

HydroCen is a research centre for environmentally friendly energy. Our main objective is to enable hydropower to meet complex challenges and exploit new opportunities through innovative technological solutions.

The main research partners in HydroCen are The Norwegian University of Science and Technology (NTNU), SINTEF Energy Research and Norwegian institute for nature research (NINA). The centre has a total budget of 400 million NOK over eight years and is financed by the Norwegian Research Council (50%), the research institutions (25%) and partners from the hydropower industry (25%).

2023 – HYDROPOWER IS GEARING UP FOR THE FUTURE

"More of everything – faster" was the conclusion from the Norwegian Energy Commission. Whether you agree or not to the conclusion, the interest in renewal of Norwegian hydropower is ever increasing. HydroCen has spent its seventh year doing world-class hydropower research, to provide solutions that supports such renewal and enable more hydropower – faster. I hope you enjoy this report and join me in applauding our great staff of scientists!

Dissemination and communication of research results The Norwegian power market is undoubtably connected to the European power market, linking has been given much focus in 2023, and HydroCen the Norwegian hydropower sector to changes in has been "on the road" to visit several user partners European markets and policies. In 2023 we have seen with our concept "Researcher on demand". This is a a widespread public interest in how we can produce service for our user partners where they can book more energy in a future renewable energy system researchers for lectures on chosen subjects. Hydrowith hydropower, wind and solar power. Cen has visited The Norwegian Water Resources and Energy Directorate (NVE) and Hafslund Eco twice and had a digital seminar for Å Energi. These were received with great enthusiasm by our partners and have been very motivating for our researchers. These seminars will continue throughout 2024 and we encourage our partners to make use of this offer.

2023 has also been a year with renewed interest in dam safety, extreme weather, changing climate and use of nature. With wilder weather come new challenges for hydropower, but also new opportunities. When the research community collaborates with the industry, we find good solutions.

Several research projects have been completed during 2023, and in this report you can read more about flood capacity during extreme weather, potential upgrades in existing hydropower plants, modelling of environmental constraints, how ultrasound can save fish in rivers and how new generator technology can ensure fast transition from power generation to pumping mode.

As HydroCen is nearing its completion, we give more focus to our knowledge hub - Kunnskapsbanken. Here all research results are communicated, and it is continuously updated with new topics and results as research activities progress and bring forward new knowledge.

In Kunnskapsbanken you will find articles and information about the two PhDs that completed their thesis for HydroCen in 2023 - Linn Emelie Schäffer and Raghbendra Tiwari.

Liv Randi Hultgreer Excecutive Director, HydroCen

International collaboration is still a focus area for HydroCen, and we have continued to co-operate on projects in Sweden, US, Canada, Nepal and Europe in general. When planning hydropower research projects from 2025 and beyond, it is essential to keep growing cooperation with other world-leading international research communities.

I recommend that you read up on the research highlighted in this report and encourage you to reach out to our scientists if you would like more information.

FME HydroCen's success lies in the hands of our world-leading scientists, our engaged and interested user partners, our ever-supportive board and leadership team. On behalf of the administration, I would like to thank you all!

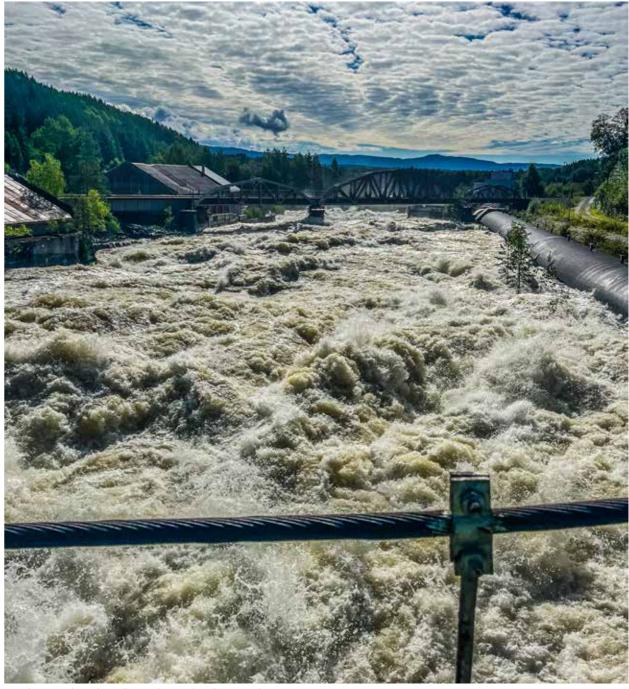
Liv Randi Hultgreen, Executive Director, HydroCen

EXTREME WEATHER PROVIDED VALUABLE INSIGHT

The extreme weather event "Hans" demonstrated that hydropower facilities must be prepared for major flood events that are likely to occur more frequently in the future. For HydroCen researcher Nils Solheim Smith, it became a unique opportunity to study water behavior during severe floods.

In the project InSpillyFish he looks to identify incremental improvements in the flood capacity of existing hydropower plants so that they can safely manage flooding in the future.

In spring 2024, Solheim Smith will be visiting the unit of Hydraulic Engineering at The University of Innsbruck, where they specialize in eco-hydraulics.


During Hans, he had the opportunity to join HydroCen partner Å Energy to inspect several of their facilities in the Drammen watercourse. The flood in 2023 was classified as a 50-100 year event, a stresstest many facilities haven't encountered in decades.

It can be crucial to document visual observation during such events because it is not always possible to predict where the water flows.

-It was dramatic but a great learning opportunity to experience it up close. The flow patterns and losses that emerged were not always anticipated in the theoretical assessments of the facilities, says Solheim Smith.

Contact: Nils Solheim Smith, NTNU.

Hensfoss seen from the spillover. Photo: Nils Solheim Smith/NTNU.

IMPROVED SAFETY FOR ROCKFILL DAMS

New research shows that risk of dam breach can be drastically reduced in overtopping situations. By improving the placement of the rocks protecting the downstream slope of rockfill dams against erosion and securing the "dam toe" at the foundation, the risk of damages can be reduced – and in extreme cases it can prevent or delay collapse.

Rockfill dams constitute some of the largest dams in Norway, with reservoirs holding several billions of liters of water. This allows us to produce renewable energy at any given time. However, if something were to happen to the dams, the consequences would be severe.

If you stand downstream a rockfill dam and look up, it can appear as a hundred-meter-high heap of rocks. There are over 600 of these dams in Norway, and the majority were built about 30 to 50 years ago. Today's dams consist of various layers of rocks supporting a dense core. In addition, most of the larger dams have an outer layer of placed big rocks, called a riprap, that increases the dam's strength.

When water flows over the top of a rockfill dam, a scenario called "overtopping", the materials will lose stability and begin to erode. However, if the dam has a layer of riprap erosion protection, it can withstand a surprising amount of overtopping.

The Norwegian rockfill dams are considered safe, but due to the significant damage potential of a dam breach, the safety must be continuously assessed. HydroCen researchers have therefore conducted multiple experiments in the laboratory to determine how safety can be further improved and aiming to gain a better understanding of what happens when a dam overflows and potentially breaches.

In the Hydraulic Laboratory, they have constructed models at a 1:10 scale and simulated how rockfill dams withstand water overtopping, and how the dam behaves if the overflow leads to a dam breach.

The dam toe and rock placement are critical for the stability

One observation from the experiments is that the dam toe at the foundation of the dam is a critical component and is subject to the most intense throughflow of water. It is therefore important that the dam toe is strong and stable if it is to withstand the throughflow if the dam is overtopped.

In an extensive fieldwork, Ph.D. candidate Ganesh Ravindra mapped nine rockfill dams in Norway with heights ranging from 5 to 142 meters. He discovered that only a minority of dams have a secured dam toe.

The researchers therefore suggest that the dam toe is secured in new dam constructions and in rehabilitations. This could be done either by placing the dam toe in a toe trench, or by other methods. Lining a dam with a placed riprap is an expensive measure, but this method will ensure the best possible security for the investment. Further, it is important that the rocks are placed closely together in an interlocking manner to minimize movement. If the rocks are placed too loosely, they will not support each other, and be more likely to move so the dam will withstand significantly less waterflow before it breaches.

New method for researching dam breaches

Even though the rockfill dams are built with large margins to prevent overtopping, climate change with more rainfall and unpredictable seasons may increase the risk of unexpected events. Many dams have closed flood channels that run in tunnels, which in the worst-case scenario can become blocked, and lead to an unforeseen significant rise in the water level in the reservoir. Therefore, doctoral candidate Geir Helge Kiplesund also wanted to investigate how a dam breach develops if the worst-case scenario were to happen.

The model used for the experiments in the Hydraulic Laboratory was equipped with sensors and cameras that captured every movement as the researchers let the water flow freely over the crest of the dam. This equipment has made it possible to create dynamic models of the dam throughout the dam breach and allows the researchers to more extensively quantify how the breach process unfolds. The method developed by Kiplesund and postdoc Théo Dezert in the Hydraulic Laboratory can also be used in bigger dam breach experiments outdoors to make more accurate measurements than previously available.

The experiments also show that we need to improve or develop entirely new methods to describe such events.

Improved stability and future utility

The two projects show two clear measures that can improve the stability of rockfill dams. Individually, the dam toe and riprap will both improve the stability of the rockfill dam, however it is when combined that they truly will make a significant impact.

Read more about these results on the HydroCen Knowledge Hub.

TWINLAB - DIGITAL TWIN LABORATORY FOR HYDROPOWER

Norwegian hydropower plants are currently undergoing a digital transformation in which access to, and utilization of, data are crucial. Within the HydroCen project, researchers have established a laboratory where the hydropower industry can test and develop digital twins.

A digital twin is a tool that can be developed for efficient decision-making and operation of hydropower plants. It combines both numerical simulations and real-time measurements data to best represent the system. Developing a digital twin of a hydropower plant requires various models and data for hydrology and inflow in the catchment area, tunnel, waterway, turbine and generator.

Power producers can connect to the digital laboratory

TwinLab aims to enhance collaboration across these disciplines and facilitate the faster adoption of digital solutions, new methods, and models within the hydropower industry.

In this project, a method for secure streaming has been demonstrated in collaboration with Skagerak

TwinLab - Virtual infrastructure

O 1970 Every Assess

WinLab - Project overview O 18707 Energy Research

> Inia value: Marca Juar Sale background and objectives for TareLab. Including the

The oldes with Burner Partial New SNTEP Brings

TwinLab - Implementing Google E...

TwinLab - Implementing GIS tool G...

Kraft. Other power companies can also connect to TwinLab and make relevant data from their power plants accessible if desired.

Several pilot projects have been conducted to demonstrate the utilization of TwinLab such as:

- Accessible real-time data from the hydropower laboratory
- Real-time data from the Grunnåi power plant accessible to utilize in collaboration with Skagerak Kraft
- Analyze laboratory data for detecting runner blade damage
- Develop a model for real-time estimation of turbine efficiency
- · Test and incorporate simulation models for hydrology and river hydraulics into TwinLab

Video tutorials on how to connect are accessible on the HydroCen Knowledge Hub:

Contacts: Hans Ivar Skjelbred, SINTEF Energi Ingrid Vilberg, Statkraft

SUSTAINABILITY IN HYDROPOWER

The sustainability of hydropower is a widely discussed topic both in Norway and internationally, but how does the industry perceive themselves? A HydroCen survey has reached out to Norwegian hydropower companies to hear their voice on the topic of sustainability.

- We believe that this study will be beneficial for the companies' ongoing efforts towards sustainable hydropower production because it will provide more specific findings that can shed light on new opportunities and challenges, says HydroCen researcher Berit Köhler from the Norwegian institute for nature research (NINA).

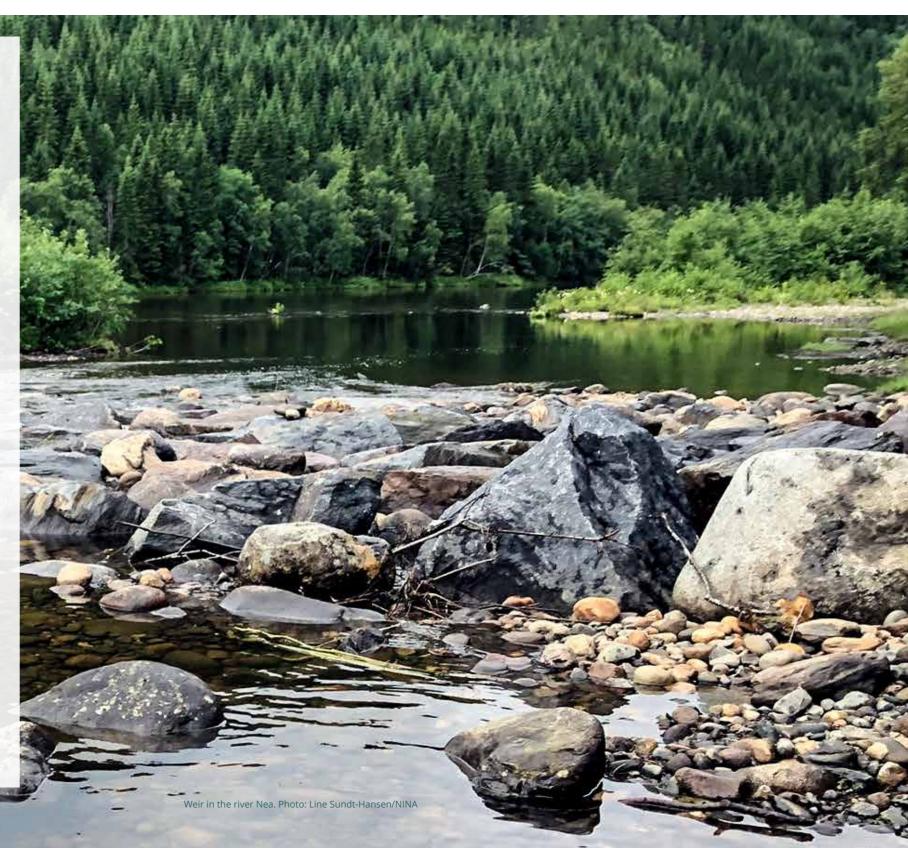
In light of the UN biodiversity agreement (COP15) and the introduction of the new EU taxonomy on sustainable finance hydropower faces new demands for addressing sustainability. The study therefore reached out to the 48 largest hydropower companies in Norway.

Anticipate increased sustainability

In the survey the companies were asked to assess their current sustainability and how sustainable they expect to be by 2030 "according to their company's strategy". Although they already rate themselves relatively high on sustainability (69%), there is a general expectation of becoming even more sustainable in the future – the score reaching as high as 86% on the question "According to your company`s strategy, how sustainable will you be by 2030?"

Await regulatory demands

The survey also shows that the majority consider that "some nature needs to be offered so that Norway can reach it's climate targets", and this may also be connected to the notable variations in the attitude towards environmental measures. While some reported that they have a proactive strategy, the majority await demands for implementing environmental measures. The participants were also asked to rate the importance of various aspects of social acceptance, such as ecological effects, landscape aesthetics, economics, recreational fishing, direct climate risks and public participation and consultation. Although several of these got a high rating, "public participation and consultation" was rated substantially higher than other alternatives.


Uncertain about EU taxonomy and innovation

In terms of the perceived effect of the EU taxonomy researchers found that only about a third of the respondents expect that this will contribute to more innovation in hydropower. 24% think that their company will have a positive effect from it. The results here show a good portion of uncertainty, especially in relation to which relevant ecological and technical measures are demanded to reach good ecological potential that accord to the so-called DNSH (do no significant harm) criteria in the taxonomy.

The researchers hope that this assessment can generate more comprehensive and nuanced knowledge on how the industry can achieve key sustainability goals.

- We hope this study provides a better foundation for the companies' continued work towards sustainable hydropower production that also considers the environment, as well as for the work of the administration setting the regulatory environment for the companies, says Köhler.

Contact: Berit Köhler, NINA

VALUABLE INSIGHTS FROM THE RIVER NEA CASE STUDY

The living laboratory in the Nea River in Trøndelag has led to several specific methods, tools, and valuable collaborations. The power producer, Statkraft, believe they have benefited a great deal from the HydroCen case study in Nea.

-We are very pleased to have been a part of this. Participating in a case study provides extra knowledge that is specific for our watercourse. The knowledge, techniques, and methods developed can be used by everyone, but we have also gained valuable insights that are specific for our area, says Arne Anders Sandnes, project manager at Statkraft Energy AS.

In the Nea project, researchers from different fields collaborated to create a concept of environmental design for multiple interests. They expanded their toolkit so that the methodology could also be applied to watercourses with other species than Atlantic salmon, which the method previously was developed for.

Exclusive bonus for the power producer

The 33-kilometere stretch of river from Hegsetdammen in the north to the outlet in Selbusjøen is characterized by 32 weirs (low dams) built between 1960 and 2000 to sustain a water covered riverbed to benefit aquatic environment and aesthetics. Updated knowledge however shows that the weirs can act as migratory barriers and create unfavorable conditions for fish. The weirs can also change the physical habitat from running water to a more "lake-like" habitat, so typical river species who are adapted to running water will not thrive in such environments. Therefore, many have suggested that the weirs should be removed or adjusted, so it was natural to focus on them. Using satellites, LIDAR, and aerial photos, researchers created a complete digital river model of Nea. Many river-stretches in Norway have little data on their structure and flow conditions. The method of using remotely sensed data to map both topography and flow conditions is cost-effective and can map several rivers in both time and space.

 The digital river model of Nea is an exclusive bonus we have obtained by making the watercourse available. A really cool part of the project that demonstrates use of technologies which may have many applications in operations of regulated rivers. says Sandnes.

Genetical methods discovered inbreeding

The brown trout is an important species in this river, and researchers used Nea to further develop the population genetics methods, focusing on how of juvenile brown trout are related. The analyses showed a high degree of inbreeding and that fewer parents contributed to spawning than expected. This confirmes that weirs act as barriers preventing trout from migrating to and from spawning grounds.

The environmental DNA method was developed and used to assess the benthic invertebrates, an important food source for fish. The researchers took both water and kick samples from various areas in the river and analyzed them with DNA metabarcoding analysis and morphologically. They found fewer species of benthic organisms in the weir pools than expected in Nea.

-Even though we had already extensive knowledge of the watercourse, this was extra interesting knowledge. When we take measures in the river going forward, we have a much better idea of where the bottlenecks are and which sites to prioritize. But still there is need for further assessments on sites, and to monitor status prior to measures. The latter particularly important in order to evaluate and follow up future results as well, says Sandnes.

Good dialogue and more knowledge

Throughout the project, there was a lot of local involvement and several dialogue meetings. Social scientists at HydroCen conducted several surveys and developed methods for dialogue with the public.

-My impression is that the municipality and the local public also appreciate this project, and we find that they refer to the work in our dialog. At the same time, we acknowledge that it also builds expectations for the results to be implemented, says Sandnes.

HydroCen researchers have proposed several environmental design measures that can improve

the environment in Nea. These include suggestions for modifications of weirs, such as "ramp weirs". Sandnes says that Statkraft is considering these and working to find practical solutions for this work.

-There are complex issues in all watercourses, and it is the same here. We want to take care of both the fish and landscape interests while producing energy, and eventually also review the effects to ensure what we do are working . Admittedly, all of this takes some time, he says.

Statkraft plays an active role in all work packages in HydroCen, and he believes that having Nea as a demonstration watercourse has led to added enthusiasm and dedication.

-It provides added insight and an opportunity to get to know researchers well. The more knowledge we get and share between us, the better it is," he emphasizes.

Read more about the results from Case Nea om the HydroCen Knowledge Hub.

Contact: Arne Anders Sandnes, Statkraft. Line Sundt-Hansen, NINA/HydroCen.

POTENTIAL FOR UPGRADING AND EXPANDING NORWEGIAN HYDROPOWER (POTOUT)

Smarter use of Norwegian hydropower can save nature, ensure power supply, and increase profit.

In a study from HydroCen researchers recommend that industry and government focus on expanding storage capacity and the ability to rapidly deliver a large amount of electricity. This can maximize the amount of renewable energy with minimal impact on nature.

The study reveals significant potential to expand capacity (MegaWatt, MW) in already developed waterways. It could, for example, be possible to utilize more power from unregulated energy sources when if we were confident that hydropower can rapidly step-up production and provide energy when intermittent sources fail. The key lies in constructing new facilities alongside the already established ones. Water is typically released to sea, fjords, or large downstream reservoirs. According to the study, this paves the way for a more environmentally friendly operation. By adopting a more considerate operational pattern, existing power plants can improve the environment in previously regulated rivers.

Close cooperation with industry partners

The team collaborated closely with several power companies, delving into the intricacies of their opportunities and challenges concerning Upgrade/ Expansion projects. This collaborative effort yielded invaluable insights, providing a foundation for compiling and calculating practical examples.

By simultaneously assessing environmental solutions when considering upgrading and expansion researchers found that a comprehensive solution with acceptable environmental consequences can be found. In some cases, they also found opportunities for improved environmental conditions compared to the current state of the rivers.

These are their recommendations for management and authorities:

- Provide good and predictable framework conditions for upgrade and expansion.
- Remove tax barriers for capacity expansion projects.
- Prioritize concession applications for projects with reservoir capacity and flexibility.
- · Conduct thorough concession processes.
- Further develop the power system to avoid loss of flexibility.
- · Innovate solutions for environmental solutions.

With a power market undergoing significant changes, it is essential to explore alternatives that have not been considered before and balance them against both new and known environmental solutions. The methodology used to identify new upgrade/expansion projects with environmental design involves defining the area, using an expert group to assess alternatives, arranging workshops between the expert group and power companies, and then using the card deck method:

- Map all possible power projects.
- Map all environmental and societal projects.
- Include new technical and environ-
- mental solutions in the assessment.
- Define goals/strategy and assemble cards.
- Report.

Contacts:

Leif Lia, NTNU

Atle Harby, SINTEF Energi

Ingrid Vilberg, Statkraft

MODELLING ENVIRONMENTAL CONSTRAINTS

It is difficult to include flow constraints that depend on reservoir storage in long-term hydro scheduling models. New research from HydroCen shows it can still be profitable to include these aspects in long-term models.

There are advantages both from an economic perspective and to better ensure that we can produce enough power during periods of high demand and low water availability.

In periods of spawning or specific use of a river system, such as fishing or boating in the river or reservoir, hydropower producers may have to comply to specific environmental restrictions such as water levels in the river or reservoir. These restrictions could potentially force power producers to run the power plant in a suboptimal way concerning power supply, storage protection, and profit.

It is possible to account for these restrictions in production planning by incorporating them into the optimization models used to plan hydropower plant operation. This way, it is possible to minimize the negative consequences of the production restrictions.

This is often done in models that plan production over short periods (weeks), as these models can handle this type of data. The difficulties arise when trying to incorporate these constraints into models that cover longer periods (months/years).

Taking a closer look at the complex models

HydroCen researcher Linn Emelie Schäffer from SINTEF Energy has therefore worked on modeling complex environmental restrictions that previously could not be included in existing production planning tools.

The aim is to better understand how they affect production patterns and the profitability of the power

plant. She has also attempted to calculate profits by including the restrictions in planning models, or the cost of ignoring or simplifying these restrictions in strategic calculations.

In her PhD-work, she has examined a specific type of environmental restrictions, known as state-dependent environmental restrictions or soft reservoir restrictions. These restrictions are challenging as they change over time, depending on the amount of water in the reservoir, which again depends on the operational decisions of the power producer, as illustrated in the figure below. Another important aspect of the research has been assessing how the flexibility of power production in a limited area is affected by such constraints.

New models show effect

Through this work, two long term production planning models have been developed, where statedependent environmental restrictions.

The first model is used to assess how much environmental restrictions affect the hydropower producer's profit and the significance of improved modeling of these restrictions in production planning. Results from the developed models demonstrate that planning for soft reservoir restrictions can be economically beneficial for the producer, especially during multiple high-price periods in spring/summer.

The second model is used to assess how environmental restrictions affect the flexibility of the hydropower production in a smaller, hydropower-dominated area. The results showed that different restrictions affect the system's ability to meet the demand for power and requirements for reserve capacity in the spring. In systems with limited flexibility, these restrictions could pose flexibility challenges during this period.

Enhanced knowledge and better planning

The research provides better knowledge of into how state-dependent environmental restrictions impact the value of water and indicate that under certain circumstances, there can be significant economic benefits for producers to plan for soft reservoir restrictions.

With significant changes in the power system due to a substantial influx of wind and solar power, there might be more high-price periods during restriction periods, which could be profitable for producers to consider in their production planning.

llustration of different types of environmental constraints in a hydropower-regulated river from Schäffer's thesis 2023.

Contact: Linn Emelie Schäffer, SINTEF Energy.

NEW MEASUREMENTS FOR FLEXIBLE TURBINE OPERATION

How can we calculate the cost of flexible operation and what is the remaining lifetime of my turbine?

These are the most frequently asked questions at the Waterpower Laboratory these days, and researchers are addressing the fatigue loads to find the answers.

The weakest part of the turbine is the turbine runner blades. So, this is what Johannes Kverno has focused on in his PhD-work through the HydroFlex project at the Waterpower Laboratory.

He added strain gauges on the runner blades of a laboratory scale Francis turbine, and did measurements while the turbine was running. At the Waterpower Laboratory, measurements with strain gauges in the runner has been a challenge for many years, and now we can proudly say that Johannes is the first one to achieve high quality measurements. His results show that the low turbine loads are the toughest ones apart from start-stop operation.

Now, NTNU are able to continue these types of measurements on more turbines to provide answers to the questions.

Contact: Johannes Kverno Johannes Kverno working on the Francis-model in the Waterpower laboratory, NTNU. Photo: Juliet Landrø/HydroCen.

CONVERTER FOR PUMPED STORAGE POWER PLANTS

A fast transition from power generation to pumping mode enables hydropower plants to better balance the energy from wind and solar power in the power grid. At HydroCen, researchers have discovered a solution to make pumped-storage power plants more flexible.

Today's pumped-storage plants are already very flexible in the sense that they can generate electricity during high demand and use energy to pump water back to an upper reservoir during periods of low demand. However, they need to improve their ability to rapidly switch between pump and turbine modes to balance the non-regulated renewable sources like wind and solar energy.

The pumped-storage plants primarily operate at a constant speed, regardless of the amount of power to be generated or water being pumped into the reservoir. This limits its flexibility, especially during pumping.

As a result, variable-speed pumped-storage plants have emerged in the last decades. These plants use a frequency converter to regulate the speed of the generator and turbine. This allows for better regulation of the water being pumped, which is not efficiently achievable at a constant speed.

The system developed by researcher Raghbendra Tiwari makes the future pumped-storage plants even more flexible in the transition between turbine and pumping mode. With Tiwari's system the shift from power generation to pumping both simplifies and quickens. When working with the system, different types of frequency converters were evaluated and compared. Since these converters offer very high output power, selecting the most suitable technology for pumped-storage plants is very important.

Developing a control system for the converter Tiwari has designed a control system to control the unit in both turbine and pump modes. The system is

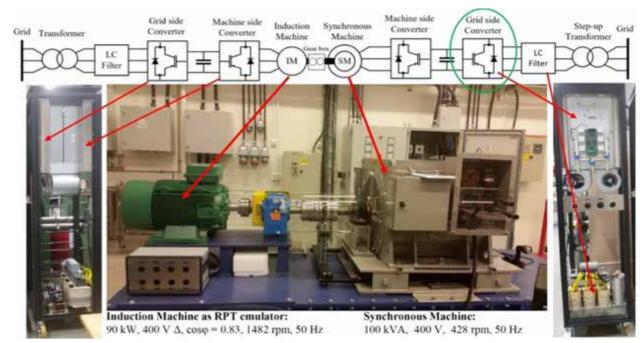
robust enough to handle power grid failures, so that the unit contributes to stability and recovery of the grid after faults.

The control system is tested on a 100 kW generator in the SmartGrid laboratory at NTNU. A motor controlled by a separate frequency converter was used as a turbine. The generator was connected to its own frequency converter, which, in turn, is connected it to the power grid.

Enhanced flexibility and stability

The project's results are relevant for power plants intended to be re-built to pumped-storage or power plants seeking upgrades for variable-speed operation.

The smooth transition between turbine and pump mode puts less stress on the power grid and makes it better suited for utilizing renewable energy sources like solar and wind power. It also reduces turbine wear and tear during the shift from turbine to pump operation.


Since the control method has already been tested with a 100 kVA laboratory setup, it holds great potential for implementation in commercial pumped-storage plants.

Contact: Raghbendra Tiwari, NTNU.

Raghbendra Tiwari working in the Smart Grid Laboratory at NTNU: Photo: Juliet Landrø/HydroCen.

The figure shows the laboratory setup of the system with a description of the various components. Photo: Raghbendra Tiwari, NTNU.

ULTRASOUND IN HYDROPOWER CAN SAVE FISH IN RIVERS

Shooting sound waves through water can eliminate gas bubbles that harm wildlife in rivers with power production. Researchers have explored various methods in the laboratory, and now they're ready to test the best one on a large scale in actual power plants.

The phenomenon of total dissolved gas (TDG) supersaturation occurs when air enters the tunnel in a power plant and is subsequently subjected to high pressure.

When released into the river, it is like popping a champagne cork, bubbles shoot into the river. This introduces so much air into the water that fish and other species can be harmed. In the worst case, they can suffer from lethal gas bubble disease — similar to human diver's sickness.

Currently, there are no requirements to monitor and limit total dissolved gas supersaturation downstream from power plants in Norway. However, studies have indicated that this problem might affect many more power plants than previously thought.

If future regulations demand addressing this issue, this solution could help power companies avoid costly shutdowns of power plants when the problem arises, while also improving the environment

The method is efficient and will likely have relatively low costs for installation, operation, and maintenance. Therefore, the researchers hope to receive funding from the Norwegian Research Council to test it in the rivers so the industry can adopt it shortly.

Wolf Ludwig Kuhn, NINA

INTERNATIONAL **INTEREST IN HYDROCEN**

HydroCen researchers have sustained their partnerships with the international hydropower community throughout 2023. We have had research exchanges, workshops, webinars, and collaborated on scientific publications.

The international collaboration within HydroCen continues to be structured around five primary axes, facilitating the exchange of knowledge with relevant regions, research institutions, and active engagement in management and technological forums.

Among these axes, the Nordic and European regions represent the strongest focus, followed by an axis directed towards Asia, where significant hydropower development is underway.

Additionally, connections are established with America through a fourth axis, while the fifth axis emphasizes involvement in technological forums.

Over 60 international institutions maintain communication with HydroCen through these collaborative channels.

BRAZIL:

Cooperation with cePeL (electrical energy Research Center) for possible cooperation on developing models for hydropower planning

Scientific publication with authors from Rio de Janeiro State University (Brazil) and Argonne National Laboratories (USA) on the topic "Hydropower scheduling toolchains".

CANADA:

The HYCANOR network concluded their work with a successful final gathering in 2022. All six partners, University of Waterloo, Carleton University, University of Northern British Columbia, NTNU, University of Tromsø and the Norwegian institute for nature research as well as B.C. Hydro participated.

USA:

Strategic cooperation with US DoE and several national Research Laboratories continues. We have also established a connection to FishPass, a renowned project on fish migration with some of the leading experts in the field

SWEDEN, LULEÅ:

Collaborations with the Swedish Centre for Sustainable Hydropower, SVC. As well as cooperation with researchers from Luleå University of Technology who contribute to the experiments at Vattenfall with their expertise on 3D PIV (Particle image velocimetry)and high-speed cameras.

in Älvkarlebv.

- SWITZERLAND:

Research and laboratory tests with colleagues at ETH Zürich in the project FishPath, as well as close cooperation with Scientific committee-member Prof Dr.Thomas Staubli.

EU:

HydroCen is well represented in management and operation of EERA's Joint Program on Hydro - power. HydroCen is involved in several research initiatives in the Horizon Europe call.

HydroFlex concluded their work with several public workshops and publications that can be found on its website.

ALBANIA, MOGLICË: Effects of swelling rock mass on stabil-

24

SWEDEN, ÄLVKARLEBY:

Researchers from Kelt2Sea work on the "Laxeleratorn" flume where they measure the fish's response to different velocities and acceleration that commonly exist in the vicinity of a hydropower plant station.

Researchers have also carried out experimental work at the Vattenfall laboratory

The research aimed to investigate the complex 3D nature of the flows and sediment movements in high-velocity flows, which is a novel problem to deal with. This collaborative work involves NTNU, Vattenfall, Luleå University of Technology, and HydroCen.

NEPAL, KATHMANDU:

Further strengthening of the research cooperation between Nepal, India and Norway. The Energize-Nepal-project is still going strong with yearly student exchange and attendance at the yearly conference CHRT at Kathmandu University. Several of our PhDs also come from Kathmandu University and HydroLab. The associated NORAD funded project HydroHimalaya educates PhDs and Masters within Hydropower.

INDIA, IIT ROORKEE:

The Indian institute of Technology Roorkee continue to work together with HydroCen researchers and Kathmandu university to develop sediment resistant Francis turbines and new methods for data collection and modelling.

ity and support in hydropower tunnels.

AUSTRALIA: Cooperation with Hydro Tasmania, and the state government of Tasmania.

HYDROCEN LABS

Upgrades and improvement of research infrastructure done through HydroCen Labs enable innovative research.

Through the Research Councils "National Initiative for Research Infrastructure" HydroCen labs was allocated 55 million NOK to ensure that the laboratories have the capability to meet the research challenges of the hydropower sector.

The infrastructure in the laboratories is available for researchers and partners in HydroCen, as well as student projects, to do applied and basic research based on challenges facing the hydropower industry today and in the future.

Here are some examples of the upgrades from phase one:

THE WATERPOWER LABORATORY

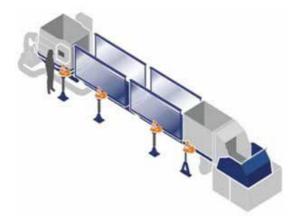
There has been an upgrade of the low-pressure experiment system his includes new valves for the piping system, upgrading existing pumps and pipes. The Francis turbine test-rig has been equipped with new generator, frequency converter, bearing block, and a high-quality torque meter.

The Francis turbine has been coupled with the Smart-Grid Laboratory and its grid emulators. For example, this means that we can carry out research on the flexible operation of hydropower plants in connection to large wind farms.

The Pelton turbine test rig has been equipped with a new generator and frequency converter which provides better control of the Pelton turbine testing.

All electrical cabling for the operation of valves, generators, motors, and for all permanent installed instruments for the measurements of flow rate, pressure, level, torque, and temperature. We are sure that several kilometers of cables have been installed. The new infrastructure enables us to be better equipped to address today's and tomorrow's challenges within hydropower. It allows for research on material fatigue and analysis of turbine lifespan.

The utility of this type of research will be demonstrated through the extensive refurbishment that Norwegian hydropower is currently facing, but also because new turbines are experiencing more failures due to wear and tear.



HYDRAULIC LABORATORY

A new full pipe system and filter systems is implemented to enhance reliable delivery and water quality in the lab. This will improve the quality of optical measurements such as Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV), as there will be fewer particles from rust and dust in the water. In addition, possible leakages and brake downs are avoided.

Two new experimental flumes for studies focused on flow fields, the effect of sediments, and research on hydraulic parameters and fish behavior are partly installed. This includes a 24-meter long and 2-meterwide adjustable multipurpose flume intended for experiments with live fish. The mini-flume for educational purposes and prelimnary research has been in operation for two years. The total upgrade of the catchment area research field Sagelva has successfully fulfilled.

ENGINEERING GEOLOGY LABORATORY

The HydroCenLabs project has contributed to strengthen the Engineering Geology Laboratory located at the Department of Geoscience and Petroleum (IGP).

The development and upgrading mainly focused on the;

- 1) development of laboratory scale hydraulic jacking test rig,
- development of cyclic oedometer test rig for the investigation of swelling of rocks, 3) upgrading electronic accessories for Tri-axial test machine. This development led to further enhancement of the state-of-art engineering geology laboratory.

It is noted here that the newly developed equipment has many benefits:

- Simplifies and improves splitting tests at the laboratory as well as field samples.
- Provides safer and better determination of swelling properties, especially for swelling pressure of intact rocks in addition to powder.
- Expands the application area for existing triaxial equipment.

This upgrade is of significant importance for enhanced planning and design of Norwegian hydropower tunnels. The equipment will also be of great value for other types of projects within engineering geology, related to road and railway tunnels.

HYDROCEN IN THE MEDIA

In 2023, we have seen a growing interest in the topics of renewable energy and sustainable development, both in Norway and internationally. Several HydroCen researchers have contributed to increase knowledge in the public debate. They have participated in documentaries and feature stories abroad. and to more than 100 news articles in the media, as well as podcasts and research interviews. Our own blog and Knowledge Hub reach more than 4,000 people, and lectures and webinars on our YouTube channels had more than 3.400 views in 2023.

> DN Leitlie

-

vannkraft

Ta pause i havvind, rigg om i

- Grønt skifte er umulig uten videreutvikling av vannkraften

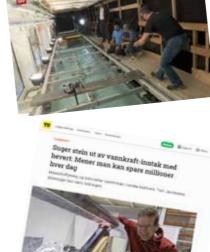
mon of thicking på at North mid producers paur krait. a derigden demokrenden ein trusten, på skrivelige med detekterer eine sent Vannarufarn spitter en universitet rekis når der kommar til å baken fra landvind, hurvind og ud, skøtter senterforsker Ade läreby i en

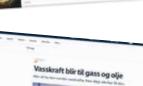
An Ality Martin semechanism i ment Decipi

(jerrimiking og cigtulisering av værebog - telkon Sumit

Milja-DNA viser om kraftproduksjon påvirker de minste organismene

the second sector





2		0.000	
-	ren i	and the second second	

OUR

S

OULET

SOCIAL MEDIA

1000

Knowledge Hub / Kunnskapsbanken:

The HydroCen knowledge hub has expanded and now lists more than 50 pages in English and Norwegian describing the research results from HydroCen and putting them into a societal and practical context.

Newsblog:

18 news stories with information, news and research results from HydroCen in 2023.

Vannposten:

Weekly newsletter for researchers and partners. 17 publications and about 200 recipients.

Website:

Information and contact details for all projects and researchers in HydroCen. Publications and innovations are also listed on www.hydrocen.no

YouTube:

Presentations and webinars posted on our YouTube channel @HydroCenFME reach well beyond our 112 subscribers. The 12 presentations/webinars we posted in 2023 have about 3400 views.

X:

Share articles, news and follow public debate. This activity has decreased somewhat in 2023 due to societal events. We still have about 550 subscribers and reached about 500 people per month in 2023.

Facebook:

Sharing articles and news with our 618 followers. A monthly reach of about 2300.

LinkedIn:

We have increased activity in this channel and see that our content gets a lot more attention here. We have passed 1000 followers and aim to continue to expand our outreach here.

PUBLIC OUTREACH

In 2023, we met our partners, management, interest groups, researchers and the public at a wide range of arenas. We have welcomed many esteemed visitors to our laboratories - ranging from eager first year students, to the Norwegian Minister of Energy Terje Aasland and Serbias president Aleksandar Vučić, as well as several busloads from Produksjonsteknisk konferanse. Several of our researcheres have also had the pleasure of visiting laboratories at Vattenfall R&D and the National Renewable Energy Laboratory in the United States.

We met school children and families during "Forskningsdagene" and presented scientific results at various conferences. We have also visited several of our partners with our concept "Researcher-on-demand" with customized programs and presentations.

Our own Knowledge Hub (Kunnskapsbanken) has been updated with results from all work packages in both Norwegian and English. More than 500 unique visitors explore our results and publications each month. This work continues in 2024 and we aim for all our results to be presented here.

Visit from the Norwegian Minister of Energy, Terje Aasland.

Forsker on Demand at Hafslund Eco

BedPress at NTNU

Work shop with Swedish Centre for Sustainable Hydropower (SVC) and Vattenfall.

Delegation from Serbia in the Waterpower laboratory.

Our PhD's ready to welcome children and families during the national research days, Forskningsdagene.

Experimental flume at Älvkarleby, Vattenfall, Sweden.

BRIEF FROM THE BOARD – 2023

Representing a broad part of Norwegian hydropower production and management, HydroCen's Board applauds the convincing scientific research results from HydroCen and is happy to receive excellent communication and dissemination of these results.

Ivar Arne Børset, Chairman of the Board

HydroCen has delivered well on its priorities in 2023. Several large projects have reached their completion, and many of the new projects that were kicked off in 2021-2022 are completed with good results.

In a volatile world, the need for further development of our power system is ever increasing. This includes a need for upgrading and possible expansion of hydropower, which drives the need for fact-based decision making, innovation and implementation of updated knowledge through research and development. HydroCen and the research community answer to these needs by providing world class research and communicating this research to both industry and public management. HydroCen is a a hub for both executing research programs and coordinating new hydropower research initiatives by leading the joint program for Hydropower in EERA, the European Energy Research organization.

The Board sees that the research activities planned at center startup in 2016 have proved relevant through these seven years HydroCen. and would like to applaud the foresight shown by the research community. Since 2020 HydroCen has kicked off several

new projects with 1-3 year's duration, and these projects have proved to be a very good supplement to the original portfolio. They have allowed HydroCen to adjust according to new challenges in society and hydropower industry.

The knowledge hub Kunnskapsbanken, where all research results from HydroCen are continuously added as they materialize, has grown substantially throughout 2023. By using Kunnskapsbanken partners and the society in general can harvest the potential of these research results. It is crucial to feed society's growing demand for fact and research-based information on hydropower's future possibilities with relevant, reliable, and easily accessible information.

HydroCen is well managed, and scientific excellence is in focus, coupled with a strong ability to deliver and a high level of industry involvement. The Board appreciates the close cooperation and fruitful discussions with the management team, work package leaders, and members of

Ivar Arne Børset, Chairman of the Board

Representatives from the board and the management team of HydroCen in 2023.

Ivar Arne Børset Statkraft

Eivind Heløe Fornybar Norge (fmr. Energi Norge) Olav Bolland NTNU

Inga Katrine

Nordberg

NVE

Erik Skorve Eviny

Celine Setsaas Hafslund Eco

Ingeborg Palm Helland NINA

Harald Rikheim The Research Council of Norway

Knut Samdal

Michel Bohnenblust, The Research Council of Norway

Liv Randi Hultgreen NTNU/Board Secretary

ORGANISATION

Board					
Name	Institution	Function	Name	Institution	Function
lvar Arne Børset	Statkraft	Chairman of the Board	Harald Rikheim	Norwegian	Observer
Ingeborg Palm Helland	NINA	Board member		Research Council	
Knut Samdal	SINTEF	Board member	Juliet Landrø	NINA	Observer
			Berit Garberg Hagen	NTNU	Coordinator
Eivind Heløe	Fornybar Norge	Board member	Lars Grøttå	NVE	Deputy board member
Inga Katrine Nordberg	NVE	Board member	Ole Merten Midtgård	NTNU	
Erik Skorve	Eviny	Board member	Ole-Morten Midtgård		Deputy board member
Celine Setsaas	Hafslund Eco	Board member	Petter Støa	Sintef Energi	Deputy board member
			Norunn Myklebust	NINA	Deputy board member
Olav Bolland	NTNU	Board member	Jane Berit Solvi	Skagerak	1. deputy board member
Liv Randi Hultgreen	NTNU	Executive Director/Board Secretary	5	0	1.5
Michel Bohnenblust	Norwegian	Observer	Tormod Eggan	TrønderEnergi	2. deputy board member
	Research Council		Bjørn Honningsvåg	Lyse	3. deputy board member

Executive Managen	nent Team ai	nd Admnistration			
Name	Institution	Function	Name	Institution	Function
Liv Randi Hultgreen	NTNU	Executive Director/Board Secretary	Berit Garberg Hagen	NTNU	Coordinator
Leif Lia	NTNU	Member (spring)	Juliet Landrø	NINA	Communications officer
Ole Gunnar Dahlhaug	NTNU	Member (autumn)	Birk Fiveltun	NTNU	Finance officer
Tonje Aronsen	NINA	Member	Jonas Bergmann-Paulsen	NTNU	Innovation Manager
Michael Belsnes	SINTEF	Member	Silje Margrethe Nessjø	NINA	HydroCen knowledge hub
Sigve Næss	Eviny	Member	Larsen		

Name	Institution	Main research area
Andreas Kleiven	NTNU	Market and services
Arne Nysveen	NTNU	Turbine and generators
Birender Singh	NTNU	Turbine and generators
Bjørn Nilsen	NTNU	Hydropower structures
Bjørnar Svingen	NTNU	Turbine and generators
Chirag Trivedi	NTNU	Turbine and generators
Dadi Ram Dahal	NTNU	Turbine and generators
Diwash Lal Maskey	NTNU	Hydropower structures
Elena Pummer	NTNU	Hydropower structures
Fjóla G. Sigtryggsdóttir	NTNU	Hydropower structures
Frank Mauseth	NTNU	Turbine and generators
Gabriele Gaiti	NTNU	Turbine and generators
Geir Helge Kiplesund	NTNU	Hydropower structures
Halvor Kjærås	NTNU	Hydropower structures
Helene Dagsvik	NTNU	Turbine and generators
Hossein Ehya	NTNU	Turbine and generators
Ishwar Joshi	NTNU	Hydropower structures
Jan Rhebrina	NTNU	Hydropower structures
Jim Abregu	NTNU	Turbine and generators

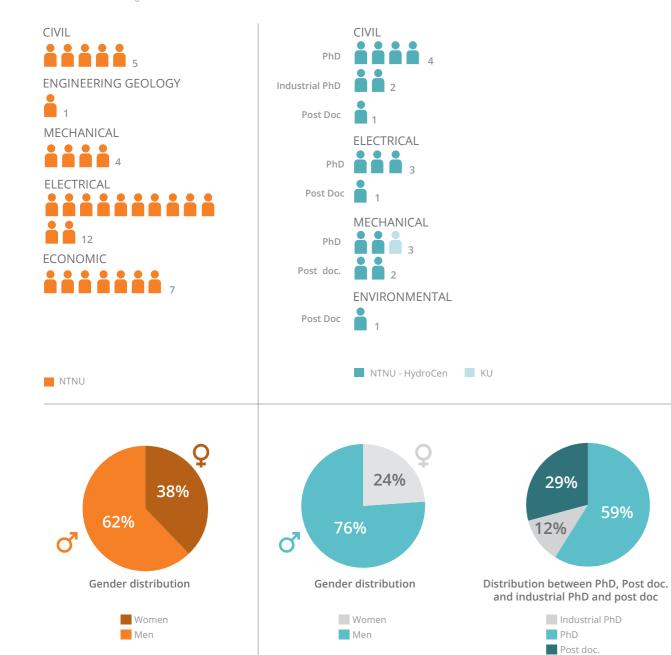
Researchers						
Name	Institution	Main research area				
Johannes Opedal Kverno	NTNU	Turbine and generators				
Kaspar Vereide	NTNU	Hydropower structures				
Kjetil Uhlen	NTNU	Turbine and generators				
Knut Alfredsen	NTNU	Environmental design				
Krishna Panthi	NTNU	Hydropower structures				
Kristian Sagmo	NTNU	Turbine and generators				
Leif Lia	NTNU	Hydropower structures				
Linn Emelie Schäffer	NTNU	Market and services				
Mamata Rijal	NTNU	Turbine and generators				
Magnus Korpås	NTNU	Market and services				
Michiel Desmedt	NTNU	Turbine and generators				
Nirmal Acharya	NTNU	Turbine and generators				
Ola Haugen Havrevoll	NTNU	Hydropower structures				
Ole Gunnar Dahlhaug	NTNU	Turbine and generators				
Pål Keim Olsen	NTNU	Turbine and generators				
Pål-Tore Storli	NTNU	Turbine and generators				
Raghbendra Tiwari	NTNU	Market and services				
Roy Nilsen	NTNU	Turbine and generators				
Stein-Erik Fleten	NTNU	Market and services				

ORGANISATION

Researchers			Researchers		
Name	Institution	Main research area	Name	Institution	Main research area
Subhojit Kadia	NTNU	Hydropower structures	Christian Øyn Naversen	SINTEF	Market and services
Theo Dezert	NTNU	Hydropower structures	Eivind Solvang	SINTEF	Turbine and generator
Tor Haakon Bakken	NTNU	Market and services	Emre Kantar	SINTEF	Turbine and generator
Torbjørn Nielsen	NTNU	Turbine and generators	Espen Eberg	SINTEF	Turbine and generator
Wolf Ludwig Kuhn	NTNU	Turbine and generators	Gunnar Berg	SINTEF	Turbine and generator
Asli Bor Turkben	NTNU	Hydropower structures	Hans Ivar Skjelbred	SINTEF	Market and services
Anders Foldvik	NINA	Hydropower structures	Håkon Sundt	SINTEF	Environmental design
Bjørn Winther Solemslie	NINA	Turbine and generators	Igor Iliev	SINTEF	Turbine and generator
Ana Teixeira da Silva	NINA	Environmental design	Ingeborg Graabak	SINTEF	Market and services
Audun Ruud	NINA	Environmental design	Ingrid vilberg	SINTEF	Market and services
Berit Köhler	NINA	Environmental design	Kjell Ljøkelsøy	SINTEF	Turbine and generator
Eli Kvingedal	NINA	Environmental design	Marcell Szabo-Meszaros	SINTEF	Environmental design
Frode Fossøy	NINA	Environmental design	Maren Istad	SINTEF	Turbine and generator
Henrik Baktoft	NINA	Environmental design	Mari Haugen	SINTEF	Market and services
Ingebrigt Uglem	NINA	Environmental design	Mauro Carolli	SINTEF	Environmental design
Ingerid Julie Hagen	NINA	Environmental design	Michael Belsnes	SINTEF	Market and services
Jon Museth	NINA	Environmental design	Olve Mo	SINTEF	Turbine and generator
Karl Øystein Gjelland	NINA	Environmental design	Siri Mathisen	SINTEF	Market and services
Line Sundt-Hansen	NINA	Environmental design	Stefan Rex	SINTEF	Market and services
Magni Kyrkjeeide	NINA	Environmental design	Sverre Hvidsten	SINTEF	Turbine and generator
Marie-Pierre Gosselin	NINA	Environmental design	Tor Inge Reigstad	SINTEF	Turbine and generator
Markus Majaneva	NINA	Environmental design	Tuan T. Nguyen	SINTEF	Turbine and generator
Olivia Simmons	NINA	Environmental design	Bjørnar Fjelldal	SINTEF	Market and services
Oddgeir Andersen	NINA	Environmental design	Dimitri Pinel	SINTEF	Market and services
Richard Hedger	NINA	Environmental design	Håkon Toftaker	SINTEF	Market and services
Rolf Sivertsgård	NINA	Environmental design	Jiehong Kong	SINTEF	Market and services
Tonje Aronsen	NINA	Environmental design	Kjartan Hovde	SINTEF	Market and services
Torbjørn Forseth	NINA	Environmental design	Kyriaki Tselika	SINTEF	Market and services
Bjørn Larsen	NINA	Environmental design	Linn Emelie Schäffer	SINTEF	Turbine and generator
Grete Robertsen	NINA	Environmental design	Ove Wolfgang	SINTEF	Market and services
Hege Brandsegg	NINA	Environmental design	Per Aaslid	SINTEF	Market and services
Ingeborg Helland	NINA	Environmental design	Sigurd Jakobsen	SINTEF	Market and services
Ida Andersskog	NINA	Environmental design	David Florian Vetsch	ETH	Environmental design
lens Åström	NINA	Environmental design	Robert Boes	ETH	Environmental design
Knut Eikland	NINA	Environmental design	Sebastian Stranzl	NORCE	Environmental design
Kristine Bjørnås	NINA	Environmental design	Ulrich Pulg	NORCE	Environmental design
Merete Spets	NINA	Environmental design	Armin Peters	FishConsulting GmbH	Environmental design
Narve Opsahl	NINA	Environmental design	Biraj Singh Thapa	KU	Turbine and generator
Ola Ugedal	NINA	Environmental design	Bholo Thapa	KU	Turbine and generator
Sebastian Wacker	NINA	Environmental design	Sailesh Chitrakar	KU	Turbine and generator
Vebjørn Opsanger	NINA	Environmental design	Saroj Gautam	KU	Turbine and generator
Ana Adeva Bustos	SINTEF	Market and services	Dadiram Dahal	KU	Turbine and generator
Arild Helseth	SINTEF	Market and services	Rabina Awal	KU	Turbine and generator
Arnt Ove Eggen	SINTEF	Market and services	Prajwal Sapkota	KU	Turbine and generator
	SINTEF			KU	Turbine and generator
Atle Harby		Environmental design	Hari Neopane		<u> </u>
Bendik Torp Hansen Birger Mo	SINTEF	Hydropower structures Market and services	Ashim Joshi	KU	Turbine and generator

FINANCIAL STATEMENT HYDROCEN 2023

			All figures in 1000 NOK
Funding 2023	Funding	In-kind	Total
The Research Council of Norway	19 747		19 747
Industry partners	9 422	6 787	16 209
Research partners		5 540	5 540
Total funding 2023	29 169	12 327	41 496
Revenue 2023	Funding	In-kind	Total
SINTEF	7 220	2 626	9 846
NINA	7 458	1 577	9 035
NTNU	14 378	1 328	15 706
USN			
NGI			
KU	113	9	122
Open Calls			
Industry in-kind		6 787	6 787
Total Costs 2023	29 169	12 327	41 496



This new model of the hydropower system allows for physical and enthusiastic dissemination both at events and conferences as well as for visitors at the Waterpower laboratory

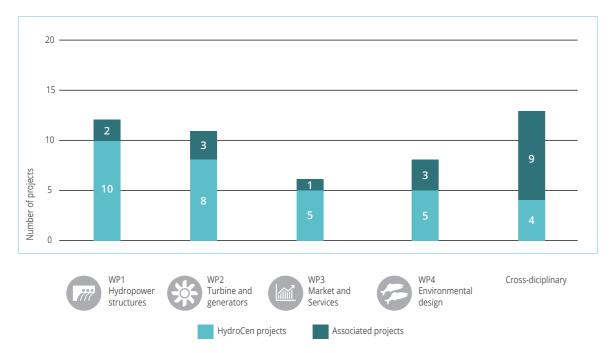
In 2023 we had a total of 29 master students at NTNU within the field of hydropower. The distribution between the disciplines civil, engineering geology, mechanical and electrical is shown in the figure below.

PHDS AND 👅

Electrial and Environmental.

POSTDOCTORAL FELLOWS

In 2023 a total of 17 PhD and Post docs were in HydroCen.

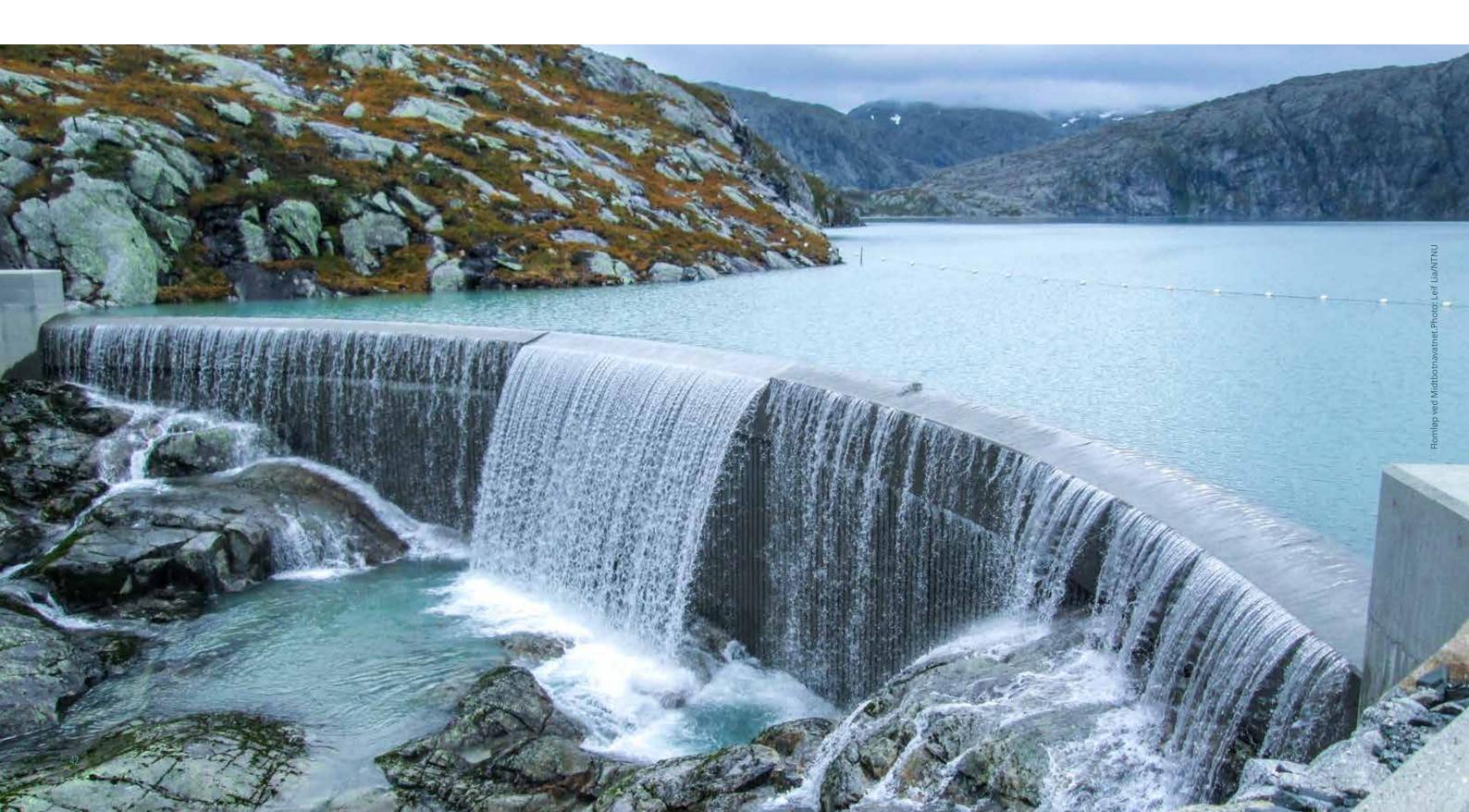

They worked within Civil, Engineering geology, Mechanical,

PhD and Post doc. funded by HydroCen, active in 2023							
Name	PhD Post doc.	Gender	Nationality	Торіс	Period	Department	
Birender Singh	PD	Male	Indian	Dielectric Condition Assessment of Back-up Hydro Generator Stator Bars	2021-2023	Electrical	
Diwash Lal Maskey	PhD	Male	Nepalese	"Sediment handling at the intake of the hydropower plants: A toolbox for decision making"	2018-2023	Civil	
Geir Helge Kiplesund	PhD	Male	Norwegian	Embankment dam safety under extreme loading conditions: Bre- aching of embankment dams	2019-2023	Civil	
Halvor Kjærås	PhD	Male	Norwegian	Modeling of fish guidance by floating devices	2018-2023	Civil	
Helene Dagsvik	PhD	Female	Norwegian	Reversible Pump-Turbines in Existing Power Plants	2017-2023	Mechanical	
Ishwar Joshi	PhD	Male	Indian	Numerical Simulation of Sediment Transport in Rivers and Reservoirs	2021-2024	Civil	
Jim Abregu	PhD	Male	Peruvian	Sediment erosion on Pelton turbines	2022-2025	Mechanical	
Kristian Sagmo	Post doc.	Male	Norwegian	Design and testing of axial turbine blade-stage for damping measure- ments connected to complex mode shapes	2021-2023	Mechanical	
Linn Emelie Schäffer	PhD	Female	Norwegian	Modelling of Environmental Constraints for Hydropower Optimization Problems	2020-2023	Electrical	
Mamata Rijal	PhD	Female	Nepalese	Optimization of Variable Speed Francis Turbines for Sediment Laden Projects	2022-2025	Mechanical	
Michiel Desmedt	PhD	Male	Dutch	FEA analysis of a novel single stator-dual rotor machine topology	2021-2024	Electrical	
Nirmal Acharya	Post doc.	Male	Nepalese	Experimental work on model Pelton turbines	2022-2024	Mechanical	
Nils Solheim Smith	PhD	Male	Norwegian	Inkrementell økning av flomløpskapasitet.	2021-2024	Civil	
Ola Haugen Havrevoll	PhD	Male	Norwegian	Rock traps in pumped storage and peaking power plants	2017-2023	Civil	
Olivia Simmons	Post doc.	Female		Fiskevandring av vinterstøing	2022-2023	Environment	
Raghbendra Tiwari	PhD	Male	Nepalese	Frequency converter solutions and control methods for variable speed operation of pump storage plant	2018-2023	Electrical	
Theo Dezert	Post doc.	Male	French	Plastring av damtå og bruddforløp i fyllingsdammer	2021-2023	Civil	

PhD student working on projects in the centre with financial support from other sources							
Name		"Sex M/F"	Nationality	Торіс	Period	Funding	
Gabriele Gaiti	PhD	М	Italian	Fluid structure interaction in hydraulic turbine	2021-2024	NTNU	
Jan Hrebrina	PhD	М	Czech	Boulder transport and design of structural flood mitigation measures in high mountain regions	2022-2025	NTNU	
Johannes Kverno	PhD	Μ	Norwegian	Design of a Francis turbine for many start-stop cycles per day and high ramping	2019- 2023	EU H2020	
Subhojit Kadia	PhD	М	Indian	Secondary currents, turbulent flow characteristics, and bed shear stress variations and impact on sediment transport in supercritical narrow channel flows.	2020-2024	IBM	
Dadiram Dahal	PhD	М	Nepalese	Study of boundary layer and its interaction with vibrating blade	2023-2025	NTNU	
Ludwig Kuhn	PhD	Μ	German	Degassing of air-supersaturated water by use of power ultrasound	2020-2023	NTNU	

PROJECT OVERVIEW 2023

A total of 57 projects related to hydropower were ongoing in 2023. 15 of these are associated projects within hydropower where HydroCen's researchers are involved.



HydroCen Projects							
Proje	ct name	Project leader	Field of study				
1.1	Tunnels, penstocks, surge chambers	Krishna Panthi	Hydropower structures				
1.2	Dam construction and dam safety	Fjola G. Sigtryggsdottir	Hydropower structures				
1.3	Sediment handling	Elena Pummer	Hydropower structures				
1.4	Fish friendly hydropower intakes	Leif Lia	Hydropower structures				
2.1	Variable Speed Operation	Chirag Trivedi	Turbine and generators				
2.3	Pump turbines in existing power plants	Pål-Tore Storli	Turbine and generators				
2.4	Turbine and Generator Lifetime	Arne Nysveen	Turbine and generators				
3.3	Optimal hydro design in future power systems	Birger Mo	Market and services				
3.4	Environmental constraints and uncertainties – impact on revenues	Arild Helseth	Market and services				
3.5	Water resources assessment tool	Ana Adeva Bustos	Market and services				
4.1	Implementing and founding environmental design solutions (EDS)	Berit Köhler	Environmental design				
4.3	Environmental design	Atle Harby	Environmental design				

Ongoing HydroCen projects (Open Calls)							
Project	name	Project leader	Field of study				
5.1.2	Breaching of rockfill dams with core	Fjola G. Sigtryggsdottir	Hydropower Structures				
5.1.4	Rock support dimensioning	Krishna Panthi	Hydropower Structures				
5.1.8	Forprosjekt: Effektiv funksjonsforbedring av eksisterende bekkeinntak	Leif Lia	Hydropower Structures				
5.1.9	InSpillyFish - Øking av flomløpskapasitet med betre vandringsløysingar for fisk	Leif Lia	Hydropower Structures				
5.1.10	Hydraulic impact pressure	Krishna Panthi	Hydropower Structures				
5.1.11	Fleksible sandfang 3.0	Kaspar Vereide	Hydropower Structures				
5.2.6	Peltonturbin Prototyp virkningsgradsmålinger	Bjørn Winther Solemslie	Turbine and generators				
5.2.9	SediRes	Sailesh Chitrakar	Turbine and generators				
5.2.11	DigiSur	Nirmal Acharya	Turbine and generators				
5.2.12	Numerical modeling cracked blade	lgor iliev	Turbine and generators				
5.2.13	Fluid Structure Interaction	Chirag Trivedi	Turbine and generators				
5.3.7	HydroFy - fair og inkluderende markeder med vannkraft	Michael Belsnes	Market and services				
5.3.8	MerUsikkerhet - Markedspriser med forbedret beskrivelse av usikkerhet	Birger Mo	Market and services				
5.4.10	Kelt2Sea	Ana da Silva	Environmental Design				
5.4.11	eDNA-Sustain	Frode Fossøy	Environmental Design				
5.4.12	e-DNA Sampler	Bjørn Winther Solemslie	Environmental Design				
5.5.8	Kunnskapsbanken	Jonas Bergmann-Paulsen	Cross-disciplinary				
5.5.10	TwinLab II - Accelerating Digitalization of Hydropower Research	Ingrid Vilberg	Cross-disciplinary				
5.5.11	Måltall for bærekraftig fleksibilitet fra vannkraft (SusFlexMet)	Siri Mathisen	Cross-disciplinary				
5.5.12	Klimaprosjekt	Tor Haakon Bakken	Cross-disciplinary				

Associated Projects				
Project name	Project leader	Field of study	Туре	Project owner
Capacity Building in Higher Education within Rock and Tunnel Engineering	Krishna K. Panthi	Cross-disciplinary	NORHED II	NTNU
DeGas	Ole Gunnar Dahlhaug	Cross-disciplinary	KPN	NTNU
EnergizeNepal	Ole Gunnar Dahlhaug	Cross-disciplinary	NORAD	NTNU
FirePlug	Brett Sandercock	Environmental design	KSP	NINA
FishPath	Torbjørn Forseth	Environmental design	NFR	NINA
FunkyFish	Ingeborg Palm Helland	Environmental design	KSP	NINA
Hydraulic Research and Education Labo- ratory and Dam Safety in Ethiopia	Leif Lia	Cross-disciplinary	NORHED II	NTNU
HydroCen Labs	Ole Gunnar Dahlhaug	Cross-disciplinary	RCN Infrastructure	NTNU
HydroConnect	Atle Harby	Market and services	KPN	SINTEF
HydroHimalaya	Ole Gunnar Dahlhaug	Cross-disciplinary	NORHED II	NTNU
InMoDam	Fjola Sigtryggsdottir	Hydropower structures	IPN	NTNU
Norstress	Krishna K. Panthi	Hydropower structures	Norstress	NTNU
SysOpt	Thomas Øyvang	Cross-disciplinary	KPN	USN

PROJECTS OVERVIEW 2023

PROJECT OVERVIEW 2023

PUBLICATIONS

HydroCen has published 18 scientific papers in 2023. In addition, researchers have published several HydroCen Reports as well as a number of conference papers and presentations.

Level 2 papers (highest level)

Impacts of existing and planned hydropower dams on river fragmentation in the Balkan Region. Carolli, Mauro; de Leániz, Carlos García; Jones, Joshua; Belletti, Barbara; Hudek, Helena; Pusch, Martin T.; Pandakov, Pencho; Börger, Luca; van de Bund, Wouter. Science of the Total Environment 2023

An Expeditious Algorithm for Identification and Classification of Rotor Faults in Salient Pole Synchronous Generators. Ehya, Hossein; Nysveen, Arne; Akin, Bilal; Gyftakis, Konstantinos N. IEEE transactions on industrial electronics (1982, Print) 2023

Level 1 papers (high level)

Erfaringar med bruk av batymetrisk LiDAR for modellering av vassdrag. Alfredsen, Knut Tore; Stickler, Morten; Alne, Ingrid Sundsbø; Brekke, Ingvild; Skeie, Lars; Adeva Bustos, Ana; Juarez Gomez, Ana; Sundt, Håkon; Awadallah, Mahmoud Omer Mahmoud; Dønnum, Bjørn Otto. Vann 2023

3D displacement and axial load of placed rock riprap supported at the toe : use of structure from motion. Dezert. T. & Sigtryggsdottir, F. (2023) Journal of Hydraulic Engineering.

Dynamic hedging for the real option management of hydropower production with exchange rate risks. Dimoski, Joakim; Fleten, Stein-Erik; Löhndorf, Nils; Nersten, Sveinung. OR Spectrum: quantitative approaches in management 2023

Operation related maintenance and reinvestment costs for hydropower scheduling. Eggen, Arnt Ove; Belsnes, Michael Martin. Energy Systems, Springer Verlag 2023

Hydraulic Transient Impact on Surrounding Rock Mass of Unlined Pressure Tunnels. Ghimire, Sanyam; Panthi, Krishna Kanta; Vereide, Kaspar Vatland, Water 2023

A stochastic policy algorithm for seasonal hydropower planning. Grini, Håkon; Danielsen, Anders Strømmen; Fleten, Stein-Erik; Kleiven, Andreas. Energy Systems, Springer Verlag 2023

Supported Placed Riprap Exposed to Overtopping: Structure from Motion Study. Dezert, Theo Jean Bernard Clotaire; Sigtryggsdottir, Fjola Gudrun. The International Association for Hydro-Environment Engineering and Research (IAHR) 2023

Breach Progression Observation in Rockfill Dam Models Using Photogrammetry. Kiplesund, Geir Helge; Sigtryggsdottir, Fjola Gudrun; Lia, Leif. Remote Sensing 2023

Power market models for the clean energy transition: State of the art and future research needs. Haugen, Mari; Blaisdell-Pijuan, Paris L.; Botterud, Audun; Levin, Todd; Zhou, Zhi; Belsnes, Michael Martin; Korpås, Magnus; Somani, Abhishek. Applied Energy 2023

Hydropower Scheduling Toolchains: Comparing Experiences in Brazil, Norway, and USA and Implications for Synergistic Research. Helseth. Arild: Melo. Albert C.G.: Ploussard, Ouentin: Mo. Birger: Maceira, Maria E.P.: Botterud, Audun: Voisin, Nathalie. Journal of water resources planning and management 2023.

Short-term hydropower optimization in the day-ahead market using a nonlinear stochastic programming model. Jafari Aminabadi, M.; Séguin, S.; Fofana, I.; Fleten, Stein-Erik; Aasgård, Ellen Krohn. Energy Systems, Springer Verlag 2023

Co-movements between forward prices and resource availability in hydro-dominated electricity markets. Kleiven, Andreas; Risanger, Simon; Fleten, Stein-Erik. Energy Systems, Springer Verlag 2023

Implications of environmental constraints in hydropower scheduling for a power system with limited grid and reserve capacity. Schäffer, Linn Emelie; Korpås, Magnus; Bakken, Tor Haakon. Energy Systems, Springer Verlag 2023.

TECHNICAL COMMITTEES 2023

Work Package 1 Hydropower stuctures	Work Package 2 Turbine and generator	Work Package 3 Market and services	Work Package 4 Environmental design
WP Leader: Leif Lia, NTNU	WP Leader: Arne Nysveen, NTNU	WP Leader: Birger Mo, SINTEF	WP Leader: Line Elisabeth Sundt-Hansen, NINA
Anne Marit Håstein Ruud, Fornybar Norge	Arve Jakobsen, Lyse Kraft DA	Atle Frøland, Tafjord	Anders Thon Bråten, TrønderEnergi Kraft AS
Erik Hauglin, Å Energi	Bjarne Børresen, Multiconsult	Christian Oshaug, NTE	Arne Anders Sandnes, Statkraft
Erik Nordström, Vattenfall	Carl Andreas Veie, NVE	Elisabeth Helgesen, Eviny	Bjarte Guddal, Skagerak Energi
Erlend Bårgard, Sognekraft	Carl Maikel Högström, Vattenfall	Frode Vassenden, TrønderEnergi Kraft AS	Bjørn Høgaas, NTE
Ganesh Ravindra, Statkraft	Carsten Fleck, Voith Hydro	Geir Kildal, Skagerak Energi	Bjørn Otto Dønnum , Hafslund Eco
Grunde Olimstad, Å Energi	Eivind Kjerpeset, SKL	Hans Olaf Hågenvik, Å Energi	David Aldvên, Vattenfall
Hanne Nøvik, Scatec	Halvor Haugsvold, NorConsult	Hans Ole Riddervold, Hydro	Eilif Brodtkorb, NVE
Helge Martinsen , Å Energi	Hanne Paulsen, Enestor	Ina Kindem, Eviny	Erling Otterlei, SKL
Kaspar Vereide, Sira-Kvina	Hans Simen Fougner, Hydro Energi AS	Jonas Funquist, Vattenfall	Frank Jørgensen, NVE
Mats Billstein, Vattenfall	Harald-Knut Kvandal, Statkraft	Kjell Johnny Kvamme, Sunnfjord Energi	Harald Holm, TrønderEnergi Kraft AS
Morten Skoglund, NVE	Henning Lysaker, Rainpower	Liv Kjersti Skartland, SKL	Jo Halvard Halleraker, Miljødirektoratet
Oddmund Brevik , Hafslund Eco	Håkon Toftaker, SINTEF Energi	Magnus Landstad, Lyse Produksjon AS	Kjetil Lønborg Jensen, Miljødirektoratet
Per Vidar Halsnes, Eviny	Ingar Hovdelien, Voith Hydro	Marte Fodstad, Statkraft	Lars Jakob Gjemlestad, Sira-Kvina
Ragnhild Hoel, Tafjord	Inge Lines, Å Energi	Solgunn Furnes, Fornybar Norge	Morten Krabøl, Multiconsult
Siri Stokseth, Statkraft	Ingunn Granstrøm, Skagerak Energi	Stig Østebrøt, Captiva	Nils Henrik Johnson, TrønderEnergi Kraft AS
Tom Jacobsen, Sedicon	Jan Petter Haugli, Statkraft	Sven Per Lønne, Å Energi	Per Ivar Bergan, Sweco
Wolf Marchand, NVE	Jørgen Ramdal, Statkraft	Sæming Eggen, Tafjord	Per Øyvind Grimsby, Sira-Kvina
Øyvind Pedersen, Multiconsult	Kjell H. Sivertsen, Rainpower	Thea Bruun-Olsen, Statkraft	Ragna Flatla Haugland, SFE
Åsmund Hasaas, Skagerak Energi	Line Drange Ruud, Å Energi	Tor Halvor Bolkesjø, Hafslund Eco	Roy M. Langåker, Miljødirektoratet
	Magne Kolstad, Hafslund Eco	Toril Hunstad Christensen, Eviny	Sissel Mykletun, Eviny
	Per Egil Skåre, Dynavec	Torkil Nersund , Helgeland Kraft	Stein Øvstebø, Hydro
	Petter Rikstad, Eviny	Åsa Grytli Tveten, NVE	Svein Haugland, Å Energi
	Pål Teppan, Andritz		Trond Erik Børresen, Lyse Produksjon AS
	Simen Økelsrud Riiser, Andritz		Trond Taugbøl, Hafslund Eco
	Steinar Faanes, Enestor		Trygve Øderud , Å Energi
	Stig Falling, Tafjord		
	Thomas Øyvang, USN		
	Tore Johan Flåm, NTE		
	Vegard Pettersen, Fornybar Norge		
	Øyvind Linnebo, ABB		
	Åsulv Haugetveit, Otra Kraft		

PARTNER OVERVIEW

Publisher: HydroCen Editor in chief: Liv Randi Hultgreen Editor and texts: Juliet Landrø Numbers and statistics: Berit Hagen

Illustration cover and page two: Stig-Arve Wærnes, Oxygen Design Graphic design: Monika Wist Solli, NTNU Graphic Centre

Office address: HydroCen The Waterpower Laboratory Alfred Getz vei 4 Trondheim Norway

HydroCen Report 43 ISSN: 2535-5392 ISBN: 978-82-93602-44-6

ONTNU O SINTEF

