson (2006) pinpointed soil pH as the strongest predictor of bacterial 
richness, diversity and overall community composition. Likewise, Canini et al. 
(2019) have emphasised how pH affects the richness of ericoid mycorrhizal 
fungi, root associated fungi, plant pathogens, animal pathogens and mycopar-
asites, while ectomycorrhizal fungi richness seemed less affected. Matching 
such findings are reports of indirect effects of phylogenetic structure on micro-
bial responses to pH (Zhang et al. 2016; Liu et al. 2018).

A few factors may account for the lack of detectable response in the current 
setting. Overall, we detected relatively few plant pathogens, animal pathogens 
and ectomycorrhizal fungi amongst the taxa assigned to a clear-cut function. 
Moreover, the pH effect of previous studies might, in some cases, reflect a co-
founding effect, where young soils after snow melt contain only low amount of 
organic matter and clay minerals, resulting in higher pH than older soils covered 
first by biological crusts and then by shrubs (Kwon et al. 2015). Such variation 
may significantly impact the composition and structure of plant communities, 
which then act as a major driver of variation in fungal communities (Krüger et 
al. 2017; Maciá-Vicente et al. 2023). Separating between cause and effect can 
then be a complex issue. Nonetheless, the perhaps most likely reason for the 
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mixed and conflicting patterns detected is simply the limited range of pH varia-
tion observed within our study area. Most soils showed a relatively high pH and 
the full range of variation was only pH 5.06–8.57.

In conclusion, the mixed responses of different organism groups to different 
environmental gradients supported previous reports of decoupled ecological 
responses to environmental conditions amongst bacteria and fungi (Lange et 
al. 2014; Liu et al. 2020; Shen et al. 2020). Such variation will result in a mosa-
ic of organism communities across heterogeneous landscapes, with potential 
knock-on effects in terms of ecological functioning due to the varying contribu-
tions of different functional groups.

Soil eDNA suggests biotic plant-to-plant associations

In terms of plant species’ associations with other plants, the overall signs (pos-
itive or negative) of estimated residual plant-plant associations were largely 
consistent between sampling methods. Despite some differences in the ab-
solute numbers of associations detected by each survey method, the overall 
association patterns were similar in terms of the proportions of negative and 
positive associations amongst groups of taxa. Nonetheless, we observed one 
contradictory association between Salix arctica and Silene acaulis between 
methods and some discrepancies in terms of which plants were associated 
with each other. Slight variation in the set of residual associations can be ex-
plained by the fact that the species prevalence was higher when described by 
eDNA than by observation. Ultimately, two plant species will, thus, have had a 
higher chance of being found within the same plots when assessed by eDNA 
than by direct observation. Therefore, the model had access to more data on 
species co-occurrence for the former than the latter. An important alternative 
interpretation is still that some apparent associations arose from species’ re-
sponses to unmeasured environmental gradients, such as soil chemical prop-
erties beyond pH or to snow conditions (Niittynen et al. 2020; Rixen et al. 2022), 
which we were unable to measure in the current setting. This interpretation 
was supported by the fact that close to 8% of variance in plant species oc-
currences (based on both observations and eDNA) was captured by a spatial 
random effect, indicating the presence of spatial structure in plant distributions 
beyond that captured by the current model covariates. Clearly, the current data 
on species co-occurrences alone were insufficient to ultimately prove biotic 
associations. Rather, experimental tests are required to assess if some of 
these residual associations arise from direct biotic interactions (Blanchet et al. 
2020). For now, a prudent interpretation is that the patterns observed point to 
potential interactions. Positive associations amongst plant species may then 
reflect competition or facilitation between plants or that the two species prefer 
the same unmeasured environmental conditions. A negative association could 
reflect exclusive competitive or that two taxa are found in significant different 
environments and are, therefore, found less often than by chance.

Overall, our results reveal that a fully DNA-based approach will suffice to gen-
erate a wealth of data-driven hypotheses of not only species responses to the 
abiotic environment, but also to each other. A wholesale characterisation of 
species communities, including both the responses to abiotic imprints and the 
co-association within the communities, is then a truly exciting perspective.
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Soil eDNA suggests ecologically meaningful plant-microbe associations

Beyond plant-plant associations, we observed a high number of residual as-
sociations between plants and microbes. Amongst these, statistically sup-
ported associations between plants and bacteria were more frequent than 
between plants and fungi. Classifying the microbes into functional groups 
allows us to speculate about ecological function. Consistent with our a priori 
assignments, we found a majority of the statistically-supported positive as-
sociations between plants and fungi to match with presumptively mutualistic 
associations – but opposite to our expectations, the majority of positive re-
sidual associations with bacteria corresponded to relationships that we ex-
pected to be antagonistic.

The variable signs of the associations uncovered reflected the challenges 
involved in estimating processes from patterns. While a mutualistic associ-
ation may be detectable as mutual attraction – and thereby higher co-occur-
rence than expected, based on the joint environment – it is well conceivable 
that antagonistic interaction partners may likewise show positive associa-
tions. To understand why this may be the case, consider the case of a clas-
sical predator and its prey. The two frequently co-occur due to the simple 
reason that predators will accumulates in areas of dense prey. One may then 
observe a positive association, despite the obvious antagonistic effect of the 
predator on individual prey. In our case, the antagonistic associations were 
associated with functional groups that could reflect direct negative impact 
(i.e. intracellular parasites or predatory and exoparasitic taxa). Within the 
antagonistic functional groups, we found bacteria belonging to Clostridium, 
Nocardia, Rhodoplanes, Sphingomonas and Streptomyces genera, all of 
which are known to dominate the plant-associated communities of Alpine, 
Arctic and Antarctic Regions (see Cripps and Eddington (2005)). Members of 
these bacterial taxa have been shown to be cold-adapted and tightly associ-
ated with plants, supporting their potential importance for plant fitness and 
survival (Almario et al. 2022).

Amongst mutualistic associations, we included bacteria connected to soil 
nitrogen fixation, nitrification, denitrification, ammonification and other major 
nitrogen transformation processes mediated by soil bacteria. Such process-
es include the oxidation of aerobic ammonia, nitrate reduction, aerobic ni-
trite oxidation and ureolysis, which can be involved in denitrification (based 
on FunGuild classification; Nguyen et al. (2016)). While such processes may 
increase nitrogen availability, microbes can also reduce ecosystem nitrogen 
availability by transforming nitrogen to more mobile forms such as nitrate (van 
der Heijden et al. 2008; Kuzyakov and Xu 2013). Hence, nitrifying bacteria can 
indirectly reduce plant productivity, as they reduce the availability of a nutri-
ent, which limiting plant productivity (van der Heijden et al. 2008). Ecosystems 
such as Arctic and Alpine tundra are most likely to be strongly nutrient limited 
and here soil microbes have been shown to compete effectively with plants for 
nitrogen (Nordin et al. 2004; Almario et al. 2022). Hence, part of the positive 
associations detected between plants and mutualistic bacteria can potential-
ly result in competition for nutrients in soil solution, with possible negative 
effects on plant nutrient acquisition and growth. All in all, further character-
isations of plant-associated bacterial communities in Arctic soils are, thus, 
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needed to better clarify the key drivers and outcomes of associations between 
plants and bacteria.

Amongst plants and soil fungi, we observed predominantly positive resid-
ual associations. This finding brought important insights for understanding 
the structure of Arctic interaction networks. Amongst the fungi classified as 
mutualistic, we included only taxa forming mycorrhiza and taxa known to be 
epiphytic or endophytic symbiotrophs. The fungal taxa assigned to ectomy-
corrhiza were Cortinarius sp. (Agaricales) and Cenococcum sp. (Mytilinidales). 
Amongst associations with the 19 plant species described by direct observa-
tion, we found more than 60% of the statistically-supported associations to be 
positive. Both Cortinarius and Cenococcum were positively associated with the 
same plant species, namely Minuartia rubella, Trisetum spicatum, Silene acaulis, 
Saxifraga oppositifolia and Saxifraga cernua. Cenococcum showed a positive 
association with Stellaria longipes and Salix arctica, while Cortinarius did not. 
The epiphytic symbiotroph fungus Knufia was found to be positively associated 
with Minuartia rubella and Saxifraga oppositifolia. Interestingly, previous stud-
ies have reported Minuartia rubella and Silene acaulis to be associated with 
either arbuscular mycorrhiza or to be devoid of any mycorrhizal associations 
(see Cripps and Eddington (2005)). Similarly, Trisetum spicatum, Saxifraga op-
positifolia are generally associated with arbuscular mycorrhiza (Cripps and 
Eddington 2005). However, Salix arctica has been recorded as being associat-
ed with both ectomycorrhiza and arbuscular mycorrhiza (Newman and Reddell 
1987; Gardes and Dahlberg 1996; Kytöviita 2005). These findings supported 
previous suggestions that low specialisation by mycorrhizal fungi on the plant 
species of the Arctic could be an adaptive response to low nutrient availability, 
thereby ensuring nutrient uptake in nutrient-poor environments (Botnen et al. 
2014; Abrego et al. 2020). However, from a methodological viewpoint, it is im-
portant to emphasise that the fungal ITS2-primers might provide a skewed pic-
ture of the fungal diversity due to primer biases (Tedersoo et al. 2015; Botnen 
et al. 2020). As a result, the detection of primarily ectomycorrhizal taxa in the 
current study may in part be an artefact, as a different set of primers will be 
needed to efficiently detect arbuscular mycorrhizal fungi (Lekberg et al. 2018; 
Rasmussen et al. 2022).

To the group of endophytic-symbiotroph fungi, we assigned two fungi from 
the genera Phialocephala and Cadophora, both belonging to order Heliotales. 
These fungi were engaged in predominantly positive associations with se-
lected plant species: Minuartia rubella, Hierochloe alpina, Cassiope tetragona, 
Bistorta vivipara, Saxifraga cernua, Salix arctica, Poa arctica and Pedicularis hir-
suta. Although both mycorrhizal and endophytic fungi may have positive ef-
fects on plant fitness, they colonie plant roots differently (Peterson et al. 2008; 
Andrade-Linares and Franken 2013; Yan et al. 2019). Plants and mycorrhizal 
fungi communicate chemically during the root colonisation proces, and, to 
some extent, plants are able to regulate their level of mycorrhizal colonisation 
(van der Heijden et al. 2015). Concerning endophytic fungi, they can colonie 
plant parts other than roots and are generally described as generalist oppor-
tunistic coloniers (Knapp et al. 2012; Mandyam et al. 2012; Mandyam and 
Jumpponen 2015). However, the extent to which plants can regulate the range 
of mycorrhizal and endophytic fungi differently remains to be validated by ex-
perimental approaches.



180Metabarcoding and Metagenomics 7: 155–193 (2023), DOI: 10.3897/mbmg.7.99979

Bastien Parisy et al.: Plant-microbe ecology are consistent across eDNA and vegetation surveys

It has been argued that contrasting diversity patterns between plants and 
bacteria may emerge as a result of inconsistent sampling approaches amongst 
studies, rather than being attributable to true ecological mechanisms (Bryant et 
al. 2008). However, in our case, both positive and negative residual taxon-to-tax-
on association patterns between bacteria and plants remained similar, regard-
less of whether the plants were detected by eDNA or direct observation. This 
added credence to the patterns uncovered.

Overall, we find that ecological patterns of plant-plant and plant-micro-
bial association were largely consistent between direct observations and 
eDNA-based scoring of plants. Differential responses to abiotic conditions 
amongst plants and soil microbes (e.g. fungi with soil temperature) rein-
forced the view that aboveground and belowground communities may pres-
ent decoupled responses to environmental gradients (Classen et al. 2015; 
Donhauser and Frey 2018; Fei et al. 2022). We reiterate that the residual as-
sociations detected in our study might represent biotic interactions, but that 
such conjectures can only be confirmed through experimental tests (Saine 
et al. 2020). Furthermore, it is important to remember that the single soil 
core examined per plot (1 m2) in our study will capture a highly local signal 
and that increased sampling effort would be required for larger sampling 
areas (Edwards et al. 2018). Nonetheless, given the intimate relationships 
of fungi and plants, our results pointed to widespread associations between 
fungal and plant communities. The overall dominance of positive associa-
tions between plants and the fungi which were a priori considered to be mu-
tualistic and the high proportion of positive associations observed between 
plants and bacteria considered as antagonistic, highlighted the strong po-
tential role of plant-soil microbe interactions as key drivers of Arctic com-
munity assembly.

Conclusions

Our study suggests that small soil samples may suffice to determine both the 
presence of individual plant taxa and of their microbial associates. Our key re-
sults showed that soil moisture had a major influence on the occurrences of 
plants, bacteria and fungi, whereas the occurrences of fungi were determined 
not only by soil temperature, but also by their biotic interactions. As our study 
area – along with most other arctic regions – is currently experiencing drastic 
environmental changes (Schmidt et al. 2019), this provides opportunities to 
explore the consequences of changing abiotic conditions on plant-microbial 
associations. The perspective that a single sample type and method may suf-
fice to recreate reliable data on species occurrence, its drivers and on many 
dimensions of species niches for plants and soil microbes, offers hope for a 
true revolution in community ecology.
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