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Abstract. Effective spare part management can increase the competitiveness of 

supply chains, but the intrinsic characteristics of spare parts (e.g., intermittent 

demands, dependence on suppliers) make their effective management 

complicated. In recent years, additive manufacturing (AM) has emerged as a 

possible way to overcome these issues and received significant research attention, 

especially the topic of supply chain configuration. AM enables the easy 

production of parts close to the point of use, thus favoring the decentralization of 

supply chains (i.e., on-site production), but while this topic has been studied 

extensively from an economic perspective, its environmental implications remain 

unexplored. The literature is limited merely to mentions of the reduced 

transportation emissions associated with on-site production strategies, without, 

for example, a lifecycle perspective in which the production phase is considered. 

It is common knowledge that different countries adopt different energy mixes, 

thus generating different carbon dioxide–equivalent emissions during the 

production phase. A lifecycle perspective therefore casts doubt on whether on-

site production strategies are always environmentally preferable over strategies 

in which spare parts are produced far from the point of use and then shipped (i.e., 

off-site production or centralized supply chains). In this paper, we aim to resolve 

this doubt by developing a decision-support system that can assist managers and 

practitioners in determining the most environmentally friendly AM spare part 

production strategy, considering both the transportation and production phases. 

 

Keywords: Additive Manufacturing, Decentralized Supply Chain, Spare Parts 

Production. 

1 Introduction 

Spare parts are crucial for ensuring the high availability of production systems, and an 

appropriate spare parts management is needed to ensure that the right spare parts are 
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available at the right time, at the right location, and in the right amount. However, it is 

not easy to manage spare parts correctly due to their main characteristics: intermittent 

demand (hard to predict both quantity and frequency), long lead times, high costs if 

they are not immediately available, and strong dependence on supplier [1, 2]. 

Researchers and practitioners have recently been investigating additive 

manufacturing (AM; also known as 3D printing) for the production of spare parts [3, 

4], which would limit some of the disadvantages linked to their main characteristics, 

particularly the long lead times. Indeed, AM enables the production of spare parts both 

on-demand and close to the point of use [5–7], and in addition to economic benefits 

(e.g., lower transportation costs, lower holding costs due to lower inventory levels), 

researchers have reported that it also generates environmental benefits due to 

production close to the point of use [8, 9]. 

In the current work, we investigate, for the first time, whether AM and its 

decentralized use (i.e., close to the point of use, hereinafter called “on-site production”) 

is indeed environmentally beneficial. The existing works in the literature mention the 

reduced environmental burden of on-site production through reduced transportation 

emissions, and while they are accurate, a lifecycle perspective should be used to 

properly evaluate whether an on-site production strategy is environmentally preferable 

to a strategy in which parts are produced far from the point of use and then shipped 

(hereinafter called “off-site production”). Just as an example, producing 1 kWh of 

electricity in China produces more than twenty times more carbon dioxide equivalent 

(CO2e) emissions than in Sweden [10], so when considering both the production and 

transportation phases and the fact that different countries have different energy mixes, 

it becomes clear that on-site production might not always be the best environmental 

strategy. 

In this work, we develop a decision-support system (DSS) to help managers and 

practitioners to determine whether to adopt on-site or off-site AM production of spare 

parts to minimize CO2e emissions (i.e., the most environmentally friendly production 

strategy). To develop this DSS, a four-step methodological framework is used, as 

described in the Methodology section. 

The remainder of this paper is structured as follows: Section 2 provides a literature 

review regarding the impact of AM on spare part supply chains from different 

perspectives; in Section 3, the methodology used to obtain the DSS is described; in 

Section 4, the DSS is presented and discussed; and in Section 5, the conclusions are 

presented, together with managerial implications, limitations, and possible future 

research. 

2 Literature Review 

As mentioned, AM offers significant potential benefits for spare part supply chains, and 

researchers have examined, from different perspectives, when spare parts should be 

produced using AM. Initially, the focus was on the economic perspective, with the aim 

of understanding when spare part supply chains using AM technologies are convenient 

compared to conventional manufacturing (CM) technologies (casting, forging, etc.). 
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Examples of these works include [5, 6, 11–16], in which AM and CM spare part supply 

chains are compared by considering different supply chain costs (ranging from 

inventory holding costs alone to all costs from a lifecycle perspective), different spare 

part characteristics (e.g., demands, properties, materials), and different constraints (e.g., 

limited storage capacity). 

More recently, researchers have begun to consider the environmental perspective; 

here, too, the main focus has been on comparing the environmental footprint of AM 

spare part supply chains with those using CM technologies, such as [17–20], which 

considered different raw materials (e.g., aluminum alloys, steel alloys, titanium alloys), 

AM production methods (e.g., selective laser sintering, electron beam melting, multi-

jet fusion), transportation vehicles (e.g., trucks ships, trains), and energy mixes (i.e., the 

amount of CO2e emissions based on the sources used to generate electricity). 

However, these works have mostly been case-specific and have considered either 

off-site or on-site AM production, but to the best of our knowledge, not both. In this 

paper, we aim to address this gap by developing a DSS that helps managers and 

practitioners to determine whether to adopt off-site or on-site AM production of spare 

parts with the goal of minimizing CO2e emissions. 

3 Methodology 

The proposed DSS in the current research is a decision tree derived from a comparison 

of the CO2e emissions of different spare part supply chain scenarios (i.e., supply chains 

characterized by different backorder costs, production costs, production and 

transportation lead times, energy mixes, etc.). To develop the DSS, we follow a four-

step methodology, but before describing these steps in detail, the basic features of the 

DSS and the assumptions behind it will be described. 

As already mentioned, the DSS is intended to help managers and practitioners to 

determine the most environmentally friendly production strategy (i.e., on-site or off-

site) for AM spare parts, and to achieve this, a lifecycle perspective is needed. The 

lifecycle of a spare part consists of different phases: raw material extraction, 

production, and transportation and spare part production, transportation, use, and 

recycling/disposal [21]. In this work, we assume that the decision to produce spare parts 

on-site or off-site depends only on the production and transportation phases and that 

these are independent of the others (the environmental footprint of raw material 

extraction and preparation, for example, is considered the same regardless of the on-

site or off-site production strategy). 

Other assumptions are as follows: 

─ We consider a single material—316L stainless steel— because this is one of 

the most commonly used, but the methodology is independent of the material. 

─ In the case of an on-site production strategy, we assume that the production is 

located sufficiently close to the point of use that the transportation phase is 

negligible. 

─ For the transportation phase, we consider four different types of transportation 

vehicles: trucks, trains, airplanes, and cargo ships. 
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With the main features, control volume, and assumptions of the proposed DSS 

defined, we will discuss the four-step methodology. In Step 1, a mathematical model to 

compare the CO2e emissions of on-site and off-site production is developed. In Step 2, 

an ANOVA is performed to determine the most relevant input parameters for the 

mathematical model. In Step 3, those input parameters are used in a parametric analysis, 

enabling the creation of a dataset consisting of realistic spare part supply chain 

scenarios (i.e., supply chains with different transportation modes, energy mixes, and 

distances and spare parts with different mean times to failure, backorder and production 

costs, and lead times). Finally, in Step 4, the DSS is obtained in the form of a decision 

tree using a machine learning algorithm (specifically, a decision-tree algorithm) fed and 

trained with the results of the parametric analysis. Each step is described in detail 

below.  

3.1 Mathematical Model 

In each scenario, the on-site and off-site production strategies are evaluated in terms of 

CO2e emissions using a mathematical model based on the input parameters shown in 

Table 1. 

Table 1. Input parameters 

Parameter Description Unit Measure 

Input Parameters 

i = 1, 2 Production strategy: on-site (1) or off-site (2) - 

T Review period [time] 

h Holding rate [euro / euro * time * unit] 

MTTF Mean time to failure [time / unit] 

λ Failure rate [unit / time] 

cbi Unitary backorder cost [€ / unit] 

cp Unitary production cost [€ / unit] 

Li Lead time of production strategy i [time] 

Lt Transportation lead time [time] 

Ec Energy consumption of production [kWh / kg] 

d Distance [km] 

t Transportation mode [gCO2 / ton * km] 

Emi Energy-mix of production strategy i [gCO2 / kWh] 

Ps Part size [kg] 

S Order-up-to level [unit] 

Constraints 

Smax Maximum order-up-to level [unit] 

Costs 

Chi Holding cost [€] 

Cbi Backorder cost [€] 

Cp Production cost  [€] 
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Objective Functions 

CO2e CO2e equivalent emission  [gCO2] 

CO2et Transportation-based CO2e equivalent emission  [gCO2] 

CO2ep Production-based CO2e equivalent emission  [gCO2] 

 

The model allows the comparison of the CO2e emissions of the two strategies, 

considering both the production and transportation phases, so that, for each scenario, 

the strategy that minimizes CO2e emissions can be selected (Equation (1)):  

𝑚𝑖𝑛 𝐶𝑂2𝑒  (1) 

where CO2e is the sum of the CO2e arising from the production and transportation 

phases. 

𝐶𝑂2𝑒 = 𝐶𝑂2𝑒𝑝 + 𝐶𝑂2𝑒𝑡  (2) 

The production-based CO2e emissions (𝐶𝑂2𝑒𝑝) are calculated by multiplying the 

energy consumption of the production phase (𝐸𝑐), the order-up-to level (𝑆𝑖), the CO2e 

emissions from the production strategy i (𝐸𝑚𝑖), and the part size (𝑃𝑠). 

𝐶𝑂2𝑒𝑝 = ∑ 𝐸𝑐 ∙ 𝑆𝑖 ∙ 𝐸𝑚𝑖 ∙ 𝑃𝑠
2
𝑖=1   (3) 

The transportation phase is then considered only if the off-site production strategy is 

adopted. The transportation-based CO2e emissions (𝐶𝑂2𝑒𝑡) are calculated by 

multiplying the distance to the production factory (𝑑), the CO2e emissions resulting 

from the selected transportation method (𝑡), the order-up-to level (𝑆𝑖) and the part size 

(𝑃𝑠). 

𝐶𝑂2𝑒𝑡 = ∑ 𝑑 ∙ 𝑡 ∙ 𝑆𝑖 ∙ 𝑃𝑠
2
𝑖=2   (4) 

𝑆𝑖  is representative of the number of spare parts that need to be produced and is 

calculated through a sub-optimization problem. For this, we assume that spare parts are 

produced on a make-to-stock basis, as was done in [6]. Such a sub-optimization 

problem aims to minimize, for each production strategy, the sum of the production, 

holding, and backorder costs. Therefore, an inventory management model needs to be 

considered, and we use a periodic review model in which the spare part demand follows 

a Poisson distribution. 

The inventory management model then proceeds by finding different optimal values 

for 𝑆𝑖  through the choice of various sourcing alternatives and review period 𝑇. Given 

the stochastic demand (𝑦) and after identifying 𝑇, the optimization problem is as 

follows: 

𝑚𝑖𝑛 𝐶𝑇𝑜𝑡𝑎𝑙 = min(𝐶ℎ𝑖 + 𝐶𝑏𝑖 + 𝐶𝑝)  (5) 

Equation (5) minimizes the time unit costs; it is rewritten in Equation (6), where 𝐶ℎ𝑖 
is the average number of units in stock ∑ (𝑆𝑖 − 𝑦) ∙ 𝑃𝜆,𝑇,𝑦

𝑆−1
𝑦=0  during the coverage time 

(𝑇 + 𝐿𝑖) multiplied by the holding cost (ℎ ∙ 𝑐𝑝), which is proportional to the unitary 
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production cost (𝑐𝑝), and 𝐶𝑏𝑖 is the average number of units on backorder 
∑ (𝑦 − 𝑆𝑖) ∙ 𝑃𝜆,𝑇,𝑦
∞
𝑆+1  during the coverage time (𝑇 + 𝐿𝑖) multiplied by the unitary back-

order cost (𝑐𝑏𝑖). 

𝑚𝑖𝑛 ℎ ∙ 𝑐𝑝 ∙ ∑ (𝑆𝑖 − 𝑦) ∙ 𝑃𝜆,𝑇,𝑦
𝑆−1
𝑦=0 + 𝑐𝑏𝑖 ∙ ∑ (𝑦 − 𝑆𝑖) ∙ 𝑃𝜆,𝑇,𝑦

∞
𝑆+1 + 𝜆 ∙ 𝑐𝑝 ∙ 𝑇 (6) 

A backorder takes place each time a demand cannot be met by the stocked units. 𝐶𝑝 

is the unitary production cost (𝑐𝑝) multiplied by the failure rate (𝜆), which is obtained 

from each mean time to failure (𝑀𝑇𝑇𝐹) (see Equation 10) and from 𝑇, which is the 

expected number of demands during a period. In this equation, the 𝐿𝑖  value in the 

(𝑇 + 𝐿𝑖) coverage time represents the lead time for the on-site and off-site production 

strategy, although the production lead times are the same for both; however, for off-site 

production, the lead time is calculated as 𝐿2 = 𝐿1 + 𝐿𝑡 to account for delays due to 

transportation.  

𝑃𝜆,𝑇,𝑦 =
(𝜆∙(𝑇+𝐿𝑖)

𝑦∙𝑒−(𝜆∙(𝑇+𝐿𝑖)

𝑦!
  (7) 

0 ≤ 𝑆𝑖 ≤ 𝑆𝑚𝑎𝑥   (8) 

𝑆𝑖 ∈ 𝑁  (9) 

𝜆 =
1

𝑀𝑇𝑇𝐹
  (10) 

Equation (7) computes the probability that 𝑦 failures take place during (𝑇 + 𝐿𝑖) time 

using a Poisson distribution with an expected demand of 𝜆 ∙ (𝑇 + 𝐿𝑖). Equation (8) 

imposes a maximum order-up-to level 𝑆𝑚𝑎𝑥 . Equation (9) imposes a discrete 𝑆. 

3.2 ANOVA 

In Step 2, an ANOVA is used to determine which input parameters of the mathematical 

model influence the choice of production strategy (i.e., on-site or off-site). For this, a 

preliminary parametric analysis is first performed. As shown in Table 2, the different 

input parameters have three different values, whose extremes are defined according to 

the sources also listed in the table. The only exception is 𝑡, for which four values have 

been considered because of the four types of vehicles available as transport options. 

Table 2. Input parameters’ values and sources 

Parameter Admissible Values Unit measure 
Source used to define the 

admissible values 

T 4; 8; 12 [weeks] [6] 

MTTF 26; 91; 156 [weeks / unit] [6] 

cb 1000; 26000; 51000 [€ / unit] [6] 

cp 150; 700; 1400 [€ / unit] [6] 

L1 0.1; 0.2; 0.4 [time] [6] 

L2 1; 2; 4 [time] [6] 

Ec 20; 100; 180 [kWh / kg] [22] 
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d 200; 7600; 15000 [km] Authors’ experience 

t 14.4; 18.9; 90; 1080 [gCO2 / ton * km] [22] 

Emi 50; 350; 650 [gCO2 / kWh] [10] 

Ps 0.8; 4; 8 [kg] [6] 

h 0.0058 [euro / euro * weeks * unit] [6] 

 

A total of 78,732 scenarios are thus created. It is worth noting that ℎ is considered 

fixed and equal to the cost per unit and week and that 𝑐𝑝 and 𝐿1 depend on the Ps; the 

lowest value of 𝑐𝑝 and 𝐿1 are encountered when the part size is small (0.8 kg) and the 

highest when it is large (8 kg), and the same holds for the middle value [6]. The 

mathematical model developed in Step 1 then determines the AM production strategy 

that minimizes CO2e emissions for each scenario. An ANOVA is then performed, using 

Minitab software, in which the input parameters to the model are input factors to the 

ANOVA and the optimal production strategies determined by the model are the 

responses. 

3.3 Parametric Analysis 

After performing the ANOVA, the parameters with negligible effect on determining 

the most environmentally friendly production strategy are excluded. Those that 

significantly affect the results are used in Step 3 and are varied to create an extensive 

dataset, which is needed to feed and train the decision-tree algorithm to develop the 

DSS.  

The data used to perform this parametric analysis is obtained as follows. First, the 

possible values of the input parameters are determined according to the results of the 

ANOVA (see Table 3). The values of the input parameters with negligible effect are 

treated as constants and equal to the intermediate values reported in Table 1, while 

additional values are considered for the input parameters with non-negligible impacts 

on the production strategy decision. Specifically, the extreme values remain the same 

as in Table 2 and more intermediate values are added (Table 3). In this way, a data set 

consisting of 2,268 scenarios is obtained. Finally, the mathematical model developed 

in Section 3.1 is applied to the data for each scenario and the optimal production 

strategies and CO2e emissions determined for each. 

Table 3. Input parameters’ values to create extensive dataset 

Parameter Admissible Values 

T 8 

MTTF 91 

cb 26000 

cp 700 

L1 0.2 

L2 2 

Ec 20; 40; 60; 80; 100; 120; 140; 160; 180 

d 200; 2050; 3900; 5750; 7600; 9450; 11300; 13150; 15000 
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t 14.4; 18.9; 90; 1080 

Emi 50; 150; 250; 350; 450; 550; 650 

Ps 4 

h 0.0058 

3.4 Decision Tree 

Finally, in step 4, a DSS in the form of a decision tree is developed using a decision-

tree algorithm, which is a classification method that predicts an item’s class based on 

specific parameters. The results obtained by applying the mathematical model to each 

of the scenarios created by the parametric analysis performed in Step 3 are then used as 

a dataset to feed and train the decision tree, as follows. 

Starting from a root node, the dataset is iteratively divided into binary branches 

based on the Gini Diversity Index (𝑔𝑑𝑖), where 𝑘 is the class label and 𝑝(𝑘) is the 

probability of choosing the data point with class 𝑘. The 𝑔𝑑𝑖 (see Equation (10)) 

measures the probability of misclassification of a given data point in a dataset when 

randomly selected. Thus, 𝑔𝑑𝑖 = 0 means that all data points in the dataset belong to a 

particular class, while 𝑔𝑑𝑖 = 1 implies that the data points are randomly distributed 

among the different classes. At each tree node, an attribute and its breakpoint are 

selected to create two branches to minimize Equation (11). Thus, the branches that 

provide the maximum purity are determined. In Equation (11), 𝑛 is the number of data 

points in the original node, 𝑛𝑙𝑒𝑓𝑡 is the number of data points in the new node in the left 

branch, 𝑛𝑟𝑖𝑔ℎ𝑡 is the number of data points in the new node in the right branch, 𝑔𝑑𝑖𝑙𝑒𝑓𝑡 

is the Gini diversity index in the new node in the left branch, and, 𝑔𝑑𝑖𝑟𝑖𝑔ℎ𝑡  is the Gini 

diversity index in the new node in the right branch [6].  

𝑔𝑑𝑖 = 1 − ∑ 𝑝(𝑘)2𝐾
𝑘=1   (11) 

min(
𝑛𝑙𝑒𝑓𝑡

𝑛
𝑔𝑑𝑖𝑙𝑒𝑓𝑡 +

𝑛𝑟𝑖𝑔ℎ𝑡

𝑛
𝑔𝑑𝑖𝑟𝑖𝑔ℎ𝑡)  (12) 

The elements obtained at the end of the decision tree, after the last branching, are called 

leaves. The number of leaf branchings corresponds to the number of depth levels of the 

tree. To develop a user-friendly DSS, the decision tree is trimmed by determining the 

maximum depth level (𝐷𝑚𝑎𝑥) using a sensitivity analysis; this also helps to prevent the 

problem of overfitting while creating the tree. For pruning, a sensitivity analysis of the 

total accuracy (𝐴) of the decision tree is performed by imposing various values for 𝐷𝑚𝑎𝑥 

and calculating the overall 𝐴 by dividing the number of correct predictions by the total 

number of predictions. 

𝐴 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑡𝑟𝑒𝑒

#𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑡𝑟𝑒𝑒
  (13) 

Finally, the effectiveness of the decision tree is evaluated against three key performance 

indicators (KPI) related to the tree's leaves. The first is the accuracy of a leaf (𝑎), which 

is calculated by dividing the number of correct predictions by the total number of 

predictions in the leaf. The second KPI is the ratio of items reaching each sheet (𝑝), 
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which is calculated by dividing the total number of predictions in that leaf by the total 

number of predictions in the tree. The third KPI is the average percentage CO2e 

emission increase (𝑐) that occurs when an incorrect estimation is made, which is the 

arithmetic average of the extra CO2e emission incurred by each wrong estimate. 

𝑎 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑙𝑒𝑎𝑓

#𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑙𝑒𝑎𝑓
  (14) 

𝑝 =
#𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑙𝑒𝑎𝑓

#𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑡𝑟𝑒𝑒
  (15) 

𝑐 =

(|
∑ 𝑐𝑜𝑠𝑡𝑜𝑓𝑤𝑟𝑜𝑛𝑔𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛−𝑐𝑜𝑠𝑡𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑛𝑘
#𝑤𝑟𝑜𝑛𝑔𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑙𝑒𝑎𝑓
𝑘=1

𝑐𝑜𝑠𝑡𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑛𝑘
|∗100)

#𝑤𝑟𝑜𝑛𝑔𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑙𝑒𝑎𝑓
 (16) 

4 Results and Discussion 

A DSS in the form of a decision tree was developed to help with determining whether 

on-site or off-site AM production of spare parts should be adopted to minimize CO2e 

emissions. After developing the mathematical model to compare the CO2e emissions 

of on-site and off-site production strategies, an ANOVA was performed, whose results 

are presented in Fig. 1. These results show that five of the ten input parameters (𝑇, 𝐶𝑏𝑖, 
𝑀𝑇𝑇𝐹, Ps, and 𝐿2) have a negligible effect on determining the most environmentally 

friendly production strategy, with the mean effect curves created from the ANOVA 

results being almost horizontal. In contrast, the other input parameters (𝐸𝑐, 𝐸𝑚𝑖, 𝑑, and 

𝑡) have a non-negligible influence on the decision-making process. 

 

Fig. 1. Results of the ANOVA (Main effects plots) 
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From the parametric analysis, 15,876 scenarios were created (see Section 3.3). 

Applying the mathematical model to each scenario determined whether on-site or off-

site AM production of spare parts would minimize CO2e emissions, creating the dataset 

used to feed and train the decision-tree algorithm. The resulting DSS is presented in 

Fig. 2.  

 

Fig. 2. Decision tree with a maximum depth of 4 levels 

As can be seen, not all of the five input parameters are used in the decision tree, which 

indicates that they are not equally important; as could have been anticipated from the 

main effect plot, input parameter 𝑑 (distance) is missing. Examining the decision tree 

in detail according to the DSS, for seven of the twelve leaves, the most environmentally 

friendly strategy is on-site production, which is consistent with the existing literature. 

However, in the five remaining scenarios (26.36%), off-site production is the most 

environmentally friendly strategy because of variations in the factors affecting CO2e 

emissions. More specifically, the on-site production strategy is preferable if the energy 

mix of off-site production is greater than or equal to the energy mix of on-site 

production or if transportation is done by air. 

Fig. 2 shows the KPI values of each leaf of the decision tree, in which the accuracy 

rates of some leaves show very high prediction reliability (𝑎 ≥ 90%), while other 

leaves showed that the predictions may not be sufficiently reliable (𝑎 < 80%). 

However, the potential rise in CO2e emissions (𝑐) if the estimation is wrong, which 

managers and practitioners must consider, is often less than 20%. Although incorrect 

predictions would negatively affect the environmental friendliness of a company, the 

low 𝑐 values of the leaves mean that managers and practitioners can rely on the 

predictions offered by the decision tree. 

5 Conclusion 

Choosing on-site or off-site AM production of spare parts can significantly impact 

companies in terms of economic and environmental sustainability. Although the effects 
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of AM on supply chain management issues have previously been studied, the focus has 

generally been on economic concerns, and CO2e emission rates produced by on-site or 

off-site strategies have been neglected. This study therefore aimed to fill this gap in the 

literature by developing a DSS to determine the conditions under which on-site and off-

site production are optimal for spare parts in terms of producing lower CO2e emissions. 

The DSS developed is decision tree–based and was chosen for its user-friendliness and 

speed of use. To develop the DSS, the following procedure was used: 

i. Develop a mathematical model to determine, from an environmental 

viewpoint, whether to adopt on-site or off-site AM production for spare 

parts. 

ii. Examine the effects of input parameters on the decision using ANOVA 

and determine the relevant non-negligible input parameters. 

iii. Perform a parametric analysis by considering the non-negligible input 

parameters and apply the mathematical model to determine whether to 

adopt an on-site or off-site AM production for each scenario resulting 

from the parametric analysis. 

iv. Feed and train the decision-tree algorithm using the dataset developed 

through the parametric analysis to develop a DSS. 

Some leaves in the decision tree have very high accuracy rates, while others are lower, 

but even with the lower rates, the average additional CO2e emission increase is not very 

large. The DSS therefore does a good job of determining whether to adopt on-site or 

off-site AM production for spare parts. Nevertheless, future studies are needed to 

reduce possible errors in the decision-making processes by using other machine 

learning algorithms, such as artificial neural networks, random forests. 

The DSS also has the following implications for managers: 

─ If the energy mix of off-site production is greater than or equal to the energy 

mix of on-site production, on-site production is always the most 

environmentally friendly production strategy. 

─ If airplanes are used as transport for off-site production, for such production 

strategy to be convenient the energy mix of on-site production must be greater 

than energy mix of off-site production by at least 1.5 times, and energy 

consumption must be greater than 50 kWh/kg. 

Future research could add an economic perspective and analysis to the current study, 

developing a multi-objective mathematical model to obtain the optimal production 

strategies with establishing an appropriate trade-off between environmentally 

friendliness and cost-efficiency. 
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