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Abstract
Probabilistic forecasts in oceanographic applications, such as drift tra-
jectory forecasts for search-and-rescue operations, face challenges due to
high-dimensional complex models and sparse spatial observations. We dis-
cuss localisation strategies for assimilating sparse point observations and com-
pare the implicit equal-weights particle filter and a localised version of the
ensemble-transform Kalman filter. First, we verify these methods thoroughly
against the analytic Kalman filter solution for a linear advection diffusion model.
We then use a nonlinear simplified ocean model to do state estimation and drift
prediction. The methods are rigorously compared using a wide range of metrics
and skill scores. Our findings indicate that both methods succeed in approxi-
mating the Kalman filter reference for linear models of moderate dimensions,
even for small ensemble sizes. However, in high-dimensional settings with a
nonlinear model, we discover that the outcomes are significantly influenced by
the dependence of the ensemble Kalman filter on relaxation and the particle
filter’s sensitivity to the chosen model error covariance structure. Upon proper
relaxation and localisation parametrisation, the ensemble Kalman filter version
outperforms the particle filter in our experiments.
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1 INTRODUCTION

Data assimilation plays an essential role in enhancing
the reliability of operational oceanographic and atmo-
spheric forecasts by providing a framework to update and
calibrate numerical models using observed data (Asch
et al. 2016; Evensen 2009). There is typically a wide array
of available observations, such as satellite imagery, radar
measurements, weather stations, and ocean buoys. These

observations represent various physical quantities and can
exhibit diverse connections to the dynamical model, neces-
sitating substantial preprocessing efforts in operational
prediction systems. Furthermore, assimilating the obser-
vations and running the complex numerical simulations
often demand substantial computational resources.

In addition to regularly updated operational fore-
casts, there is a crucial need to provide targeted predic-
tions for localised and time-sensitive scenarios, including
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search-and-rescue operations or sea contamination inci-
dents (Breivik et al. 2013; Röhrs et al. 2018). To gain a
better understanding of the local conditions in such sit-
uations, it is possible to deploy and gather in-situ obser-
vations using drifters. However, owing to the fixed sched-
ules for the operational forecasts, such in-situ observations
will rarely be processed immediately by the operational
data assimilation cycle. Instead, we aim to concurrently
assimilate these observations into ensembles of efficient
simplified models. This approach complements the tra-
ditional operational framework by enabling rapid pre-
dictions with quantification of associated uncertainties,
possibly without requiring access to supercomputers.
This study aims to investigate efficient data assimila-
tion methods tailored for sparse observations for such
scenarios.

We limit our scope to point observations, such as infor-
mation gathered from buoys and drifters. Although these
observations provide valuable insight into the ocean state
at their respective locations, they are often separated by
significant distances, necessitating spatio-temporal mod-
elling to fill the gaps between sparse data points. In
this article, we utilise buoy information for two pur-
poses: (i) to constrain an advection diffusion process
for particle concentration (Foss et al. 2021), and (ii) to
constrain drift trajectories in a simplified ocean model
(Holm et al. 2020). Case (i) involves a linear system in
space–time, allowing us to explore the properties of the
targeted data assimilation methods for sparse observa-
tions by comparing their results to the optimal analytic
Kalman filter (KF) solution. In contrast, case (ii) deals
with a highly nonlinear dynamical model, prompting us
to compare the different approaches using various per-
formance metrics through synthetic simulation studies.
Our primary motivation for focusing on case (ii) is to
improve short-term predictions for search-and-rescue mis-
sions by leveraging the utilisation of spatially sparse buoy
observations.

To effectively model and estimate the uncertainty
associated with discretised high-dimensional state
variables governed by (non-)linear partial differential
equations, we base our work on ensemble prediction and
ensemble-based data assimilation. From a statistical per-
spective, data assimilation methods share the objective
of representing a conditional distribution given the avail-
able observations. In our case, as we are motivated by
search-and-rescue applications, we focus on filtering dis-
tributions rather than smoothers that also give improved
estimates of past states. The ensemble KF (EnKF) pro-
posed by Evensen (1994) is widely used in practice, and
various numerical adaptations have been developed
to address specific practical challenges and problems.
Sparse observations pose challenges related to filtering

efficiency and quality, and our focus centres around the
ensemble transform KF (ETKF; Bishop et al., 2001) and
explores localisation strategies for KFs. In contrast to
EnKF and its variants, particle filters (PFs)—for example,
see van Leeuwen (2009) or Chopin and Papaspiliopou-
los (2020)—are appealing as they do not rely on the
assumptions of a linear model and Gaussian probability
distributions, at least in their most basic forms. However,
PFs are less commonly employed in high-dimensional
real-world applications owing to the issue of degeneracy.
Holm et al. (2020) demonstrated a modern PF approach
based on the implicit equal-weight particle filter (IEWPF)
proposed by Zhu et al. (2016), which shows promising
forecasting results for drift trajectories.

In this article, we systematically compare the statis-
tical properties and performance of two ensemble-based
data assimilation methods for sparse observations in
practical oceanographic applications. We compare the
ETKF with localisation for sparse observations against the
state-of-the-art IEWPF. The comparison involves apprais-
ing their ability to reproduce analytic solutions for the
linear model, in the first case by assessing a range of statis-
tical performance metrics and evaluating forecast skills in
the nonlinear case. Furthermore, we provide comprehen-
sive discussions on the localisation techniques applied to
the ETKF and the inherent localisation mechanism within
the IEWPF.

The remainder of this article is organised as follows:
Section 2 explicates state-of-the-art ensemble-based data
assimilation techniques and reviews localisation strate-
gies in the context of sparse observations. In Section 3,
we use the dynamical model based on the advection dif-
fusion equation to verify the relevant ensemble-based fil-
tering methods against an analytical solution. Section 4
outlines the nonlinear simplified ocean model for drift tra-
jectory prediction, and we compare the performance of the
data assimilation methods in this context. Finally, closing
remarks are in Section 5.

2 THE DATA ASSIMILATION
PROBLEM AND ENSEMBLE-BASED
FILTERING

Spatio-temporal quantities are denoted by x(t, s), for time
t > 0 and location s, where we restrict ourselves to s ∈
R2. Upon discretisation of the spatio-temporal domain of
interest, the locations are represented at grid nodes of spa-
tial locations (si)

Ns
i=1 and time steps tn, n = 1, … ,NT , where

we will work with equidistant time steps without loss of
generality. The state vector at time tn is denoted xn ∈ RNX

and can hold more than one physical variable per location
if necessary (NX ≥ Ns). In oceanographic applications, the
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1070 BEISER et al.

dimension NX is usually very high owing to large domains
and several physical variables.

The numerical model is embraced in the model opera-
tor. It propagates the state vector from the previous time
step tn−1 to the current tn, defining the so-called forecast
state. The model usually describes the physics of the ocean.
To account for uncertainty coming from external factors,
unknown model parameters and non-modelled physics, a
Gaussian model error 𝝂n ∼ (0,Q) is added every time
step. It is assumed that Q is known and that the error terms
are uncorrelated in time. Starting from initial state x0, the
model evolves as

xn =xn−1 + 𝝂n
, n = 1, … . (1)

The oceanographic state xn is often only partially
observed, and sometimes even indirectly. An observation
is extracted from the true state vector by the measure-
ment operator H. Owing to the nature of the problems
within this work, we impose the restriction that this oper-
ator is linear and that H only extracts variables directly
from a subset of spatial locations, meaning that the matrix
consists of at most one 1 entry per row and otherwise 0
entries. The observation locations could change every time
step, but for the sake of eased reading we ignore this in
our notation. Measurement and representation inaccura-
cies are represented by the addition of a zero-mean Gaus-
sian error 𝝐n ∼ (0,R) with known covariance matrix
R and no correlations in time. We model observations
yn ∈ RNY by

yn = Hxn + 𝝐n (2)

and assume that data come from this observation model
employed on the unknown true state. The covariance
matrix R is assumed to be diagonal, representing condi-
tional independence between the observations given the
state variables. A characteristic of many oceanographic
applications, and a key assumption in our setting, is that
in-situ observations are spatially sparse and of low dimen-
sion compared with the high-dimensional state vector;
that is,

NY ≪ NX . (3)

Sequential data assimilation refers to the workflow of
sequentially updating the probability density of the state
variables as more data become available. Often, this results
in reduced uncertainty, especially in the neighbourhood
of the observed variables. This kind of data assimilation
is formalised in Bayes’ rule. Using the state’s density con-
ditioned on all previous observations p(xn|y1∶n−1) as the
forecast (prediction or prior), this rule is used to assimilate
the new observation yn and thus provides the analysis (fil-
tering or posterior) density p(xn|y1∶n) of the state. With the

independence assumption for the observation noise terms,
this formalism can be applied recursively as

p(xn|y1∶n) ∝ p(yn|xn)p(xn|y1∶n−1), n = 1, 2, … , (4)

starting with only prior information at the first time step.

Kalman filtering

In the case of a linear model  = M and an ini-
tial Gaussian distribution for the state x0 ∼ (𝝁0

,𝜮
0),

all forecast and analysis distributions remain Gaussian.
The data assimilation problem is then Gauss-linear and
Bayes’ formula, Equation (4), takes closed-form solutions
for the mean vectors and covariance matrices. Assum-
ing that we have an analysis (superscript “a”) distribu-
tion characterised by the mean 𝝁

n−1,a and covariance
matrix 𝜮n−1,a, the forecast (superscript “f”) distribution
xn|y1∶n−1 ∼ (𝝁n,f

,𝜮
n,f) is obtained by evolving the first

and second moments from the previous time step to the
next by

𝝁
n,f = M𝝁

n−1,a (5a)

𝜮
n,f = M𝜮

n−1,aMT +Q. (5b)

The analysis distribution xn|y1∶n ∼ (𝝁n,a
,𝜮

n,a) is
achieved by assimilating the latest observation yn via
Bayes’ rule for the given Gaussian model, resulting in

𝝁
n,a = 𝝁n,f + K(yn −H𝝁n,f) (6a)

𝜮
n,a = 𝜮n,f − K𝜮n,fKT

. (6b)

Here, K = 𝜮n,fHT(H𝜮n,fHT + R)−1 is the Kalman gain,
which in Equation (6a) maps the so-called innovation,
yn −H𝝁n,f, to the state space using the state covariance
matrix and the observation model. From the numerical
perspective, note that the KF requires storage and propa-
gation of the size NX × NX covariance matrix, which can
be infeasible for high-dimensional systems.

Ensemble-based data assimilation

In oceanographic applications, the linearity assumptions
of the KF are rarely met, and linearised approaches
can suffer from divergence challenges. There is hence
a need for more flexible methods, and ensemble-based
approaches have been employed as a computationally fea-
sible method to represent statistical solutions of nonlinear
systems, even for large NX .

Therein, the continuous distribution of the state vari-
able is approximated by an ensemble of realisations (xn

e )
Ne
e=1
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BEISER et al. 1071

and potentially by corresponding weights (we)
Ne
e=1. Follow-

ing the Monte Carlo idea, the marginal distribution of xn

at time tn becomes

p(xn) ≈
Ne∑

e=1
wn

e 𝛿(xn − xn
e ), (7)

where 𝛿 is the Dirac delta function and
∑Ne

e=1wn
e = 1.

In the statistical literature—for example, see Asch
et al. (2016) and Vetra-Carvalho et al. (2018)—there are
two popular groups of methods for ensemble-based data
assimilation, whose foundations and latest variants for the
aforementioned problems are outlined in the following
subsections.

2.1 PFs in oceanographic applications

PFs are ensemble-based methods for solving the data
assimilation problem using the Monte Carlo approach. In
their simplest form, starting from a weighted ensemble
approximation for p(x0) or p(xn−1|y1∶n−1) in the form of
Equation (7), the forecast distribution p(xn|y1∶n−1) can be
approximated by propagating each ensemble member xn−1

e
individually by the model Equation (1) to obtain xn

e . Plug-
ging this into Bayes formula, Equation (4), the weights are
updated as

wn
e ∝ p(yn|xn

e )p(xn
e |xn−1

e )wn−1
e . (8)

Since ensemble members that have weights very close to
zero do not contribute to the posterior probability dis-
tribution, it is common to combine Equation (8) with
a discrete resampling of the ensemble members based
on their weights; for example, see van Leeuwen (2009);
Chopin and Papaspiliopoulos (2020) for reviews of resam-
pling schemes. In practice, this means that we discard
ensemble members with low weights and duplicate those
with higher weights, thus ensuring that computational
resources are used to describe the non-negligible part of
the probability distribution. In high-dimensional applica-
tions, however, these basic PFs are prone to degenerate;
that is, all but one ensemble member get a weight close
to zero, leading to loss of statistical properties (Snyder
et al. 2008).

Among other concepts, one way to counteract such
degeneracy is to sample from a proposal density qe instead
of evolving the ensemble directly according to p(xn

e |xn−1
e )

(van Leeuwen et al. 2019). The proposal density can be
conditioned on the latest observation yn and the previ-
ous state xn−1

e for all ensemble members e = 1, … ,Ne. The

weights are then modified to

wn,∗
e =

wn
e

qe(xn
e |xn−1

1∶Ne
, yn)

.

The variance in the weights can be reduced in this way,
and the minimal variance is achieved by qe(xn|xn−1

1∶Ne
, yn) =

p(xn|xn−1
e , yn) as described in Doucet et al. (2000) and often

referred to as the optimal proposal. Under the assumption
of Gaussian errors and linear observation operator, which
applies to our case, this proposal is a Gaussian distribution
 (xn,opt

e ,P) with

xn,opt
e =xn−1

e +QHT(HQHT + R)−1

× (yn −Hxn−1
e ) (9a)

P = Q −QHT(HQHT + R)−1HQ. (9b)

Note that the expression for xn,opt
e is similar to the KF

update in Equation (6a), but it uses the covariance struc-
ture from the model error Q instead of the forecast
𝜮

n,f. Even this formulation of the PF will degenerate
for high-dimensional systems; for example, see Morzfeld
et al. (2017).

The optimal proposal density filter can be modified
such that all posterior ensemble members obtain a cer-
tain target weight wn

target, thus avoiding ensemble collapse
and the need of resampling. Instead of drawing realisa-
tions from the proposal distribution directly, the IEWPF
first samples 𝝃e and 𝜻 e from (0, INX ) and next implicitly
transforms the samples to a target distribution. This filter,
introduced by Zhu et al. (2016) and modified by Skau-
vold et al. (2019), utilises a version of the optimal proposal
density where 𝝃e and 𝜻 e are constructed to be perpendic-
ular and scaled according to factors 𝛼1∕2

e for e = 1, ...,Ne
and 𝛽

1∕2 respectively, before being transformed by P
according to

xn
e = xn,opt

e + P1∕2(𝛼1∕2
e 𝝃e + 𝛽1∕2

𝜻 e). (10)

Here, the constant 𝛽 is a tuning parameter that influences
the statistical quality of the results, whereas the 𝛼e val-
ues are calculated implicitly for each ensemble member
to ensure equal weights. To get an intuition of the idea
behind IEWPF, we observe that Equation (9a) develops
the state using but with no model error. These unper-
turbed states are then used to get xn,opt

e by assimilating
the observations. We then perturb xn,opt

e in Equation (10),
but instead of using the model error, which is sampled
from  (0,Q), we sample perturbations from  (0, 𝛼eP)
and (0, 𝛽P) in such a way that we counteract the change
of weights in the ensemble. Note that P is constructed from
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1072 BEISER et al.

Q as seen in Equation (9b), so that these perturbations can
be thought of as targeted sampling of the model error.

The tuning parameter 𝛽 needs to be selected with
care. A small value gives small spread of the ensemble
that likely underestimates the variability, whereas a big-
ger 𝛽 increases the spread. Holm et al. (2020, appendix A)
derived lower and upper bounds for this tuning parame-
ter. In the subsequent experiments, we tune 𝛽 manually,
mainly by calibration of coverage probabilities as sug-
gested in Skauvold et al. (2019). From experience, it seems
that 𝛽 values around 0.5 are a good start. Albeit that the
choice of 𝛽 is independent of the ensemble size, it is influ-
enced by the dynamics of the problem. Hence, one can
find a suitable choice of 𝛽 for a specific kind of scenario
and then keep it fixed in future experiments with similar
characteristics.

It should be noted that, in contrast to general PFs, the
IEWPF requires that the model error is additive and from a
Gaussian distribution. Furthermore, there are no guaran-
tees on how the IEWPF performs, even when the ensemble
size goes to infinity. Still, the performance tends to be very
good in large-size systems. With 𝛽 = 0, the implicit trans-
form has a gap that leads to asymptotic bias (Skauvold
et al., 2019), but this seems to be adjusted reasonably well
by the second part having 𝛽 > 0. The IEWPF has recently
been shown to be applicable and efficient for assimilat-
ing point-based observations into a simplified ocean model
based on the shallow-water equations (Holm et al. 2020).
Herein, this method represents a state-of-the-art PF and is
investigated more thoroughly.

2.2 EnKFs in oceanographic
applications

The EnKF by Evensen (1994, 2009) is an ensemble-based
version of the KF, given in Equations (5) and (6). Originally
presented as a data assimilation method for nonlinear sys-
tems, it also solves the problem of having to store and
propagate the NX × NX state covariance matrix 𝜮.

In the ensemble representation from Equation (7), all
weights are kept equal, and the state of each ensemble
member is propagated by the model in Equation (1). The
forecast state covariance is estimated from the ensemble as

̂𝜮

n,f = 1
Ne − 1

Ne∑

e=1

(
xn,f

e − xn,f)(xn,f
e − xn,f)T

, (11)

where xn,f denotes the ensemble mean. The ensemble
members are then updated along the same linear projec-
tion

xn,a
e = xn,f

e + ̂K
(

yn −Hxn,f
e − 𝝐n

e
)
, (12)

where the Kalman gain becomes ̂K =
̂𝜮

n,fHT(H ̂𝜮

n,fHT + R)−1. In Equation (12), the perturba-
tion 𝝐n

e ∼ (0,Rn) is added to adjust the variance in the
solution ensemble, motivated by exact sampling in the lin-
ear Gaussian situation. This solution is therefore termed
the stochastic EnKF (Burgers et al., 1998; Houtekamer
& Mitchell, 1998; van Leeuwen, 2020). The classical
stochastic EnKF in Equation (12) requires that we obtain
and store the relevant covariances from the ensemble
and then factorise matrices to solve a linear system. For
high-dimensional applications, this quickly becomes
expensive, and it is therefore common to circumvent the
covariance assembling (Evensen 2003) or to use so-called
deterministic square-root formulations instead (Whitaker
and Hamill 2002).

To avoid working in the state space, the ETKF (Bishop
et al., 2001) reformulates Equation (12) via linear alge-
braic identities into a particular example of a deterministic
square-root filter, which works in ensemble dimensions
instead. Mathematically, let Xn,f = [xn,f

1 , … , xn,f
Ne
] be the

matrix of prior ensemble states, and let X
n,f

be an NX × Ne
matrix where all columns are xn,f. The ETKF then works
on the state perturbation matrix Xn,f

pert = Xn,f − X
n,f

, and
calculates the mean of the analysis ensemble

X
n,a
= X

n,f
+ Xn,f

pertA
(

HXn,f
pert

)TR−1(yn −Hxn,f)
, (13)

where

A =
(
(Ne − 1)INe +

(
HXn,f

pert
)TR−1HXn,f

pert
)−1 (14)

plays the role of the analysis covariance matrix. The
ensemble members are then spread around xn,a according
to

Xn,a = X
n,a
+ Xn,f

pert((Ne − 1)A)1∕2
, (15)

where we use a singular-value decomposition to find the
square-root of A. The properties of the ETKF remain the
same as for the EnKF, and we refer to Li (2007) for further
details on the transform.

The derivation of these methods assumes a linear
model, and asymptotic convergence results for increased
ensemble size cannot be proved for nonlinear cases. Still,
the EnKF and its variants have been prevalent and success-
fully used in oceanographic applications; for example, see
Carrassi et al. (2018).

The error covariance matrix in these kinds of filters is
estimated from the ensemble and can lead to systematic
underestimation. Typical approaches to counteract this are
inflation or localisation. Anderson and Anderson (1999)
introduced “covariance inflation” by a multiplicative fac-
tor to keep more variability in the ensemble, where
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BEISER et al. 1073

T A B L E 1 Number of non-zero elements in the matrix operations used in the implicit equal-weight particle filter.

Equation Matrix operation Dimensions No. non-zeros for No. non-zeros for

any (HQHT + R)−1 diagonal (HQHT + R)−1

Q1∕2 NX × NX ≤ (2rQ + 1)2NX ←

Q NX × NX ≤ (4rQ + 1)2NX ←

H NY × NX NY ←

(HQHT + R)−1 NY × NY ≤ N2
Y NY

HT(HQHT + R)−1 NX × NY ≤ N2
Y NY

(9a) QHT(HQHT + R)−1 NX × NY ≤ (4rQ + 1)2N2
Y ≤ (4rQ + 1)2NY

HQT∕2 NY × NX ≤ (2rQ + 1)2NY ←

(HQHT + R)−1HQT∕2 NY × NX ≤ (2rQ + 1)2N2
Y ≤ (2rQ + 1)2NY

HT(HQHT + R)−1HQT∕2 NX × NX ≤ (2rQ + 1)2N2
Y ≤ (2rQ + 1)2NY

S in (16) Q1∕2HT(HQHT + R)−1HQT∕2 NX × NX ≤ (2rQ + 1)4N2
Y ≤ (2rQ + 1)4NY

several suggestions for the determination of an adap-
tive factor exist in literature; for example, see Desroziers
et al. (2006); Anderson (2009); Sætrom and Omre (2013);
Raanes et al. (2019). Similarly, additive inflation was pre-
sented by Ott et al. (2004). However, Li et al. (2009) also
point out that covariance inflation may not work appro-
priately in large, complex models. Hence, we will mainly
concentrate on localisation.

2.3 Sparse observations

The focus of this article is on assimilating spatially sparse
point observations. This naturally suggests to look closer
on “localisation” in the filters. Although localisation is
important for general applications, the sparse observations
scenario considered here motivates one to study specific
methods with good assimilation quality and algorithmic
efficiency.

2.3.1 Localisation and sparse observation
handling in the IEWPF

The need for localisation in EnKF-based schemes arises
from the spurious correlations introduced by the term
̂𝜮

n,fHT, which represents the estimated covariance terms
between all state variables and all observations in
Equation (12). As pointed out in Section 2.1, the optimal
proposal distribution in Equation (9a) updates the state
vector with a similar expression, but it uses the correlations
in the model error, QHT, rather than the empirical ̂𝜮n,fHT.
This means that the optimal proposal filter by design does
not lead to spurious correlations. Still, the structure of Q

of course influences the distribution, and in particular a
local structure in Q that does not overlap between obser-
vation sites entails updates in Equation (9a) that are local
as well.

To show that the IEWPF updates in Equations (9a)
and (10) are local if Q is local, we consider the pattern
of non-zero values in the matrix operations in the two
equations. First, let us use rQ to denote the radius in terms
of number of grid cells that information is spread through
the model error covariance matrix. This means that Q1∕2

contains at most (2rQ + 1)2 non-zero elements, whereas
Q = QT∕2Q1∕2 spreads the information twice as far, thus
having at most (4rQ + 1)2 non-zero elements. Second, we
observe that Equation (9b) can be rewritten as

P = QT∕2(INX

−Q1∕2HT(HQHT + R)−1HQT∕2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶S

)Q1∕2
, (16)

where we for convenience use S to represent the
longest matrix expression. This means that P1∕2 =
(INX − S)1∕2Q1∕2, which is what we need in Equation (10).

In Table 1, we give upper bounds on the number
of non-zero elements when stepping through the matrix
operations in Equations (9a) and (16). In the rightmost col-
umn, we assume that observations are sufficiently sparse
so that both HQHT and R are diagonal, whereas we make
no such assumption in the second column from the right.
We do, however, assume that H maps a subset of the
state variables directly to observational space. If we now
consider a single observation, meaning NY = 1 and scalar
(HQHT + R)−1, we see from Table 1 that the innovation
in Equation (9a) is spread in the neighbourhood of the
observation location within a radius of 2rQ grid cells.
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1074 BEISER et al.

Thus, xn,opt
e differs from xn−1

e only locally around the
observation.

To see the resulting non-zero pattern for S in
Equation (16), we realise that HQT∕2 consists of a single
row from QT∕2. Furthermore, we have that the leftmost
term Q1∕2HT is the same as (HQT∕2)T. Consequently, S
is simply the (scaled) outer product of the column from
Q1∕2 corresponding to the observation, and therefore has
the local correlation pattern in both its rows and columns,
but zero in all rows and columns for which the observed
state variable is not correlated with through Q1∕2. This then
means that (INX − S) differs from the identity only locally
to the observed state variable as well, which finally means
that P1∕2 = (INX − S)1∕2Q1∕2 differs from Q1∕2 only locally
to the observations as well.

It should be noted, though, that the values of 𝛼e and
𝛽 depend on the innovation obtained from all observa-
tions in the domain. These parameters are therefore global
parameters, but since they are scalars they do not con-
tribute to any change in the local correlation structures.
Related discussions on how to utilise local covariance
structures and sparse observations for efficient implemen-
tations of the IEWPF can be found in Holm (2020).

In addition to demonstrating the built-in localisation
in the IEWPF, Table 1 shows how sensitive the IEWPF
is to the structure of the model error covariance matrix
Q for spreading observed information in the state space.
In the extreme case of a diagonal Q (meaning rQ = 0) all
matrix operations will contain exactly NY non-zeros, and
only the observed state variables will be affected by the
data assimilation.

2.3.2 Localisation in the EnKF

In a statistical sense, the spurious correlations in the
EnKF are due to a poor Monte Carlo approximation of
the true covariance matrix; for example, see Houtekamer
and Zhang (2016). In the spatio-temporal physical model,
information propagates at finite speed and long-distance
correlations are unlikely to be significant. Prevailing tech-
niques to counteract these artefacts are covariance or
observation localisation as they are outlined in Sakov
and Bertino (2011). Both of these exploit the physical
distance between two points in space to reduce infor-
mation propagation effects, and this has been demon-
strated to work well in practice; for example, see Soares
et al. (2021). For many oceanographic applications,
it is important that the geostrophic imbalance intro-
duced by the localisation in the EnKF does not out-
weigh the natural imbalance—Greybush et al. (2011)
provide a discussion and representative experiments on
this issue.

For the ETKF, Ott et al. (2004) introduce an efficient
localisation scheme, and this is referred to as LETKF.
Further developed implementations using parallelisation
and observation batching exist; for example, see Hunt
et al. (2007). The LETKF variants are also popular in
numerical weather prediction; for example, see Szunyogh
et al. (2007), where for example global satellite data are
common. In the LETKF, one loops over the state locations
or sets of state locations in a batch area. Doing so, one
updates state variables by means of the ETKF using only a
specified set of local observations per batch.

2.3.3 Sparse observation handling in the
ETKF

In an oceanographic scenario with observations at only
a few locations, we prefer to use covariance localisation
(Houtekamer and Mitchell 2001) to achieve computational
control, as we explain later herein. One then defines local
domains around each observation site only, where the size
N loc

X of a local area is significantly smaller than the full
state space. For the choice of the radius of the result-
ing local domains, several approaches exist—for example,
see Kirchgessner et al. (2014)—but we advocate using
model-informed radii such as the model error range. We
next assume that observations with non-overlapping local
areas have negligible correlation, and they can be updated
separately. Owing to the motivating case with sparse obser-
vations, we expect to have few overlapping areas. The
reduced dimension of the local area compared with the full
state vector will make computations more efficient.

Still, with nonlinear dynamical models, it is sometimes
difficult to predict the possibly undesired effects of local
approximations. Using sequential data integration, one
can run through the data in multiple assimilation steps,
and in doing so one properly accounts for the correla-
tions. In cases of overlapping local observation areas, we
therefore recommend splitting the observations into obser-
vational batchesb, b = 1, … ,B, of assumed uncorrelated
observations for serial processing, as originally introduced
in Houtekamer and Mitchell (1998). In our context, the
batches at each step are constructed from far-apart obser-
vations. The local areas and the sequential processing give
good control for handling correlations from sparse spatial
observations. Nerger (2015) discusses how interactions of
localisation and serial observation processing could desta-
bilise the filter, but this effect seems to be minuscule with
reasonably set local areas and minimal correlation within
a batch.

Figure 1 (left) illustrates the definition of local areas
around depicted observation sites. The figure further indi-
cates the splitting into batches (middle and right displays),
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BEISER et al. 1075

F I G U R E 1 Schematic decomposition of the physical space (left panel) into local areas N loc
X ≪ NX around observations, indicated by a

filled grid cell, and the separation into two batches of uncorrelated observations (middle and right panels).

w 1

=

w loc ,3

+

w loc ,2

+

w loc ,1

0

0.5

1

w 2

=

w loc ,5

+

w loc ,4

0

0.5

1

F I G U R E 2 Schematic construction of the weighting wb using the wloc,𝑗 within the groups. For batches 1 and 2 from Figure 1, the
weighting vectors w1 and w2 are built from the Gaspari–Cohn kernel around each observation within the two groups. At the corresponding
centre, each wloc,j equals one and decays towards the boundary of the local domains. By definition, the supports are non-overlapping and the
contributions are added up.

with observation sites within a batch being sufficiently far
apart from each other.

For the covariance localisation, we consider weighting
vectors wb and assume a tapering that assures wb = 1 at an
observation site and wb = 0 outside the local areas. While
veering away from an observation site, w should transit
decreasingly monotone and smoothly from one to zero. An
example of a kernel fulfilling those requirements locally
in continuous space is the Gaspari–Cohn (GC) function
introduced in Gaspari and Cohn (1999), which enjoys
popularity in EnKF localisation. We let wloc,𝑗 ∈ R

N loc
X be

a properly scaled discretisation of the GC kernel around
observation 𝑗, such that its support matches the radius of
the local area. With the same notation, the weighting is
composed as

wb =
∑

𝑗∈b

wloc,𝑗 . (17)

For the observation batch from Figure 1, the weighting vec-
tors w1 and w2 are illustrated in Figure 2 together with the
contributions from wloc,1, … ,wloc,5.

Within the recursion of batches b, the local analysis
states xn,a(𝑗) ∈ R

N loc
X are calculated independently in each

local area around the observation sites 𝑗 ∈ b, whereby
the computational overhead in presence of sparse obser-
vations is implicitly controlled as the assimilation scheme
operates in much smaller dimensions than NX . Note that
the processing of a batch can hence influence the ensem-
ble that is used as the next forecast. The analyses only
take values in their respective small local regions, but to
avoid cumbersome notation for transformations, we abuse
the same notation for their extension to the full state size
xn,a(𝑗) ∈ RNX .

Because the ETKF constructs neither the covariance
matrix nor the Kalman gain, we do not incorporate the
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1076 BEISER et al.

weights directly into the Kalman update, but rather calcu-
late the ETKF analysis state by Equation (15) and weight
it with the forecast afterwards—recall that xn,a(𝑗) are the
columns of Xn,a in Equation (15). For the stochastic EnKF,
we see that this corresponds to tapering the Kalman gain,
and both approaches boil down to equivalent implementa-
tions. The weighting reads

xn,a,b
e = (1 −wb)xn,a,b−1

e +wb
∑

𝑗∈b

xn,a
e (𝑗), (18)

where xn,a,0 = xn,f and after the last batch, we set xn,a =
xn,a,B to obtain a final analysis state. For the global analy-
sis state, this means that most analysis information is used
near observation sites, whereas the forecast with its full
spread is retained far away from data. The formulation of
covariance location in the form of Equation (18) is further-
more convenient since the ETKF analysis scheme can be
used as a black box without interference of the localisation
weights.

From a principled statistical perspective, one could
process each individual observation in a serial manner,
but the collection in prescribed batches reduces iterations.
In doing so, one assimilates the spatial data recursively,
similar to the assimilation over time, albeit without the
dynamical state evolution because all updates happen at
the time when the data becomes available. For compu-
tational efficiency one again imposes some kind of local
routine, and in practice this may rely on GC tapering of
the matrices involved. This is commonly done in imple-
mentations of kriging, or in applications with sequential
uncertainty reduction, where the analysis can depend on
the choice of conditioning order; for example, see Nuss-
baumer et al. (2018).

Complementary to inflation as mentioned in
Section 2.2, Zhang et al. (2004) present relaxation-to-prior
to counteract overfitting. Introducing a scaling parameter
𝜙 ∈ [0, 1], the weighting vector can be constructed with
neatly integrated relaxation as

wrelax
b =

∑

𝑗∈b

𝜙 wloc,𝑗 . (19)

Here, 𝜙 = 0 represents a pure Monte Carlo simulation,
and 𝜙 = 1 is the previously presented scheme without
relaxation.

Algorithm 1 summarises the ETKF with covariance
localisation as we will use it later on. We will refer to it
as “SparseObsETKF” in order to avoid mixing up with
the LETKF. This implementation helps us to keep good
control of correlations as well as computational overhead
in the presence of sparse observations, and it provides a
convenient integration of tapering and relaxation.

Algorithm 1. Analysis scheme with localisation for
sparse observations (SparseObsETKF)

Given Xn,f. Parameters: localisation radius
and relaxation 𝜙

Set Xn,a,0 = Xn,f

for b = 1,… ,B do
Allocate wrelax

b ⊳ NX
for 𝑗 ∈ b do

Calculate local Xn,a(𝑗) using the
ETKF where Xn,a,b−1 is the forecast ⊳ N loc

X
wrelax

b += 𝜙wloc,𝑗
end for
Xn,a,b = (1 −wrelax

b )Xn,a,b−1 +wrelax
b∑

𝑗∈b
Xn,a(𝑗) ⊳ NX

end for
Xn,a = Xn,a,B

3 COMPARISON AGAINST THE
ANALYTICAL KALMAN FILTER IN
A LINEAR GAUSSIAN ADVECTION
DIFFUSION MODEL

In this section we examine a linear Gaussian
spatio-temporal model. As mentioned in Section 2, this
means that the analytic KF in Equations (5) and (6)
defines the optimal solution. Ensemble-based approxi-
mations and localisation effects of the different filtering
techniques from Section 2 can be verified against the KF.

3.1 Advection diffusion model

Inspired by Sigrist et al. (2015), we consider a stochastic
advection diffusion equation for state c given by

𝜕c(t, s)
𝜕t

= ∇ ⋅ d∇c(t, s) − vt ⋅ ∇c(t, s) + 𝜁c(t, s) +W(t, s).
(20)

The model’s parameters are d = 0.25 for the diffusion,
v = (1.0, 0.1)T for the advection, and 𝜁 = −0.0001 for the
damping. We assume the stochastic error process W has
uncorrelated elements over time but smooth dependent
spatial components at each time, and that Equation (20)
holds for one sampled path (realisation) of W . We consider
a rectangular spatial domain [0, 5] × [0, 3] with periodic
boundary conditions, and c will be initialised at time t = 0
as a Gaussian random field.

Equation (20) can, for instance, be used to represent
marine pollution dynamics (Foss et al. 2021), where the
goal is to predict the concentration c = c(t, s) of a contam-
inant over time and space in the ocean. In that case, the
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F I G U R E 3 The “truth” realisation of the stochastic process at the initialisation and selected observation times, with black dots
marking the observation sites and black crosses signifying two selected locations of interest.
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F I G U R E 4 For the same times as in Figure 3, the resulting analysis mean (upper row) and standard deviation (lower row) of the
Kalman filter.

advection parameter v would typically come from a full
ocean model if vertical currents are ignored.

In the discretised setting, the spatial domain is cov-
ered by a uniform Cartesian grid with centre points (si)

Ns
i=1

in quadratic cells of size 0.1 × 0.1. The state vector xn col-
lects all concentrations c(tn

, si) at regular time steps tn. The
initial state is represented by x0 ∼ (𝝁0

,𝜮
0) with mean

vector 𝝁0 and covariance matrix 𝜮0 having Matérn-type:

𝜮
0
k,l = 𝜎

2(1 + 𝜓Dk,l) exp(−𝜓Dk,l),

where 𝜎 = 0.5 is the standard deviation (assumed con-
stant at all locations) and𝜓 = 3.5 is the Matérn correlation
decay parameter, and Dk,l is the distance between sk and
sl. The mean 𝝁

0 equals 10 in the northeast with higher
bell-shaped concentration values in the southwest; see
Figure 4(left).

For the numerical solution of the stochastic partial dif-
ferential equation in Equation (20), a temporal forward
and spatial central finite-difference scheme is employed
such that the model resembles Equation (1) with the lin-
ear operator = M. With periodic boundary conditions,
the low-concentration area leaves the domain on the east
boundary and enters from the west. The model error 𝝂
is again represented by a Gaussian random field with a
covariance matrix Q of a similar Matérn type. A smaller
standard deviation 𝜎 = 0.125 is used, and a larger corre-
lation decay parameter 𝜓 = 7.0 leads to model noise with
smaller correlation.

3.2 Experiment design and analytic
solution

A single realisation of the advection diffusion generated
by the forward model is used to retrieve observations for
the filtering; see Figure 3. It is simulated for 250 time steps
withΔt = 0.01 on a grid of size 50 × 30. The simulated pro-
cess is observed at tn = 25n,n = 1, … , 10 at 15 grid cells
marked red in Figure 3. These direct state observations
are made with a small observation error 𝝐n ∼ (0, r2I),
r = 0.1.

The KF reference solution is depicted for a selection
of time steps in Figure 4. As for the truth in Figure 3,
the filtering mean (Figure 4, top) shows an eastnorth-
east movement of the concentrations, as expected from
the advection term. The standard deviations (Figure 4,
bottom) are clearly reduced by the data assimilation, espe-
cially around the observation sites and in the advection
direction. With time, however, the accuracy of the solution
converges, as the corrections from doing data assimilation
are balanced out by the dynamic model errors.

3.3 Numerical results and evaluation
metrics

We now solve this concentration advection diffusion
problem using the ensemble-based methods IEWPF,
ETKF, and SparseObsETKF from Section 2. The parameter
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F I G U R E 5 Mean error errKF
mean at t = 250 for assimilation experiments with Ne = 50 ensemble members. The root-mean-squared error

is given in brackets for each specified method. IEWPF: implicit equal-weight particle filter; ETKF: ensemble transform Kalman filter;
SparseObsETKF: ETKF with covariance localisation.

𝛽 emerging in the IEWPF is tuned manually and set
to 0.55, and this will be discussed further in relation
to some of the results. We set the localisation radius of
the SparseObsETKF equal to the correlation range of the
model error, which leads to four observational batches.
First, we do not use any relaxation in the perfect linear
model, as suggested by Raanes et al. (2019). The perfor-
mance of ensemble-based solutions is compared with the
KF reference solution. We use a set of metrics to eval-
uate different statistical aspects of the data assimilation
methods.

3.3.1 Root-mean-squared error

The ensemble mean xa is compared with the KF mean 𝝁a.
Here, we consider the state at t = 250 after assimilating
all available observations. The error in the mean at each
position is then the vector errKF

mean = (𝝁a − xa). As a scalar
metric to compute the behaviour over all grid cells, we use
the root-mean-squared error (RMSE):

RMSE = ||errKF
mean||2. (21)

Figure 5 shows errmean at each grid cell for a single data
assimilation experiment with Ne = 50 ensemble members
for each method, with the RMSEs shown in brackets. All
three ensemble-based data assimilation methods lead to
means that closely resemble the KF reference solution. The
mean error is in general low and smoothly distributed for
both IEWPF and SparseObsETKF, whereas the errors of
EKTF are somewhat bigger. Based on RMSE, IEWPF per-
forms slightly better than SparseObsETKF, whereas the
RMSE for ETKF is about twice that of IEWPF.

To deduce reliable conclusions beyond one dataset and
single ensembles, we repeat the data assimilation experi-
ment multiple times for several independently generated
true states. In Table 2, we report averaged results for 20
replicate synthetic truths and five ensemble-based data

assimilation experiments each. For this relatively small
ensemble size of Ne = 50, the localisation in the SparseOb-
sETKF halves the RMSE compared with the standard
ETKF, and the RMSE of the IEWPF lies in the middle of
the ETKF with and without localisation.

3.3.2 Frobenius covariance difference

We contrast the empirical covariance estimates ̂𝜮

a in
Equation (11) with the KF reference 𝜮a. We compute the
Frobenius covariance difference (FCD) to compare these
covariance matrices:

FCD = ||𝜮a − ̂𝜮

a
||F,

where || ⋅ ||F denotes the Frobenius norm (elementwise
sum). Averaged results for the FCD over replicate exper-
iments are presented in Table 2 using Ne = 50. Here, we
see that the FCD for IEWPF and SparseObsETKF are very
similar for all cases. The covariance approximations show
smaller errors for the ETKF solution than for the other
methods. At a single step, the ETKF approximation to the
covariance is unbiased, whereas the other methods have
no such guarantee. Still, it is not obvious that the ETKF
performs better after many data assimilation steps. Also,
when we test the entries close and far from the diagonal of
the covariance matrix, we cannot see any other behaviour
in the results.

3.3.3 Integrated quadratic distance

We next study a metric for the marginal distribution mis-
match of discrete ensemble-based distribution approxi-
mations to the Gaussian KF reference solution. The ref-
erence cumulative distribution function (CDF) of the
KF is denoted Fa. The empirical CDF (ECDF) of the
ensemble-based solutions are denoted ̂Fa.
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BEISER et al. 1079

T A B L E 2 Metrics for marginal distribution averaged over 20 synthetic truths and five ensemble realisations, each with Ne = 50.
Standard deviations are given in parentheses.

Method RMSE FCD 10−2 × dIQ at s1 10−2 × dIQ at s2

Monte Carlo 8.27 (2.88) 47.0 (8.35) 12.8 13.5

IEWPF 1.67 (0.43) 2.77 (0.14) 2.51 2.58

ETKF 2.14 (0.40) 2.14 (0.04) 2.57 2.86

SparseObsETKF 1.15 (0.24) 2.79 (0.15) 1.29 1.68

Abbreviations: ETKF, ensemble transform Kalman filter; FCD, Frobenius covariance difference; IEWPF, implicit equal-weight particle filter; RMSE,
root-mean-squared error; SparseObsETKF, ETKF with covariance localisation.

14 14.5
0

0.5

1
KF

IEWPF

ETKF

SparseObsETKF

(a) CDF and ECDFs at s1

12 12.5
0

0.5

1

(b) CDF and ECDFs at s2

F I G U R E 6 The cumulative distribution function (CDF) of the Kalman filter is compared with the empirical CDFs (ECDFs) of IEWPF
[0.0242, 0.0238], ETKF [0.0164, 0.0254], and SparseObsETKF [0.0093, 0.0117], with Ne = 50, for two distinct positions: (a) observation site s1

and (b) far away from observation sites s2. The integrated quadratic difference dIQ for s1 and s2 are shown within the brackets. IEWPF:
implicit equal-weight particle filter; ETKF: ensemble transform Kalman filter; SparseObsETKF: ETKF with covariance localisation.

In the analysis, two specific locations shown in the far
right panel of Figure 3 are studied based on their different
characteristics: s1 = (0, 0) is an observation site and s2 =
(2.5, 1.5) is as far away from observation data as possible.

In Figure 6, the CDF of the KF is depicted in com-
parison with the ECDFs of IEWPF, SparseObsETKF, and
ETKF at the two different locations for a small ensemble
size. First, since the scales of the x-axis in both displays are
the same, it becomes obvious that the standard deviation
at an observation site is much smaller than at an unob-
served location. Next, we see that the different filtering
methods differ in quality when compared with the analytic
solution. For the observation site s1 there is no clear quali-
tative difference, but at s2 one may already identify a slight
divergence in ETKF’s ECDF, whereas SparseObsETKF and
IEWPF still approximate the reference CDF quite well.

The tuning parameter 𝛽 steers the spread in the anal-
ysis ensemble of the IEWPF, and among the evaluation
metrics presented the ECDF reveals the scale the best.
We used it to optimise the filtering distribution manu-
ally and found 0.55 as best choice. For smaller values, the
ECDF gets too sharp, and for higher values the spread gets
too large. Similarly, the variance in the SparseObsETKF
ensemble usually increases as the relaxation parameter 𝜙
decreases. When using 𝜙 < 1 we observed that the spread
in the ensemble becomes too big compared with the CDF,
and the best match is achieved for 𝜙 = 1.

Thorarinsdottir et al. (2013) suggest a proper diver-
gence function to compare marginal CDFs, condensing

the error into a scalar number. The integrated quadratic
difference is defined by

dIQ =
∫
(Fa − ̂Fa)2 dx,

where the quadratic error is integrated over the sample
space of the variable. Errors captured in dIQ can originate
from either a lack of Gaussianity, a wrong scaling, a bias, a
combination thereof.

Table 2 shows averaged results for dIQ at s1 and s2
for the three ensemble methods. IEWPF and ETKF pro-
duce similar results, whereas SparseObsETKF clearly gives
the best results. The reason is twofold: First, the IEWPF
and ETKF update the entire field at each data assimi-
lation time, even at locations like s2 that are far away.
With the limited ensemble size, this is likely to induce
some undesired bias and variability far from data. Second,
the SparseObsETKF is rather accurate near the observa-
tions sites, like the other filters; and because the advection
and diffusion are known, the local updating propagates
reasonably over time to the far location s2.

3.3.4 Probability coverage level

Based on the mean and variance of the ensemble-based
solutions, we can check how often a prediction interval
covers the true realisation. For the KF reference, we will
have near-nominal coverage because the truth is simulated
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F I G U R E 7 Estimated CP1
1.64 using 500 replication experiments for the Kalman filter (KF) and the ensemble-based methods with

Ne = 50. The brackets show the averaged estimated coverage probabilities. The colour scale is centred at the target probability of 90%.
IEWPF: implicit equal-weight particle filter; ETKF: ensemble transform Kalman filter; SparseObsETKF: ETKF with covariance localisation.
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F I G U R E 8 Eigenvalue update in the very first (crosses) and very last (dots) data assimilation step. Prior-versus-prior on the
diagonal in red, prior-versus-posterior in blue. KF: Kalman filter; IEWPF: implicit equal-weight particle filter; ETKF: ensemble transform
Kalman filter; SparseObsETKF: ETKF with covariance localisation.

from the same model. Coverage probabilities (CPs) of the
analysis after the first observation time are

CP1
1.64 ∶= P(x1

true ∈ [𝝁
1,a ± 1.64𝝈1,a]) ≈ 0.90.

This means that the probability that the truth is covered
in the interval of 1.64 standard deviations from the mean
is 90%. For all methods, we use replicated synthetic truths
and estimate the CPs.

Figure 7 shows the estimates of the CPs averaged over
500 runs. The KF results cover the nominal 90% very well,
with a variability as expected from 500 replicates. Even
though the KF is analytic, the truths are generated stochas-
tically and we see the Monte Carlo error here. The IEWPF
and the SparseObsETKF also give very good estimates even
though the ensemble size of 50 members is low, and there
are no visible structures around observation sites. In con-
trast, the ETKF without localisation suffers from strong
undercoverage in this experiment. The CPs are around
0.9 near observation sites but fall to lower levels (which
are outside the truncation interval of the plot) away from
these.

3.3.5 Eigenvalues analysis

An eigendecomposition of the covariance matrix yields
eigenvalues representing the variability among orthogonal

axes of linear combinations of state variables. The largest
(first) eigenvalue is the variance in the direction of the
first eigenvector, and for a Gaussian distribution this rep-
resents the largest half-axis in the ellipsoid defined via
the quadratic form. Further, for a Gaussian distribution,
the entropy (disorder) is defined via the log-determinant
of the covariance matrix, which is the sum of the
log-eigenvalues. By studying the eigenvalues of the covari-
ance matrices of the different data assimilation methods,
we hence gain insight into the variability reduction and the
disorder of the distributions. Since it does not make sense
to average eigenvalues over multiple realisations, we leave
the spectral analysis to a qualitative view with cross-plots
of eigenvalues for the different methods.

Figure 8 shows cross-plots of the covariance matrix
eigenvalues of forecast (first axis) and assimilated (sec-
ond axis). In all displays, the crosses represent the first
data assimilation step and the dots are at the last data
assimilation step. For the KF, eigenvalues are computed
directly from the covariance matrix, and for the ETKF vari-
ants these are the eigenvalues of the estimated covariance
matrix in Equation (11). In the case of the IEWPF, the prior
ensemble is without model error, and hence we perturb the
prior before plotting.

In Figure 8, the forecast-versus-forecast points lie on
a straight line, but we still notice that all the corre-
sponding dots are closer to the origin than some of the
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BEISER et al. 1081

crosses. Hence, the eigenvalues are clearly smaller at the
last step, indicating that the data assimilation over time
gives smaller entropy. Going from forecast (red) to assim-
ilated (blue), the eigenvalues of the covariance matrix are
reduced. Taking the KF as a benchmark, this reduction
is particularly large for the biggest eigenvalues, indicating
the updating is not only local but also shrinks the variabil-
ity of dominating linear combinations and the entropy of
the distribution. At the first step (crosses), the ETKF updat-
ing appears very similar to that of the KF. At the last step,
the eigenvalues of the ETKF are larger and not reduced
quite like for the KF. This indicates that, even though
the ETKF undercovers the distribution (Figure 7), there
is not quite sufficient reduction in the largest eigenvalues.
Both IEWPF and SparseObsETKF get smaller reductions
in eigenvalues than the KF. At the first data assimilation
step the reduction is larger for SparseObsETKF than for
the IEWPF, whereas the IEWPF has more reduction at the
last data assimilation step.

3.3.6 Spatial connectivity

Although the previous metrics have considered the
marginal solution at one time step only, the correlation
between different time steps and between different spatial
positions gives further insight into the statistical quality of
the filtering methods.

Given data up to time tn−1, the correlation between the
concentration at sk at tn−1 = 225 and sl at tn can then be
calculated from the KF results via

Corr(xn−1,a
k , xn,f

l ) =
Cov(xn−1,a

k , xn,f
l )

𝜎

a,n−1
k 𝜎

f,n
l

=
M𝜮

a,n−1
k,l

√

𝜮
a,n−1
k,k

√

𝜮
f,n
l,l

.

(22)

Similarly, we can estimate these correlations from the
ensemble-based methods by

̂Corr(xn−1,a
k , xn,f

l ) =
1

Ne − 1
1

𝜎

n−1,a
k 𝜎

n,f
l

×
Ne∑

e=1
(xn−1,a

e,k − xn−1,a
k )(xn,f

e,l − xn,f
l ).

In Figure 9, we show the correlation fields of the state
between a reference grid cell at t9 = 225 and all other grid
cells at t10 = 250. As reference locations sk, we consider s2
positioned far away from any observations (in the top row)
and s3 at an observation site in the middle of the domain
(in the bottom row). First, from the KF solution (left), we

recognise the advection field in the model that transports
information towards eastnortheast from both locations, as
well as the diffusion causing the correlation to have longer
range than the model error correlation radius. Second, the
maximal correlation to the reference point is higher when
sk is not an observation site. In spatial statistics, condi-
tioning on data breaks up some of the prior correlations.
Since most of the update from the data assimilation occurs
near the observation locations, the conditional correlation
tends to be smaller in the proximity of data. At locations
that are far from observations, more of the prior correlation
remains.

In the three rightmost columns of Figure 9 we see
the correlations estimated with the three ensemble-based
methods using an ensemble with Ne = 250 members. We
see that all methods capture a similar correlation struc-
ture with respect to the advection and diffusion, and the
relative balance between prior model and information
from the observation. With Ne = 250, the results are less
smooth than the KF solution. In the upper scenario, the
area of high analytical correlations becomes less apparent
among background noise, whereas in the lower scenario
the respective regions are easier to identify in all methods.

The spatial error in the approximation of correlation
between two consecutive model steps for the reference
location sk is evaluated collectively across all grid cells as

CE(sk)2 =
Ns∑

l=1

|
|Corr

(
xn−1,a

k , xn,f
l

)

−̂Corr
(

xn−1,a
k , xn,f

l

)
|
|
2
. (23)

The CE values for the specific data assimilation run shown
in Figure 9 are given in brackets in the figure. These results
for a single run with Ne = 250 already reveal that the con-
tribution to CE can come from multiple sources, such as
over- or underestimation of the actual correlations and
from spurious correlations. The final CE does not qualita-
tively expose which of the error sources are present to what
extent, but it quantifies how well the analytical structure is
approximated. The chosen Corr and ̂Corr suggest that spu-
rious correlations are a present error source in all methods,
but IEWPF and SparseObsETKF tend to overestimate the
high correlations. Meanwhile, ETKF underestimates the
correlations, thus leading to a smaller CE.

3.4 Sensitivity to localisation

The localisation properties iIn the IEWPF, are steered
by the structure of the model error covariance Q and
in the SparseObsETKF by the definition of the locali-
sation radius, which we again defined according to the
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F I G U R E 9 Correlations Corr(x9
k, x

10
l ) and ̂Corr(x9

k, x
10
l ) between fixed locations sk and all other grid points in the domain sl, for k = 3

in the upper row and k = 2 in the lower row. The ensemble-based methods use Ne = 250 ensemble members, and the respective CE estimates
are given in brackets. KF: Kalman filter; IEWPF: implicit equal-weight particle filter; ETKF: ensemble transform Kalman filter;
SparseObsETKF: ETKF with covariance localisation.
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F I G U R E 10 Different localisation parametrisations for the IEWPF (implicit equal-weight particle filter). Averaged results over 20
truth realisations and five ensemble initialisations each.

correlation range of Q; see Section 2.3. In the rest of the
section those choices are held fixed, but here we show-
case their influence. To do so, we consider four different
𝜓 for the model error covariance matrix, while keeping
everything else unaltered; that is, the standard derivation
and the IEWPF tuning parameter 𝛽. Analogously, we vary
the localisation radius in the SparseObsETKF. The param-
eter 𝜓 = 3.0 corresponds to no localisation and 𝜓 = 5.0
and 11.0 represent roughly a doubling and halving of the
localisation radius respectively. Importantly, it should be
noted that the GC and the Matérn-type covariance ker-
nels decay with different rates such that the results are
not one-to-one comparable, but we can still record trends
within each method.

Figures 10 and 11 allow one to get an impression of the
RMSE together with spatial effects. Since the localisation
is in-built into the IWEPF, one has to be careful with the

interpretation of Figure 10a. Nevertheless, there are clear
unintended artefacts in mean and variance errors. Even
though the mean for 𝜓 = 5.0 in Figure 10b is very well
calibrated in the entire field, the variance is slightly under-
estimated and the error shows structures around observa-
tion locations. Note that an increase of 𝛽 may counteract
the underestimation. For the standard IEWPF, this is the
opposite way around; here, the errors in the variances are
minuscule, but the mean is not equally well calibrated. The
IEWPF with reduced localisation radius performs poorly
when further away from observation locations. The ETKF
without localisation underestimates the variance of the
KF. The SparseObsETKF with a localisation radius that
spans the full y-extent of the domain (Figure 11b) per-
forms slightly better for mean and variance estimation
than the parametrisation as we have chosen in the rest
of the section. We recall that the localisation usually used
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F I G U R E 11 Different localisation parametrisations for the SparseObsETKF (ensemble transform Kalman filter with covariance
localisation). Averaged results over 20 truth realisations and five ensemble initialisations each.

yields a computational advantage owing to reduced analy-
sis dimensions. Again, the smallest localisation parametri-
sation fails to assimilate the entire domain.

We note that the localisation parametrisation as used in
the rest of the section work reasonably well. Nevertheless,
we notice that there is potential to fine-tune both methods
further, but in the interest of a limited number of tuning
parameters we continue with the native parameters.

3.5 Discussion of evaluation metrics

The set of comparative metrics from the previous subsec-
tion has given us a collection of metrics that quantify some
statistical qualities of the ensemble-based data assimila-
tion methods in reference to the analytical KF solution.

Table 2 shows the statistically averaged results for these
performance scores at t = 250. These results are obtained
across five data assimilation runs for 20 different synthetic
truths and are therefore more reliable than the single real-
isations demonstrated in Figures 5,6, and 9. We have used
Ne = 50 ensemble members here for each run. In addi-
tion to comparing the data assimilation methods against
each other, we have also included the results using pure
Monte Carlo simulations without observations (top row).
These serve to demonstrate the worst-case scenario for
each metric, and we see how all three data assimilation
methods clearly outperform this, as expected. In the exper-
iments, we have observed that the IEWPF takes several
assimilation steps until it is sufficiently calibrated, which is
respected by the choice of t here such that the comparison
stays fair; see Section 4 for details.

Based on the results in Table 2, there is no method that
clearly dominates on all individual criteria. For RMSE, it
seems that SparseObsETKF is much better than ETKF, but
this is not as clear when considering FCD, where ETKF
scores best. Maybe more surprising, SparseObsETKF is

significantly better than ETKF when measuring the error
in the ECDF at s2 far from the observation, but not at
s1 at an observation site. A plausible explanation is that,
when updating the state far from an observation, all covari-
ances are relatively weak, which means that spurious cor-
relations more easily dominate data assimilation. With
localisation, we ensure that only the most relevant small
correlations are considered, thus improving the result.
This effect will then be less at an observation site, as the
most important correlations are stronger. IEWPF gets all
metrics between ETKF and SparseObsETKF. We observe
that a worse FCD has no influence on the dIQ at the
positions considered.

3.5.1 Effects of ensemble size

In Figure 12, we study how different ensemble sizes
influence RMSE, dIQ, and correlations for the three
ensemble-based methods. We use ensemble sizes Ne ∈
{25, 50, 100, 250, 1000, 5000}, and the results are averaged
across multiple experiments for each of these sizes. In
general, we expect that increased ensemble size leads
to more accurate statistical estimates, and thereby better
results. This is clearly the case for ETKF for all metrics;
and SparseObsETKF shows the same trend, but not as
strongly. We see that SparseObsETKF outperforms ETKF
with respect to RMSE and dIQ for small ensemble sizes; but
ETKF is better with large ensembles, as the performance of
SparseObsETKF stagnates for Ne > 250. SparseObsETKF
improves less than ETKF with larger ensembles because
it ignores correlations, and this gives bias in the analysis.
The IEWPF yields results between ETKF and SparseOb-
sETKF for small sample sizes, but there is slower con-
vergence as the ensemble size increases. Unlike ETKF,
which converges to the true Gaussian distribution in
this case, there is no such guarantee for the IEWPF.
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F I G U R E 12 Evolution of the comparison measures as a function of the ensemble size Ne: (a) root-mean-squared error (RMSE); (b) dIQ

at s0 (blue) and s2 (purple); (c) CE(s2) (blue) and CE(s3) (purple). IEWPF: implicit equal-weight particle filter; ETKF: ensemble transform
Kalman filter; SparseObsETKF: ETKF with covariance localisation.
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F I G U R E 13 Evolution of the comparison measures as we change the sparsity/density of observation data through the number
observations NY . The ensemble size is fixed at Ne = 50. (a) Root-mean-squared error (RMSE); (b) dIQ at s0; (c) CE(s3). IEWPF: implicit
equal-weight particle filter; ETKF: ensemble transform Kalman filter; SparseObsETKF: ETKF with covariance localisation.

Since the second-stage perturbation step of the IEWPF
is designed to reduce a systematic bias and help perfor-
mance, fine-tuning the choice of the 𝛽 scaling parame-
ter could improve convergence for some properties, but
maybe not similarly so for all the desired scores. The cor-
relations mismatch compared with the KF in Figure 9 is
slightly different depending on the fixed reference point,
but they converge with increasing sample size, especially
so for the ETKF, which has curves going faster to zero.
For both SparseObsETKF and IEWPF there seem to be a
remaining mismatch in this CE score even for thousands
of ensemble members.

3.5.2 Effects of sparsity of observational
data

In a regime dominated by the sparsity of observations, we
also want to stress test all methods with respect to the
amount of observational data. For this purpose, we repeat
the case study using NY ∈ {8, 15, 60, 104, 170} regularly

placed observation sites. These numbers are chosen such
that the observation locations have distance of 15, 10, 5,
4, and 3 grid cells apart from each other, respectively. We
use Ne = 50 ensemble members. Of course, the localisation
scheme for the SparseObsETKF is not designed for dense
data and will get computationally very inefficient due to
a high number of batches that are processed serially. The
localisation radius is not modified.

Figure 13 shows the same averaged metrics as before,
with respect to a growing number of observations. Note
that it no longer makes sense to distinguish between loca-
tions near and far from observations, since the observation
sites get denser over the domain. The increase in obser-
vation data leads to a sharpening in the reference distri-
bution calculated from the KF. For the ETKF, we observe
that RMSE does not improve and its ECDF approxima-
tion gets worse, compared with the KF. This is because
of the underestimation in variance and a slight bias
that strongly penalises the dIQ. Both SparseObsETKF and
IEWPF improve their quality for increasing observation
data size. This is surprising and noteworthy for IEWPF, as
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BEISER et al. 1085

PFs tend to collapse for high-dimensional observations. In
contrast to RMSE and dIQ, the CE does not depend on the
observation sparsity and is practically constant on the level
that we saw in Figure 12c.

3.5.3 Summary

In this case study, we verify the ensemble-based meth-
ods from Section 2 for a linear Gaussian data assimilation
problem with the analytical KF reference. The SparseOb-
sETKF and IEWPF include localisation, either explicitly
or implicitly, that is connected to the correlation radius
of the model error. Beyond the verification, we can in
particular record that SparseObsETKF outperforms ETKF
and IEWPF for smaller ensemble sizes (about Ne ≤ 250).
Though the ETKF reduces the spectral radius in every
data assimilation step more than the other methods, it
requires a large ensemble size to obtain a reasonable
approximation of the full covariance matrix. The localised
version that ignores large-distance correlations is perform-
ing well for small ensemble sizes, but it does not improve
much more for larger sizes. Similar tendencies are seen
with the IEWPF. The approximation of the correlations
between different time steps depend mostly on the ensem-
ble size—the model error plays a major role in the eval-
uation, and this criterion requires a higher ensemble size
for a sufficient representation. For reasonable ensemble
sizes, say 100, both IEWPF and SparseObsETKF operate
well for any density of observation data. For most crite-
ria we tested in this example with sparse point data, the
SparseObsETKF tends to give slightly better performance
than the IEWPF. Based on this extensive statistical eval-
uation, we hence recommend considering the SparseOb-
sETKF for similar kinds of applications with sparse data
and limited ensemble sizes.

4 COMPARISON FOR DRIFT
TRAJECTORY FORECASTING IN A
SIMPLIFIED OCEAN MODEL

We now increase both dimensionality and complexity
as we turn to a nonlinear simplified ocean model. This
gives insight into the behaviour of the ensemble-based
data assimilation methods on a challenging case with
applied relevance. The practical purpose of this config-
uration is to use ensembles of computationally efficient
simplified ocean models instead of, or complementary
to, single realisations of complex operational ocean mod-
els in time-critical situations. The simplified models
allow for larger ensembles, and hence facilitate uncer-
tainty quantification. Such an approach can be useful

in search-and-rescue operations, where drifters released
by the vessel or relevant anchored buoys (also called
moorings) can give sparse in-situ observations during the
operation. These point observations can then be assimi-
lated into the ensemble-based representation to improve
the drift trajectory forecasts that specify a search area.

Owing to the nonlinearity of such an model, there is
no analytical reference solution for the ensemble distribu-
tions available. We can nevertheless compare SparseOb-
sETKF and IEWPF by studying their predictive properties
with the ground truth in a simulation study. We base
our numerical experiments on those presented in Holm
et al. (2020), where the IEWPF was successfully tailored
for efficient graphics-processing-unit-accelerated assimi-
lation of point observations of a chaotic shallow-water
model. We expand on the numerical result from that
work by evaluating more skill scores, and by providing
an in-depth comparison between IEWPF and SparseOb-
sETKF for state estimation and drift trajectory fore-
casts. In particular, this will also serve as a more thor-
ough evaluation of the applicability of IEWPF in this
context.

4.1 Simplified ocean model

The simplified ocean model is represented by the rota-
tional shallow-water equations given by

𝜂t + (hu)x + (hv)y = 0,

(hu)t +
(

hu2 + 1
2

gh2
)

x
+ (huv)y = fhv,

(hu)t + (huv)x +
(

hv2 + 1
2

gh2
)

y
= −fhv.

(24)

This is a nonlinear two-dimensional hyperbolic conserva-
tion law, which models conservation of mass through the
deviation 𝜂 from equilibrium sea level, and conservation of
momentum through hu and hv, which are vertically inte-
grated ocean currents in x- and y-direction respectively. By
denoting the equilibrium depth of the ocean by H, we get
the total depth as h = H + 𝜂. Furthermore, g is the accel-
eration due to gravity, and f is the Coriolis parameter that
accounts for the rotating frame of reference.

We solve Equation (24) using the high-resolution
central-upwind finite-volume scheme proposed by Cher-
tock et al. (2018). In our notation from the model equation,
Equation (1), the state vector xn consists of the cell aver-
aged values (𝜂n

i , (hu)ni , (hv)ni ) at time tn for all cells i in
the discretised domain. Then operator then applies the
finite-volume scheme to evolve the state from xn−1 to xn.
Note that the time step used by the numerical method
can be chosen independently from the model time step,
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F I G U R E 14 State of the synthetic truth after (a) 3, (b) 6, and (c) 10 simulation days. The arrows indicate the direction and strength of
the ocean currents derived from u and v respectively. The background visualises the magnitude of velocity in metres per second. The
turquoise dots mark the fixed-point buoy positions.

meaning thatmight consist of multiple iterations of the
numerical scheme.

We apply a small-scale Gaussian model error 𝝂 ∼
 (0,Q). It is constructed from a coarse-scale perturbation
of 𝜂, which is smoothed by a second-order autoregres-
sive function and projected onto the numerical grid. The
model error for hu and hv is then inferred according to
geostrophic balance to ensure physical feasibility. Further
details about this model are available in Brodtkorb and
Holm (2021) and Holm et al. (2020).

4.2 Experiment design

In the following, we use the same experimental design
as in Holm et al. (2020). We consider a rectangular
domain covering 1, 100 × 666 km2 that is discretised as a
uniform Cartesian 500 × 300 grid. The domain has peri-
odic boundary conditions and constant equilibrium depth
H = 230.0 m. The initial conditions, for the ground truth
as well as for all ensemble members, consist of a westward
jet in the north part of the domain and an eastward jet in
the south, with hv = 0. Both jets are balanced according to
geostrophy by 𝜂 so that the initial conditions are in steady
state. This steady state is unstable, however, and slight per-
turbations, such as those from the model error 𝝂, cause
chaotic behaviour.

As an example of the turbulent behaviour, Figure 14
shows the water velocities for one realisation that is
labelled as the synthetic truth xtrue. Here, the model error
is added every 60 s, and the model error correlation radius
is approximately 40 km. From Figure 14, we see that the
jets in xtrue are still quite regular after 3 days, but grow
more irregular after 6 and 10 days. It should be noted
that the mean state from a pure Monte Carlo experi-
ment without data assimilation will results in hv ≈ 0 even
after 10 days. This indicates that it is challenging to cor-
rectly capture where and how the turbulent behaviour
will develop.

From xtrue, we extract direct observations of only
(hu, hv) at 60 locations in the domain every 5 min between
day 3 and day 10, with observational noise sampled from
N(0, I). The turquoise dots in Figure 14 show the obser-
vation sites. In total, the experiment is characterised by
450.000 state variables versus only 120 very sparse noisy
observations. After day 10, three drifters are released in
the domain, and advected according to the simulated cur-
rents at every time step of the numerical scheme using a
simple Euler scheme. Part of the challenge for the data
assimilation methods is to forecast the trajectories of these
drifters.

The data assimilation starts at simulation day 3 after
each ensemble member has been spun up from the steady
state through independently sampled model errors. Even
though all ensemble members are visually very similar at
this stage, they have started to develop internal instabili-
ties that will grow over time unless the observations are
successfully assimilated.

This case is much more challenging than the advec-
tion diffusion model in Section 3: The shallow-water
model is nonlinear, there are unobserved variables, and
it has significantly higher dimensionality. Critically, the
nonlinear dynamics of the shallow-water model are chal-
lenging to capture. In the advection diffusion model, the
state converges towards an equilibrium due to the diffu-
sion, whereas our shallow-water equation case gets chaotic
dynamics that make the ensemble naturally diverge in
time.

4.3 Numerical results

Classical EnKF approaches like the ETKF lead to use-
less results for this difficult case, and only results of the
IEWPF and SparseObsETKF are shown in the comparison.
We use Ne = 100 as a compromise between computational
effort and statistical quality. Based on our experiments
on this high-dimensional nonlinear model, the IEWPF
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BEISER et al. 1087

F I G U R E 15 Properties of the
state estimation for the different
physical variables in this simplified
ocean model (sea-surface elevation 𝜂
and momenta hu and hv) after day 10
measured in (a) the error of the mean
versus the truth and (b) the standard
deviation presented for the IEWPF
(implicit equal-weight particle filter)
and the SparseObsETKF (ensemble
transform Kalman filter with
covariance localisation) without and
with inflation.
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performance is not very sensitive to the explicit choice
of 𝛽 and we use the maximal allowed value. The local-
isation radius for the SparseObsETKF is chosen slightly
larger than the model error correlation radius. In con-
trast to Section 3, we now also investigate the influence of
relaxation in the SparseObsETKF. We present results for
the SparseObsETKF without relaxation (𝜙 = 1.0) and for
the SparseObsETKF whose weights in the localisation are
scaled by 𝜙 = 0.5. We compare data assimilation methods
with the simulated truth using a number of skill scores that
refer to this ground truth.

4.3.1 State estimation

We first look at deviations of the ensemble mean from the
truth by

errday 10, true
mean = xday 10 − xday 10

true , (25)

which represents the error in the correct physical unit. We
also investigate the standard deviation in the ensemble

STDday 10 = 1
Ne − 1

√
√
√
√

Ne∑

e=1
(xday 10

e − xday 10)2, (26)

which gives insight about the ensemble spread around its
mean.

Figure 15a shows the mismatch between the truth
and the ensemble means of the conserved variables after
assimilating the final observations on day 10. Significant
differences become clear in the error of the sea-surface ele-
vation 𝜂 (left): Whereas the IEWPF has some moderate,
relatively smooth error over the entire domain, the mean
of the SparseObsETKF is far off in half of the domain.
In particular, the rims in the error field are very sharp,
also recognisable in the error spots of the currents at
the edges of the jets. This indicates that the ensemble
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1088 BEISER et al.

produces very fast changing ocean fields with the tendency
to non-physical members. However, relaxation with 𝜙 =
0.5 (bottom) impressively fixes some of those issues and
the error fields become much smoother and closely cali-
brated, even though there is still a recognisable, but weak,
inherited pattern in the error for elevation.

There are structured artefacts identifiable around the
observation sites for IEWPF in Figure 15b. Even though
Figure 15a shows that the ensemble mean gives a very
precise description of the ground truth, the ensemble vari-
ance is large. As discussed in Holm et al. (2020), the
IEWPF updates the momentum locally by inducing a cor-
rective current formed by the structure in the model error
covariance matrix Q. In this case, Q induces geostrophi-
cally balanced dipole structures, which means that while
improving the state at the observation site we risk deteri-
orating the solution in its vicinity. This illustrates a weak-
ness of IEWPF, showing that its quality is only as good as
the structure of Q.

In the standard deviations for the SparseObsETKF in
Figure 15b (middle row), there is an expected pattern of
low values around observation sites. Since the localisation
only corrects around the buoys and leaves the forecast oth-
erwise unchanged, the variance in one data assimilation
step is mainly reduced in local areas. With the dynamical
model over time, the variance reduction is disseminated
over the entire domain. Furthermore, the standard devi-
ation in the SparseObsETKF is on a very low level. Hav-
ing areas of low error together with the sudden changes
towards big errors raises suspicions of overfitting. Also, the
relaxed SparseObsETKF (bottom row) achieves a similarly
low standard deviation after day 10.

4.3.2 Drift trajectory forecasting

To further compare the practical applicability of IEWPF
and SparseObsETKF, we look at forecasts of drift trajecto-
ries starting at day 10.

Figure 16 demonstrates the forecasted trajectories of
drifters that are realised after ten simulation days in the
simplified ocean model. The three drop locations are
selected to capture different characteristics in the currents:
Drifter 1 (Figure 16a) starts in the middle of a rather
weak and big east stream, drifter 2 (Figure 16b) starts in
a rather strong west stream, and drifter 3 (Figure 16c)
starts in a turbulent area in between the dominating
streams. For the first 2 days of forecast, we show the
true trajectory along with the trajectories for all ensem-
ble members and the ensemble mean, whereas for the
third day (right) we show the estimated kernel density
(Scott 1992) of the final drifter locations along with the true
trajectory.

For drifter 1, all trajectories have an eastwards drift, but
the IEWPF members fan out from the beginning whereas
the SparseObsETKF trajectories stay close together. With-
out relaxation, the truth becomes an outlier in the
SparseObsETKF forecast. With relaxation, the truth stays
within the forecast. The trajectories from the IEWPF catch
the truth in a high-probability area, but their spread
covers almost the entire extent of the domain in the
y-direction.

Even though drifter 2 starts within a jet, it drifts only
shortly westwards before it takes a sudden turn towards
the north. Here, we can again see the turbulent behaviour
of this nonlinear model. The trajectories of the IEWPF
again spread out widely and, therefore, do not reveal any
consistent dynamical pattern in the underlying currents.
SparseObsETKF not only misses the true trajectory com-
pletely, it also shows some wriggling trajectories, which
indicates that there are unbalanced gravitational waves in
the ensemble. Relaxation increases the spread in the tra-
jectories up to day 2, and most of the ensemble members
capture the sudden turn in the truth, even though this
happens a day after assimilating the final observations.

Drifter 3, which is released in an unstable area, follows
what is almost a rotation-like pattern. Here, the IEWPF
is unable to estimate a clear direction even for the first
24 hr, and after day 10 the drifter distribution stretches out
across almost half the simulation domain. In contrast, for
SparseObsETKF with and without relaxation the ensem-
ble gives a precise forecast for the first day, only showing a
spread for the two last days. The truth is well represented
by the ensemble for both experiments, but we see that the
spread is remarkably reduced when using relaxation.

In general, we see that even though IEWPF is able
to give a good state estimation through the mean, the
spread in the underlying ocean state is too large to facili-
tate precise drift trajectory forecasts. Furthermore, LETKF
without relaxation shows clear signs of overfitting, as the
forecasts have low spread and do not match the ground
truth. Introducing relaxation into the SparseObsETKF
reduces this overfitting such that the true trajectories are
correctly forecasted and uncertainty is better represented.
Even more important, giving more weight to the forecast
that comes from the physical model prevents the ensemble
from unintended anomalies. The drift trajectories estima-
tion draws attention away from the ocean states towards
dynamic visual characteristics in the ensemble.

4.4 Discussion of skill scores

Complementary to drift trajectory forecasts, we look into
characteristics of both methods during the data assim-
ilation phase between day 3 and day 10. We compare
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BEISER et al. 1089

F I G U R E 16 Drift
trajectory forecasts for three
different starting positions:
(a) drifter 1; (b) drifter 2; (c)
drifter 3. True trajectories
represented in red, and for
the first 2 days the trajectories
of ensemble members are in
light blue and the ensemble
mean in dark blue. For the
third day, the forecasted
drifter positions of all
ensemble members are
shown with black dots and
selected levels of the
estimated kernel density are
visualised. IEWPF: implicit
equal-weight particle filter;
SparseObsETKF: ensemble
transform Kalman filter with
covariance localisation.
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(c) CRPS

F I G U R E 17 Evolution of skill scores for the IEWPF (red), SparseObsETKF without relaxation (blue), and SparseObsETKF with
relaxation (turquoise) for the data assimilation phase in the experiment: (a) bias; (b) mean square error (MSE); (c) continuous ranked
probability score (CRPS). IEWPF: implicit equal-weight particle filter; SparseObsETKF: ensemble transform Kalman filter with covariance
localisation.

statistical properties of the ensemble against the observa-
tion data. In this setting, the key idea of skill scores is
to evaluate how reliably the ensemble can forecast the
next observation. An illustrative introduction with a lot
of examples from atmospheric weather forecasting can be
found in Wilks (2005, Chapter 7). Mathematically speak-
ing, in this setting with data comparison, a score is

s(̂Fn,f
, yn) ∈ R, (27)

which in our case quantifies some property of the empir-
ical distribution from an ensemble forecast (Hxn,f

e )
Ne
e=1

against the true observation yn, meaning hu
𝑗

and hv
𝑗

for all 𝑗 = 1, … ,NY . We consider three different skill
scores to judge the performance, the bias, the mean square
error (MSE), and the continuous ranked probability score
(CRPS):
Bias After asserting the calibration of the full analysis
mean in Figure 15a, we investigate this further by evaluat-
ing the bias of the forecast as

sn
1 =

1
NY

NY∑

𝑗=1

[

hu
n,f
𝑗
− yn

𝑗,1 + hv
n,f
𝑗
− yn

𝑗,2

]

, (28)

where hu and hv are the ensemble means. The bias discov-
ers systematic trends off in the estimator.
MSE We further investigate the distance of each ensem-
ble member individually from the data by measuring the
mean-squared error (MSE) as

sn
2 =

1
Ne

Ne∑

e=1

[

1
NY

NY∑

𝑗=1

|
|
|
hun,f

e,𝑗 − yn
𝑗,1
|
|
|

2
+ |
|
|
hvn,f

e,𝑗 − yn
𝑗,2
|
|
|

2
]

. (29)

The MSE equals zero only when all ensemble members
predict the observation exactly. However, this is, of course,

not desired from a probabilistic forecast representing asso-
ciated uncertainty. Nevertheless, a small MSE is desired
and yields an accurate fit to the data with regards to the
standard deviation in the observation error.
CRPS Similar to the integrated quadratic differences,
which compared distribution forecasts, we use a scoring
rule that analyses the distribution of the ensemble mem-
bers with the observation; see Gneiting and Raftery (2007).
The continuous ranked probability score (CRPS) is here
defined by

sn
3 =

1
NY

NY∑

𝑗=1

[

1
Ne

Ne∑

e=1
|hun,f

e,𝑗 − yn
𝑗,1| + |hvn,f

e,𝑗 − yn
𝑗,2|

− 1
2N2

e

Ne∑

e=1

Ne∑

k=1
|hun,f

e,𝑗 − hun,f
k,𝑗| + |hvn,f

e,𝑗 − hvn,f
k,𝑗|

]

. (30)

Large CRPS values can originate from bias (first terms) or
the spread in the ensemble (last terms). Together with the
scores for the bias and MSE, this allows one to identify
the source of ensemble errors and to infer the properties of
the ensemble.

Figure 17 presents the evolution of these skill scores
for each data assimilation time step. These results are
obtained from the same run as in Section 4.3. When we
assimilate the first observation after spin-up on day 3, note
that the spread in the ensemble is relatively large by con-
struction for all methods. It should be noted that hu and
hv take values up to 500 m2 ⋅s−1, which means that all
methods have a relatively small bias. In the starting phase,
the SparseObsETKF immediately calibrates to the obser-
vations, whereas the IEWPF and relaxed SparseObsETKF
require several data assimilation steps to correct the bias.
We see, however, that the bias for all methods grows over
time, but with the relaxed SparseObsETKF keeping the
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BEISER et al. 1091

smallest values. The systematic bias from the relaxation
becomes negligible, as it is sufficiently often reduced by
repeated weighting with the unbiased analysis.

Looking at the MSE and CRPS, we see that both
SparseObsETKF versions improve during the first few
assimilation steps and stabilise at a certain level. As
expected, the initial improvement with relaxation is slower
than without relaxation, but this gap is closed already after
one simulation hour, which corresponds to 12 data assimi-
lation cycles. The quality of both SparseObsETKF versions
is then stable until approximately simulation day 5, when
the model dynamics become more turbulent. At this point,
the solution without relaxation starts to deteriorate due
to the overfitting. Note that we see a similar trend for the
relaxed SparseObsETKF later in the experiment. By relax-
ing even more (𝜙 = 0.25, not shown), we confirm the trend
with even slower convergence in the beginning and later
divergence at the end.

Similar to the relaxed SparseObsETKF, IEWPF also
converges during the initial data assimilation cycles, but
the skill scores do not stabilise and instead diverge slowly.
The slow initial convergence was also pointed out in
Section 3, where we had to run the data assimilation suf-
ficiently long to reach a stable level before being able to
provide a fair comparison.

Note that the ensemble variance can be derived from
MSE and bias. Then we see that the forecast variance
behaves qualitatively similar as the MSE (not shown here).
For a full assessment of the skills of a data assimilation
method, a single skill score gives only limited information.
But, for instance, the combination of bias and CRPS broad-
ens the insights, since the bias helps to explain the contri-
butions in the CRPS. However, the differences in the skill
score results, especially between SparseObsETKF without
relaxation and IEWPF, do not seem substantial, whereas
we have seen contrary properties in the drift trajectories
that stay concealed in the monitoring of the skill scores. In
general, this discussion tells us that the SparseObsETKF
assimilates the ensemble much stronger towards data than
the IEWPF does and exemplifies the effects of relaxation.

4.4.1 Rank histograms

We next look at rank histograms to analyse the adequacy of
the ensemble spread. A short time span in the simulation
is repeated multiple times and the rank of the simula-
tion truth in the ensemble ordering is monitored at six
dynamically independent locations. Rank histograms then
present the frequency of which a certain rank is reported
among the Ne realisations of the ensemble, and the shape
of the histograms is used as a diagnostic tool to identify
shortcomings of methods Saetra et al. (2004). Flat rank

histograms are commonly understood as an indication for
ensemble consistency or reliability of the ensemble, as it
means that every ensemble member is sampled from the
same distribution as the truth.

In Figure 18, we show rank histograms from repeating
our experiment 1,000 times, using Ne = 40 and simulat-
ing the first hour of data assimilation after the spin-up
only. The most striking result is the clear U-shape in
hu for SparseObsETKF without relaxation, which indi-
cates that the truth often is an outlier in the ensemble
and that the ensemble is underdispersive. Furthermore,
we observe that IEWPF produces a slight hill-shaped
rank histogram for hu, corresponding to an overdisper-
sive ensemble. Both these observations match well with
what we saw in Section 4.3. In comparison, the hu rank
histogram for the relaxed SparseObsETKF closely resem-
bles a uniform distribution. Note also that the rank his-
tograms for hv are flatter for all three methods, but with
a slight tendency towards overdispersion for the relaxed
SparseObsETKF. This might be from the nature of the
problem, as almost all dynamics in the case are along
the x-axis.

Though the rank histograms give insights on how
able the ensemble is to represent the uncertainty and
we are able to draw similar assertions from them as we
already suspected before, the advice of Hamill (2001) and
Wilks (2011) is to be careful with their interpretation,
since, for example, spatial effects between the different
locations become hidden.

4.4.2 Summary

Based on these results for the nonlinear model, we see that
the CRPS together with the bias are a good start for an anal-
ysis of the ensembles during the data assimilation phase.
These scalar scores are simple to include in any data assim-
ilation sequence. By also analysing statistics over all state
variables, we are able to identify additional spatial artefacts
and a fundamentally different variance in the ensemble.
Even though the rank histogram for the IEWPF looks rea-
sonably flat and we get a well-calibrated mean for the state
estimation, we see through the standard deviation that
there are artefacts in the ensemble, leading to a higher
spread than what we see for SparseObsETKF. This also
made us realise how sensitive IEWPF is to the covariance
structure in the model error.

Stress testing the SparseObsETKF in these high-
dimensional nonlinear experiments with very sparse data
discloses that the SparseObsETKF has a tendency of over-
fitting to the observations, resulting in an underestimated
variance in the ensemble. SparseObsETKF is also not able
to correctly estimate the unobserved variable 𝜂. In practice,
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(a) IEWPF (b) SparseObsETKF (φ = 1.0) (c) SparseObsETKF (φ = 0.5)

F I G U R E 18 Rank histograms recording the rank of the true observation within the ensemble for the observed variables: (a) IEWPF
(implicit equal-weight particle filter); (b) SparseObsETKF (ensemble transform Kalman filter with covariance localisation) (𝜙 = 1.0); (c)
SparseObsETKF (𝜙 = 0.5). The dashed line indicates the hypothetical uniform distribution.

we see that relaxing the ensemble to prior perturbations
is a good remedy for these flaws. It significantly weak-
ens the defects but still inherits the structures from the
full SparseObsETKF. We experienced that it is not neces-
sary to fine-tune the relaxation parameter, as results were
similar for 𝜙 = 0.25 and 𝜙 = 0.75. We further point out
that we tested classical covariance inflation, but this led to
non-physical states for 𝜂, whereas the variance of hu and hv
was barely affected. Hence, it is fair to use SparseObsETKF
and the in-built relaxation with caution.

5 CONCLUSION

We have compared two conceptually different
state-of-the-art ensemble-based data assimilation meth-
ods, namely IEWPF and ETKF with localisation, with
emphasis on the handling of sparse observation data, and
studied how their performances compare with each other.
We have shown how localised updates are implemented
by design in the IEWPF, provided that the model error

covariance matrix has a local pattern and that observations
are only spread in a certain radius around the observa-
tion locations and that this is especially enhanced for
sparse observations. For the ETKF, we employ a explicit
localisation scheme that gives good control of compu-
tations in reduced dimensions and of the correlations
between observations. We have considered two distinct
cases, both motivated by simplified models applicable
to oceanography. The first case studied state estima-
tion of a linear Gaussian advection diffusion model, for
which we also computed the analytical filtering distribu-
tion. This facilitated an in-depth statistical verification
of the two methods in terms of estimation of the mean,
covariances, distribution coverage, spectral radius, and
spatial–temporal connectivity. In the assessment, which
also included the standard ETKF, we recorded the perfor-
mance of the ensemble-based methods in relation to the
number of ensemble members and observation size. The
second case was a nonlinear shallow-water model used
for forecasting of drift trajectories. Here, we compared
the performance of SparseObsETKF and IEWPF in terms
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of skill scores and forecast abilities. We also discussed
relaxation for the SparseObsETKF localisation scheme for
this case. The extensive collections of comparison metrics
allowed us to analyse several properties in the ensemble
representations.

Our results for the first case verified that both the
IEWPF and the SparseObsETKF give very good estimates
of the analytical reference solution. Additionally, we
exhibit effects of different localisation parametrisations
for the SparseObsETKF and IEWPF. For moderate ensem-
ble sizes, both methods delivered on par with the KF and
clearly outperformed the ETKF in terms of RMSE and
coverage probabilities. ETKF was best at estimating the
covariance matrices, but it suffers from spurious corre-
lations in the updates. The SparseObsETKF yields small
divergences independent of the ensemble size. In the esti-
mation of spatio-temporal model correlations, our results
revealed that all three methods performed quite evenly.
ETKF converges fastest with respect to the ensemble size.
Interestingly, we found that SparseObsETKF and IEWPF
only showed minor improvements when increasing the
ensemble size, meaning that it is most beneficial to choose
one of these methods when computational resources are
limited. IEWPF was the scheme benefiting the most from
increased number of observations.

In the nonlinear case, we learned that both IEWPF and
SparseObsETKF gave estimations of the observed momen-
tum variables with bounded errors, but SparseObsETKF
without relaxation did so at the expense of non-physical
fields and small spread, causing the drift trajectory fore-
cast in some cases to diverge from the truth. These issues
were also seen in the skill scores. IEWPF, on the other
hand, showed artefacts around observation sites, indicat-
ing that the model error correlation matrix might not
always represent the optimal mapping for assimilating the
observations. This also caused a large spread in the fore-
casted drift trajectories. In the case of SparseObsETKF, we
showed that applying relaxation clearly improved calibra-
tion, resulting in very good general performance. These
results were backed up with high-quality results in the skill
scores throughout the data assimilation period and precise
predictions of the drift trajectories.

To summarise, the most important findings in this arti-
cle where we consider spatially very sparse observations
can be listed as follows:

• Evaluating a broad range of statistical metrics and skill
scores proves to be a huge advantage, as it gives a
deep insight into the data assimilation methods that are
not obtainable through only looking at single metrics.
We recommend to start with testing bias and CRPS as
one-dimensional quantities, but urge to continue with
qualitative analysis for the entire spatial field.

• We strengthen the argument that IEWPF, in contrast to
most other PFs, is applicable to high-dimensional appli-
cations but that its results are highly dependent on the
structure of model error covariance matrix.

• We have seen that the SparseObsETKF works well even
for relatively small ensemble sizes, but good calibra-
tion of the relaxation is required to retain good results
also for complex models. Upon proper relaxation, the
results from the SparseObsETKF outperformed those of
the IEWPF.

These results, moreover, open up new directions for
future research. For instance, it would be interesting to
investigate in more detail how sensitive IEWPF is to the
structure of the model error covariance matrix. In our
work, we tested our implementation of the covariance
localisation only with respect to the ETKF. It would be
interesting to check whether other variants of the EnKF
work equally well, or if they have advantages or disad-
vantages over ETKF. Beyond this, the sensitivity of the
localisation concept to the relaxation parametrisation
could be tuned adaptively. Finally, it would also be inter-
esting to test the IEWPF and the SparseObsETKF in a
real-world setting by assimilating real observations into
an ensemble of simplified ocean models with the aim to
predict true drift trajectories.
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