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“Nothing in life is to be feared, it is only to be understood. Now is the time to
understand more, so that we may fear less.”

— Marie Curie, Nobel Laureate in Chemistry and Physics





Abstract

This thesis presents an innovative and integrated solution for end-to-end under-
water ship hull inspection using a small and low-cost Remotely Operated Vehicle
(ROV). In a world where maritime activities have significant and distinctive im-
pacts in many sectors, where over 5000 ships operate daily, safety concerns from
the structural integrity of the hulls are raised. These concerns are not only related
to the ship’s crew safety if there are apparent damages to the hull, but also related
to the environmental cause. Indeed, an unmaintained hull will provoke a significant
rise of the fuel consumption over time. Although successful, traditional inspection
methods in dry docks fail to be fast-paced, which would decrease the ship’s down
time and cost. Remote inspections are promising to address this issue. ROV-based
inspections enable efficient visual documentation while the ship is still in water and
docked. Further automating the process increases the efficiency since it brings con-
sistency and faster data processing. With the inspection culture and regulations in
mind, this thesis aims to achieve a fully automated inspection of underwater ship
hulls, i.e., from the deployment of the vehicle to the assistance of the surveyor to
generate the inspection reports. To achieve this, the drone is equipped with a set of
navigation and perception sensors to ensure hull relative navigation and guarantee
full visual coverage. Maneuvering based guidance is employed to navigate along the
hull. Its relative orientation and distance to the ROV is computed using a forward
looking sonar and set as constraints to the guidance mechanism to make sure the
vehicle is facing the hull at a constant distance. Additionally, the sonar enables
online acoustic mapping of the hull, tracking of the inspection progress, and visual
representations of the hull. This relies on a flat surface assumption when operating
at close range. When inspecting particular points of interests such as propellers,
keels, and gratings, acoustic and optical data are combined to provide a better
understanding of the structure through accurate 3D modelling of the scene and
improved localisation of the vehicle. The acoustic-visual combination occurs at the
feature level based on the relative distances of the detected points to the percep-
tion sensors. To constrain the search space of the features that can be matched, the
intersection area between the sonar acoustic beams and the camera image plane
is dynamically estimated. The acoustic-visual combination is activated when the
specific areas of interest are detected. This is done through the use of deep learn-
ing models, trained on a tailor made dataset for image classification and semantic
segmentation of ship parts and faults. Verified by domain experts, this dataset
was made to match the needs of the surveyors and is the first of its kind publicly

iii



Abstract

available for ship hull inspection systems. Sequences of the data collected by the
vehicle during the mission are automatically marked based on their relevance for
the inspection to further assist the surveyor. These data markers are attached with
visual data, models and the ROV telemetry to provide insights and to be compat-
ible with the guidelines from the international regulations. The complete solution
was tested in ten harbors and on six ships of different size and strutures to ensure
the adaptability of the methods and consistency of the results. By taking advantage
of the available sensors, it was possible to move along the hull with high precision
at the same time as mapping it. The proposed methods outperformed the related
existing one and showed new promising opportunities for future research. Finally,
the adaptability of the proposed solution made it possible to apply it for inspec-
tion of different structures than ship hulls, including aquaculture fish net pens and
subsea structures.
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Chapter 1

Introduction

“The sea is everything. It covers seven
tenths of the terrestrial globe. Its breath is
pure and healthy. It is an immense desert,
where man is never lonely, for he feels life
stirring on all sides.”

— Jules Verne, Novelist

1.1 Background

With approximately 56,000 medium and large ships navigating the world’s seas,
maintaining and servicing these colossal vessels, particularly outer hull inspection
and maintenance, have remained predominantly reliant on manual labor. This PhD
thesis aims to contribute to robotic methods for ship hull inspections. The central
objective of this doctoral research, is to bridge the existing gap between the current
state of ship inspection and service robotics and the desired capabilities essential for
automated maintenance practices but providing the robotic capabilities required.

1.1.1 Ship Life-cycle and Inspection Standards

The maritime industry has become a crucial part of the world’s economy and
more than 80% of the global trade rely on ship transport according to the United
Nations [11]. The shipping industry includes most of the activities that are done
at sea, such as the transportation of goods, products, and people. Vessels such as
container ships, tankers, cruise ships, ferries, but also smaller vessels like fishing
boats are employed.

The ship owners are required by international regulations to perform inspections
to verify the structural integrity of their vessels. They are exposed to harsh oceanic
environmental conditions and technical incidents will rise safety and environmental
concerns. Structural degradation will develop over time, and cracks and corrosion
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1. Introduction

(a) (b) (c)

(d) (e)

Figure 1.1: Sample underwater images of degradation that can appear on a hull, such
as paint peel, marine growth, corrosion and cracks. [10]

will require costly repairs [12]. Accumulated bio-fouling will have a significant im-
pact on the ship hydrodynamic resistance leading to increased fuel consumption
and decreased speed as it generates friction [13], [14]. Sample images of such degra-
dation on the hull are displayed in Figure 1.1.

Inspection and maintenance operations has to be performed efficiently and quickly
to be able to reduce ship down-time so that the ship owners can resume their ac-
tivities as soon as possible. Traditionally, outer hull inspection and maintenance
services are completed in dry dock, and often performed manually by trained and
qualified workers. This can take a full week of work, for this period the ship is
immobilised and out of service. Fast and efficient inspection and maintenance op-
erations can improve quality and utilization to enhance economical sustainability
for the vessel operators.

Recently, service providers have taken advantage of modern technologies by de-
ploying Remotely Operated underwater Vehicles (ROVs) to run a prior inspection
to visually verify the structural integrity of the hull. However, skilled operators are
required and their performance directly impact the quality of the inspection.

Emerging approaches include the use of autonomous systems where the robotic
vehicles are used as mobile agents that efficiently and consistently achieve the
required inspections. However, automated inspections still represent considerable
technical challenges and one important task in the operation is to make the ve-
hicle able to localise itself in the world and relative to the hull. Additionally, the
required perception tasks incorporate specific challenges due to the underwater en-
vironment, with light attenuation, refraction and scattering, as well as the acoustic
disturbances caused by sound reflections causing multi path features, ambient noise
and ringing in man made structures.
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1.1. Background

The maritime industry is characterized by high volumes with many repetitive tasks
that take humans a significant amount of time, whether it is because of safety con-
cerns, or to comply with the current related regulations. Furthermore, the continu-
ous expansion of the maritime industry results in the large development of subsea
structures which require inspection, maintenance and repair operations. Since the
appearance of ROVs, operations are simpler and safer to conduct and they have
proven to be extremely valuable in ocean related applications [15]. They have re-
placed in most cases manned submersibles and divers in such operations.

1.1.2 Existing Underwater Robotic Technologies

Localisation

Navigation and perception for situational awareness are the central challenges for
autonomous underwater operations. Underwater localisation is traditionally solved
using Inertial Navigation System (INS) and Dead Reckoning (DR) methods. How-
ever, the position and orientation estimates will drift over time depending on the
quality of the instruments used. Sensor fusion using filters such as Kalman Fil-
ters (KFs) are employed to quantify and compensate for the error components
for the state estimates. Underwater acoustic signals are often used for position
measurements and have the advantage to propagate well in water and can reach
long distances. Acoustic ranging systems using Ultra Short Baseline (USBL), Short
Baseline (SBL), or Long Short Baseline (LBL), enable the triangulation of the ve-
hicle’s localisation. The robot is equipped with an acoustic transmitter emitting
signals that are received by an array of hydrophones which process them to obtain
the source’s position. The results are then usually fused with acceleration, velocity
and orientation measurements in an integrated navigation system [16]–[18]. Al-
though very efficient in open sea, such systems tend to perform poorly in enclosed
space as the structures can block acoustic signals or create the multi-path effect.
Doppler Velocity Log (DVL) sensors allow the computation of the vehicle’s velocity
relative to a surface, e.g., the sea bottom or a wall. It is achieved using acoustic
beams and by measuring their Doppler shift. This sensor has become widely used
because it presents a zero-mean bias and has no error growth over time for the
velocity estimate. It is therefore frequently used as an aid to INS [19]–[21].

Close to objects and structures, visual features detected by a camera can be used
to improve the navigation by providing a position estimate. Visual Odometry (VO)
or Simultaneous Localization and Mapping (SLAM) [22] methods are often used
to obtain position estimates of the vehicle at the same time as the surrounding
objects positions. The work done in this field can be divided into two categories:
direct approaches and feature-based approaches. Direct SLAM methods use the
intensity values of pixels in an image and track them from frame to frame with the
goal to minimise the photometric errors. Dense Tracking And Mapping (DTAM)
[23] was one of the first implementation of the approach. It estimates dense depth
maps that are used to reconstruct the scene. However, the proposed solution heav-
ily relies on the Graphics Processing Unit (GPU), which makes it difficult to deploy
in robotic applications. The Large Scale Direct SLAM (LSD-SLAM) [24] approach
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1. Introduction

proposed a direct SLAM solution more computationally efficient by selecting re-
gions of pixels instead of all of them. High-gradient regions are selected and tracked
as they hold most of the image information. More work has been done in this field
[25]–[27] but this approach is particularly challenging to apply to underwater envi-
ronment because of the disturbance and unstable light source which have a direct
impact on the pixel intensities. This makes direct methods unavailable for under-
water visual SLAM, or not in its current form. Indirect methods, or feature-based
methods consist of detecting keypoints in the image and matching them between
successive images. This approach is more robust against noise as it is more stable
and less sensitive to the illumination of objects, which makes it a pertinent choice
for underwater applications. Originally, monocular SLAM was solved using an Ex-
tended Kalman Filter (EKF) [28], [29] by doing a guided search by correlation.
But keyframe-based approaches were found to be more appropriate as they esti-
mate the pose and the map using selected frames, leaving computational space for
optimisation method such as bundle adjustment. Parallel Tracking And Mapping
(PTAM) [30] was one of the first and most representative method to use this opti-
misation method in real-time in addition to separating the tracking and mapping
into two parallel threads. ORB-SLAM [31]–[33] is a complete SLAM system includ-
ing bundle adjustment, loop closure, and relocalization. This enables short-term,
mid-term, and long-term data association which results in very accurate results.
ORB-SLAM is often used as the based method for underwater SLAM [34]–[38]
because of its capabilities and ease of use. Nevertheless, there are successful at-
tempts to dedicated underwater SLAM frameworks which better account for the
underwater environment properties [39]–[41]. Overall, SLAM is especially impor-
tant for scene understanding and situation awareness as it provides processed and
robot-readable real-time data about what it sees.

Path Planning

In path planning for underwater vehicles, the vertical dimension of the environment
must be taken into account. The path planning problem can be divided into two
main categories: single robot targeted planning, and coverage planning. The former
aims at defining a path to bring the robot at a target position while the latter defines
a path that go through areas of interest to cover them respectively to a sensor. In
traditional path planning methods, graphs and trees are frequently employed. They
both are a collection of nodes, but their connections differ. In graphs, the nodes
are inter-connected with directed or undirected edges, and have no root node. In
trees, the edges are always directed and are formed with a parent and a child node.
Graphs enable redundancy, loops, and higher level of complexity, but require the
use of a search algorithm to extract a path. The most common algorithms are the
Dijkstra algorithm [42], A* [43], and fast marching [44]. The graphs and trees are
frequently generated using sampling-based methods which reduce the complexity
of the state space compared to a grid, and therefore can significantly increase the
efficiency and search speed of the optimal solution. The Rapidly-exploring Random
Tree (RRT) [45] and Probabilistic Roadmap (PRM) [46] algorithms laid the basis of
this category of methods. They both randomly sample points in the state space and
create collision free routes. An RRT solution develops a tree with roots in the initial
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configuration, e.g. the location of the robot, and tends to expand towards large
and empty areas due to its probabilistic properties. The PRM solution has similar
aspects but expands a graph in a bounded area instead of a tree and enables multi-
query requests. Both algorithms were later updated to make them asymptotically
optimal [47], RRT* and PRM*. Both graphs and trees are used in marine robotics
with applications in exploration, monitoring, and search and rescue [48]–[53].

Coverage path planning consists of creating a path that enables sensor coverage of
specific areas. It should be designed with as few repetitions and crossings as pos-
sible, be as short as possible, and should not require complex maneuvering. In un-
derwater monitoring applications, patterns similar to or adapted version of a lawn-
mower pattern are very often employed [54]–[56]. However, when the task becomes
more complex, for example detailed inspections of subsea structures, lawnmower-
based patterns are not efficient. Therefore, the planning also has to adapt, either
online according to the mission findings, or offline, if enough data is available prior
to the deployment of the vehicle [57]–[59].

Guidance and Path Following

Path following is fundamental for autonomous vehicles as it is required to follow
a pre-defined path. Different guidance strategies are employed to maintain the
vehicle on the path and efficiently reach the waypoints that make up the path.
Underwater guidance strategies are often related to the control system because
of the maneuvering constraints underwater vehicles can have. The concept of the
maneuvering problem [60], [61] defines the problem as a set of two tasks: first,
a geometric task, which makes the vehicle stay on and follow the path. And the
second task, a dynamic task, requiring the robot to satisfy a speed assignment
along the path.

A common guidance approach is to use the Line Of Sight (LOS) guidance laws
[62], [63] which provides a convenient description for course and heading control
according to the available sensors and desired objectives. A LOS distance is defined
and enables the creation of a reference point on the path at the defined distance.
When no paths are pre-defined or they are unknown, two-point guidance scheme
based laws can be employed. The Pure-Pursuit and Constant-Bearing guidance
laws consider the vehicle and the target only. With the former, the goal is simply
to align the LOS vector with the course with both pointing towards the target.
Compared to Pure Pursuit, the Constant Bearing approach set the course and
LOS vectors between the target and its course.

The path following approach is dependant on the type of the path, if it is composed
of straight lines or curves. Using a curved path is not practical in many cases as the
parametrization of the path must be known in advance. Path following for straight
line paths is often resolved using the LOS steering laws which include two main
steering principles: enclosure-based steering, and look-ahead-based steering. Both
have the same goal, to minimise the cross track error, i.e., the normal to the path.
The former consists of defining a circle enclosing the vehicle with a radius large
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enough to intersect the path segment. The closest intersection to the next waypoint
is selected and the vehicle is set to move towards this point. The look-ahead-based
steering is different in the way the course angle is defined. Instead of drawing a
circle, a look-ahead distance is defined and used to obtain a velocity-path relative
angle which direct the vehicle towards the LOS point. It is added to the path
tangential angle to estimate the desired course angle.

These methods are often used with underwater drones and are adapted to specific
cases. In [64] and [65] LOS guidance is employed together with an integral action
which allows to compensate for the environmental disturbances such as the current,
wind, and waves. In [66], [67], experiments were conducted with applications to
differently parameterized paths, including curved paths.

Object Detection

To develop perception systems for situational awareness and mapping, processing
underwater optical imagery is essential due to the high level of detail in the data
and the availability of the sensors, and the recent development of computer vision
and machine learning creates opportunities to better understand the underwater
world. However, the underwater image degradation due to the light absorption and
scattering in seawater introduces challenges and limitations for underwater imag-
ing systems. They inherently create the need for image reconstruction, restoration,
and enhancement. The solutions developed to tackle this problem can be divided
based on the processing method, either physics-based [68], [69], traditional image
processing techniques [68], [70], [71], or deep learning-based [69], [72], [73]. These
techniques enable further processing of the images, to better understand and repre-
sent the underwater structures, but also for robotic applications relying on optical
data during the missions. This is particularly important for visual navigation, ob-
ject recognition, or semantic segmentation. Most of the models that are used for
underwater tasks are based on existing models that prove their efficiency in air.
The popular model You Only Look Once (YOLO) [74] is commonly used for de-
tection and classification of marine species and objects [75]–[78], as it offers very
good capabilities and background training. The attempts to design models for un-
derwater imagery tend to be focusing on semantic segmentation [79]–[81]. Some of
these models include an enhancement step to improve the image.

Learning models are highly dependent on training data to perform well. While in
air there is a large variety of openly available datasets [82]–[86] with numerous
applications, underwater the data is limited. While the number of datasets for
object detection is growing every year [78], [87], [88], the number of annotated
dataset for semantic segmentation is very low [80], [89], [90].

1.1.3 Autonomous Ship Hull Inspection

Underwater robotics, navigation, path planning and optical perception for situ-
ational awareness have been used and combined to perform autonomous inspec-
tions of underwater structures and especially ship hulls. Interest and progress for
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autonomous ship hull inspection started in a context of anti-terrorism and force
protection, to ensure the ship is not a threat and is not used for smuggling. Early
work on acoustic inspection using sonars was done in [91], where the vehicle relied
on a high-frequency long baseline system for the navigation. It was suggested in
[92] to adopt a hull-relative approach to vehicle navigation and control using a
DVL facing the hull. It enabled continuous motion of the vehicle along the hull
while keeping it facing the hull at the same time. Navigation along the hull us-
ing optical cameras was also studied in [93], where a vision system using a stereo
camera is described and used to locate the target surface. A solution for drift-free
self-localisation relative to the ship hull using only onboard sensors is proposed
in [94]. The drift correction is relying on an imaging sonar which uses a different
acoustic lens for the mapping task. An extension of this work is proposed in [95]
where more details are given for the inspection of the complex areas of the ship, in-
cluding the planning and waypoint following methods. A semi-autonomous method
is presented in [96], making use of an onshore joystick to adapt the heading of the
vehicle and its distance to the hull. This is combined with a waypoint tracking
system to follow a vertical lawnmower pattern. In the recent years, the focus has
been on visual odometry and optical mapping of ship hulls [97]–[99]. 3D mosaics
of the hull are generated to render its texture at the same time as its shape. These
enable a more efficient way of observing the hull condition, providing both geo-
metrical information and texture revealing the state of the vessel to the inspector
efficiently. Research has also been done on the actual visual detection of defects on
the hull [100]–[103]. Although the methods proposed are not all made for detection
in an underwater environment and very often tailor made for specific faults, they
contributed to the progress of the field by their adaptation to the application.

Navigation and precise localisation, remains the main problem to be solved, and
mapping is not always addressed properly. Additionally, not all solutions can au-
tonomously adapt to the type of ship and its shape, which makes human inter-
vention mandatory. To provide an industry relevant end-to-end robotic ship hull
inspection solution, the full inspection pipeline should be considered. From the de-
ployment of the vehicle and its access to the ship, to the reporting procedures. With
the proper tools and an accredited inspector or service provider in the loop, this
would enable consistent, reliable and efficient inspections supported by autonomous
solutions.

1.1.4 Functional and Technical Requirements of Hull
Inspections

Class societies and ship owners require tests and validations to approve the con-
ditions for safe operations. They comply with the international rules and regula-
tions from organisations such as the International Maritime Organization (IMO)
[104] and International Association of Classification Societies (IACS) [105]. The
procedures differ according the entity providing the services, but they comply to
common categories. During the ship surveys, the class societies verify and eval-
uate the integrity of the structures and associate them to evaluation categories
describing their condition. The American Bureau of Shipping (ABS) [106] provides
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a tree-levels grade: good condition, fair condition, and poor condition. Based on
data collected from the Det Norske Veritas (DNV) group [107], Registro Italiano
Navale (RINA) [108], and ABS, the following categories can be defined for outer
hull inspection:

• Overall condition of the coating including cleanliness and corrosion presence.

• Integrity and condition of specific structural points such as anodes, keels, etc.

• Consistency and physical properties of the structure, e.g., plate thickness and
hull roughness.

The ship is divided in zones and the surveyor goes through all the class society’s
specific inspection categories for each zone and is not influenced by the existing
inspection scores. The results of the inspection are carefully reported along with
the ship’s details. Typically, for each inspection finding, a grade is given and briefly
explained. Additionally, a risk level and quantitative data is provided together with
information like coverage percentage of corrosion in a zone.

For remote underwater inspections using ROVs and magnetic crawlers, the regu-
lations and standards are not clearly defined yet. However, class societies such as
RINA and ABS wrote initial guidelines and expressed potential mandatory and
optional requirements. When performing the underwater inspection, the data, in-
cluding high definition images and videos must be reliable and streamed to make
it accessible at all time and must comply with the class society’s standards and
regulations for reporting. The vehicles must be able to operate with strict time
constraints to comply with the harbour access time and minimise the operational
downtime of the vessel, and be able to detect potential issues with the hull at an
early stage. When applicable, the underwater vehicle should clean and measure
the hull according to the coating and bio-fouling type and condition. Finally, the
vehicle needs to be deploy-able in enclosed and small spaces, and in at least sim-
ilar environmental conditions as in human inspections. Optionally, the integrated
robotic system should support the surveyor in the decision-making and reporting
process.

1.1.5 End-to-end robotic inspection systems

In this section, a definition of end-to-end robotic operation is proposed. End-to-end
refers to a complete procedure from beginning to conclusion. In robotic operations,
the term refers to the complete operation, regardless of the robot’s involvement.

An end-to-end robotic solution for technical inspections of infrastructures involves
the integration of a robot platform, sensors, navigation solution, data collection
and processing, communication, and control technologies and components to en-
able autonomous or semi-autonomous inspection of infrastructures. For ship hull
inspections, this includes the selection of appropriate underwater vehicle and sen-
sors for navigation and data collection to be able to document the status of the
ship hull and inspection points such as keels, propellers, anodes and sea chests. For
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(a) (b)

Figure 1.2: The autonomous inspection concept displayed in (a) with all the robotic
fleets working together. In (b) the Virtual Reality (VR) interface with an inspector in it
is pictured.

underwater operations, the system needs to include cameras, lights, and sonars,
both for mapping and for safe operations. Autonomous underwater navigation is
essential for an end-to-end robotic ship hull inspection system. The system will
further need to collect, assess and process data in real-time to provide feature
extraction, anomaly detection and assessment. A reliable communication to both
potential centralised processing and expert interpretation is a central capability
of the system. The data collection and processing will allow automated reporting
improving the efficiency of the inspection process. To reduce the dependence of
skilled operators, the system will also need to have safety mechanisms to ensure
the safety of the robot and the surrounding environment such as obstacle avoid-
ance and emergency stop protocols. Implementing an end-to-end robotic solution
for technical inspections of ship hulls and submerged infrastructures requires a mul-
tidisciplinary approach, combining robotics, sensor technology, data analysis, and
automation to enhance the efficiency and accuracy of infrastructure maintenance
and ensure the safety of critical assets.

An end-to-end robotic inspection platform following the remote inspection guide-
lines from the class societies would significantly increase the efficiency of the ship
hull inspection and would represent considerable progress towards cleaner, more
economical and more environmentally-friendly inspections.

1.1.6 The BugWright2 Project

This PhD project is part of the European project "BugWright2: Autonomous
Robotic Inspection and Maintenance on Ship Hulls and Storage Tanks", co-funded
by the European Union’s Horizon 2020 Research and Innovation program under
Grant Agreement No. 871260. It brings together 21 universities and industries from
all over Europe. The project aims at developing an adaptable autonomous robotic
solution for servicing ship outer hulls, including visual inspection, cleaning, and
monitoring. For this purpose multiple robotic fleets are deployed, including Mi-
cro Aerial Vehicles (MAVs), magnetic-wheeled crawlers, and ROVs. A platform
for real-time visualization and decision-support is developed using Virtual Reality
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(VR) technologies to enable continuous monitoring and situation awareness. The
big picture concept of the project is depicted in Figure 1.2.

This thesis contributes to the BugWright2 project by focusing on and developing an
adaptable solution for autonomous underwater inspection of ship hulls. Although
only single robot inspection is considered, all the work done is adaptable and can
be scaled up to a fleet of ROVs for collaborative missions.

1.2 Scope and Objectives

In this PhD project, new algorithms for efficient navigation and mapping for ves-
sel hull inspection using a small underwater drone were developed. The project
also included development of robot in operation/mission, planning, and obstacles
perception and avoidance to enhance autonomous operations for ship inspection
and includes documenting the ship hull, planning mapping trajectories, planning
a coverage pattern, and implementing autonomous behaviours. The project was
based on available and low-cost solutions.

The proposed work can be divided into four main Research Directions (RDs):
Localisation, Planning and Control, Mapping and Perception, and Mission
Planning and Execution. Altogether, they make the autonomous agent enabling
the robotic inspection of the hull.

RD.1 Localisation: Localisation is central for an autonomous system as it is
key to safe operations and spatial information for all collected data. The vehicle
should be able to locate itself in the world’s frame as well as relative to the surface
being inspected. The localisation methodology should make use of the available on-
board sensors to provide accurate pose estimates over time. This should include the
navigation sensors as the core sensors, and the perception sensors as aiding sensors.

RD.2 Planing and Control: The ROV should be able to generate and au-
tonomously follow a path to perform the inspection. This includes an online
path update mechanism to avoid obstacles or to update the inspection pro-
cedure based on the findings. Following the inspection path is not the only
case considered, the vehicle should also be able to navigate from the deployment
point to the inspection Point of Interests (PoIs), given that the positions are known.

RD.3 Mapping and Perception: The aim is to create a local map for safe
and dynamic navigation that can be re-used to keep track of the inspection
progress, by monitoring which areas where inspected and which are missing. Local
parallel maps of the PoIs should be generated for documentation and reporting
purposes. Both acoustic and optic data should be used to obtain accurate and
robust estimates along with automated detection of technical findings.

RD.4 Mission Planning and Execution: A mission manager should be devel-
oped to keep track of the mission progress, and possibly update it. The manager
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Sensors

Operator / Inspection

Figure 1.3: The four research directions are represented together with their respective
interactions.

also supervises all the sub-modules composing the autonomous agent and ensures
they are fully working and interacting with each other. There should be a direct
link between the mission manager module and the person in charge, an operator
or inspector, who can send manual requests to update the mission.

The research directions are represented as modules in Figure 1.3 and correspond
to what was developed during the PhD project with the aim to create a solution
towards end-to-end autonomous robotic inspection of underwater outer ship hulls.
The autonomy starts at the deployment of the ROV, and ends at the generation
of inspection reports complying with the current rules and regulations to be com-
patible with the class societies’ surveys. This also includes the full visual coverage
of the hull and the detection of faults. Consequently, with the proposed solution,
a surveyor should not need to interact with the robotic platform and inspection
findings, except to validate the results. The Figure 1.4 shows how the RDs relate
to the end-to-end system and the articles. To enable such a solution, four main
objectives are highlighted based on the RDs:

1. Enabling navigation and adaptive path generation independent of prior struc-
ture geometry representation to be able to maneuver efficiently and collect
relevant inspection data regardless of the ship category. The objective is to
perform the relative navigation by leveraging the data from a Forward Look-
ing Sonar (FLS). (Papers B(5.3.2), F(5.3.6), G(5.3.7), I(5.4.2))

2. Detect online PoIs and main hull defects to assist surveys and enable au-
tomatic reporting of the inspection findings using deep learning models for
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Figure 1.4: The components of the end-to-end system is displayed with respect to the
research directions and articles.

monocular imagery for detection and segmentation tasks. (Papers C(5.3.3,
J(5.4.3))

3. Combining visual and acoustic data allows to better understand the environ-
ment. Using a camera and a FLS, the aim is to generate an accurate and
scaled model of the ship’s PoIs in real-time, as well as improving the current
localisation. (Papers D(5.3.4), H(5.4.1))

4. Industrial third party inspections require to follow guidelines and regula-
tions. Creating solutions that comply with those rules would enable industry
efficient monitoring, documentation, and reporting. Therefore, the aim is to
suggest a complete inspection pipeline that follows as much as possible the
international regulations. (Papers C(5.3.3), I(5.4.2), J(5.4.3))

To establish an end-to-end robotics solution for ship hull inspection, the technical
components need to be performing in real-time to produce a coherent result, but
parts of the data analysis could be post-processed. The project objective is to run
all the proposed and developed solutions for the inspection together to demonstrate
the capabilities of a small ROV to perform an end-to-end inspection. This demon-
stration only includes human intervention to deploy and retrieve the vehicle, and
monitor the data. The ROV is given the main dimensions of the ship and inspect
one side of the hull to provide full visual and acoustic coverage along with the
detected ship parts and associated potential faults. Inspection maps are generated
and the PoIs modelled and geo-localised. When the operation is completed, reports
are generated and waiting for validation from a accredited expert.
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1.3 Approach

Given the main aim of this thesis, the components of the system are tested in
separate experiments scaled to a level making the logistics possible to handle,
while providing results of high quality. Each research direction is first individually
studied and then integrated into the global solution with the objectives in mind.
For each new development, a three-steps experiment process is applied. Firstly,
methods and algorithms are tested numerically through developed simulations, in
order to asses their suitability to the problem. Secondly, using real data collected
during field trials, the algorithms are refined and tuned to better match and resolve
the problem. And finally, tests in real-time and conditions are conducted at sea to
validate the methods.

Close collaborations with service providers and shipyards were setup to enable a
continuous discussion of the needs and problems faced by experts. This opportunity
made it possible to considerably improve the performance of the developed solution
and to make it an attractive solution for the domain experts. Access to a mock-up
and full scaled ships were provided to enable real case inspection scenarios. This
includes Ro-Ro cruise ferries of the Perama shipyard, near Athens in Greece, lake
boats and ferries of the Wörthersee lake, in Klagenfurt, Austria, research vessels of
the Univerity of Porto, Portugal, warships of the Portuguese Navy in the Lisbon
Naval Base, Portugal, and the research vessels and facilities of NTNU.

1.4 Contributions

This thesis contributes towards autonomous robotic operations for underwater ship
hull inspections. For each research objective, the following main contributions are
proposed:

1. Objective 1: Efficiently navigate along the ship hull

• A collision-free and and adaptive coverage path planning framework
is developed leveraging the knowledge of the onboard sensor coverage
capabilities. Over time, the lawnmower-based coverage pattern adopts
the shape of the structure being inspected without prior knowledge of
its geometry.

• A maneuvering-based guidance strategy is developed with online adap-
tation and constraints for inspection operations. It is designed for high
precision low-speed path following while accounting for inspection er-
rors.

• Sonar processing is performed for hull relative navigation based on esti-
mations of the relative orientation and distance to the hull. For this, an
acoustic line is robustly and continuously detected in the sonar imagery
using the assumption of a local flat surface.

2. Objective 2: Detection of ship parts and faults
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• The first dataset dedicated to underwater ship hull inspection containing
labelled data of ship parts and faults is developed and made openly
available.

• The labels were decided in cooperation with domain experts to make
the dataset industry and scientific relevant. Additionally, the data and
results were verified by the experts.

• A benchmark including quantitative and qualitative evaluations was per-
formed to measure the capabilities of State Of The Art (SOTA) models
on such a dataset. This also helped identify models suited for real-time
detection and semantic segmentation tasks.

3. Objective 3: Ship parts modelling
• An integrated feature-based acoustic and visual combination using a

monocular camera and a FLS is developed with a SLAM framework.
This is done by estimating the areas where the sonar beams intersect the
camera image plane and enables to augment the visual SLAM framework
with robust acoustic features.

• The visual-acoustic correspondence mechanism enables to continuously
re-scale and verify the estimated trajectory and point cloud. A depth
ration is estimated and optimised over time to provide scale stability
and drift correction.

• The combination allows to more accurately model the ship parts by
obtaining a denser point cloud and realistic surface reconstruction with
incremental estimations and reconstruction.

4. Objective 4: Compatibility with international regulations
• The relevant rules and guidelines for remote inspection operations from

the international organisations and class societies are identified in the
context of autonomous underwater robotic inspection of outer ship hull.

• The solutions developed are compatible with the international regula-
tions and were discussed with domain experts to ensure their industrial
relevance.

• An acoustic inspection map is generated in real-time to enable efficient
monitoring of the mission. The sonar imagery is processed to obtain a
dense point cloud discretised into a voxel map representing the inspected
areas. Uncertainty estimation is embedded into the map for further un-
derstanding of the inspection quality.

• Reports are automatically generated at the end of the robotic operation.
They include the inspection findings and post-processed meta-data to
support the decision making of the surveyor in charge.

1.5 Thesis Structure

This thesis is divided in five chapters. Chapter 1 provides an overall introduction
to underwater ship hull inspection and how is this thesis contributing to it. This
is followed by a presentation of the project settings in Chapter 2, including the
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robotic platform and the sensors. The actual inspection methodology is then pre-
sented in Chapter 3, along with what can be achieved with the proposed solutions.
A discussion of how the methods can adapt and scale to other underwater prob-
lems is proposed in Chapter 4. And finally, Chapter 5 contains the remarks and
conclusions.
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Chapter 2

Vehicle and Sensor Settings

This chapter presents the equipment used in the project. First the robotic platform
is described followed by the on-board sensors used for navigation and by the sensors
used for the perception of the underwater environment.

2.1 Low-Cost ROV

The two most common categories of underwater vehicles are Autonomous Under-
water Vehicles (AUVs) and ROVs. An AUV is untethered and operates without
real-time communication with an operator, whereas an ROV is physically connected
to the operator on the surface. The objective of the PhD project is to develop sys-
tems capable of autonomous missions with minimum interaction from an operator.
But to provide real-time data access for data monitoring and processing, the pro-
posed system is based on an ROV. To provide cost effective logistics and access to
confined volumes to comply with the regulations from the class societies, a small
and energy efficient vehicle is used.

A Blueye X3 ROV was configured for the underwater tasks of BugWright2 and
used throughout the project. It is produced by Blueye Robotics [109], and is a
small low-cost vehicle with high maneuvering capabilities, see Figure 2.1. The plat-
form is actuated in four Degrees of Freedom (DoFs), surge, sway, heave, and yaw.
The buoyancy is slightly positive, and for roll and pitch, the righting moment pro-
vides passive stability. The characteristics of the vehicle enable quick and easy
deployments in any environments, including enclosed spaces, and its maneuvering
capabilities allow it to navigate efficiently. The capacity for external equipment al-
lows up to three sensors with real-time communication. The ROV is connected to
a network router located above water with a 225 meters long tether. The operator
laptop connected to the router contains an Intel Core i7 vPRO CPU and 16GB
RAM. The onboard computational operations are limited by the vehicle IMX6
processor, which is equivalent to a Raspberry Pi 3 Model B [110]. For that reason,
all processing related to navigation, including localisation, planing and control, is
done onboard, whereas the tasks related to perception and Computer Vision (CV),
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Figure 2.1: The Blueye X3 ROV used for the experiments is displayed with the list of
apparent equipped sensors.

are done on a topside laptop. The robotic middleware Robotic Operating System
(ROS) is used to facilitate data communication and management.

2.2 Navigation Sensors

The Blueye ROV is equipped with two Inertial Measurement Units (IMUs) and
magnetometers to obtain the attitude of the vehicle, and a pressure sensor to
estimate its depth. Additionally, a small and low-cost DVL was added. The Water
Linked A50 was mounted on the ROV. The DVL provides velocities and attitude
measurements. As the vehicle is small and lightweight, the instrument needs to
nimble. The ROV is deployed in harbor-like areas, usually with shallow and flat
sea floor depth, making the selected DVL a good choice. This sensor enables the
ROV to locate itself in a local reference frame, but it also needs global reference. An
USBL system was tested, but performed poorly because of the acoustic shadows
and multi-paths in the harbour environment, especially when operating close to
the ship hulls. Therefore, it was replaced by a standard Global Navigation Satellite
System (GNSS) to obtain the position in the global reference while the drone is at
the water surface. A list of all the navigation sensors on the ROV is provided in
Table 2.1 along with their details.

Table 2.1: Navigation sensor list and details

Sensor Rate (Hz) Details

IMU 100.0 Acceleration readings
Magnetometer 100.0 Direction readings

DVL 5.0 Velocities and attitude
Pressure 45.0 Depth
GNSS 1.0 Global position
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This combination of sensors enables precise localisation for the duration of the mis-
sion, given that the sensors were correctly calibrated prior to deployment. Longer
missions would require better sensors due to the drift of dead-reckoning, but they
are also more expansive. However, the solutions developed within this thesis are
re-usable and can be configured for a different ROV and navigation sensor suite.

2.3 Perception Sensors

There are two types of perception sensors used to observe the environment on
the vehicle in this project: an integrated camera in the ROV, providing optical
data, and a Multi Beam Forward Looking Sonar (MBFLS) that provides acoustic
data. Although cameras are cheaper than sonars, sonars bring data essential for
inspection tasks, and not accessible by cameras. The Oculus M750d multibeam
sonar was selected based a trade-off between quality, price, and ease of use. The
details of both perception sensors are given in Table 2.2. The resolution corresponds
to the image resolution of the sensor outputs. In the case of the sonar, it is an
acoustic image formed after the processing of each acoustic beam and ping.

Table 2.2: Perception sensor list and details

Sensor Rate (Hz) Resolution (px) Details

Camera 25.0 1080 × 720 Optic data
MBFLS 10.0 256 × 405 Acoustic data

The camera has a Field-of-View (FoV) of ∼48° vertically and ∼77° horizontally. It
was calibrated underwater with a checkerboard and using the pinhole model. This
model allows to formulate the 2D-3D correspondence as

p =
P

Pz
K, (2.1)

where P is the 3D point in the world converted to p, the 2D point in the image.
The intrinsic matrix of the camera used, K, is defined as

K =

⎛
⎝fx 0 cu

0 fy cv
0 0 1

⎞
⎠ , (2.2)

with the pixel coordinates of the optical centre of the camera represented by (cu, cv),
and the focal length described by (fx, fy).

The sonar on the other hand has an horizontal aperture of 130° and 20° vertically.
The system emits acoustic beams in a fan shaped pattern, and each beam has a
fixed vertical opening angle. When the echo reaches a target, it bounces back to the

21



2. Vehicle and Sensor Settings

Zero-elevation
plane

Beams

Figure 2.2: The FLS footprint is represented in a 3D space with the corresponding
geometry. All the elevation planes between the minimum (green) and maximum (blue)
elevation planes are merged into the zero-elevation plane (orange) after the processing of
the measurements. A beam i (green) is also represented, going through all the elevation
planes. [8]

sonar which measures the signal strength and time difference between the signal
emission and its reception. The target range is calculated using the time-of-flight
for the signal combined with knowledge of the speed of sound in water, and the
horizontal bearing angle is given for each beam by the beamformer of the sonar.
The vertical angle remains ambiguous as it cannot be derived by the sonar.

In this thesis, the acoustic images from the sonar are referred to as scans. A scan is
an acoustic array describing features in the spherical coordinate system [θ, φ, r]�,
where the columns are azimuth angles θ and rows, ranges r. The elevation angles
φ are unknown and merged into one zero-elevation plane. The geometry for the
sonar set up is described in Figure 2.2. The features in spherical coordinates can
be converted to Cartesian coordinates using the following transformation,

P =

⎡
⎣Px

Py

Pz

⎤
⎦ = r

⎡
⎣cosφ cos θ

cosφ sin θ
sinφ

⎤
⎦ . (2.3)

The employed MBFLS has two frequency operating modes, 750 kHz and 1,2 MHz.
Only the high frequency configuration, enabling higher acoustic precision, was used
in the experiments in this thesis. A setup with low gain and constant range of 4
meters was applied since the vehicle was expected to operate close to the inspection
targets.

The sonar and camera were horizontally aligned with a small measured vertical
offset. They were pointing towards the same direction. Both sensor footprints are
represented in Figure 2.3, with the vehicle in front of a simulated ship.
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ROV

Camera
footprint Sonar

footprint

Figure 2.3: The footprints of the camera and sonar are represented, with the vehicle
facing a ship hull.
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Chapter 3

Ship Hull Inspection

In this chapter, the robotic inspection is discussed, including the data processing
and analysis. The setup for data processing, transfer, and sharing is first presented
in Section 3.1. The methods to make the data acquisition and analysis autonomous
are discussed and described in Section 3.2. The robotic perception methods to
obtain a better understanding of the inspection progress and the ship condition are
laid out in Section 3.3. Finally, the data post processing and reporting algorithms
based on the accepted inspection regulation guidelines, are discussed in Section 3.4.

3.1 Data Communication Setup

The robotic system includes a specific communication system to ensure reliable
data transfer within the network shared in the operation. This is essential to en-
able a shared workload among the connected devices using the previously described
router connected to the underwater vehicle. The router is connected to the opera-
tor’s laptop through ethernet instead of WiFi to obtain a more reliable and faster
connection. This makes up the basic communication network, but it has capacity
for more devices.

To efficiently share the workload among the connected devices, a top-down multi-
layer architecture following a publish-subscribe model is defined [5]. The architec-
ture makes it possible to specify the inputs and outputs for each layer and avoid
over-communication of data. A visual representation of the architecture is pre-
sented in Figure 3.1, including the underwater unit as the ROV, the surface unit
as the operator’s laptop, and the external unit as any other devices connected. The
latter can be another laptop physically present on site, or a cloud server, enabling
the processing of computationally expensive data.

The transmitted messages are divided into two categories: small and large messages.
The WebSocket protocol is used for messages of small size, whereas the Real-Time
Streaming Protocol (RTSP) is employed for larger messages, typically multimedia
messages such as videos and sounds, corresponding to the camera and sonar streams
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External Unit

Surface Unit

UW Drone Unit

Run programs with low computation
cost

Run programs with higher computation
cost and transfer the data from a unit

to another

Run programs with expensive
computation cost

Figure 3.1: Representation of the multi-layer architecture including three processing
devices.

in this project.

This architecture was deployed when it was necessary to compute additional data
or when more advanced results were required quickly, e.g. textured surface recon-
struction of sections of the ship, or object detection using deep learning models.

3.2 Inspection Strategy

3.2.1 Mission and Path Planning

To start the inspection operation, the location of the ship must be known, and the
inspection vehicle ready in the water. When the ROV is deployed close to the ship,
it can move directly towards the vessel and start the inspection. However, if the
vehicle is deployed in the inspection area with obstacles on the way, the underwater
drone must plan collision free paths to manoeuvre safely. For this purpose, the
Parameterized Rapidly-exploring Random Graph (PRRG) framework is employed
[7] to identify collision-free paths and plan inspection routes with optimised sensor
coverage. The framework generates a planning graph using the same concepts as the
RRT method [45], but includes interconnecting nodes to create a graph instead of
tree. It is designed for safe and dynamic navigation in multi-dimensional bounded
environments. To define a path within the planning graph, a planner must be setup,
such as the Dijkstra algorithm [42]. To more efficiently handle obstacles discovered
online, the D* Lite planner [111] is employed with the proposed PRRG. A real
case example is depicted in Figure 3.2, using data collected during a field trial in a
harbor. The ROV had to plan a collision-free path from the blue cell to the green
cell, where a ship to inspect could be. The sonar was used to detect the obstacles
and update the map to reach safely the end of the path.

The path P for the vehicle is composed of n waypoints WP,

P = [WP0,WP1,WP2, ...,WPn] , (3.1)
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(a) (b)

(c) (d)

Figure 3.2: The top-down 2D map of the local area is displayed. The blue cell is the
deployment point, the green cell is the goal point, and the red segments is the path. (a)
is the initial map, without any obstacles discovered. In (b) the path is updated along the
way to avoid the obstacles detected using the sonar data. The image and sonar scan of
the discovered cavity in the wall are shown in (c) and (d).

and it can be divided in two parts. The path the vehicle has to follow to reach the
vessel is referred to as the transit path, while the path followed to perform this
inspection is the inspection path. Once the ROV has reached the end of the transit
path, it switches to the inspection path which includes maneuvering constraints
required to perform the inspection. The vehicle has to move along the hull while
facing it at a constant distance. The inspection path is generated in parallel to the
planning graph and consists of a time adaptive vertical lawnmower pattern dividing
the inspection area in vertical or horizontal slices depending on the orientation of
the path segments. The camera coverage is taken into account for the path planning
to ensure full visual coverage and overlapping slices. Both cases are simulated in
Figure 3.3.

The planning graph has a dynamic update mechanism to adapt to the changing
perception of the scenery. Constraints can be applied to each node in the planning
graph in real-time to deactivate or re-activate specific nodes based on the mission
objective or environmental data. Nodes can also be resampled with a different res-
olution throughout the coverage area of the graph. This enables objective oriented
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Figure 3.3: The reference patterns for the inspection are generated given the coverage
capabilities of the camera, a width, a height, and a desired overlapping area. Horizontal
slices are generated in (a), whereas in (b), vertical slices are provided. In (c), a pattern is
generated given the ship dimensions and placed in front it.

Figure 3.4: The path planning framework is tested in a simulated harbor environment.
The ROV needs to go to the start of the inspection route which is on the top left of the
green pattern. A first path is generated (blue), but considered not safe enough, therefore,
a new one is computed (yellow), avoiding to go through the obstacles.
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planning and prevent potential risks during the operation. For example, nodes in
the proximity to obstacles discovered while operating the ROV in a harbour are
automatically deactivated to avoid entanglement with the vehicle’s cable. Such a
scenario is presented in Figure 3.4 in a simulated environment.

3.2.2 Localisation

To track the 6DoF pose of the vehicle while in water, the Modular and Robust
Sensor-fusion (MaRS) framework [2], [112] was utilized. It consists of a modular
EKF which can perform online extrinsic sensor calibration and can handle sen-
sor outages and measurement outliers. The navigation sensors are combined in a
Kalman filter to estimate the vehicle’s position, its attitude, velocity, and angular
velocity and acceleration biases. The gravity vector together with the compass and
the GNSS measurements are used to initialise the pose of the ROV. It is done while
the drone is still at the water surface and away from the surrounding structures,
to avoid magnetic disturbances in the measurements.

3.2.3 Guidance Strategies

The vehicle’s pose information is not enough to navigate reliably along the hull for
the inspection. Indeed, the hull geometry and its exact position would need to be
known and the vehicle equipped with a drift free localisation system. Therefore,
an additional sensor is required to ensure tracking of the hull to remain close to
it and avoid collisions while mapping the structure. For this project, a MBFLS is
used to measure distance and orientation of the vehicle relative to the hull. Only a
line is expected to be seen in the sonar scan, as the local shape of the hull is close
to flat and the operating range is low.

To detect and extract the line from the scan, a method based on Random Sample
Consensus (RANSAC) [113] is proposed. A comparison of line detection methods
is provided in [114], and identifies RANSAC based methods as advantageous when
outliers are expected. Only good inliers are considered, which enables precise line
estimation as opposed to maximizing the number of data points. To make sure the
inliers provided by RANSAC contributes to the best hull line estimate, the sonar
scans are pre-processed. First, a threshold operation is performed to keep only the
features that potentially hold important information. This corresponds to keeping
only the pixels of the scan with intensity between Tlow and Thigh. The Canny edge
detector [115] is then applied in order to sparsify the data, and consequently remove
the dense areas that can bias the line detector. This results in a better distribution
of the features along the line. In Figure 3.5, a raw sonar scan is displayed along
with the final result after detecting the line.

To place the hull in the ROV’s reference frame, two values are extracted from the
detected line. The first value is the 2D line inclination αl, which is to the angle
between the local section of the hull and the normal of the line of sight of the
vehicle. The second value is the forward distance dw, the vertical distance to the
center of the line in the 2D image, physically corresponding to the distance from
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(a) (b)

Figure 3.5: The original sonar scan is presented in (a), taken when the ROV was facing
the hull. The scan is processed and converted to Cartesian coordinate in (b), where the
extracted features are displayed in red, and the detected line in blue. In this case, a relative
heading offset of 3.44 degrees and forward distance of 1.04 meters were estimated.

the ROV to the wall. With these two values, it is possible to place in the 3D space
any points wk representing the hull locally. They are given by

wk =

⎡
⎣wk,x

wk,y

wk,z

⎤
⎦ = p + dw

⎡
⎣cos (ψ)

sin (ψ)
0

⎤
⎦± ck

⎡
⎣cos (ψ − αl + π

2 )
sin (ψ − αl + π

2 )
0

⎤
⎦ , (3.2)

where p ∈ R
3 is the vehicle’s position, ψ, its heading, and ck ≥ 0 an arbitrary

constant representing the distance to the wall’s local origin, i.e., where the vehicle’s
line of sight hits the hull.

Because the hull is considered flat only locally, the path needs to be continuously
updated to adapt to the global curvature of the hull. To achieve this, the current
path segment is translated and rotated to keep the vehicle facing the hull at a
constant distance. A new path segment is positioned parallel to the estimated line
representing the hull and at a desired distance dd from it. The geometry involved
in the path update mechanism is explained and depicted in Figure 3.6. The path
update is done online for each new sonar measurement and over time, with a
constant distance, the inspection pattern should adopt the actual shape of the
hull.

For the vehicle to maneuver efficiently, a specific guidance strategy is adopted and
depends on the type of path the drone is following, transit or inspection. For the
former, the employed method [6] is based on the LOS steering laws for straight
line following [63], [116]. The look-ahead distance Δ(ye) is time-varying depending
on the cross-track error ye. It is especially effective for avoiding oscillatory and
aggressive motions as it smooths out the steering [117]. Additionally, to compensate
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Figure 3.6: The original path segment P (red) is continuously updated to create a new
one P ′ (yellow) solving locally the inspection constraints. To position correctly P ′, the
vehicle’s position is projected on the wall, pproj , and the point p′ is sampled on the
projection line at the distance dd from the local wall. Given the orientation of the new
path segment αw, estimated from αl, the waypoints can be re-positioned. [9]

for external disturbances, an integral action is applied when the desired heading
ψd is estimated [118]. It is given by

ψd = γp − atan2 (ye + κyint, Δ(ye)) (3.3)

ẏint =
Uye√

Δ(ye)2 + (ye + κyint)2
, (3.4)

where γp is the horizontal path-tangential angle, κ > 0, the tuning parameter of
the integral action, and U , the ROV’s total velocity.

To follow the inspection pattern, maneuvering-based guidance [60], [61] is used
instead. It enables more precise control in slow speed, which is important when
inspecting structures. The desired speed along the path is defined to account for the
inspection constraints and errors that can occur, such as heading and depth errors.
To make sure the vehicle reaches the waypoints and is always converging towards
the path segment while maintaining its velocity, the constant bearing nonlinear
approach [119] is utilized. Therefore, the desired velocity νd is defined by

νd = psdvs − Up
e1√

|e1|2 + Δ2
1

, (3.5)

and the component dependent of the position error e1 = p − pd(s) is included
and calculated from the 2D position of the vehicle p and its desired position pd.
This error is controlled with the tuning parameter Δ1 > 0, and Up > 0 is the
approach speed, corresponding to how rapidly the vehicle should converge to the
current path segment. Finally, vs(s, t) ∈ R

2 for ṡ, is the speed assignment along
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Figure 3.7: The stateflow diagram of the hull inspection operation and how the different
modules, including planning, guidance and control, interact with each other.

the path with the path variable s ∈ [0, n) which represents the global progression
on the path for n waypoints. It consists of a manually set desired speed ud(t) > 0
and a modifier us(s) > 0 to make sure the vehicle slows down at the waypoints.
psd(s) = WPi − WPi−1 describes the current path segment being followed and
||psd(s)|| its norm. The speed assignment

vs(s, t, εψ, εz) = σδψ (εψ)σδz (εz)
us(s)

||psd(s)||
ud(t), (3.6)

is further modified using the ratios σδψ (εψ) and σδz (εz) which regulate the motions
along the path according to the heading εψ and depth εz errors when these grow
too large.

The outputs from both guidance systems are then used as inputs to control the
4DoF of the vehicle. For this Proportional Integral Derivative (PID) controllers are
setup.

The complete stateflow of the operation is depicted in Figure 3.7. It starts with
the operator sending the mission details and ends with the vehicle returning to
the surface when the operation is done. The ROV plans the transit and inspection
when the mission details are received, and starts the mission execution. When the
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Figure 3.8: The reprojection error of the acoustic features projected onto the zero-
elevation plane of the sonar is displayed as shades of purple. The figure includes an
acoustic coverage of up to 5 meters and 20° vertical aperture.

vehicle has arrived close to the hull, the guidance strategy is updated to make use
of the sonar measurements and move efficiently along the hull to collect inspection
data. This concise stateflow enables consistency in the behavior of the underwater
vehicle and makes it easy to track its current state. This is because the states and
conditions are kept simple and deterministic, and the links are minimised. The
operator can interact with the ROV while the autonomous mission is on-going.
This can occur for multiple reasons. In a harbor, parallel activities might require
the inspection mission to stop for a moment for safety concerns. The operator
can then request the vehicle to pause and maintain its position, or to go to the
seabed to make sure the ROV umbilical is out of the way for other vehicles. To
obtain further details about a specific area of the hull, the operator can also send
a request to the vehicle to collect complementary visual data. The position of the
ROV is saved when a new request is sent to restart the original mission plan at
a later point in time. When the operation is complete, the vehicle returns to the
surface and holds its position, awaiting further instructions. When the inspection
is complete, the vehicle is retrieved from the same location it was deployed.

3.3 Mapping and Monitoring

3.3.1 Acoustic Map Generation

To enable real-time monitoring of the condition of the ship hull, a real-time data
stream is established with odometry, acoustic, and optic data, which is the essential
data required to assess the operation. An inspection map is incrementally built as
the operation is on-going, enabling the tracking of the inspection progress and
covered areas. The map consists of a 3D acoustic model of the hull, downsampled
to a voxelised grid.

The inspection map is generated from the MBFLS data, using the assumption of
the ship hull being locally flat. This means the closest acoustic feature for each
beam on the sonar scan can be placed on the zero-elevation plane of the sonar, i.e.,
at the same depth as the vehicle and accounting for the vertical offset. Given that
the operating range of the sonar is setup to four meters, the maximum reprojection
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(a) (b)

(c) (d)

(e)

Figure 3.9: The occupancy maps from three inspection scenarios are presented. (a) and
(b) are respectively the dense point cloud and its equivalent voxel map of a harbor wall.
(c), (d), and (e) are ship hulls. To obtain these results, the vehicle followed an inspection
pattern with vertical slices.

error on the zero-elevation plane is ∼ 0.69m, considering an elevation of 10° and a
range of 4 meters. This error corresponds to the distance between the actual point
and the intersection between the corresponding circle arc and the zero-elevation
plane. However, since during the inspection the ROV is typically at a distance of one
meter to the hull, the maximum reprojection error becomes ∼ 0.17m. Additionally,
because the shape of the hull is locally flat, the closest features on the scan are
very likely to be on the zero-elevation plane, resulting in a reprojection error very
close to 0. This enables surface reconstruction of the ship using the acoustic scans
and considering the zero-elevation plane only. Figure 3.8 displays the reprojection
error according to the feature locations, the further away a point is from the sonar
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and its zero-elevation plane, the greater the magnitude.

In the first step of the 3D map generation, the sonar scan is pre-processed with
Gaussian and thresholding operations to reduce the visible noise, and the closest
feature is extracted for each beam. This limits the data redundancy and the repro-
jection error. However, there can still remain residual noise in the data due to the
environment and direct projection onto the zero-elevation plane, creating outliers
and biasing the map generation. Bin based methods can be used to efficiently re-
move the outliers, by using the measured acoustic distances to the detected point
and applying threshold operations within the bins [120]. To avoid true positive
rejections, filtering points using a virtual moving window and averaging the valid
data points will verify the integrity of the central point, and biases related to the
geometry of the scene will be vanished.

The remaining reliable points are converted to 3D points and placed in the ROV’s
reference frame. A voxel is created if the volume contains enough points according
to the grid resolution. The resolution must be set carefully and according to the
sensors characteristics [121] and mission objectives. Since the inspection map is
utilised for path planning and monitoring purposes, a grid with high resolution
is not required but should be high enough to represent the geometry of the hull
to avoid collisions and be able to observe the currently covered areas by the ve-
hicle. Over time, a dense point cloud is generated and converted into a complete
inspection map that the inspector can refer to and the vehicle can use for scene un-
derstanding. Figure 3.9 provides representative dense point clouds of structures and
their corresponding inspection maps from experiments carried out in this project.

Each voxel contains uncertainty information in addition to the geometric informa-
tion. The uncertainty is estimated from two separate sources, the acoustic features
reliability, and the drone’s pose reliability. The EKF employed to obtain the pose
of the ROV includes a state covariance matrix Kxcore of the drone’s core state xcore

with k core components included in the matrix [2]. It is reduced to a single value
describing the point variance, or location precision [122], [123]. To achieve this, an
1-homogeneous function S with a normalization constraint [124] is defined such
that

S(Kxcore) =
trace (Kxcore)

k
. (3.7)

To express the uncertainty from the sonar, the averaged distance values d̄f from the
previous sliding window are reused and fitted to a Gamma probability distribution.
Its variance represents the sonar uncertainty and is computed from an estimated
true mean μd̄fT given a sonar scan and a detected line. To achieve this, an estimated
true set of distance values is generated, corresponding to how the data should
ideally look like given the current estimation of the hull’s orientation, and the
sliding window is passed through this new set to create new averaged distances
d̄f

T

. The variance of the original set d̄f becomes
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var(d̄f ) =
1

n

n∑
i

(
d̄fi − μd̄fT

)2

. (3.8)

The uncertainty for the sonar data is expressed per acoustic feature whereas the
uncertainty for the pose of the vehicle is calculated for each new sonar scan. To
represent both together as a single value, the total uncertainty u is obtained from
a weighted sum to emphasise or minimise specific sources, that is,

u = S(σxcoreKxcore) + σd̄f var(d̄f ), (3.9)

where σxcore ∈ R
k,+ and σd̄f ∈ R

+ are the weights.

Making the uncertainty estimates available to the inspector enables a new dimen-
sion of scene understanding which can lead to requests for re-inspection of regions
with very high uncertainty to ensure good quality data is collected. The uncertainty
can also indicate lack of instrument and software integrity.

3.3.2 Camera-Sonar Combination For PoI mapping

For hull inspection, PoIs represent geometrically complex sections and hull features.
Here the sonar can not be used as the main perception sensor using the previous
method since the assumption of a flat surface does not hold anymore. Also, the
monocular camera can not be used alone since it cannot estimate the scale of a
scene. Therefore, to enable an efficient visual representation of the PoIs, the sonar
is combined with the monocular camera. The combination occurs in the SLAM
framework ORB-SLAM3 [33] where the visual odometry and point cloud are made
more robust and correctly rescaled. This is especially important for situational
awareness and for the inspector to assess the structure integrity and potential
deformations.

The camera images are first pre-processed to obtain images that are more robust to
the underwater environment before they are combined with the acoustic data. The
lack of contrast, due to the light attenuation, and to the underwater particles, also
called marine snow is compensated in the process. The contrast is corrected us-
ing Contrast Limited Adaptive Histogram Equalisation (CLAHE), and the marine
snow using a tailor made filter [4]. First, the previous and next frames are selected
and the luminance component of the three images are extracted after converting
them to the YCbCr color space. A first set of feature candidates is selected after
applying a guided filter [125], [126] to retain the high frequency information of the
images. Finally, convolution operations with an uniform kernel are performed on
the previous and next image before they are compared to the current image to
decide which pixels correspond to unwanted underwater particles. From this ma-
rine snow filter, masks are generated, corresponding to where in the image visual
features should not be sampled.
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Figure 3.10: The correspondence and matching mechanisms are illustrated in this fig-
ure. (a) and (b) are respectively a top-down view and a side view representation of the
geometry involved to obtain the pixel position on the camera image of a sonar feature
T . (c) depicts a 3D scene with physical representations of the acoustic beams and visual
features correspondence.

The combination of the camera and sonar sensors relies on internal geometry, they
are horizontally aligned with a vertical offset. This setup enables an intuitive es-
timation of the intersection areas of the sonar’s acoustic beams with the image
plane [8]. Therefore, each beam can be represented as a set of vertical segments on
the image. They are mapped to image pixels by using the pinhole model. For each
sonar beam, the closest detected feature with high intensity is selected, and since
both perception sensors are horizontally aligned, it is straightforward to obtain the
horizontal pixels ui of the ith beam with fixed azimuth θi,

ui = fxtan(θi ± σh) + cx, (3.10)

where σh is the angular width, and fx and cx, the intrinsic camera parameters.
However, the vertical offset of the sensors tz and the acoustic distances to the
objects ri in the observed scene must be considered to estimate the beam’s corre-
sponding vertical pixels v in the image. Therefore, for an observed target T by the
sonar in the Oxz plane, such that

T =

[
0
tz

]
+ ri

[
cos (φ)
sin (φ)

]
, (3.11)

where the elevation angle φ is in [φmin, φmax], the possible corresponding vertical
pixels become

vi =

{
fy

Tz
Tx

+ cy, if Tx �= 0

cy, otherwise,
(3.12)

where fy and cy are the remaining intrinsic camera parameters. The working prin-
ciple of the combination and matching method of the features from both sensors
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Figure 3.11: Point clouds of PoIs were generated during an inspection mission. The top
row includes images extracted from the videos used to make the point clouds of the second
row. (a) and (d) show an anode, (b) and (e) show a bildge keel, and (c) and (f), show a
propeller.

is displayed in Figure 3.10. The correspondence mapping and the estimation of
the intersection regions between the sonar beams and the image plane constrain
the search for good visual features to match. Additionally, since only the closest
acoustic features are selected, the same is done with the visual features, further
restraining to number of potential match. Although the scenes are observed differ-
ently by both sensors, the detected relative distances remain the same, therefore
the closest acoustic and visual features should correspond. Therefore, the closest
detected visual feature that has its 2D projection on the image on the intersec-
tion region, is matched to the acoustic feature. This operation is repeated for each
reliable acoustic feature.

Comparing each visual-acoustic match provides information about their scale and
reliability. A set a scale ratios is obtained by dividing the acoustic distances by the
visual distances. In this case, having a set instead of a single value enables robust-
ness and stability for the final depth ratio estimation. The Maximum Likelihood
Estimation (MLE) is continuously applied over all matches to obtain a unique and
consistent ratio. The set of distance ratios is assumed to follow a Normal proba-
bility distribution and its log-likelihood is maximised to obtain an optimised mean
which corresponds to the depth ratio of the current scene. Using the confidence
intervals of the distribution, the outliers are detected and rejected.

The proposed estimation method was compared to the mean and median of the set,
and single beam estimation. Although all methods converge rapidly, the alternative
solutions are not continuously stable, making the rendering of a scene unstable and
unreliable for robotic applications.

The estimation of the trajectory using the sonar and camera combination was
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compared to alternative setups such as a simple monocular SLAM, a Visual Iner-
tial SLAM, and dead reckoning based on a DVL and an IMU. The ground truth
was estimated using a mix of Global Positioning System (GPS) fixes and visual
landmarks. This enabled performance comparison and showed that the proposed
solution outperformed the others.

During the testing and inspection missions, the updated SLAM framework enabled
a better mapping of ship parts such as the propellers and bildge keels. A sample
of the generated point clouds during operations is displayed in Figure 3.11.

3.3.3 Automatic Detection of Ship Parts and Faults

To move towards an autonomous end-to-end inspection system, the ship parts and
faults must be automatically recognised. This domain suffers from the lack of pub-
licly available data, significantly limiting the progress towards automated annota-
tion of hull features and condition. The first large-scale dataset for underwater ship
inspection was built to mitigate this situation and to enable development of models
for image classification and semantic segmentation. 1893 images are included and
10 object categories are represented and divided into two system categories, faults
and ship parts, listed in Table 3.1. The categories were selected based on their
relevance for inspections and to provide meaningful insights to the inspector for
the report generation.

Deep learning models were trained and tested on this data set to ensure its via-
bility and applicability for real case scenarios. Multiple models with varying ar-
chitectures were tested, including SOTA segmentation models [80], [127]–[131] and
backbones [132]–[134]. Although their performance varies, they were all able to
converge quickly during the training. To measure the performance of the mod-
els, the popular metric methods were used, the Intersection over Union (IoU) and
the F1 Score. They provide a measure of the pixel-wise classification correctness.
The results showed promising prediction results, with up to 86.07% mean IoU and
88.17% F1 Score. However, two of the proposed categories are particularly diffi-
cult to predict compared to others: paint peel and marine growth. The inference
time was also considered since real-time results during an inspection prevents the
inspector from having to go through the mission data once the operation is com-
pleted. Lighter segmentation models are advantageous in this respect. The U-Net
segmentation model [127] with the MobileNetV2 backbone [132] was found to pro-
vide the best trade-off between segmentation results and inference time making it
an efficient solution for the real case scenarios. On the testing data set, it achieved
80.09% mean IoU and 82.25% F1 Score. Additionally, it can process up to 23.17
Frames Per Second (FPS) on a standard GPU, and up to 12 FPS on a standard
consumer laptop without a GPU.

3.4 Reporting

The robotic platform collects data throughout the inspection mission and process
them in real-time to enable the inspector to monitor the operation. Several cate-
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Table 3.1: Class categories and their descriptions [10]

Group Class Description Mask color

Ship parts

Ship hull The main ship structure. Blue
Propeller All revolving structures on the ship. Purple

Bilge keel A stabilizing structure on the ship
hull to reduce rolling motion. Orange

Anode

Sacrificial anodes that provide gal-
vanic cathodic protection of sub-
merged metal structures from corro-
sion.

Cyan

Sea chest
grating

Sea chests are intake reservoirs for
water piping systems on a ship.
They are protected by removable
gratings.

White

Overboard
valve

Usually located on the sides of the
ship. They are round openings on
the ship hull that serve as in and
outlets.

Turquoise

Inspection
criteria

Corrosion Oxidized metal parts of the ship. Yellow

Paint peel

Any damage to the condition of
the anti-fouling coverage on the ship
hull. That is coating, paint, or other
surface treatment that is used on a
ship to control or prevent attach-
ment of unwanted marine organ-
isms.

Red

Marine
growth

The accumulation of aquatic organ-
isms such as micro-organisms, al-
gae, and animals on surfaces and
structures immersed in or exposed
to the aquatic environment. Bio-
fouling types can include soft bio-
fouling and hard calcareous bio-
fouling.

Green

Defect
All other defects that are neither
corrosion, marine growth, nor paint
peel.

Pink

gories of data can be identified:

• Navigation data, i.e., where is the vehicle and where it is going, and what is
its progress.

• Scene data, corresponding to the data the autonomous system generates us-
ing the sonar and the camera for better scene understanding and situation
awareness
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ROV Pose:                      
x: 10.23; y: 3.33  
Depth: 2.04         
Heading: 10°       

No detected faults

Observed PoI: Anode

(a)

ROV Pose:                      
x: 13.88; y: 4.01  
Depth: 0.95         
Heading: 21°       

No detected faults

Observed PoI: Sea chest
grating

(b)

    ROV Pose:              
x: 12.55; y: 3.76  
Depth: 1.19         
Heading: 17°       

Detected faults: Marine
growth

Estimated coverage: 41%

Observed PoI: Bildge keel

(c)

    ROV Pose:                        
x: 7.21; y: 1.47  
Depth: 1.76         
Heading: -44°       

Detected faults: Paint peel
Estimated coverage: 9%

Observed PoI: Propeller

(d)

Figure 3.12: Examples of data that can be generated when a PoI is detected. The
first column includes the representative images while the second shows the generated 3D
textured model of the captured PoI. The third column displays the semantic segmentation
masks that are used to detect the PoIs and faults. Finally, the last column reports the
pose of the vehicle and the inspection findings. In (a), an anode is detected, a sea chest
grating in (b), a bildge keel in (c), and a propeller in (d).

• Inspection aiding data, which includes the actual visual video feed and the
detection of PoIs and faults.

The acquired data makes it possible to perform quantitative evaluations and au-
tomated data processing to ease the labour intensive process of writing inspection
reports [3], [135]. The autonomous inspection is performed in a way to comply with
the ABS regulations for remote inspections [106], by respecting the operation setup
and collecting all the required data presented in Section 1.1.4 with the exception of
physical measurements of the hull. With the aim to prevent the inspector from hav-
ing to go through the data again and analyse it entirely, markers are placed in the
dataset. They correspond to times with inspection findings. All the local mission
metadata is attached to the markers, including position of the vehicle, what it is
inspecting, and what it has found. Since this operation is done offline, more precise
and textured visual models of the PoIs are generated and attached to the markers.
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3. Ship Hull Inspection

Figure 3.12 presents three examples of markers and associated metadata that can
be generated. In [3], a tool to support detailed ship status report generation is
proposed, using knowledge graphs in combination with the industry standards.

Such developments contributes to the end-to-end inspection, they enable efficient
data retraceability which can be important for verification processes and long term
inspection operations. However, a human in the loop is still required to select and
approve the data before creating the inspection report.
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Chapter 4

Related Applications

Although the proposed approach is designed and intended for underwater ship hull
inspection, the problem can be generalized and applied in other domains, but the
assumption of a flat surface, or estimable flat planes, must still hold for the proposed
autonomous solutions to work; otherwise, the line extracted from the sonar scan
is less accurate, making it difficult for the vehicle to correctly face the structure.
When the assumption does not hold true, the ROV can perform semi-autonomous
missions, relying on manual maneuvering aid for the heading. The methods were
tested for harbor wall inspections (see Figure 3.9), for which the assumptions hold.
To challenge the solutions and prove their adaptability and efficiency capabilities,
aquaculture fish net pens are considered in Section 4.1 and a subsea module in
Section 4.2.

4.1 Aquaculture Fish Net Pen Inspection

Today, half of the total seafood production originates from aquaculture facilities
[136]. Monitoring the production sites is important to detect in the early stage the
net pen degradation and prevent fish escapes which represent an economic loss and
an environmental threat. According to reports, structural failures of net cages is
one of the leading causes of escaped fish, accounting for up to 75% of all escaped
fish [137]–[139].

During an inspection, it is challenging to cover the whole net and holes can be
missed, especially when performed by divers which many fish farms still do. In
addition to being time consuming, manual inspections represent HSE risks.

ROVs are employed as an alternative [140] and increasing their autonomy would
increase safety, efficiency, and reduce cost. Very often optical vision-based nav-
igation is set up [141]–[144] to navigate in the inspection area. Acoustic based
methods are also used [145]–[147] to obtain the relative pose of the vehicle rela-
tive to the net. However, most of the methods have specific requirements such as
known path, known geometry and position of the net, and known dynamic models.
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These requirements make them difficult to adapt, scale, and to be used in a fully
autonomous mission.

The autonomous inspection method proposed for ship hulls is tested on aquaculture
fish net pens [1] and enables data collection for detection of holes and defects in
the net pen. The circular geometry of aquaculture fish net pens requires the drone
to continuously adapt its path. The vehicle is deployed on the inside and close
to the net to be able to observe anomalies and the state of the structure using
maneuvering based guidance with inputs from the sonar to navigate along the
inspection pattern. It was possible to generate inspection maps and models of the
fish cage similar to ship hulls to document and characterize the condition of the
structure.

Field trials were carried out on the full-scale aquaculture laboratory SINTEF ACE
Korsneset [148] situated on the coast of mid-Norway, see Figure 4.1(a). The data
collected during the inspections enabled the generation of orthomosaics represent-
ing sections of the net pen. Mosaics consist of aligning and transforming multiple
images to create a single image. They represent an effective method to represent
larger areas than individual frames. They enable the inspector to visually inspect
the net pen in one quick look, instead of going through the entire video data. An
example is displayed in Figure 4.1, along with the corresponding acoustic point
cloud and inspection map.

It was possible to obtain these results without modifying the methods, showing
that the proposed methods for ship hull inspection is well suited for aquaculture
fish net pen inspection. This also shows that the robotic inspection procedure is
fundamentally the same for both structures and that a generalised method could
be developed to include numerous underwater structures.

4.2 Subsea Structure Inspection

Inspection, maintenance, and repair operations on subsea structures are very ex-
pensive, and include a vessel with advanced underwater vehicles and specialized
operator experts. The number a subsea structures continues to increase, driving
the industry to develop further the autonomy in ROV operations. Offshore in-
spections mainly include underwater platforms, pipelines, and subsea installations
[149]–[151]. Local high-level autonomy with automated data processing is still lim-
ited but would bridge the gap between manual operations and fully automated
missions.

To demonstrate the applicability of the developed solution for subsea structure
inspections, a semi-autonomous inspection of a Pig Loop Module (PLM) was per-
formed. Due to the geometric complexity of the structure, it cannot be simplified
to a set a planes. Therefore, the assumption of flat surfaces does not hold any-
more. In such a scenario, the ROV still follows autonomously a vertical lawnmower
pattern using maneuvering based guidance. The path is continuously and automat-
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(a)
(b)

(c) (d)

Figure 4.1: The results of the autonomous inspection are displayed in this figure. (a)
is an aerial view of the testing site. The video from an inspection was used to generate
an orthomosaic of the net pen in (b), and (c) and (d) are respectively the corresponding
acoustic point cloud and inspection voxel map generated online.

ically translated using the measurements from the sonar and its processing. This
makes it possible to respect the distance constraint to the module and to have a
first estimation of the rotation that needs to be applied on the pattern. This rota-
tion is corrected online by the operator to ensure the ROV is correctly facing the
structure. Therefore, full visual coverage is still guaranteed as long as the operator
rotates correctly the inspection path over time. The results of such a scenario are
displayed in Figure 4.2. Compared to the inspection of the aquaculture fish net
pen, the 3D textured model of the structure is generated instead of an orthomosaic
because it better addresses the inspection needs of such a structure.

This experiment showed that with a more generalised method for sonar processing,
i.e., without the flat surface assumption, the proposed inspection procedure can
scale to more challenging structures and perform with consistent results regardless
of the geometry involved.
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(a) (b)

Figure 4.2: The results of the autonomous inspection are displayed in this figure. (a) is
the online generated point cloud of the structure and (b) its 3D reconstruction.
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Chapter 5

Remarks and Conclusions

5.1 Conclusions

In this thesis a solution contributing towards the end-to-end autonomous robotic
inspection of underwater ship hull was presented. The proposed methods were de-
veloped while accounting for the limitations of a small and low-cost ROV. Starting
with the deployment of the vehicle and ending with the generation of inspection
reports, methods for autonomous inspections including localisation, guidance, and
mapping were proposed, suggested, and discussed for each step of the remote in-
spection. They ensure that the mission runs smoothly and provide the necessary
tools in real-time to assist the inspector in the assessment of the structure in-
tegrity of the ship. By detecting the defects located on the hull while navigating
autonomously around it and displaying the corresponding telemetry and imagery,
the proposed robotic procedure can be set in an industry relevant environment.

A total of four objectives were presented at the beginning of the thesis covering
the inspection pipelines with specific methods.

1. Objective 1 was addressed by proposing a sonar aided guidance strategy. It
enabled hull relative navigation to efficiently and consistently inspect the hull
and fully visually cover it. The method was built on the assumption that the
vehicle is facing a flat structure or estimable plane, allowing processing of
the sonar scans to geometrically represent the geometry of the hull. By ap-
plying image processing techniques, a line can be extracted from the scan,
describing locally the pose of the hull relative to the ROV. The proposed
method takes full advantage of the sensors available to enable precise and
robust hull relative navigation without prior knowledge of its morphoplogy
in the presence of moderate environmental conditions. They include an IMU,
a DVL, a pressure sensor and a FLS. The large set of inspected vessels and
testing environment showed the adaptability and applicability of the methods
in real case scenarios. Repeated tests were performed on ten different ships
in six different environments and showed consistent and relevant results. Ad-
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ditionally, the robotic procedure was tested on aquaculture fish net pens and
subsea structures which allowed to show that it does not need to be changed
to be used in other domains.

2. To cover the second objective (2), a dataset was specifically created with
the aim to train models to detect PoIs and faults of the hull. Developed
with domain experts, this dataset is the first open set dedicated to image
classification and semantic segmentation to evaluate the ship’s condition. It
contains ten categories, defined to best match the inspection needs. To test
the dataset, SOTA models were trained on it and quantitative and qualitative
results were assessed. They indicated the relevance of the set as very good
performance were achieved. The following field experiments further proved
the importance of such a dataset in inspection scenarios and how SOTA
models can be used online in this context.

3. A method to combine the optical and acoustic data respectively from a
monocular camera and a FLS was proposed to resolve the problem of the
objective 3. The method was founded on the concept of intersection between
the sonar acoustic beams and the image plane, allowing to create correspon-
dences between the acoustic and visual features. The proposed solution en-
abled real-time scaled mapping and localisation of a visual SLAM framework.
It also significantly improved the accuracy of the estimates and outperformed
the alternative methods. The improved localisation accuracy propagates to
the generation of the point cloud that can be made more robust and denser
using the acoustic measurements. Because the acoustic measurement tend to
be more reliable than optical measurement, especially underwater, the corre-
sponding extracted features can be used as reference points and constraints
for the visual features. When accurate mapping is required, when the ROV
is inspecting PoIs, this sensor combination allowed a more representative re-
construction of the structures.

4. The last objective (4) was addressed by providing a specific set of tools to
enable the inspectors to have a better understanding of the robotic inspec-
tion and to assist them in the decision and report creation process. This was
made possible thanks to the online generation of acoustic inspection maps
and more detailed models of specific areas of interest with the associated de-
tection of ship parts and faults. Additionally, the proposed solution suggests
markers in the inspection dataset potentially containing information the in-
spector is looking for. The rules and regulations of the class societies formed
a design basis for the proposed solution to be applicable to third party ship
inspections.

This thesis contributes to the progress towards end-to-end autonomous inspec-
tions and when combined together, the proposed methods showcased functional
results proving the potential of such end-to-end tasks. With constantly growing
needs for automated and remote operations, such integrated tasks will continue
to be explored and extended, creating an endless list of possibilities in terms of
methodology and technology combinations.
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5.2 Future Work

This thesis creates new opportunities for research in multiple fields including cross-
disciplinary fields.

Detection of faults remains a challenging task underwater, and the further develop-
ment of reliable detection methods for underwater imagery would improve the core
task of an inspection mission. Better understanding of the scene, using for example
semantic slam could be used both for navigation and mission management. Being
able to classify and categorise what the robotic platform is currently observing and
localising in space would greatly improve the autonomous decision making of the
robot.

Handling tilting and turning perception sensors would significantly improve the
situation awareness of the robotic platforms in addition to enabling sensor access
to more difficult to reach areas. This would also overcome the motion constraints
of the ROV.

To enable faster paced inspections, collaborative missions should be considered.
Two main robot collaboration setups are identified as improvement for the inspec-
tions. The first one is the classic approach of dividing the inspection area according
to the number of available autonomous agents, and distributing the tasks among
them to share equally the workload. Alternatively, each robot can have an inde-
pendent goal and work collaboratively to perform a complete inspection. The first
drone would scan the hull and create an inspection map that will be used by a set
of drones which will inspect more carefully PoIs or use mediums such as ultrasonic
sensors for thickness measurement or brushes and pressurised washing tools.
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1. INTRODUCTION

Remotely Operated Vehicles (ROVs) allow simple and
efficient underwater operations and are mainly used for
monitoring, exploration and inspection tasks. To automate
the repetitive sub-tasks in subsea inspections, the need
for autonomy increases. However, it is more expensive
in terms of computing power, and many vehicles can
not afford to handle all the processing tasks onboard in
real time. The dampening of electromagnetic signals in
the ocean requires underwater drones to be tethered to
a surface unit for broad band signal transmission. The
processing power of the surface unit can enable a first
sharing of the workload, however, this does not allow full
exploitation of the technological possibilities and modern
techniques for underwater vehicles, including, methods for
vehicle localization, environment mapping or the use deep
learning tools. To overcome this, it is possible to add
cloud based solutions. Cloud servers provide high storage
capacity and significant computational resources, all with
high-bandwidth connections.

This paper presents a communication interface for cloud
based multilayer architecture. It enables low cost underwa-
ter vehicles with limited computing capacity to have access
� This work was supported by the BugWright2 EU H2020-Project
under the Grant agreement No. 871260.

to more resources in order improve their performance
while in operation. The proposed framework is based on a
publish-subscribe model for connecting sensor data from a
layer to another. Therefore, within each layer it is possible
to select the inputs it should receive and the outputs it will
provide. In this way, only the data necessary for each layer
will be communicated and shared. The number of layers is
adaptable and have bi-directional connections with other
layers following a top-down model of structure of layers.

This publish-subscribe model is beneficial for real-time
robotic applications because they are often event-based.
The traditional approach which has a request-response
model suffers from a higher latency, mainly because of the
polling actions.

2. RELATED WORK

The Internet of Things or IoT, enables the interconnec-
tion of devices through internet or other communications
networks. It facilitates the exchange of data with other
devices or systems inside the network.

In Kamburugamuve et al. (2015), Internet of Things
Cloud is proposed. It is a platform that makes it possible
to connect IoT devices to cloud services for real-time
data processing and control. It is composed of three
main layers which all have their own defined tasks: a
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Abstract: To enable high computational loads for low cost underwater drones, a cloud based
architecture is proposed to take advantage of recent development in machine learning and
computer vision. The processing power made available will benefit vehicles with limited onboard
processing capacity. The rapid development of cloud computing services have made servers with
significant computational resources easier to access. In this paper, a communication interface for
cloud based multilayer architecture is proposed to enable real time performance by distributing
the workload to networked processing devices. It adopts a publish-subscribe model for efficient
communication between the layers. The latency and workload distribution are evaluated to assess
the efficiency of the proposed method. An application to semantic segmentation of under-water
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resource-demanding tools. The conducted experiments resulted in time and performance gains
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gateway layer, a publish-subscribe messaging layer and
a cloud-based big data processing layer. Its scalable and
distributed architecture design allows a large number of
robots and devices to connect while maintaining a low-
latency messaging system.

In Jiao et al. (2017), a robotic cloud-based framework for
Visual SLAM (Simultaneous Localization And Mapping)
processing of low-cost agents is developed. It enables
real-time rate even if the band-width is limited. It uses
WebSocket and HTTP as the communication protocols
according to the message size which is in a compressed
JSON format. The system is based on two components,
the robots and a server which internally runs a cloud-
based framework and can concurrently process requests
from multiple robots at the same time.

In the underwater environment, the IoT, sometimes re-
ferred as the Internet of Things Ocean (IoTO) or Inter-
net of Underwater Things (IoUT), is an emerging com-
munication ecosystem to connect underwater agents and
gives rise to the concept of Big Marine Data (BMD)
because of the increasing volume and availability of data
Jahanbakht et al. (2021). It is most of the time used for
marine data management Luo et al. (2018); Albaladejo
et al. (2010) based on networks of interconnected sen-
sors/devices. These IoT solutions find many applications
in marine environment monitoring and protection such as
water quality monitoring or coral reef monitoring Xu et al.
(2019).

An hybrid use of cloud and edge technologies is proposed in
Salhaoui et al. (2020) in order to track the fan mussel pop-
ulation on the seabed in real time. The approach is based
on Deep Learning (DL) techniques for image processing
techniques such as Convolutional Neural Networks (CNN),
which is known to require more computational resources
than traditional methods. The solution takes advantage of
the resources available thanks to the IoT architecture de-
veloped to optimize and improve the vision based method.
To achieve this, an Autonomous Underwater Vessel (AUV)
is connected to a communication bridge at the surface
which is then connected to cloud AI services and a specific
platform for AUV operations. The same sort of structures
also find applications in autonomous surveillance in marine
protected areas Molina Molina et al. (2021).

The proposed framework in this paper enables variable
number of processing layers based on the computational
load, enabling distributed computing to overcome poten-
tial bottle-neck in communication and processing. The
tasks of each layer are user defined, allowing a more
advanced custom design of the architecture and less re-
quirements to make it possible for the framework to be
implemented with a large variety of agents.

3. ARCHITECTURE OVERVIEW

In this section and the followings, all devices/platforms
that implement communication interfaces are referred as
units or layers in the architecture.

3.1 Communication module design

To maximise its adaptability and scalability, the commu-
nication interface is designed to be able to work indepen-
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Fig. 1. Flow chart of the communication module.

dently. Therefore, it allows the users to use it with any
software or robotic platforms such as ROS Quigley et al.
(2009) or DUNE Pinto et al. (2013).

The architecture adopts a publish-subscribe model. To
be able to receive and share data with other units, a
processing unit will interact with a communication module
in order to register and subscribe to data types. For local
units subscribing to a data type, the interface saves the
transmitted information in a set of data types called exter-
nal pool along with the unit ID. The updated information
distribution scheme is then communicated to all agents in
the network. Similarly, when registering a data type, the
local unit will assign information to the new data type,
and the interface saves it in an other set called internal
pool, and updates the other units. In other words, the
external pool contains all the data types a unit produces
and provides, whereas the internal pool contains the types
that are needed for the local processing.

Registrations and subscriptions can be done at any time,
enabling new data types to be created during the op-
eration. When the behavior of the units changes during
the operation, new subscriptions and registrations can be
added to improve the information flow. It enables dynamic
adaptation of the units, data requirements and results.

When the communication module receives data, it checks
the source, the data type and the associated pool. If the
data type is part of the internal pool, the data comes
from the local unit and therefore needs to be published
in order to communicate it to the other units. When the
data comes from another unit, there are two possibilities:
either the type is in the external pool, in which case the
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Fig. 2. Flow chart of an unit that interacts with the
communication interface.

data is transmitted to the local unit, or, if it is not, it is
sent to the next unit, acting like a bridge.

All the above procedures are repeated in a loop according
to the received data until the module is stopped. The
global design of the communication module is summarised
in the flow chart of Figure 1.

A possible interaction between a unit and the commu-
nication module is shown in Figure 2. In this example,
the registration and subscription procedures of data types
are done during the initialisation step. The unit waits to
receive data, processes them, and if there are results to
send, transmits them to the communication module and
starts over.

Making the communication module an independent com-
ponent enables a higher level of abstraction and ensures
reusability. In the example depicted above, the unit only
interacts with abstracted functions which makes it impos-
sible for the unit to impact the logical behavior of the
module.

The proposed method does not have a limit for the number
of layers. However in our application, a minimum of three
is required as there must be one layer for the underwater
drone, one layer in the cloud and one layer to make the
bridge. In Figure 3, the typical architecture, involving
three layers is illustrated. To optimally and fully use all
the layers, they should all process some data to handle a
sub-task in addition to run the communication module. It
enables workload distribution, significantly improving the
global performance, even for large-scale projects.

3.2 Communication protocols

According to the mission of the drone, the data types
and their associated payload of varying sizes will need
to be shared between the units. However, communication
protocols have size limitations. It is possible to divide the

Fig. 3. Framework architecture involving three units.

messages carrying the data into two categories: small mes-
sages and large messages. For small messages, WebSockets
are used, they are a very good solution for data streaming
in real time as they provide full duplex communication
channels with low latency. However, they are not well
suited to large messages. For larger messages, which cor-
respond to multimedia messages such as, but not limited
to, images and sounds, the Real-Time Streaming Protocol
(RTSP) is used. This protocol is designed to carry real-
time delay-sensitive payloads. It can also stream data from
specific sensors of the underwater drone such as sonars.

4. EXPERIMENTS

4.1 Setup

In this section, a series of experiments are described with
the main focus on the efficiency and latency of the system.
The proposed framework was used in the three-layer
architecture presented in Section 3.1. The Blueye Pioneer
underwater drone 1 served as UW Unit, containing a single
circuit board with a quad core CPU up to 1.2 GHz per core
and 4 GB of memory. For the Surface Unit, a laptop was
used with an Intel Core i7 vPro with base frequency 1.8
GHz per core and 16 GB of memory. Finally for the Cloud
Unit, running on the NTNU IDUN computing cluster
Själander et al. (2019), with an Intel Xeon Processor
with base frequency 2.2 GHz, 128 GB of memory and an
NVIDIA Tesla P100. The underwater drone is tethered
to a router to which the laptop is connected over Wi-Fi
in a local network. The laptop is also connected to the
Internet in order to have access to the cloud server. The
implementation of the RTSP is done using the GStreamer
framework 2 , a pipeline-based multimedia framework that
enables streaming workflows.

For all the experiments, each layer has the same commu-
nication module but the internal software may differ from
one experiment to another.

4.2 Latency Evaluation

To measure the latency of small messages from one unit to
another, the average Round Trip Time (RTT) was calcu-
lated for each message. This was done in three independent
scenarios with message payloads of varying sizes. Each
scenario corresponds to a possible route, i.e. from the UW
Unit to the Surface Unit (1), from the Surface Unit to the
Cloud Unit (2) and from the UW Unit to the Cloud Unit
(3). The results are shown in Figure 4. The tested size

1 Blueye, https://www.blueyerobotics.com/
2 GStreamer, https://gstreamer.freedesktop.org/
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Fig. 4. Round Trip Time of messages of different sizes in
three scenarios. Scenario 1: messages between the UW
Unit and the Surface Unit. Scenario 2: messages be-
tween the Surface Unit and the Cloud Unit. Scenario
3: messages between the UW Unit and the Cloud
Unit.

of the messages goes up to 65 Kb as larger messages are
considered as media messages.

As expected the third scenario takes twice as long on
average as the time of the first and second scenario. It
also means that the time needed for a message to change
network, i.e. from the local network to the cloud network
and vice versa, is extremely low and therefore does not
need to be taken into account. It is also possible to observe
that the latency in scenario two is on average slightly
higher than in scenario one but it is only a matter of tenth
of a millisecond. Globally, the latency evaluation shows
the viability of the WebSockets in this context for small
messages.

The delay for large messages was tested by transmitting
video streams from the underwater unit to the surface unit.
Four video streams were tested with different combinations
of resolution and frame per second (FPS). In Table 1, it is
possible to observe the average measured delay and frame
per second of video streams from a unit to another using
different combinations of resolution and frame per second.

Table 1. Evaluation of communication with
video payload

ID Resolution Video FPS Measured FPS Delay (ms)

1 1280× 480 30.0 29.77 42.2

2 1280× 480 60.0 57.12 45.2

3 2560× 720 30.0 29.64 45.5

4 2560× 720 60.0 56.52 47.3

The Video FPS column corresponds to the video streaming
source FPS, therefore is the expected FPS, whereas the
Measured FPS column corresponds to the FPS at the other
end of the streaming pipeline. To ensure a minimum delay,
some frames might be dropped because of potential latency
in the streaming pipeline on one of the end. To increase the
quality of the stream, it is possible to introduce controlled
latency, however the global delay of the stream will be
increased. In some applications, this does not represent an

Fig. 5. Software setup for a light Visual SLAM to test the
framework. It contains three layers.

issue, or can be easily compensated. This is can be done
by adapting the GStreamer pipeline parameters.

The delay here corresponds to the Glass-to-Glass (G2G)
measurement, which can be referred as the time it takes for
a visible event to go from the glass of a camera to the glass
of a display Bachhuber et al. (2017). The measurements
were done by aiming the camera at a laptop screen setup
to have the same rate as the camera, i.e. 30/60 Hz, which
is displaying the video stream. The measured delays are
all very close to each other, of about 45ms, although
comparing Video 1 and Video 2 allows to spot a difference
of 5.1ms which may have an impact on the application
over time. Overall, the results show the protocol scale well
with the resolution and FPS of the video.

4.3 Efficiency Evaluation

To test how efficient the method is or how it enables
more efficient solutions, a special software setup is im-
plemented to match a possible real-world scenario. The
Figure 5 represents this setup which is distributed over
the three units. It corresponds to a light visual localisation
and mapping framework implemented using the OpenCV
library OpenCV (2015). The control of the drone is based
on PIDs, and two Inertial Measurement Units (IMUs) are
used to compute the attitude of the drone based on the
filter developed in Madgwick (2010) which is then used
to restore the scale of the visual odometry. Each unit has
its own set of tasks so that the workload can be shared.
In this experiment, the video stream has a resolution of
1080 × 720 and 30 FPS and continuously ran for about 6
minutes.

Four independent configurations were designed to test and
assess the efficiency of the proposed architecture:

• Configuration 1: Everything is running in the Under-
water Unit - no communication needed, 0 shared data
types.
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Fig. 6. Set of sample images from SUIM data set Islam et al. (2020), the original images are on the top row and the
corresponding pixel-annotations after the SUIM-NET predictions are on the bottom row.

Fig. 7. Processing time benchmark of the developed frame-
work with a three-layers architecture in four scenarios
displayed as box-and-whisker diagrams.

• Configuration 2: Control processing and data fusion
are done in the Underwater Unit, the rest is done in
the Surface Unit - 3 shared data types.

• Configuration 3: The Underwater Unit does the same
as in configuration 2. Only data pre-processing and
post-processing are done in the Surface Unit, the rest
is done in the Cloud Unit, see Figure 5 - 6 shared
data types.

• Configuration 4: Same as configuration 3, but the
code of the Cloud Unit is optimised to use the avail-
able resources in the cloud infrastructure. Additional
data processing are done for solution optimisation - 6
shared data types.

The results for each configuration is displayed in Figure
7. The time measured corresponds to the time needed
to complete a full loop of the algorithm, including the
data communication. In each case, the box-and-whisker
diagram is calculated from a sample of 3500 loops. It is
clear that the UW Unit alone does not perform well, it can
only complete approximately three loops in one second,
which makes it not suitable for this type of operation.
With the addition of the Surface Unit, the performances
are significantly improved and can allow good real-time
performances. The third scenario performs similarly but
when the resources of the cloud server are used, the
algorithm results are similar but it is considerably faster.
This gives room to add more features or replace some of
the existing features by more computationally expensive
ones in order to improve the results. The fourth scenario
which includes these changes and is still faster than the
other scenarios including better algorithm results.

Fig. 8. Corresponding colors to the categories of objects
classified by SUIM-NET.

4.4 Application to real time semantic segmentation of
underwater scenes

Modern autonomous technologies take advantage of deep
learning techniques at an increasing rate, and it is use-
ful to enable real time implementation of the proposed
framework. For this, SUIM-Net and the associated data
set Islam et al. (2020) were used. It consists of a fully-
convolutional encoder-decoder model trained for semantic
segmentation of underwater images. It allows to detect
five categories of objects: human divers, wrecks and ru-
ins, robots and instruments, reefs and invertebrates, fish
and vertebrates. This deep learning solution was chosen
because, firstly, it requires computational resources that
not all the platforms have, and secondly, because it can
be used in multiple applications in the field of underwater
robotic vision which makes it a tool to improve the per-
formance and autonomy of an underwater vehicle. It can
be integrated into the complete robotic system in order to
solve or contribute to tasks such as visual tracking, scene
understanding and autonomous exploration. These tasks
have to be able to run the model with low-latency. The
lower the latency, the more images will be processed and
therefore more data will be available, enabling potentially
a deeper and more accurate analysis for a given task.

To test the proposed cloud based architecture, the same
three layers were deployed and the sub set of the data set
used for model testing was used to simulate a real-time
feed of images coming from the drone through the surface
unit in order to be inferred by the artificial neural network
located in the cloud unit. For comparison, the model also
ran independently in the surface unit, reducing the global
architecture to a two-layers structure.

Although the execution speed are different according to
the unit, the result for a same given image remains the
same. With the cloud unit, it was possible to run the model
with on average 24.23 frames per second which makes it
possible to run it in real time and use it for visual aid
and/or visual-guided navigation. However, on the surface
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unit, it reached 2.5 frame per second on average which is
about 10 times less than the previous test. This highlight
the use of the previous setup and how important it can
be, especially because drone operators do not often have a
laptop with a graphical card at hand. A sample of images
and their corresponding semantic segmentation predicted
by SUIM-NET is displayed in Figure 6. The color code is
presented in Figure 8.

5. DISCUSSION

The proposed communication interface for a multilayer
structure showed satisfying results for real-time opera-
tions of underwater vehicles. The implementation of the
communication interface makes it easy to use and adapt,
and enables the user to add middleware. It enables quick
deployment of additional layers for independent processing
and further workload sharing.

However, the current implementation only allows a two-
links top-down structure of layers which means that each
layer can only be connected to the previous and next
layers if they exist. It has the benefits of incremental
functionalities, i.e. as the data moves down or top, it
produces new results on top of the previous ones. It also
allows a clear understanding of the structure and the
dependencies of each unit. The main drawback of this type
of structure is that it may introduce additional delays for
each layer. If the ultimate functionality is located in the
last layer, it might take more time, especially if the results
need to be sent back to the first layer. Fortunately, these
delays can be distributed and dispersed according to the
design and locations of the functionalities in the layers.

While this method enables low-latency communications
for messages of variable size, which are important for
real time operations, it involves risks for the multimedia
payloads. Indeed, the protocol used for this type of pay-
load, RTSP, relies on UDP and can lead to packet loss. If
important packets are lost, it may affect significantly the
behaviour of the implemented algorithms.

Although the framework was experimented using a local
computer and with cloud computing, it is possible to imag-
ine alternatives, such as edge computing with different
sensors/agents setups. For example an underwater agent
connected to a buoy which is itself connected to a surface
vessel. Also, despite the fact that the proposed method is
used for underwater applications, it can be used for other
categories of devices/robots such as ground vehicles.

6. CONCLUSION AND FUTURE WORK

In this paper, a communication interface for cloud based
multilayer architecture was developed. It is based on a
publish-subscribe model with a topic system to enable
clear and effective communication between the units. The
access to other units also enables work load distribution ac-
cording to the resources available. With this architecture,
low cost underwater agents with reduced computational
capabilities are able to operate in real-time using advanced
tools which require important resources.

Future work includes study of how this architecture can
scale to cooperative missions involving multiple underwa-

ter drones and how the work load can be further dis-
tributed to reduce the software latency. This corresponds
also to a study of how the layers can be inter-connected,
adopting a more complex distributed structure.
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Abstract. A guidance system is proposed for underwater navigation
and inspection of structures to enable path-following control objectives
with manoeuvring constraints such as velocity and orientation instruc-
tions. To document a vertical surface like a ship hull, a submerged drone
will take benefit of maneuvering with the heading perpendicular object,
while during transit the most efficient would be to align the heading
towards the next way point. The proposed system is simulated using a
small underactuated Remotely Operated underwater Vehicle (ROV) with
control in surge, sway, heave and yaw (4 DOF). It is based on the Line
Of Sight (LOS) steering laws and PID controllers for the 4 DOF motion
control. The waypoints are generated together with a list of instructions
for orientation and velocity for the ROV using the Parametrised Rapidly
exploring Random Graph (PRRG). The LOS vector is used for heading
control during transit whereas during inspection, it is used for course
control. The proposed framework is tested in simulation to follow 3D
straight lines in a lawnmower pattern and a typical path for ship hull
inspection. Simulations shows that the paths generated using the pro-
posed solution are viable for inspection tasks taking into account the
manoeuvring constraints posed by the inspection mission and the prop-
erties of the vehicle.

Keywords: Line of sight guidance · 3D path-following · Inspection ·
Remotely operated underwater vehicle · Control system

1 Introduction

In the maritime industry, inspections of ship hulls and submerged installations
are often done with divers. Some structures require regular supervision and can
be difficult to access. Inspections are often required to guaranty the safety and
integrity of the structure. This is a repeated task that often require human
intervention.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Petrovic et al. (Eds.): IAS 2022, LNNS 577, pp. 867–880, 2023.
https://doi.org/10.1007/978-3-031-22216-0_58
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Using a Remotely Operated underwater Vehicle (ROV) can help reduce risks
for human operators and divers. ROVs can be deployed with a simple set up.
They can also be used for underwater inspection of ship hulls, and in some cases
to avoid expensive dry docking. The vehicle can fly around the hull for visual
inspection and determine whether maintenance is required. Such inspection tasks
can be automated, reducing human interventions. To enable autonomous ROV-
based ship hull inspections, multiple dedicated systems need to be developed
including mission planning, path planning and control.

This paper presents a method for path following with constraints to enable
visual inspection of underwater structures. The paths are planned based on the
Parametrised Rapidly exploring Random Graph (PRRG) presented in [4] with
two types of paths according to the steps of the mission: transit and inspection.
For inspection missions, transit paths are defined to bring the vehicle in position
for the observation, while inspection paths define the maneuver during the actual
survey. The optimal and possible velocity will depend on the quality of the
acquired optical or acoustical data and the hydrodynamic parameters of the
vehicle and vary between transit lines and inspection lines. This online 3D path-
planning module generates a set of waypoints which contains instructions for
orientation and velocity for the ROV.

The proposed system is tested in a simulation environment with two missions
designs. The first one is based on a lawnmower pattern composed of four rows
and the second one is a path following simulation for the inspection of one side
of a ship.

The combination of the proposed path following system and the previously
developed path planning framework makes it possible to perform efficiently
inspection missions which may contain constraints and requirements.

For path following, straight-lines are considered, and the Line-Of-Sight (LOS)
steering law is applied for both course control and heading control according to
the type of path and the constraints in a 3-D decoupled motions design inspired
by [10]. When following transit paths, the LOS law is extended by adding integral
action of a function of the cross track error as modelled in [11]. The surge,
sway and yaw motions is controlled based on the instructions received from the
horizontal LOS model whereas the heave motion is based on a desired underwater
depth at which the trajectory should be followed. The LOS is a popular method
which is known to be stable and effective with a simple design. It is largely used
in underwater applications [8,12,13].

2 Modelling of the ROV

For the numerical simulation, the drone is modelled based on the 6 DOF model
for ROV provided in [7]. The 6 DOF nonlinear equations of motion can be
written as,

η̇ = JΘ(η)ν (1)

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ (2)
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where M ∈ R6×6 is the system inertia matrix from the addition of the rigid
body and added mass inertia matrix M = MRB + MA. C ∈ R6×6 represents
Coriolis and centrifugal forces similarly based of the rigid body and added mass.
D ∈ R6×6 is the damping matrix, g(η) ∈ R6, the vector of restoring forces and
moments and τ ∈ R6, the vector of generalized forces. The velocity vector ν =
[u, v, w, p, q, r]T is in the drone body frame and its position η = [x, y, z, φ, θ, ψ]T

is in the NED frame based on the rotation matrix JΘ(η) from body-fixed to
NED frame.

3 Path Planning

Planning a path is primordial to execute a mission. If it has online capabilities, it
makes it more efficient in order to plan safe path that can adapt to the changes
in the environment. For underwater drones, the planned paths need to be in the
3D space.

The proposed guidance system utilizes the Parametrised Rapidly exploring
Random Graph (PRRG) [4] which is a sampling based planner with efficient
real time capabilities. The large set of parameters proposed makes it possible
to easily adapt it to any mission. It includes parameters such as the minimum
and maximum distance of a path segment, obstacle inflation radius, about node
neighboring management, and a set of rules for specific customisation of the
planning graph. The Dijkstra search algorithm [5] is employed in this paper to
find a path in the graph. This framework also proposes a rule system for dynamic
node management. It is employed to generate two types of paths: transit paths,
which correspond to the paths the drone will have to follow to reach the target
of the mission, and inspection paths, to carry out the inspection mission.

This path planning framework allows an easier and more adaptable creation
of inspection routes as it can take into account the vehicle parameters and inspec-
tion criteria.

When the final path is computed, each attached node receives a list of guid-
ance instructions that will be shared with the drone when it reaches the point.
All of them contain at least the guidance mode. Transit paths can be free of
constraints, but still receive instruction about the LOS vector and waypoint
management that will be explained in more details in their dedicated sections.
On the contrary, for inspection paths, constraints are frequently included. The
most common constraints are related to the drone’s velocity and heading because
they can have an important impact in the inspection results. The 3D waypoints
of the planned path are then used as reference positions that the ROV will have
to go through. The waypoint set is defined as,

WP = [WP1,WP2,WP3, . . . ,WPn] (3)

WPk = [xk, yk, zk]T (4)

where WPk is the last waypoint reached by the vehicle and WPk+1 the target.
The list of instructions that the waypoint contains is of variable size, and a
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typical set can be defined as,

Sk = (Δk, ψk, dhk, dvk) (5)

with Δk, ψk, dhk and dvk respectively the lookahead distance, desired heading,
horizontal acceptance distance and vertical acceptance distance.

4 Path Following

4.1 Objective

The path following objective is to converge to and follow the desired path which
is represented as a set of 3D straight lines.

Given the vehicle position P = [x, y, z]T and WPk the last waypoint it has
reached, the along-track error xe and the cross-track error ye can be calculated
as, [

xe

ye

]
= RT (γp)

[
x − xk

y − yk

]
(6)

where RT (γp) is defined as,

RT (γp) =
[
cos(γp) −sin(γp)
sin(γp) cos(γp)

]
(7)

and γp is the horizontal path-tangential angle,

γp = atan2(yk+1 − yk, xk+1 − xk) (8)

Regarding the error in depth, the direct depth measurements are used and
is therefore defined as,

ze = z − zk+1 (9)

The path tracking control objective is therefore to minimize the error e(t) =
[xe(t), ye(t), ze(t)]T over time (10) by applying guidance laws.

lim
t→∞ e(t) = 0 (10)

Figure 1 represents the geometry used for the path following system.

4.2 Guidance Law

For path following in the horizontal plane, the LOS guidance law is applied using
the lookahead-based version. According to the scenario, it is used for course
control or augmented with integral action for heading control. In both cases, the
lookahead distance Δ is provided by the mission handler which extract it from
the waypoint properties. Based on [2,3], the lookahead-based guidance law can
be given by,

ψd = γp + arctan
(−ye

Δ

)
(11)
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Fig. 1. Horizontal line of sight guidance for straight lines [10].

χd = ψd (12)

It defines the desired heading angle ψd and desired course angle χd with γp

the horizontal path-tangential angle and ye the cross-track error which needs to
be minimized. However, the two angles are not always aligned, when the drone
is turning, or because of the conditions in water, therefore,

χd = ψd + β (13)

where ψd and χd are related by the sideslip angle β that can be viewed as the
angle between the orientation of the global velocity of the vehicle and its heading.
It is defined as,

β = arcsin
( v

U

)
(14)

where v is the sway velocity and U the total velocity of the ROV. In the presence
of external forces, such as currents, the relative velocities need to be considered.
However, calculating this drift angle based on direct measurements will results
in small offsets and singularities at zero speed. Therefore, for transit paths, even
though the sideslip angle can be assumed to be small, the Integral LOS guidance
is applied, defined as in [11]:

ψd = γp − arctan
(

ye + κyint

Δ

)
(15)

˙yint =
Uye√

Δ2 + (ye + κyint)2
(16)
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with κ > 0, a tuning parameter. It makes the system capable of removing the
cross-track error caused by external disturbances.

For inspection paths, conventional LOS is applied for course control and the
desired heading is set according to the constraint contained in the last waypoint
the drone has reached.

ψd = ψk (17)

χd = γp + arctan
(−ye

Δ

)
(18)

which means the difference between the heading constraint and the desired course
angle that points towards the LOS point should match the orientation differ-
ence β.

The choice of the lookahead distance Δ is very important as it can impact
significantly the maneuvering characteristics of the drone. A low distance value
can result in more aggressive steering compared to a larger value [10] which
can be useful for a large cross-track error. On the contrary a high distance
value will smooth out the steering and reduce oscillatory movements which is
convenient when the error is small. For this reason, it can be practical to have a
distance value Δ that varies. If the lookahead distance is defined in the waypoint
properties as a set of two different values, the Time-Varying Lookahead Distance
Δ(ye) [9] is utilized. It is defined as,

Δ(ye) = (Δmax − Δmin)eγr|ye| + Δmin (19)

where Δmax and Δmin are the minimum and maximum values that Δ can adopt,
and γr > 0 is the convergence rate. It allows to adopt a more flexible behavior
which contributes to faster convergence to the desired path and reduced the
oscillations around the path.

For vertical guidance, the desired depth zd is the corresponding depth of the
closest point to the vehicle on the reference line such that,

Pproj = WPk + ((P − WPk) · n) ◦ n (20)

zd = Pproj z (21)

with Pproj the projected position on the reference line and n the normalized
vector of the reference line:

n =
WPk+1 − WPk

||WPk+1 − WPk|| (22)

The vehicle is considered to have reached the waypoint when it has entered
the acceptance area which is defined according to an horizontal and vertical
distance, dhk and dvk. If a heading constraint is present, it also need to be
satisfied before moving to the next waypoint.
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5 Control System

Surge, sway, heave and yaw, are controlled using Proportional Integral Deriva-
tive (PID) controllers. However, for the surge and sway, additional processing is
performed to ensure the safety and successful completion of the operation. The
resulting vector of desired forces and moments τ = [τX , τY , τZ , τN ] is based on
the vector of error ε = [εx, εy, εz, εψ]T where the error components are defined
as,

ε =

⎡
⎢⎢⎣

εx

εy

εz

εψ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

xd − x(t)
yd − y(t)
zd − z(t)
ψd − ψ(t)

⎤
⎥⎥⎦ (23)

All controllers have their own set of gains including the proportional, integral
and derivative gains, Kp, Ki and Kd. They were experimentally tuned.

The heading controller which provides the desired yaw moment to reach the
desired heading is formulated as,

τN = Kpεψ + Ki

∫
εψdt + Kd ˙εψ (24)

Similarly for the depth controller but with desired heave force,

τZ = Kpεz + Ki

∫
εzdt + Kdε̇z (25)

Regarding, the surge and sway controllers, a dynamic force limit is consid-
ered. For this, multiple conditions need to be taken into account. First, if the
heading and depth errors are below the accepted error δ ∈ R2

>0, δ = [δz, δψ]T ,
the commanded force can be up to the maximum allowed force τmax. It is impor-
tant to consider the error in depth and heading since they are both important
criteria for the inspection. Also, too large errors may result in a 3D drift from the
reference trajectory if not compensated. To avoid situations were high forces for
sway and surge are combined with large deviation terms for depth and heading
a reduction term is introduced defined by λ.

|εz| ≤ δz (26)

|εψ| ≤ δψ (27)

If at least one of these values is exceeded, an unique ratio λ is calculated
so that the allowed maximum forces for surge and sway decrease as the error
increases. It is formulated as an exponential function as follows:

λ = eδr ln (γe) (28)

where δr is the total residual error defined as,

δr =

⎧⎪⎨
⎪⎩

|εz| − δz if |εz| > δz ∧ |εψ| ≤ δψ

|εψ| − δψ if |εz| ≤ δz ∧ |εψ| > δψ

|εz| − δz + |εψ| − δψ if |εz| > δz ∧ |εψ| > δψ

(29)
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γe, with 0 < γe < 1, is the convergence rate. A γe close to 1 will result in a
slow convergence towards 0 whereas a γe close to 0 will result in a fast conver-
gence. If the tuning parameter Kγ = 0.01 is considered as a value close enough
to the exponential plateau of (28), a good value of γe can be approximated as,

γe = e
ln (Kγ )
δz+δψ (30)

It is important to note that if the vehicle is slow to reduce the error whether
it is because of external forces or how the vehicle functions or other reasons,
the approximation of the plateau should be decreased. On the contrary, if the
vehicle is fast to minimize the error, it can be increased.

The resulting maximum allowed surge and sway forces can therefore be
defined as follows:

τmax capped =

{
τmax if |εz| ≤ δz ∧ |εψ| ≤ δψ

λ(δr)τmax otherwise
(31)

with τmax the vector containing the original maximum force allowed as a per-
centage in surge and sway such that,

τmax =
[
τmax X

τmax Y

]
(32)

Both surge and sway controllers are PIDs that include the previous charac-
teristics. By default, they are based on the horizontal errors εx and εy,

τX = Kpεx + Ki

∫
εxdt + Kdε̇x (33)

τY = Kpεy + Ki

∫
εydt + Kdε̇y (34)

However, in the presence of velocity instructions and/or constraints, the PIDs
are based on desired velocities instead of desired positions.

6 Simulation

6.1 Setup

The simulation is based on the Robot Operating System (ROS) [14] using a
python simulation node provided by Blueye Robotics [1] to simulate their under-
water drones such as the one presented in Fig. 2. The simulated vehicle is a
Pioneer X3 developed by Blueye Robotics. It is a 4 DOF vehicle, actuated for
surge, sway, heave and yaw. There are two thrusters in the surge direction, one
lateral and one vertical. The vehicle is equipped with pressure sensor for depth
estimation, and IMU for heading. The vehicle also supports USBL and DVL
navigation systems providing measurements of positions and velocities. For roll
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and pitch angle, the drone is kept passively stable by the separation of centre
of gravity and centre of buoyancy. The two different patterns, both constructed
from straight lines, was tested, a lawnmower pattern and an inspection pattern.
The former includes six rows of 10 m each, separated from each other by a dis-
tance of 2 m. The first half of the pattern, i.e. the first three rows, are free of
constraints and are considered as transit path. The last three are considered
as inspection path with heading constraints. The latter pattern resembles an
inspection of the side a small ship hull, considering also the navigation to the
beginning of the inspection route.

Fig. 2. Blueye X3 ROV [1].

For both simulations, the same variables defining the guidance and control
systems are used and presented in Table 1.

Table 1. Table of variables used during the simulations.

Name Parameter Value

Lookahead distance (m) (Δmin, Δmax) (0.8, 2.0)

LOS convergence rate γr 1.3

Integral gain parameter κ 0.1

Horizontal acceptance distance (m) dhk 0.2

Vertical acceptance distance (m) dvk 0.35

Accepted heading error (deg) δψ 4.0

Accepted depth error (m) δz 0.5

Exponential convergence rate γe 0.77

Starting position (m, deg) (x, y, z, φ, θ, ψ) (0, 0, 2, 0, 0, 0)

6.2 Lawnmower Pattern

With this pattern the goal is to test a typical path often used for surveys of
areas. To test the proposed system, it is divided in two parts, using line of sight
for heading control for the first part, and course control for the second part.
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The constraints requested by the waypoints of this last part are related to the
heading, the underwater drone has to follow the line while being perpendicular
to it, therefore moving sideways.

Fig. 3. Results of the framework with the lawnmower pattern. (a) shows the trajectory
of the underwater drone following a lawnmower pattern in the horizontal plane. The
dots represent the waypoints and their color, the guidance mode they contain. Yellow
for transit, black for inspection. (b) shows the errors recorded over time while the drone
is following the path. From top to bottom, the heading error εψ, cross track error ye

and depth error εz.

With this pattern, the desired depth is constant at 4 m deep. So only at the
beginning of the operation a notable change in depth is expected as the drone
starts at 2 m depth.

The results of the mission are presented in Fig. 3a and b. In the first Figure,
the dots represent the waypoints, and their color represents their status, i.e.
transit (yellow) or inspection (black) path.

It is possible to observe that the mission is carried out successfully. The
desired heading and depth are quickly reached, the errors grow larger only during
the transitions, i.e. change of targeted waypoint and/or constraints, which is
expected. Over the complete duration of the operation, the system successfully
maintained the cross track error close to 0.

It took the drone more time to complete the second part that the first, about
80 s for the first and about 180 s for the second part. This was expected since
the drone is moving slower sideways due to larger drag forces and lower thrust
force in the lateral direction.

6.3 Inspection Pattern

In this case, the goal is to test a simplified version of an inspection route for
ship hull inspection. Only one side of the hull is considered. The path is divided
again into two parts, first navigating to the beginning of the inspection route
and then completing the inspection path.
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Fig. 4. Results of the simulation of an underwater ship hull inspection. (a) shows the
planned path using PRRG to inspect the ship. (b) shows the 3D trajectory of the
underwater drone, moving to the beginning of an inspection route and following it.
The spheres represent the waypoints and their color, the guidance mode they contain.
Yellow for transit, black for inspection. And (c) shows the errors recorded over time
while the drone is following the path. From top to bottom, the heading error εψ, cross
track error ye and depth error εz.

The second part is a vertical lawnmower pattern composed of three rows
of 132 m separated from each other by a distance of 3 m. While the drone is
following this pattern, the heading is kept perpendicular to the lateral direction
of motion, simulating the drone facing the ship hull for visual inspection.

This simulation is based on the scenario developed in [4], using PRRG to
create a planning graph around the ship and calculate a collision-free path under
constraints to safely execute the path. This framework enables fast online re-
planning for collision avoidance and/or in case there is a change in the mission
plan.

For this simulation the depth is slowly increasing from the beginning of the
transit path until its end. The next section of the simulation has also varying
depth from 0.6 m depth to 6.6 m. The inspection lines are either vertical or
horizontal.

The 3D trajectory of the underwater drone can be observed in Fig. 4b and the
errors related to the heading, cross track error and depth are presented in Fig. 4c.
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The system performed as good as in the previous simulation. More variations in
the depth error were recorded but still remain in an acceptable range.

7 Discussion

Based on the two simulations experimented, the proposed system for the Blueye
ROV has proven its efficiency, and made it possible to exploit the high maneu-
verability capabilities offered by this drone. It was however tested considering a
calm environment, but environmental loads, especially the water current, need
to be taken into account to develop a robust system. Even though the proposed
system should be able to scale to this problem, it needs to be tested.

The proposed force limit has its role to play in this situation and helps
attenuate and potentially prevents horizontal drift when the error in heading
and/or depth grows. This ensures that the drone does not deviate too far from the
initial trajectory by proportionally reducing its potential speed in surge and sway
while the errors are being corrected. This makes it possible to maintain the drone
in its last valid position. Being able to perform sway motions is advantageous in
that regard. Higher priorities are set for the depth and heading because of their
importance in inspection missions. Additionally, with a guidance system based
on the LOS laws, it is essential to have a correct heading in order to achieve
good performance.

Despite the fact that features requiring additional processing were included,
such as the time varying lookahead distance, integral action for the desired head-
ing and the force limit ratio, the processing complexity and time remain low
which is important for real time applications and onboard processing with low
computational capacity vehicles.

The time varying lookahead distance allowed a more stable system and
reduced significantly the oscillations around the path while keeping the pos-
sibility for a short lookahead distance.

Thanks to the proposed combination of the guidance system and the path
planning framework, it was possible to successfully perform an inspection mis-
sion with heading constraints to visually inspect the ship’s hull. However, the
possibilities offered by the rule system of the planner and the guidance instruc-
tions system were not fully exploited here as only the line of sight instructions
and heading constraints were considered during the simulations.

Conventional PID controllers were implemented and could benefit some
improvement, especially for the depth controller which can have difficulties to
maintain the desired depth in some conditions.

A specific reference model such as [6] could also help improve the solution,
especially when taking into account multiple constraints.

8 Conclusion

In this paper, a 3D path following system of straight line was presented. It
is based on the horizontal lookahead based line of sight guidance law which
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is utilized for heading control and course control according to the presence of
heading constraints. For heading control, Integral LOS was applied to improve
the stability of the trajectory of the drone. To further improve it, the time varying
lookahead distance was included together with a dynamic surge and sway force
limit ratio.

The simulations proved the potential of this method when combined with
the PRRG for inspection tasks which require for example visual feedback. And
will be developed further for that purpose.

For future work, environmental loads will be considered and the system will
be tested in real world conditions in the context of ship hull inspection.

The guidance system will be augmented with a constant jerk reference model
[6], which is an alternative to filter based reference models. It provides a desired
velocity and position by integrating of a constant jerk which is on or off. Improve-
ments of the PID controllers will also be considered, including the addition of
acceleration feedbacks.
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ABSTRACT Taking advantage of the complimentary properties of sonars and cameras can improve

underwater visual odometry and point cloud generation. However, this task remains difficult as the image

generation concepts are different, giving challenges to direct acoustic and optic featurematching. Solving this

problem can improve applications such as underwater navigation and mapping. A camera-sonar combination

is proposed for real time scale estimation using underwater monocular image features combined with a

multibeam forward looking sonar. The detected features from a monocular SLAM framework are matched

with the acoustic features based on the relative distances in instrument reference frame calculated using the

two data streams, and used to estimate a depth ratio. The ratio is optimised over a large sample set to ensure

scale stability. The sensor combination enables real time scale estimation of the trajectory and the mapped

environment, which is a requirement for autonomous systems. The proposed approach is experimentally

demonstrated for two underwater environments and scenarios, a subsea module mapping and a ship hull

inspection. The results demonstrate the efficiency and applicability of the proposed solution. In addition

to correctly restoring the scale, it significantly improves the localization and outperforms the tested dead

reckoning and visual inertial SLAM methods.

INDEX TERMS Imaging sonar, visual SLAM, underwater perception, 3D reconstruction.

I. INTRODUCTION
Situational awareness of robots is fundamental to enable their

autonomy. Simultaneous LocalisationAndMapping (SLAM)

[1] methods can significantly contribute to the autonomy

as they improve the knowledge and understanding of the

environment where the robots are operating in real time.

However, when the method depends on a monocular camera

only, the scale information of the resultingmap and calculated

vehicle path is lost or ambiguous. The scale information is

important for both localization and mapping to enable the

autonomy of the robotic platforms.

Underwater scenes can be difficult to observe and under-

stand with an optical camera because of the light conditions

in underwater environments. The light refraction makes the

object appear blurry or distorted and the produced image

becomes dimmer as the depth increases, resulting in loss

The associate editor coordinating the review of this manuscript and

approving it for publication was Chengpeng Hao .

of color and contrast perception. The turbidity of the water

and the floating particles have an negative impact on the

visual range by scattering and absorbing light. Using artificial

light, movements of the light source and receiver may cause

challenging light and shadow patterns. The advantage of

optical imaging is the high resolution and rich information

content in the data. Acoustic signals do not depend on

seawater turbidity and allow larger observation ranges for

underwater structures and objects. Compared to optical

data, the resolution of acoustical data is considerably lower.

For underwater vehicles, multibeam forward-looking sonars

(MB-FLS) is often used to provide accurate observations

of the surroundings to enable collision avoidance and

safe paths.

In spite of the challenges to optical underwater imaging,

features can be detected using computer vision and learning

methods through processing to adjust and compensate for

the effects present underwater. For MB-FLS imagery, the 3D

information of the features is not available, only the relative

123070
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FIGURE 1. Overview of the proposed approach to perform camera-sonar
combination by matching the sensors respective features.

azimuths and distances are computed, leaving the elevation

of the data points ambiguous.

Visual SLAM (VSLAM) is a an active research field where

the algorithms and methods are set up to match the available

sensors and their configuration to detect and identify features

in the environment. Both single and multiple camera systems

are used, but the former is most common [2], [3], [4]. The

sensors are easy to use and deploy, but for single camera

systems in particular, the navigation solution experiences

drift. The resulting scale ambiguity represents a particular

challenge for SLAM based methods. To improve the results a

second camera, a depth camera or an IMU can be added [5],

[6], [7].Monocular SLAMmethods have also been developed

or augmented specifically for the underwater environment

[8], [9]. Sonars can be used for range detection by time

of flight measurements. In [10], a FLS is employed with a

feature based approach using detection of well-constrained

landmarks to accurately estimate 3D points for mapping

purposes. A filter-based approach is adopted in [11], the

registered scans are processed together with an IMU and a

DVL to create online a 2D grid map of the environment.

In [12], a method to combine an IMU, a stereo camera

and a mechanical scanning profiling sonar is proposed.

The camera and sonar are combined over multiple samples.

Patches based on the visual features are created and used

to determine if they correspond to the features previously

observed by the sonar. The complementary properties of

optic and acoustic sensors represents a promising solution

[13], [14], [15]. In [16], particle filter is used as the data

association technique to calibrate the camera and sonar to

obtain an accurate transformation matrix. The 3D camera

features are then projected onto the sonar scan using the

sonar coordinate system.AVSLAM framework is augmented

in [17] where the camera is combined with a single beam

echosounder to dynamically restore the scale of the SLAM

estimate. To this end, the acoustic cone is modelled and

matched to the best corresponding visual feature. The depth

ratio is then calculated and applied to all the 3D points and

the estimated trajectory.

The efforts made to enable optical and acoustic data

combination depend strongly on the setup and application,

and very often with low level feature matching mechanisms,

i.e., using the main image characteristics such as shape and

texture. Direct combination at the feature level for improved

navigation and mapping requires more advanced inter-sensor

calibration and methods, and is not well studied, and requires

specific sensors and calibration routines. Using a sonar

in addition to a camera provides a robust, drift free, and

consistent solution, together with a basic sensor suite with

implementation that are convenient to operate.

This paper aims at combining a monocular camera and a

MB-FLS for improved underwater localisation and mapping

independent of inertial or gyro data, making it suitable

also in areas where inexpensive magnetometer based gyros

are not feasible. The optical images are processed in a

VSLAM framework to obtain a trajectory and point cloud

over time. The sonar measurements are first used to rescale

the SLAM estimates by finding correspondences between

the sonar features and camera features. A depth ratio is

estimated during the initialisation and updated online using

the Maximum Likelihood Estimation (MLE). The depth ratio

is a single value describing the factor to correct the depth scale

of the VSLAM framework. It allows to convert the SLAM’s

distance unit to meters. The correspondences between the

two sensors can be done thanks to the prior knowledge of

intrinsic and extrinsic calibration details for the camera. The

overlapping acoustic and visual areas can then be estimated,

and a sonar feature can be represented as a segment in the

camera image. Feature matching is performed based on the

relative distances, which also helps removing outliers from

the set of visual features such as particles. Thematched points

enable estimation of the depth ratio used later for the entire

set of poses and visual points from the VSLAM framework.

The optical-acoustic data combination is performed within

the SLAM framework itself, which enables a verification step

for the visual features. This provides improved localisation

and mapping accuracy together with scale correction. Finally,

3D surface estimation based on the generated re-scaled

point cloud is performed, using an adapted Poisson surface

reconstruction approach.

To achieve real time underwater SLAM for low cost ROVs

used for ship hull inspection is the main objective of this

work, and the solutions are applicable to any underwater

vehicle equipped with camera and MB-FLS. The camera

and sonar sensor models are first presented in Section II

including explanations of the inter-sensor correspondence

mechanisms. Section III describes the depth ration estimation

obtained using the inter-sensor feature matching method. The

experiments and results are then presented and discussed

in Sections IV and V. Finally, conclusive remarks are

VOLUME 11, 2023 123071
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FIGURE 2. The footprints of the perception sensors are represented while
the ROV is facing a wall. The camera field of view is in red, and the field
of view for the forward looking sonar is shown in blue.

formulated in Section VI. An overview of the components

and their interactions in the proposed approach is presented

in Figure 1.

II. SENSOR MODELS
To understand how correspondences between the features

in the sonar data and the optical camera imagery can be

created, both sensor models are described. The field of view

for the sensors have a large overlap and are horizontally

aligned. However, there is a vertical offset because the sonar

is mechanically mounted above the camera. The footprints

of both sensors are represented in Figure 2. In this paper,

we refer to the camera measurements as images, and to sonar

measurements as scans, where a scan is defined as the data

from all acoustic beams for a single acoustic ping.

A. SONAR MODEL
The sonar emits sound pulses referred to as pings and

using the wave properties of acoustics, the multi-element

transmitter and receiver array enables directionality for both

signal transmission and reception providing acoustic beams.

These beams have a vertical and horizontal opening and

direction defined by the transducer element array and the

signal transceiver. The pings propagate to a target before they

are reflected back to the sonar receiver. The target range is

estimated based on the signal travel time and the bearing

is calculated using the phase difference measured using the

transducer array. Most MB-FLS have a one dimensional

transducer element array resulting in undefined depression

angles for the echos and the sonar can therefore not derive

the vertical position of the targets. This means that each point

on the sonar imagery is a point on a 3D arc going from the

minimum elevation to the maximum allowed by the sensor.

The sonar employed in the experiments was a Blueprint

Oculus 750/1200 kHz with horizontal aperture of 130◦ and

20◦ vertically. It has 512 beams uniformly distributed and

with angular width σh = 0.25◦. The ping rate is controlled

FIGURE 3. The footprint of the forward looking sonar is represented with
the corresponding geometry. The minimum and maximum elevation
planes are represented, as well as the zero-elevation plane, in which all
the planes are merged to after the processing of the measurements.
A beam i is also represented, going through all the elevation planes.

and configured to 10Hz. For the experiment used in this

work, the sonar was configured in high frequency mode,

corresponding to 1200 kHz, with low gain. A fixed maximum

range of 4 meters was set to correlate to the visible range of

the camera.

A sonar scan represents a 2D acoustic intensity array

representing the features in polar coordinates [θ, r]�, where θ

is the azimuth angle and r is the range. The scan is formed as

a polar image. The 3D geometry of the beams are represented

in Figure 3 where the 3D acoustic features are expressed

in spherical coordinates [θ, φ, r]� with the elevation angle

φ. When the acoustic ping reflections have returned to the

sonar, the measurements are merged into a polar grid without

elevation information. This grid can be projected onto the

zero-elevation plane and placed in the relevant 3D reference

frame. To represent the acoustic points in a 3D Cartesian

world, given that the elevation angle is known or estimated,

the coordinates need to be converted. The spherical-Cartesian

coordinates conversion is formulated as

P =
⎡
⎣PxPy
Pz

⎤
⎦ = r

⎡
⎣cosφ cos θ

cosφ sin θ

sinφ

⎤
⎦ , (1)

where P is the 3D point in Cartesian coordinates. The inverse

conversion is also possible, and given by

r =
√
P2x + P2y + P2z , (2)

θ = tan−1

(
Py
Px

)
, (3)

φ = tan−1

⎛
⎝ Pz√

P2x + P2y

⎞
⎠ . (4)

B. CAMERA MODEL
The camera used in the presented experiments has an imaging

frequency of 25Hz and a resolution of 1280 × 720px. It has
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a vertical and horizontal Field Of Views (FOV) underwater

of ∼48◦ and ∼77◦ respectively. The image was calibrated

underwater using a checkerboard and follows the pinhole

model which formulates the 2D-3D correspondence as

p = P
Pz
K , (5)

converting the 3D point P in the world to the 2D point p in
pixels in the image, using the intrinsic matrix of the camera

K defined as

K =
⎛
⎝fx 0 cu
0 fy cv
0 0 1

⎞
⎠ . (6)

The focal length is described by (fx , fy), and (cu, cv) are the
pixel coordinates of the optical centre of the camera.

C. CAMERA-SONAR CORRESPONDENCE
To combine both sensors, correspondences and mapping

functions must be setup. They are defined based on both

models to formulate the features of the first sensor in the

second’s sensor frame. For the correspondences, we consider

the camera to be the origin of the local reference frame and

use the features detected by the SLAM framework. Since the

sonar is aligned with the camera with offset only vertically,

the transformation matrix is simplified and constitutes an

identity matrix for the rotation and a translation vector

[0, 0, tz]� describing the vertical offset tz. This removes the

need of computing 6-DoFs sensor transformations. However,

this comes with the risk of calibration imprecision which

can significantly impact the results. Given that the main

objective of this work is to inspect underwater structures,

the imprecision is negligible since the operation will be

performed with a close range to the objects.

Because the elevation of the sonar features, φ, is ambigu-

ous, the exact corresponding points on the camera image

cannot be known from the sonar data directly. Instead, the

potential locations of an interest point can be represented

by a moving vertical segment for each beam, where the

beam and the image plane coincide. For an ideal setup where

the camera is perfectly calibrated and the mounting offset

between the camera and sonar is exactly compensated, each

beam corresponds to a segment of the pixel column in the

optical image. Because both sensors have different vertical

field of views and have a vertical offset, the intersecting beam

segment does not include the entire pixel column, and its

length varies with the distance to the target. ui represents the
corresponding pixel column for a sonar beam of azimuth θi,

ui = fx tan(θi) + cx . (7)

However, since a beam has an angular width σh wider

than the pixel width, there are multiple corresponding pixel

columns for each beam in the optical image. The first and last

columns must be calculated with θi ± σh where σh represents

the angle between the beam’s central axis and its boundary.

To obtain the list of possible vertical pixels for a given beam,

FIGURE 4. The geometry involved to obtain the pixel position on the
optical image of a sonar feature T is represented. (a) is a top-down view,
in the Oxy reference plane, and shows the parameters used to obtain the
horizontal position ui of the pixel with the azimuth θi and range ri of the
sonar beam i . (b) presents a side view, in the Oxz plane, with a possible
sonar beam elevation φ. C and S respectively correspond to the camera
and sonar positions.

the pinhole formula is not sufficient, the sonar range ri and
the vertical offset tz must be included in the estimation of the

vertical pixel locations vi,

vi = fytan(θy) + cy. (8)

The elevation angle for the light ray from the target to the

camera is represented by θy, and is obtained given a target

with location T seen by the sonar at a distance ri. Its estimated

position T̂ is initially placed on the sonar’s zero-elevation

plane and moved along the elevation circle arc constrained

by the acoustic beam vertical width, for all φ ∈ [φmin, φmax].

Given that the camera is at the origin of the reference frame,

the coordinates of T are enough to obtain the angle θy, such

that

θy = atan2(Tz,Tx). (9)

Equation (8) can be simplified to avoid multiple operations

with tangents,

vi =
⎧⎨
⎩
fy
Tz
Tx

+ cy, if Tx �= 0

cy, otherwise.

(10)

This problem can be solved in a 2D environment, in the

Oxz plane, since the camera and the sonar are horizontally

aligned. Therefore, the possible positions of T are computed

as follows:
T =

[
tx
tz

]
+ ri

[
cos φ

sin φ

]
. (11)

A visual representation of the parameters is displayed in

Figure 4 with a top-down and side views. The angles are

defined relative to a target T and then used together with the

Pinhole definitions to obtain a list of pixel candidates on the

optical image. The top-down views shows the alignment of

the sensors and the horizontal angles from both sensor are

the same and remain constant regardless of the vertical angle.

The side view shows how are the vertical angles related, given

the vertical offset of the sonar.
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The mapping from the sonar scan to the camera image

is now established with (7) and (10), considering only the

overlapping areas. However, a sufficient number of points,

which are distributed in the image, are matched to ensure that

robust results are obtained in the following sections and can

be applied to the not-overlapping areas.

Each visual feature on a sonar line should correspond

to a sonar feature. Matching the two features enables the

estimation of a depth ratio.

III. DEPTH RATIO ESTIMATION
The feature matching mechanism was developed and exe-

cuted in three steps followed by the estimation of the ratio.

1) All features are detected in the corresponding image

and scan. In the case of the optical camera, 2D features

are required as well as triangulated 3D points. To this

end, a monocular V-SLAM framework is utilized,

ORB-SLAM [18]. For the sonar scans, only 2D features

are sampled.

2) All the features are filtered, and only the closest visual

and acoustic points are kept.

3) The features are matched based on their respective

relative distances and constrained by the possible

locations on the image plane.

4) Each detected correspondence is processed to obtain a

depth ratio and the MLE is applied over all matches to

obtain a unique and consistent depth ratio.

In the following section III-A, the first two steps are

covered, the selection and filtering of the good features to

match. The last two steps are presented in section III-B, the

actual matching of visual and acoustic features and how they

are used to obtain scale information.

A. CAMERA-SONAR FEATURE MATCHING
The ORB-SLAM framework for monocular image data

provides a trajectory and 3D point cloud over time. It has

real-time performance and can work in large environments.

It performs feature detection and matching for each image

and builds a pose graph over time which enables loop

closure and camera relocalisation capabilities. It is a popular

lightweight framework that has proven to be very efficient

in many applications [19], [20], including in underwater

environments [21], [22] in spite of the challenges related

to the ORB descriptor applied to image features and

characteristics common underwater. Scenarios close to the

water surface will often suffer from non-uniform ambient

lightning conditions, and in deeper water the motion of

the camera and light carrying robot may cause dynamic

light and shadow patterns. The Contrast Limited Adaptive

Histogram Equalisation (CLAHE) has proven to be an

efficient method to compensate for non-uniform lighting

environment to highlight the present features before the

images are passed through a marine snow filter [23]. The

ORB-SLAM’s embedded parallax mechanism is made more

flexible to enable continuous triangulation of points with

FIGURE 5. A 3D scene is represented with the camera-sonar
correspondence and matching mechanisms. The green rays come from
the camera, and the purple beams from the sonar.

a slow speed manoeuvring ROV and high camera frame

rate. This mechanism also accounts for unwanted features

coming from dynamic objects by computing the local median

disparity of the tracked features and keeping only those below

a threshold. This also results in a fast initialisation process.

Only the polar features of the sonar scans are required for

the matching mechanism as they already hold positioning

information related to the vehicle’s reference frame, i.e., the

distance to the object and its horizontal angle relative to

the ROV. However, depending on the surrounding structures,

the scans might include a significant amount of noise.

They are therefore preprocessed to remove the noise and to

highlight areas with structural information. A combination

of a Gaussian filter and CLAHE is used for that purpose,

significantly diminishing the noise while at the same time

increasing the intensity values of the structures in sight.

Furthermore, this approach allows uniform intensity over the

scan sequence.

One feature per beam is selected, the closest with

a reflectance above a high reflectance threshold. They

correspond to the features with the highest chances of being

visually detected as they should also be the closest to the

camera.

Three sets of data are now available: the closest sonar

points, the 3D point cloud, and the corresponding 2D features

on the current image. For each sonar line on the image, based

on the sonar feature information and (7) and (8), the closest

3D point that has its 2D correspondence lying on the line is

matched. The 3D representation of the data types is displayed

in Figure 5 with the sonar beams and camera reprojections.

B. MLE OF THE DEPTH RATIO
Because the ROV is continuously moving, timing is essential.

The sonar processing is tightly integrated in the SLAM

framework and the time difference between the sonar scans

and optical images is monitored to make sure they are

synchronised. If the latency is below a threshold, defined as a

percentage of the rate difference, the depth ratio is computed

for this sonar measurement. This latency check is applied to

ensure both sensors are observing the same scene.With a high
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FIGURE 6. The visual table of the camera-sonar correspondences is
computed with acoustic distances ranging from 0.25m to 3.0m. Each red
line corresponds to a possible projected sonar beam on an image, i.e., its
vertical pixel coverage.

latency, it is very likely that the sensors captured the scene

from different locations.

Each sonar point, corresponding to a vertical line in the

image, is now matched to a visual feature if such exists. For

each match, a distance ratio is computed using the visual

distance and acoustic distance, such that

dci = ||η − Pi||, (12)

cdsi = ri
dci

. (13)

where η is the ROV position, Pi the 3D visual point used to

obtain the visual distance dci to the camera, ri the sonar range,
and cdsi , the distance ratio for the match i. Once performed

on each match, a new set of values is obtained. The MLE is

employed to extract the final depth ratio, as it robustly find

a consistent estimate. More data is accumulated over time,

which makes the MLE adapt and estimate a value closer to

the optimal one. The set of distance ratios is assumed to be

following a Normal distribution N (μ, σ 2) with mean μ and

standard deviation σ . Its probability density function (pdf) is

defined as follows,

P(x; μ, σ ) = 1

σ
√
2π

e−
(x−μ)2

2σ2 , (14)

for the observation x. For simplification, the log likelihood is

applied by taking the natural logarithm of the expression. This

is possible because the natural logarithm is a monotonically

increasing function. The equation (14) becomes

ln (P(x; μ, σ )) = ln

(
1

σ
√
2π

)
− (x − μ)2

2σ 2
. (15)

Iteratively maximising the above equation, or minimising

its negative equivalent, results in optimised estimated values

μ̂ and σ̂ for the current data collected. The depth ratio λ is

then assigned to themean of the estimated normal distribution

such that

λ = μ̂. (16)

The continuous scale correction using the MLE enables

a stable correction of the trajectory and point cloud over

time, which results in improved localisation performance.

Additionally, the normal distribution is used for outlier

rejection and correction of the visual 3D points. The

points that are more that 2σ̂ away from μ̂, corresponding

approximately to the 95% confidence interval, are considered

as outliers. The points inside this interval are updated, i.e.

displaced further away or closer to match the predicted depth

ratio. The elevation and azimuth angles of the updated points

remain the same. This verification step is possible because

the sonar is accurate and reliable, and has no error growth

over time. Therefore, a 3D point with an irregular individual

depth ratio can be detected and rejected to prevent the SLAM

system from using it for future estimates.

IV. EVALUATION
In this section, the proposed approach is tested and quanti-

tatively compared with three alternative SLAM navigation

approaches and the ground truth. The camera-sonar corre-

spondence model is first validated. The list of camera-sonar

correspondence possibilities was computed geometrically

and plotted in Figure 6. The red bars represent the possible

intersections of the sonar beams with the image plane. Given

the geometrical configuration, the beams with lower acoustic

ranges intersect the higher parts of the image plane because

the sonar is placed above the camera. Beams with larger

acoustic ranges converge towards the center of the image.

To experimentally validate the setup, objects with known

positions were placed in a pool and the ROV, equipped with

the camera and sonar, positioned in front of them. The ROV

was equipped with a GNSS receiver mounted on a pole,

enabling the computation of its position and the distance

between the ROV and the objects. The visual results of the

first test scene are displayed in Figure 7. The main objects

of the scene were detected by the sonar and were easily

recognisable because they included high acoustic intensity

values. Figure 7d is visually correct since the projected beams

on the close objects in the camera image are higher than

the rest, because the detected acoustic features corresponding

to the objects reported close distances. When observing the

stone pillar in both the sonar scan (Figure 7b) and camera

image (Figure 7d), it is possible to understand how the sonar

beams intersect the image plane at different sections. The

edge of the pillar being the closest part of the pillar to

the camera and sonar, the intersection segment is naturally

higher, closer to the sonar’s depth. And the further away the

points are from the edge, the further away they are from the

camera and sonar, gradually moving the intersection segment

towards the center of the image, close to the camera’s depth.

The numerical errors were estimated using GNSS as

ground truth and are reported in Table 1. Here, the setup was

tested in an additional scene, where the vehicle was facing the

corner of the pool.While the second column shows a measure

of the sonar accuracy, the third reports how well the sonar
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FIGURE 7. (a) is the original sonar scan as a polar image with rows as ranges and columns as bearings. It is converted to
cartesian corrdinates in (b). The contours of the objects in the scene are recognisable as they present high intensity values.
(c) is the original camera image. After applying the sonar features on the image, (d) is obtained. Each green line corresponds to
an intersection of a sonar beam with the camera image plane. They highlight the possible locations of the acoustic features on
the image plane.

TABLE 1. Camera-sonar correspondence results.

FIGURE 8. Distance ratios were collected and accumulated over a
sequence in two different scenes. Histograms (a) and (b) corresponds to
the two scenes and Normal probability distributions were fitted and their
density functions displayed on top of the histograms.

beams are corresponding to the image features, i.e., the angle

difference.

Experimentally, the distance ratios acquired during field

trials were found to fit a Normal distribution. The previous

two scenes were expanded to include a few minutes of image

and scan sequence of the surroundings to compute and create

a set of ratios over time and with a changing scene. The

corresponding histograms are displayed in Figure 8 with

the density function on top. This validated the choice of

the Normal distribution for the MLE. In both scenes, the

distance and angle errors are very low, with centimeter level

accuracy for the distances, 0.04m and 0.02m, and decimal

level accuracy for the angles, 0.22° and 0.15°. For the ship

hull mapping and inspection application considered in this

work, theses errors are acceptable since the operations are

performed close to the structures. For example, given the

results from Table 1, at three meters distance, the maximum

expected total error of the point correspondence is ∼ 0.15m,
and ∼ 0.05m on average.

Ideally, the estimated depth ratio should converge towards

1, meaning the scale does not need to be re-updated. Our

approach using the MLE is compared to three alternative

approaches, including using simply the median or the mean,

and using a single central beam. In this scenario, for each

method, the depth ratio is estimated and applied every time

there is a new keyframe created in the SLAM framework. The

convergence rate of each method can be observed in Figure 9.

While all methods converge rapidly, only the proposed one is

continuously stable once it has converged. This is especially

important for real-time operations as scale errors can quickly

propagate to the depending systems. Peaks can appear when

there is a sudden change of geometry in the scene, or when

the ROV is turning, but they are immediately corrected. The

method using the median showed high variations because it
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FIGURE 9. The depth ratio evolution over time is displayed. The proposed
method using the MLE is compared to the mean and median in (a) and to
a single central beam estimation in (b).

was heavily influenced by the new values added to the set

and therefore by the shifts in sonar range. In comparison,

using themeanwasmore stable, but still contained oscillatory

results. When a single beam was used, the results improved.

However, this method was more prone to noise, which

can then destabilize the future SLAM estimates. Using the

proposed method based on the MLE brings scale stability

and consistency over longer periods of time, and once it has

converged, it remains stable with low variance around the

convergence point.

To show how the proposed method performs and improves

the VSLAM framework, the trajectory estimate was com-

pared to the default monocular SLAM from ORB-SLAM,

visual-inertial SLAM, and dead reckoning using an IMU and

a DVL. Additionally, a trajectory interpolating GNSS fixes

and visual markers was computed and used as the ground

truth.

The estimated trajectory of each method is displayed in

Figure 10. They were all manually aligned. This visual

comparison enables a first assessment of the method’s

performance and of the rescaled trajectory from the proposed

method. The trajectory of the monocular SLAM (Mono

SLAM), although correct, is off scale and can not be used

for robotic applications. However, it was manually rescaled

for the purpose of comparison. The rescaled version of

the trajectory using the sonar (VS SLAM) appears close

to the ground-truth compared to the other solutions. The

visual-inertial SLAM (VI SLAM) was also able correctly

FIGURE 10. The 2D trajectories of all the methods used for comparisons
are plotted in (a) and only the scaled ones in (b). (c) displays the position
error over time of all the trajectories including the manually rescaled
monocular SLAM trajectory.

TABLE 2. Performance metrics for trajectory evaluation.

rescale the trajectory, however, as the scale factor is estimated

during the initialisation, if it is incorrectly estimated, it will

lead to acceleration bias errors which can quickly propagate

to the position estimates. Also, the noise of the low cost

IMU influenced the plotted trajectory negatively. The dead

reckoning solution performed well but showed apparent

drift over time that made the trajectory end at a different

location. The numerical results are highlighted in Table 2,

with for each method, the Absolute Trajectory Error (ATE)

computed with the Root Mean Square Error (RMSE), and

the Relative Position Error (RPE). They were calculated

over the whole trajectory. The initialisation time is also

included, corresponding to how much time the framework

needed to converge to an initial position estimate. Finally,

the completeness represents how much of the dataset is

successfully covered by the method, i.e., howmany estimates

were provided over time compared to the data available.

Typically, long initialisation processes and visual tracking

losses will result in significant loss of coverage.

The dead reckoning method was quickly initialising and

always provided an estimate. However, it drifted quickly. The

VI-SLAM showed the largest drift and lowest accuracy of the

candidates, but thanks to the ORB-SLAM capabilities, the

VOLUME 11, 2023 123077



A. Cardaillac, M. Ludvigsen: Camera-Sonar Combination for Improved Underwater Localization and Mapping

FIGURE 11. (a) and (c) are the rescaled point clouds and trajectories from
the proposed pipeline, and (b) and (c), their corresponding 3D models
from the online Poisson surface estimation.

trajectory still ended close to the ground-truth. In comparison,

the proposed method had very low ATE and RPE, and also

ended close to the ground-truth. However, this method lost

accuracy during turns.

V. APPLICATIONS
The proposed method can be used for image enhancement

using depth prior, robotic navigation, or 3D reconstruction.

The latter will be explored in this section in two independent

inspection scenarios. The first one consists of an inspection

of a subsea module, and the second, of an inspection of a

ship propeller. Underwater inspections are important to assess

the structure integrity. In the case of remote inspections, the

operation is typically overviewed by an inspector monitoring

the inspection through a transmitted visual stream. Establish-

ing scale to the scene allows additional and automatically

processed data enabling better inspection condition and

assessment of the structure.

The 3D reconstruction is based on the online generated

point cloud from the proposed approach, combining the

camera and the sonar within the ORB-SLAM framework,

ensuring the estimation of a correctly scaled model. It is

performed in real-time using the inactive rescaled visual

point from the modified SLAM framework. The inactive

points represent the SLAM 3D points not being tracked

or modified. The Poisson surface estimation was applied

to obtain a set of 3D faces displayed to the operator for

monitoring purposes. This method is particularly efficient for

the mapping application since it can work with noisy data and

misregistered points while estimating the surface fast. The

3D surface was estimated in real time to facilitate object and

place recognition for the inspector enabling real time updates

of the mission plan based on the findings. The results for the

two scenarios are displayed in Figure 11, with both the prior

point cloud and the resulting estimated surface. The geometry

of the 3D objects is not exact, but provides a representative

presentation with the correct scale. In the case of inspection

missions, the generated model can be exported along with

annotations from the inspector, making the inspection process

more efficient, repeatable and accurate.

VI. CONCLUSION
A new approach to monocular SLAM estimates rescaling

is presented, using a MB-FLS for scale estimation. The

proposed camera-sonar combination includes estimation of

individual sonar beam coverage in the optical image, enabling

visual-acoustic feature matching. This allows depth ratio

estimation after the application of the maximum likelihood

estimation, providing continuous rescaling, and stability. The

proposed pipeline was experimentally tested and the results

show improvements in stability and robustness compared to

known methods.

However, it was observed during the experiments that the

position error tends to increase when the vehicle turns. This

is likely due to the camera-sonar calibration imprecision.

A calibration step in the processing pipeline would improve

these errors and will be studied in the future. Also, the

method would benefit from a tighter integration of the sonar

in the SLAM framework, including the addition of parameters

such as the speed of sound and the reprojection errors of

the acoustic features. This would also enable the sonar

to keep estimating the pose of the vehicle during periods

of camera outages, for example when images become too

blurry to keep tracking the visual features. For monitoring

applications, especially for inspection missions, semantic

SLAM can significantly improve scene understanding and

therefore, inspection results. This will be studied in the case

of ship hull inspection, using the previously developed LIACi

dataset [24].
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Semantic Segmentation in Underwater Ship
Inspections: Benchmark and Data Set

Maryna Waszak , Member, IEEE, Alexandre Cardaillac , Brian Elvesæter , Frode Rødølen ,
and Martin Ludvigsen , Member, IEEE

Abstract—In this article, we present the first large-scale data
set for underwater ship lifecycle inspection, analysis and con-
dition information (LIACI). It contains 1893 images with pixel
annotations for ten object categories: defects, corrosion, paint
peel, marine growth, sea chest gratings, overboard valves, pro-
peller, anodes, bilge keel and ship hull. The images have been
collected during underwater ship inspections and annotated by
human domain experts. We also present a benchmark evaluation
of state-of-the-art semantic segmentation approaches based on
standard performance metrics. Consequently, we propose to use
U-Net with a MobileNetV2 backbone for the segmentation task due
to its balanced tradeoff between performance and computational
efficiency, which is essential if used for real-time evaluation. Also,
we demonstrate its benefits for in-water inspections by providing
quantitative evaluations of the inspection findings. With a variety
of use cases, the proposed segmentation pipeline and the LIACI
data set create new promising opportunities for future research in
underwater ship inspections.

Index Terms—Data set, semantic segmentation, supervised
machine learning, underwater inspection.

I. INTRODUCTION

ANNOTATED data sets of underwater ship hull inspections
for semantic segmentation are scarce. In this section, we

present our motivation for creating such a publicly available data
set by describing how in-water ship inspections are conducted
and how semantic segmentation would make the process more
efficient.

The rest of this article is organized as follows. Section II de-
scribes the collection of data and the creation of the data set used
for the training of the selected semantic segmentation models.
Section III presents and discusses the experimental results of the
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benchmark evaluation. Section IV points out future directions in
improving the data set and how a semantic segmentation model
could aid other research topics in underwater computer vision.
Finally, Section V concludes this article.

A. Underwater Ship Inspections

Visual inspections are rigorously applied in different domains
of our lives. With increasing exploitation of marine resources,
significant attention is being drawn to the importance of under-
water ship inspections. As of today, the monitoring and inspec-
tion of marine vessels is performed based on recurrent visual
observations and assessments of structural condition either in
dry-dock or underwater. The main purpose of these inspections
is to assist with the examination of the external coating, as well as
detection of corrosion or marine growth. Inspections in dry-dock
are significantly costlier than in-water inspections in addition to
longer downtime of the ship. Therefore, ship hull inspections
performed underwater are increasing in popularity. With the
technological advances in the field of autonomous underwater
vehicles, the need for automated data processing becomes in-
evitable as the manual reviewing and processing of collected
videos, images, and other nondestructive inspection data (e.g.,
ultrasonic thickness measurements) becomes unfeasible [1].

B. Semantic Segmentation

The advances in computer vision provide ways for increasing
reliability and effectiveness for acquiring, managing, integrat-
ing, and interpreting the acquired inspection data at a minimum
cost while reducing the need for tedious and often unreliable data
analysis by a human expert. Specifically, automated processing
of image and video data is a great source of quantitative insight
that can complement the largely qualitative information obtained
from conventional visual inspections. In contrast to land images,
however, the underwater environment poses several challenges
for automated image processing. The images may be deterio-
rated by different artifacts, such as water turbidity, floating par-
ticles, severe absorption, reflections, scattering of light, nonuni-
form illumination, various noises, low contrast and monotonous
colors. See Fig. 1 for some examples of mentioned artifacts.

This work focuses on semantic image segmentation in the
domain of underwater ship inspections and how it can aid the
inspection procedure by providing additional insight from the
acquired underwater video data. Semantic segmentation refers
to pixelwise classification, a class label is assigned to each pixel

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Common artifacts in underwater imagery. (a) Light beam. (b) Light scattering. (c) Reflections. (d) Scratches on lens. (e) Floating particles. (f) Water
turbidity.

Fig. 2. Current inspection workflow is performed in three separate steps: 1) planning, 2) data acquisition, and 3) report creation.

of the image. It is a well-studied problem as it is a key for scene
understanding. It decomposes the scene into objects or cate-
gories, which are significant semantic regions. Recent methods
involving a deep learning approach have achieved outstanding
results [2], [3], [4]. The current state-of-the-art segmentation
networks have been mostly proposed for and applied to medical
image analysis, driver-less cars or other surface applications.
It remains to be shown that those successful networks can be
successfully applied to underwater segmentation tasks. In this
work, we aim at closing this gap through a benchmark evaluation
on our data set.

C. Available Data Sets

Currently, manually labeled data sets such as ImageNet [5],
ADE20K [6], PASCAL [7], and COCO [8] play a significant role
in improving machine vision tasks and driving research in new
directions. Data sets with underwater imagery such as SUIM [9]
or Seagrass [10] exist that aim at the semantic segmentation task
or the classification of fish [11] or marine growth [12] species.
Although works related to the detection and segmentation of
relevant classes and objects in the domain of visual surface
inspections as marine growth, corrosion, and cracks exist, the
underlying data sets remain undisclosed or are inaccessible [13],
[14], [15], [16], [17], [18], [19].

We wanted to create a publicly available data set that aims at
the task of semantic segmentation of underwater ship inspection
images. This data set is meant to be used as a starting point for
underwater scene understanding and improved machine vision
in the domain of in-water ship inspections.

D. Lifecycle Inspection, Analysis and Condition Information
(LIACI) Use Case

Here, we worked with a combination of commercial hardware
and software for conducting underwater ship inspections. Sev-
eral experts were involved and the inspections were performed
in different steps as depicted in Fig. 2: 1) planning, 2) data
acquisition, and 3) report creation. The software and hardware
involved is named the LIACI system. The introduced use case
is from two Norwegian companies: VUVI AS,1 which is a
commercial provider of underwater ship hull inspections, and
Posciom AS,2 which is the provider of the video tagging and
management platform Seekuence.

The current data acquisition setup consists of the underwa-
ter remotely operated vehicle (ROV) and two separate video
streams. One stream is used for the navigation of the ROV and

1[Online]. Available: vuvi.no
2[Online]. Available: www.posicom.no
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Fig. 3. ROVs that were used for data collection during underwater ship inspections. (a) JM Robotics BlueROV2. (b) JM Robotics JM HD1. (c) VideoRay Pro 4.
(d) Blueye Pioneer.

TABLE I
NUMBER OF IMAGES COLLECTED BY DIFFERENT ROV TYPES

the second one for video frame annotation, where interesting
frames in the video are marked to be further evaluated. The
ROVs are supplied by different commercial vendors (see Sec-
tion II-A on data collection for further details). After the video
data are acquired, the annotated video snippets are screened in
a postprocessing step and snap shots are extracted for a final
inspection report. The acquired and annotated data are archived
for later reference.

The current workflow is tedious and time consuming and does
not incorporate any automated data processing. We propose to
use semantic segmentation to identify and quantify different
metrics relevant for the ship inspection procedure. By automatic
annotation and quantitative analysis of video data, the inspection
report can be created without human interaction. Hence, the
effort in the third step in the current workflow can be significantly
reduced.

II. LIACI DATA SET

This section describes the collection of inspection video data
and the image extraction process. It illustrates the difficulties
specific to labeling underwater inspection data and explains the
classes that were chosen as labels for the annotation task. Further,
it shows how the images were annotated, and the resulting sta-
tistical properties of the images. We also included an evaluation
on the similarity of the images in the data set.

A. Data Collection

Videos from 16 underwater ship inspections were collected
by the commercial inspection provider VUVI AS using two
different ROVs from JM Robotics AS3 and one ROV from

3[Online]. Available: www.jmrobotics.no

VideoRay4 with an in-built filter from LYYN.5 The names of
the vessels remain secret due to nondisclosure agreements with
the ship owners. Additionally, at the research vessel Gunnerus,6

one video of the hull was acquired with the Pioneer drone
from Blueye.7 Fig. 3 shows the drones that were used for data
collection, and in Table I, the individual image count that was
chosen for the data set. The videos were recorded at different
locations in the Norwegian Sea off the Norwegian coast. From
these videos, a representative collection of images was extracted
by the ROV operator during the video recording and in the
postprocessing step preparing the inspection report.

Imaging tasks in an underwater environment are challenging.
Even though some of characteristics are generalizable, many
are dependent on the location and its situation. The underwater
visibility is mainly affected by the penetration of the light and
the water turbidity. Because of this, it is important that the pro-
posed data set presents image diversity in terms of underwater
scene conditions. This makes it possible to reduce the classwise
water condition specific overfitting when training a model. Even
though the data were acquired only at the Norwegian coast, we
can observe a range of visibility conditions. The variety of ships
presents different feature combinations, which is an important
aspect to further improve the robustness.

The images were extracted by the ship inspector during video
recording and in the postprocessing step to reflect the status
of the inspected areas. These images were used to train an
image classifier to find images in similar classes to ramp up the
image count. In the first sweep, the inspector usually extracted
approximately 50–100 images from the video. We trained a
vision transformer multilabel classifier with Microsoft Custom

4[Online]. Available: videoray.com
5[Online]. Available: www.lyyn.com
6[Online]. Available: www.ntnu.edu/gunnerus
7[Online]. Available: www.blueye.no
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TABLE II
OVERVIEW OF ANNOTATED CLASSES WITH ASSOCIATED DESCRIPTION AND MASK COLOR

Vision8 [20] and indexed the videos to find images for the classes
of interest. This way we could ramp up the image count to a
total of 1893 images and also mimic the inspectors’ choice for
the data from the research vessel Gunnerus where no inspector
was involved. Fig. 11 summarizes the steps visually.

B. Data Labeling

A total of ten different labels divided into two categories
were proposed. They were selected to provide relevant and
detailed information that could be used for an automated or aided
inspection. The first category corresponds to the physical parts
of a ship that can be found underwater, while the second category
is about what can be found on the surface of the ship that is not
originally part of it. The latter category is called inspection cri-
teria because it corresponds to what the inspector is looking for
when performing an inspection. These are often subject to evolve
over time, e.g., disappear after maintenance, change over time,
and reappear again. We have often noncanonical viewpoints and
only some iconic images, thus we focus mostly on categories
with clear boundaries. However, due to natural water turbidity
that increases with the distance from the camera, the ship hull
and other relatively big ship parts do not have clear boundaries.

8[Online]. Available: https://www.customvision.ai/

An overview of the classes is given in Table II with a
description for each class. The colors are used to differentiate
the labels in the processed scenes. In the majority of cases, these
two categories overlap each other, providing information about
the location of the inspection criteria.

The selected classes cover a large part of the image while
minimizing the “blank” part of the image, i.e., without an-
notation. These parts frequently correspond to the underwater
background.

We created guidelines for labeling to have consensus among
the annotators to mitigate some of the annotation difficulties.
Specifically, it is not a trivial task separating marine growth, paint
peel, and corrosion, as can be seen in Fig. 4. Here, it is extremely
difficult to separate the different classes as they usually appear
overlapping each other and rarely on their own.

The annotation task was performed by two annotators us-
ing the Microsoft Azure Machine Learning Studio9 web-based
platform. The annotation method consisted of layered polygons
that when combined should cover the entire underwater scene
without the background. After completion of the data set, all
the images and associated annotations were reviewed again and
corrected where necessary by the same annotators to guarantee

9[Online]. Available: https://ml.azure.com
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Fig. 4. Example of an image where separating the labels for paint peel and marine growth is challenging due to overlaps. The raw image is shown on the left and
the same image with overlapped segmentation results on the right.

Fig. 5. Samples of annotated images in the LIACI data set for each class.

high fidelity annotations. The samples of annotated images for
each class are depicted in Fig. 5, with one class per row.

A representative sample of the data set consisting of 100
images was sent to a professional ship inspector to assess the
quality and precision of the annotations. The inspector had
access to the labeling tools, allowing him to update the masks

based on his knowledge. We used his review as ground truth to
compute the precision, recall, and F1 score for each class and
to determine if there was any action to be taken. The results are
given in Table III for each class and metrics. The “ship parts”
category is very accurate, this was expected since all the subparts
are very easily recognizable and can hardly be confused. For
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TABLE III
ANNOTATORS LABEL EVALUATION WITH TWO SCORE METRICS, PRECISION, AND RECALL FOR ALL CLASS CATEGORIES, INCLUDING WHERE MARINE GROWTH

AND PAINT PEEL WERE CONSIDERED AS ONE SINGLE CLASS IN THE “COMBINED” COLUMN

Fig. 6. Overview over the image and label statistics. (a) Number of annotated images per class. (b) Average proportion of annotated pixels in images for each
class. (c) Distribution of the pixel intensities in each channel. (d) Pairwise correlation of the labels occurrences in the data set based on the Pearson method.

the “inspection criteria,” however, the distinction between the
subparts is not as easy, especially with marine growth and paint
peel, and sometimes corrosion. Based on the inspector’s review,
some were misclassified, but overall, the three metrics remain
acceptable and indicate the quality of the data set labels.

C. Data Set Presentation

The proposed data set contains 1893 RGB images alongside
their pixelwise annotations for semantic segmentation. Images
with different aspect ratio and resolution are included, e.g.,
1920 × 1080, 1280 × 720 and 640 × 480. Detailed statistics of
the images and labels are shown in Fig. 6. Since pixel intensity
value is the primary information stored within pixels, it is the
most popular and important feature used in computer vision.

The intensity value for each pixel consists of three values for
the color images. In the presented data set, we observed that the
blue channel is over-represented compared to the red and green
colors that is easily explained by the underwater domain where
the images were collected.

The pairwise correlations of the labels are calculated using
Pearson’s correlation coefficient r. It quantifies the linear rela-
tionship between two distributions based on the covariance and
standard deviation

rX,Y =
cov(X,Y )

σXσY
(1)

with the two distributionsX andY . r ranges from−1, the perfect
negative correlation, to +1, the perfect positive correlation.
Therefore, since the correlation matrix presented shows a good
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Fig. 7. Similar images of a sea chest grating and an overboard valve with corresponding pairwise Cosine similarity index.

diversification of classes in images, there is no single combi-
nation that makes it possible to find a class based on another.
There is then a good distribution/representation of classes in the
data set imagewise. There are no strong correlations but some
still exist, for example, with the pair propeller/sea chest grating,
which is negatively correlated with a value of −0.31. We could
think it should be stronger since sea chest gratings are never
present on propellers, but some images in the data set contain
both at different locations because of the viewpoint of the ROV.

We extracted the images from videos. Therefore, we had
grounds to assume that similar images might be among the
images in the data set. To quantitatively evaluate how many
similar images there are, we calculated a feature vector by
extracting the last fully connected layer from the ResNet101
classifier pretrained with ImageNet as provided by PyTorch.10

We chose ResNet101 as recommended in [21] and an initial
naive evaluation provided good results. The calculated image
vectors were then used to calculate pairwise Cosine similarity,
where an index of 1 means that images are exactly the same
and 0 a complete orthogonality. The similarity index follows
a normal distribution with a mean and standard deviation of
0.64 ± 0.07, indicating that we have similar images in our data
set since the closer the values are to 1, the higher the similarity.
Fig. 7 shows example similar images of a sea chest grating and
an overboard valve. For different cut-off values for the Cosine
similarity measure, Fig. 8 shows the number of unique images in
the data set. If we were to choose a cut-off at 0.90 and consider
the same labels are present, the data set will still have 1561
images left. Thus, this is the value we recommend to filter out
images that are too similar as also confirmed by a qualitative
visual evaluation.

III. BENCHMARK EVALUATION

This section describes the motivation behind the chosen seg-
mentation models for the benchmarking evaluation and presents
the results of the evaluation in detail. It is done using multiple
combinations of encoders and decoders to prove the capability

10[Online]. Available: https://pypi.org/project/img2vec-pytorch/

Fig. 8. Number of remaining images after filtering at different thresholds of
the Cosine similarity metric and same classes being present on the image.

of the data set to be used for training and converge at a reasonable
rate.

A. Semantic Segmentation Models

For the benchmark evaluation, multiple state-of-the-art deep
convolutional neural network (CNN) models were considered.
Often, CNN models can be divided into two parts: an encoder
and a decoder. The way the layers are arranged in the encoder
network corresponds to the architectural element called back-
bone. For example, a model such as MobileNetV2 can be used
as an encoder for the UNet model, which retains the decoding
layers [22]. During the evaluation, backbones based on other
models were often included instead of vanilla CNNs; these were
pretrained on ImageNet [5]. Also, some segmentation models
were utilized multiple times but with different backbones. The
complete list of models is displayed in Table IV.

All the models were implemented in Python using the Ten-
sorFlow libraries [30]. The same hardware setup is used for all
models: NTNU IDUN computing cluster [31], with an NVIDIA
Tesla P100 GPU for training, and a laptop with an NVIDIA
Geforce GTX 1060 for testing. For the training, the data set
was augmented by applying random image transformations
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TABLE IV
LIST OF SEGMENTATION MODELS AND THEIR BACKBONES USED FOR THE BENCHMARK ALONG WITH THEIR NUMBER OF PARAMETERS, INPUT RESOLUTION, AND

AVERAGE INFERENCE FRAME RATE AS COMPUTED ON A SINGLE NVIDIA GTX 1060 GPU

from a defined list. They consisted of rotation, shear and zoom
effects, as well as, horizontal flip and slight brightness shift. This
augmentation was done in addition to image removal based on
the similarity measure. This might have made the models less
accurate but able to generalize better.

After filtering the data set based on the similarity metric
presented in Section II-C with a threshold of 0.90, we divided the
remaining 1561 images into a training subset composed of 1370
(87.8%) images and a testing subset with 191 (12.2%) images.
These numbers are the result of ensuring a uniform distribution
of classes in the training and testing subsets.

B. Evaluation Criteria

To measure the performance of the models, multiple criteria
were considered. To evaluate the correctness of the pixelwise
classification, two supervised evaluation methods were utilized:
the Intersection over Union (IoU) and the F1 Score. The former,
also known as the Jaccard Index, is one of the most used metrics
for semantic segmentation tasks. It consists of the area of overlap
between the predicted masks and the ground truth divided by the
area of union between the prediction and the ground truth

IoU =
Area of overlap
Area of union

=
True Positive

True Positive + False Positive + False Negative
. (2)

It is also regarded as a region similarity metric.
The latter is also called the dice coefficient and provides the

contour accuracy F1

F1 =
2× P ×R
P +R . (3)

It is defined as the harmonic mean of the precision P and
recall R of the model.

Also, for the considered applications, time constraints are
present. Therefore, the inference time needs to be taken into
account. For real-time capabilities, a minimum of ten frames
per second (FPS) are required. Also, because the segmentation
task needs to be performed during data acquisition, it needs to

Fig. 9. Training loss over epochs of the considered models until epoch 60.

be possible to run it on the operator laptop which might contain
a low-cost GPU or sometimes rely just on the CPU.

C. Quantitative and Qualitative Analysis

A benchmark evaluation with state-of-art deep learning seg-
mentation models showed that good results can be obtained with
all of the selected models. Also, all models show similar con-
vergence behavior, with SegNet converging fastest, as depicted
in Fig. 9. Table V lists the results of the benchmark evaluation.
SegNet with the ResNet50 backbone provides the best results
for the class of ship parts with a mean IoU of 86.07 and a
mean F1 score of 88.17. The inference time for the PSP model
with the MobileNetV2 backbone showed the best time of 25.68
FPS. Over all models, the segmentation accuracy for marine
growth and paint peel is not as good compared to other classes.
Several reasons could be the cause of this effect. Annotating
the classes of marine growth and paints peel is challenging due
to high variability of shapes and structures. Also, these label
classes tend to naturally overlap as marine growth usually starts
growing in areas with paint defects where the antifouling coating
is missing. Corrosion also usually appeared on areas with paint
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TABLE V
BENCHMARK FOR SEMANTIC SEGMENTATION WITH TWO SCORE METRICS F1 SCORE AND IOU FOR ALL CLASS CATEGORIES

peel but is less difficult to label resulting in better prediction
results. Therefore, we performed another model training and
evaluation round where the classes of marine growth and paint
peel were merged. The results show that the accuracy of the
merged label class could be increased for all models by almost
ten points.

Another observation was that small objects disappeared due to
downsampling of the images to the model resolution. Therefore,
labels are reduced to only few pixels such that some models are
no longer able to detect such areas, e.g., marine growth and paint
peel. Dark areas on ship hulls in overboard valves, as well as,
ship hull areas that were further away from the camera are not
correctly identified by the models. Such qualitative observations
are depicted in Fig. 10.

IV. FUTURE WORK

Image quality plays a major role in the performance of com-
puter vision algorithms. Hence, seeking to improve image qual-
ity retrospectively would improve the results of automated image
processing as suggested in [32]. The ULTIR data set [33] or the
UIEB [34] could also be used as a starting point for identifying a
method to prospectively guide the data acquisition to collect only
images with sufficient quality. Image enhancement can be used
as a preprocessing task before using it in the model. However, it is
computationally expensive and not necessary to reach satisfying
results, and hence was not included in this work but remains
important for generalization purposes and more robust results.
For these reasons, it will be considered in future work.

Our data set was solely collected off the Norwegian Sea.
The visibility in waters differs significantly depending on the
geographical location and light conditions. Hence, we believe
that the data set would benefit from including videos from
various waters.

There are several promising directions for future annotations
on our data set. We currently only label few ship parts but this
could be extended to other parts as the manoeuvring thruster,
rudder or box cooler. Also, quantitative evaluation of potential

defects inside the vessel water cooling system, which contains
the impressed current antifouling anodes and should be mon-
itored closely, could be a target for automated image process-
ing algorithms. Further classes for defects (dents, cracks, rope
around parts, scratches, etc.), paint peel (adhesion, blistering,
cracking, cold flow, delamination, polishing-off, grounding),
and marine growth (soft corals, sponges, hydroids, anemones,
algae, tunicates, barnacles, mussels, tube worms, bryozoan,
oysters, etc.) could be included in the annotations to follow the
guidelines from the International Chamber of Shipping and The
Baltic and International Maritime Council [35].

To improve the segmentation results further, the model could
account for class correlation, i.e., overboard valves and anodes
can only be on a ship hull and not on a propeller. Sea chest grating
has to be surrounded by ship hull as well as overboard valves. In-
troducing such additional constraints would potentially improve
model performance and reduce classification errors.

Future work will focus on propagating the segmentation
masks onto the whole video to achieve thorough video indexing
and to possibly aid algorithms for the calculation of structure
from motion, simultaneous localization and mapping, and sub-
sequent 3-D reconstruction of the inspected structures from the
video data [36]. Here, the feature extraction step would benefit
from adapting its calculation to the segmented object and use
different features (e.g., ORB, SIFT) for objects with different
semantic and visual properties.

V. CONCLUSION

Semantic understanding of videos in in-water ship inspec-
tions is critically important to facilitate quantitative analysis
of collected image and video data. The existing solutions are
application- and domain-specific as dedicated to the medical do-
main or autonomous driving for terrestrial vehicles and drones or
industrial surface inspections in manufacturing. In this work, we
attempt to address these limitations by presenting the first large-
scale annotated data set for semantic segmentation of underwater
ship inspection images. We described and made available a new
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Fig. 10. Qualitative segmentation results for selected classes and models.

data set for detecting and segmenting objects in the domain of
visual underwater ship inspections with ROVs. Involving two
annotators and a reviewer, a collection of category instances
was gathered, annotated, and organized to drive the advancement
of object detection and segmentation algorithms. The proposed
LIACI data set contains 1893 images with pixel annotations for
ten object categories. The benchmark evaluation showed that
the UNet segmentation model with the MobileNetV2 backbone
provides the best overall performance in terms of segmentation
results and inference time making it a good candidate for further
investigations. Also, its architecture makes it possible to run the
model on a consumer laptop without a GPU with an acceptable
frame rate of up to 12 FPS. This is twice the frame rate that can
be achieved with the SegNet model with ResNet50 backbone
that has a frame rate of 5 FPS on average.

In comparison to humans, it is harder for segmentation models
to extrapolate shapes, e.g., ship hull in the shade. The segmen-
tation boundary of the target is not clear enough, the contour is
incomplete, and the feature information is insufficient. Here, the
annotations would benefit from other data sources as for example

sonar or stereovision cameras. Also, having a 3-D model of the
vessel could help to estimate and extrapolate the shape of the
seen object. Therefore, enhancing the images with additional
data from other sources would improve not only the quality of
the annotations but also the model training process.

We also have to conclude that it is very difficult to annotate ma-
rine growth, paint peel, and corrosion separately. These classes
often appear together and overlap. Therefore, we propose to fuse
those classes and run unsupervised segmentation algorithms in
a postprocessing step for further refinement.

Also, we deliberately did not exclude blurry images as we
would like the data set to reflect the natural quality differences
that appear during the data collection. We extracted the images
from inspection videos which provided a natural augmentation
of the data by providing different views of the objects. For
example, the illumination conditions and the water turbidity
were naturally changing when the ROV was capturing the object
from different distances and angles.

The data set is made available for noncommercial use on
https://liaci.sintef.cloud.
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Fig. 11. Steps that were performed to create the data set.

APPENDIX

Fig. 11 shows the steps that were performed to create the
data set.
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