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ABSTRACT

Efficient flood risk assessment and communication are essential for responding to increasingly recurrent flash floods. However, access to

high-end data center computing is limited for stakeholders. This study evaluates the accuracy-speed trade-off of a hydraulic model by (i)

assessing the potential acceleration of high-performance computing in PCs versus server-CPUs and GPUs, (ii) examining computing time

evaluation and prediction indicators, and (iii) identifying variables controlling the computing time and their impact on the 2D hydrodynamic

models’ accuracy using an actual flash flood event as a benchmark. GPU-computing is found to be 130� and 55� faster than standard and

parallelized CPU-computing, respectively, saving up to 99.5% of the computing time. The model’s number of elements had the most signifi-

cant impact, with ,150,000 cells showing the best accuracy-speed trade-off. Using a PC equipped with a GPU enables almost real-time

hydrodynamic information, democratizing flood data and facilitating interactive flood risk analysis.

Key words: 2D hydrodynamic modeling, flash flood modeling, high-performance GPU-computing, optimized hydraulic simulation, sensitivity

analysis, steep rivers

HIGHLIGHTS

• Fast and reliable flood-predictive tools minimize flood damage in steep rivers.

• Parallelization methods in PCs can provide up to 130� faster results and save 99.5% of the computing time.

• Graphic cards in PCs can be as fast as data center processing units.

• The optimal precision-speed trade-off is achieved 5� faster for variable-sized meshes than for uniform-sized meshes.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and

redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
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GRAPHICAL ABSTRACT
1. INTRODUCTION

Europe is currently experiencing intensified flood seasonality (Blöschl et al. 2020). Moreover, civilians and stakeholders are
unprepared for increasingly frequent, severe, and spatially extended floods. More than half of the 1,500 flood events reported
in Europe over the last 150 years were flash floods, and only 10% of all the events had data available on the total flooded area

(Paprotny et al. 2018). Citizen science and real-time social media coverage of flood events expand and speed up environmental
data availability (Ansell & Dalla Valle 2022). The impact of a recent flash flood in a steep Norwegian river was witnessed and
documented audio-visually (Bruland 2020; Moraru et al. 2021). The desire for improved decision-making and reducing flood

risk has driven research on hydraulic modeling techniques capable of providing nearly real-time hydraulic information.
Thesemodels could be integrated into state-of-the-art flood risk communication tools, including realistic visualization and inter-
active serious gaming in augmented and virtual reality (AR/VR). Such tools enhance understanding, awareness of natural
hazards and enable the testing of emergency response plans and training without real exposure to hazards.

In Norway, the annual cost due to flooding in the last four decades is over 126 million NOK (or 12 million €) in the private
sector alone (FinansNorge 2023). This cost estimate could be close to 1 billion NOK (or 100 million €) when accounting for
road repairs, river restoration, and similar flood-related damage repairs. Flood-predictive and warning tools are very valuable

when they provide reliable information with a lead time that allows for minimizing flood damage and, for instance, provides
enough time for an evacuation (Fernández-Nóvoa et al. 2020). Compromises in model accuracy are oftentimes required for a
gain in response time. Describing optimally the critical locations in a river and refining the model at these locations alone

could ensure a suitable model accuracy and a significant gain in computing speed. More efficient hydraulic models will
allow for more rivers to be analyzed and thus more cost-efficient measures to be implemented. Recent studies show that
legacy models lack the necessary implementations to take advantage of the parallelism available on current hardware (e.g.

Morales-Hernández et al. 2020), which hinders their use in applications such as real-time flood forecasting, where the sched-
uled model runs for periodic update, interactive visualization for a more user-friendly and effective flood risk communication
or in large batch-processing tasks (e.g. Monte Carlo analysis). On the other hand, new parallel implementations of hydrologic
and hydraulic modules have achieved speed-ups of up to one hundred times faster than their standard versions in mountain

areas (Moraru et al. 2020) and up to a thousand times faster in urban areas (Buttinger-Kreuzhuber et al. 2022). Graphics pro-
cessing units (GPUs) have up to several thousand computing cores allocated in one single processing unit (PU), which can be
parallelized. For reference, it would require the best server multi-CPUs (central processing units) available in the market to

reach a similar number of cores working together in one single task. GPUs are available for scientific computing and many
GPU-based hydraulic models focused on solving the shallow water equations (SWEs) have been developed in the last decade.
For instance, García-Feal et al. (2018) translated the code of the 2D numerical model Iber (Bladé et al. 2014) into Iberþ , a
://iwaponline.com/jh/article-pdf/25/5/1690/1302826/jh0251690.pdf
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code that allows parallelization both on multi-core CPU (hereafter ‘parallelized version’) and GPU. A comprehensive list of

pioneer 2D GPU-based models oriented to flood applications is available in Kalyanapu et al. (2011) and Moraru et al. (2020).
Several existing 2D numerical models that can compute simultaneously on multiple threads/cores, either on CPU or GPU,
are mathematically based on Roe’s upwind approximation (Roe 1981, 1986) – a finite volume method (FVM) Riemann

solver – e.g. Lacasta et al. (2014), García-Feal et al. (2018), Echeverribar et al. (2019), Caviedes-Voullième et al. (2023),
among others. González-Cao et al. (2019) developed a coupled hydrologic–hydraulic warning system based on HEC-HMS
and Iberþ that simulated both models for 3 days in less than 1 h altogether. For reference, a 3� smaller hydraulic model
(i.e. 74k elements instead of the 200k elements of the coupled model; Table S1 in Supplementary Material), simulated for

1 day using MIKE21 FM took 7 h to compute on the parallelized CPU configuration (Ejigu 2020; D. K. Ejigu personal com-
munication, 16 February 2021). That is, a 3� smaller model, run for 1/3 of the time, took 7� longer to compute in MIKE21
than in HEC-HMS and Iberþ , and it excluded the hydrologic model. The early warning system in González-Cao et al. (2019)
was based on Iberþ , which achieved a speed-up of up to 94� in benchmarked cases simulated with a mid-range GPU
(García-Feal et al. 2018).

The numerical modeling presented in this study was carried out in Iber and Iberþ , which are hydraulic models that solve 2D

SWEs using an unstructured FVM. The detailed 2D depth-averaged SWEs that are solved in Iber can be found in García-Feal
et al. (2018). This numerical model was preferred over other promising 2Dmodels able to use HPC (high-performance comput-
ing) because, unlikemanymodels used in research, it was adapted to be readable, usable and it is continuouslymaintained. Iber

is very user-friendly and freeware, hence, very accessible for independent researchers and small stakeholders. Moreover, Iber’s
performance has been benchmarked and shown to be fast and precise when numerically modeling physical scenarios of differ-
ent dimensions, as well as the 2D numerical modeling of a large river catchment (García-Feal et al. 2018; Cea et al. 2020).

Far too little is known about the use of GPU-based HPC in personal computers (PCs) for fast and affordable flood modeling

that could increase and improve early data availability. The primary objective of the current study is to provide model spe-
cifications to facilitate the transition from a scientific to an operational tool in flood risk studies. This aim was
investigated by analyzing the trade-off of the accuracy and the computing speed of the hydrodynamic model for the flood

event herewith presented as a case study for illustration and benchmarking. The hydrodynamic model was calibrated and
validated (see chapter 2, Figure 1(a)). The model resolution and mesh type used, together with the numerical approach
and field observations are expected to provide a full 2D hydrodynamic model with enough accuracy for flood risk manage-

ment, i.e. flood extent is adequately replicated (Liu et al. 2019). Although the flash flood event affecting Storelva river (Utvik,
western Norway) in 2017 was highly driven by erosion and deposition processes, it is out of the scope of this study to comp-
lement former studies with complex morphodynamic information that would increase the computational demand of the
numerical model (Beven 2012). Once the model accuracy was adequate, the current study aimed to (i) evaluate the potential

acceleration achieved by HPC in PCs and their limitations when using numerical modeling for flood risk management, (ii)
examine evaluation and prediction indicators for computing time in 2D numerical modeling of floods, (iii) identify variables
controlling the computing time of 2D numerical models and propose an accuracy-speed trade-off. To achieve the first aim, the

2017 flood was studied with the IberþGPU-based 2D hydrodynamic model, and its performance and stability were com-
pared to several standard and parallelized CPU-based numerical models (see section 3.1, Figure 1(b) and 1(c)). The PUs
used in this study represent a vast array of low- to high-range privately accessible PUs. Due to the difficult access to high-

end data center (or server) PUs for municipalities and small stakeholders, these were excluded from the current comparison.
The second aim was tackled by carrying out the statistical analysis of the data obtained during the study of aim (i) and eval-
uating the observations using performance indicators (see section 3.2, Figure 1(d)). To achieve the third aim, multiple model

set-ups were tested and contrasted with the performance of models available in the literature. The sensitivity analysis, which
estimates the uncertainty of all input and output variables in the hydrodynamic model (Beven et al. 2015; Dimitriadis et al.
2016), enabled the characterization of an optimal accuracy-speed curve (see section 3.3, Figure 1(e)‒1(g)).
2. CASE STUDY

The hydrogeomorphic background of Storelva in Utvik and limitations identified in other modeling studies are described in

section 2.1 (Figure 1(a)). The hydrodynamic model calibration and set-up are described in section 2.2, and its validation and
hydraulic results are shown in section 2.3. The numerical model stability of Iber(þ) is tested in section 2.4. The resulting
model was then implemented in HPC testing and analysis.
om http://iwaponline.com/jh/article-pdf/25/5/1690/1302826/jh0251690.pdf
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Figure 1 | Summary of the workflow followed in this study and the sections where each partial workflow is described. Symbology is indi-
cated in the legend. PU, processing unit, CPU, central processing unit, GPU, graphics processing unit, SPU, speed-up of PU, Tpst, computing
time per step and thread, Tpsc, computing time per step and cell, PECPU, parallelization efficiency of CPU, SPUobs, observed SPU in this study,
SPUexp, expected SPU, TS, time-saving ratio, Distrib., distribution, Sdv, standard deviation. Equations are available in the text.
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2.1. Flash flood in Storelva river (West Norway) in 2017

Storelva river, located in Utvik, West of Norway (Figure 2) was flooded on 24 July 2017, when ca. 4 h of heavy rainfall turned

the 1.6 m3/s average discharge in a peak discharge of ca. 200 m3/s, exceeding the 200 years return period (Bruland 2020). The
river is in a steep valley, with an average longitudinal channel slope of 10.52% in the 775 m-long study reach. The main land
uses include cultivated land, scarce vegetation, forest, and a lot of Quaternary fine material (Figure 2). A detailed analysis of

the dynamics during the flood is available in Moraru et al. (2021), where the extension of the flooded area, the preferential
flow zone (PFZ; Figure 3(b)) and the main flow paths were mapped.

The hydrodynamics and morphodynamics of the 2017 flash flood were previously modeled with FINEL2D (TU Delft &

Svašek Hydraulics) by Dam (2018) and with Telemac-Mascaret 2D (Électricité de France) by Pavlíček & Bruland (2019).
Both studies aimed to reproduce as accurately as possible the observed preferential flow paths and newly created channel,
including an analysis of erosion and deposition processes. Son (2020) created the training dataset for a machine learning

(ML) model of the 2017 flash flood in Iber. In this latter study, the ML model surpassed the computing speed of the hydro-
dynamic models, yet it only marginally matched the non-calibrated Iber models it was validated against. The offset between
ML and 2D hydraulic models is expected, as ML is not based on the complex physics that 2D models are. ML is still a good
indicator of model performance (Rozos et al. 2022). An overview of the models and discharges considered by other studies for

the 2017 flood is shown in Table S2. This study uses the same flood hydrograph and river reach modeled by Pavlíček &
Bruland (2019) and Son (2020). These models have not been calibrated. The lack of on-site measurements of mobilized sedi-
ment masses during the flood makes the refinement and validation of the morphodynamic models challenging. So far, most of

the flow paths and locations where the water left the channel were identified with similar success in both hydrodynamic and
morphodynamic models (Pavlíček & Bruland 2019), thus the present study was carried out using only a hydrodynamic model
(Figure 1(a)).
://iwaponline.com/jh/article-pdf/25/5/1690/1302826/jh0251690.pdf



Figure 2 | Land use map and computing domain extensions for the flood models in Storelva river in Utvik. Domain01 was used for calibration
and sensitivity analysis, whereas domains02 and 03 were used for model performance comparison. The context map is in the lower right
corner. The orthophoto is in ETRS89, UTM33 (Norwegian Mapping Authority 2015).
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The information on Storelva river can be enriched by calibrating a hydrodynamic model with recent field observations

obtained post-flood and validating the model using the mapped observed flooded extent from Moraru et al. (2021). There
is no roughness sensitivity analysis for the downstream reach of Storelva river, while the upstream reach was calibrated
by Bruland (2020). All the aforementioned aspects are tackled hereafter, together with (i) an evaluation of the sensitivity

to roughness variation of the Iber model and (ii) the analysis of the hydrodynamic performance of Iberþwhen simulating
extreme events in steep slopes – where hydrodynamics are complex and flow is mostly supercritical.

2.2. 2D hydrodynamic model set-up

The DEM surveyed by the Norwegian Mapping Authority (2013) was used to build the computational domain on the 775 m-
long reach most downstream and nearest to the local population affected by the flood. The hydrological modeling of the

unsteady inflow hydrograph for the 2D hydrodynamic model of the 2017 flood is described by Bruland (2020). Although
the 191 m3/s peak discharge is reached within 4 h, a 25h-long simulation was run to ensure model stability. The event was
simulated using the first order of Roe’s approximation and a wet-dry limit of 0.01 m for two different domains: one with
ca. 165,000 cells (domain02 in Figure 2) and another with ca. 120,000 cells (domain03 in Figure 2). The results were exported

every 1 min (3,880,438 steps) and 5 min (2,140,820 steps), respectively.
The extension of the computational domain (domain02 in Figures 2 and 1(a)) was refined and reduced to ca. 0.34 km2

(domain03 in Figure 2) based on preliminary simulations and inundation area analysis. The flood model had a mesh size

of 2 m in the river channel and inundation platforms near the banks and of 4 m in areas in the domain furthest from the
river channel and in the fjord, which follows the more refined mesh guidelines of previous modeling studies (Table S2).
The model included four bridges (yellow lines in Figure 2) treated as single lines facing upstream, while the buildings
om http://iwaponline.com/jh/article-pdf/25/5/1690/1302826/jh0251690.pdf
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Figure 3 | (a) Map of simulated flood extent (red and blue) contrasted with the observed flooded area during the 2017 flash flood (dashed
orange polygon; Moraru et al. 2021); (b) preferential flow zone (PFZ) observed 10 days after the flood (dashed red line) and original river thalweg
(dotted blue line). The scale is the sameas in Figure 2. Please refer to the online version of this paper to see this figure in colour: http://dx.doi.org/
10.2166/hydro.2023.012.
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were excluded from the computed domain (black polygons in Figure 2; Bellos & Tsakiris 2015). The outlet boundary con-
dition (BC) was considered supercritical/critical and assigned by the fjord (i.e. 0 masl, BC domain03 in Figure 2). Figure 2
shows the location of the BCs and the land use map used to assign the variable roughness coefficients for the 2D hydrodyn-

amic model. The Courant–Friedrichs–Lewy (CFL; Courant et al. 1967) condition was set to 0.45. After carrying out a
sensitivity analysis for Manning roughness coefficients in the downstream reach and calibrating the model with field obser-
vations of water levels and georeferenced position of water edge lines on both banks (see section 1.1 in Supplementary

Material; Table S3), the final roughness values used in the 2017 flash flood model were bridges: 0.020, forest: 0.120, residen-
tial: 0.150, cultivated area: 0.080, dense vegetation: 0.180, river: 0.065 upstream, and 0.075 downstream and in the fjord
(Fig. S1). The simulated spatial extent of the flood was processed in GIS and compared to flood documentation, which
enabled validating the hydrodynamic model (see section 2.3).

2.3. Validation of the 2017 flash flood model

The river roughness calibration, validation and roughness sensitivity analysis carried out for this case study is summarized in
section 1.1 in the Supplementary Material. Moraru et al. (2021) mapped the maximum flood extent (Figure 3(a)), PFZ

(Figure 3(b)), and main flow paths observed during the flood. The maximum estimated water depth was 5.88 m (near bridge
ii, Figure 3(a)), when the flow reached a maximum velocity of 10.72 m/s. The 2D hydrodynamic model shows flooding near
all four bridges in the domain, as well as in the lower areas of both sides of the floodplain, which fits the flood documentation.

The simulated flood extent (Figure 3(a)) matched the observed area by 72% according to the F index (Equation (1), which
shows the over- and underestimations of the model for both dry and flooded areas) and by 87% according to the C index
(Equation (2), which shows the total flooded area successfully modeled without an emphasis on the geographical overlap,

cf. Casas-Mulet et al. 2015; Liu et al. 2019). The simulated flooded area is matching similarly well the traces of the PFZ
observed days after the flood (Figure 3(b)).

F(%) ¼ 100 � Aom

Ao þAm �Aom

� �
(1)

C(%) ¼ 100 � Aom

Ao

� �
(2)
://iwaponline.com/jh/article-pdf/25/5/1690/1302826/jh0251690.pdf
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in which Ao is the observed flooded area, Am is the model-simulated flooded area, and Aom is the flooded area that is both

observed and simulated.

2.4. Hydrodynamic model stability

The stability of the numerical model was studied by estimating the evolution of the output discharge throughout the simu-

lation time in the CPU- (red dashed line) and GPU-based (blue dotted line) hydrodynamic models (Figure 4 and 1(a)). The
model is very stable throughout the simulation time in both computing modalities, with few exceptions when the discharge
raises drastically (Figure 4, arrows).

The stability of both CPU and GPU-computing time was analyzed for 25 replicate runs (cf. Liu et al. 2018), obtaining the
distribution of Tpst (section 3.2) and its standard deviation for both CPU and GPU (Figure 1(b) and 1(c)). The results obtained
from the analytical procedures presented in chapters 2 and 3 will be described in the next chapter.
3. METHODS

3.1. Benchmarking parallel CPU- and high-performance GPU-computing

To address the usability of HPC in PCs, i.e. research aim (i), a database was created to examine the impact of PU-related vari-
ables on the computing time of 2D hydrodynamic models (Figure 1(b)). The database included 21 different PUs (Table 1),

their technical specifications, total computing time, and performance indicators derived from it (see section 3.2) for two
different computing scenarios for the same benchmark case study (see section 2.2). The technical specifications considered
were the number of physical and logical threads, microarchitecture, base frequency, memory, memory bandwidth, and type of

device (Figure 1(c)). The total computing time includes the load case time, writing results time, and simulation computing
time for the parallel version, as well as the initial and final computing time for the standard version. The effect of each of
the PU’s technical specifications was calculated. The dataset was then reclassified and represented in boxplots together

with the relative difference between classes (in terms of speed-up or %).
Aiming to analyze the impact of the selected PU as well as the run-time stability of such PU, Iber, and Iberþwere used to

assess the computing time that different low- to high-end CPUs and GPUs could achieve on both notebooks and desktop com-

puters (Figure 1(b)) for the 2D hydrodynamic model described in chapter 2. The model was computed both on the standard
single-thread CPU version (i.e. 1 core, ‘standard’ hereafter) and on the parallelized multi-thread CPU version (i.e. half of the
threads available, such as 4 for the i7-family, 3 for the i5-family or 8 for the i9-family, as read on the simulation log in Iberþ).
Figure 4 | Inflow BC (Qin; Bruland 2020) and outflowing discharge (Qout) for CPU-computing (i.e. i7-7700-b multi-thread; red dashed line) and
GPU-computing (i.e. NVIDIA Quadro P620; blue dotted line) for the 2017 flash flood. Arrows point to discrepancies between the outputs of the
CPU and GPU models. Please refer to the online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/hydro.2023.012.
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Table 1 | CPUs and GPUs used to compute hydrodynamic simulations for the case study

Processing unit
Launch
year Microarchitecture

N° cores
(threads)

Base
frequency Memory

Memory
bandwidth (GB/s) Device

i7-4710HQ 2014 NA 4 (8) 2.50 GHz 8 GB DDR3 25.6 Notebook

i7-8650U -a 2017 NA 4 (8) 1.90 GHz 16 GB DDR4 34.1 Notebook

i7-8650U -b 2017 NA 4 (8) 1.90 GHz 16 GB DDR4 34.1 Notebook

i7-8650U -c 2017 NA 4 (8) 1.90 GHz 16 GB DDR4 34.1 Notebook

i7-7700 -a 2017 NA 4 (8) 3.60 GHz 32 GB DDR4 35.8 Desktop

i7-7700 -b 2017 NA 4 (8) 3.60 GHz 64 GB DDR4 35.8 Desktop

i7-7700 -c 2017 NA 4 (8) 3.60 GHz 32 GB DDR4 35.8 Desktop

i5-9600K 2018 NA 6 (6) 3.70 GHz 32 GB DDR4 41.6 Desktop

i9-9880H 2019 NA 8 (16) 2.30 GHz 16 GB DDR4 41.8 Notebook

i7-10750H 2020 NA 6 (12) 2.60 GHz 32 GB DDR4 45.8 Notebook

NVIDIA GeForce GTX 860M 2014 Maxwell 640 1,029 MHz 2 GB GDDR5 80.2 Notebook

NVIDIA GeForce GTX 750 2015 Maxwell 512 1,020 MHz 1 GB GDDR5 80.2 Desktop

NVIDIA GeForce GTX 940M 2015 Maxwell 512 1,020 MHz 2 GB GDDR3 14.4 Notebook

NVIDIA GeForce MX 130 2017 Maxwell 384 1,122 MHz 2 GB GDDR5 40.1 Notebook

NVIDIA GeForce GTX 1060 2016 Pascal 1,152 1,506 MHz 3 GB GDDR5 192.2 Desktop

NVIDIA GeForce GTX 1050 2018 Pascal 768 1,392 MHz 3 GB GDDR5 84.1 Desktop

NVIDIA GeForce GTX 1050
MaxQ

2018 Pascal 640 1,189 MHz 4 GB GDDR5 112.1 Notebook

NVIDIA Quadro P620 2018 Pascal 512 1,252 MHz 2 GB GDDR5 80.1 Desktop

NVIDIA GeForce RTX 2080Ti 2018 Turing 4,352 1,350 MHz 11 GB GDDR6 616.0 Desktop

NVIDIA GeForce GTX 1650Ti 2020 Turing 896 1,410 MHz 4 GB GDDR6 192.0 Notebook

NVIDIA GeForce RTX 3080 2020 Ampere 8,704 1,440 MHz 10 GB
GDDR6X

760.3 Desktop

Different units are denoted with letters ‘-a’, ‘-b’, and ‘-c’. Base frequency represents base clock speed. NA, not applicable.
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To assess the inter- and intra- deviation of the CPU results, the model was run on different units of the exact same type (i.e. i7-

8650U-a/b/c). This test was replicated to discern the effect of the CPU memory (i.e. i7-7700-a/b/c).
An identical numerical model was run on 11 different NVIDIA GPUs, covering the most recent microarchitectures avail-

able at consumer level (i.e. Kepler and Fermi were excluded due to their obsolescence), as well as a wide range of numbers of

cores and clock speeds (i.e. base frequencies; Table 1). More recent GPUs not only have a higher number of cores available
for parallel computing but also a higher base frequency for their cores and a larger and faster memory for the intermediate
results to be written on. The cores of a GPU cannot be separated; hence, the case study was always run on all the GPU cores
available.

3.2. Computing performance indicators

The database served to examine the computing time through statistical model performance indicators (Figure 1(c); research
aim (ii). The performance of the PUs was evaluated in terms of:

(i) Average time per step and thread (Tpst, Equation (3), modified after García-Feal et al. 2018),

Tpst ¼ T
nthreads � nsteps

(3)

where T is the computing time, nthreads is the number of threads used, and nsteps is the total number of time steps. The units
of the Tpst are milliseconds per time step per thread (ms/ts� thread, ‘MIST’ hereafter). The number of steps used to cal-
culate the Tpst depended on the model size (see section 2.2).
://iwaponline.com/jh/article-pdf/25/5/1690/1302826/jh0251690.pdf



Journal of Hydroinformatics Vol 25 No 5, 1698

Downloaded fr
by NTNU user
on 15 January
(ii) Average time per step and cell (Tpsc, Equation (4)),

Tpsc ¼ T
nthreads � ncells

(4)

where ncells is the number of cells of a model. The units of Tpsc are milliseconds per time step per cell (ms/ts� cell).
(iii) Parallelization efficiency of the CPU (PE, Equation (5)) reflects how shared the computational task is between the differ-

ent threads, where PE values of 100% mean that all the threads are engaged in the computation and PE values of
1/nthreads mean that only one thread carries out the task,

PEcpu (%) ¼ TCPUst

nthreads � TCPUmt
(5)

where TCPUst and TCPUmt are the computing time of single- and multi-thread, respectively.
(iv) Observed speed-up ratio (SPuobs, Equation (6)),

SPUobs ¼ TCPUref

TPU
(6)

where TPU and TCPUref are the computing time (s) for the evaluated PU and the reference CPU, respectively. SPUobs (or

SPU hereafter) is non-dimensional and was calculated based on both the single- and multi-thread CPU models.
(v) Expected speed-up ratio (SPUexp, Equation (7)) relative to a defined CPU. SPUexp has been previously described as a poten-

tial proxy for SPUobs in Tomczak et al. (2013),

SPUexp ¼ MBPU

MBCPUref
(7)

where SPuexp is the expected speed-up ratio, MBPU and MBCPUref are memory bandwidth (GB/s) for the evaluated PU and
the reference CPU, respectively. SPuexp is non-dimensional.

(vi) Time-saving ratio (TS, Equation (8)) of the GPU (Liu et al. 2018). The GPU-based model was used as a reference for the
calculation of the TS.

TS (%) ¼ (TCPU � TGPU)
TCPU

(8)

3.3. Sensitivity analysis of computing speed to key variables and optimal accuracy–speed curve

To investigate the third aim of this study, i.e. identifying what variables control the computing time of 2D hydrodynamic
models, a comprehensive literature search was conducted. Table S1 in the Supplementary Material shows an overview of

model characteristics, computing times, and speed-ups achieved in recent studies using unstructured-mesh models. It was
noted that the computing time (or run-time) of a numerical model is dependent on multiple variables, such as the order of
accuracy of the numerical approximation used (Bermúdez et al. 1998) and the model’s total number of elements (i.e.

model size; Lacasta et al. 2014; Dimitriadis et al. 2016).
A series of sensitivity analyses were carried out to evaluate the effect of user-specified model parameters identified as rel-

evant in literature, such as the total number of elements in the model, total simulation time, numerical approximation, and the
interval at which results were written, on the computing time on CPU and GPU (Figure 1(e), Table 2). In this study, the model

size refers to the number of cells, where small: N, 100,000 cells, and large: N. 500,000 cells (Lacasta et al. 2014;
Echeverribar et al. 2018). The effect of the model size on the computing speed was evaluated both as absolute and normalized
values, i.e. Tpsc (Equation (4)). The simulation times tested were short, i.e. max. 24 h, consistent with the nature of a flash flood

and supporting the aim of finding a fast and precise model. The sensitivity analysis focused on domain01 (Figure 2) and a few
selected PUs. The statistics used were limited to simple linear regressions, scatter plots, and their trendlines, as well as bar
charts (Figure 1(f)).
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Table 2 | Configurations for sensitivity analyses and effect on computing time

Model size effect on computing time (t¼ 3 h, exported every 5 min)

Mesh size (m) 0.25 0.5 1 2 4

N° Elements 653,302 162,734 40,672 10,081 2,495

Simulation time effect on computing time (653k, exported every 1 min)

Total simulation
time (h)

3 12 24

Exporting interval effect on computing time (t¼ 3 h, 162k)

Interval duration (s) 3 30 300 3,600

Numerical scheme effect on computing time (t¼ 3 h, exported every 5 min, 162k)

Approximation First
order

Second
order

Model size effect on precision and computing time (t¼ 25 h, exported every 5 min, first order approximation)

Scenario ID Sc01 Sc02 Sc03 Sc04 Sc05 Sc06 Sc07 Sc08 Sc09 Sc10

N° Elements 44,679 57,246 71,856 132,088 163,398 178,594 594,611 719,606 2,890,549 11,601,898

All the models were run using the second-order solution unless indicated otherwise.
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All tests for the computing speed sensitivity analyses were carried out on two GPUs (i.e. desktop RTX3080, notebook
GTX1650Ti) and one CPU (desktop i5-9600K), except for the exporting interval, which was carried out on RTX3080 and

i5-9600K (Table 2). For instance, to analyze the effect of the model number of elements, the steady flow model was run
for 3 h (n.b. the steady condition is reached after 15 min), and results were exported every 5 min, with homogeneous
mesh resolutions that resulted in different model sizes up to 653k elements. Then, the computing speed was forecasted for

models up to 1.3 million elements with a confidence interval of 80 and 95% (Figure 1(f)). The availability of field observations
for steady flow enabled running simulations of variable duration. This is relevant as the total number of time steps, which was
used to estimate the Tpst (Equation (3)) that every PU needs to compute, is dependent on the simulation time for a given model
number of elements.

The effect of the simulation time was analyzed on a model of 653k elements, and exporting results every 1 min. Another
interesting parameter in the model set-up that was tested for its effect was the exporting (or writing) results interval, which
was compared by writing results at constant intervals for a model of 162k elements simulated for 3 h. To assess the effect of

the numerical approximation used in the computing time, a model of 162k elements was simulated for 3 h, and the results
were exported every 5 min (Table 2).

Furthermore, the dataset obtained from this sensitivity analysis and CPU versus GPU benchmarking was further analyzed

in the context of other modeling studies (Table S1) for this or other case studies where sufficient information allowed com-
paring the potential performance of PCs- and server-CPUs and GPUs (Figure 1(f)).

The effect of the mesh size on the accuracy of the hydraulic model was evaluated to provide the optimal model configur-
ation to achieve both accuracy and speed in flood analysis. The F and C indices (Equations (1) and (2)) and the incremental

accuracy and computing speed (in terms of Tpsc) between scenarios were estimated for fully calibrated models ranging
between 44,000 and 11.6 million cells (Figure 1(g)). The mesh size was homogeneous in tests sc01, sc06, and sc08‒sc10,
and heterogeneous in the rest of the tests. The tests were run on the desktop GPU RTX3080.

The first-order, faster solving, solution was used for the computing time comparison in different PUs. However, the cali-
bration of the hydrodynamic model and sensitivity analyses were carried out using the second order, more accurate,
approximation. An optimal model accuracy was ensured before investigating model speed optimization for each of the

steps described above. All models presented in this study are based on an unstructured mesh unless indicated otherwise.

4. RESULTS

4.1. CPU-computing

This section comprehends the outcome of CPU-computing with a constant model set-up, using the total computing time and
Tpst as indicators. The analysis included: (i) the variability of parallelized CPU-computing time classified by type of device, (ii)
://iwaponline.com/jh/article-pdf/25/5/1690/1302826/jh0251690.pdf
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the performance of standard- and parallelized CPU configurations, (iii) intra-PU analysis, (iv) the stability test for replicate

CPU runtimes, (v) the effect of the CPU memory, and (vi) the effect of the PU’s base frequency on the total computing time.
The overview of testing the domains of 165k and 120k elements on different PUs is shown in Figure 5. The parallelized

CPU version was on average 3.3� faster than the standard CPU version for all the tested PUs (Figure 5(a), values above box-

plots). The computing time was shorter and had a lower variability for the smaller model for both computing modalities
(Table S4). The fastest CPU tested for the standard version (i.e. Intel Core i7-10750H) was 1.7–2� faster, i.e. in terms of
Tpst, than the slowest CPU tested for the same version (i.e. Intel Core i7-4710HQ). Likewise, the fastest CPU tested for the
parallelized version (i.e. Intel Core i9-9880H) tended to be 4.5–6� faster than the slowest CPU tested (i.e. Intel Core i7-

8650U). Moreover, the deviation of the total population’s CPU-based computing time was large, i.e. 18–23% to 37–41%
for standard- and parallelized computing, respectively, for both models (Figure 5(a)).

Furthermore, a preliminary intra-unit analysis for both the standard and parallelized CPU showed that, although the par-

allelized version was on average 2.85� faster, it had a larger deviation from the average total computing time, i.e. 9.5–10.5%
to 19–21% for single- and multi-thread computing, respectively (Figure 5(b)). The CPU-computing times for replicate runs
were less stable for the smaller and faster model (Table S4, Figure 6, red lines). When replicating the intra-unit CPU analysis

to discern the effect of the memory of the CPU, no significant differences were observed (not shown).
The intra-unit variation could not be tested on GPU; however, desktop CPUs were 70–80% faster and more stable for both

computing domains (Figure 5(c)). The base frequency of the PU (Table 1) alone did not explain the variability in the total

computing speed or Tpst observed for the PUs analyzed for either of the computational domains (not shown).
4.2. GPU-computing

This section comprehends the outcome of GPU-computing, using computing time and Tpst as indicators. The analysis
included: (i) computing speed for different GPUs, (ii) dispersion of GPU-computing time depending on the type of device,

(iii) the effect of the GPU’s microarchitecture on the Tpst, and (iv) a stability test for replicate GPU runtimes.
Figure 5 | For two domains (Figure 2), (a–c) boxplots representing total computing time (s): (a) on all the PUs tested (N¼ 62), (b) on different
units of the same CPU (N¼ 12), (c) for parallelized computing on the tested device types (N¼ 42); (d) average time per step and thread (Tpst, in
MIST) for the different GPU microarchitectures (Table 1, N¼ 22). In boxplots, the inner line and whiskers represent median, min, and max,
respectively; numerical values on top of boxplots indicate the SPU (–) of means, where * marks the reference for those SPU (–) of means.
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Figure 6 | Distribution of run-average time per step and thread (Tpst, Equation (3)) in relation to the population average (avg) estimated for
replicate runs on CPU (i.e. i5-9600K, multi-thread) and GPU (i.e. NVIDIA Quadro P620; after Liu et al. 2018) for (a) a model of 165k elements,
(b) a model of 120k elements.
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Computing on the GPU was on average 17.5–20� and 5.5–6.5� faster than average CPU single- and multi-thread comput-

ing for the tested population, respectively (Figure 5(a), values above boxplots). As for CPU-computing, the computing time
was shorter and had lower variability for the smaller model (Table S4). It is noteworthy that the variation within the
tested GPUs was 91–96% of the observed Tpst, depending on the characteristics of the graphic card at hand (Table 1),

which contrasts with the 18–41% variation observed for the CPU population. For instance, the fastest GPU tested (i.e.
NVIDIA GeForce RTX3080) was 228–282� faster, i.e. in terms of Tpst, than the slowest GPU tested (i.e. NVIDIA GeForce
GTX940M). When looking at the performance by the type of device, desktop GPUs were 7.5� faster than parallelized desk-

top CPUs (Figure 5(c), lighter boxplots). Notebook GPUs were 4� faster than parallelized notebook CPUs (Figure 5(c), darker
boxplots). Moreover, desktop GPUs are faster than their notebook version, as shown in the case of NVIDIA GeForce
GTX1050 and its mobile version GTX1050 MaxQ (Figure 5(c)).

Regarding the GPU architecture, it is usually an indicator of the number of threads available, and newer architectures have

more threads/processors. Figure 5(d) shows the performance of each thread for each microarchitecture with the normalized
average Tpst. Newer architectures, i.e. Ampere, outperform older architectures, i.e. Maxwell, by up to one order of magnitude
regardless of the number of threads available. This observation cannot be extrapolated to all GPUs without considering

additional specifications, which are further addressed in section 5.
Similar to the CPU-computing time stability test, when comparing the replicate runtimes for both computational domains,

the GPU runtime was more stable in the case of the larger model. This was indicated by a lower standard deviation and by the

rather constant average Tpst for the multiple runs in the GPU-computing time stability test (Figure 6, blue lines; Table S4).
Although both computing modalities show similar tendencies, the GPU runtimes were significantly more stable than the
CPU runtimes.

4.3. Model performance comparison

This section addresses the use of different indicators that highlight the performance of the two parallelization modalities on

Iberþ (i.e. multi-thread CPU and GPU) as opposed to the standard Iber version and each other. The selected indicators for
performance are PE, SPU and TS (Equations (5)–(8)).

Most of the CPUs reach a PEcpu (Equation (5)) between 60 and 80%, with slightly higher PE for the smaller model, and

desktop CPUs generally reach a higher PE than their notebook counterparts (Table 3). Given that there are no observations
for single-thread GPU, the PEgpu could not be estimated (long dash in Table 3). However, the PEcpu observed insinuated that
PEgpu cannot be assumed to be 100%.
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Table 3 | Calculated parallelization efficiency (PE, Equation (5)) for CPU-computing, speed-up ratio (SPU, Equations (6) and (7) for single- and
multi-thread CPU-computing (reference CPU in bold; S-t: single-thread modality, M-t: multi-thread modality), as well as the time-
saving ratio (TS, Equation (8)) for GPU- relative to CPU-computing for computational domains of 165k and 120k elements

Processing unit Modality

165k model 120k model

PE (%) SPU�obs
a SPU�obs

a SPU�exp
b TSc (%) PE (%) SPU-obs

a SPU-obs
a SPU-exp

b TSc (%)

i7-4710HQ S-t
79.28

0.88 0.47 0.75 99.32
82.08

0.84 0.33 0.75 99.17
M-t 2.78 1.17 97.86 2.75 1.09 97.28

i7-8650 U -a S-t
67.55

0.69 0.37 1.0 99.47
─

─ ─ 1.0 ─
M-t 1.86 0.78 98.56 ─ ─ ─

i7-8650U -b S-t
66.48

1.02 0.55 1.0 99.21
69.38

1.02 0.41 1.0 98.99
M-t 2.71 1.14 97.91 2.84 1.13 97.2

i7-8650U -ca,b S-t
59.59

1.0 0.54 1.0 99.23
63.12

1.0 0.4 1.0 99.01
M-t 2.38 1.0 98.16 2.52 1.0 97.51

i7-7700 -a S-t
81.8

1.23 0.66 1.05 99.05
77.97

1.24 0.49 1.05 98.77
M-t 4.02 1.69 96.9 3.87 1.53 96.18

i7-7700 -b S-t
76.22

1.08 0.58 1.05 99.17
74.35

1.21 0.48 1.05 98.81
M-t 3.3 1.38 97.46 3.6 1.43 96.45

i7-7700 -c S-t
77.76

1.27 0.68 1.05 99.02
79.72

1.29 0.51 1.05 98.73
M-t 3.95 1.66 96.95 4.11 1.63 95.95

i5-9600K S-t
109.33

1.37 0.74 1.22 98.94
120.25

1.4 0.55 1.22 98.62
M-t 4.5 1.89 96.53 5.04 2.0 95.02

i9-9880H S-t
─

─ ─ 1.23 ─ ─ ─ ─ 1.23 ─
M-t 5.6 2.35 95.68 5.64 2.23 94.44

i7-10750H S-t
57.8

1.38 0.74 1.34 98.74
65.29

1.4 0.56 1.34 98.62
M-t 4.79 2.01 96.31 5.49 2.17 94.58

NVIDIA GeForce GTX 860M GPU ─ 18.68 7.84 2.35 85.59 ─ 16.78 6.64 2.35 83.44

NVIDIA GeForce GTX 750 GPU ─ 15.8 6.63 2.35 87.82 ─ ─ ─ 2.35 ─

NVIDIA GeForce GTX 940M GPU ─ 7.81 3.28 0.42 93.97 ─ 7.56 2.99 0.42 92.54

NVIDIA GeForce MX 130 GPU ─ 13.11 5.5 1.18 89.89 ─ 12.04 4.77 1.18 88.11

NVIDIA GeForce GTX 1060 GPU ─ 46.61 19.55 5.64 64.05 ─ 40.95 16.22 5.64 59.58

NVIDIA GeForce GTX 1050 GPU ─ 29.5 12.38 2.47 77.25 ─ 22.46 8.9 2.47 77.83

NVIDIA GeForce GTX 1050 MaxQ GPU ─ 17.24 7.23 3.29 86.7 ─ 18.84 7.46 3.29 81.4

NVIDIA Quadro P620 GPU ─ 17.87 7.49 2.35 86.22 ─ 16.3 6.46 2.35 83.91

NVIDIA GeForce RTX 2080Ti GPU ─ 110.37 46.3 18.06 14.89 ─ 84.07 33.3 18.06 17.02

NVIDIA GeForce GTX 1650Ti GPU ─ 56.0 23.49 5.63 56.82 ─ 48.59 19.24 5.63 52.04

NVIDIA GeForce RTX 3080c GPU ─ 129.67 54.4 22.3 0.00% ─ 101.31 40.13 22.3 0.00%

Long dash: not calculated.

The reference processing unit for the estimation of the: aobserved speed-up ratio, bexpected speed-up ratio, ctime-saving ratio.
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When it comes to observed speed-ups, the notebook CPU Intel Core i7-8650U resulted in the lowest value of SPU for the
165k model, whereas the notebook CPU Intel Core i7-4710HQ yielded the lowest SPU for the 120k model. For comparison
purposes, however, the observed SPU was estimated for both models based on the i7-8650U single- and multi-thread, respect-
ively. The observed SPU for multi-thread CPU was between 1.86–2.52� and 5.60–5.64� when using the standard version as a

benchmark for both models. Considering that many numerical modeling methods nowadays allow CPU-based parallelized
computing, the model run in Iberþ on the same CPU multi-thread is also used as a benchmark. In such a case, the maximum
CPU SPU goes down to less than half, i.e. 2.23–2.35�. Further statistical tests revealed that GPU-parallelization was always

faster, with GPU SPU of ca. 7.5� to ca. 100–130� when using the standard version as reference and GPU SPU between ca. 3�
and 40–55� when using the parallelized CPU-computing as reference (Table 3). Surprisingly, although the PE was higher for
the 120k model, the observed SPU was always higher for the 165k model. The expected SPU (SPUexp in Table 3) is independent
om http://iwaponline.com/jh/article-pdf/25/5/1690/1302826/jh0251690.pdf
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of the number of threads of the PU or the model size, which makes it constant for both tested models. The SPUexp values

ranged between 0.75� and 22.30� , which was lower than the observed SPU for both models when using the standard version
as a reference. However, when the reference was the parallelized version, the SPUexp was higher than the SPUobs on the CPU
single-thread modality and significantly lower than the SPUobs on both parallelization modalities.

High-performance GPU-computing provided TS of minimum ca. 99 and 95.7%, for single- and multi-thread CPU-comput-
ing, respectively (Table 3). Moreover, using a high-end GPU seemed to save ca. 15–94% of the total computing time compared
to using an old, low-range GPU. Simply said, using high-performance GPU-computing could save stakeholders up to 37.5 and
13.8 h as compared to using the non-parallelized version and the parallelized CPU version, respectively, on a high-range note-

book CPU. If the user opted for a high-range desktop GPU instead of a low-range notebook GPU, it would save over 3 h of
computing time for a 2D hydrodynamic model of the characteristics herewith described.

A model of similar size and characteristics run on the same GPU model (i.e. RTX 2080Ti), using also Iberþ , took

Fernández-Nóvoa et al. (2020) 3–5 min, whereas it took 7–14 min in this study. Also, running a hydrodynamic model
twice as large and for twice as long on the same CPU model (i.e. i7-7700 @ 3.60 GHz, multi-thread) for the same case
study, took Iberþ ca. 8 h in this study and 1.25 h in Telemac-Mascaret using FEM (Pavlíček & Bruland 2019; M. Pavlíček,

personal communication, 8 February 2021; Table S1). Seemingly, the computing time might not be determined only by
the PU used but also by user-defined variables in the model.
4.4. Computing time: sensitivity analysis to model set-up and accuracy-speed trade-off

The effect of user-defined variables in the hydraulic model set-up on the computing time was tested on both parallelized CPU-
and GPU-computing (see section 3.3; Figure 7). In summary, the effect of selecting the numerical approximation (i.e. SPU
Figure 7 | Sensitivity analysis of the effect of user-defined variables in computing time (a–d) in selected PUs, i.e. desktop CPU Intel Core
i59600K (red), desktop GPU NVIDIA GeForce RTX3080 (blue) and notebook GPU NVIDIA GeForce GTX1650Ti (gray; Table 1); *reference for SPU
(–); dashed lines in c–d) are forecasted, including the 80 and 95% confidence intervals. GPU desktop shows the best fit, followed by GPU
notebook and CPU desktop, respectively. Please refer to the online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/
hydro.2023.012.
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,2�; Figure 7(a)) and varying the exporting interval (i.e. 1.5�) had a substantially lower impact on the PC-computing time

and achieved SPU than varying the duration of the simulation time, i.e. between 2� and 8� (Figure 7(b)), or the effect that
selecting an adequate model number of elements had, i.e. between 5� and 3,000� (Figure 7(c) and 7(d)). The sensitivity analy-
sis showed that GPU-computing was always faster. Expanding the analysis from this study’s dataset to other modeling studies

provided a context where high-end PC-GPUs performed similarly to server-CPUs, and PC-GPUs could compute up to 5�
longer simulations than any CPU in ,1 h (Figure 8(b)). Moreover, the relative difference between PC-CPU and PC-GPU per-
formance is .25� larger than that observed when comparing PC- and server-GPUs. The difference between PC-CPU and PC-
GPU performance is, on the other hand, 2.5� larger than that observed when comparing server-CPU and server-GPU

(Figure 8(a)). This trend is also reported when comparing PC-CPUs and their server counterparts. Models with variable
mesh sizes were more optimal in the accuracy–speed trade-off than the uniform mesh size models (Table 4). It was also
reported that computing gets relatively faster (up to 36%) the larger the model is.

The total computing time was plotted for easier visualization of the results, and the more intuitive SPU (Equation (6); values
above bars in Figure 7(a) and 7(b)) was used to describe the main findings. The SPUs achieved in the sensitivity analyses range
from 1� –the reference PU for each test– to more than 8,700�.

The lowest SPUs observed in the analyses were due to a less precise numerical approximation and less frequent writing of
results. Using the first-order instead of second-order solution, and GPU- instead of CPU-computing, saves time: computing the
first-order model on GPU was ca. 57� faster than computing the second-order model on parallelized CPU (Figure 7(a)). The
Figure 8 | Effect of the number of threads per PU used for different (a) model sizes and (b) simulation durations on computing speed in this
study and literature (Table S1). Performance of PC- and data center PUs used for (c) different peak discharge and (d) model simulation
duration classes in this study and literature. Ellipsoidal areas in (a) mark clusters for PC-CPUs (red line), server-CPUs (dashed red line), and
high-end GPUs (blue line). Horizontal arrows in (b) mark the 1 h- (brown) and 1-day (black) reference lines; (c) relative performance difference
(%) on top of boxplots; (d) performance gap between PC and data center PUs marked by arrows. In boxplots, ‘x’ is the mean marker, dots are
outliers; inner line and whiskers represent the median, min, and max, respectively. Please refer to the online version of this paper to see this
figure in colour: http://dx.doi.org/10.2166/hydro.2023.012.
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Table 4 | Computing time normalized per time step and cell (Tpsc) and model accuracy (in terms of F and C indices) for different model sizes

Mesh size Test ID Number cells Tpsc (ms/ts� cell) ΔTpsc (%) F index (%) ΔF index (%) C index (%) ΔC index (%)

uniform sc01 44,679 4.34� 10�6 NA 60.22 NA 73.13 NA

variable sc02 57,246 3.57� 10�6 �17.71 63.69 3.47 75.10 1.97

variable sc03 71,856 2.99� 10�6 �16.38 64.77 1.08 74.37 �0.72

variable sc04 132,088 1.90� 10�6 �36.37 63.45 �1.32 76.60 2.23

variable sc05 163,398 1.67� 10�6 �11.96 65.03 1.58 75.40 �1.21

uniform sc06 178,594 1.08� 10�6 �35.40 64.27 �0.75 77.06 1.66

variable sc07 594,611 7.76� 10�7 �28.25 66.17 1.89 77.15 0.10

uniform sc08 719,606 6.59� 10�7 �15.09 64.79 �1.38 76.97 �0.19

uniform sc09 2,890,549 4.25� 10�7 �35.52 66.08 1.29 77.97 1.00

uniform sc10 11,601,898 3.62� 10�7 �14.74 67.10 1.02 78.20 0.23
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GPU-based model was ca. 50� faster for the 1 h-long exporting interval, whereas the SPU reduced to 2.80� for the same
device when the exporting interval was 3s long (not shown). Similar trends were observed for CPU-computing. The results
exporting interval of 1 h was 78� faster on GPU than exporting results every 3 s on parallelized CPU.

The user-defined duration of the simulation and the model number of elements had the largest impact on the total comput-

ing time (Figure 7(b)‒7(d)). Shortening the simulation time from 24 to 3 h was linearly faster regardless of the computing
modality and running the model for 3 h on GPU was ca. 607� faster than running the model for 24 h on parallel CPU.
For the same desktop GPU (i.e. RTX3080), the Tpst value, including the results exporting time per time step, was relatively

the shortest for the 12 h-long simulation (i.e. 286 and 18% faster than the 24- and 3 h-long simulations, respectively). Such
an effect of the results exporting time per time step on Tpst was not observed in CPU-computing.

The computing time needed for different simulation duration ranges in this study and literature was also analyzed

(Figure 8(b)). For the analyzed dataset, it took ,1 h to compute simulations of up to 100 h in GPU, and between ,1 h
and ,1 day to compute .100 h simulations in GPU. As for the CPU, it took ca. 1 day to compute 24‒100 h-long simulations,
whereas high-end GPUs needed ,1 h. Although most of the data available were for ,100 h-long simulations, these obser-
vations suggest that there is no need to limit the duration of a simulation when using GPU-based computing.

The computing demand is quadratically increasing with the size of the model, regardless of the PU used to run the simu-
lation (Figure 7(c) and 7(d)). Computing the finest model on a desktop GPU was 8,716� faster than running the coarsest
model on a parallel desktop CPU. For instance, running a model of mesh size 0.25 m (i.e. 653k elements) was up to

3,007�, 298� and 96� slower, for parallelized CPU, notebook GPU and desktop GPU, respectively, than running a
model of mesh size 4 m (i.e. 2.5k elements), yet the gain decreased steadily with the total number of elements. The normalized
Tpsc observed for models from 44k cells to 11.6 million cells indicated that models get relatively faster with an increasing

number of elements, i.e. relative decrease in Tpsc of 12–36% from model size n to model size n-1 (Table 4). The model accu-
racy, although very slightly, generally improves with a more refined mesh, e.g. F index increases up to 7% and the C index
increases up to 5%.

Figure 8(c) shows the relative performance difference (%, values above bars) between different PU types for Qpeak classes
modeled in this study and literature (Table S1). The trend observed suggests that there is always a more pronounced difference
between PC-CPU and PC-GPU than between server-CPU and server-GPU. The smallest difference is always between PC-GPU
and server-GPU. The same analysis also indicates that larger models (generally those with higher Qpeak) are usually carried

out using higher-end PUs (Figure 8(a), clusters indicated by dashed red and blue lines). When comparing the computing speed
at different Qpeak for the same type of PU, however, the difference is largest for PC-GPUs, followed by PC-CPUs and server-
GPU (not shown). Similarly, the performance of different PU types for different simulation durations was analyzed, highlight-

ing a larger difference between PC- and server-performance for CPUs than GPUs, as marked by the black arrows in
Figure 8(d). It is noteworthy that GPUs are more versatile, as indicated by the fact that CPUs were used for shorter simulation
times and GPUs were used for longer simulation times both in this and other modeling studies.
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5. DISCUSSION

5.1. Main factors affecting computing time for the 2017 flood model

The hydrodynamics observed in the model herein illustrated are briefly discussed in section 1.2 of the Supplementary

Material. CPUs and GPUs have previously been used in all model sizes and applications, but there is a clear performance
difference of at least one to two orders of magnitude, as shown by the gap between each class of PU and the 1:1 line in
Figure 8(a). The number of elements affects the computing time, yet there seems to be a model number of elements threshold

after which the acceleration is negligible given a certain set of conditions (Lacasta et al. 2014). Contrary to what was indicated
by large-scale studies (e.g. Liu et al. 2018; González-Cao et al. 2019; Xia et al. 2019), Figure 7(c) and 7(d) show that the model
number of elements increases the computing time following very strongly a quadratic polynomial trend both on CPU and

GPU (i.e. R2. 0.996 in all cases). This observation indicates that medium to small models (e.g., 200,000 elements) can
also benefit from significant speed-ups and support the use of any model number of elements for future investigation on com-
puting acceleration–; i.e. the conclusions drawn from it can be as valid as those observed in a larger (e.g.. 500,000 elements)

and slower computing model. Normalizing the computing speed by the model size indicated that, although larger models
always take longer to compute in absolute terms, larger models are relatively faster, in terms of Tpsc, for a given PU (Figure 9).
GPU-based computing was always faster in the small dataset used for the sensitivity analyses in this study (Figures 5 and 7).
Figure 9 | Optimal curves of GPU-computing speed (in terms of Tpsc, ms/ts� cell; blue diamonds) and model accuracy (in terms of F index, %;
orange circles) evolution with increasing model number of elements for (a) uniform and (b) variable mesh size. Expected optimum between
model accuracy and computational cost is marked in gray. Please refer to the online version of this paper to see this figure in colour: http://
dx.doi.org/10.2166/hydro.2023.012.
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These observations indicate that running fewer and larger models on a GPU is most cost-efficient once the model configur-

ation is optimized.
Now, although GPU-based computing should always be the preferred user choice when computing speed is key, it is impor-

tant not to disregard the GPU specifications. Some older low-range GPUs might perform very similarly to newer high-range

CPUs (when parallelized), and some newer mid-range GPUs can outperform some older high-end GPUs due to continuous
technological advances (Figures 8(a) and 5(d), Table 3). Moreover, older yet superior versions of a PU, oftentimes designed
for HPC, can outperform lower-end versions of newer PUs and even more modern architectures. An example of this is the
notebook NVIDIA GeForce GTX 860M, released in 2014 with Maxwell microarchitecture, which outperformed newer gen-

erations of notebook graphic cards, such as GeForce GTX 940M, MX 130 (S. Son, personal communication, 11 June 2020),
and GTX 1050 MaxQ, as well as the newer desktop NVIDIA GeForce GTX 750 and Quadro P620, all released between 2015
and 2018 with Maxwell or Pascal microarchitectures. This is probably because the GTX 860M belongs to a superior GPU

version, i.e. the ‘x60’ version outperforms the ‘x30’, ‘x40’, and ‘x50’ versions. In this study, a high-end desktop GPU was
found to fit the quadratic trend slightly better (R2¼ 0.9994, Figure 7(d)), and even be more stable for replicate runtimes
(Figure 6(b)), than a notebook GPU or a desktop CPU of the same category. One reason could be that background processes

occurring during the GPU-based simulation do not require the GPU, which ensures that most of the GPU processors avail-
able are used in the computing task. However, most of the background processes are CPU-demanding and exert a relatively
larger impact on the CPU performance, especially when CPU-based computing is accelerated. Lastly, high-end GPUs (clus-

tered by a blue line) can compute as fast as server-CPUs (clustered by a red dashed line) but are significantly more affordable
(Figure 8(a)).

Reducing the simulation time from 1 day to 3 h yielded an 8� faster model for a given device, regardless of whether it is
CPU or GPU. This observation is linear with the reduction of the simulation duration, i.e. an 8� shorter simulation comput-

ing 8� faster regardless of the type of PU (Figure 7(b)). The same reduction in simulation time resulted in a. 600� faster
computation on GPU than on parallelized CPU. The computation was up to two orders of magnitude faster for a server-
CPU than a desktop CPU, whereas this difference was not observed between desktop GPUs and their server counterparts.

This resulted in studies with simulation times of .48 h often preferring GPU-computing (Figure 8(d), Table S1). For a
given simulation time, the GPU versus CPU speed-up was slightly higher when running a longer simulation than a shorter
one, suggesting that short simulations are fast regardless of the PU used and that it is relatively more challenging to overcome

the short computing times they take. This could be because background processes that require the use of CPU might have a
more evident effect on shorter computing times. This hypothesis was supported by the CPU-computing time stability test
(Figure 6). Considering interactive simulations that adjust the mesh size, simulation duration or results exporting frequency
at critical locations as needed could increase the computing speed and provide the desired accuracy. Other modeling studies

preferred using server-CPUs or GPUs when the peak discharge was .250 m3/s (Figure 8(c)), which indicates that high peak
discharges tend to lead to larger models that have a high computing demand only feasible in HPC PUs such as GPUs or server
PUs. It is a common practice by flood modelers to subjectively adjust the simulation duration to the purpose of the study and

the timeframe available. Choosing to model a too-short simulation time of a flash flood could be critical, nevertheless,
especially if that means skipping the hours before the peak discharge is reached, as the soil saturation atQpeak is highly depen-
dent on previous hydrologic conditions. Consequently, it would not make sense to model only the 3 h near the peak

precipitation, as it would not illustrate the same flood event. One way to save computing time when the aim is to model
the floodplain water volume is to model the entire hydrograph and use a coarser mesh. If the aim is to detect erosion pro-
cesses, the modeling focus could be on the timeframes in the hydrograph when a certain velocity threshold is exceeded,

i.e. peak discharge, and use a smaller cell size. Depending on the shape of the hydrograph, however, limiting the simulation
time to the 12 h around the flood peak, e.g. from 2 am to 4 pm for the 2017 flood, might be enough to capture the hydraulics
of the flood and would also save significant time (i.e. 165� faster on GPU than parallelized CPU, and twice as fast when using
the same PU).

The frequency at which the results are written determines flood data availability and could affect the computing time. How-
ever, there was very little difference in GPU-computing time when writing results every 1 h or every 30 s (not shown), with
almost negligible absolute GPU writing times, i.e. ca. 0.01‒0.06 s. The effect of decreasing the exporting interval seemed very

steady unless the results were printed very frequently (i.e. 3 s). Looking at the same desktop GPU (i.e. RTX 3080), using the
Tpst ‒including the results exporting time per time step‒, instead of the SPU, it was noticed that the computation was relatively
the shortest for the 12 h-long simulation (i.e. 286 and 18% faster than the 24- and 3 h-long simulations, respectively). For the
://iwaponline.com/jh/article-pdf/25/5/1690/1302826/jh0251690.pdf
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low Tpst values observed in GPU-computing, it can be more cost-efficient to run one longer 12 h simulation than splitting the

model into several, shorter simulations that would add up to relatively large result exporting times. Such effect of the results
exporting time per time step on Tpst has not been observed in CPU-computing. CPUs are, in fact, in charge of the writing of
simulation results, yet the additional time this task takes is negligible when added to the already large computing times. The

most obvious concern to emerge in a hydraulic study is that the most relevant results might not be captured by a too-long
exporting interval. The results exporting interval should be defined primarily by the dynamics of the phenomenon studied.
For instance, the peak discharge here modeled was 1 h long, hence, it would have not made sense to export results every
1 h, as the Qpeak might have been missed out. On the other hand, the peak of the hydrograph was practically flat and

there were no substantial changes (Figure 4), thus, no need to monitor every second or even every 10 s. Finding the key com-
bination between the level of detail and time invested is desired yet challenging without prior experience with the problem at
hand. From the exporting intervals here analyzed, 30 s would have been as good as 1 h (in terms of computing speed), but the

data processing and storage capacity requirements would have been very extensive. Tentatively, in this study, it was preferred
to export every 1–5 min due to the steepness of the hydrograph, although there were no significant changes in the latest hours
of the simulation and exporting then every 15 min would have sufficed.

Choosing the appropriate numerical approximation also has an impact on the speed of the model. More complex mathemat-
ics can overload the model and slow it down, as they require data transfer between the parallel threads (Morales-Hernández
et al. 2020). When it is not possible to use a too-fine mesh, yet the accuracy required is high, it is recommended to use a

second-order Roe’s upwind approximation, where the accuracy can be increased faster when the exact solution is close. How-
ever, explicit upwind approximations compute ca. 20� slower than the implicit formulation when using an unstructured mesh
(Bermúdez et al. 1998). Consistent with Bermúdez et al. (1998), modeling the 2017 flash flood using the first-order approxi-
mation was 20–80% quicker for a given device and ca. 60� faster on GPU than using the parallelized CPU version

(Figure 7(a)), compared to the second-order approximation. Considering the adequate accuracy of the flood model using the
first-order approximation (Figures 3 and 9), the compromise in accuracy when stepping down in order of accuracy is compen-
sated by the gained speed-up, which could be very valuable in flood management. Although the impact of selecting the PU and

user-defined variables on the Iber models herein presented has been addressed, the effect of choosing a different numerical
model than Iber could be important. For example, running the 2D hydrodynamic model with twice as many elements and
for twice as long on the same CPU model (i.e. i7-7700@3.60 GHz, parallelized on its 4 cores) for the same case study, took Iber

þ FVM first-order ca. 8 h (this study) and significantly shorter (i.e. 1.25 h, 6� faster) in Telemac 2D using FEM (Pavlíček &
Bruland 2019; M. Pavlíček, personal communication, 8 February 2021, Table S1). Based on these data, it can be inferred
that FEM solutions are generally faster than first-order FVM solutions, which was also hinted at by Pavlíček & Bruland
(2019) when comparing FEM and FVM for the same Telemac 2D model. GPU-computing provides computing power that

can overcome the additional cost of using FVM or other more complex numerical approaches.
Additionally, the type of grid used also affects the total computing time of a model; structured-mesh models solve faster

than unstructured-mesh models (Lacasta et al. 2014; Vacondio et al. 2017), although they experience limitations when repre-

senting complex topographies accurately. The benchmarked case study presented herein was modeled using unstructured
mesh due to the high complexity of the topography. It was attempted to counterbalance the lag expected due to a more com-
puting-demanding type of mesh by a smaller model number of elements. The model with the variable mesh size optimally

describes the most critical locations of the flash flood (i.e. F index 72%, Figure 3). The model accuracy will decline if a uni-
form mesh size is used (Table 4). If the aim of a modeling study is, for example, to obtain better information on the scour at a
hydraulic structure, the mesh could be refined at a higher computational expense (Figure 9).

5.2. Potential acceleration by HPC in PCs and implications for flood studies

The results of this investigation show that GPU-computing of a 2D hydrodynamic model can be up to 130� faster than stan-
dard CPU-computing in a PC. Moreover, affordable consumer-grade GPUs can compute flash flood models up to 55� faster

than the parallelized CPU version in a PC. CPU- and GPU-based simulations need different computational efforts based on
the number of threads available in the PU, i.e. the CPUs tested in this study have from 1 to 8 threads, whereas the respective
GPUs have from 384 to 8,704 threads (Tables 1 and 3, Figure 5(a)). As the simulation will experience a speed-up until all

threads are fully used, the speed-up will be larger in GPU-based simulations than in CPU-based ones.
Another significant finding to emerge from this study is that using HPC in desktop GPUs could save up to 99.5 and 98.5%

of the computing time needed for the standard- and parallelized CPU versions in a PC, respectively (Table 3). The time saved
om http://iwaponline.com/jh/article-pdf/25/5/1690/1302826/jh0251690.pdf
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could be lower; however, if the modeling software used was originally designed to run on CPU and its code has not been

rewritten to benefit as efficiently as possible from the GPU-parallelization, as has been the case for Iber (García-Feal et al.
2018). Overall, this study strengthens the idea of Tomczak et al. (2013) that single GPUs could outperform parallelized
server-CPUs (Figure 8(a)). Single GPUs contain more threads than any HPC multi-CPU (depending on the microarchitecture;

Figure 5(d)) and the communication between threads is simpler in GPUs than in CPUs. Interestingly, PE .100% was
observed for the CPU i5-9600K (Table 3), which indicates that perhaps the parallelized CPU version of Iberþ uses more
than half of the logical threads available –note that i5-9600K has the same amount of physical and logical threads–.

Surrogate flood models (i.e. models based on Artificial Intelligence, AI) have addressed the issue of the high computational

time often required by hydrodynamic models. Even in surrogate procedures, the current study could offer vital insights into
the computational-time management in cases where a probabilistic flood mapping, which is nowadays the most modern
approach in flood inundation modeling, is used. Most surrogate models are GPU-based. The speed-ups observed here hint

at a great potential acceleration of surrogate flood modeling.
5.3. Prediction of computing time of hydraulic flood models and accuracy-speed trade-off

The ratio between the memory bandwidths for two given PUs (SPUexp in this study, Equation (7)) was proposed as a proxy for
the speed-up ratio in Tomczak et al. (2013), as the SPUobs for a GPU versus a server-CPU was almost identical to the SPUexp.

The high similarity between server-CPU and GPU was observed in data from other modeling studies (Figure 8(a) and 8(d)),
however, PCs’ CPUs compute at least one order of magnitude slower. This results in more conservative SPUexp than the SPUobs

for PCs, in some cases up to 8� lower (Table 3). Lastly, the SPUexp does not account for differences between standard- and
parallelized versions, nor differences in model size, yet it has been observed that larger models are faster than smaller models

when normalized per time step and cell (Table 4, Figure 9). Considering the important differences in performance observed
between computing versions (Figure 5(a)) and that the model number of elements was the most important user-defined vari-
able controlling the computing time (Figure 7(c) and 7(d)), SPUexp is not a suitable proxy for the SPUobs in flood studies carried

out on a PC.
An alternative to SPUexp is to use the computing time forecasted for different model sizes in the sensitivity analysis carried

out in this study (Figure 7(c) and 7(d)). Additionally, the PE for CPUs and the TS for any PU could support selecting a suitable

PU for other studies. Potentially, the optimal curve that shows the equilibrium between model size, accuracy, and computing
time (Figure 9), can be used to confect a model of the most suitable characteristics. For the case study analyzed, it was easier
to predict the model accuracy gain if the mesh was refined when using a uniform mesh size (i.e. R2. 0.94) than a variable
mesh size (i.e. R2¼ 0.65). The optimal trade-off between accuracy gain and computing speed was reached at smaller models

in the case of variable mesh configurations, i.e. optimum was at model size,150,000 cells for variable mesh versus.700,000
cells for the uniform mesh (Figure 9, gray area). Although the models get relatively faster the larger the model is, the gain in
accuracy is limited to 5‒7% at best when using a finer grid (Table 4).

A great part of the modeled discrepancies (i.e.. 43% of the incorrectly simulated wet cells; Figure 3(a)) were due to the
assumption that the owner of the land on the right floodplain did not block the water flow into the property, contrary to docu-
mented testimonies (Moraru et al. 2021; blue areas between bridges (ii) and (iii) on the right floodplain in Figure 3(a)),

showing that real-time flood protections minimized the damage. The accuracy of the hydrodynamic model is limited by
the lack of post-event validation data and the on-site flood protections implemented to protect private property during the
flood event. The model validation was carried out against a fully water-covered area, where some local dry cells were con-

sidered wet (Moraru et al. 2021). This reduced the observed model accuracy regardless of the indicator used. Some
adjustments to the model set-up might improve the model’s accuracy without affecting the computing speed. The optimum
accuracy-speed observed in this study is thus expected to be valid also for models with more extensive validation data.
Simple measures based on early hydraulic modeling outputs in cases like Storelva in Utvik could prevent the river channel

to change direction, which, in turn, could significantly reduce the consequences and total restoration and compensation costs
associated with flooding. For instance, the 2017 flood damaged multiple properties and the reported repair costs exceeded
120 million NOK (Sunnmørsposten 2017). The economic loss of this single flood event is comparable to the average

annual cost of flood repairs paid out by Norwegian insurance companies for 1,240 events per year for the period 1980‒
2023 (FinansNorge 2023). A conservative estimate of 10% of flood damage reduction by including hydraulic modeling infor-
mation early in the river management process could have saved tens of millions of € in a single river alone.
://iwaponline.com/jh/article-pdf/25/5/1690/1302826/jh0251690.pdf
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6. CONCLUSIONS AND OUTLOOK

This study has shown that affordable consumer-grade GPU-modeling of flash floods in steep rivers can be up to 130� faster
than the standard- and up to 55� faster than the parallelized CPU version in a PC. In other words, using consumer-grade
high-performance GPU-computing could save stakeholders up to 1 day and a half (i.e. 99.5% of the computing time) for a

small flash flood model, and even more for larger case studies. Moreover, a single PC-GPU can outperform parallelized
data center CPUs, making it possible to model larger areas and even multiple case studies in a short time. The forecast com-
puting times and optimal accuracy-speed trade-off curve provided could be used as a reference to predict the computing time

needed for other studies. The sensitivity analyses carried out also support the selection of a suitable PU and model set-up.
The effect of user-defined variables such as the simulation time and model number of elements was most significant. The

acceleration of the computing time strongly followed a quadratic correlation with the model number of elements (R2.

0.996), which suggests that future studies using a smaller model number of elements will experience very similar speed-
ups. Normalized computing times by the number of time steps and model cells showed that larger models are relatively
faster for a given PU. The optimal accuracy-speed trade-off for a given PU was observed in smaller models for variable

grids (i.e., 150,000 cells) than for uniform grids (i.e.. 700,000 cells). The research has also shown that first-order FVM
approximations can provide a good compromise between accuracy and speed when run on a GPU. For instance, this
study has satisfactorily modeled 65‒80% of the observed flooded area in the most downstream 775 m of Storelva river
during the 2017 flash flood at a very optimal computing speed (7–15 min). Describing optimally the critical locations in a

river, and adjusting the mesh size in these locations, could ensure a model accuracy of .80% and a significant gain in com-
puting speed. If a model of such characteristics is coupled with a monitoring system that gathers hydraulic data in real-time,
flood data could be available on a minute- or a quarter of an hour-basis without additional computational cost.

In future work, it could be interesting to test what model set-up results in even better accuracy-speed trade-off both in the
flash flood affecting Storelva river in Utvik and other test cases. Flood events with high peak discharges (e.g. 250–.
1,500 m3/s) are very computationally challenging to simulate, making these cases very suitable for HPC. More broadly,

research is also needed to determine if the use of structured meshes would significantly affect the model’s accuracy and suit-
ability for flood management in steep rivers.

Furthermore, recent technological advances permit parallelization of GPUs – the so-called multi-GPUs, which would boost

the speed-ups observed in the current study if the code in Iberþwould be adapted to permit this computing modality. The
present investigation lays the groundwork for future research into the use of GPU-based AI to predict the computing time
of hydraulic models, as AI could be used complementarily to the performance indicators provided in this study to predict
and shorten computing time. Further research could explore how to use AI models as an extension of a 2D hydraulic

model, where hydraulic models could be used to train AI models for regions with little to no data, such as mountainous Nor-
wegian rivers. Furthermore, the use of a PC equipped with a GPU could provide hydrodynamic information on flash flood
events in nearly real-time, enabling improved and affordable flood risk preparedness and disaster management.

The findings of this study have several important implications for future flood management practices. For instance, it is
possible to integrate GPU-based hydrodynamic models with early warning systems in small communities, which would
spare valuable reaction time for the population even in case of extreme flash floods like the one herewith illustrated. The

speed-ups achieved for small rivers are considered relevant for flood management, as the monetary cost of flood damage res-
torations is estimated to be of hundreds of millions, and the potential cost could be reduced by tens of millions of € if the
knowledge from fast hydraulic simulations is implemented early on. Another important practical implication is that fast-com-
puting flood models are compatible with modern visualization methods, such as AR/VR. This sustains the analysis and

estimation of the consequences of flash floods with sufficient lead time by users with little numerical modeling background
and facilitates their usability in communication and training applications due to their versatility and affordability.
ACKNOWLEDGEMENTS

The careful reading and constructive suggestions by Panayiotis Dimitriadis and an anonymous reviewer have strengthened
the manuscript. The authors thank E. Bladé and M. Sanz-Ramos (Institut Flumen, UPC, Spain) for providing the macro

for multiple results exportation and the insights on Iber. Many thanks to O. García-Feal (EPHYSLAB, UVigo, Spain) for clar-
ification and guidance on GPU-based computing in Iberþ. H. Pötting (RWTH Aachen, Germany) facilitated access to the
wide range of consumer-grade processing units tested in this study. K. Alfredsen’s (NTNU; Norway) formal advice made
om http://iwaponline.com/jh/article-pdf/25/5/1690/1302826/jh0251690.pdf

 2024



Journal of Hydroinformatics Vol 25 No 5, 1711

Downloaded from http
by NTNU user
on 15 January 2024
this manuscript clearer. This publication is part of the World of Wild Waters (WoWW) project number 949203100, which

falls under the umbrella of the Norwegian University of Science and Technology’s (NTNU) Digital Transformation initiative.
DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplementary Information.
CONFLICT OF INTEREST

The authors declare there is no conflict.
REFERENCES

Ansell, L. & Dalla Valle, L. 2022 Social media integration of flood data: a vine copula-based approach. Journal of Environmental Informatics
39 (2), 97–110. https://doi.org/10.3808/jei.202200471.

Bellos, V. & Tsakiris, G. 2015 Comparing various methods of building representation for 2D flood modelling in built-up areas. Water
Resources Management 29, 379–397. https://doi.org/10.1007/s11269-014-0702-3.

Bermúdez, A., Dervieux, A., Desideri, J. A. & Vázquez, M. E. 1998 Upwind schemes for the two-dimensional shallow water equations with
variable depth using unstructured meshes. Computer Methods in Applied Mechanics and Engineering 155 (1–2), 49–72. https://doi.org/
10.1016/S0045-7825(97)85625-3.

Beven, K. J. 2012 Rainfall-Runoff Modelling: The Primer, 2nd edn. Wiley-Blackwell, John Wiley & Sons Ltd. https://doi.org/10.1002/
9781119951001.

Beven, K., Lamb, R., Leedal, D. & Hunter, N. 2015 Communicating uncertainty in flood inundation mapping: a case study. International
Journal of River Basin Management 13 (3), 285–295. https://doi.org/10.1080/15715124.2014.917318.

Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J. & Coll, A. 2014 Iber: herramienta de simulación
numérica del flujo en ríos. Revista Internacional de Métodos Numéricos Para Cálculo Y Diseño En Ingeniería 30 (1), 1–10. https://doi.
org/10.1016/j.rimni.2012.07.004.

Blöschl, G., Kiss, A., Viglione, A., Barriendos, M., Böhm, O., Brázdil, R., Coeur, D., Demarée, G., Llasat, M. C., Macdonald, N., Retsö, D.,
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