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Abstract—Generating images with realistic material appear-
ance using a physically-based renderer demands significant
time and human labor. The images are used in psychophysical
experiments to study human perception of material appearance
attributes, such as glossiness. Recently, deep learning-based image
synthesis models have emerged as a promising approach for
generating realistic images with less human supervision. Deep
Generative Models are deep learning-based models that learn to
generate unique and novel images based on a given training data
distribution. Using them for image synthesis is fast and manually
less tiresome. An additional benefit these Deep Generative Models
offer is latent space encodings that may help to better understand
the feature space of gloss and its perception. In this study,
we propose to explore the possibility of using Deep Generative
Models for realistic image synthesis, focusing on gloss appearance
and evaluating the efficiency of such gloss generation process
using psychophysical experiments. Additionally, we build tools
to extract the latent space of generative models to use them as a
feature space representation of gloss appearance and perception.
Finally, we analyse the trends and patterns in the learnt feature
space to aid gloss appearance modelling.

Index Terms—Gloss Perception, Image Synthesis, Material
Appearance Modelling, Learning a Feature Space Representation

I. INTRODUCTION

Perception of material appearance and its properties is fun-
damental to humans for interacting with the environment. The
human visual system (HVS) has complex and sophisticated
mechanisms for appearance perception that are a product
of millions of years of evolution and remain poorly under-
stood [1], [2]. Gloss – together with color, texture, and translu-
cency – is one of the fundamental attributes of how objects and
materials look [3]. Although gloss is primarily understood as
a surface reflectance property, the link between instrumentally
measured and human perceived gloss is complex and non-
monotonic [4], [5]. Multiple handcrafted features have been
proposed to predict gloss appearance from image statistics [6]–
[8], but handcrafted features are rarely robust enough to
account for complex influences from shape, illumination, and
observation geometry [9]–[11].

Perceptual studies often involve computer graphics to gen-
erate the experimental stimuli. The process of rendering im-
ages with glossy surfaces involves understanding the complex
interactions between all the intrinsic (optical properties) and

extrinsic (environmental) factors. Most images generated using
physically-based renderers are labelled using the physical
parameter values. This does not help us to understand how
the human visual system deciphers gloss appearances and how
each factor influences gloss perception in humans. We need a
better representation for navigating the gloss appearance space.
It is not easy to handcraft features for human gloss perception
as it is not fully understood how the human visual system
deciphers gloss appearance into individual factors [2], and
more efficient feature space is needed. Apart from that, using
a physically-based renderer (such as Mitsuba [12]) is both
very time-consuming and human labor-intensive. It would be
desirable to develop a way to render or generate images with
a realistic gloss appearance that requires minimal supervision.

Deep Generative Models have shown promising results in
generating realistic images. Image synthesis in deep learning
refers to generating images using neural networks. Deep
Generative Models are based on deep learning. They learn
to generate novel images based on a training data distribution.
They first learn to model the distribution in the images in
the training data and then use the learnt patterns to generate
novel images that are not part of the training dataset. Deep
Generative Models are considered unsupervised as they neither
need manual supervision during training nor annotations for
the data they are being trained on. The learning process is
data-driven, i.e., the models learn to form the given data
without needing any target labels for the given data. They
have demonstrated capabilities in generating realistic novel
images that are not part of the training data. If we can generate
realistic material appearance using Deep Generative Models,
it would save us significant amounts of time and labor. Deep
Generative Models try to develop an understanding of the
statistical structure in the data distributions. In developing this
understanding, Deep Generative Models develop a latent space
representation for the data distribution. Thus, apart from aiding
in generating images, they also help us encode images into a
new latent space. The latent space of these models can be used
as a representational space for material appearance attributes.

The models encode the input image into its internal latent
space and then decode the latent vector from its internal latent
space into output images. During training, the model optimises
this encoding and decoding process and learns to model the
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statistical structure in the data distribution of the input images
in its internal latent space. This way, in an unsupervised
manner, we end up with a new feature space representation
of the images in the training dataset. We can use this new
feature space to better understand the dataset. It is believed
that the HVS exploits statistical structure and regularities in
the environment to derive information about our surroundings
and develop perception and awareness of the world [13]. The
development of latent space in Deep Generative Models is
similar, and it is hypothesized that such feature space can
eventually be used to model the perception of the HVS.

In this work, we trained a Deep Generative Model with low
number of physically-based renderings of glossy objects and
synthesized novel images with this model to check whether
it can produce realistic images. We report the results of
a psychophysical experiment that we conducted to assess
the convincingness of the synthesized images. Afterward, we
explore the latent space to understand the feature space of
gloss and navigate through it in a meaningful manner.

II. RELATED WORK

Several attempts have been made in developing a feature
representation for material appearance for surface gloss [7],
[14], surface roughness [15], [16], transparency [17], [18], and
translucency [19]–[21]. The studies use an analytical approach
to find diagnostic image features for material perception.
There is a significant challenge in this approach, since the
features may not be stable across a broad range of intrinsic
and extrinsic factors [1], [19]. An alternative approach in
the diagnosis of features for material appearance is a data-
driven one [22], [23]. These approaches attempt to extract
features of material appearance by modeling the statistical
distribution of material appearance across image samples. This
approach has demonstrated great potential in modeling human
perception [24]. Especially with the rapid progress of deep
neural networks to learn patterns from enormous and diverse
datasets, data-driven approaches show a significant potential in
perception modeling [25]–[27]. Convolutional neural networks
can be used to extract features from the images.

For long, deep learning-based techniques were used to
analyse images for content objects etc. Recently, with the
advancements in deep learning-based techniques, neural net-
works can generate images from random noise [28], seed [29],
or text inputs [30], with remarkable realism. These networks
can learn an image generation procedure from the training
dataset’s images. During training, they model the statistical
structure in the distribution of images in the training set and
construct an internal latent space representation for all the
images in the training dataset. With models that generate accu-
rate, realistic images, the internal latent space can be extracted
and used as an efficient and compact feature representation of
the distribution of images in the training dataset.

Generative Adversarial Networks (GANs) [31] is a break-
through architecture on which most of the state-of-the-art
Deep Generative Models are based. GANs consist of two
deep neural networks: a discriminator and a generator. The

task of the generator is to generate images from random input
vectors, similar to the training data distribution. Discriminator
judges whether the image presented is from the training
data distribution or the generator generates it. This way, the
generator is forced to get better at synthetic image generation.

StyleGANs can generate various styles at high-resolution
[32] and also be able to control the styles in the generated
images. For instance, Celeb-A dataset is a collection of high-
resolution images of the faces of celebrities. StyleGAN was
trained on this dataset. One can fine-tune the faces generated
by the model as one wishes. Using the learned inputs to
the network, one could control the face’s sharpness, the eye-
brows’ width, and the hair’s color. This way, StyleGANs were
able to perform high-resolution image synthesis. However,
StyleGANs still suffered from multiple issues, like water
droplet artefacts and shift-invariance. Blob artefacts have been
found in images generated by StyleGANs. StyleGAN2 [29]
and StyleGAN2-ADA [33] propose some improvements to
tackle these issues. Although StyleGAN2 has solved the issue
of high-resolution image synthesis, the problem of requiring
enormous-sized datasets to train GANs persists. StyleGAN2-
ADA solves the issue of having large datasets and provides
a way to train deep generative models on little data [33].
ADA stands for Adaptive Discriminator Augmentation. Style-
GAN2 makes use of Adaptive Discriminator Augmentation
instead of Stochastic Discriminator Augmentation. This way,
StyleGAN2-ADA provides a way to train image synthesis
models with limited data.

Some attempts have been made to construct a feature
space for material appearance based on deep learning-based
models’ internal latent space embedding. Storrs et al. [24]
used Variational Autoencoder (VAE) to model the distribution
in images with gloss and matte surfaces . The study has
shown that the image features from the internal latent space
encoding of trained VAE models correlate well with human
gloss perception and even mimic the mistakes that humans
make in gloss judgments.

Generative Adversarial Networks (GANs) show improve-
ments over VAEs in realistic image synthesis. Liao et al. [34]
have generated realistic images of translucent objects with
GANs and noticed that structured perceptual attributes emerge
in the model’s representation. They suggest that Deep Gener-
ative Models can discover an efficient and compact feature
representation space for material appearance and can be po-
tentially used to mimic the perception model of the HVS.

III. METHODOLOGY

Building upon the literature, we propose to train
StyleGAN2-ADA [33] on physically-based renderings of
glossy objects. We then evaluate the realism of images gener-
ated by the trained model, build tools to encode images into
the latent space of the trained model and vice versa, build
tools to traverse and analyse the feature space representation
to check for gloss appearance attributes and analyse the
usability of such feature space in aiding understanding of gloss
appearance.



Fig. 1. Some samples from the training dataset.

A. StyleGAN2-ADA

StyleGAN2-ADA [33] is a Generative Adversarial Net-
work designed by researchers at NVIDIA. The implementa-
tion provided by NVIDIA in the official GitHub repository
is used for all the experiments (https://github.com/NVlabs/
stylegan2-ada-pytorch). No specific changes have been made
to the network architecture and training procedures. Style-
GANs do not use the latent space directly. They first map these
latent vectors into an extended latent space before generating
an image. In the latent space Z, z is a 512 feature vector. Seed
is the number used to generate this 512 feature vector. Then
this latent vector is mapped into the extended latent space W. A
vector w (w ∈ W ) is of dimensions 1×14×512. StyleGAN2-
ADA applies data augmentation after the input component for
both the generator and the discriminator. StyleGAN2-ADA
solves the issue of collecting images to create large-scale
datasets. It involves flipping the images, rotating them by a
small angle, and zooming in on the image, among others.

B. Dataset

We used 132 physically-based renderings of glossy spher-
ical objects rendered with Mitsuba [12] (can be accessed at
https://github.com/davitgigilashvili/GANs4GlossEUVIP). The
objects vary in surface roughness, lightness, and translucency
– covering a broad range of gloss appearances. To increase
the size of the dataset, we performed the augmentations by
rotating the image by 90, 180 and 270 degrees, thus quadru-
pling the size of the dataset to 528 images. The examples of
the images that were used for training are shown in Fig. 1.

C. Training

We use model weights from the pre-trained model on the
(Flickr-Faces-HQ) FFHQ dataset [29] and transfer learning
to train StyleGAN2-ADA to generate images with a realistic
gloss appearance. We train the model for 5000kimg (i.e.
how many images are evaluated; 528 × number of epochs).
Training such an advanced GAN like StyleGAN2-ADA re-
quires much computational power. We have used two NVIDIA
TITAN RTX GPUs to run all our experiments. We train the
model to generate images with a resolution of 256×256 pixels.

The batch size used for training the model is 32, parallelised
over two GPUs. A learning rate of 0.0025 is used for the
transfer learning process. It took one day, 17 hours and 42
minutes to train the StyleGAN2-ADA model for 5000 kimg.

D. Image Synthesis

In StyleGAN-based architectures, a mapping network is
used to map vectors from latent space Z to extended latent
space W . These latent vectors w are directly plugged into the
various layers of the network, thus giving us direct control to
alter the styles in the images being generated. Since we do not
have any understanding of the latent space of the model, to
explore this latent space, we need to sample the feature space
randomly. To do this, we randomly generate latent vectors
from the space. Most random number generators are built on
algorithms that start with a base value as an input known as
a seed. For the same seed, we always get the same output
random value. This helps us to lock random vectors across
the experiments. We use seed values from 0 to 2000 and
generate corresponding images using the trained StyleGAN2-
ADA network. The first step in generating images from the
seed involves generating latent vector z from the seed. Later,
the latent vector z (1× 512 feature space) is mapped into the
extended latent space W . The resulting vector w (w ∈ W ) is
fed to the generator of StyleGAN2-ADA to generate images.

E. Evaluation

We evaluate the images using two methods. The first one in-
volves using an image quality metric called Frechet Inception
Distance (FID), which is a popular method to compare real
and synthetic images [35]. We calculate FID after every 400
epochs, 50k images are generated from randomly sampling
the latent space. FID is calculated on these 50k images by
comparing them to the images in the training set.

The second method to evaluate performance was psy-
chophysical experiment, which was hosted at the online
QuickEval [36] platform. 19 observers participated in the
experiment – mostly researchers and graduate students with
substantial knowledge of graphics and appearance. In total,
the observers were shown 60 images, 30 real images and
30 synthetic images. The real images were selected from the
training set. Some of the synthetic images were those that
were trying to mimic the respective real ones, while others
corresponded to the random vectors from the latent space.
The observers were asked to judge whether the image was
real or synthetic. We explained to them that Real means that
the images were generated using physically-based rendering
with human supervision, while Synthetic ones were produced
by GANs without human supervision. They were instructed to
judge the realism of the images solely based on the realism
of the gloss on the surface of the sphere.

F. Latent Space Exploration

We use the algorithm discussed above to generate W space
latent vectors for all the images in the training dataset. The
latent vector z (z ∈ Z) is of size 1 × 512, and the extended



Fig. 2. The first objective is the synthesis of the realistic images. The original
images are shown in the top row. They are projected into the extended latent
space W . Synthetic images generated from the corresponding w latent vectors
are shown in the bottom row that look highly similar to those in the top row.

Fig. 3. Interpolations of images (performed in the latent W space) generated
between the two target images shown on the left and right of each row.

latent space vectors w are of the size 1× 14× 512. We have
generated the corresponding latent vector w for every input
image in the training dataset. We then use this latent vector
w to generate the image. This generated image is referred to
as a fake image. The original image is referred to as a real
image. The examples are illustrated in Fig. 2.

We perform linear interpolation between the latent space
encodings in the W space. To generate interpolations between
Image A and Image B, we first find the latent space encod-
ings of these two images in GAN’s latent space. We then
perform linear interpolation between the two corresponding
latent codes generating a set of new latent codes. We then
generate images from these interpolated latent codes. In other
words, we can morph between two target images to generate
interpolations between these two images. Fig. 3 demonstrates
that the interpolations in the latent space W look perceptually
meaningful, which indicates that the space is well-developed.

We also explored the directions in the latent space. Ex-
ploring directions in the latent space means moving along
a specific dimension of the feature space and seeing how it
affects the resulting images generated. In this experiment, we
limit the directions to primary dimensions in the data, i.e. if
the latent space has 512 dimensions, we explore along these
512 directions only. This is a simple algorithm developed from
scratch by us to traverse through the latent space of the models.
However, there is a significant limitation here. We are only
exploring the directions along the primary dimensions. What
about the direction with a slope of 45 degrees with the two
primary directions? The possible directions are infinite in the
data. This can be addressed in future works.

Shen et al. [37] propose closed form factorisation, a simple
and efficient way to explore latent semantics in GANs to

Fig. 4. FID score of images generated (vertical) vs epochs trained (horizontal).

identify interpretable dimensions in the latent space of GANs
and to extract the underlying patterns. The algorithm identifies
semantically meaningful directions in the latent space by
decomposition on the model weights. The output of closed-
form factorisation is eigenvectors corresponding to the largest
eigenvalues that maximise the objective function. The objec-
tive function is to find the directions in the latent space of
GANs that reveal explanatory factors. Once we have extracted
the interpretable directions in the latent space, the next step
is to traverse through these directions to check how each
direction impacts the style of the generated images.

IV. RESULTS

A. Evaluation

Fig. 4 shows how the FID score changes across epochs. As
mentioned earlier, a smaller FID score implies that the images
generated are closer to the images used for training and thus
more realistic. This is a decent score, considering that it is
evaluated on 50,000 images randomly sampled from the latent
space. By increasing the number of images used for training,
we can lower the FID score and thus improve the realism
in the images generated. The results of the psychophysical
experiments are shown in Table I. 69.02 % of the times
observers judged real images as real and 30.98 % of the
times observers judged real images as synthetic. When it
came to synthetic images, 53.53 % of the times observers
judged synthetic images as synthetic and 46.48 % of the times
observers judged synthetic images as real. This implies that it
was difficult for observers to assess if the images shown were
real or synthetic and shows the potential of our models to
generate realistic images that can trick humans.

B. Interpretable Directions

We have extracted 512 directions from the latent space and
traverse through them. In total, for images generated from
seeds 0 to 2000, we have generated the images by moving
5, 10, -5, -10 steps in each of the 512 directions exploited
from the latent space. It is not manually possible to analyse
all the images extracted, neither fits it within the scope of
this paper. Hence, we show some of the significant directions
extracted from closed form factorisation. From Fig. 5, we can
see that by moving in the direction of the first interpretable
direction, we can control the surface roughness and hence,
glossiness on the sphere. This way by extracting interpretable



TABLE I
THE RESULTS OF THE PSYCHOPHYSICAL EXPERIMENT. OBSERVERS

FOUND IT CHALLENGING TO DISTINGUISH REAL AND SYNTHETIC IMAGES.

Judged Correctly Judged Incorrectly
Real 69.02% 30.98%
Synthetic 53.52% 46.48%

directions, we can control the styles in images generated by
our StyleGAN2-ADA model. We can see that, the surface
roughness changes, making the spheres appear less glossy
and more translucent. As the surface becomes smoother, we
see that the spheres appear more glossy and less translucent.
This is an interesting interaction between translucency and
glossiness that automatically appears in the latent space of
the model without any human supervision. From Fig. 6 we
can see that when moving in the direction of the second
extracted direction, we alter the style of translucency in the
resulting images. The level of glossiness is more or less
constant, but the level of translucency changes. This is very
interesting, cause moving in the first direction altered both
gloss and translucency in an inversely proportional relation,
but moving in the second direction only alters translucency
without altering gloss. From Fig. 7 we can see that when
moving in the third interpretable direction, we alter the size
of the sphere in resulting images. Specular highlights also
change slightly, but the change in size is more apparent. Thus,
using the extracted directions, we can alter the desired styles
like glossiness, translucency or size of the sphere in resulting
images. Analysing more directions would give us more control
over the appearance attributes and style in synthesized images.

This is a baseline study to demonstrate that the approach
can produce realistic images with very limited training set
and to make first steps toward explainability. The work has
limitations that will be addressed in future works. While fine
tuning works for many cases, future work can explore potential
changes in the architecture as well as training from scratch
on a more specific dataset. Currently we have 512 dimen-
sions that are perceptually non-uniform and exhibit cross-
contaminations among perceptual attributes (e.g. size and gloss
can change in the same dimension). Dimensionality reduction
techniques, such as PCA, can be used to reduce dimensionality
of the space from 512 to more manageable and perceptually
meaningful dimensions, and psychophysical experiments will
be needed to scale each dimension. Besides, we can use
differentiable rendering to map the latent space back to the
optical properties [38]. In addition to FID, future works can
use perceptual loss-based methods for evaluating the results.
Finally, although the approach is generalizable, the generated
images are limited by the training dataset that the model was
exposed to (e.g. single shape and environment map). Future
works should include more diverse training datasets with more
shapes, materials, and lighting conditions.

V. CONCLUSION
In this study, we have explored two things: 1) the potential

of Deep Generative Models for generating images with realis-

Fig. 5. Seed 6, 7, and 10 (from top to down, respectively). Moving in the
direction of first interpretable direction (the direction with largest eigen value).
From left to right, 10 steps in positive direction, 5 steps in positive direction,
image from seed, 5 steps in negative direction, 10 steps in negative direction.

Fig. 6. Seed 1, 6, 13. Moving in the direction of second interpretable direction.

Fig. 7. Seed 1, 15, 16. Moving in the direction of third interpretable direction.

tic glossy surfaces from a limited training dataset; and 2) the
usability of internal latent space of Deep Generative Models
as a compact feature representation space for gloss appear-
ance and perception. We trained StyleGAN2-ADA model to
generate images of spheres with realistic glossy surfaces. We
built the tools to generate the images from seeds, from z and



w latent vectors. We have also built the tools to map images
to and from the internal latent space of StyleGAN2-ADA. We
then analysed usability of this latent space as a feature space
for gloss appearance and perception by extracted interpretable
directions from the latent space and moving in these directions.
It can be seen from our experiments and results that the images
generated by StyleGAN2-ADA trick human observers into
thinking that these were actually generated by human supervi-
sion in a physically based renderer. The results also show that
interesting interactions between gloss and translucency emerge
in the latent space of the trained model. This space can be used
to find relevant features for visual perception of gloss. From
linear interpolations between images, we can also see that
the latent space is quite well developed. However, there are
some limitations – some visual artifacts emerge due to a small
dataset size. This implies that the latent space of the model
contains some information gaps. Nevertheless, this shows the
potential of using Deep Generative Models to generate images
with realistic glossy surfaces even with a limited training set
and also the potential of latent space of these models to be
used as an efficient feature space for gloss appearance. It
is known that in neural networks, the initial layers of the
model are responsible for constructing low level features, and
the final layers of the model are responsible for constructing
higher level features. As a future work, the feature space can
be further studied to understand which layers of the model
influence what parameters of gloss in the synthesized images.
Also, psychophyscial experiments need to be conducted to
study how human perception correlates with the trends and
patterns emerged in the latent space. Overall, using Deep
Generative Models for realistic glossy image synthesis shows
promising results and certainly merits future research.
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