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Background and Objective: Renal cell carcinoma represents a significant global health challenge with a low 
survival rate. The aim of this research was to devise a comprehensive deep-learning model capable of predicting 
survival probabilities in patients with renal cell carcinoma by integrating CT imaging and clinical data and 
addressing the limitations observed in prior studies. The aim is to facilitate the identification of patients requiring 
urgent treatment.

Methods: The proposed framework comprises three modules: a 3D image feature extractor, clinical variable 
selection, and survival prediction. Based on the 3D CNN architecture, the feature extractor module predicts 
the ISUP grade of renal cell carcinoma tumors linked to mortality rates from CT images. Clinical variables are 
systematically selected using the Spearman score and random forest importance score as criteria. A deep learning-

based network, trained with discrete LogisticHazard-based loss, performs the survival prediction. Nine distinct 
experiments are performed, with varying numbers of clinical variables determined by different thresholds of the 
Spearman and importance scores.

Results: Our findings demonstrate that the proposed strategy surpasses the current literature on renal cancer 
prognosis based on CT scans and clinical factors. The best-performing experiment yielded a concordance index 
of 0.84 and an area under the curve value of 0.8 on the test cohort, which suggests strong predictive power.

Conclusions: The multimodal deep-learning approach developed in this study shows promising results in 
estimating survival probabilities for renal cell carcinoma patients using CT imaging and clinical data. This may 
have potential implications in identifying patients who require urgent treatment, potentially improving patient 
outcomes. The code created for this project is available for the public on: GitHub
1. Introduction

1.1. Overview

Renal cell carcinoma (RCC) is a common adult malignancy, account-

ing for approximately 90% of all kidney tumors [40]. It originates in the 
tubules responsible for filtering blood and producing urine within the 
kidney [40]. If RCC is not identified and addressed promptly, it can 
spread to other parts of the body, such as the lungs and bones, posing 
significant life-threatening risks [47]. The increasing global incidence 
of RCC could be due to advancements in diagnostic techniques, more 
frequent use of medical imaging, and shifts in lifestyle factors [44,61]. 
Early treatment of RCC is essential for optimizing patient outcomes, en-

hancing survival rates, and improving the quality of life [61].

* Corresponding author at: The Intervention Centre, Oslo University Hospital, Oslo, 0372, Norway.

Survival analysis is a statistical method designed to explore the time 
interval leading up to a pivotal event, like death or the recurrence 
of a disease, and is frequently employed in oncology. This approach 
evaluates time-to-event data, estimating the likelihood of an event tran-

spiring within a defined timeframe, all while considering censored data. 
Crucially, survival analysis can incorporate participants who didn’t en-

counter the event of interest by the study’s conclusion [26].

Survival analysis holds significant importance for RCC patients, 
guiding treatment choices and allowing clinicians to determine the best 
strategies—this includes decisions about therapy types, treatment in-

tensity, and the consideration of palliative or supportive care measures 
[20]. Radiological data plays a crucial role in cancer patients’ survival 
analysis and prognosis. It provides insights into tumor features, hetero-

geneity, treatment planning, and evaluation of therapeutic responses. 
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Such data empowers clinicians to enhance patient outcomes and sur-

vival rates [25]. However, even experts can occasionally make incorrect 
predictions or misinterpret medical imagery, leading to potential mis-

judgments in prognosis and treatment. Astonishingly, an estimated 20 
million radiology reports annually are believed to contain significant 
clinical errors [4]. Added to this is the possible scarcity of skilled ra-

diologists in some regions or healthcare systems. Introducing artificial 
intelligence (AI) technologies may offer a solution to these challenges 
[28].

AI offers a promising avenue to enhance the precision and speed 
of medical image analysis. Convolutional neural networks (CNN) can 
discern patterns and features in images that might elude human obser-

vation [9]. These sophisticated algorithms can swiftly and accurately 
analyze vast volumes of data, thereby diminishing human error and 
boosting diagnostic accuracy [30]. Furthermore, the integration of AI 
into survival analysis has demonstrated potential, with capabilities to 
refine the accuracy of prognostic models and pave the way for tailored 
treatments [53].

In this study, we aim to develop a multimodal, AI-driven algorithm 
that predicts personalized survival probabilities by leveraging both CT 
images and clinical data. This approach addresses the challenges of 
potential inaccuracies in clinical interpretations and the limited avail-

ability of expert radiologists. Our method focuses on a multimodal 
survival analysis strategy, striving for greater precision in predicting 
survival outcomes. To achieve this, we categorize RCC tumors in CT 
scans based on the International Society of Urological Pathology (ISUP) 
grading system [46]. This grading evaluates the severity of cancer by 
analyzing the morphological attributes of tumor cells under a micro-

scope and has a proven correlation with mortality rates [41]. Following 
tumor classification, we extract radiomic features, which serve as our 
survival model’s primary inputs. This model also integrates vital clinical 
data specific to each patient. By synergizing radiomic features with clin-

ical data, we aim to derive survival probabilities using a non-linear and 
non-proportional approach, ensuring a more comprehensive, realistic, 
and precise survival estimation.

1.2. Related work

In the realm of statistics, the Cox proportional hazards (CPH) model 
[11] stands as a benchmark for conducting survival analysis with cen-

sored observations. However, its linear nature constrains its ability 
to identify non-linear relationships between input variables and event 
risks, such as death. With the rise of AI and deep learning (DL), there’s 
now a broader scope for modeling survival analysis that embraces these 
non-linear dynamics. Models like Cox-nnet [8] and DeepSurv [22] have 
emerged to counteract CPH’s limitations and uncover new prognos-

tic indicators. Nevertheless, even these DL-based models grapple with 
the inherent proportional hazards assumption intrinsic to CPH. This as-

sumption, which suggests a patient’s covariates’ influence on death risk 
remains consistent over time, might not always echo real clinical sce-

narios. This can produce survival curves that fail to intersect, presenting 
a potential misalignment with true patient outcomes.

Your paragraph is detailed and clearly outlines the innovative sta-

tistical methods. Here’s a revised version for enhanced clarity and flow: 
Advancements in statistical modeling have introduced groundbreaking 
solutions to circumvent the limitations of the CPH model in survival 
analysis. Two notable methodologies designed to address the inherent 
linearity and proportionality constraints of CPH are multivariate time-

to-event logistic regression (MTLR) [13] and Nnet-survival [15].

MTLR expands upon logistic regression to accommodate time-to-

event data, modeling the joint probability of various events. This tech-

nique can integrate time-dependent covariates and adeptly manage 
non-proportional hazards, marking its significance in survival analysis. 
Conversely, Nnet-survival calculates each specific time interval’s dis-

crete conditional hazard rate. Though this concept has historical roots 
2

[5], its recent application in modern deep learning techniques has cul-
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minated in the creation of Nnet-survival. This method paves the way 
for individualized, non-proportional hazard probability curves tailored 
to each patient.

Multimodal deep learning (DL) [33] is a framework that harnesses 
DL methodologies to process and learn from varied data modalities, en-

compassing tabular data, images, and audio. In medical domains, where 
diverse datasets like clinical details, radiological images, and medica-

tion histories are prevalent, multimodal DL offers a robust platform. 
This approach makes it feasible to unravel intricate relationships be-

tween the diverse input data and the predicted outputs.

Previous studies have employed various approaches to conduct sur-

vival analysis, focusing on using radiological images or integrating radi-

ological images with clinical variables to enhance survival estimation. 
Mukherjee et al. [31] developed a shallow CNN in conjunction with 
Cox loss to predict the prognosis of lung cancer patients using com-

puted tomography (CT) image data alone. Wang et al. [54] presented a 
CNN autoencoder-based survival model incorporating Cox loss for pre-

dicting recurrence in patients with high-grade serous ovarian cancer, 
relying solely on CT scans. Wu et al. [57] developed a regression-based 
survival model for non-small cell lung cancer patients, effectively inte-

grating imaging and clinical data to enhance the accuracy of survival 
predictions by employing the mean squared error (MSE) loss function. 
Zhang et al. [58] introduced a risk prediction model for assessing over-

all survival in gastric cancer patients, incorporating both CT images 
and clinical variables as inputs and utilizing a specialized loss function. 
Zhong et al. [59] presented a CNN-based model using Cox survival loss 
to predict survival outcomes in patients diagnosed with stage T3N1M0 
nasopharyngeal carcinoma using magnetic resonance (MR) imaging and 
clinical variables. Lastly, Chaddad et al. [6] explored the potential of ra-

diomic features and clinical variables in predicting the survival group of 
lung cancer patients. The authors employed image analysis techniques, 
rather than DL methods, to extract radiomic features and utilized a ran-

dom forest classifier.

In renal cell carcinoma research, numerous efforts have been made 
to develop survival predictive models using clinical data, radiological 
imaging, and histopathology. Pignot et al. [36] utilized clinical vari-

ables such as age, gender, TNM stage, tumor size, and histologic subtype 
in Kaplan-Meier and Cox regression analyses, aiming to ascertain the 
prognostic utility of subtyping for papillary RCC. Similarly, Arrontes 
et al. [3] evaluated comorbidity indices by inputting clinical data, in-

cluding age, gender, and Fuhrman grading, into Kaplan-Meier and Cox 
models, investigating their influence on the prognosis of clear cell RCC. 
Meanwhile, Gao et al. [14] constructed a Cox regression model by incor-

porating CT texture features derived from radiomic feature extraction 
to predict survival rates in renal cell carcinoma cases. In another ap-

proach, Nazari et al. [32] developed a random forest classifier that 
uses quantitative radiomic features from CT scans to estimate the 5-

year mortality risk for clear cell RCC patients. Furthering this line of 
research, Jiang et al. [21] trained a random forest model on CT ra-

diomic data to categorize patients into SSIGN (stage, size, grade, and 
necrosis) risk groups specifically for clear cell RCC. Tabibu et al. [48]

harnessed a deep Residual Neural Network to process histopathology 
images, extracting histopathological image features via deep learning. 
These features were subsequently integrated with a Cox model to con-

duct a comprehensive survival analysis for pan-renal cell carcinoma. 
Ning et al. [34]) utilized sophisticated machine learning methods in 
conjunction with Cox proportional hazards to devise a survival model 
that integrated gene data and histopathological images. Two studies at-

tempted to utilize deep learning for prognosis based on different data 
modalities and the Cox proportional hazards model [35,43]. Specifi-

cally, Ning et al. [35] integrated CT scans, histopathological images, 
clinical data, and genomic data, while Schulz et al. [43] used CT/MR 
images, histopathological images, and genomic data.

1.3. Our contributions
Key contributions of our model include:
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Fig. 1. Illustration of our comprehensive framework. (1) Feature Extraction from CT Volumes: Classifies CT images based on ISUP grades and utilizes a 1000-neuron 
fully connected layer to refine radiomic feature size from 2560. (2) Clinical Variables Selection: Merges CT image features and clinical variables using Spearman 
correlation and random forest importance scores. (3) Survival Network: Uses inputs from CT image features, clinical variables, and their combination to output 
survival probabilities for 15-time intervals, which are expanded to 1500 time points for patient-specific survival curve visualization.
1. Utilization of 3D inputs and convolutional layers to preserve de-

tailed image features as inputs to the survival model.

2. Capability to perform non-proportional survival analyses for renal 
cell carcinoma, enhancing clinical applicability.

3. Leveraging deep learning survival analysis to validate the connec-

tion between ISUP grading and mortality rate.

4. Data combination selection mechanism to improve survival predic-

tion accuracy.

5. Incorporation of violin diagrams for a nuanced evaluation of sur-

vival probability distributions.

2. Methods

As depicted in Fig. 1, our methodology for survival analysis in-

tegrates two primary data modalities: 1) CT volumes and 2) clinical 
variables. Drawing inspiration from the triumphant application of CNNs 
in image analysis and cancer prognosis, we incorporate a CNN-based 
architecture specifically tailored for CT image feature extraction per-

tinent to prognosis. Harnessing the capabilities of 3D CNNs, we pull 
out features from the three-dimensional tumor volume, a strategy influ-

enced by Zhu et al. [60]. We then combine clinical information with the 
3

CT image features for survival analysis. Our approach consists of three 
modules: (1) CT image feature extraction, (2) selection of clinical vari-

ables, and (3) survival prediction. In our research, the feature extractor 
and survival networks undergo separate training processes rather than 
being trained simultaneously.

2.1. Radiomic feature extraction from CT volumes

We recommend classifying RCC tumors in CT images into ISUP 
grades (1, 2, 3, and 4) to extract radiomic features pertinent to prog-

nosis. The CT volumes are processed using a 3D CNN feature extractor 
network to derive these features. Subsequently, we combine the clinical 
variables with the extracted radiomic features. Our choice of the ISUP 
grade for classification is based on its proven strong correlation with 
tumor recurrence, metastasis, and mortality [55]. Specifically, higher 
ISUP grades signal a poorer prognosis and increased mortality rate, 
while lower grades indicate a better prognosis and reduced mortality 
rate [10].

In our study, we have chosen EfficientNet [49] for the feature ex-

tractor network and classifier. Developed by Google researchers, this 
state-of-the-art CNN architecture is designed specifically for image clas-

sification. It employs the compound coefficient method, ensuring effi-
cient model scaling. Among its variants, the largest model, EfficientNet 
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B7, stands out with superior performance. The layers of EfficientNet in-

corporate MBConv [42], an innovative convolutional block. This block 
captures intricate image features while utilizing fewer parameters and 
demanding less computational power compared to conventional convo-

lutional blocks.

For our study, we modified the EfficientNet B7 architecture to cater 
to three-dimensional (3D) image data, such as CT volumes. This adap-

tation enables feature extraction across all dimensions of the tumor 
volume, ensuring that the spatial information inherent in 3D data is 
fully leveraged. Thus, our feature extraction network operates in a 3D 
domain. The input for this network consists of preprocessed image vol-

umes combined with annotations from tumor segmentations. The pur-

pose of this network is to classify RCC tumors into one of the four ISUP 
grades. We’ve conducted a detailed study separately on classifying RCC 
based on the ISUP grading system [29]. The architecture seamlessly 
blends convolutional layers, MBConv layers, an Adaptive Average Pool-

ing layer, followed by a sequence of fully connected (FC) layers.

The Adaptive Average Pooling layer, positioned between the CNN 
and FC layers, is pivotal for feature extraction. It minimizes the pa-

rameters and computational demands of classification and retains vital 
image feature information [39]. From this layer, we derive feature vec-

tors for each patient. After flattening the output of the Adaptive Average 
Pooling layer, the extracted image features are transformed into feature 
vectors. Initially, these vectors have a dimension of 2560. Our aim is to 
pare this down to 1000 for seamless integration with clinical data. We 
use an FC layer designed to take 2560 input features and produce 1000 
output features to achieve this. These refined vectors are then saved in a 
CSV file, ready for input into the survival network. Once stored, we nor-

malize the data, aligning it based on its mean and standard deviation.

2.2. Clinical variables selection

Our aim isn’t to integrate all clinical variables with CT image fea-

tures for survival prediction. Instead, we’re interested in the potential 
of using a select subset of variables, specifically those most pertinent 
to prognosis, together with CT image features for better survival pre-

diction outcomes. To achieve this, we assess different combinations of 
clinical variables. To pinpoint the most relevant clinical variables for 
predicting survival durations, we utilize two established techniques: (1) 
the Spearman correlation score [37] and (2) the importance score from 
a random forest regressor [56]. These methods aid us in recognizing the 
most valuable clinical variables to incorporate into our survival model, 
ensuring more precise patient survival predictions.

We chose random forest importance scores and Spearman rank 
correlation coefficients for feature selection for several reasons. First, 
they provide straightforward rankings of features based on their rel-

evance, simplifying identifying the most important variables. Second, 
these methods quantify the relationship between each feature and sur-

vival time, elucidating how the variables associate with the outcome. 
Third, random forest and Spearman calculations are computationally ef-

ficient, particularly with high-dimensional data, enabling quick feature 
screening. Fourth, they use model-based and model-free evaluations to 
determine how important each feature is. This way, they can capture 
how important the feature is to the ensemble model and how it directly 
affects survival.

Spearman’s rank correlation coefficient is a non-parametric statisti-

cal measure that assesses the strength and direction of the association 
between two variables. Unlike the parametric Pearson correlation co-

efficient, it is adept at identifying monotonic relationships and is less 
affected by non-linear relationships and non-normal distributions. We 
compute the Spearman correlation coefficients to gauge the relationship 
between clinical variables and survival times, resulting in a correlation 
matrix. This matrix showcases the pairwise correlation values between 
each clinical variable and survival times. The range of these coefficient 
4

values spans from -1 to 1: a value of -1 indicates a strong negative 
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correlation, 1 signals a strong positive correlation, and 0 suggests no 
correlation.

Conversely, random forest regression can yield an importance score 
for each predictor variable. To determine these scores, we train a ran-

dom forest model composed of 100 decision trees, aiming to predict 
survival times using clinical variables. These importance scores stem 
from the average reduction in the model’s prediction error attributed to 
each feature, aggregated across all trees within the random forest. Fol-

lowing this, the clinical variables are ranked based on their respective 
importance scores to identify those most critical for survival time pre-

diction. Variables with higher importance scores typically influence the 
model’s predictive accuracy more.

2.3. Modeling survival estimation

This subsection delves into the nuances of modeling survival esti-

mation, a cornerstone of our proposed method. The discussion is seg-

mented into three distinct parts:

1. Survival Network: This segment outlines the architecture and de-

sign choices underpinning the survival network tasked with com-

puting survival probabilities.

2. Input to the Survival Network: Here, we elaborate on the data 
and features serving as inputs to the network, encompassing clin-

ical variables and radiomic features sourced from the 3D CNN 
feature extractor.

3. Loss Function for Modeling Survival Estimation: This portion 
highlights our choice of the loss function, which is pivotal in opti-

mizing the survival network.

2.3.1. Survival network

The survival network, shown in Fig. 1, consists of three FC layers, 
comprising 500, 100, and 15 neurons, respectively. As our model is a 
discrete-time survival model, the final layer contains 15 neurons repre-

senting survival probabilities for 15 distinct time intervals. The network 
utilizes a rectified linear unit (ReLU) activation function in the inter-

mediate layers and a sigmoid activation function in the last layer. In an 
effort to enhance the generalization capabilities of the model, a dropout 
rate of 0.3 is incorporated, accompanied by the implementation of batch 
normalization after the initial two FC layers. Subsequently, linear inter-

polation with 100 points is employed to transform the outputs into a set 
of 1500 values, enabling the generation of continuous survival curves 
for patients. We achieve the optimal architecture through a grid search 
of hyperparameters to find the best evaluation metrics for survival anal-

ysis.

2.3.2. Input to the survival network

The inputs to the survival network are derived from one of three 
sources: CT image features, clinical variables, or a combination of CT 
image features and clinical variables. In this study, we do a series of 
nine experiments, each using one of these three sources for survival 
prediction. In Section 3.4, a full explanation of these experiments will 
be given.

2.3.3. Loss function for modeling survival estimation

We adapt our survival model loss function based on discrete logis-

tic hazards similar to the loss used in Nnet survival [15] to predict 
survival probabilities over M days (weeks, months, or years), in which 
M is the maximum follow-up period. It is essential to convert contin-

uous survival times into discrete intervals to employ the discretized 
hazard function. A judicious selection of appropriate time intervals is 
undertaken to discretize the continuous survival times, with the pre-

ferred choice being equidistant intervals. Subsequently, each observed 
survival time is allocated to its respective time interval, effectively 

transforming the continuous data into a discrete format. We developed 
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a loss function that used a vectorized form of likelihoods for censored 
and uncensored patients. The loss function is given by:

L = −
𝑝∑
𝑥=1

𝑛∑
𝑖=1

(
ln
(
1 + surv𝑠(𝑥)(𝑖) ⋅

(
survpred (𝑥)(𝑖) − 1

))
+ln

(
1 − surv𝑓 (𝑥)(𝑖) ⋅ survpred (𝑥)(𝑖)

) )
,

where 𝑝 denotes the number of patients in a batch, and 𝑛 represents the 
number of discrete time intervals (15). survpred(𝑥)(𝑖) signifies the pre-

dicted outcome of the survival model for patient 𝑥 at time interval 𝑖, 
which can be either 0 for a patient who died during interval 𝑖 or 1 for a 
patient who remained alive in interval 𝑖. Each patient’s death or censor-

ing time, 𝑡, is determined based on the ground truth survival time given 
in a dataset. The ground truth vectors survs and survf for the survival 
model are of length 𝑛 for every patient. Vector survs corresponds to the 
time intervals when the patient survived, while vector survf denotes the 
specific time interval when the death occurred. For uncensored patients 
in the time interval 𝑖:

surv𝑠(𝑥)(𝑖) =

{
1, if 𝑡𝑥 ≥ 𝑡𝑖
0, otherwise

surv𝑓 (𝑥)(𝑖) =

{
1, if 𝑡𝑖−1 ≤ 𝑡𝑥 < 𝑡𝑖
0, otherwise

For censored patients in the time interval 𝑖:

surv𝑠(𝑥)(𝑖) =

{
1, if 𝑡𝑥 ≥ 1

2

(
𝑡𝑖−1 + 𝑡𝑖

)
0, otherwise

and

surv𝑓 (𝑥)(𝑖) = 0.

The dot product within the loss function assesses the similarities 
between the predicted vector and the ground truth vector. We trained 
the survival networks with the help of pycox v0.2.0.3 library.1

3. Experimental setup

In this section, we delineate the experimental setup utilized for our 
research. Our approach is segmented into four primary stages: data 
acquisition and preprocessing, training the 3D CNN feature extractor 
network, training the survival network, and executing the experiments. 
We commence by detailing the datasets incorporated, discussing their 
attributes, origins, and the preprocessing measures undertaken. Subse-

quently, we shed light on the training procedures for both the 3D CNN 
feature extractor and the survival networks. Lastly, we delve into a de-

scription of the various experiments executed.

3.1. Experimental dataset

The selection of appropriate datasets and their preparation plays a 
crucial role in evaluating our proposed method. This subsection pro-

vides an overview of the dataset used in our experiments and the steps 
taken to prepare the data for our study. We have divided this subsection 
into the KiTS21 dataset, dataset splitting, and clinical data preparation. 
First, we discuss the KiTS21 dataset, its characteristics, and its source. 
Next, we describe the dataset-splitting process, explaining the rationale 
behind the chosen method and the proportions used for training, val-

idation, and testing. Finally, we detail the clinical data preparation, 
including any necessary preprocessing and data normalization proce-

dures.

3.1.1. KiTS21 dataset

We used the KiTS21 [18] dataset to train and test our proposed 
framework. The dataset comprises 300 patients who underwent either 
5
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partial or complete nephrectomy for suspected kidney cancer between 
2010 and 2020 at the M Health Fairview or Cleveland Clinic medi-

cal facility and includes both clinical data and CT scans with manually 
annotated kidneys and tumors (ground-truth labels). The primary ob-

jective of collecting this dataset was to apply segmentation algorithms.

We selected this dataset for its comprehensive clinical information, 
precise annotations, and ample subject numbers. The dataset contains 
three files, including CT scan volumes (NIFTI format), annotation vol-

umes (NIFTI format), and clinical data (JSON format). The annotation 
volumes consist of manual segmentations of the kidneys, tumor(s), and 
cyst(s). In this study, we used 41 clinical variables from this JSON file. 
All critical clinical information, such as pathology results, is included 
in this file [19]. Notably, this data was originally obtained from the 
Cancer Imaging Archive in DICOM format, while the clinical data was 
provided in a single CSV file.

3.1.2. Dataset splitting

To establish a classifier network conducive to radiomic feature ex-

traction for survival prediction, we refined the original dataset by omit-

ting 56 patients absent of ISUP grade values. The resulting dataset 
encapsulated 244 patients, 32 having experienced death events and 212 
with censored time. The maximum observation time was 3000 days 
(which refers to the M variable in Section 2.3.3), and the median ob-

servation time was 644 days. We performed three-fold cross-validation 
for the ISUP grading classification to create three subsets for train-

ing, validation, and testing. The division of the dataset into three folds 
was based on the number of deceased and censored patients to ensure 
that each subset contained the same proportion of deceased individuals. 
Each fold included 57% of the total dataset for training, 10% for valida-

tion, and 33% for testing. The training subset had 10% of patients who 
died, the validation subset had 33%, and the test subset had 13%. After 
dividing the dataset into three folds, we increased the samples in each 
train and validation subset by doing multiple augmentations (discussed 
in 3.2.1).

The optimal fold for the classification model was identified based 
on the F1-score, as detailed in Section 3.2.3. This chosen fold was then 
applied for training, validation, and testing of the survival network, 
except that augmented samples were not used. It’s worth noting that 
while separate networks were employed for ISUP grade classification 
and survival analysis, they were trained using the same cohort of sub-

jects across training, validation, and test datasets. This methodology 
was specifically chosen to avoid the potential pitfalls of using the clas-

sification network’s training data as the validation or test dataset for 
the survival analysis network. Such overlap could lead to an inflated 
perception of the survival analysis network’s efficacy due to increased 
accuracy in identifying ISUP grades from the training dataset.

3.1.3. Clinical data preparation

The clinical data employed in training the survival network encom-

passed 38 variables, categorized into continuous numerical or cate-

gorical types. Categorical variables, like gender, were converted into 
discrete numerical values for compatibility with the survival model. 
Meanwhile, continuous numerical variables, such as pathologic size, un-

derwent normalization using the mean and standard deviation to ensure 
optimal processing by the survival model.

3.2. Training the 3D CNN feature extractor

In this subsection, we elaborate on training the 3D CNN feature ex-

tractor, a critical component in our proposed method. This subsection is 
divided into three parts: 1) preprocessing of CT image volumes, which 
is a necessary step before training the 3D CNN feature extractor to guar-

antee consistent input data and enhance the network’s performance; 2) 
training details of the classifier, encompassing aspects such as the cho-
sen loss function, number of epochs, optimizer, and learning rate; 3) 

https://github.com/havakv/pycox
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best fold selection for radiomic feature extraction, a crucial step fol-

lowing the training of the 3D CNN feature extractor, which involves 
selecting the optimal fold to ensure the highest quality features for the 
subsequent survival network.

3.2.1. Preprocessing of CT image volumes

Before commencing the preprocessing phase for CT volumes, image 
augmentations were implemented as a strategy to address the inher-

ent imbalance in the dataset, as well as the paucity of training samples. 
Positional augmentation was applied using affine transformations with 
shear parameters (0, 0.5, 0). Random horizontal and vertical flipping 
was also applied. In addition, rotations of up to 90 degrees were per-

formed. Random Gibbs noise was added with probability one and al-

pha=(0.6, 0.8) for noise augmentation. Random SpaceSpike noise was 
also added with probability one and intensity_range=(10,13). Finally, 
Gaussian noise was added with a mean of 0 and a standard deviation of 
1.

Following the augmentation, the count of CT scan samples rose from 
an initial 244 to 2,000; each ISUP grade class contains 500 samples. Be-

fore the ISUP grade classification, image preprocessing is applied to 
improve the quality of the input images and their radiomic features 
for better interpretation of the input [38,1]. As recommended in the 
MIT challenge,2 all volumes were resized to 128 × 128 × 128. We also 
resampled the volumes based on one millimeter isotropic voxel size, 
which has been recommended as a standard voxel size by previous 
studies in medical imaging [2,52]. Additionally, all volumes were reori-

ented to the RAS (Right, Anterior, and Superior) orientation, the most 
commonly used orientation in medical images [2,52,27]. We utilized in-

tensity normalization based on the Z-score in medical imaging [38,50]. 
For kidney image and tumor segmentation, identical image preprocess-

ing steps were employed, except that intensity normalization was not 
applied for tumor segmentation.

We incorporated a concatenation step within our image preprocess-

ing pipeline to boost the 3D EfficientNet-B7 model’s efficacy in detect-

ing kidney tumors. This step involved merging extracted kidney images 
with their associated manual tumor segmentations, aiming to highlight 
the tumors’ surface patterns [1]. Such image concatenation supplements 
the input volume with crucial tumor position and dimensions data. 
Training the model solely on kidney images, without factoring in tumor 
location, might cause it to recognize irrelevant features, compromising 
its performance on new, unseen data. Consequently, our concatenation 
approach is pivotal in enhancing the model’s generalizability and pre-

cision.

3.2.2. Training details

To validate the robustness of the radiomic feature extractor network, 
we conducted three-fold cross-validation with three distinct train, val-

idation, and test subsets while maintaining the same hyperparameters 
for each training iteration. For training the 3D CNN feature extractor, 
we used the ADAM optimizer [23] with a fixed learning rate of 1 ×10−4, 
and 50 epochs were run to optimize the network parameters. In addi-

tion, we employed the Cross-Entropy loss given by:

𝐿 = −
𝑛∑
𝑖=1
𝑡𝑖 × 𝑙𝑜𝑔(𝑝𝑖), (1)

𝑡𝑖 is the true ISUP class, and 𝑝𝑖 is the softmax probability for the 𝑖𝑡ℎ
class, and 𝑛 is the number of ISUP classes (4 in this study). The 3D 
feature extractor was trained using PyTorch v1.11.0 on a workstation 
equipped with an Nvidia GeForce RTX 3090 GPU, an AMD Ryzen 7 
5800X 8-Core Processor, and 32 GB of RAM.
6
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3.2.3. Best fold selection for radiomic feature extraction

We used precision, recall, and F-score to evaluate our feature ex-

tractor network, as these fundamental metrics are indispensable for 
assessing classification model performance.

Precision, also known as the positive predictive value, quantifies the 
fraction of true positives out of the total instances predicted as positive 
by the model. Mathematically, precision can be defined as:

Precision = TP

(TP + FP)
, (2)

where TP denotes true positives and FP denotes false positives.

Recall, alternatively referred to as sensitivity or true positive rate, 
measures the fraction of true positive instances among the total number 
of actual positive instances within the dataset. Recall can be mathemat-

ically represented as:

Recall = TP

(TP + FN)
, (3)

where FN denotes false negatives.

The F-score, specifically the F1-score, constitutes the harmonic mean 
of precision and recall, delivering a single metric that balances both 
measures. The F1-score is particularly advantageous in situations with 
uneven class distributions, as it accounts for the trade-off between pre-

cision and recall. The F1-score can be calculated using the following 
equation:

F1-score = 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

. (4)

We calculated the average of four Precision, Recall, and F-scores we 
gained for each ISUP class. We repeated this process three times for 
each of our three folds, giving us three average Precision, Recall, and 
F-scores. The second fold, with an average F-score of 0.84, was the best 
and selected as our final radiomic feature extractor that can be used as 
the input for the survival network.

3.3. Training the survival network

In the present study, we used a total of 500 epochs for training the 
survival network. Early stopping was implemented with a patience level 
of 10 to prevent overfitting and enhance generalization. The model was 
optimized utilizing the Adam optimizer, accompanied by a learning 
rate 0.01. The optimal learning rate selection was determined using 
the Smith [45] method.

3.4. Experiments

In our study, to demonstrate the performance improvement of our 
proposed survival analysis framework, we conduct nine distinct ex-

periments with different combinations of inputs. The first experiment 
involves solely CT image features, the second only involves clinical vari-

ables, and the third combines CT image features and clinical variables. 
The remaining six experiments are created by applying three distinct 
thresholds for each the Spearman correlation and the random forest re-

gression importance score. The clinical variables are selected based on 
the thresholds in the last six experiments and then fed to the survival 
network. These experiments are then compared to evaluate their effec-

tiveness in predicting survival outcomes. Further details on the results 
of these experiments will be presented in Section 4.2.

4. Results

In this section, we delineate the performance assessment of our sur-

vival model, the resultant experimental outcomes, and a comparison 
with prior related studies. This section is segmented into three compo-
nents:

http://6.869.csail.mit.edu/fa17/miniplaces.html
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1. Metrics for Survival Model Performance Evaluation: This sub-

section elucidates the evaluation metrics harnessed to gauge the 
prowess of our proposed survival model.

2. Experimental Results from Nine Distinct Experiments: We 
present and analyze the results from nine experiments conducted 
to evaluate our proposed methodology.

3. Plotting Violin Diagram for Survival Distribution: This subsec-

tion accentuates the visualization of survival distribution data via 
violin diagrams, offering an encompassing perspective on our find-

ings.

4.1. Metrics for performance evaluation

To assess the performance of our survival model, we used three key 
metrics: the time-dependent concordance index (𝐶𝑡𝑑 ), the integrated 
Brier score (IBS), and the cumulative dynamic area under the curve 
(AUC). 𝐶𝑡𝑑 extends Harrell’s concordance index [17], a widely utilized 
measure for evaluating the discriminative power of survival models. 
The time-dependent C-index is calculated as follows:

𝐶𝑡𝑑 (𝑡) = 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑏𝑙𝑒 𝑝𝑎𝑖𝑟𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

(5)

A concordant pair is when the patient with a greater predicted 
survival probability at time t actually outlives the other patient. A com-

parable pair, on the other hand, is when one patient’s survival time is 
known and can be compared at time t. The time-dependent C-index is 
specifically designed to address situations where a model’s predictive 
accuracy may vary. The 𝐶𝑡𝑑 range between 0 and 1, where values ap-

proaching 1 signify superior predictive accuracy, while those nearing 
0.5 indicate the model possesses no greater discriminative power than 
random chance. It has been established that the concordance index is 
excessively optimistic, particularly with an increasing number of cen-

sored patients in the dataset [51].

The cumulative dynamic AUC [24] extends the conventional AUC 
metric, a prominent measure for assessing binary classification models. 
This extension specifically addresses censored data and time-varying 
predictions in survival analysis. The cumulative dynamic AUC at time t 
is calculated as:

𝐴𝑈𝐶(𝑡) =

𝑡

∫
0

𝑅𝑂𝐶(𝑢)𝑑𝑢, (6)

where ROC(u) is the time-dependent receiver operating characteristic 
curve at time u; within this context, the cumulative dynamic AUC is 
computed for a designated time point t, quantifying the model’s dis-

criminatory capacity to distinguish subjects experiencing the event of 
interest by time t from those who do not. The cumulative dynamic AUC 
represents the area under the time-dependent Receiver Operating Char-

acteristic (ROC) curve, which delineates the sensitivity (true positive 
rate) against 1-specificity (false positive rate) for different time points. 
Ranging from 0 to 1, the cumulative dynamic AUC reveals greater pre-

dictive accuracy as it approaches 1, while values nearing 0.5 indicate 
that the model’s discriminatory power is no better than random chance.

IBS [16] is an evaluation metric in survival analysis, assessing the 
calibration and overall predictive accuracy of time-to-event models. 
Originating from binary classification, the Brier Score measures average 
prediction error, while the IBS extends this principle to time-to-event 
data by integrating the Brier Score over a specific time horizon. The IBS 
is calculated as follows:

𝐼𝐵𝑆 =

𝜏

∫
0

𝐵𝑆(𝑡)𝑑𝑡, (7)

where 𝐵𝑆(𝑡) is the Brier Score at time 𝑡:

𝐵𝑆(𝑡) =
∑ (

𝑓 (𝑡) − 𝐼(𝑇 = 𝑡)
)2 ∕𝑁(𝑡), (8)
7
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in this context, 𝑓𝑖(𝑡) represents the forecasted probability of an event 
for the i-th individual at time t. 𝐼(𝑇𝑖 = 𝑡) denotes the binary indicator 
for the event status, and 𝑁(𝑡) signifies the count of individuals at risk 
at time t.

Within the scope of survival analysis, the Brier Score computes the 
squared difference between observed binary event statuses and pre-

dicted event probabilities at a given time. The IBS incorporates the 
temporal dimension by aggregating prediction errors across a series of 
time points, considering data censoring. Lower IBS values signify supe-

rior calibration and overall predictive accuracy of the survival model, 
with 0 denoting a flawless prediction and 1 indicating the poorest pos-

sible prediction.

In addition to standard metrics, we use violin plots, a novel ap-

proach, to observe survival model output distributions. This is the first 
study proposing the application of violin plots to evaluate survival mod-

els. High evaluation metrics may be misleading, as predicted survival 
probabilities may not match ground truth times of death. Violin plots 
serve as a valuable tool in visualizing model performance by exhibit-

ing the distribution of predicted probabilities at the time of mortality 
for deceased individuals and the distribution of predicted probabilities 
at the ultimate time point for censored subjects. For example, a distri-

bution approximating zero for deceased patients signifies satisfactory 
model training, which consequently yields probability predictions close 
to zero.

4.2. Experimental results

One of our studies aims to investigate the impact of various combi-

nations of clinical variables on predicting survival outcomes in patients 
with RCC. Specifically, we seek to identify the clinical features that 
contribute most significantly to accurately predicting patients’ survival 
times. Initially, we conducted two independent analyses to evaluate the 
effectiveness of CT image features and clinical data individually with 
respect to their impact on the performance of our survival model. Sub-

sequently, we explore the impact of merging CT image features with 
various combinations of selected clinical variables on the performance 
of the survival model.

To this end, we developed nine distinct experiments (Exp). Table 1

shows the difference between these nine experiments regarding their in-

puts and thresholds for choosing the combination of clinical variables. 
Table 1 also reports the C-index and AUC obtained on the test subset 
from each experiment. We used the same survival network architecture 
in the nine experiments for a fair comparison. From experiment 4 to 
experiment 9, we applied different thresholds for the Spearman corre-

lation score (S_score) and random forest regression importance score 
(I_score).

We adjusted three different thresholds for Spearman’s correlation 
coefficient. As the threshold values decreased, we incorporated more 
clinical variables with weaker correlations to the patient survival time 
into the survival model. In contrast, we utilized three different thresh-

olds for the importance score of the decision tree regressor. By lowering 
these threshold values, we gradually incorporated less important clini-

cal variables in predicting survival times into the survival model.

According to Table 1, the best evaluation metrics were obtained in 
experiment 8, in which the C-index, AUC, and IBS are 0.84, 0.8, and 
0.18, respectively. The inputs to experiment 8 are the following: CT 
images features, Localized Solid Tumor, Age at Nephrectomy, Conges-

tive Heart Failure, Body Mass Index, Uncomplicated Diabetes Mellitus, 
Pathologic Size, Myocardial Infarction, Radiographic Size, Metastatic 
Solid Tumor, Hospitalization, Mild Liver Disease, Smoking History, 
Surgery Type, Gender, Tumor Histologic Subtype, Pathology T Stage, 
and Surgical Approach. Please refer to Appendix A for additional clini-

cal variables employed in the other experiments.

To evaluate the effectiveness of the survival model, ten unique indi-

viduals from the test cohort were selected, of which five had deceased 

from RCC, and five had censoring time to event. Subsequently, the 
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Table 1

Differences of Experiments used for RCC survival analysis.

Exp Inputs Theresholds C-index AUC IBS

Exp1 CT images Features 0.72 0.73 0.19

Exp2 38 clinical variables 0.72 0.74 0.17

Exp3 CT images Features 0.82 0.74 0.19

38 clinical variables

Exp4 CT images Features 0.79 0.76 0.22

4 clinical variables |S_score| ⩾ 0.1

Exp5 CT images Features 0.83 0.75 0.21

13 clinical variables |S_score| ⩾ 0.05

Exp6 CT images Features 0.81 0.77 0.17

30 clinical variables |S_score| ⩾ 0.01

Exp7 CT images Features 0.77 0.74 0.21

4 clinical variables I_score ⩾ 0.1

Exp8 CT images Features 0.84 0.8 0.18

17 clinical variables I_score⩾0.01

Exp9 CT images Features 0.84 0.76 0.19

29 clinical variables I_score ⩾ 0.001
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Fig. 2. Survival Probabilities for five patients in the test cohort who died.

survival curves for these patients were plotted, utilizing the survival 
probabilities derived from experiment 8. Fig. 2 illustrates five distinct 
survival curves generated by our survival model, corresponding to five 
different patients from the test cohort with events equal to one (de-

ceased). Based on the ground truth survival time, patient 1 died after 
645 days, patient two after 688 days, patient three after 102 days, pa-

tient four after 2,000 days, and patient five after 39 days.

At the time of their respective deaths, the model predicted survival 
probabilities of 0.42, 0.15, 0.3, 0.05, and 0.5 for patients 1 through 5. 
These values indicate varying degrees of accuracy in predicting the sur-

vival probabilities at the time of death, with patient 4 exhibiting the 
lowest probability and patient 5 the highest. At 500 days, the model’s 
survival probability predictions for patients 1 to 5 were 0.57, 0.2, 0.06, 
0.3, and 0.05, respectively. At 1000 days, these probabilities decreased 
to 0.1, 0.07, 0, 0.18, and 0 for the same patients. At 1500 days, all 
survival probability predictions reached 0, except for patient 4, whose 
probability reached 0 at 2000 days. The above findings suggest that the 
model demonstrates varying performance in predicting survival proba-

bilities for the five patients at different time points. Some predictions 
align closely with the ground truth survival times, while others exhibit 
a bit of discrepancy.

Fig. 3 illustrates five distinct survival curves generated by our sur-

vival model for five different patients from the test cohort with events 
equal to zero (censored) and censoring times greater than 2000 days. 
Based on the ground truth survival time, their censoring times are 2473 
days for patient 6, 2045 days for patient 7, 2900 days for patient 8, 
8

2600 days for patient 9, and 2298 days for patient 10.
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Fig. 3. Survival Probabilities for five patients in the test cohort who had cen-

sored events.

Fig. 4. Violin plots for censored & deceased events in train & test sets.

For patient 6, the model indicates a high probability of survival 
(0.95) at the censoring time of 2473, while patient 7 has a slightly lower 
survival probability of 0.9 at the censoring time of 2045. Patients 8, 9, 
and 10 exhibit survival probabilities of 0.75, 0.68, and 0.87 at their cen-

soring times of 2900, 2600, and 2298, respectively. These predictions 
suggest that patient 6 has the highest likelihood of survival at their cen-

soring time, followed by patients 7 and 10. Conversely, patients 8 and 
9 possess relatively lower survival probabilities, with patient 9 exhibit-

ing the lowest probability of survival among the five patients at their 
respective censoring times.

4.3. Violin diagram for survival distribution

Fig. 4 presents the violin plot for censored and uncensored subjects 
in the testing subset, showcasing the survival probability on the vertical 
axis for Exp8, which emerged as the optimal experimental outcome. 
As mentioned in Section 4.1, we can comprehend the distribution of 
survival probabilities predicted by our survival model with violin plots.

Censored_Test relates to the patients who did not experience the 
event in the test subset. Regarding the Censored_Test, we are uncer-

tain about the outcomes at the final time (whether death occurred or 
not). Based on the median, it can be inferred that for half of the sub-

jects, a survival probability lower than 0.45 would be predicted, with 
a higher concentration around 0.1. Conversely, a survival probability 
greater than 0.45 for the remaining half would be anticipated, with 
a greater distribution around 0.8. Given the symmetrical distribution 
around the median for Censored_Test, the model predicts that half of 
the censored patients would exhibit high survival probability at the last 
observation time. In contrast, the other half would demonstrate low sur-
vival probability. Dead_Test refers to patients who died within the test 
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subset. This group’s ideal output survival probabilities distribution is at 
zero. The median survival probability predicted by our survival model 
is around 0.3. Our survival model accurately predicted near-zero sur-

vival probabilities for half of the patients whose predicted probabilities 
were below the median. The other half of the patients with predicted 
probabilities higher than the median had distributions mostly near the 
median. Those nearer to the median had accurate survival predictions 
but with a small time shift. Those close to 1 are those patients whose 
survival probabilities were not accurately calculated. Upon analyzing 
the violin plots of the test subset for both censored and deceased pa-

tients, it can be concluded that our proposed multimodal survival model 
yields satisfactory outcomes that mostly align closely with the actual 
follow-up times of patients.

5. Discussion

In this section, we delve into the outcomes of our experiments, draw-

ing comparisons with extant literature, examining the implications, our 
study limitations, and future research.

5.1. Validation of the study’s hypothesis

The hypotheses underlying our study were twofold. Firstly, we 
aimed to investigate whether the selective provision of the most rel-

evant clinical variables to the model would enhance the performance 
evaluation of survival analysis, as opposed to indiscriminately supply-

ing all clinical variables. As evidenced by Table 1 in Section 4.2, our 
findings revealed that the most favorable results were obtained in Exp8, 
wherein clinical variables were judiciously chosen. In contrast, Exp 3, 
which included all clinical variables, yielded a lower C-index (by 0.02) 
and a reduced AUC (by 0.06). Our second hypothesis posited that multi-

modal survival analysis would yield superior results to single-modality 
approaches. In support of this hypothesis, Table 1 in Section 4.2 demon-

strates that using single-modality data, such as solely clinical data or 
CT image features, led to lower performance metrics. In contrast, Exp 
3 through 9, which incorporated clinical data and CT image features, 
significantly improved performance outcomes.

5.2. Survival curve analysis

To demonstrate that the integration of clinical data and CT image 
features results in superior performance compared to using CT image 
features or clinical data alone; we selected a single patient from the 
test cohort whose survival curve was incorrectly plotted in Exp 1 and 
Exp 2, in which both used a single data modality. This patient had an 
ISUP grade of 4 and a survival duration of 2,000 days. Subsequently, 
we generated survival curves for this patient from our nine defined ex-

periments as illustrated in Fig. 5. The estimated survival probabilities 
for the selected patient at the time of death (2,000 days) were approx-

imately 0.77 and 0.82 for Exp 1 and Exp 2, respectively. In contrast, 
the survival probabilities at the time of death for Exp3 through 9 were 
as follows: 0.18 for Exp3, 0.6 for Exp4, 0.61 for Exp5, 0.19 for Exp6, 
0.55 for Exp7, 0.05 for Exp8, and 0 for Exp9. This result demonstrates 
that multimodal data can yield superior results to single-modality ex-

periments.

5.3. Comparison with other studies

In the context of our study, we sought to draw comparisons with 
other studies that employed radiological images and clinical variables 
as inputs for their deep learning-based survival models to consider 
whether we could get acceptable performance metrics. A summary of 
these methodologies can be found in Section 1.2. Table 2 compares our 
approach with previous studies that used radiology imaging and clin-

ical data as input and deep learning for survival analysis, focusing on 
9

the C-index and AUC metrics.
Computer Methods and Programs in Biomedicine 244 (2024) 107978

0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

Time (Days)

Su
rv

iva
lP

ro
ba

bi
lit

ie
s

Experiment 1

Experiment 2

Experiment 3

Experiment 4

Experiment 5

Experiment 6

Experiment 7

Experiment 8

Experiment 9

Fig. 5. Survival Probabilities from 9 different experiments for one patient.

We aimed to demonstrate that our results are within a similar range 
to prior work and the current state-of-the-art for multimodal progno-

sis modeling. Our methodology using 17 clinical variables achieved our 
study’s highest C-index and AUC values. However, it is important to 
note that the prognostic factors differ biologically across cancer types 
and organs. Directly comparing the predictive performance of models 
across distinct diseases may not be appropriate, as the underlying dis-

ease biology and meaningful prognostic variables can vary. While our 
model showed strong predictive performance in renal cell carcinoma, 
the key prognostic factors and optimal modeling approaches are likely 
different for cancers in other organs.

As indicated in the second row of the Table 2 for Exp4, our ap-

proach’s effectiveness remains evident even when only four clinical 
variables are employed. Additionally, it is worth noting that none of 
the aforementioned studies provided a methodology capable of generat-

ing non-proportional individualized survival curves for distinct patients. 
Furthermore, these studies relied on traditional methodologies suscep-

tible to proportionality issues.

Table 2 presents a comparison of our method with other studies 
focusing solely on clinical data and radiological imaging for survival 
modeling, irrespective of cancer type. We also compared our approach 
to other methods in renal cell carcinoma prognosis that utilized various 
modalities as the inputs to their survival model as depicted in Table 3.

Ning et al. [35], Schulz et al. [43], and Ning et al. [34] methods 
are grounded in Cox loss, resulting in proportional survival curves that 
do not accurately mirror real-world clinical scenarios. Notably, Ning 
et al. [35] and Schulz et al. [43] studies that employed CT/MR imaging 
did not incorporate 3D images into their deep learning models. Ning 
et al. [35] extracted CT features using 2D scans and a patch-wise ap-

proach, while Schulz et al. [43] derived features from three separate 
images extracted from the entire 3D image, potentially overlooking cru-

cial data linked to the interconnection of slices. However, we attempted 
to utilize 3D images as input to our 3D deep learning model for feature 
extraction. Our method intentionally avoids histopathological images, 
relying on CT scans and clinical data as non-invasive means of predict-

ing survival probabilities.

While histopathological images offer comprehensive tumor informa-

tion and were utilized in the referenced studies, it is noteworthy that 
our method yielded favorable outcomes even with a reduced number of 
modalities. It is crucial to clarify that the results of our model are de-

rived from the analysis of the second fold. In contrast, the results for 
the other studies are aggregated from the mean values across multiple 
cross-validation folds. This distinction is important for accurately com-

paring and understanding the performance metrics presented.

5.4. Comparative analysis: MTLR vs. logistic hazard model

We intend to develop an MTLR model for Exp8 to understand if we 
can get better performance metrics with the MTLR model instead of the 
Logistic Hazard-based model. Table 4 shows the comparison between 

the Logistic hazard model and the MTLR model for Exp8.
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Table 2

Comparison of this study results with previous related studies.

Studies Organ Cancer Type Number of Clinical Variables C-index AUC

Our Method Kidney Renal Cell Carcinoma 17 (Exp8) 0.84 0.8

Our Method Kidney Renal Cell Carcinoma 4 (Exp4) 0.79 0.76

Chaddad et al. [6] Lung Non-Small Cell 2 (Age, TNM Stage) - 0.76

Wu et al. [57] Lung Non-Small Cell 5 (Age, Histology, TNM 
Stage, Overall Stage, Gender)

0.65 -

Zhang et al. [58] Stomach Gastric 3 (Tumor Size,

Tumor Localization, TNM 
Stage)

0.78 -

Zhong et al. [59] Nasopharynx Nasopharyngeal 
Carcinoma

3 (Age, LDH,

Pre-EBV DNA)

0.78 -

Table 3

Comparison of this study results with related studies for renal cell carcinoma.

Studies Input Modalities C-index

Our Method clinical data + CT 0.84

Ning et al. [35] clinical data + histopathological images + genomic + CT 0.83

Schulz et al. [43] histopathological images + genomic + CT/MR 0.77

Ning et al. [34] histopathological images + genomic 0.71
Table 4

Comparison of survival analysis perfor-

mance between MTLR and Logistic Hazard 
model for Exp8.

Model C-index AUC IBS

Logistic Hazard 0.84 0.8 0.18

MTLR 0.75 0.73 0.18

Table 5

Comparison of survival analysis perfor-

mance along different time interval num-

bers for Exp8.

Time Intervals C-index AUC IBS

5 0.8 0.64 0.21

10 0.83 0.71 0.2

15 0.84 0.8 0.18

20 0.84 0.72 0.19

25 0.87 0.73 0.2

30 0.8 0.71 0.22

The MTLR model demonstrated inferior discriminative performance 
compared to the logistic hazard models, as evidenced by the lower C-

index and AUC values. However, both models attained a comparable 
IBS. Given the decline in C-index and AUC with MTLR, these findings 
validate our initial methodology choice to utilize a logistic hazard re-

gression framework for this discrete-time survival analysis task, as it 
demonstrated superior predictive accuracy over the alternative MTLR 
technique on this particular dataset.

5.5. Effect of varying time intervals

We aimed to modify the number of time intervals in our top-

performing Experiment, Exp8, to observe variations in the model’s 
performance. Table 5 shows the performance metrics for Exp8 with dif-

ferent time intervals as the model’s output.

Fig. 6 illustrates our discrete model’s IBS, C-index, and AUC values 
across different time intervals.

The IBS attained its minimum value of 0.18 using 15-time inter-

vals, indicating optimal calibration at this discretization. Additionally, 
the AUC reached its peak value of 0.80 with 15 intervals, signifying 
maximum discriminative ability. While the C-index continued increas-

ing up to 0.87 with 25 intervals, there was a notable gap between the 
C-index and AUC, which is 0.73 at this point, suggesting inflated perfor-
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mance. With 15 intervals, the C-index and AUC aligned closely at 0.84 
Fig. 6. Performance Metrics for different numbers of time intervals in Exp8.

and 0.80, respectively. Given the concordant optimization of both cal-

ibration as measured by IBS, and discrimination per the AUC, coupled 
with the tight agreement between the C-index and AUC, these results 
validate our selection of 15 discrete time intervals for the survival mod-

eling methodology. The C-index improvement beyond 15 intervals is 
likely an artifact of overfitting, as evidenced by the divergence from 
the AUC. Thus, our empirical findings confirm that 15 intervals bal-

ance model performance and complexity for this dataset and modeling 
approach.

5.6. Impact of features from different ISUP classification folds

Previously, we performed ISUP grade classification using three folds 
of data, where fold 2 showed the best performance. The radiomic fea-

tures for survival analysis were extracted from the model trained on fold 
2. To evaluate the effect of classification accuracy on prognosis predic-

tion, we additionally extracted features from fold 1 and fold 3 models. 
This analysis was limited to experiment 1, which used only radiomic 
features to isolate the impact of the image-based ISUP grade classifi-

cation on survival prediction. The features from fold 1 and 3 models 
were not as accurate due to poorer classification performance. Table 6

shows the survival analysis evaluation metrics obtained using radiomic 
features from the three classification folds. This allows us to compare 
prognosis prediction using features derived from models with varying 
ISUP grading accuracy. The results demonstrate the importance of ac-
curate cancer grading for extracting prognostic radiomic signatures.
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Table 6

Impact of features from different ISUP clas-

sification folds on survival analysis perfor-

mance for Exp1.

Fold F-score C-index AUC IBS

1 0.6 0.65 0.63 0.24

2 0.84 0.72 0.73 0.19

3 0.72 0.67 0.70 0.15

We observed that higher ISUP grading F-scores correlated with im-

proved survival analysis performance, as evidenced by higher C-index 
and AUC values. This supports our hypothesis that more accurate ISUP 
grading of tumor images enables the extraction of radiomic features 
that are more prognostic of patient outcomes. Fold 2 showed the best 
ISUP classification accuracy and survival analysis metrics when using 
radiomic features alone. Therefore, we determined that the radiomic 
features derived from the fold 2 classifier were optimal. These image-

based features from fold 2 were selected to integrate with clinical vari-

ables in order to leverage the most accurate ISUP grading for survival 
prediction.

5.7. Study limitations

Despite the advantages of our methodology, our study presents sev-

eral limitations. First, Experiment 8, which recorded the highest C-index 
and AUC, utilized 17 clinical variables during its training phase. For ac-

curate survival predictions for a new patient, collecting all 17 clinical 
variables is imperative, as their entirety ensures precision in survival 
estimations. Second, accurate feature extraction demands complete ab-

domen images and segmentation annotations for the target organ and 
its related tumors. Third, to extend the findings of this study to other 
cancer types, it’s crucial to identify a clinical variable analogous to the 
ISUP grade. This would facilitate tumor classification in context with 
survival estimations. Lastly, another limitation of our study is the high 
censoring in the dataset. This might impact the model’s performance 
if we encounter new datasets with higher censoring levels, potentially 
hindering the achievement of similar performance results.

5.8. Future research

In future studies, we plan to merge RCC ISUP grade classification 
and survival prediction into a singular training framework, thereby 
eliminating the separate grading process for tumors. Moreover, we aim 
to delve into novel feature extraction techniques that obviate the need 
for organ and tumor annotations, further amplifying our proposed ap-

proach’s effectiveness and broad applicability. We also plan to explore 
datasets with a broader range of data modalities, like histopatholog-

ical images and genomic data, to evaluate how incorporating these 
additional modalities impacts the performance metrics of our model. 
Lastly, we can explore methodologies similar to Du et al. [12], Cheng 
et al. [7] studies to address the issue of high censoring in data inputs to 
our model.

6. Conclusion

This study presents a novel multimodal AI framework for predicting 
individualized survival probabilities in renal cell carcinoma patients. 
The proposed framework utilizes CT imaging and clinical data as in-

puts. We demonstrate that relevant features for survival estimation can 
be extracted from CT scans and combined with clinical variables to 
improve performance. Our framework generates personalized, nonlin-

ear, non-proportional survival curves for individual patients, achieving 
higher accuracy than previously published methods. We show that a 
multimodal strategy enhances survival analysis accuracy compared to 
single-modality approaches. Moreover, we find that carefully selecting 
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significant clinical factors as inputs further improves survival prediction 
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performance. This work paves the path for enhanced clinical decision-

making in renal cell carcinoma, enabling more precise, individualized 
therapy based on combined radiological and clinical data. Future re-

search may build on these findings to create more sophisticated, reliable 
survival prediction models.
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Appendix A. Clinical variables

The following 38 clinical variables were included as covariates in 
the survival analysis in Experiment 2 and Experiment 3:

1. comorbidities, diabetes mellitus with end-organ damage

2. comorbidities, metastatic solid tumor

3. comorbidities, myocardial infarction

4. comorbidities, copd

5. comorbidities, uncomplicated diabetes mellitus

6. comorbidities, mild liver disease

7. comorbidities, hemiplegia from stroke

8. comorbidities, malignant lymphoma

9. comorbidities, congestive heart failure

10. comorbidities, localized solid tumor

11. comorbidities, chronic kidney disease

12. comorbidities, leukemia

13. comorbidities, dementia

14. comorbidities, connective tissue disease

15. comorbidities, cerebrovascular disease

16. comorbidities, peptic ulcer disease

17. comorbidities, peripheral vascular disease

18. comorbidities, moderate to severe liver disease

19. comorbidities, aids

20. intraoperative complications, injury to surrounding organ

21. chewing tobacco use

22. pathologic size

23. radiographic size

24. hospitalization

25. positive resection margins

26. smoking history

27. intraoperative complications, blood transfusion

28. pathology t stage

29. surgical procedure

30. age at nephrectomy

31. tumor histologic subtype
32. surgery type
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33. gender

34. body mass index

35. malignant

36. surgical approach

37. cytoreductive

38. intraoperative complications, cardiac event

The following 4 clinical variables were included as covariates in the 
survival analysis in Experiment 4.

1. comorbidities, diabetes mellitus with end-organ damage

2. comorbidities, metastatic solid tumor

3. comorbidities, myocardial infarction

4. chewing tobacco use

The following 13 clinical variables were included as covariates in 
the survival analysis in Experiment 5.

1. comorbidities, diabetes mellitus with end-organ damage

2. comorbidities, metastatic solid tumor

3. comorbidities, myocardial infarction

4. comorbidities, copd

5. comorbidities, uncomplicated diabetes mellitus

6. comorbidities, mild liver disease

7. comorbidities, hemiplegia from stroke

8. comorbidities, malignant lymphoma

9. comorbidities, congestive heart failure

10. intraoperative complications, injury to surrounding organ

11. chewing tobacco use

12. pathologic size

13. radiographic size

The following 30 clinical variables were included as covariates in 
the survival analysis in Experiment 6.

1. comorbidities, diabetes mellitus with end-organ damage

2. comorbidities, metastatic solid tumor

3. comorbidities, myocardial infarction

4. comorbidities, congestive heart failure

5. comorbidities, uncomplicated diabetes mellitus

6. comorbidities, copd

7. comorbidities, mild liver disease

8. comorbidities, hemiplegia from stroke

9. comorbidities, malignant lymphoma

10. comorbidities, localized solid tumor

11. comorbidities, chronic kidney disease

12. comorbidities, leukemia

13. comorbidities, dementia

14. comorbidities, connective tissue disease

15. comorbidities, cerebrovascular disease

16. comorbidities, peptic ulcer disease

17. comorbidities, peripheral vascular disease

18. intraoperative complications, injury to surrounding organ

19. pathologic size

20. radiographic size

21. chewing tobacco use

22. hospitalization

23. positive resection margins

24. smoking history

25. intraoperative complications, blood transfusion

26. pathology t stage

27. surgical procedure

28. age at nephrectomy

29. tumor histologic subtype
12

30. surgery type
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The following four clinical variables were included as covariates in 
the survival analysis in Experiment 7.

1. age at nephrectomy

2. body mass index

3. pathologic size

4. radiographic size

The following 29 clinical variables were included as covariates in 
the survival analysis in Experiment 9.

1. comorbidities, localized solid tumor

2. comorbidities, congestive heart failure

3. comorbidities, uncomplicated diabetes mellitus

4. comorbidities, myocardial infarction

5. comorbidities, metastatic solid tumor

6. comorbidities, mild liver disease

7. comorbidities, peripheral vascular disease

8. comorbidities, chronic kidney disease

9. comorbidities, diabetes mellitus with end-organ damage

10. comorbidities, peptic ulcer disease

11. comorbidities, copd

12. comorbidities, cerebrovascular disease

13. age at nephrectomy

14. body mass index

15. pathologic size

16. radiographic size

17. hospitalization

18. smoking history

19. surgery type

20. gender

21. tumor histologic subtype

22. pathology t stage

23. surgical approach

24. surgical procedure

25. cytoreductive

26. intraoperative complications, injury to surrounding organ

27. positive resection margins

28. intraoperative complications, blood transfusion

29. chewing tobacco use
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