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Abstract 
Archaeological textiles are often highly fragmented, and 

solving a puzzle is needed to recover the original composition 

and respective motifs. The lack of ground truth and unknown 

number of the original artworks that the fragments come from 

complicate this process. We clustered the RGB images of the 

Viking Age Oseberg Tapestry based on their texture features. 

Classical texture descriptors as well as modern deep learning 

were used to construct a texture feature vector that was 

subsequently fed to the clustering algorithm. We anticipated that 

the clustering outcome would give indications to the number of 

original artworks. While the two clusters of different textures 

emerged, this finding needs to be taken with care due to a broad 

range of limitations and lessons learned. 

Motivation 
Historical tapestries tell interesting stories and provide 

invaluable insight into the era they belong to. However, 

archaeological textiles are oftentimes highly fragmented that 

makes reading their motifs challenging if not impossible. A vivid 

illustration of the latter case is the Viking Age tapestry collection 

from the Oseberg burial, Norway [1]. Therefore, solving the 

puzzle is needed to re-assemble the fragments and recover the 

original motifs. The recent advances in computer science may 

serve this goal in two ways: first of all, machine learning may 

assist human experts in the process of puzzle solving and provide 

valuable suggestions; secondly, experts can freely interact with 

the images of the fragments, while this is impossible with their 

physical counterparts due to their highly fragile nature. What 

complicates things further is oftentimes the lack of information 

on how many original pieces of artworks need to be recovered, 

and whether a given pair of fragments belong to the same piece 

at all. To facilitate the puzzle solving process, clustering 

techniques may divide fragments into meaningful groups that 

separate pieces that belonged to the different original artworks 

and put the fragments from the same original together. 

 

Problem 
In this work we attempt to answer two research questions:  

 

1. How many original artworks do the surviving Oseberg 

tapestry fragments come from? 

2. Which fragments belong together for puzzle solving 

purposes? 

 

While a broad range of machine learning literature has 

addressed puzzle solving problem in the artwork imagery [2-4], 

as well as for 3D archaeological artefacts [5-7], to the best of our 

knowledge none of them proposed a methodology that is robust 

enough for solving the puzzle of highly degraded, irregularly 

shaped artefacts that come from unknown number of originals. 

We believe that identification of the number of originals and 

grouping the fragments potentially from the same piece of 

artwork is the first and vital step toward the puzzle solving goal. 

From the computational perspective, the research problem can 

be formulated as follows: we need to extract information from 

the RGB photographs of the fragments that can be used to 

reliably measure visual and stylistic similarities and differences 

among them. There are several factors that make the task 

challenging: first, the fragments are irregularly shaped, and often 

substrate material is visible instead of the tapestry layer; 

secondly, many pieces from the original artwork are missing, and 

the surviving fragments are highly degraded; and finally, there is 

no ground truth information available to evaluate the accuracy of 

the computational solutions. Few works have addressed textile 

materials specifically. Texture features of a textile are often 

analyzed using X-ray images to count threads of a canvas for art 

forensics purposes [8]. As for reconstructing deteriorated textile 

heritage artefacts, Stoean et al. [9] proposed a deep learning 

solution for inpainting small parts missing from the costumes. To 

the best of our knowledge, no work has addressed a puzzle of 

fragmented archaeological textiles from the computer science 

perspective. 

Approach 
In this work we use texture analysis to cluster similar 

fragments together. In image processing, an image texture is 

defined as the spatial variation of the color or the brightness 

intensity of the pixel [10]. Texture analysis has been used in a 

wide range of applications, from texture classification (for 

example, in remote sensing), to segmentation (for example, in 

biomedical imaging), or pattern recognition [11]. In our 

approach, the procedure involves three stages: pre-processing, 

texture feature extraction, and clustering based on these features. 

The overall pipeline is shown in Figure 1.  

Pre-processing 
First of all, the ultra-high-definition RGB photographs are 

downsampled to lower pixel resolution due to memory 

limitations. Afterward, the fragments are segmented from the 

background. In the subsequent step, each fragment is split into 

smaller patches of 200×200 pixels (see Figure 2). There are two 

reasons for that: first of all, the number of fragments is low, 

which makes machine learning unreliable; secondly, as no 

ground truth is available, we create the ground truth for 

validation purposes (we know which 200×200 patches belong to 

the same fragment). The fragments with high degree of noise 

were discarded. If a fragment contained less than 60 patches, we 

applied data augmentation by rotating the patches by 90°, 180°, 

and 270°. Finally, if the image was blurry, image enhancement 



 

 

techniques were used to make them sharper. In total, we have 

6650 patches from 77 fragments. 

Feature Extraction 
We tested three different methods for feature extraction – 

two classical and one deep-learning based. Firstly, we used 

Opponent Color Local Binary Patterns (OCLBP) [12]. Local 

Binary Patterns (LBP) measure structural information and 

statistical co-occurrences of pixel intensities in the image [13]. 

Unlike LBP, which is applicable to grayscale images only, 

OCLBP also incorporates color information in addition to 

texture, and thus, is more suitable for our images, where color 

can encapsulate important visual cues. Secondly, following the 

proposal in [10], we combined OCLBP features with those 

extracted from Co-occurrence Matrices (CoM) [14]. CoM 

captures the relative positions of the pixels and represents them 

as a matrix of probabilities of co-occurrence of certain pixels 

within a certain distance. Finally, we used pre-trained AlexNet 

convolutional neural networks (CNN) [15]. Some works [16] 

propose that this model could be taken as a simple replication of 

how primate visual system works. 

Clustering 
After extracting the texture features, we feed them into 

clustering algorithms to group the patches with similar textures 

together. Clustering is an unsupervised machine learning 

method, whose objective is to group data into clusters – 

minimizing intra-cluster and maximizing inter-cluster 

differences. We tested three clustering algorithms: K-means 

[17], Mean-Shift [18], and Agglomerative Hierarchical 

clustering [19]. While K-means requires the number of clusters 

to be specified by the user in advance, the other two methods can 

determine the optimal number of clusters automatically. In K-

means, the points are grouped into k clusters, where k is pre-

defined by the user. K centroids, i.e. the centers of each cluster 

are initiated randomly, and then an iterative process runs. On 

each iteration, the distance between the points and the centroid 

is found, and each point gets assigned to the cluster of the closest 

centroid. Afterward, the mean of all points in each cluster is 

found, which becomes a new centroid. This iterative process is 

repeated until none of the centroid positions change. Mean-Shift 

is also a centroid-based method, but it finds the optimal number 

of clusters automatically. The user, however, defines the radius 

(called “bandwidth”) parameter. For each point, a local mean is 

found within this pre-defined radius. Given point is shifted to this 

local mean, and then the new mean to shift a point to is found 

again from this new position, and the process continues 

iteratively. If the clusters overlap, the one with more points 

within a radius is kept. The points shifted toward the same final 

centroid are concluded to be in the same cluster.  Finally, 

hierarchical clustering is based on a dendrogram – a system 

similar to a tree, where each individual point is a leaf or a cluster 

at the finest level of granularity, and the root is a big super-cluster 

containing all points. Based on a similarity metric, the algorithm 

gradually groups similar points into the clusters creating the 

branches, and at the next level, the similar branches are grouped 

together and connected to the same higher-level branch. 

Granularity decreases as the cluster size increases and the other 

way round. The desired level of granularity can be selected by 

analyzing the dendrogram. 

 

 

A Baseline Case Study 
The approach somewhat similar to the one used in this work 

has been tested by Gulbrandsen [20]. The author manually cut 

well-preserved household textiles into irregularly shaped 

fragments and captured high resolution photographs (the 

example of the fragments can be found in Figure 3). At the 

feature extraction stage, the author used color and texture 

features (color histograms, color moments, color coherence 

vectors, LBP), as well as VGG16 deep learning model 

(ImageNet weights), and conducted K-means and hierarchical 

clustering. The fragments were usually clustered with high 

accuracy. The hierarchical clustering with VGG16 features 

performed the best. This demonstrates that the approach is 

effective in a relatively simple scenario, which can be taken as a 

baseline case. The objective of our study is to assess the 

robustness of the approach in a substantially more complex real-

life scenario, which comes with a broad range of challenges 

already discussed above. 

 

 
Figure 1. The workflow of the proposed method. 

 
Figure 2. The examples of the patches extracted from the fragments. 

 
Figure 3. The example of the well-preserved household textile fragments 

used by Gulbrandsen [20].  

Results 
All three clustering algorithms demonstrated similar 

accuracy, as well as high correlation between composition of 

each cluster. Mean-Shift and Hierarchical clustering determined 

the optimal number of clusters to be two. For K-means, we ran 

clustering with 2 to 77 pre-defined number of clusters, and the 

accuracy also turned out to be the highest for two clusters. The 

results for OCLBP and its combination with CoM are illustrated 

in Figure 4. The accuracy of the clustering result was measured 



 

 

as follows: we changed the number of clusters k, from 2 to 77 for 

patches that come from 77 fragment images, which are 

considered the pseudo-classes. Because this is an unsupervised 

problem, we used all 6650 patches to fit the clusters. At each 

class j, the number of patches that are assigned to each cluster 

(denoted as c) is calculated, which is represented by pc,j. The 

accuracy for each class j is then calculated as:  

 

accj=
max(p

c,j
)

Nj

 (1) 

 

where c ∈ [1; k], and Nj is the number of patches in a given class 

(from the same fragment). Finally, we found mean accuracy 

among all 77 classes and its standard deviation. We want to 

highlight that this method captures false negatives (patches that 

we know are from the same fragment and end up in different 

clusters), and it does not penalize for false positives (patches 

from different fragments end up in the same cluster). This 

decision is intentional, because our objective is not clustering 

patches to 77 original classes. Any false positive may, in fact, 

indicate that the fragments that those patches come from 

belonged to the same original. This, however, comes at the cost 

of risking that the accuracy measure is biased toward lower 

number of clusters. Therefore, the finding that there can be two 

original artworks need to be taken with great care.  

 

 
Figure 4. The accuracy as a function of number of clusters in K-means. 

The blue curve corresponds to OCLBP features, and the orange curve 

corresponds to a combination of OCLBP+CoM. 

Let’s have a closer look at the clustering results (Figure 5). 

The fragments in one cluster seem to have thicker threads and 

lower spatial frequency texture, while in the second cluster, the 

patches with smaller thread size and higher spatial frequency 

variation are grouped. This could be an indication that thread 

thickness is an useful cue to fragment similarity, but as the small 

patches do not capture global motifs, it can also be misleading if 

two different artworks were weaved with a similar technique. 

 

 
Figure 5. The left and right pair of images were grouped in different 

clusters, respectively; while the left two patches have thicker threads and 

relatively low spatial frequency texture, the opposite is true for the right 

ones. 

As for AlexNet, we extracted feature vector with 507 

features. Since there are only 6650 samples in our data, it can be 

considered as a high dimensional space. Therefore, K-means was 

not able to perform the prediction on this data because of the 

curse of dimensionality. The Hierarchical clustering detected 

two clusters among the patches, with accuracy of 0.954 and the 

standard deviation of 0.09. However, the groups can be named 

as textiles and outliers. In the outliers’ group, the number of 

patches is relatively small in comparison with another (200 vs 

6450), and it includes mostly extremely degraded homogeneous 

patches with barely visible variation. 

Evaluation by the Archaeologists 
The clustering results were evaluated by the archaeologists 

who work with the Oseberg Tapestry. Although the ground truth 

is not known, the archaeologists hypothesize which fragments 

may belong together based on the analysis of the motifs depicted 

on the fragments and the weaving techniques that they are woven 

with. The archaeologists pointed out many potential false 

positives. In other words, the same cluster included the patches 

from the fragments that are highly unlikely to be part of the same 

whole due to large differences in the way they are woven as well 

as their motifs. This makes us conclude that rigorous further 

work is needed to improve the accuracy and robustness of the 

algorithm.   

Conclusions 
There are several conclusions that can be drawn, and several 

lessons learned from this work: the classical texture 

classification separates textures in two groups of fine and coarse 

textures, while deep learning separates textured patches from 

rather homogeneous ones. This grouping can be far from the 

original composition of the artworks. One significant limitation 

is the insufficient number of samples, which can be to some 

extent mitigated with data augmentation techniques. However, 

the most fundamental problem is the lack of ground truth 

information that makes the reliable assessment of the 

performance impossible (e.g. assessment of false positives). An 

additional factor that this work has not taken into account is the 

degradation process of the textiles. Variation in micro contexts 

in the ground can cause threads and fibers to degrade at different 

rates, even if they are from the same grave. The experts have 

several hypotheses on which fragments could belong together – 

based on the manual analysis of the weaving techniques and 

interpretation of the high-level motifs [1]. This information 

should be used in future works. Finally, we cannot rule out that 

the problem is ill-posed, and RGB photographs simply do not 

have enough information for telling the fragments apart. For this 

purpose, future works should additionally rely on more 

sophisticated imaging techniques, such as hyperspectral or 

reflectance transformation imaging. We believe that the 

approach proposed in this work is not limited to archaeological 

textiles, and it can be extended to a puzzle problem of any type 

of fragmented cultural heritage artefacts, such as papyrus, 

inscriptions, engraving, paintings, and ceramics, where the 

number of original items is not known.  
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