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Abstract: On account of active governmental stimulation operations in many countries, the residential
production of electricity from renewable resources has increased considerably. Due to high efficiency
and reliability, a recommended solution for residential wind energy conservation systems (WECS) is
permanent magnet synchronous generators (PMSG). A higher torque ripple (TR), engendered by the
contact of the stator with the rotor’s magnetomotive force harmonics, is one foremost issue in PMSGs.
To control the synchronous generator, numerous control schemes have been proposed. However, it
still faces a challenge in the diminishment of the TR. An enhanced fuzzy logic controller (EFLC) in
interior PMSG (IPSMG) under variable wind speed (WS) has been proposed in this article to address
this challenge. Initially, the wind turbine (WT) system was designed, and the IPMSG was proposed.
A hysteresis controller (HC) and fuzzy logic controller (FLC) are the two controller types utilized in
this model to control TR. This methodology used the EFLC to eliminate errors during the control. By
using the proper membership function (MF) for boundary selection in the WDCSO algorithm, an
enhancement was executed. Better performance in TR reduction was attained by the proposed model
grounded in the analysis.

Keywords: enhanced fuzzy logic controller (EFLC); interior permanent magnet synchronous
generator (IPMSG); sensors; torque ripple; Weibull distribution-based chicken swarm optimization
(WDCSO); wind energy conservation system (WECS)

1. Introduction

Nowadays, owing to their huge torque density along with high efficacy, PMSGs are
prominent in the industry’s electrical drive model [1]. When analogized with induction
generators, superior characteristics, such as diminished copper loss yielding higher power
density and higher efficacy along with a reduction in size and weight, are shown by
PMSGs [2]. IPM electric machines are utilized for numerous applications, such as industri-
alized applications, domestic appliances, and electric and hybrid vehicles. Because of their
high efficacy, power, and torque density, they are well known [3,4].

For megawatt-level WT producers, inconsistent speed wind power models utilizing
PMSGs and gearless drive trains combined with full-scale power converters have attained
major consideration in the previous few years [5]. As expected, a large TR affects the inset
PMSG that confines the PMSG in high-precision applications [6]. Mechanical resonance’s
excitation on the load side and speed oscillation, particularly for large-performance appli-
cations, along with acoustic noise are the major outcomes of TRs [7]. Cogging torque (CT),
PM torque, and reluctance torque are measured as the sources affecting the TR [8].

Relying on the WS to attain the necessary shaft speed, various control strategies have
been formulated. For medium WECS, a high cost combined with diminished reliability is
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unavoidable [9]. Existing globally, wind energy has been highly approved by governments,
leading to wind farm development’s growth [10]. More effective models of diminished
ripple reduction for PMSGs have been largely investigated in the previous decades [11].
Rotor step-skewing with sinusoidal profiling of the rotor surface is the typical and promi-
nent technique. The diminishment of the maximal torque in the sensorless drive and
enhancements in the generator cost are the limitations of these models [12]. The WECS
measurements of diverse system quantities (e.g., speed, voltage, current, etc.) are requisite
for the successful implementation of these control models, which are executed utilizing
sensors [13].

To diminish CT, fractional-slot concentrated windings (FSCW) are used in various
applications and are often improved under load conditions [14]. Grounded on average
torque and ripple, an impact in the rotor geometry on the device’s performance is made
by employing a rotor configuration specified by various pole flux barriers [15]. The IPM
generator with reluctance torque is the prominent design, along with the total output torque
contributed by PM [16]. The TR is abolished to a better level by short-pitching the winding
by a few slots to diminish low-order MMF space harmonics, as illustrated in previous
research [17]. By the linkage of the stator along with the rotor’s higher-order redundant
harmonics, TR is caused [18]. The models used to diminish the TR are the machine-
design-based approach and the machine-control-based approach. To lessen the PM flux
linkage’s spatial harmonics along with the CT, the machine-design-centered approach is
used, focusing on augmenting the stator in combination with rotor modeling. The machine-
control-based approach regulates the stator currents to smooth PMSG’s output torque [19].
Still, improvements are requisite for torque reduction. For TR reduction, a novel FLC is
proposed here.

The main objective of this work is to simulate and model an IPM synchronous genera-
tor. In addition, to solve the problems of the existing research and improve the performance
of the torque ripple reduction.

The structure of the presented research is as follows: In Section 2, the existing research
associated with TR is given; in Section 3, the proposed research methodology is described;
in Section 4, the methodology’s result values are explained; and the work is concluded in
Section 5.

2. Related Work

The authors of [20] presented a rotor shape optimization grounded on the modeling
of notches along with a rotor flux barrier (FB). The consequences of rotor notching on TR
along with CT were first discussed. To choose the optimal FB combined with rotor W-notch
dimensions in the external rotor blueprint, differential evaluation (DE) optimization was
executed. For a W-notch, the optimal values were selected. The benefits of opting for a
W-notch in the exterior rotor design were demonstrated when analogized with a benchmark
C-notch. To analogize TR with CT outcomes, finite element (FE) simulations were executed
in detail by measuring the rotor’s notches. It was observed that the preference for the
W-notch appreciably enhances the torque profile in rare-earth. To validate the simulation
outcomes, the experiments were executed in prototypes.

The researchers in [21] suggested a TR reduction model of DTC by the FC incorpo-
rating an optimal selection strategy of voltage vectors in a five-phase induction generator.
Without utilizing the parameter, the DTC was controlled easily. Therefore, by utilizing the
designed FC, the voltage vector insertion time was changed by the algorithm. In accor-
dance with the torque error, the optimized voltage vector selection scheme was utilized.
The control algorithm’s effectiveness was shown in the simulation outcomes. More than
a 30% diminishment in TR was attainable using this model when analogized with the
prevailing models.

The researchers in [22] introduced a new arithmetic formula and a framed model to
diminish the TR while augmenting the efficacy combined with the interior PMSG’s control
performance. Centered on ICF, the advanced inverse cosine function (AICF) was utilized to
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recognize the asymmetric rotor structure for denoting the sinusoidal air gap flux density
distribution, taking into consideration a definite load state. Furthermore, by employing the
AICF, the TR and peak value diminished the induced voltage’s total harmonic distortion
(THD), and a diminished iron loss was attained when analogized with the prevailing
methods. The importance of the low peak value along with the induced voltage’s THD
was referred to, as they influence the generator’s control performance. Specifically, in the
high-speed region, a higher efficiency was induced by diminished iron loss. The features of
eight-pole, twelve-slot generators having dissimilar rotor shapes were examined via finite
element analysis (FEA) to validate the designed scheme’s validity.

The researchers in [23] developed a Lyapunov-centered finite control set model for
predictive direct torque control (FCS-MPC) meant for the PMSM. For the PMSM’s torque
prediction, the two-level converter’s eight voltage vectors employed a finite control. A cost
function bearing the torque error and the maximum torque per ampere (MTPA) function
combined with the present drawback was presented. To evaluate each voltage vector’s
duty cycle analogized to the prevailing FCS-MPC, the cost function’s paramount part was
wielded as a Lyapunov function. As for the eight vectors and duty cycles, an optimum
voltage was attained via the optimum voltage vector. The control scheme’s performance
was validated by the experimental outcomes.

The authors of [24] presented a constant switching frequency (CSF)-centered three-
level direct torque control (3L-DTC) algorithm. Below all working situations and operating
at a low CSF level, an effective diminish in TR was attained using the algorithm. For the
3L-DTC algorithm, a detailed analysis in addition to design guidelines was presented.
Neutral point voltage variations combined with smooth voltage vector switching were
the typical issues with the ‘3′ level inverter and were addressed. To validate the model’s
effectiveness, the experimental outcomes were presented.

The authors of [25] presented a new scheme to generate stator currents, offering a
surface PMSG presenting a stator winding’s asymmetry. To evaluate the current that dimin-
ished TR through the asymmetry, a systematic model of SPMSG was formulated. For the
torque generation, this model was centered on the amalgamation of the stator and rotor’s
flux density space harmonics. To neutralize the harmonic torque constituent at double
the supply frequency, this study outlined a defined stator inverse current system. Various
supply scenarios were applied in the experimental tests, and it was confirmed that those
attained through the analytical study effectively concerned the inverse current’s amplitude.

The existing research methodology gives more ideas for reducing torque ripples of
IPMSG, but improvement is still needed because the error presented during the control
strategy affected the performance of the system. This research methodology proposes a
novel EFLC. The focus of the methodology is to avoid errors and reduce torque ripple.

3. Proposed EFLC-Based Torque Ripple Reduction in IPMSG

The wide use of PMSG is attributed to its characteristics of high torque at low speeds.
The factor that limits the utilization of PMSG is the TR. The proposed model uses the
EFLC to diminish the TR. The WT model is explained initially; then, the IPMSG model is
explained; and, following that, the controller’s design is explained. Figure 1 displays the
TR reduction in the proposed framework.

3.1. Modeling of Wind Turbine

Torque is generated by the WT from wind energy. The torque is transferred from
the generator’s shaft to the rotor. An electrical torque is generated by the generator.
Determining whether the mechanical system increases, diminishes, or remains at a stable
speed is determined by the distinction between the WT’s mechanical torque and the
generator’s electrical torque. For charging a DC-link capacitor, the linkage betwixt the
generator and the three-phase inverter rectifies the generator’s current coming out. Through
a transformer, the DC link offers a second-phase inverter coupled with the grid. To
analogize with the grid-side data, the WS data, pitch angle, rotor RPM, and inverter
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output are established through a control system. By utilizing digital signal processing, the
information is resolved to make the perfect signal to manage these mechanisms. The main
goals of wind turbines are the synchronization with the utility grid and the exportation of
power to it. Regarding air density, the rotor swept area, along with WS, and the quantity of
energy transferred by the wind to the rotor were identified. Only accessible wind power
parts, along with the actual power extracted by a WT, are captured by the WT rotor blades,
which are specified by:

WT = EFp ×Wwind (1)

WT =
1
2

vBζ3
w × EFp(ψ, µ) (2)

where the turbine power is signified as WT , the coefficient of performance is indicated as
EFp, the Betz limit is a function of tip speed ratio (TSR) (ψ) and pitch angle (µ), the density
of air is represented as v, the WS in m/s is indicated as ζw, and the area in m2 is denoted
as B. By dividing the rotor tip speed by the wind tip speed, the turbine’s TSR is calculated,
which is expressed as:

TSR = εm H/ζw (3)

where the rotor’s speed in rad/s is notated as εm, and the turbine’s radius is denoted by
H. When the turbine’s operating speed is high, the maximum power is generated by the
turbine. So, maintaining the rotor’s speed at an optimal value is important. By variations
in the WS, the rotor speed can be manipulated. The optimum power generated by the WT
is given as:

Kopt =
1
2

vBζp_opt
(
εm_optH/ψr_opt

)3 (4)

Kopt =
1
2

vBζp_opt
(

H/ψr_opt
)3 (5)

where
εm_opt = εg_opt =

(
ψr_opt/H

)
ζm = Kwζw (6)

where the optimum value is specified as ψr_opt. The optimum torque is calculated as

Um_opt = Kopt
(
εm_opt(t)

)2 (7)
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3.2. Modeling of IPMSG

Using the following assumptions, the model of the PMSG devoid of damper winding
is designed on a rotor reference frame:
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(a) Neglect of saturation.
(b) The induced EMF is sinusoidal.
(c) Negligible losses in Eddy current and hysteresis.
(d) No field current dynamics.

Within the stator reference frame, the synchronous generator model was designed.
The machine rotates synchronously with the rotor. To analyze the IPMSG model, the d-axis
and q-axis are utilized as reference signals. The d- and q-axes voltages are tabulated as:

Ld = hd Zd − υrβq + ρβd (8)

Lq = hq Zq + υrβd + ρβq (9)

The flux linkages of d- and q-axes are tabulated as

βd = Gd hd + βm (10)

βq = Gq hq (11)

In the voltage equation, the flux linkages are substituted as

Ld = hd Zd − υrGq hq + ρ(Gd hd + βm) (12)

Lq = hq Zq + υr(Gd hd + βm) + ρGq hq (13)

where d/dt operator is denoted by ρ, the q, d axes voltages are represented as Lq and Ld,
the q, d axes stator currents are signified as hq and hd, the q, d axes inductances are denoted
as Gq and Gd, the q, d axes stator flux linkages are symbolized as βq and βd, while the stator
resistance and rotor speed are indicated by r and υr, respectively, owing to rotor magnets
joining the stator βm flux linkage. The developed generator torque is given by

Og =
3
2

(
P
2

)(
βdhq − βqhd

)
(14)

Og =
3
2

(
P
2

)(
βmhq +

(
Gd − Gq

)
hd hq

)
(15)

The mechanical torque equation is

Qe = Ql + Aυm + R
dυm

dt
(16)

The rotor mechanical speed is given by

υm =
∫ (Qe −Ql − Aυm

R

)
dt (17)

where the friction coefficient is indicated as A, the load torque is modeled as Ql , and the
moment of inertia is depicted as R. hq and hd, in terms of current Im, are[

hq
hd

]
= (Im)

[
sin δ
cos δ

]
(18)

The electromagnetic torque equation is given by

Qe =
3
2

(
P
2

)[
1
2
(
Gd − Gq

)
I2
m sin 2δ + β f Im sin δ

]
(19)
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By the following equation, the flux linkage in the stator is described as∣∣βq
∣∣ = √βD2 − βQ2 (20)

∠θ = tan−1
(

βQ − βD
)

(21)

In the stator reference, the electromagnetic torque is tabulated as

Og = −3/2
(

βD hQ − βQ hD
)

(22)

Using generator parameters, the mathematical expression for torque is given by

Og =
−3P|βs|
4 Gd Gq

(
2βm Gq sin δ−

∣∣βq
∣∣(Gd − Gq

)
sin(2δ)

)
(23)

In three-phase generators, the stator voltage vector Ls in distributed stator windings is
given by

Ls = 2/3
(

La − Lb ej2π
3 + Lc ej2π

3

)
(24)

where phase ‘a’ is considered as a reference. Under variable wind conditions, a rectifier is
connected across the generator to supply constant output across the load. Regarding the
d- and q-axes, the synchronous generator’s equivalent circuit is portrayed in Figure 2.
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Across the IPM synchronous generator, the bidirectional power electronic switches are
connected in the proposed method, as displayed in Figure 3.
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Six voltage vectors together with two zero voltage vectors as shown in Figure 4 are
engendered by the rectifier. The six voltage vectors are distanced at 60 degrees apart from
each other. The voltage vectors are given as

Ls(Sa Sb Sc) = LD

(
Sa − Sb ej2π

j2π + Sc ej2π
3

)
(25)

where LD = 2/3 Ldc and Ldc = DC link voltage.
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3.3. Controllers

Two hysteresis controllers and an FLC directly regulate the torque and stator flux in
this approach. The torque demand is estimated via the FLC.

3.3.1. Hysteresis Controller

For creating the switching pulses, the hysteresis current control method is used.
Because of its noncomplex implementation, lack of any tracking error, outstanding stability,
quick transient response, inherent restricted maximal current, and intrinsic robustness to
load parameter variations, the HCC is the most comprehensively utilized scheme among
various current control frameworks. By optimizing the switching nodes, the current and
generator’s flux are controlled by the HCs used in the IPMSG. By choosing the voltage
space vectors, the desired response of torque along with flux linkage is acquired. Due to
the vector position linked to stator flux along with the HC’s output, the proper voltage
space vector is acquired. An analog of the flux linkages along with the characteristics of
the torque generated, the estimated value of the generated torque, and the constant flux
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linkage are given by the HC. Six voltage vectors and two zero voltage vectors are generated
by the voltage source converter. The mathematical relationship between flux, current, and
the voltage of the stator and rotor are the factors coupled with the switching logic. The load
angle is defined as the angle between the rotor and stator’s flux linkage. By combining the
difference between the input voltage and voltage drop measured across the stator resistance
in the direct control scheme, the stator flux linkage is evaluated, which is depicted as

βd = −
∫
(Ld − hd Zs)dx (26)

βq = −
∫ (

Lq − hq Zs
)
dx (27)

3.3.2. Fuzzy Controller

To maximize system performance concerning load needs, this method’s FC controls the
generation and storage of electrical power. The power electronic converter’s duty ratio is
adjusted using a controller called the FLC. The FLC is wielded to control the output voltage,
dissipate surplus energy, and charge and discharge energy storage batteries. During
fluctuating WS circumstances, the FLC is utilized to track and maintain a steady rotor speed.
To conduct a specific electrical task on an electrical issue, the FL is a set of well-defined logic
that is exhibited in the MF. Fuzzification, inference engines, and defuzzification are three of
its operations. However, throughout the fuzzification process, the methodology has time-
consuming trial and error difficulties with modifying the boundary values of MFs. Poor
overall system performance is led by the incorrect selection of MF borders. For effective MF
selection, the Weibull distribution-based chicken swarm optimization (WDCSO) algorithm
was utilized in this methodology. The proposed controller is named EFLC.

Fuzzification: By the fuzzy reasoning mechanism, the measured inputs, called crisp
values, are converted or translated by the fuzzification process into fuzzy linguistic values.
The differences between speed command χ∗sc and actual speed χsc and command torque Q∗e
are the input and output of a speed controller in a PMSG vector control framework. So, the
input taken is the speed error Ew(k), the other input is the variable of speed error Ecw(k),
and the command torque Q∗e is replaced by t(k), which is utilized as the speed controller
output. For every sampling time, the two inputs are:

Ew(k) = χ∗sc(k)− χsc(k) (28)

Ecw(k) = Ew(k)− Ew(k− 1) (29)

where χ∗sc and χsc are the PMSG’s speed command and actual speed. During the fuzzifica-
tion phase, an appropriate MF is required to alter the definite variables Ew(k) and Ecw(k)
into fuzzy variables Ew and Ecw. A subjective scheme element for FC is MF, and a triangular
MF is utilized in this model. The universe of discourse is separated into seven fuzzy sets:
negative big (NB), negative small (NS), negative medium (NM), positive medium (PM),
positive big (PB), positive small (PS), and zero (Z).

The WDCSO algorithm is utilized in this scheme to control the MF boundaries.
Grounded on the hierarchy order along with the movement of a chicken’s swarm at
the time of their food-searching actions is the bio-inspired algorithm named chicken swarm
optimization (CSO). Diverse laws of motion are followed by every chicken. In the social
lives of chickens, the hierarchical order is very important. Rooster movement, hen move-
ment, and chick movement are the three steps of the CSO algorithm. The standard CSO
delivers great performance, but there is sometimes a convergence problem to fix; therefore,
in the rooster movement phase, this research methodology uses the Weibull distribution
function rather than the Gaussian distribution function.

First, all the populations are initialized and measured using the fuzzy rules member-
ship function (MFi).
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After that, when analogized with the rooster movements having the worst fitness
value, those with better fitness values can search for food in wider areas. Such movement
is proffered in Equation (6):

CCt+1
v,k = CCt

v,k (1 + WBd) (30)

where the Weibull distribution is denoted as WBd, the updated solution is signified by
CCt+1

v,k , and the current solution is symbolized as CCt
v,k. Here, the torque minimization is

measured as the fitness function.
The hens follow the group mate for foraging in the hen movement stage. Compared

to the more submissive ones, the more dominant hens have the benefit of food competition.
The hens’ movement is formulated in Equations (31)–(33):

CCt+1
v,k = CCt

v,k + sl1 . γ .
(

CCt
r1,k − CCt

v,k

)
+ sl2 . γ.

(
CCt

r2,k − CCt
v,k

)
, (r1 6= r2) (31)

sl1 =

(
rgv − rgr1

|rgv|+ τ

)
(32)

sl2 = exp(rgr2 − rgv) (33)

where a random number evenly dispersed between 0 and 1 is denoted by γ. The rooster’s
index is denoted as r1, which is the v-th hens’ group mate, while the chicken’s index is
signified as r2. The algorithm randomly selects from the swarm, so random values are
denoted as γ, rooster’s index is symbolized as r1, which is the v-th hens’ group mate, while
the chicken index is notated as r2, and the fitness function is specified as rgv.

Chick movement is the terminal stage. The foraging of chicks is made around the
mother hens. The chicks’ updated method is described as

CCt+1
v,k = CCt

v,k + lll
(

CCt
m,k − CCt

v,k

)
(34)

where the m-th chick’s mother position is CCt
m,k, such that m ∈ [1, N], lll denotes a parame-

ter representing the speed at which a chick runs behind its mother. Figure 5 illustrates the
pseudocode for the proposed WDCSO.
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Inference Engine: The knowledge base’s establishment is a vital point for the FC. To
attain the control target, an expert control rule collection, called the knowledge base, is
requisite. Using the PMSG behavior knowledge, the control rules are generated.

Defuzzification: The fuzzy reasoning mechanism outcome is transformed into the
requisite crisp value by this procedure. The identified increment torque is denoted as a
crisp value, which is estimated by Equation (35):

dQ∗e =

m
∑

i=1
dQer f (dQer)

m
∑

i=1
f (dQer)

(35)

The torque Q∗e can be attained by utilizing Equation (36)

Q∗e (k) = Q∗e (k− 1) + dQ∗e (k) ∗Q (36)

where the FC’s output is depicted as dQ∗e , corresponding to the r-th control rule, the input
MF’s membership value is dQer, corresponding to the r-th control rule, f (dQer) is the
output MF’s membership value, and sampling time is proffered by Q.

4. Result and Discussion

In the proposed method, a prerequisite of the constant rotor presence is eliminated,
and all the essential calculations are performed by keeping the stator as the reference.
MATLAB/Simulink was used to simulate the suggested EFLC-centered torque ripple
reduction in IPMSG performance, and the proposed methodology was put into practice.
‘’Table 1a,b show the wind speed and the IPMSG parameters, respectively”.

Performance Analysis

The torque ripple is examined here after the suggested EFLC was applied. Numerous
factors were also examined, including the electromagnetic torque, the speed of the gener-
ator’s rotor, the three-phase voltage (Labc), the three-phase current (habc), the outputs of
the voltage on the d- and q-axes, the current flowing through the phase bridge converter,
and the generator terminal. It is suggested that WDCSO’s performance can be examined in
comparison to the popular particle swarm optimization (PSO), chicken swarm optimization
(CSO), grey wolf optimization (GWO), and genetic algorithm (GA). This comparison is
based on the fitness vs. iteration analysis.

Figure 6 shows the rotor performance concerning rotor speed with erratic WS. The
optimal power curve offers information on how to maximize energy harvesting under
various WS. The turbine uses the controller to operate on the power curve under changeable
WS circumstances to create maximum speed.

The effectiveness of EFLC in decreasing the torque ripple of an IPM synchronous
generator when wind speeds are changing is demonstrated in Figure 7. The electromag-
netic torque and generator rotor speed are depicted in Figure 7a,b. In Figure 7a, the torque
ripple is significant and erratic from the beginning to 1.06 s. The torque ripple is reduced
and reaches a steady state at t = 1.06 s. The generator’s rotor speed is shown in Figure 7b.
At t = 1.055 s, the generator’s speed rose and achieved a steady state. Additionally, FLC is
used to track the rotor speed and keep it consistent in order to maximize power. Addition-
ally, it offers dynamic speed control in windy circumstances and with oscillating torque.

The three-phase voltage (Lac) and three-phase current (habc) of the synchronous gener-
ator are shown in Figure 8a,b. The phase voltages (Labc) from the start of the graph to time
t = 1.055 s reveal a strong ripple. The waveform’s ripple started to flatten and approach a
steady state at t = 1.055 s. At t = 1.055 s, the current’s stability can be shown in Figure 8b.
At this point, the ripple is at its lowest point. As a result, the controller demonstrates its
capacity to control the generator’s voltage and current.
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Table 1. Parameters of WT and IPMSG.

S. No Parameters Values

(a)

1 Nominal mechanical output power (W) 1.50 × 106

2 Electrical generator’s base power (VA) 1.5 × 106/0.9

3 Base WS (m/s) 12

4 Maximum power at base WS (p.u. of nominal mechanical power) 0.73

5 Base rotational speed (p.u. of base generator speed) 1.2

6 Pitch angle beta to exhibit WT power characteristics (beta ≥ 0) (deg) 0

(b)

1 Ldc 288 Vdc

2 Rated power 100 kw

3 Rated speed 12,500 rpm

4 Number of phases 3

5 Back EMF waveform sinusoidal

6 Rotor type salient-pole

7 Mechanical input speed w

8 Preset model No

9 Stator phase resistance Rs (ohm) 0.425

10 Inductances [0.017415845761, 0.029268882377] H

11 Flux linkage 0.433 Wb

12 Pole pairs p 4

13 Initial conditions [0,0,0,0]
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The reference voltage space vectors L*q and L*d are shown in Figure 9a. The hys-
teresis controller gives the comparison of flux linkages and characteristics of the torque
generated with the estimated value of the generated torque and the constant flux linkage,
respectively. By choosing the voltage space vectors (L*q and L*d), the desired response
of torque along with flux linkage is attained. When the estimated torque/flux exceeds
the differential hysteresis limit, the torque/flux output decreases. When the estimated
torque/flux drops below its differential hysteresis limit, the torque/flux status output
increases. The differential limits, switching points for both flux and torque, are determined
by the hysteresis bandwidth. Here, the torque output increased; therefore, the schema
achieved the desired torque.
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Figure 9. (a) Voltage space vectors L*q and L*d. (b) Stator voltage vector signals L*a, L*b, and L*c.

The stator voltage vector signals L*a, L*b, and L*c references are depicted in Figure 9b.
These voltages are acquired by transforming the voltage space vectors L*q and L*d, created
from hysteresis comparators, to feed the switching logic. Using switching logic, the correct
stator voltage vectors are chosen to meet the torque and flux output requirements. The
PWM module generates the gate control signals from these output voltage signals and
feeds them to the three-phase bridge converter that rectifies the AC to DC to drive the GSC.

The generator terminal is depicted in Figure 10. The line voltage ab, line current,
voltage RMS, current RMS, and line power Pac reached a steady state at times of 1.06 s,
1.05 s, 1.07 s, 1.065 s, and 1.055 s, respectively. It makes sense that the EFLC regulates
voltage and current to keep the generator running steadily despite changing wind speeds.
Analysis of the voltage value reveals that the torque ripple is smaller than all of the
temporal variations.
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The three-phase bridge converter current is shown in Figure 11. The three-phase
converter is changed in accordance with the change in time. The current level has been
significantly raised for now. The three-phase bridge converter operating with the suggested
controller can function more effectively in this fashion.
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The estimated generator and wind turbine speeds are shown in Figure 12. The mea-
sured variables, the generator voltages and currents, are used to estimate the generator
speed. Both the d,q voltage and the d,q current are derived from stator currents (habc)
and voltage (habc), respectively. The model reference adaptive system (MRAS) observer
can be used to enhance the robustness and reliability of the drive system and to deter-
mine the generator speed without the need for a shaft-mounted mechanical sensor to
avoid the drawback of the sensor. The sensor has several demerits, such as an increased
number of connections between the generator and its controller, susceptibility to noise
and vibration, the design complexity of the generator, and increased cost. The purpose
of the MRAS observer is to calculate the PMG’s rotational speed. The figure shows that
the estimated generator speed follows the estimated wind turbine speed quite well under
varying wind conditions.
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Figure 13 offers a graphic depiction of fitness versus iteration. The suggested WDCSO
is examined here using popular models, including the CSO, PSO, GWO, and GA algorithms.
With 40 iterations, the suggested WDCSO algorithm has a fitness value of 0.77. The existing
models have low fitness values when compared to the suggested model. Similarly to this,
the suggested approach produced better results for different iteration numbers.
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5. Conclusions

IPMSGs are widely used in the industry because of their high power densities and
speed control capabilities. The decrease in TR of an IPMSG is a significant issue in the world
of electrical machine design. The proposed model used the EFLC-based TR minimization
system to resolve such issues under the change in WS. The HC and the FLC are both used
in this model. To reduce the inaccuracy in the MF boundary selection, this model used
the FLC’s WDCSO algorithm. The experimental analysis began with an explanation of
the IPMSG and WT parameters. The study of the suggested controller’s torque reduction
performance was then carried out, grounded on the voltage, current, generator terminal,
electromagnetic torque, generator rotor speed, torque, and three-phase bridge converter
current. According to the analysis, the proposed EFLC significantly reduces the TR. Based
on the fitness analysis, the WDCSO was examined using the standard technique, demon-
strating that the suggested methodology yields superior results. The performance of the
proposed methodology can be improved in the future by using an advanced algorithm.

6. Limitations of Work

Though enhanced fuzzy logic is used to control the interior permanent magnet syn-
chronous generator under variable wind speed, this means that the output of the control
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loop is not fixed at a specific value but is allowed to vary within a particular range. Overall,
fuzzy logic has some major limitations, such as the handling of inaccurate data, the inherent
inference of human thinking, and the fact that designing fuzzy logic takes time to reach
precise data.
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