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A R T I C L E I N F O A B S T R A C T

Editor: Hong-Jian He We study three-flavor QCD in a uniform magnetic field using chiral perturbation theory (𝜒PT). 
We construct the vacuum free energy density, quark condensate shifts induced by the magnetic 
field and the renormalized magnetization to (𝑝6) in the chiral expansion. We find that the 
calculation of the free energy is greatly simplified by cancellations among two-loop diagrams 
involving charged mesons. In comparing our results with recent 2 + 1-flavor lattice QCD data, we 
find that the light quark condensate shift at (𝑝6) is in better agreement than the shift at (𝑝4). We 
also find that the renormalized magnetization, due to its small-ness, possesses large uncertainties 
at (𝑝6) due to the uncertainties in the low-energy constants.

1. Introduction

Quantum Chromodynamics (QCD) in a magnetic background has generated interest in recent years, due to its phenomenological 
importance to the astrophysics of neutron stars, which are in a cold and possibly magnetized state (within magnetars), and their 
relevance in non-central heavy-ion collisions in which QCD may undergo a transition to a deconfined, high temperature phase [1–4]. 
Furthermore, the QCD phase diagram at finite magnetic field has generated interest even at zero temperature and zero baryon density 
due to its roles in modifying the chiral condensate, the chiral order parameter that characterizes the ground state of QCD. For two 
massless flavors, the QCD Lagrangian has an 𝑆𝑈 (2)𝐿 × 𝑆𝑈 (2)𝑅 × 𝑈 (1)𝐵 symmetry associated with independent rotations of the left 
and right handed quarks, the ground state breaks this symmetry down to an 𝑆𝑈 (2)𝑉 ×𝑈 (1)𝐵 giving rise to three Goldstone modes, 
i.e. pions in the low-energy spectrum. For three massless flavors, the Lagrangian has an 𝑆𝑈 (3)𝐿 × 𝑆𝑈 (3)𝑅 ×𝑈 (1)𝐵 symmetry which 
is broken down to 𝑆𝑈 (3)𝑉 by the formation of the light and strange quark condensates giving rise to eight Goldstone modes, namely 
the three pions, four kaons and an eta, consistent with Goldstone’s theorem. In reality these degrees of freedom have masses that are 
smaller than the typical hadronic scale of approximately ΛHad ∼ 1 GeV due to the finite constituent quark masses and are referred 
to as pseudo-Goldstone modes. The effective field theory that encapsulates the interactions of these low-energy degrees of freedom 
is chiral perturbation theory (𝜒PT) [5–9]. 𝜒PT is constructed solely using the global symmetries of QCD and its low-energy degrees 
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of freedom. Given a consistent power-counting scheme, one can systematically calculate model-independent corrections to processes 
involving pions and kaons in a low-energy expansion.

While there are numerous model-dependent studies of the QCD vacuum in the presence of electromagnetic fields, here we 
focus on 𝜒PT, which is a model-independent low-energy effective theory of QCD. Studies at (𝑝4) of two-flavor 𝜒PT in a uniform 
magnetic field at 𝑇 = 0 were conducted in Refs. [10,11] using the Schwinger formalism [12] first developed in the context of 
quantum electrodynamics. The standard Schwinger integral for the effective potential of charged bosons gives rise to a magnetic 
field-dependent contribution that decreases in magnitude with increasing boson mass and increases with increasing magnetic fields. 
The chiral condensate, which is negative in the QCD vacuum, is in effect a measure of the first-order change of the vacuum energy as 
a function of the quark mass, and increases in magnitude with increasing magnetic fields. This is an example of magnetic catalysis, 
first discussed in Refs. [13–19]. At 𝑇 = 0, magnetic catalysis is a robust phenomenon observed in low-energy models and theories 
as well on the lattice [20–25]. On the lattice, the mechanism behind magnetic catalysis can be understood in terms of the so-called 
valence and sea contributions, as discussed in e.g. Ref. [23]. To a very good approximation, the change of the quark condensate 
with increasing magnetic field is the sum of terms coming separately from the change in the Dirac operator and the measure in 
the partition function. At zero temperature, both contributions enhance the condensate as the field increases. On the other hand, 
inverse magnetic catalysis refers to either to the decrease in the deconfinement transition temperature upon the introduction of an 
external magnetic field, or to the decrease in the size of the chiral condensate with increasing temperature as observed in lattice QCD 
calculations. As discussed in Refs. [26,27], 𝜒PT calculations at (𝑝6) produce a behavior that is opposite to those observed in lattice 
calculations.

Zero temperature studies at (𝑝6) in two-flavor 𝜒PT were first conducted in Refs. [28,29]. In Ref. [29], the conclusion is that due 
to the uncertainties in the low-energy constants of 𝜒PT, the chiral condensate may or may not be enhanced in magnitude relative to 
the (𝑝4) values. In this paper, we study in addition to the chiral condensate and magnetic catalysis, the renormalized magnetization 
of the QCD vacuum in a uniform magnetic background in three-flavor 𝜒PT to (𝑝6). Magnetization, the response of the vacuum free 
energy to a first order change in the magnetic field or the derivative of the vacuum energy with respect to the external magnetic field, 
was first considered briefly within 𝜒PT in Ref. [30], and more recently in Ref. [31], in the deconfined phase of QCD in Ref. [32], 
and in the hadron resonance gas model in Ref. [33]. Within lattice QCD, it has been studied in Ref. [34].

In this paper, we generalize the (𝑝4) 𝜒PT comparison to lattice QCD of Ref. [35] and calculate the vacuum free energy density, 
the condensate shifts, and the renormalized magnetization in three-flavor 𝜒PT to (𝑝6). The paper is organized as follows. In 
Section 2, we discuss the relevant 𝜒PT Lagrangian required for the calculation of the free energy (density). In the following Section 3, 
we derive the translationally non-invariant, Schwinger propagator associated with mesons in a background magnetic field and discuss 
simplifying features of the two-loop mesonic diagrams. In Section 4, we discuss the free energy, quark condensates and magnetization 
at zero temperature, compare with recent lattice calculations and conclude with a summary in Section 5. Finally, we list the various 
constants and renormalized 𝜒PT low energy constants required for renormalization in Appendix A, the relevant 𝜒PT Lagrangian in 
Appendix B, useful Schwinger integrals and in Appendix C and the zero magnetic field vacuum free energy in terms of bare quantities 
in Appendix D.

2. The 𝝌PT Lagrangian

The fundamental building blocks of the 𝜒PT Lagrangian are the pseudo-Goldstone modes, which are encoded in an 𝑆𝑈 (3) matrix, 
Σ. Their masses are incorporated through a scalar-pseudoscalar source 𝜒 = 2𝐵0(𝑠 + 𝑖𝑝), where the scalar source, 𝑠 is equal to the quark 
mass matrix, 𝑀 = diag(𝑚𝑢, 𝑚𝑑, 𝑚𝑠) and the pseudoscalar source 𝑝 is zero. The external magnetic field is incorporated through left and 
right sources, which are defined as

𝑟𝜇 = 𝑙𝜇 = −𝑒𝑄𝐴ext
𝜇 = − 𝑒

2

(
𝜆3 +

1√
3
𝜆8

)
, (1)

where 𝑄 = diag(+ 2
3 , −

1
3 , −

1
3 ) is the quark charge matrix, which has been written in terms of the Gell-Mann matrices 𝜆3 and 𝜆8 and the 

corresponding field-strength tensors associated with the left-and-right sources are

𝐹𝑅𝜇𝜈 = 𝜕𝜇𝑟𝜈 − 𝜕𝜈𝑟𝜇 − 𝑖[𝑟𝜇, 𝑟𝜈] 𝐹𝐿𝜇𝜈 = 𝜕𝜇𝑙𝜈 − 𝜕𝜈𝑙𝜇 − 𝑖[𝑙𝜇, 𝑙𝜈] , (2)

and 𝐴ext
𝜇 is the electromagnetic gauge field, which is required to define the covariant derivative that enters the chiral Lagrangian

∇𝜇Σ = 𝜕𝜇Σ− 𝑖𝑟𝜇Σ+ 𝑖Σ𝑙𝜇 = 𝜕𝜇Σ− 𝑖𝑒𝐴ext
𝜇 [𝑄,Σ] . (3)

The Lagrangian is organized in a power counting scheme where the 𝑆𝑈 (3) field Σ is (𝑝0), derivatives and covariant derivatives are 
(𝑝1) with the external left-and-right fields, 𝑟𝜇 and 𝑙𝜇 , and the gauge field counting as (𝑝1) and the scalar-pseudoscalar source count 
as (𝑝2). The field strength tensors are consequently (𝑝2). We require the 𝜒PT Lagrangian upto (𝑝6) – we will use the notation 𝑛
for the Lagrangian at (𝑝𝑛) in the chiral expansion. The (𝑝2) Minkowski space Lagrangian in 𝜒PT is

2 = −1
4
𝐹𝜇𝜈𝐹

𝜇𝜈 + 𝑓 2

4
Tr[∇𝜇Σ(∇𝜇Σ)†] +

𝑓 2

4
Tr[𝜒Σ† + Σ𝜒†] , (4)

where 𝑓 is the bare pion decay constant and 𝐹𝜇𝜈 the electromagnetic tensor associated with the external gauge field. The (𝑝4)
2

Lagrangian in Minkowski space required for our calculation is



Nuclear Physics, Section B 997 (2023) 116389P. Adhikari and I. Strümke

4 =𝐿4 Tr
[
∇𝜇Σ(∇𝜇Σ)†

]
Tr(𝜒Σ† + 𝜒†Σ) +𝐿5 Tr

[
∇𝜇Σ(∇𝜇Σ)†(𝜒Σ† + 𝜒†Σ)

]
+𝐿6

[
Tr(𝜒Σ† + 𝜒†Σ)

]2 +𝐿7
[
Tr(𝜒Σ† − 𝜒†Σ)

]2 +𝐿8 Tr
(
Σ𝜒†Σ𝜒† + 𝜒Σ†𝜒Σ†)

− 𝑖𝐿9 Tr
[
𝐹𝑅𝜇𝜈∇

𝜇Σ(∇𝜈Σ)† + 𝐹𝐿𝜇𝜈(∇
𝜇Σ)†∇𝜈Σ

]
+𝐿10 Tr

[
Σ𝐹𝐿𝜇𝜈Σ

†𝐹𝑅𝜇𝜈
]

+𝐻1 Tr
[
𝐹𝑅𝜇𝜈𝐹

𝑅𝜇𝜈 + 𝐹𝐿𝜇𝜈𝐹
𝐿𝜇𝜈
]
+𝐻2 Tr(𝜒𝜒†) ,

(5)

where 𝐿𝑖 (𝐻𝑖) are the low-energy (high-energy) constants, which are defined as

𝐿𝑖 =𝐿𝑟𝑖 + Γ𝑖𝜆 , 𝐻𝑖 =𝐻𝑟
𝑖 +Δ𝑖𝜆 , 𝜆 = − Λ−2𝜀

2(4𝜋)2
(1
𝜀
+ 1
)
, (6)

where Γ𝑖 and Δ𝑖 are constants required for renormalization, see Eq. (A.1).

The running of the renormalized couplings, 𝐿𝑟
𝑖

and 𝐻𝑟
𝑖
, is deduced straightforwardly from their definitions since the bare low-

energy and high-energy constant are scale independent,

Λ
𝑑𝐿𝑟

𝑖

𝑑Λ
= −

Γ𝑖
(4𝜋)2

, Λ
𝑑𝐻𝑟

𝑖

𝑑Λ
= −

Δ𝑖
(4𝜋)2

, (7)

and will be important in verifying the scale-invariance of the free energy (density). There is further low-energy constants that enter 
through the (𝑝6) 𝜒PT Lagrangian,

6 = 𝐶19 Tr[(𝜒Σ† + 𝜒†Σ)3] +𝐶20 Tr[𝜒Σ† + 𝜒†Σ]2 Tr[𝜒Σ† + 𝜒†Σ] +𝐶21 Tr[𝜒Σ† + 𝜒†Σ]3

+𝐶61 Tr[(Σ
1
2 )†𝜒(Σ

1
2 )† + Σ

1
2 𝜒†Σ

1
2 ] +𝐶62 Tr[𝜒Σ† + Σ𝜒†]Tr[𝑓+𝜇𝜈𝑓

𝜇𝜈
+ ]

+𝐶94 det[𝜒 + 𝜒†],

(8)

with only terms relevant to our analysis presented. Magnetic field dependence enters exclusively through 𝑓+𝜇𝜈 , which is defined in 
terms of the left-and-right field strength tensors and the 𝑆𝑈 (3) field, 𝑓+𝜇𝜈 = Σ

1
2 𝐹𝐿𝜇𝜈(Σ

1
2 )† + (Σ

1
2 )†𝐹𝑅𝜇𝜈Σ

1
2 . The bare coupling constants, 

𝐶𝑖,

𝐶𝑖 =
𝐷𝑟
𝑖

(4𝜋𝑓 )2
− 1

(4𝜋)2
Γ(2)
𝑖
Λ−4𝜀

4(4𝜋𝑓 )2
(1
𝜀
+ 1
)2

+
(Γ(1)
𝑖

+ Γ(𝐿)
𝑖

)Λ−2𝜀

2(4𝜋𝑓 )2
(1
𝜀
+ 1
)

(9)

are defined in terms of their renormalized counterparts 𝐷𝑟
𝑖𝑗
= (4𝜋)2𝐶𝑟

𝑖𝑗
, the constants Γ(2)

𝑖𝑗
and Γ(1)

𝑖𝑗
, see Eqs. (A.2), (A.3) and (A.4), and 

Γ(𝐿)
𝑖𝑗

are linear combinations of the renormalized low energy constants, 𝐿𝑟
𝑖

– we list these in Eqs. (A.5)–(A.10). The running of the 
renormalized couplings 𝐷𝑟

𝑖
is most conveniently expressed in combinations that appear in the (𝑝6) free energy (density) and the 

quark condensates, see Eqs. (A.11)–(A.18).

The contribution to the free energy at (𝑝6) arises through two-loop diagrams with vertices from 2, one-loop diagrams with 
vertices from 4 and tree-level diagrams with vertices from 6. There we need to expand 2 up to quartic order in the meson fields, 4
up to quadratic order and require the tree-level 6 contributions. In order to do so, the 𝑆𝑈 (3) field is most conveniently parametrized 
in an exponential representation Σ = exp

(
𝑖𝜙𝑎𝜆𝑎
𝑓

)
, involving the Gell-Mann matrices, 𝜆𝑎, and Einstein summation convention for 

repeated indices is assumed. In an external background magnetic field, it is convenient to work in the basis of the charged eigenstates

𝜙𝑎𝜆𝑎 =

⎛⎜⎜⎜⎜⎝
𝜋0 + 1√

3
𝜂

√
2𝜋+

√
2𝐾+√

2𝜋− −𝜋0 + 1√
3
𝜂
√
2𝐾0√

2𝐾−
√
2𝐾̄0 − 2√

3
𝜂

⎞⎟⎟⎟⎟⎠
. (10)

The static Lagrangian in the isospin limit is

2,0 = −1
2
𝐻2 + 1

2
𝑓 2(𝑚̊2

𝜋 + 2𝑚̊2
𝐾
) , (11)

where 𝐻 is the external magnetic field and the Lagrangian quadratic in the meson fields is

2,2 =𝐷𝜇𝜋+𝐷𝜇𝜋− − 𝑚̊2
𝜋𝜋

+𝜋− +𝐷𝜇𝐾+𝐷𝜇𝐾− − 𝑚̊2
𝐾
𝐾+𝐾−

+ 𝜕𝜇𝐾0𝜕𝜇𝐾̄0 − 𝑚̊2
𝐾
𝐾0𝐾̄0 + 1

2
𝜕𝜇𝜋

0𝜕𝜇𝜋0 − 1
2
𝑚̊2
𝜋(𝜋

0)2 + 1
2
𝜕𝜇𝜂𝜕

𝜇𝜂 − 1
2
𝑚̊2
𝜂𝜂

2 ,
(12)

where the covariant derivatives are defined for the charged scalar fields, 𝜋± and 𝐾± as 𝐷𝜇± = (𝜕𝜇 ± 𝑖𝑒𝐴ext
𝜇 )±. In the isospin limit, 

𝑚𝑢 = 𝑚𝑑 , there is no mixing between the neutral pion and the eta. The meson octet bare masses, 𝑚̊𝑖, in terms of the degenerate light 
quark mass, 𝑚̂ = 1

2 (𝑚𝑢 +𝑚𝑑 ), and the strange quark mass 𝑚𝑠, are

𝑚̊2
𝜋 = 2𝐵0𝑚̂ 𝑚̊2

𝐾
= 𝐵0(𝑚̂+𝑚𝑠) 𝑚̊2

𝜂 =
2
3𝐵0(𝑚̂+ 2𝑚𝑠) . (13)

In order to find the vacuum free energy, we require four mesonic field contributions from 2, tree-level and two-mesonic field 
3

contributions from 4 and tree-level contributions from 6. We present these in Appendix B.
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3. The charged propagator

For the calculation of the loop contributions to the free energy, we require expressions for the meson propagators in a background 
magnetic field. We work in Euclidean space and choose the fully asymmetric gauge 𝐴ext

𝜇 = (0, −𝐻𝑥2, 0, 0) that allows for the utilization 
of the harmonic oscillator propagator [36]. For charged scalar fields 𝜙 and 𝜙† (either 𝜋± or 𝐾± in three-flavor 𝜒PT) with mass 𝑚𝜙
and charge ±𝑒, the quadratic action in Euclidean space is

𝑆quad = ∫ 𝑑4𝑥 𝜙†(𝑥)
[
−𝐷𝜇𝐷𝜇 +𝑚2

𝜙

]
𝜙(𝑥) , (14)

which can be simplified using the Fourier representation of the charged scalar field

𝜙(𝑥) = ∫
𝑑3𝑘̃

(2𝜋)3
𝑒−𝑖𝑘̃⋅𝑥̃𝜙(𝑘̃, 𝑥2) , (15)

where 𝑘̃ = (𝑘0, 0, 𝑘2, 𝑘3) and 𝑥̃ = (𝑥0, 0, 𝑥2, 𝑥3). Then the quadratic action, after an integration over 𝑥̃, which gives rise to (2𝜋)3𝛿(3)(𝑘̃− 𝑘̃′), 
a further integration over 𝑘̃′, becomes

𝑆quad = ∫ 𝑑𝑥2 ∫
𝑑3𝑘̃

(2𝜋)3
𝜙†(𝑘̃, 𝑥2)

[
2
( 1
2
𝑝2
𝑋
+ 1

2
(𝑒𝐻)2𝑋2 + 1

2

[
𝑘20 + 𝑘

2
3 +𝑚

2
𝜙

])]
𝜙(𝑘̃, 𝑥2) , (16)

from which the inverse propagator is easily identified

−1 = 2
( 1
2
𝑝2
𝑋
+ 1

2
(𝑒𝐻)2𝑋2

)
+
[
𝑘20 + 𝑘

2
3 +𝑚

2
𝜙

] ≡ 2 +𝐸2
⟂ , (17)

where 𝑋 = 𝑥2 +
𝑘1
𝑒𝐻

, 𝑝𝑋 = −𝑖𝜕𝑋 and 𝐸2
⟂ = 𝑘20 + 𝑘

2
3 +𝑚

2
𝜙
. The propagator can be recast in the Schwinger proper time form, which in the |𝑋⟩ basis is

(𝑋′,𝑋) = ⟨𝑋′||𝑋⟩= 1
2

∞

∫
0

𝑑𝑠 ⟨𝑋′|𝑒−𝑠 |𝑋⟩𝑒−𝑠𝐸2
⟂∕2 . (18)

Utilizing the harmonic oscillator propagator,

⟨𝑋′|𝑒−𝑠 |𝑋⟩ =√ 𝑒𝐻

2𝜋 sinh 𝑒𝐻𝑠
exp
[
− 𝑒𝐻

2 sinh 𝑒𝐻𝑠
{
(𝑋′ 2 +𝑋2) cosh 𝑒𝐻𝑠− 2𝑋′𝑋

}]
(19)

and performing the momentum integrals in the quadratic action, which are all Gaussian, the propagator in position space (after a 
change of variables 𝑠 → 2𝑠) is

(𝑥′, 𝑥) = 𝑒𝑖𝑒𝐻Δ𝑥1𝑥̄2 1
(4𝜋)2

∞

∫
0

𝑑𝑠

𝑠2
𝑒𝐻𝑠

sinh 𝑒𝐻𝑠
𝑒
−𝑚2

𝜙
𝑠 exp

[
−
𝑒𝐻
(
Δ𝑥21+Δ𝑥

2
2

)
4 tanh 𝑒𝐻𝑠 −

Δ𝑥20+Δ𝑥
2
3

4𝑠

]
, (20)

with Δ𝑥𝜇 = 𝑥′𝜇−𝑥𝜇 characterizing the difference between Euclidean coordinates. The propagator satisfies the Green’s function identity

(−𝐷′
𝜇𝐷

′
𝜇 +𝑚

2
𝜙
)(𝑥′, 𝑥) = 𝛿(4)(𝑥′ − 𝑥) , (21)

as is seen by first writing 𝑚2
𝜙
(𝑥′, 𝑥) in terms of a proper-time derivative of 𝑒−𝑚

2
𝜙
𝑠

in the integrand. An integration by parts then 
produces a boundary term with a non-vanishing contribution in the 𝑠 → 0 limit, which is a Gaussian representation of a four-

dimensional 𝛿-function in Euclidean space. The non-boundary term cancels exactly with the term that arises through the double-

covariant derivative in the first variable of (𝑥′, 𝑥).
For coincident points, the propagator is coordinate-independent and can be separated into a divergent 𝐻 = 0 contribution and a 

finite 𝐻 contribution

(𝑥,𝑥) ≡(𝑚2
𝜙
) =0(𝑚2

𝜙
) +𝐻 (𝑚2

𝜙
) . (22)

The divergence can be handled in dimensional regularization in 4 − 2𝜀 dimension that results in the standard expression

0(𝑚2
𝜙
) = −

𝑚2
𝜙

(4𝜋)2

[
1
𝜀
+ 1 + log Λ2

𝑚2
𝜙

]
, (23)

consisting of a chiral log and a dependence on the MS scale Λ. The finite magnetic field-dependent contribution

𝐻 (𝑚2
𝜙
) = 𝑒𝐻

(4𝜋)2
𝐻,2( 𝑚

2
𝜙

𝑒𝐻
) (24)

is best expressed in terms of a dimensionless function 𝐻,2(𝑧), which has a closed form expression [37] that depends on the Γ-function,

1+𝑧 𝑧
4

𝐻,2(𝑧) = 2 logΓ( 2 ) + 𝑧− 𝑧 log 2 − log(2𝜋) . (25)
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Fig. 1. Next-to-next-to-leading order graphs that contribute to the vacuum free energy (density). The solid lines represent charged mesons, the dashed lines represent 
neutral mesons and the wiggly line represents a magnetic field insertion. The solid vertex contributes at (𝑝2), the dashed vertex at (𝑝4) and the empty vertex at 
(𝑝6).

When evaluating vacuum diagrams that contribute to the free energy, the (𝑝4) contribution is the standard one-loop effective 
potential. At (𝑝6), on the other hand, there are diagrams with one or two loops that consist of operators with either one or two 
covariant derivatives in each loop,

lim
𝑥′→𝑥
⟨𝜙†(𝑥′)𝐷𝜇𝜙(𝑥)⟩ = lim

𝑥′→𝑥
𝐷𝜇(𝑥′, 𝑥) , (26)

lim
𝑥′→𝑥
⟨𝐷′

𝜇𝜙
†(𝑥′)𝐷𝜇𝜙(𝑥)⟩ = lim

𝑥′→𝑥
𝐷′
𝜇𝐷𝜇(𝑥′, 𝑥) , (27)

with the covariant derivative taken prior to the coincident limit. There are corresponding operators for neutral mesons with covariant 
derivatives replaced by regular ones. Here, we focus only on the charged fields, since unlike their neutral counterparts, the contribu-

tions of the charged fields do not vanish trivially. The vacuum graph containing Eq. (26) is non-vanishing in the first spatial direction 
and an odd function in 𝑥2. In a one-loop diagram, the contribution vanishes upon integration but in a two-loop diagram with a second 
charged meson loop, the overall contribution is even in 𝑥2 but ultimately cancel to zero – contributions from 2,4 proportional to 
𝐷𝜇𝜙

†𝐷𝜇𝜙𝜙
†𝜙 cancel with those proportional to 𝐷𝜇𝜙†𝐷𝜇𝜙

†𝜙𝜙 +𝐷𝜇𝜙𝐷𝜇𝜙𝜙†𝜙†. The contribution with a single covariant derivative 
acting on the primed coordinate vanishes trivially in the coincident limit. For the neutral mesons, both single derivative operators 
vanish but for the charged mesons, the result is asymmetric due to the presence of the Schwinger phase factor, which produces a 
minus sign upon the exchange of the first spatial coordinates.

The latter contribution can be handled within one and two-loop vacuum diagrams through integration by parts, which amounts 
to utilizing the identity

lim
𝑥′→𝑥
⟨𝐷′

𝜇𝜙
†(𝑥′)𝐷𝜇𝜙(𝑥)⟩ = −𝑚2

𝜙
(𝑥,𝑥) . (28)

The boundary term that arises vanishes either because it is spatially independent or because the integral is odd in 𝑥2. A non-boundary 
term proportional to the 𝛿-function vanishes in dimensional regularization since the resulting integrand is coordinate-independent.

4. Vacuum free energy, quark condensate shifts and renormalized magnetization at 𝑻 = 𝟎

4.1. Vacuum free energy (density)

The vacuum free energy,  , relates to the partition function, 𝑍 through a proportionality constant that depends on the physical 
volume 𝑉 and the inverse temperature 𝛽

 = − 1
𝛽𝑉

ln𝑍 =
∑
𝑛

 (𝑛) =
∑
𝑛

( (𝑛)
0 +  (𝑛)

𝐻
) . (29)

In the second equality,  (𝑛) is the contribution at (𝑝𝑛) that in the third equality has been separated into contributions independent 
of and dependent on the external magnetic field.

The contributions to  (2) arise through 2,0 and consist of a pure gauge contribution,  (2)
𝐻

= 1
2𝐻

2 and a magnetic field independent 
contribution,  (2)

0 = 𝑓2

2 (𝑚̊2
𝜋 +2𝑚̊2

𝐾
). Contributions from  (4) and  (6) renormalize the magnetic field. At (𝑝4), there are contributions 

that arise through the charged pions, charged kaons, neutral kaons, neutral pion and eta loops,

 (4)
1 = 𝐼𝐻 (𝑚̊𝜋 ) + 𝐼𝐻 (𝑚̊𝐾 ) + 𝐼0(𝑚̊𝐾 ) +

1
2
𝐼0(𝑚̊𝜋 ) +

1
2
𝐼0(𝑚̊𝜂) (30)

respectively. The integral 𝐼𝐻 (𝑚𝜙) has a Schwinger proper-time representation

𝐼𝐻 (𝑚𝜙) = − (𝑒𝛾𝐸Λ2)𝜀

(4𝜋)2

∞

∫
0

1
𝑠3−𝜀

𝑒
−𝑚2

𝜙
𝑠
[

𝑒𝐻𝑠

sinh 𝑒𝐻𝑠

]
, (31)

which contains divergences proportional to quintic power in the meson mass and another that is quadratic in the external magnetic 
field. These are cancelled by the tree-level counter-term contribution,  (4)

ct = −4,0.

The vacuum diagrams that contribute to  (6) arise through two-loop diagrams of 2,4, one-loop diagrams of 4,2 and tree diagrams 
of 6,0 as depicted in Fig. 1. The two-loop diagrams containing two charged pion loops, two charged kaon loops, and a charged pion 
loop and a charged kaon loop, each vanish separately,

[ ]

5

 (6)
2 = 0 . (32)
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This is deduced from the third and fourth lines in 2,4 – upon utilizing the identity of Eq. (27), one notes that the coefficients of 
each of the contributions proportional to (𝑚̊𝑖)(𝑚̊𝑗 ), where the masses are either that of the charged pions or the charged kaons. 
The cancellation appears accidental and also occurs in two-flavor 𝜒PT. The contribution of two-loop vacuum diagrams containing at 
least one neutral meson loop is non-vanishing. These are deduced similarly using the remaining terms in 2,4,

 (6)
2

[ ]
=
𝑚̊2
𝜋

𝑓 2

[ 1
2
(𝑚̊𝜋 )0(𝑚̊𝜋 ) −

1
6
(𝑚̊𝜋 )0(𝑚̊𝜂)

]
+
𝑚̊2
𝐾

𝑓 2

[1
3
(𝑚̊𝐾 )0(𝑚̊𝜂)

]
(33)

 (6)
2

[ ]
=
𝑚̊2
𝜋

𝑓 2

[
−1
8
0(𝑚̊𝜋 )2 −

1
12

0(𝑚̊𝜋 )0(𝑚̊𝜂) +
7
12

0(𝑚̊𝜂)2
]

+
𝑚̊2
𝐾

𝑓 2

[1
3
0(𝑚̊𝐾 )0(𝑚̊𝜂) −

2
9
0(𝑚̊𝜂)2

]
(34)

and so are the single meson loop contributions that arise through 4,2 and terms proportional to the low energy constants 𝐿4 through 
𝐿8,

 (6)
[ ]

=
4𝐿4
𝑓 2 (𝑚̊2

𝜋 + 2𝑚̊2
𝐾
)[𝑚̊2

𝜋{2(𝑚̊𝜋 ) +0(𝑚̊𝜋 )} + 2𝑚̊2
𝐾
{(𝑚̊𝐾 ) +0(𝑚̊𝐾 )} + 𝑚̊2

𝜂0(𝑚̊𝜂)]

+
4𝐿5

𝑓 2 [𝑚̊4
𝜋{2(𝑚̊𝜋 ) +0(𝑚̊𝜋 )} + 2𝑚̊4

𝐾
{(𝑚̊𝐾 ) +0(𝑚̊𝐾 )} + 𝑚̊2

𝜂0(𝑚̊𝜂)]

+
8𝐿6

𝑓 2 (𝑚̊2
𝜋 + 2𝑚̊2

𝐾
)[𝑚̊2

𝜋{2(𝑚̊𝜋 ) +0(𝑚̊𝜋 )} + 2𝑚̊2
𝐾
{(𝑚̊𝐾 ) +0(𝑚̊𝐾 )} + 𝑚̊2

𝜂0(𝑚̊𝜂)]

+
64𝐿7

3𝑓 2 (𝑚̊2
𝜋 − 𝑚̊

2
𝐾
)20(𝑚̊𝜂) +

16𝐿8

𝑓 2 [𝑚̊4
𝜋(𝑚̊𝜋 ) +

1
2 𝑚̊

4
𝜋0(𝑚̊𝜋 ) + 𝑚̊4

𝐾
{(𝑚̊𝐾 ) +0(𝑚̊𝜋 )}

+ 1
3 (4𝑚̊

4
𝐾
− 4𝑚̊2

𝜋𝑚̊
2
𝐾
+ 3

2 𝑚̊
4
𝜋 )0(𝑚̊𝜂)] . (35)

The terms proportional to 𝐿9 and 𝐿10 contain two external magnetic field insertions each. For the former, this is straightforward to 
note from the Lagrangian but for the latter an integration by parts is required. Assuming a uniform magnetic field the contribution is 
proportional to [𝐷𝑥, 𝐷𝑦] = −𝑖𝑒𝐻 and the contribution to the free energy contains two external magnetic field insertions and a charged 
propagator each for the pion and the kaon,

 (6)
[ ]

= 4(𝑒𝐻)2

𝑓 2 (𝐿9 +𝐿10)[(𝑚̊𝜋 ) +(𝑚̊𝐾 )] . (36)

The final (𝑝6) contributions are tree-level counter-terms equal to negative of 6,0 and consist of two types of contributions, one of 
which is absent of external field insertions,

 (6)[ ] = − 2𝑚̊6
𝜋 [4𝐶19 + 12𝐶20 + 4𝐶21 −𝐶94]

− 4𝑚̊4
𝜋𝑚̊

2
𝐾
[12𝐶19 + 4𝐶20 + 12𝐶21 +𝐶94]

+ 32𝑚̊2
𝜋𝑚̊

4
𝐾
[3𝐶19 +𝐶20 − 3𝐶21] − 64𝑚̊6

𝐾
[𝐶19 +𝐶20 +𝐶21] (37)

 (6)[ ] = − 32
9
(𝑒𝐻)2𝑚̊2

𝜋 [2𝐶61 + 3𝐶62] −
32
9
(𝑒𝐻)2𝑚̊2

𝐾
[𝐶61 + 6𝐶62] . (38)

The single poles in the external field dependent contribution cancel with the single poles in the contribution proportional to 
(𝑒𝐻)2(𝐿9 + 𝐿10). The remaining divergences are single and double poles arising out of the charged pion-neutral meson double 
bubble and the charged kaon-neutral meson double bubble, which cancel with the respective one-loop diagrams (arising through 
4,2) involving charged pions or kaons. The full renormalized (𝑝6) vacuum free energy (density),  , consists of a magnetic field 
independent contribution, 0, which is presented in Appendix D, while the field-dependent contribution, 𝐻 , is

𝐻 = 1
2
𝐻2
𝑅
+ (𝑒𝐻)2

(4𝜋)2

[
ℑ𝐻 ( 𝑚̊

2
𝜋

𝑒𝐻
) +ℑ𝐻 (

𝑚̊2
𝐾

𝑒𝐻
)
]

−
𝑚̊4
𝜋 (𝑒𝐻)

(4𝜋𝑓 )2

[
1

2(4𝜋)2
log Λ2

𝑚̊2
𝜋

+ 1
18(4𝜋)2

log Λ2

𝑚̊2
𝜂

+ 8(𝐿𝑟4 +𝐿
𝑟
5) − 16(𝐿𝑟6 +𝐿

𝑟
8)

]
𝐻,2( 𝑚̊2

𝜋

𝑒𝐻
)

𝑚̊2
𝜋𝑚̊

2
𝐾
(𝑒𝐻)

[
1 Λ2

𝑟 𝑟

][
𝑚̊2
𝜋

𝑚̊2
𝐾

]

6

−
(4𝜋𝑓 )2

−
9(4𝜋)2

log
𝑚̊2
𝜂

+ 8(𝐿4 − 2𝐿6) 2𝐻,2( 𝑒𝐻 ) + 𝐻,2( 𝑒𝐻 )
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−
𝑚̊4
𝐾
(𝑒𝐻)

(4𝜋𝑓 )2

[
4

9(4𝜋)2
log Λ2

𝑚̊2
𝜂

+ 8(2𝐿𝑟4 +𝐿
𝑟
5) − 16(2𝐿𝑟6 +𝐿

𝑟
8)

]
𝐻,2( 𝑚̊

2
𝐾

𝑒𝐻
)

+ 4(𝑒𝐻)3

(4𝜋𝑓 )2
(𝐿𝑟9 +𝐿

𝑟
10)
[
𝐻,2( 𝑚̊2

𝜋

𝑒𝐻
) + 𝐻,2( 𝑚̊

2
𝐾

𝑒𝐻
)
]
. (39)

Here, 𝐻𝑅 =𝑍𝐻𝐻 is the renormalized magnetic field with

𝑍𝐻 =

[
1 − 4𝑒2

3
(𝐿𝑟10 + 2𝐻𝑟

1) +
𝑒2

6(4𝜋)2

(
log Λ2

𝑚̊2
𝜋

+ log Λ2

𝑚̊2
𝐾

− 2

)

−
𝑒2𝑚̊2

𝜋

2(4𝜋𝑓 )2

{
32
9
(2𝐷𝑟

61 + 3𝐷𝑟
62) + 4(𝐿𝑟9 +𝐿

𝑟
10) log

Λ2

𝑚̊2
𝜋

}

−
𝑒2𝑚̊2

𝐾

2(4𝜋𝑓 )2

{
32
9
(𝐷𝑟

61 + 6𝐷𝑟
62) + 4(𝐿𝑟9 +𝐿

𝑟
10) log

Λ2

𝑚̊2
𝐾

}]
. (40)

A corresponding renormalization of the pion and kaon charge, i.e. 𝑒𝑅 =𝑍−1
𝐻
𝑒 ensures the product 𝑒𝐻 , through which the magnetic 

field contribution enters the matter contribution to the free energy is scale independent. This finite renormalization procedure was 
first adopted by Schwinger [12] and deserves further discussion [33,35]. All contributions that are quadratic in the external field 
have been absorbed into the pure gauge contribution of the free energy. This choice is not unique since one is free to add and 
subtract finite pieces ad hoc under the constraint that the total free energy remains unaffected. Preference for Schwinger’s scheme 
is based on its physical virtue: it separates the contribution to the free energy into a pure gauge that incorporates all the quadratic 
contributions, while the pure hadronic contribution incorporates the free energy associated with virtual hadron loops interacting 
with the external field. This creates current loops that magnetize the (quantum) field theoretic vacuum [35] and on physical grounds 
are expected to vanish in the infinite mass limit. On the other hand, this hadronic contribution to the magnetization, later referred 
to as the renormalized magnetization, asymptotes to infinity as the mass of any pair of the charged mesons approaches zero, again a 
physically virtuous result.

Prior to discussing the effect of the magnetic field on the condensates and the free energy (through the renormalized magne-

tization), it is worth noting that the free energy is a scale-independent quantity, as can be verified by utilizing the running of the 
renormalized low and high-energy constants of Eq. (7) and Eqs. (A.11)–(A.16). We have arranged the various contributions to the 
free energy such that each line in Eq. (39) is independently scale-invariant. The same is true for 𝑍𝐻 in Eq. (40). Its scale-invariance 
ensures that both the renormalized electric charge and renormalized magnetic field are separately scale-invariant.

4.2. Quark condensate shifts

The mass term of the QCD Lagrangian, in the isospin limit, mass = −[𝑚̂(𝑢̄𝑢 + 𝑑𝑑) +𝑚𝑠𝑠̄𝑠], permits the calculation of the total light 
quark condensate, ⟨𝑞𝑞⟩, the sum of the up-and-down quark condensates, which are degenerate in the isospin limit, and the strange 
quark condensate, ⟨𝑠̄𝑠⟩. The former is defined as the differential change in the free energy when the average light quark mass, 𝑚̂ is 
altered while the latter is analogously defined for differential changes in the strange quark mass, 𝑚𝑠 ,

⟨𝑞𝑞⟩ = 𝜕
𝜕𝑚̂

, ⟨𝑠̄𝑠⟩ = 𝜕
𝜕𝑚𝑠

. (41)

Here we focus on the study of the shift induced by the external magnetic field using PDG parameters and also compare our results to 
those from a recent lattice study [25]. Since the effect of the external field enters through the interaction of virtual (charged) mesons 
with the magnetic background, the condensate shift first appears at (𝑝4). Then,

⟨𝑞𝑞⟩𝐻 = ⟨𝑞𝑞⟩(4)
𝐻

+ ⟨𝑞𝑞⟩(6)
𝐻
, ⟨𝑠̄𝑠⟩𝐻 = ⟨𝑠̄𝑠⟩(4)

𝐻
+ ⟨𝑠̄𝑠⟩(6)

𝐻
, (42)

where the (𝑝4) shift of the condensates is

⟨𝑞𝑞⟩(4)
𝐻

= −
𝐵0(𝑒𝐻)
(4𝜋)2

[2𝐻,2( 𝑚̊2
𝜋

𝑒𝐻
) + 𝐻,2( 𝑚̊

2
𝐾

𝑒𝐻
)] , ⟨𝑠̄𝑠⟩(4)

𝐻
= −

𝐵0(𝑒𝐻)
(4𝜋)2

[𝐻,2( 𝑚̊
2
𝐾

𝑒𝐻
)] . (43)

The light quark condensate depends on the charged pion and kaon masses with the factor of two explained by the number of valence 
up-and-down quarks or anti-quarks in the charged pions compared to the charged kaons. The contribution of the charged kaon 
to the condensates is identical. The (𝑝6) contribution to the condensates is rather lengthy compared to two-flavor calculations. 
Nevertheless, we present them below for completeness,

⟨𝑞𝑞⟩(6)
𝐻

=−
𝐵0(𝑒𝐻)2

(4𝜋𝑓 )2

[
160
9
𝐷𝑟

61 +
128
3
𝐷𝑟

62

𝑟 𝑟

(
Λ2 Λ2 𝑚̊2

𝜋
𝑚̊2
𝐾

)]

7

−4(𝐿9 +𝐿10) 3 − 2 log
𝑚̊2
𝜋

− log
𝑚̊2
𝐾

− 2(𝑒𝐻){𝐻,1( 𝑒𝐻 ) + 𝐻,1( 𝑒𝐻 )}
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+
𝐵0𝑚̊

2
𝜋 (𝑒𝐻)

(4𝜋)2𝑓 2

[
8

9(4𝜋)2
− 2

(4𝜋)2
log Λ2

𝑚̊2
𝜋

− 48𝐿𝑟4 − 32𝐿𝑟5 + 96𝐿𝑟6 + 64𝐿𝑟8

]
𝐻,2( 𝑚̊2

𝜋

𝑒𝐻
)

+
𝐵0𝑚̊

2
𝜋 (𝑒𝐻)

(4𝜋𝑓 )2

[
1

9(4𝜋)2
log Λ2

𝑚̊2
𝜂

− 8𝐿𝑟4 + 16𝐿𝑟6

]
𝐻,2( 𝑚̊

2
𝐾

𝑒𝐻
)

+
𝐵0𝑚̊

2
𝐾
(𝑒𝐻)

(4𝜋𝑓 )2

[
4

9(4𝜋)2
log Λ2

𝑚̊2
𝜂

− 32𝐿𝑟4 + 64𝐿𝑟6

]
𝐻,2( 𝑚̊2

𝜋

𝑒𝐻
)

+
𝐵0𝑚̊

2
𝐾
(𝑒𝐻)

(4𝜋𝑓 )2

[
2

9(4𝜋)2
− 2

3(4𝜋)2
log Λ2

𝑚̊2
𝜂

− 48𝐿𝑟4 − 16𝐿𝑟5 + 96𝐿𝑟6 + 32𝐿𝑟8

]
𝐻,2( 𝑚̊

2
𝐾

𝑒𝐻
)

+
𝐵0𝑚̊

4
𝜋 (𝑒𝐻)

(4𝜋𝑓 )2

[
1

(4𝜋)2
log Λ2

𝑚̊2
𝜋

+ 1
9(4𝜋)2

log Λ2

𝑚̊2
𝜂

+ 16𝐿𝑟4 + 16𝐿𝑟5 − 32𝐿𝑟6 − 32𝐿𝑟8

]
𝐻,1( 𝑚̊2

𝜋

𝑒𝐻
)

+
𝐵0𝑚̊

2
𝜋𝑚̊

2
𝐾
(𝑒𝐻)

(4𝜋𝑓 )2

[
− 1
9(4𝜋)2

log Λ2

𝑚̊2
𝜂

+ 8𝐿𝑟4 − 16𝐿𝑟6

]
[4𝐻,1( 𝑚̊2

𝜋

𝑒𝐻
) + 𝐻,1( 𝑚̊

2
𝐾

𝑒𝐻
)]

+
𝐵0𝑚̊

4
𝐾
(𝑒𝐻)

(4𝜋𝑓 )2

[
4

9(4𝜋)2
log Λ2

𝑚̊2
𝜂

+ 16𝐿𝑟4 + 8𝐿𝑟5 − 32𝐿𝑟6 − 16𝐿𝑟8

]
𝐻,1( 𝑚̊

2
𝐾

𝑒𝐻
) , (44)

and

⟨𝑠̄𝑠⟩(6)
𝐻

=−
𝐵0(𝑒𝐻)2

(4𝜋𝑓 )2

[
32
9
𝐷𝑟

61 +
64
3
𝐷𝑟

62 − 4(𝐿𝑟9 +𝐿
𝑟
10)

{
1 − log Λ2

𝑚̊2
𝐾

− (𝑒𝐻)𝐻,1( 𝑚̊
2
𝐾

𝑒𝐻
)

}]

+
𝐵0𝑚̊

2
𝜋 (𝑒𝐻)

(4𝜋𝑓 )2

[
− 2
9(4𝜋)2

+ 2
9(4𝜋)2

log Λ2

𝑚̊2
𝜂

− 16𝐿𝑟4 + 32𝐿𝑟6

]
𝐻,2( 𝑚̊2

𝜋

𝑒𝐻
)

+
𝐵0𝑚̊

2
𝜋 (𝑒𝐻)

(4𝜋𝑓 )2

[
1

9(4𝜋)2
log Λ2

𝑚̊2
𝜂

− 8𝐿𝑟4 + 16𝐿𝑟6

]
𝐻,2( 𝑚̊

2
𝐾

𝑒𝐻
)

+
𝐵0𝑚̊

2
𝐾
(𝑒𝐻)

(4𝜋𝑓 )2

[
4

9(4𝜋)2
− 8

9(4𝜋)2
log Λ2

𝑚̊2
𝜂

− 32𝐿𝑟4 − 16𝐿𝑟5 + 64𝐿𝑟6 + 32𝐿𝑟8

]
𝐻,2( 𝑚̊

2
𝐾

𝑒𝐻
)

+
𝐵0𝑚̊

2
𝜋𝑚̊

2
𝐾
(𝑒𝐻)

(4𝜋𝑓 )2

[
− 1
9(4𝜋)2

log Λ2

𝑚̊2
𝜂

+ 8𝐿𝑟4 − 16𝐿𝑟6

]
𝐻,1( 𝑚̊

2
𝐾

𝑒𝐻
)

+
𝐵0𝑚̊

4
𝐾
(𝑒𝐻)

(4𝜋𝑓 )2

[
4

9(4𝜋)2
log Λ2

𝑚̊2
𝜂

+ 16𝐿𝑟4 + 8𝐿𝑟5 − 32𝐿𝑟6 − 16𝐿𝑟8

]
𝐻,1( 𝑚̊

2
𝐾

𝑒𝐻
) , (45)

which depend on the dimensionless, negative definite integrals 𝐻,𝑛 – their closed form expressions are presented in Appendix C. 
Both quark condensates are independent of the MS-bar scale, a fact that follows from the scale-invariance of the free energy, and can 
be verified independently using the running of the low-and-high energy constants in Eq. (7), Eq. (A.17) and Eq. (A.18).

In order to compare the light quark condensate calculated in this work to that of Ref. [25], we utilize the dimensionless quantity

Σ𝑞𝑞(𝐻) = − 𝑚̂

𝑚2
𝜋𝑓

2
𝜋

⟨𝑞𝑞⟩𝐻 + 1 , (46)

which is unity in the absence of magnetic catalysis, in which case ⟨𝑞𝑞⟩𝐻 is zero. The parameters used in the lattice study to generate 
the light quark condensate [25] are

𝑚𝜋 = 220.61 MeV , 𝑚𝐾 = 508.20 MeV , 𝑚𝜂 = 684.44 MeV (47)

𝑚̂ = 9.30 MeV , 𝑚𝑠 = 93.0 MeV , 𝑓𝜋 = 96.93 MeV , (48)

with the pion mass (𝑚𝜋 ) and the eta mass (𝑚𝜂) both considerably larger than their physical counterparts [38]

𝑚𝜋 = 139.58 MeV , 𝑚𝐾 = 493.68 MeV , 𝑚𝜂 = 547.86 MeV , (49)

𝑚̂ = 3.42 MeV , 𝑚𝑠 = 93.4 MeV , 𝑓𝜋 = 92.21 MeV , (50)

though the kaon mass (𝑚𝐾 ), the strange quark mass (𝑚𝑠) and the pion decay constant (𝑓𝜋) are comparable. We further require the 
follows (𝑝4) [39] and (𝑝6) low energy constants (LECs) [40]

103𝐿𝑟4 = 0.0 ± 0.3 , 103𝐿𝑟5 = 1.2 ± 0.1 , 103𝐿𝑟6 = 0.0 ± 0.4 , 103𝐿𝑟8 = 0.5 ± 0.2 , (51)

5 𝑟 5 𝑟
8

10 𝐶61 = 1.0 ± 0.3 , 10 𝐶62 = 0.0 ± 0.2 . (52)
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Fig. 2. Plot of the light quark condensate shift as characterized by Σ𝑞𝑞 (𝐻) in Eq. (46) as a function of the magnetic field (𝑒𝐻). The left panel is generated using PDG 
parameters [38] while the right panel is generated using lattice parameters [25].

The physical meson masses and pion decay constant must be related to the bare quantities that appear in the condensates. Working 
in the isospin limit and recalling that the bare eta mass can be expressed in terms of the pion and kaon masses, we have three 
independent bare quantities, namely 𝑓 and two meson masses. Therefore, we need three physical quantities to determine these bare 
parameters. We can use the renormalized 𝑚𝜋 , 𝑚𝐾 , and 𝑓𝜋 . These can be calculated by utilizing the two-loop expressions for the 
renormalized physical masses and decay constants at least in principle though the two-loop expressions available in literature are 
very cumbersome. A more efficient approach is to utilize inverted expressions for the renormalized pion and kaon masses, and the 
pion decay constant

𝑚̊2
𝜋 =𝑚

2
𝜋

[
1 +

(
8𝐿𝑟4 + 8𝐿𝑟5 − 16𝐿𝑟6 − 16𝐿𝑟8 +

1
2(4𝜋)2

log Λ2

𝑚2
𝜋

)
𝑚2
𝜋

𝑓 2
𝜋

+ (𝐿𝑟4 − 2𝐿𝑟6)
16𝑚2

𝐾

𝑓 2
𝜋

+
𝑚2
𝜂

6(4𝜋)2𝑓 2
𝜋

log Λ2

𝑚2
𝜂

]
, (53)

𝑚̊2
𝐾
=𝑚2

𝐾

[
1 +
(
𝐿𝑟4 − 2𝐿𝑟6

) 8𝑚2
𝜋

𝑓 2
𝜋

+ (2𝐿𝑟4 +𝐿
𝑟
5 − 4𝐿𝑟6 − 2𝐿𝑟8)

8𝑚2
𝜂

𝑓 2
𝜋

+
𝑚2
𝜂

3(4𝜋)2𝑓 2
𝜋

log Λ2

𝑚2
𝜂

]
, (54)

𝑓 2 = 𝑓 2
𝜋

[
1 −

(
8𝐿𝑟4 + 8𝐿𝑟5 +

2
(4𝜋)2

log Λ2

𝑚2
𝜋

)
𝑚2
𝜋

𝑓 2
𝜋

−

(
16𝐿𝑟4 +

1
(4𝜋)2

log Λ2

𝑚2
𝐾

)
𝑚2
𝐾

𝑓 2
𝜋

]
. (55)

The bare masses are then fully determined by the (𝑝4) LECs. In the (𝑝4) expression for the light quark condensate shift, we can 
replace the bare quantities with the inverted expressions above. This gives rise to (𝑝6) contributions to the shift while in the (𝑝6)
expression, we can simply replace the bare quantities with physical ones since corrections are (𝑝8). In the left panel of Fig. 2, we plot 
Σ𝑞𝑞 and compare our results with the lattice while on the right panel, we plot Σ𝑞𝑞 using PDG parameters with the bands representing 
the uncertainties due to those present in the low energy constants. The monotonic increase of Σ𝑞𝑞 is evident in the plots. At (𝑝4), 
the lattice results agree with that of this work for 𝑒𝐻 approximately equal to 𝑚2

𝜋 while for larger fields the (𝑝4) results are an 
underestimate. The (𝑝6) result, on the other hand, is consistent for all magnetic fields up to 𝑒𝐻 ≈ 3.25𝑚2

𝜋 . For the PDG parameters, 
the (𝑝6) results are consistently larger than the (𝑝4) but by an amount that is significantly more modest than in the right panel. 
For completeness, we define a quantity analogous to Eq. (46) for the strange quark condensate,

Σ𝑠̄𝑠(𝐻) = −
𝑚̂+𝑚𝑠
𝑚2
𝐾
𝑓 2
𝐾

⟨𝑠̄𝑠⟩𝐻 + 1 (56)

that measures the magnetic catalysis associated with the strange quark condensate, which we plot in the left panel of Fig. 3. As 
with the light quark condensate, the strange quark condensate increases monotonously with the external field, though the increase 
is weaker due to the significantly larger mass of the kaon.

4.3. Renormalized magnetization

The renormalized magnetization measures the first order change in the matter contribution to the free energy (density) as the 
external field is altered,

𝑟 = −
𝜕̃𝐻
𝜕(𝑒𝐻)

, (57)

where ̃𝐻 = 𝐻 − 1
2𝐻

2
𝑅

excludes the pure gauge contribution to the total free energy (density). Since the effect arises due to the 
interaction of virtual pions and kaons with the external magnetic field, the leading contribution, (4)

𝑟 , appears beginning at (𝑝4),
(4) = − 1

[
2𝑒𝐻
{
ℑ ( 𝑚̊

2
𝜋 ) +ℑ (

𝑚̊2
𝐾 )
}

+ (𝑒𝐻)2{ℑ′ ( 𝑚̊
2
𝜋 ) +ℑ′ (

𝑚̊2
𝐾 )}
]
, (58)
9

𝑟 (4𝜋)2 𝐻 𝑒𝐻 𝐻 𝑒𝐻 𝐻 𝑒𝐻 𝐻 𝑒𝐻
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Fig. 3. Left: Plot of the shift in the strange quark condensate as characterized by Σ𝑠̄𝑠 defined in Eq. (56). Right: Plot of the renormalized magnetization as a function 
of the magnetic field.

where prime on ℑ𝐻 represents its derivative with respect to 𝑒𝐻 . For an alternative version of this expression, see Eq. (63) of Ref. [35]. 
The next-to-leading order contribution due to two-loop diagrams is

(6)
𝑟 =

𝑚̊4
𝜋

(4𝜋𝑓 )2

[
1

2(4𝜋)2
log Λ2

𝑚̊2
𝜋

+ 1
18(4𝜋)2

log Λ2

𝑚̊2
𝜂

+ 8(𝐿𝑟4 +𝐿
𝑟
5) − 16(𝐿𝑟6 +𝐿

𝑟
8)

]
′(𝑚̊𝜋 )

+
𝑚̊2
𝜋𝑚̊

2
𝐾

(4𝜋𝑓 )2

[
− 1
9(4𝜋)2

log Λ2

𝑚̊2
𝜂

+ 8(𝐿𝑟4 − 2𝐿𝑟6)

][
2′(𝑚̊𝜋 ) +′(𝑚̊𝐾 )

]
+

𝑚̊4
𝐾

(4𝜋𝑓 )2

[
4

9(4𝜋)2
log Λ2

𝑚̊2
𝜂

+ 8(2𝐿𝑟4 +𝐿
𝑟
5) − 16(2𝐿𝑟6 +𝐿

𝑟
8)

]
′(𝑚̊𝐾 )

−4(𝑒𝐻)2

(4𝜋𝑓 )2
[
𝐿𝑟9 +𝐿

𝑟
10
] [′(𝑚̊𝜋 ) +′(𝑚̊𝐾 )

]
+ 8(𝑒𝐻)

(4𝜋𝑓 )2
[
𝐿𝑟9 +𝐿

𝑟
10
] [(𝑚̊𝜋 ) +(𝑚̊𝐾 )

]
, (59)

where (𝑚𝜙) =
(𝑒𝐻)
(4𝜋)2 𝐻,2(

𝑚2
𝜙

𝑒𝐻
) and ′(𝑚𝜙) is its derivative with respect to 𝑒𝐻 . Finally, the renormalized magnetization is scale-

invariant, as follows from the scale-invariance of 𝐻 and 𝑒𝐻 .

On the right panel of Fig. 3, we plot the renormalized magnetization for PDG parameters. Unlike the other plots, the size 
of uncertainties associated with the (𝑝6) LECs leads to a renormalized magnetization that almost covers the entire plot and is 
therefore not particularly informative. This is unlike the quark condensate shifts plotted previously. The renormalized magnetization 
(normalized by 𝑚2

𝜋 ) is at least an order of magnitude smaller compared to the relative shift of the quark condensates, defined in 
Eq. (46) and (56), modulo the additive constant of plus one. Consequently, the impact of the LECs is more prominent in the plots – 
this was also observed in the study of finite volume effects in a magnetic field, see Ref. [41]. Therefore, we plot the uncertainty in 
the renormalized magnetization that arises due to the uncertainties in the (𝑝4) LECs (shown in light blue). We find that the vacuum 
at this order is likely to be paramagnetic, although the (𝑝6) result allows the possibility of a diamagnetic vacuum at low external 
fields. The magnetization remains negative for 𝑒𝐻 ≲ 0.9𝑚2

𝜋 and becomes positive for larger values of the magnetic field.

5. Summary

In this work, we have studied the QCD vacuum in a uniform background magnetic field using three-flavor 𝜒PT. In particular, 
we have calculated the vacuum free energy, light and strange quark condensate shifts and the renormalized magnetization. The 
calculation of the (𝑝6) vacuum free energy (density) is particularly non-trivial though as we have noted there are many simplifying 
features. By utilizing the renormalization group equations associated with the running of the low-and-high-energy constants, we 
have checked explicitly that the scale-dependence in the chiral logs are canceled precisely by those in the low-and-high energy 
constants. We also compared the light-quark condensate shift to that from a recent lattice study and find that (𝑝6) results are in 
better agreement than the result at (𝑝4). Finally, we studied the renormalized magnetization, which at (𝑝4) is positive definite but 
due to the uncertainties in the LECs can be either positive or negative at (𝑝6).
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Appendix A. Useful renormalized LECs and constants for renormalization

In this appendix, we list quantities that are necessary for renormalizing the one and two-loop contributions to the free energy in 
a background magnetic field. We begin with the constants Γ𝑖 and Δ𝑖 necessary to determine the running of 𝐿𝑟

𝑖
and 𝐻𝑟

𝑖

Γ4 =
1
8
, Γ5 =

3
8
, Γ6 =

11
144

, Γ7 = 0, Γ8 =
5
48
, Γ9 =

1
4
, Γ10 = −1

4
, Δ1 = −1

8
, Δ2 =

5
24

. (A.1)

The running of the renormalized low-energy-constant that appears in the (𝑝6) Lagrangian requires the constants Γ(2)19 and Γ(1)19 listed 
below

Γ(2)19 = 11
1944

, Γ(2)20 = 13
1296

, Γ(2)21 = 59
3888

, Γ(2)61 = 0, Γ(2)62 = 0, Γ(2)94 = −119
162

(A.2)

Γ(1)19 = 1
(4𝜋)2

1517
93312

, Γ(1)20 = − 1
(4𝜋)2

1517
62208

, Γ(1)21 = 1
(4𝜋)2

1517
186624

, Γ(1)61 = 0 (A.3)

Γ(1)62 = 0, Γ(1)94 = − 1
(4𝜋)2

1517
7776

. (A.4)

Γ(𝐿)
𝑖

are particular linear combinations of the (𝑝4 LECs that determine the running of 𝐷𝑟
𝑖
,

Γ(𝐿)19 = +44
81
𝐿𝑟1 +

8
81
𝐿𝑟2 +

10
81
𝐿𝑟3 +

1
3
𝐿𝑟4 −

1
4
𝐿𝑟5 +

4
27
𝐿𝑟6 −

32
27
𝐿𝑟7 −

1
6
𝐿𝑟8 (A.5)

Γ(𝐿)20 = −22
27
𝐿𝑟1 −

4
27
𝐿𝑟2 −

5
27
𝐿𝑟3 +

1
3
𝐿𝑟4 +

13
12
𝐿𝑟5 −

17
9
𝐿𝑟6 +

1
9
𝐿𝑟7 −

31
18
𝐿𝑟8 (A.6)

Γ(𝐿)21 = +22
81
𝐿𝑟1 +

4
81
𝐿𝑟2 +

5
81
𝐿𝑟3 +

7
9
𝐿𝑟4 −

1
27
𝐿𝑟5 −

31
27
𝐿𝑟6 +

5
27
𝐿𝑟7 (A.7)

Γ(𝐿)61 = −3
4
(𝐿𝑟9 +𝐿

𝑟
10) (A.8)

Γ(𝐿)62 = −1
4
(𝐿𝑟9 +𝐿

𝑟
10) (A.9)

Γ(𝐿)94 = −176
27

𝐿𝑟1 −
32
27
𝐿𝑟2 −

40
27
𝐿𝑟3 − 4𝐿𝑟4 −

16
9
𝐿𝑟6 −

88
9
𝐿𝑟7 , (A.10)

which are useful to determine their running. For succinctness, we only list the running of the particular combinations of 𝐷𝑟
𝑖

that 
appear in the free energy, chiral condensates and renormalized magnetization,

Λ 𝑑

𝑑Λ
[𝐷𝑟

19 +𝐷
𝑟
20 +𝐷

𝑟
21] =

13
9
𝐿𝑟4 +

43
54
𝐿𝑟5 −

26
9
𝐿𝑟6 −

8
9
𝐿𝑟7 −

17
9
𝐿𝑟8 (A.11)

Λ 𝑑

𝑑Λ
[3𝐷𝑟

19 +𝐷
𝑟
20 −𝐷

𝑟
21] = −𝐿𝑟4 +

4
9
𝐿𝑟5 + 2𝐿𝑟6 − 4𝐿𝑟7 −

20
9
𝐿𝑟8 (A.12)

Λ 𝑑

𝑑Λ
[12𝐷𝑟

19 + 4𝐷𝑟
20 + 12𝐷𝑟

21 +𝐷
𝑟
94] =

32
3
𝐿𝑟4 +

8
9
𝐿𝑟5 −

64
3
𝐿𝑟6 −

64
3
𝐿𝑟7 −

80
9
𝐿𝑟8 (A.13)

Λ 𝑑

𝑑Λ
[4𝐷𝑟

19 + 12𝐷𝑟
20 + 4𝐷𝑟

21 −𝐷
𝑟
94] =

112
9
𝐿𝑟4 +

320
27

𝐿𝑟5 −
224
9
𝐿𝑟6 +

64
9
𝐿𝑟7 −

64
3
𝐿𝑟8 (A.14)

Λ 𝑑

𝑑Λ
[2𝐷𝑟

61 + 3𝐷𝑟
62] = −9

4
(𝐿𝑟9 +𝐿

𝑟
10) (A.15)

Λ 𝑑

𝑑Λ
[𝐷𝑟

61 + 6𝐷𝑟
62] = −9

4
(𝐿𝑟9 +𝐿

𝑟
10) (A.16)

Λ 𝑑

𝑑Λ

[160
9
𝐷𝑟

61 +
128
3
𝐷𝑟

62

]
= −24(𝐿𝑟9 +𝐿

𝑟
10) (A.17)[ ]
11

Λ 𝑑

𝑑Λ
32
9
𝐷𝑟

61 +
64
3
𝐷𝑟

62 = −8(𝐿𝑟9 +𝐿
𝑟
10) . (A.18)
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Appendix B. 𝝌PT Lagrangian required to compute the (𝒑𝟔) free energy

The free energy calculation requires the four-meson contribution from the (𝑝2) Lagrangian

2,4 =
1

24𝑓 2 𝑚̊
2
𝜋 (𝜋

0)4 + 1
12𝑓 2 𝑚̊

2
𝜋 (𝜋

0)2𝜂2 + 1
6𝑓 2 𝑚̊

2
𝜋𝜋

+𝜋−𝜂2 + 1
216𝑓 2 (16𝑚̊

2
𝐾
− 7𝑚̊2

𝜋 )𝜂
4

− 1
6𝑓 2 [2(𝜋

0)2𝐷𝜇𝜋+𝐷𝜇𝜋− + 𝜋+𝜋−{2𝜕𝜇𝜋0𝜕𝜇𝜋0 − 𝑚̊2
𝜋 (𝜋

0)2}]

− 1
6𝑓 2 𝜋

+𝜋−[2𝐷𝜇𝜋+𝐷𝜇𝜋− − 𝑚̊2
𝜋𝜋

+𝜋− +𝐷𝜇𝐾+𝐷𝜇𝐾− − 𝑚̊2
𝐾
𝐾+𝐾−]

− 1
6𝑓 2𝐾

+𝐾−[2𝐷𝜇𝐾+𝐷𝜇𝐾− − 𝑚̊2
𝐾
𝐾+𝐾− +𝐷𝜇𝜋+𝐷𝜇𝜋− − 𝑚̊2

𝜋𝜋
+𝜋−]

− 1
6𝑓 2 [2𝐾

0𝐾̄0𝜕𝜇𝐾
0𝜕𝜇𝐾̄0 − 𝑚̊2

𝐾
(𝐾0𝐾̄0)2]

− 1
12𝑓 2 [𝐾

0𝐾̄0𝜕𝜇𝜋
0𝜕𝜇𝜋0 + (𝜋0)2𝜕𝜇𝐾0𝜕𝜇𝐾̄0 − (𝑚̊2

𝜋 + 𝑚̊
2
𝐾
)(𝜋0)2𝐾0𝐾̄0]

− 1
12𝑓 2 [𝐾

+𝐾−𝜕𝜇𝜋
0𝜕𝜇𝜋0 + (𝜋0)2𝐷𝜇𝐾+𝐷𝜇𝐾− − (𝑚̊2

𝜋 + 𝑚̊
2
𝐾
)(𝜋0)2𝐾+𝐾−]

− 1
12𝑓 2 [𝐾

0𝐾̄0𝐷𝜇𝜋
+𝐷𝜇𝜋− + 𝜋+𝜋−𝜕𝜇𝐾0𝜕𝜇𝐾̄0 − (𝑚̊2

𝜋 + 𝑚̊
2
𝐾
)𝜋+𝜋−𝐾0𝐾̄0]

− 1
6𝑓 2 [𝐾

+𝐾−𝜕𝜇𝐾
0𝜕𝜇𝐾̄0 +𝐾0𝐾̄0𝐷𝜇𝐾

+𝐷𝜇𝐾− − 2𝑚̊2
𝐾
𝐾+𝐾−𝐾0𝐾̄0]

− 1
12𝑓 2 [3𝐾

+𝐾−𝜕𝜇𝜂𝜕
𝜇𝜂 + 3𝜂2𝐷𝜇𝐾+𝐷𝜇𝐾− + (𝑚̊2

𝜋 − 3𝑚̊2
𝐾
)𝐾+𝐾−𝜂2]

− 1
12𝑓 2 [3𝐾

0𝐾̄0𝜕𝜇𝜂𝜕
𝜇𝜂 + 3𝜂2𝜕𝜇𝐾0𝜕𝜇𝐾̄0 + (𝑚̊2

𝜋 − 3𝑚̊2
𝐾
)𝐾0𝐾̄0𝜂2] ,

(B.1)

the tree-level contribution from the (𝑝4) Lagrangian

4,0 = (4𝐿6 − 2𝐿8 −𝐻2)(𝑚̊2
𝜋 + 2𝑚̊2

𝐾
)2 + 4(2𝐿8 +𝐻2)(𝑚̊4

𝜋 + 2𝑚̊4
𝐾
) + 4

3
(𝐿10 + 2𝐻1)(𝑒𝐻)2 , (B.2)

the two-meson contribution from the (𝑝4) Lagrangian

4,2 =
4𝐿4
𝑓 2 (𝑚̊2

𝜋 + 2𝑚̊2
𝐾
)[2𝐷𝜇𝜋+𝐷𝜇𝜋− + 𝜕𝜇𝜋0𝜕𝜇𝜋0 + 2𝐷𝜇𝐾+𝐷𝜇𝐾− + 2𝜕𝜇𝐾0𝜕𝜇𝐾̄0 + 𝜕𝜇𝜂𝜕𝜇𝜂]

+
4𝐿5

𝑓 2 [𝑚̊2
𝜋 (2𝐷𝜇𝜋

+𝐷𝜇𝜋− + 𝜕𝜇𝜋0𝜕𝜇𝜋0) + 2𝑚̊2
𝐾
(𝐷𝜇𝐾+𝐷𝜇𝐾− + 𝜕𝜇𝐾0𝜕𝜇𝐾̄0) + 𝑚̊2

𝜂𝜕𝜇𝜂𝜕
𝜇𝜂]

−
8𝐿6

𝑓 2 (𝑚̊2
𝜋 + 2𝑚̊2

𝐾
)[𝑚̊2

𝜋{2𝜋
+𝜋− + (𝜋0)2} + 2𝑚̊2

𝐾
(𝐾+𝐾− +𝐾0𝐾̄0) + 𝑚̊2

𝜂𝜂
2]

−
64𝐿7

3𝑓 2 (𝑚̊2
𝜋 − 𝑚̊

2
𝐾
)2𝜂2

−
16𝐿8

𝑓 2 [𝑚̊4
𝜋𝜋

+𝜋− + 1
2 𝑚̊

4
𝜋 (𝜋

0)2 + 𝑚̊4
𝐾
(𝐾+𝐾− +𝐾0𝐾̄0) + 1

3 (4𝑚̊
4
𝐾
− 4𝑚̊2

𝜋𝑚̊
2
𝐾
+ 3

2 𝑚̊
4
𝜋 )𝜂

2]

+
2𝑖𝐿9

𝑓 2 𝑒𝐹𝜇𝜈(𝐷𝜇𝜋+𝐷𝜈𝜋− +𝐷𝜇𝐾+𝐷𝜈𝐾−) −
2𝐿10

𝑓 2 (𝑒𝐹𝜇𝜈 )(𝑒𝐹 𝜇𝜈 )(𝜋+𝜋− +𝐾+𝐾−) , (B.3)

and the tree-level contribution from the (𝑝6) Lagrangian

6,0 = 2𝑚̊6
𝜋 [4𝐶19 + 12𝐶20 + 4𝐶21 −𝐶94] + 4𝑚̊4

𝜋𝑚̊
2
𝐾
[12𝐶19 + 4𝐶20 + 12𝐶21 +𝐶94]

− 32𝑚̊2
𝜋𝑚̊

4
𝐾
[3𝐶19 +𝐶20 − 3𝐶21] + 64𝑚̊6

𝐾
[𝐶19 +𝐶20 +𝐶21]

+ 32
9
(𝑒𝐻)2𝑚̊2

𝜋 [2𝐶61 + 3𝐶62] +
32
9
(𝑒𝐻)2𝑚̊2

𝐾
[𝐶61 + 6𝐶62] . (B.4)

Appendix C. Useful integrals

The contribution to the one-loop effective potential of a pair of charge mesons, 𝜙 and 𝜙† in Eq. (31) is

𝐼𝐻 (𝑚𝜙) =
𝑒𝐻

2𝜋

∞∑
𝑁=0

∫
𝑝0 ,𝑝𝑧

ln[𝑝20 + 𝑝
2
𝑧 +𝑚

2
𝐻
] , (C.1)

where the sum is over the Landau levels, 𝑚2
𝐻
=𝑚2

𝜙
+(2𝑁+1)|𝑒𝐻| and the integrals are ∫

𝑝0𝑝𝑧
≡ ∫ 𝑑𝑝0

2𝜋
𝑑𝑝𝑧
2𝜋 . The divergence is independent 
12

of the magnetic field,
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𝐼𝐻 (𝑚𝜙) =𝐼div𝐻 (𝑚𝜙) + 𝐼 f in𝐻 (𝑚𝜙) (C.2)

𝐼div
𝐻

(𝑚𝜙) = −
𝑚4
𝜙

2(4𝜋)2

[
1
𝜀
+ 3

2
+ log Λ2

𝑚2
𝜙

]
+ (𝑒𝐻)2

6(4𝜋)2

[
1
𝜀
+ log Λ2

𝑚2
𝜙

]
(C.3)

𝐼 f in
𝐻

(𝑚𝜙) = − 1
(4𝜋)2

∞

∫
0

𝑑𝑠

𝑠3
𝑒
−𝑚2

𝜙
𝑠
[

𝑒𝐻𝑠

sinh 𝑒𝐻𝑠
− 1 + (𝑒𝐻𝑠)2

6

]
. (C.4)

The finite contribution can be written in terms of a dimensionless integral, ℑ𝐻 (𝑧), where 𝑧 is a dimensionless ratio, 𝑧 =
𝑚2
𝜙

𝑒𝐻
,

𝐼 f in
𝐻

(𝑚𝜙) =
(𝑒𝐻)2

(4𝜋)2
ℑ𝐻 (𝑧)

ℑ𝐻 (𝑧) = −

∞

∫
0

𝑑𝑦
𝑒−𝑧𝑦

𝑦3

[
𝑦

sinh𝑦
− 1 + 𝑦2

6

]
= 4𝜁 (1,0)(−1, 𝑧+12 ) + ( 𝑧2 )

2(1 − 2 log 𝑧

2 ) +
1
6 (log

𝑧

2 + 1) ,

(C.5)

where 𝜁 (𝑠, 𝑎) is the Hurwitz zeta function with the two numbers in the subscripts indicating the number of derivatives with respect 
to 𝑠 and 𝑎 respectively.

The coincident Schwinger propagator of Eq. (22) can be written in terms of the dimensionless, negative definite integral

𝐻,𝑛(𝑧) =
∞

∫
0

𝑑𝑦
𝑒−𝑧𝑦

𝑦𝑛

(
𝑦

sinh𝑦
− 1
)
. (C.6)

We only require the 𝑛 = 2 and 𝑛 = 1 integrals presented below, see Eq. (25) for an alternate version of the former.

𝐻,2(𝑧) = 2𝜁 (1,0)(0, 𝑧+12 ) − 𝑧(log 𝑧

2 − 1) (C.7)

𝐻,1(𝑧) = log 𝑧

2 −𝜓0

(
𝑧+1
2

)
. (C.8)

𝜓𝑛(𝑧) is the polygamma function that is related to the Γ(𝑧) function through derivatives

𝜓𝑛(𝑧) =
𝑑𝑛+1

𝑑𝑧𝑛+1
logΓ(𝑧) . (C.9)

Appendix D. Vacuum free energy (density)

The vacuum free energy (density) in the absence of the external field is

0 =  (2)
0 + (4)

0 + (6)
0 , (D.1)

where  (𝑛)
0 is the (𝑝𝑛) contribution,

 (2)
0 = 𝑓 2

2
(𝑚̊2

𝜋 + 2𝑚̊2
𝐾
) (D.2)

 (4)
0 = −(4𝐿𝑟6 − 2𝐿𝑟8 −𝐻

𝑟
2)(𝑚̊

2
𝜋 + 2𝑚̊2

𝐾
)2 − 4(2𝐿𝑟8 +𝐻

𝑟
2)(𝑚̊

4
𝜋 + 2𝑚̊4

𝐾
)

−
3𝑚̊4

𝜋

4(4𝜋)2

[
1
2
+ log Λ2

𝑚̊2
𝜋

]
−

𝑚̊4
𝜋

(4𝜋)2

[
1
2
+ log Λ2

𝑚̊2
𝐾

]
−

𝑚̊4
𝜋

4(4𝜋)2

[
1
2
+ log Λ2

𝑚̊2
𝜂

]
(D.3)

 (6)
0 =

𝑚̊6
𝜋

(4𝜋𝑓 )2

[
− 8𝐷𝑟

19 − 24𝐷𝑟
20 − 8𝐷𝑟

21 + 2𝐷𝑟
94 + 12

(
𝐿𝑟4 +𝐿

𝑟
5 − 2𝐿𝑟6 − 2𝐿𝑟8

)
log Λ2

𝑚̊2
𝜋

+ 4
27
(
3𝐿𝑟4 −𝐿

𝑟
5 − 6𝐿𝑟6 + 48𝐿𝑟7 + 18𝐿𝑟8

)
log Λ2

𝑚̊2
𝜂

+ 3
8(4𝜋)2

(
log Λ2

𝑚̊2
𝜋

)2

+ 1
12(4𝜋)2

log Λ2

𝑚̊2
𝜋

log Λ2

𝑚̊2
𝜂

+ 7
648(4𝜋)2

(
log Λ2

𝑚̊2
𝜂

)2 ]

+
𝑚̊4
𝜋𝑚̊

2
𝐾

(4𝜋𝑓 )2

[
− 48𝐷𝑟

19 − 16𝐷𝑟
20 − 48𝐷𝑟

21 − 4𝐷𝑟
94 + 24

(
𝐿𝑟4 − 2𝐿𝑟6

)
log Λ2

𝑚̊2
𝜋

8 ( 𝑟 𝑟 𝑟 𝑟 𝑟
) Λ2
13

−
9

3𝐿4 − 2𝐿5 − 6𝐿6 + 48𝐿7 + 20𝐿8 log
𝑚̊2
𝜂
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− 1
3(4𝜋)2

log Λ2

𝑚̊2
𝜋

log Λ2

𝑚̊2
𝜂

− 1
9(4𝜋)2

(
log Λ2

𝑚̊2
𝜂

)2 ]

+
𝑚̊2
𝜋𝑚̊

4
𝐾

(4𝜋𝑓 )2

[
96𝐷𝑟

19 + 32𝐷𝑟
20 − 96𝐷𝑟

21 + 16
(
𝐿𝑟4 − 2𝐿𝑟6

)
log Λ2

𝑚̊2
𝐾

− 2
9
(
32𝐿𝑟5 − 288𝐿𝑟7 − 160𝐿𝑟8

)
log Λ2

𝑚̊2
𝜂

− 2
9(4𝜋)2

log Λ2

𝑚̊2
𝐾

log Λ2

𝑚̊2
𝜂

+ 10
27(4𝜋)2

(
log Λ2

𝑚̊2
𝜂

)2 ]

+
𝑚̊6
𝐾

(4𝜋𝑓 )2

[
− 64𝐷𝑟

19 − 64𝐷𝑟
20 − 64𝐷𝑟

21 + 16
(
2𝐿𝑟4 +𝐿

𝑟
5 − 4𝐿𝑟6 − 2𝐿𝑟8

)
log Λ2

𝑚̊2
𝐾

+ 128
27
(
3𝐿𝑟4 + 2𝐿𝑟5 − 6𝐿𝑟6 − 6𝐿𝑟7 − 6𝐿𝑟8

)
log Λ2

𝑚̊2
𝜂

+ 8
9(4𝜋)2

log Λ2

𝑚̊2
𝐾

log Λ2

𝑚̊2
𝜂

− 32
81(4𝜋)2

(
log Λ2

𝑚̊2
𝜂

)2 ]
. (D.4)
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