
Lens Flare Attenuation Accelerator Design with
Deep Learning and High-Level Synthesis

1st David Fosca Gamarra
Department of Electronic Systems

NTNU
Trondheim, Norway

2nd Per Gunnar Kjeldsberg
Department of Electronic Systems

NTNU
Trondheim, Norway

3rd Henrik Sundbeck
Sony Semiconductors EU

Oslo, Norway

and a filter, also known as the Point Spread Function (PSF) [2].
The PSF is the impulse response of an optical system, charac-
terizing the system’s response to an individual point of light
source. Therefore, it is theoretically possible to retrieve the
underlying image by means of applying the inverse operation
of convolution, also known as deconvolution. However, the
reconstruction deconvolution algorithm can only be applied to
images taken by the same camera system used to characterize
the PSF [2]. In addition, deconvolution algorithms for stray
light attenuation have primarily been developed and tested for
static camera system setups, such as in microscopy, astronomy,
or healthcare applications [3]. Deploying these solutions in
dynamic and rapidly changing environments, such as in indus-
trial applications, introduces additional challenges. Factors like
camera motion, changing lighting conditions, and lens wear
and tear can significantly affect the PSF, necessitating frequent
PSF calibration for each of the RGB channels [4]. Iterative
deconvolution algorithms, like Richardson-Lucy, have shown
promise for image reconstruction in the presence of varying
PSFs. However, determining the optimal number of iterations
for achieving the best reconstruction is not straightforward. If
the stopping criterion is not chosen carefully, these algorithms
may introduce artifacts in the restored image, compromising
the quality of the reconstruction [5].

On the other hand, deep learning approaches, such as con-
volutional neural networks (CNNs), have shown remarkable
results in image restoration for lens flare artifacts attenuation
in recent years [6] [7] [8]. Through deep learning there is no
need for PSF characterization of a specific camera system,
enabling a camera agnostic solution for flare attenuation. Pre-
vious studies have demonstrated promising outcomes in flare
attenuation tasks using well-established convolutional neural
network (CNN) architectures, such as U-Net [9]. Additionally,
they successfully demonstrated the feasibility of using syn-
thetic flare datasets to train deep learning models for accurate
predictions on real-life data. By leveraging synthetic data
during the training phase, the deep learning model can learn
and capture the essential features and characteristics of flare
artifacts. However, implementing deep learning architectures
like convolutional networks for image processing inference
in edge devices also poses challenges. Traditional software-
based implementations of image processing algorithms are
not optimal for real-time systems [10]. Image processing via

Abstract—Lens flare a rtifacts a re u ndesired v isual distortions
caused by stray light, which can negatively impact the integrity
and quality of an image. These artifacts pose a significant chal-
lenge in industrial applications like automotive and surveillance,
where the quality and reliability of input images from cameras
are crucial. Artificial i ntelligence, p articularly d eep learning
neural networks, have shown promising results in attenuating
lens flare. In this work, a synthetic flare dataset is generated, and
an iterative training process that includes evaluation of transfer
learning is employed to develop FlareNet, the first compact
and lightweight U-Net based model for lens flare reduction.
The FlareNet architecture, with less than 150,000 parameters
comprising convolutional layers, demonstrates improvement in
image quality by reducing flare artifacts on synthetic test images
and real-life images, indicating its potential for achieving visually
satisfactory results despite having less than 0.5% of the weights
of the state-of-the-art neural architecture used for this same
application. To demonstrate the viability of using a model such
as FlareNet as a hardware accelerator, the neural network is
implemented in C++ using Vitis HLS. Synthesis and validation
are performed using the Vitis tool, and reports are analyzed
while experimenting with HLS optimization directives. Resource
utilization of less than 20% on a Zeus Zynq UltraScale FPGA
is shown but further work is needed to optimize the design for
real-time applications and effectively deploy the solution on an
FPGA.

Index Terms—Lens flare artifacts, Deep Learning, High Level
Synthesis (HLS).

I. INTRODUCTION

Photographs of scenes with a strong light source within
or near to the optics system’s field o f v iew t end t o present
lens flare a rtifacts. A lthough l ens fl are is ju st on e ty pe of
stray light phenomenon, it is particularly problematic as it
obstructs content in the image, reduces contrast and color
diversity, and negatively impacts overall image quality and
interpretability [1]. It can affect the performance of systems
in various domains, such as healthcare, industrial, security,
and automotive. There are approaches to physically modify
the optical system to prevent unwanted light from entering
through the lenses. For instance, this can be achieved through
the use of baffle lenses, which block stray l ight from entering
the optical system. However, this approach is typically costly
compared to a post-processing technique. Stray light is an
unwanted electromagnetic radiation which effect on an image
can be modeled mathematically by describing the observed
image as the convolution between a underlying clean image

979-8-3503-3757-0/23/$31.00 2023 IEEE, Author's postpring for university database

hardware implementation poses a more viable solution for
improving performance of image processing systems through
the development of specialized hardware accelerators. Field-
Programmable Gate Arrays (FPGAs) are integrated circuits
that allows for the development of custom logic for rapid
prototyping of a digital design solution. GPUs (Graphics
Processing Units) are another interesting option for image
acceleration, as they provide high throughput, but they are
not well-suited for low-power applications. In this paper we
present a proof-of-concept design that could potentially be
used in an FPGA based accelerator using High Level Synthesis
(HLS) and deep learning.

II. THEORETICAL BACKGROUND

A. Deep Learning for Flare Attenuation

Deep learning has achieved remarkable success in various
domains. However, applying it to flare attenuation tasks has
been limited by the scarcity of real datasets available for train-
ing such models. Acquiring a large number of aligned images
with and without flare from real scenarios is impractical due
to the need for consistent photographic conditions (lighting,
camera angle, exposure time, and other factors) between
images that cannot be controlled in real-world scenarios. To
overcome this challenge, several research works, such as [6],
[7], and [8], have addressed the problem by leveraging high-
quality synthetic datasets that incorporate a wide diversity of
flare images merged with ground-truth (GT) clean scenes.

To validate the use of synthetic datasets, all of these studies
trained deep neural networks and evaluated the performance
of different architectures. For instance, the work done in [6]
found that the U-Net architecture produced the best results for
flare attenuation. During training, they employed two types
of loss calculations: image loss and flare loss using Mean
Squared Error (MSE) and Mean Absolute Error (MAE) met-
rics respectively. The former encourages the predicted image to
closely resemble the ground-truth, while the latter encourages
the avoidance of introducing artifacts in the predictions. The
training process involved approximately 60 epochs on a dataset
of 20,000 samples, using the Adam optimizer with a fixed
learning rate of 0.0001. To measure the quality of the recon-
structed images, Structural Similarity Index (SSIM) was used
as a metric, comparing the predictions to a baseline defined
by the input image (with flare) and ground-truth (without
flare) from the synthetic dataset. They achieved a Structural
Similarity Index (SSIM) of 0.994, surpassing the baseline
SSIM of 0.843, indicating that the predicted image closely
resembles the input image, mitigating the flare artifacts. In
addition, they also conducted an evaluation on a real dataset
visually showing the effectiveness of the model at attenuating
lens flare.

The existing deep learning flare attenuation approaches have
not been designed for deployment in constrained embedded
systems, however, due to their high complexity, assessing the
performance of the solution only on CPU.

B. Compact U-Net architectures

U-Net is a state-of-the-art deep learning auto-encoder archi-
tecture used for image segmentation [9]. An auto-encoder is
a special type of neural network that copies its input value
to the output by learning how to compress the input data
while minimizing reconstruction error. Originally developed
for biomedical image segmentation, U-Net gained popularity
in different domains due to its combination of speed and
precision.

Researchers have made efforts to reduce the complexity
of U-Net models. For instance, the Squeeze U-Net model
proposed in [11] achieves similar accuracy to the original
U-Net while having only 2.59 million trainable parameters
compared to the original model [9] with 30 million. An-
other approach to reducing complexity is presented in [12],
where the authors propose two U-Net-like architectures called
C-UNet and C-UNet++. These models reduce complexity
by removing convolutional stages compared to the original
architecture. Additionally, they utilize separable depthwise
convolutional layers, which significantly reduce the number
of parameters while maintaining the filtering capability. The
depth of the filters is also reduced, with the largest depth
being 32, compared to the original U-Net’s layers with 128,
256, 512, and 1024 depth filters. The authors find a good
balance between size and accuracy, with the C-UNet model
having 51,113 parameters and the C-UNet++ model having as
few as 9,129 parameters with only 4 types of convolutional
layers (2D convolution, 2D depthwise separable convolution,
2D transpose convolution and 2D max-pooling), which can be
seen in Figure 1.

Fig. 1. Compact U-Net based architectures proposed by [12]: (a) C-UNet and
(b) C-UNet++. red: conv3x3 + ReLU, yellow: depthwise separable conv3x3
+ ReLU, green: 2x2 max pool, orange: conv1x1 sigmoid, blue: 2x2 transpose
convolution, purple: output

C. High-Level Synthesis (HLS)

While FPGAs offer numerous advantages for developing
tailored accelerators, it is important to acknowledge that imple-
menting FPGA solutions requires highly specialized expertise
in hardware description languages such as VHDL and Ver-
ilog. Particularly for complex algorithms like image or signal
processing, the overall design efforts and time to market can
significantly increase due to the inherent challenges in de-
signing and validating RTL (Register Transfer Level) designs.
However, platforms such as those provided by XILINX can
greatly assist developers in this journey. One notable tool is
Vitis HLS. HLS is a powerful technology that can efficiently

transform behavioral logic described in high-level languages,
such as C/C++ or SystemC, into digital hardware. It offers an
easier and quicker way of exploring design options, resulting
in more effective hardware solutions with shorter time-to-
market [13]. The result of the optimization process depends
on user directives and constraints such as latency, hardware
resource utilization, and throughput, as well as the available
microelectronic technology.

III. DESIGN AND IMPLEMENTATION

The primary objective of this work is to evaluate potential
image post-processing solutions for flare attenuation. However,
several considerations need to be taken into account during
this process to assess the prototype design and its results,
with a focus on identifying areas for improvement and future
optimizations.

A. Design Considerations

• Real-time performance: The solution should aim to
achieve a processing speed close to 30 frames per second
(FPS) to be suitable for real-time applications.

• Camera-agnostic solution: The solution should not only
be designed for one type of camera or optic system.

• Embedded system compatibility: The solution should be
designed to be deployable on an embedded system with
constrained resources. It should be optimized to operate
efficiently within these limitations.

• Subtle flare attenuation: The solution should be capable
of attenuating flare artifacts in a subtle manner, ensuring
that no additional artifacts or distortions are introduced
into the image during the process.

• Flare artifact type: The solution should be designed to
attenuate flare artifacts caused by the presence of a light
source within or in close proximity to the camera’s field
of view.

B. Dataset

In this work, the flare dataset is selected from [6] because of
its high quality, diversity of lens flare patterns and the fact that
it has already been used for training a deep learning model.
The other public flare dataset [8] is especially created for night
applications and does not include real flares. Therefore, the
selected dataset comprises 2000 synthetic flares and 3000 real
flares captured by a camera rotating around a light source in a
dark room. Moreover, the scene dataset is based on the Flickr
30k [15]. Figure 2 shows samples of both datasets.

Fig. 2. Sample images from the flare (synthetic and real) and the scene
datasets.

The procedure to generate the synthetic dataset involves
several steps based on a method proposed in [6]. First, a
scene and a flare image are randomly selected from their
respective datasets. Then, the flare image undergoes random
scaling, rotation, and color augmentation procedures. Finally,
the modified flare image is overlaid onto the scene to create
a composite image, which is used as the input for the deep
learning model. On the other hand, the corresponding original
image of the scene is used to create the ground-truth image.
This process is repeated multiple times with different random
combinations of flare and scene images to create a diverse and
complex synthetic dataset of 32,000 pairs of images (with and
without flare).

The neural network should not focus on removing the light
source, otherwise it will be a waste of model capacity and the
resulting image would be susceptible to artifacts appearing
where the light source (saturated pixels) is supposed to be as
explained in [6]. Therefore, a new ground-truth is computed
by using the flare and its corresponding scene, where the
pixels with an RGB value above a defined saturation threshold
(0.97) are passed into the ground-truth scene. The result of this
process is illustrated in Figure 3.

Fig. 3. Example of scene merged with flare (left) and new ground-truth with
saturated pixels (right).

C. Model Definition and Training

The evaluation started with a smaller model inspired by the
structure of U-Net and implemented using transfer learning.
In this case, MobileNetv2 [16], specifically designed for
applications with limited computing resources, was selected
as the backbone, and then retrained on the flare dataset. To
further reduce the complexity of the transfer learning network,
the scaling parameter (alpha) of MobileNetv2 was manually
adjusted to reduce the neural network complexity. The alpha
parameter controls the number of channels in the network,
with a value of 1.0 indicating maximum width. In this work,
an alpha value of 0.35 was used, significantly reducing the
original design network from around 2 million parameters to
141,646 parameters.

Although the transfer learning-based network, referred to
as FlareNet-TL, demonstrates promising results, part of its
architecture inherited from MobileNetv2 poses an extra com-
plexity when it comes to hardware implementation due to
its higher number of layers and parameters. To address this
limitation and seek a simpler yet effective neural network, a
new model without transfer learning is proposed inspired on
more compact models such as the C-UNet.

Through several iterations, different hyper-parameters and
CNN layers were evaluated to identify an optimized architec-
ture with good performance while keeping the parameter count
limited following a similar approach to [12]. The best architec-
ture, depicted in Figure 4, emerged from this iterative process.
During the exploratory phase, significant modifications were
made to the network’s depth, filter sizes, and inclusion of
skip connections. The resulting model, referred to as FlareNet-
simple, has a total of 92,051 parameters.

D. Hardware Implementation

As part of the-proof-of-concept, the FlareNet-simple archi-
tecture is implemented using HLS to estimate the hardware
resources required to deploy it as a digital circuit on an
FPGA. The overall data flow of the neural network model is
shown in Figure 4. The architecture consists of five different
types of layers: i) 2D Convolution, ii) 2D Max-Pooling,
iii) 2D Depth-wise separable convolution, iv) 2D Transpose
Convolution, and v) Adding. Additionally, each layer considers
buffers to cache input and intermediary values during the
inference process. The data is transmitted from layer to layer
using stream data types and each layer is implemented as
templated functions to be called with corresponding values
for parameters such as input/output size, input/output depth,
kernel weights, among others.

Fig. 4. Diagram of the structure of the FlareNet model to be implemented
in HLS.

Selecting the appropriate data type representation for the
input and output image values as well as the model weights
is very important as it will impact the use of resources and
the latency of the design. In the context of this application,
we have allocated 10 bits for the integer part and 8 bits for
the decimal places. The selection of the number of bits is
done based on comparing the image inference results from
the implementation in C++ with the inference results directly
from the deep learning framework with full bit representation
(float32) to select the smallest fixed-point representation that
generates minimum differences between them. This is essen-
tial to ensure that values in internal layers during inference
calculation have sufficient bit range to prevent truncation or
overflow issues as it is possible to see in Figure 5 if less bits
are used for the integer section.

Fig. 5. Examples of different FlareNet inference results depending on the
fixed-point resolution.

E. Inference in GPU

The performance of the trained model on an AI accelerator,
is evaluated using two GPUs with built in Deep Learning
support from NVIDIA: RTX3060 and Jetson Nano GPU.
To run inference on both devices, an application is built
using C++, OpenCV, and ONNX-runtime. ONNX is an open-
source ecosystem that allows representing machine learning
models with a standardized set of operators across multiple
frameworks, providing access to hardware optimizations while
maximizing performance. In the case of running the model on
NVIDIA GPUs, ONNX utilizes CUDA for optimizations.

IV. RESULTS AND DISCUSSION

A. FlareNet-TL vs FlareNet-simple

A test dataset comprising 25,425 synthetic test images is
used to evalute the performance of the models. The results
presented in Table I demonstrates that both models have the
capacity to reduce flare by increasing the similarity between
the ground-truth and the inference image as seen by the SSIM
metric or decreasing the difference between both of them as
proved by the MSE and MAE metrics.

However, it is important to note that the current dataset
consists solely of synthetic images. To ensure a comprehensive
evaluation, real-world images containing actual flare artifacts
should also be considered in the assessment process. As
expected, the transfer learning-based model shows superior
performance compared to the simpler one.

TABLE I
INFERENCE VS GROUND-TRUTH (GT) ACCURACY

Input vs GT TL vs GT Simple vs GT
SSIM 0.803 0.881 0.765
MAE 0.105 0.073 0.087
MSE 0.028 0.011 0.018

B. Model Inference

The FlareNet models are restoring the image in two ways:
i) attenuating the flare, and ii) restoring the RGB values of
the image. To this end, the network is trained to minimize the
difference between the restored image and the original image
in terms of structural similarity, as measured by the SSIM
function. This helps ensure that the network produces visually
pleasing and natural-looking images after flare attenuation.

Real-life cases of lens flare artifacts are used to assess
the generalization capability of the FlareNet models. It is

Fig. 6. Left: input image, middle: ground-truth, right: FlareNet-TL prediction.

Fig. 7. Left: input image, middle: ground-truth, right: FlareNet-TL prediction.

important to note that since there is no ground-truth available
for comparison, there is no objective metric to quantitatively
measure the extent of attenuation achieved by the model.
However, a visual inspection of the following images reveals
a noticeable reduction in the intensity of the flares, indicating
that the model successfully attenuates them to some degree.
It is important to note that although the flares in the real
images are originating from the sun as the primary light
source, this serves as a proof-of-concept. It is crucial to further
evaluate the model’s performance on different types of flares
originating from various light sources. Figures 8 and 9 (taken
by Xiaomi, and Iphone camera, respectively) demonstrate the
superior performance of FlareNet-TL in attenuating flare while
effectively avoiding the generation of additional artifacts in the
image. In comparison, FlareNet-simple occasionally produces
black spots around the light source. These findings reinforce
the results obtained from the synthetic dataset in Section IV-A,
indicating that FlareNet-TL exhibits better generalization ca-
pabilities when encountering new data.

Fig. 8. Left: input, middle: FlareNet-TL prediction, right: FlareNet-simple
prediction.

It is worth mentioning that the current state-of-the-art model
for flare attenuation [6] utilizes the original U-Net architecture,
as defined in [9], with 23 convolutional layers and nearly 30
million learnable parameters. It is evident that this model has
not been designed for deployment on memory constraint de-
vices such as embedded systems. In comparison, the FlareNet-
TL model employs roughly less than 0.5% of the parameters

Fig. 9. Left: input, middle: FlareNet-TL prediction, right: FlareNet-simple
prediction.

found in the state-of-the-art flare attenuation model.
Furthermore, the images presented below in Figures 10 and

11 provide visual comparisons between the predictions made
by FlareNet-TL (middle image) and the state-of-the-art flare
attenuation model (right image) from [6]. As expected, due
to its higher complexity, the predictions made by the state-
of-the-art model are superior, nearly eliminating any signs of
flare. However, FlareNet still strives to blend the flare artifacts
into the rest of the image and improve color contrast without
introducing artifacts, especially for pixels that are further away
from the light source.

Fig. 10. Left: input, middle: FlareNet-TL prediction, right: state-of-the-art
model [6].

Fig. 11. Left: input, middle: FlareNet-TL prediction, right: state-of-the-art
model [6].

C. Hardware Synthesis

This section presents the findings of the hardware synthesis
of the FlareNet-simple model using Vitis HLS. The main
objectives are to analyze the performance of the synthesized
solution and assess the impact of different optimization direc-
tives on key metrics such as latency and resource utilization
(area). This analysis provides an indication of the required
hardware resources as well as performance, based on Vitis
HLS simulation and synthesis tool.

During synthesis, certain parameters and constraints are
specified. The clock frequency constraint is set to 300 MHz.

Additionally, the target FPGA board is selected for synthe-
sis. The Zeus Zynq UltraScale FPGA board (target device:
XQZU11EG-FFRC1760-2-i) is chosen as it is an industrial
graded device used in automotive and artificial intelligence
applications. These specifications guide the synthesis tool
to generate the optimized hardware implementation for the
specified FPGA target.

An initial implementation was synthesized disabling all
optimization directives, e.g., dataflow, pipeline, loop unrolling,
and array partitioning. This resulted in the HLS tool generating
a sequential design, where tasks within layers and functions
are executed sequentially, one after the other. Although this
approach allows for resource re-utilization, leading to lower
resource consumption/area (as indicated in Table II), it also
increases the latency (as observed in Table III).

TABLE II
LATENCY ANALYSIS - NO OPTIMIZATIONS - FLOATING POINT

HW Latency (cycles) HW Latency (ms)
Min 4889194250 16134
Max 5584202570 18428

TABLE III
UTILIZATION ANALYSIS - NO OPTIMIZATIONS - FLOATING POINT

BRAM 18K DSP FF LUT
Total 31 5 10962 26507

Available 1200 2928 597120 298560
Util. (%) 31 0.002 1 8

Next, the pipeline and dataflow optimization directives are
applied together, to allow for a more optimized implementation
taking advantage of both parallel execution within loops and
concurrent execution of tasks within layers and functions
of the neural network architecture. By using both directives
together, the HLS tool can generate a design that benefits
from both intra-loop parallelism (achieved through the pipeline
directive) and inter-task parallelism (achieved through the
dataflow directive). The implementation of this approach has
notably reduced latency, as demonstrated in Table IV, when
contrasted with the latency values provided in Table II. In
this comparison, we observe an impressive 36-fold reduction
in latency, ultimately enabling our solution to achieve an
approximate processing rate of 2 frames per second. However,
it also requires additional resources to work concurrently, as
evident in Table III compared to Table V. The utilization
of Flip-Flops (FF), Digital Signal Processing (DSP), and
Look-Up Tables (LUT) shows a significant increase. This
increase is attributed to the replication of functional units to
enable concurrent usage, unlike the sequential implementation
where units could be reused. Additionally, pipelining requires
instantiating extra registers, known as pipeline registers, as
well as new pipeline control signals.

Due to time constraints, limited attempts were made to
further optimize the solution, but it became evident that a
different approach was required for the buffer structure and

TABLE IV
LATENCY ANALYSIS - DATAFLOW AND PIPELINE

HW Latency (cycles) HW Latency (ms)
Min 155277746 512
Max 155277746 512

TABLE V
UTILIZATION ANALYSIS - DATAFLOW AND PIPELINE

BRAM 18K DSP FF LUT
Total 199 55 14797 29972

Available 1200 2928 597120 298560
Util. (%) 16 1 2 10

related functions as they seemed to create a memory bottleneck
that limits further parallelism done by the HLS tool. By
delving deeper into this area, there’s potential to achieve even
greater reductions in latency.

D. Inference in GPU

The model’s performance was evaluated on two GPUs, with
the objective of comparing the execution time on different
hardware accelerators. On a laptop with a medium-end GPU,
the model achieved an inference speed of 32 frames-per-
second, while on a lower-end GPU like the Jetson Nano, it
achieved 6 frames-per-second. Considering that these GPUs
operate at frequencies between 650 MHz and 950 MHz, lower
inference times would be expected at the cost of higher power
consumption with respect to an FPGA implementation.

V. CONCLUSION

The primary objective of this study was to evaluate an
approach for reducing lens flare artifacts through deep
learning based image post-processing techniques. A synthetic
flare dataset was generated, and an iterative training process
was employed to develop the first compact and lightweight
U-Net based model for lens flare reduction, named FlareNet
with and without a transfer learning component. Noteworthy
insights were gained during the process, including the benefits
of transfer learning, and the selection of an appropriate loss
metric. It was found that, for a small model, using the
SSIM as a loss metric yielded effective results in reducing
flare without introducing additional artifacts in the restored
image. Both versions of the FlareNet model (with and
without transfer learning) demonstrated improvement in
image quality on the testing dataset, with a modest parameter
count of less than 150,000 and a simple neural network
architecture. Furthermore, as part of the proof-of-concept,
the simple FlareNet model version was implemented in
C++ using Vitis HLS to profile the required resources and
performance when deployed as a digital circuit on an FPGA.
Results demonstrated that for the selected FPGA and a clock
frequency of 300 MHz, the inference time is approximately
512 ms (equivalent to approximately 2 frames-per-second)
with minimal resource utilization well within the device’s
limits.

GitHub Project Repository:
Flare Attenuation Filter

REFERENCES

[1] J.-O. Park, W.-K. Jang, S.-H. Kim, H.-S. Jang, and S.-H. Lee, “Stray
light analysis of high resolution camera for a low-earth-orbit satellite,”
J. Opt. Soc. Korea, vol. 15, no. 1, pp. 52–55, Mar 2011.

[2] A. Pirinen and A. Toytziaridis, “Stray light compensation in optical
systems,” Master’s Theses in Mathematical Sciences, 2015.

[3] L. Clermont, W. Uhring, and M. Georges, “Stray light characterization
with ultrafast time-of-flight imaging,” Scientific reports, vol. 11, no. 1,
pp. 1–9, 2021.

[4] L. Clermont, C. Michel, and Y. Stockman, “Stray light correction
algorithm for high performance optical instruments: The case of metop-
3mi,” Remote Sensing, vol. 14, no. 6, p. 1354, 2022.

[5] F. J. Ávila, J. Ares, M. C. Marcellán, M. V. Collados, and L. Remón,
“Iterative-trained semi-blind deconvolution algorithm to compensate
straylight in retinal images,” Journal of Imaging, vol. 7, no. 4, 2021.

[6] Y. Wu, Q. He, T. Xue, R. Garg, J. Chen, A. Veeraraghavan, and J. T.
Barron, “How to train neural networks for flare removal,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 2239–2247.

[7] A. V. Shoshin and E. A. Shvets, “Veiling glare removal: synthetic dataset
generation, metrics and neural network architecture,” vol. 45, no. 4, pp.
615–626, 2021.

[8] Y. Dai, C. Li, S. Zhou, R. Feng, and C. C. Loy, “Flare7k: A phenomeno-
logical nighttime flare removal dataset,” in Thirty-sixth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track,
2022.

[9] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” CoRR, vol. abs/1505.04597, 2015.

[10] Mittal, Sparsh and Gupta, Saket and Dasgupta, Sudeb ”FPGA: An
efficient and promising platform for real-time image processing applica-
tions”, National Conference On Research and Development In Hardware
Systems (CSI-RDHS), 2008.

[11] N. Beheshti and L. Johnsson, “Squeeze u-net: A memory and energy
efficient image segmentation network,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops, 2020,
pp. 364–365.

[12] G. Bahl, L. Daniel, M. Moretti, and F. Lafarge, “Low-power neural
networks for semantic segmentation of satellite images,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV)
Workshops, Oct 2019.

[13] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are we there
yet? a study on the state of high-level synthesis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no.
5, pp. 898–911, 2019.

[14] Y.-L. Lin, “Recent developments in high-level synthesis,” ACM Trans.
Des. Autom. Electron. Syst., vol. 2, no. 1, p. 2–21, jan 1997.

[15] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From image
descriptions to visual denotations: New similarity metrics for semantic
inference over event descriptions,” Transactions of the Association for
Computational Linguistics, vol. 2, pp. 67–78, 02 2014.

[16] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861,
2017.

