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We report a production-level implementation of equation-of-motion coupled-cluster method with double electron-
attaching EOM operators of 2p and 3p1h types, EOM-DEA-CCSD. This ansatz, suitable for treating electronic struc-
ture patterns that can be described as two-electrons-in-many orbitals, represents a useful addition to EOM-CC family
of methods. We analyze the performance of EOM-DEA-CCSD for energy differences and molecular properties. By
considering reduced quantities, such as state and transition one-particle density matrices, we can compare EOM-DEA-
CCSD wave functions with wave functions computed by other EOM-CCSD methods. The benchmarks illustrate that
EOM-DEA-CCSD is capable of treating diradicals, bond-breaking, and some types of conical intersections.

I. INTRODUCTION

The robust black-box treatment of open-shell and electron-
ically excited species remains elusive, despite the progress in
our understanding of electron correlation and advances in al-
gorithms and computer hardware. The essential challenge in
designing a general strategy is a great diversity of open-shell
patterns, the same trait that is responsible for chemical versa-
tility of transition metals, multiple roles of reaction interme-
diates, and vast variety of photoinduced reactions. The great
variety of open-shell patterns can be adequately captured, in
general, by only the exact treatment, full configuration inter-
action (FCI). More compact formulations rely on specific ap-
proximations, which are grounded in concrete physics and,
therefore, have a limited scope of applicability. Nevertheless,
quantum chemistry has developed several uniform and well-
defined approaches for treating broad classes of electronic
structure.

The coupled-cluster (CC) hierarchy of approximations1,2

provides the best set of tools for ground states of molecules
with moderate non-dynamical correlation, such as closed-
shell molecules with large spectral gaps or simple open-shell
species (i.e., such as high-spin states with the maximal spin
projection). If the wave function is well described by a single
Slater determinant, then CC methods account for dynamical
correlation with an impressive accuracy achieved already at
low-level many-body treatments.3,4

Equation-of-motion coupled-cluster (EOM-CC) theory5–15

provides an extension of CC theory to open-shell species and
electronically excited states. EOM-CC theory is not a sin-
gle method; rather, it is a general framework. In the Fock-
space formalism, it provides a strategy for describing differ-
ent classes of electronic structure in an efficient and robust
manner. Different variants of EOM-CC provide access to dif-
ferent types of target electronic states, such as electronically
excited, electron attached, or ionized states. It is important to
note that the description of the target states relates to the elec-
tronic structure pattern and not to a particular phenomenon or
experiment. For example, in the EOM terminology, electron-
attached states refer to the states that can be described as the

result of adding an electron to a closed-shell reference and not
to the states produced by actual attachment of an electron to a
molecule.

In this contribution, we focus on a variant of EOM-CC
targeting electronic structure that can be described as 2-
electrons-in-many orbitals pattern, as observed in diradicals
and molecules with small HOMO-LUMO gaps. This ap-
proach, which was introduced16 by Nooijen and Bartlett
for similarity transformed EOM in 1997, was later further
developed17 and used in several illustrative calculations.18–21

However, its full potential has not been appreciated by the
computational chemistry community. Here we report an
efficient implementation, including energies and properties,
and illustrate the capabilities of this method by a broad
set of examples. The examples highlight the ability of
EOM-CC to treat a variety of situations, often described as
’multi-reference’, in an efficient and robust single-reference
framework12,14,22. In particular, EOM-DEA is a useful tool
for treating diradicals, doubly excited states, bond-breaking,
and some types of conical intersections.

II. THEORY

The EOM-CC wave function is expressed as

|Ψ〉= ReT |Φ0〉 , (1)

where the linear operator R acts on the reference CC wave
function, eT |Φ0〉. The operator T is an excitation operator
satisfying the CC equations for the reference state,

〈Φµ |H̄|Φ0〉= 0, (2)

where H̄ = e−T HeT and Φµ are the µ-tuply excited determi-
nants with respect to the reference determinant Φ0. In EOM-
CCSD, the CC operator is truncated as3

T ≈ T1 +T2, (3)
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where T1 and T2 are spin- and particle-conserving single and
double excitation operators of 1-hole-1-particle (1h1p) and 2-
holes-2-particles (2h2p) types:

T1 = ∑
ia

ta
i a†i, T2 =

1
4 ∑

i jab
tab
i j a†b† ji (4)

and the truncation of R is done in a consistent manner.
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FIG. 1. Different types of target states can be accessed by different
combination of the reference state and EOM operators. Reproduced
with permission from Ref. 23.

Different variants12–14 of EOM-CC are defined by different
choices of the reference state and the type of EOM operators
R, as illustrated in Fig. 1. The focus of this work is on EOM-
DEA.17,21,24 In this method, the operators R1 and R2 are of 2p
and 1h3p types:

R1 =
1
2 ∑

ab
raba†b†

R2 =
1
6 ∑

iabc
rabc

i a†b†c†i.

The EOM amplitudes and the corresponding energies are
found by diagonalizing the matrix of the similarity trans-
formed Hamiltonian, H̄, in the basis of determinants gener-
ated by the EOM operators R acting on the reference Φ0.
Since H̄ is a non-Hermitian operator, its left and right eigen-
states are not Hermitian conjugates but form a biorthonormal

set:

H̄R |Φ0〉= ER |Φ0〉 (5)

〈Φ0|LH̄ = 〈Φ0|LE (6)

〈Φ0|LMRN |Φ0〉= δMN (7)

where M and N denote the Mth and Nth EOM states and

L = L1 +L2 =
1
2 ∑

ab
labba+

1
6 ∑

iabc
labc
i i†cba. (8)

Here and below p† and q are electron creation and annihilation
operators corresponding to orbitals φp and φq (following the
standard convention, indices i, j,k . . . denote orbitals occupied
in Φ0, a,b,c, . . . denote virtual orbitals, and p,q,r, . . . denote
orbitals from both subspaces). For energy calculations right
eigenstates are sufficient but for property calculations both left
and right eigenstates need to be computed.

The left and right amplitudes are found by diagonalizing the
corresponding matrix representation of H̄. Hence, an EOM-
CCSD calculation entails the diagonalization of the effective
Hamiltonian H̄ in the basis of the reference and singly and
doubly excited determinants, which can be written in the ma-
trix form as(

H̄SS−Ecc H̄SD
H̄DS H̄DD−Ecc

)(
R1
R2

)
= ω

(
R1
R2

)
(9)

and (
L1 L2

)(H̄SS−Ecc H̄SD
H̄DS H̄DD−Ecc

)
= ω

(
L1 L2,

)
(10)

where ω is the energy difference with respect to the refer-
ence coupled-cluster state. Note that the structure of the
effective Hamiltonian ensures size-intensivity, but not size-
extensivity.25 In practice, Eqns. (9) and (10) are solved it-
eratively, using a generalization of Davidson’s diagonaliza-
tion procedure. This procedure requires calculation of the
Hamiltonian acting on trial vectors; the relevant expressions
are given in Appendix A.

The scaling of the EOM part in the standard EOM-DEA-
CCSD implementation is N6(O1V 5), to be compared with
O2V 4 in EOM-EE/SF-CCSD, O3V 2 in EOM-IP-CCSD, O4V 2

in EOM-DIP-CCSD, and O1V 4 in EOM-EA-CCSD. The
EOM-DEA-CCSD scaling is determined by the contraction
between the transformed two-electron integral and R2 or L2
vectors (∑de I5

abdercde
i or ∑de lade

i I5
debc) entering the calculation

of the doubles-doubles block (see Table XXII).
To analyze EOM-CCSD wave functions, we employ re-

duced quantities such as state and transition one-particle den-
sity matrices. These objects are related to concrete physical
observables26 and, therefore, provide insight into underlying
electronic structure and facilitate comparison between differ-
ent methods27. They also provide a way to derive a molec-
ular orbital picture26 of many-body wave functions by using
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concepts such as natural orbitals (NOs) and natural transition
orbitals (NTOs).

The NOs28 provide a compact one-particle representation
of many-electron wave functions. They are defined as eigen-
states of one-particle (state) density matrices (1PDMs). In
second quantization, the 1PDM (γ I) for the ΨI state is defined
as

γ
I
pq = 〈ΨI |p†q|ΨI〉 . (11)

The eigenvalues of 1PDM are called occupation numbers (ni);
they range from 0 to 1 and add up to the total number of the
electrons. 1PDMs contain all information necessary to com-
pute the expectation value of any one-particle operator Ô1
(dipole moment µ , size of wave function R2, etc):

〈ΨI |Ô1|ΨI〉= ∑
pq

γ
I
pq 〈φp|Ô1|φq〉 . (12)

1PDMs can be also used to extract quantities that are not re-
lated to physical observables, but provide insight into elec-
tronic structure, such as the number of effectively unpaired
electrons.29–31 Here we use nu,nl index, proposed by Head-
Gordon,30

nu,nl = ∑
i

n̄i
2(2− n̄i)

2, (13)

where n̄i are spin-averaged occupation numbers.

Similarly, one can define the one-particle transition density
matrix27,32–36 (1PTDM) between two many-electron wave
functions ΨI and ΨJ :

γ
IJ
pq = 〈ΨJ |p†q|ΨI〉 . (14)

The norm of γ IJ provides a measure on one-electron character
of the transition (e.g., ||γ||=1 for transitions between Φ0 and
a CIS excited state). The 1PTDM provides a compact repre-
sentation of the difference between the two states in terms of
hole-particle excitations. Singular value decomposition of γ IJ

provides a set of left and right eigenvectors

γ
IJ =UΣV T , (15)

which define hole (ψh
K) and particle (ψe

K) orbitals correspond-
ing to singular value σK

ψ
h
K = ∑

q
UqKφq, (16)

ψ
e
K = ∑

q
VqKφq. (17)

Such pairs of hole and particle orbitals are called NTOs. Usu-
ally, only a small number of singular values are significant.
To quantify the collectivity of excitation (i.e., how many NTO
pairs are needed to describe the transition), we use the partic-
ipation ratio defined as

PRNTO =
(∑i σi)

2

∑i σ2
i

=
||γ||2

∑i σ2
i
. (18)

The participation ratio is closely related to the number of en-
tangled states, an alternative metric37 also defined on the basis
of the 1PTDMs:

ZHE = 2SHE = 1/∏
i

λ
λi
i , (19)

where λi = σ2
i /||γ||2 are renormalized squares of the singular

values of 1PTDM and SHE is the hole-electron entanglement
entropy:

SHE =−∑
i

λi log2 λi. (20)

To properly account for spin entanglement in spin-adapted ba-
sis, we use the extensivity of entropy, i.e., the total SHE is
the sum of the αα and ββ parts of the transition. Therefore,
when using restricted Hartree-Fock references, one needs to
add SHE from the αα and ββ spin-sectors to obtain total SHE .

The NTOs and the respective exciton descriptors pro-
vide convenient tools to analyze the transitions between
states26,27,38, as long as they have predominantly one-electron
character (i.e., when ||γ|| ∼1).

III. RESULTS AND DISCUSSION

To illustrate the scope of applicability of EOM-DEA-
CCSD, we consider the following examples:

• Low-lying states in molecules with diradical charac-
ter11,39–41: CH2, benzynes, cyclobutadiene. For these
systems, we compare EOM-DEA with EOM-SF. We
consider both energy differences and properties. For
the diradical manifold (such as low-lying singlets and
triplets), we anticipate similar performance; however,
EOM-DEA can also access higher excited states, as was
illustrated in recent studies of Rydberg diradicals42,43.

• Ground and excited state of ozone. This example il-
lustrates both the advantages and the limitations of the
EOM-DEA ansatz. Depending on the chosen reference
state chosen, different target manifolds are accessible
by EOM-DEA.

• Ground and excited states of ethylene at equilibrium ge-
ometry and along torsional coordinate. This example
illustrates (π) bond-breaking and the ability of EOM-
DEA to treat doubly excited states.

• Excited states of butadiene. This examples illustrates
the extent of doubly excited character in the lowest dark
state in polyenes.

• To assess the ability of EOM-DEA to treat conical in-
tersections, we consider a well studied retinal exam-
ple44–46 and HeH2.

• Excited states in small molecules (water and ammonia),
where we compare EOM-DEA with EOM-EE and other
methods, including FCI.
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Similarly to the ozone case, these examples illus-
trate that states that are dominated by excitations from
HOMO are described well by EOM-DEA, but states de-
rived by excitations from lower orbitals are not.

Section III A provides computational details for each exam-
ple.

A. Computational details

All EOM-CCSD calculations were performed using the Q-
Chem electronic structure program47,48. The reported sym-
metry labels of electronic states and MOs correspond to Mul-
liken’s convention49, which differs from the standard molecu-
lar orientation used in Q-Chem (hence, some state labels had
to be changed). The EOM-CCSDT calculations were per-
formed with CFOUR50 and the EOM-CC3 calculations with
eT.51,52 For HeH2, EOM-EE-CCSD calculations were per-
formed with eT and FCI calculations with DALTON.53 In
EOM-DEA-CCSD calculations, we use default N-2 electron
references. To investigate effects of orbital relaxation, we also
carried out calculations with orbitals computed for N-electron
states. In cases when different orbitals were used, the charge
of the reference state is indicated as follows: ‘EOM-DEA-
CCSD/+X’, where ‘+X’ denotes the charge of the Hartree-
Fock determinant defining the orbitals used in the EOM-CC
calculations.

Methylene calculations were performed using the equilib-
rium geometries and TZ2P basis set from Ref. 54. Pure an-
gular momentum polarization functions were employed. In
CCSD and EOM calculations, all orbitals were active. Note
that the reference FCI energies54 were computed with one
frozen core and one frozen virtual orbital. Cyclobutadiene
calculations were performed using the same equilibrium ge-
ometries as in Ref. 11. All calculations were performed with
the cc-pVTZ basis set. Pure angular momentum polarization
functions were employed; all orbitals were active. Calcula-
tions of benzynes were performed using the same equilibrium
geometries as in Ref. 55 and with the cc-pVTZ basis set. Pure
angular momentum polarization functions were employed; all
orbitals were active.

Butadiene calculations were performed using the geome-
tries from Ref. 56. Pure angular momentum polarization func-
tions were employed; core orbitals were frozen. Ethylene cal-
culations were performed using the geometries from Ref. 57.
Cartesian polarization functions were employed; core elec-
trons were frozen. Ozone calculations were performed using
the geometries from Ref. 58. Pure angular momentum func-
tions were employed. Core electrons were frozen.

Water and ammonia calculations were performed using the
geometries from Ref. 59. Pure angular momentum func-
tions were employed; core electrons were frozen. Retinal
chromophore calculations were performed using the geome-
tries from Ref. 44. Cartesian polarization functions were em-
ployed; all electrons were active. HeH2 calculations are per-
formed using pure angular momentum functions; all electrons
were active.

Computation of ZHE requires additional clarification.
When using restricted Hartree-Fock references, the Q-
Chem/libwfa output of renormalized entanglement entropy
(SHE ) for the transition should be multiplied by 2. When us-
ing unrestricted Hartree-Fock references, SHE is taken directly
from the Q-Chem/libwfa output. Then ZHE is computed as
2SHE .

B. CH2

Methylene is an example of a simple diradical with a triplet
ground state. Its low-lying electronic states are derived by
distributing two electrons over two frontier orbitals (pz and
sp2-hybridized orbitals of carbon). Table I shows the total
energy for the X̃3B1 state (high-spin) and adiabatic excitation
energies for the ã1A1, b̃1B1, and b̃1B1 states computed with
EOM-DEA-CCSD and several other methods.

TABLE I. Total energies (hartree) for the ground X̃3B1 state of CH2
and adiabatic excitation energies (eV) for the three lowest singlet
statesa. ZPE not included; TZ2P basis set.

Method X̃3B1 ã1A1 b̃1B1 c̃1A1
HFb -38.937956 1.236 2.772
CCSDb -39.080919 0.545 2.054
CCSD(T)b -39.083856 0.505 1.907
EOM-EE-CCSDb -39.08066 0.538 1.566 3.843
SF-CISb -38.93254 0.883 1.875 3.599
SF-CIS(D)b -39.05586 0.613 1.646 2.953
EOM-SF-ODb -39.08045 0.514 1.564 2.715
EOM-SF-CCSD/UHFc -39.080453 0.517 1.565 2.718
EOM-SF-CCSD(fT)/UHFc -39.08184 0.500 1.552 2.688
EOM-SF-CCSD(dT)/UHFc -39.08217 0.496 1.548 2.678
EOM-DEA-CCSDd -39.069681 0.481 1.461 2.518
FCIe -39.066738 0.483 1.542 2.674

a FCI/TZ2P optimized geometries. All electrons were active
in CC/EOM-CC calculations. b Computed using closed-shell

singlet reference; from Ref. 39. c From Ref. 41.
d This work. e From Ref. 54; one frozen core and one frozen

virtual orbital.

As expected, Hartree-Fock calculations overestimate the
singlet-triplet gap because of an unbalanced description of the
singlet state (which needs more correlation because of the di-
radical character) and the triplet state (which is well described
by the single determinant). However, the diradical charac-
ter in the lowest singlet state is modest, so that ∆CCSD cal-
culation yields a reasonable gap, which is further improved
by including triples corrections. We note that the EOM-EE-
CCSD calculation (performed using a closed-shell reference)
yields a better value of the gap than CCSD, because of a more
balanced description of the two states. Another advantage of
EOM-CC ansatz is that it yields not just the lowest triplet,
but also two other singlet states. The energy of the open-
shell singlet, b̃1B1 is reproduced well by EOM-EE-CCSD,
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TABLE II. One-electron properties for the lowest electronic states of
CH2 computed using EOM-SF-CCSD and EOM-DEA-CCSD wave
functions; aug-cc-pVTZ basis set.

State µ(a.u) R2 (a.u) nu,nl

EOM-SF-CCSD
X̃3B1 0.239 24.24 2.00
ã1A1 0.692 25.07 0.07
b̃1B1 0.275 24.84 2.00
c̃1A1 0.099 25.41 1.96
EOM-DEA-CCSD
X̃3B1 0.327 23.96 2.00
ã1A1 0.773 24.84 0.06
b̃1B1 0.327 24.67 2.00
c̃1A1 0.105 24.74 1.96

but the error for the c̃1A1 state is off by ∼1 eV because of
its doubly excited character. As one can see, the EOM-SF-
CCSD and EOM-SF-OOCCD ansätze yield excellent values
for all three gaps (within 0.03 eV from FCI) and the inclu-
sion of triples correction reduces the errors relative to FCI
to 0.01 eV range. The EOM-DEA-CCSD performs similarly
to EOM-SF-CCSD, but the errors are slightly larger (0.002,
0.081, and 0.156 eV). This slightly worse performance can be
attributed to orbital relaxation effects—the EOM-SF calcula-
tion uses the triplet-state orbitals, which are nearly optimal
for all four states from the diradical manifold whereas EOM-
DEA-CCSD uses dication orbitals. Consequently, the R2 op-
erator in EOM-SF-CCSD ansatz can be fully employed to de-
scribe the differential correlation of the EOM states whereas
in EOM-DEA-CCSD R2 needs to deal with both correlation
and orbital relaxation effects.

Table II compares EOM-SF-CCSD and EOM-DEA-CCSD
wave functions. We observe small but noticeable differences
in permanent dipole moments and the size of electron density
distribution. The EOM-DEA-CCSD < R2 > values appear
to be somewhat smaller than EOM-SF-CCSD ones, which is
consistent with using more compact dicationic orbitals.

Overall, despite slightly larger errors than in EOM-SF-
CCSD, EOM-DEA-CCSD performs rather well and is free
from spin-contamination, as it relies on the closed-shell ref-
erence. We anticipate that performance of EOM-DEA-CCSD
can be brought up to sub-kcal/mol range by perturbative ac-
count of higher excitations (i.e., 4p2h).

In addition, EOM-DEA-CCSD can describe higher excited
states, which are not accessible by EOM-SF-CCSD, as was
illustrated in recent studies of Rydberg diradicals42,43, a class
of molecules in which the two unpaired electrons reside in
two diffuse orbitals. These exotic species came into a spot-
light due to their potential utility in quantum information
science42,43,60. In the context of laser cooling, which is an
essential step in utilizing these molecules in quantum infor-
mation applications, one needs to be able to describe not only
the low-lying diradical states (as those discussed above), but
also higher excited states, through which optical cycling is
carried out. Hence, EOM-DEA-CCSD offers an advantage

over EOM-SF-CCSD.

C. Benzynes

Benzynes, σσ aromatic diradicals, are popular benchmark
systems for theory39,41,61–65, owing to the availability of the
high-quality experimental data66,67. Table III shows adiabatic
singlet-triplet gaps in ortho-, meta-, and para-benzynes; the
frontier NOs and their occupations are shown in Fig. 2. The
results show an anticipated trend: as the distance between the
diradical centers increases, the gap shrinks and the diradical
character increases, as evidenced by the occupations of the
two frontier NOs in the ground singlet state. As in the methy-
lene example, both EOM-SF-CCSD and EOM-DEA-CCSD
yield accurate gaps for all three isomers. The differences be-
tween the two methods do not exceed 0.05 eV. The character
of the wave functions, e.g., as illustrated by the number of
effectively unpaired electrons, is also very similar.

TABLE III. Adiabatic singlet-triplet gaps (eV) in benzynes (no ZPE);
cc-pVTZ basis set.

Method o-benzyne m-benzyne p-benzyne
EOM-SF-CCSDa 1.578 0.782 0.147
EOM-SF-CCSD(fT)a 1.615 0.875 0.169
EOM-SF-CCSD(dT)a 1.619 0.892 0.172
EOM-DEA-CCSDb 1.625 0.799 0.145
∆ZPEd -0.028 0.043 0.021
Expt. - ∆ZPE 1.656 0.868 0.144

aFrom Ref. 41. bThis work. cFrom Ref. 66,67. dFrom
Ref. 39.

o m p

1.85 (1.00)

0.14 (0.99)

1.80 (1.00)

0.19 (0.99) 0.60 (0.98)

1.38 (1.00)

0.11 (0.98) 0.18 (0.98) 0.59 (0.98)

1.86 (0.98) 1.78 (0.98) 1.38 (0.98)

FIG. 2. Benzynes. Frontier NOs and their occupation numbers in the
lowest singlet and triplet states (triplet-state occupations are given
in parenthesis) computed for the EOM-SF-CCSD (black) and EOM-
DEA-CCSD (red) wave functions using the cc-pVTZ basis set.
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TABLE IV. Head-Gordon index (nu,nl) for the lowest singlet and
triplet states in benzynes computed using the EOM-DEA-CCSD and
EOM-SF-CCSD (numbers in parenthesis) wave functions; cc-pVTZ
basis set.

Type Singlet Triplet
o-benzyne 0.11(0.16) 2.00(2.00)
m-benzyne 0.26(0.26) 2.00(2.00)
p-benzyne 1.43(1.45) 2.00(2.00)

D. Cyclobutadiene

Cyclobutadiene is a popular benchmark system23. At
square (D4h) structures, symmetry requires that the two fron-
tier orbitals be exactly degenerate, giving rise to a perfect di-
radical pattern, whereas symmetry lowering to D2h lifts the
degeneracy and results in a closed-shell pattern. The low-
est electronic state is a singlet state. Due to the second-
order Jahn-Teller effect, the equilibrium ground state struc-
ture is rectangular (D2h), with alternating double and single
bonds. The lowest triplet state is not affected by the Jahn-
Teller effect; its equilibrium geometry is D4h. Fig. 3 shows
the geometries of the 13A2g and X1Ag states optimized at the
CCSD(T)/cc-pVTZ level of theory.

The ground singlet state of cyclobutadiene shows variable
extent of the diradical character, which also affects low-lying
electronic states. Table V shows the total energy for X̃1Ag

ground state and vertical excitation energies for the 13B1g,
11B1g, and 21Ag computed with EOM-DEA-CCSD and other
methods. Table VI shows the total energy for the X̃1B1g

ground state and vertical excitation energies for 13A2g, 21A1g,
and 11B2g for EOM-DEA-CCSD and other methods.

C C

C C

H

HH

H

C C

C C

H

HH

H

1.439
1.073

135.0

1.566
1.074

1.343

134.91

FIG. 3. Geometries of the 13A2g (left) and X1Ag (right) states opti-
mized at the CCSD(T)/cc-pVTZ level of theory. Bond lengths are in
angstroms and angles are in degrees; the structures are from Ref. 11.

Total EOM-DEA-CCSD energies for the ground state are
significantly above EOM-SF-CCSD ones, by about ∼0.02
hartree, which we attribute to using dication orbitals in the
former. However, the differences in the respective exci-
tation energies are small. At both geometries (D4h and
D2h structures) the vertical excitation energies obtained with
EOM-DEA-CCSD are underestimated relative to the refer-
ence UHF/ROHF-EOM-SF-CCSD(dT) values; this can also
be attributed to the use of compact Hartree-Fock orbitals of

TABLE V. Total energies (hartree) of the ground state X1Ag of cy-
clobutadiene and vertical excitation energies (eV) at the X1Ag equi-
librium geometry (D2h symmetry, 4 frozen core orbitals); cc-pVTZ
basis set.

Method Etot (X1Ag) 13B1g 11B1g 21Ag

EOM-EE-CCSD -154.354 95 1.349 3.314 7.874
EOM-EE-CCSDT -154.390 67 - 3.264 4.512
UHF-EOM-SF-CCSD -154.362 85 1.652 3.411 4.354
UHF-EOM-SF-CCSD(fT) -154.367 45 1.516 3.257 4.203
UHF-EOM-SF-CCSD(dT) -154.367 44 1.474 3.210 4.174
ROHF-EOM-SF-CCSD -154.363 39 1.656 3.408 4.348
ROHF-EOM-SF-CCSD(fT) -154.367 56 1.515 3.253 4.197
ROHF-EOM-SF-CCSD(dT) -154.367 37 1.467 3.200 4.168
EOM-DEA-CCSD -154.339 22 1.403 3.120 4.127

TABLE VI. Total energies (hartree) of the ground state X1B1g of
cyclobutadiene and vertical excitation energies (eV) at the X1B1g
equilibrium geometry (D4h symmetry); cc-pVTZ basis set

Method Etot (X1B1g) 13A2g 21A1g 11B2g

EOM-EE-CCSDa -154.380 58 -0.590 - 1.534
UHF-EOM-SF-CCSDa -154.413 01 0.369 1.824 2.143
UHF-EOM-SF-CCSD(fT)a -154.414 78 0.163 1.530 1.921
UHF-EOM-SF-CCSD(dT)b -154.413 90 0.098 1.456 1.853
ROHF-EOM-SF-CCSDa -154.413 42 0.369 1.814 2.137
ROHF-EOM-SF-CCSD(fT)b -154.414 77 0.159 1.521 1.915
ROHF-EOM-SF-CCSD(dT)b -154.413 58 0.088 1.438 1.837
EOM-DEA-CCSDc -154.386 00 0.023 1.406 1.751

aFrom Ref. 11. bFrom Ref. 41. cThis work.

the +2 reference state. However, EOM-DEA-CCSD is closer
to UHF/ROHF-EOM-SF-CCSD(dT) than EOM-EE-CCSD or
EOM-SF-CCSD.

E. Ozone

Ozone has been extensively studied because of its role in at-
mospheric chemistry58,68. Owing to its non-classical bonding
pattern, which cannot be described by a single Lewis struc-
ture, ozone features the ground state of diradical character and
low-lying excited states.

Ozone has 24 electrons and belongs to C2v symmetry. Elec-
tronic configurations of its low-lying states are summarized in
Table VII and in Fig. 4, which shows relevant frontier NOs.
Table VII lists the occupation numbers of the leading configu-
rations in the ground and several excited states. The [core] de-
notes 9 molecular orbitals that are doubly occupied in ground
state and in the excited state discussed here. Electronic config-
uration of ozone’s ground state is [core]18(4b2)

2(6a1)
2(1a2)

2.
To compute the ground and excited states of ozone by EOM-
DEA-CCSD, we need to use a +2 charge reference. One can
consider different choices, e.g., REF1=[core]18(4b2)

2(1a2)
2

and REF2=[core]18(4b2)
2(6a1)

2. Both references are suitable
for describing the ground state, but the accessibility of ex-
cited states varies. When starting from REF1, X1A1, 3B1,
1B1, and 21A1 excited states can be described accurately, be-
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cause their leading electronic configuration can be generated
by 2p part of the EOM-DEA operator. In contrast, when using
REF2, only X1A1 and 3B2 can be described accurately. Nei-
ther REF1 nor REF2 allows access to the 1A2 excited state,
because from either one one requires 3h1p DEA operators.

4b21b1 6a1 1a2 2b1

FIG. 4. Frontier natural orbitals of the X1A1 state of ozone. com-
puted with EOM-DEA-CCSD/aug-cc-pVTZ. In the ground state, 2b1
orbital is vacant.

TABLE VII. Orbital occupation in dominant configurations of the
ground and low-lying excited states in ozone

Configurations
State [core] 4b2 6a1 1a2 2b1
X1A1 18 2 2 2 0
3B2 18 2 2 1 1
3B1 18 2 1 2 1
3A2 18 1 2 2 1
1A2 18 1 2 2 1
1B1 18 2 1 2 1
21A1 18 2 0 2 2

[core] =
(1a1)

2(2a1)
2(3a1)

2(4a1)
2(5a1)

2(1b2)
2(2b2)

2(3b2)
2(1b1)

2

Table VIII compares vertical excitation energies in ozone
computed with EOM-EE-CCSD and EOM-DEA-CCSD us-
ing the aug-cc-pVTZ basis set. Relative to EOM-EE-CCSD,
EOM-DEA-CCSD underestimates the excitation energy of
the 1B1 state, whereas the excitation energies of the 3B2 and
3B1 states are overestimated. The advantage of EOM-DEA-
CCSD is that it captures the doubly excited state, 21A1. How-
ever, it cannot access the 3A2 state.

TABLE VIII. Ozone. Verticala excitation energies (eV) relative
to the X1A1 state computed by EOM-EE-CCSD and EOM-DEA-
CCSD; aug-cc-pVTZ

State EE-CCSDb DEA-CCSDc DEA-CCSDd

3B2 1.303 - 1.60
3B1 1.701 1.956 -
3A2 1.868 - -
1A2 2.279 - -
1B1 2.307 2.262 -
21A1 - 4.99 -

a Geometry used: rOO = 1.2724 Å, θOOO = 116.82o

b HF reference = [core]18(4b2)
2(6a1)

2(1a2)
2

c HF reference = [core]18(4b2)
2(1a2)

2

d HF reference = [core]18(4b2)
2(6a1)

2

Several theoretical studies have discussed the existence of
two stable ground-state structures for ozone69,70: the familiar
open-triangle structure and a closed-ring structure (both have
C2v symmetry). Fig. 5 shows the geometries of open-ring
minimum (OM), the hypothetical ring minimum (RM), and
the transition state (TS) between them, taken from Ref. 70.
Table IX shows the energy gaps between two lowest singlet
states of ozone for these three geometries. The lowest X1A1
state in RM and TS structures lies 2.86 eV and 1.50 eV above
the OM geometry. As one can see, EOM-DEA-CCSD agrees
reasonably well with the order of states at different geometries
as compared to energies from Ref. 70.

O
O O

O

O O

O

O O

1.288 1.428
1.465

116.6o 84.0o 59.9o

OM TS RM

0.00 eV

4.81 eV

2.86 eV

3.43 eV

1.50 eV

9.50 eV

11A1

21A1

FIG. 5. Ozone. Energies of the two lowest singlet states at selected
structures; EOM-DEA-CCSD/cc-pVTZ.

TABLE IX. Ozone. Energy gap (eV) between the 21A1 and 11A1
states computed with extrapolated semistochastic heat-bath config-
uration interaction (ex. SHCI), MRCI(SDTQ), and EOM-DEA-
CCSD; cc-pVTZ basis set.

Geometry ex. SHCIa MRCI(SDTQ)b DEA-CCSDc

OM 4.13 3.54-4.63 4.77
RM 0.01 0.05-0.16 0.60
TM 6.13 7.35-8.44 8.02

a Ref. 70. b Ref. 71. c This work.

F. Ethylene

Table X shows the ground-state energy of ethylene along
the torsional coordinate computed with different methods; the
respective torsion barriers are summarized in Table XII. Table
XIII compares vertical excitation energies for relevant excited
states of ethylene at its equilibrium geometry (0◦ torsion an-
gle) computed with EOM-EE-CCSD and EOM-DEA-CCSD
using the aug-cc-pVTZ basis set.

At the twisted geometries, the overlap between the two p-
orbitals is reduced and the gap between π and π∗ shrinks. At
90◦, π and π∗ should be exactly degenerate and the double
bond is broken. In the closed-shell Hartree-Fock reference,
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TABLE X. Ethylene torsion, DZP basis. Total energies (hartree) for the SF-TDDFT(5050), TCSCF-CISD, CCSD, EOM-SF-CCSD, and
EOM-DEA-CCSD models.

Θ SF-5050 TCSCF-CISD CCSD EOM-SF-CCSD/UHF EOM-DEA/+2 EOM-DEA/0
0 -78.53417 -78.36589 -78.35221 -78.35643 -78.34170 -78.37023

15 -78.52957 -78.36143 -78.34773 -78.35199 -78.33690 -78.36415
30 -78.51596 -78.34812 -78.33434 -78.33880 -78.32367 -78.34881
45 -78.49369 -78.32634 -78.31223 -78.31724 -78.30241 -78.32582
60 -78.46365 -78.29724 -78.28205 -78.28850 -78.27403 -78.29623
75 -78.42882 -78.26471 -78.24550 -78.25646 -78.24240 -78.26383
80 -78.41799 -78.25522 -78.23262 -78.24715 -78.23321 -78.25447
85 -78.40965 -78.24833 -78.22002 -78.24039 -78.22656 -78.24767
90 -78.40634 -78.24574 -78.20851 -78.23785 -78.22407 -78.22006

Geometry used: rCC = 1.330 Å, rC−H = 1.076 Å, and θHCH = 116o.

the two orbitals are not treated in a balanced way, which re-
sults in a high barrier and a cusp on the torsional potential.
Inclusion of the correlation in the CCSD ansatz reduces the
barrier height, but cannot fully eliminate the cusp, because of
an unbalanced treatment of (π)2 and (π∗)2 configurations. In
contrast, EOM-SF-CCSD (with a high-spin triplet reference)
and EOM-DEA-CCSD (with a dication reference) are treating
the two frontier orbitals and the respective configurations in a
balanced way, yielding smooth potential energy curves and
accurate barrier heights (as compared to the reference MRCI
values).
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FIG. 6. Ethylene torsion barrier computed with various methods and
a DZP basis set. All curves are shifted such that the energy at 00 is
zero

We note that the cusp reappears in the EOM-DEA-CCSD
calculations that use the neutral reference orbitals. These cal-
culations also overestimate the barrier height (i.e., the differ-
ence between +2 and 0 calculation is 0.89 eV). The analysis
of the relevant orbitals (shown in the SI) attributes this to the
scrambling of the π HOMO with the low-lying orbitals (in the
neutral reference), leading to symmetry breaking.

Table XIII and Table XIV compares excitation energies and
one-particle properties computed using EOM-DEA-CCSD
and EOM-EE-CCSD wavefunctions. As expected, EOM-
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FIG. 7. Potential energy curves along torsion coordinate for several
electronic states of ethylene computed with EOM-DEA-CCSD/aug-
cc-pVTZ.

TABLE XI. Ethylene. Vertical excitation energies (eV) from the
lowest singlet state (1A2) at the twisted geometry using EOM-DEA-
CCSD/aug-cc-pVTZ.

State EOM-DEA-CCSD
3A2 -0.011

11A1 2.485
21A1 2.507

rCC = 1.330 Å, rC−H = 1.076 Å, Θtor 900, and θHCH = 116o .

DEA-CCSD excitation energies are comparable to the EOM-
EE-CCSD ones for all excited states that are dominated by
one-electron excitation. EOM-DEA-CCSD can also describe
doubly excited state, 1Ag, which is not accessible by EOM-
EE-CCSD.
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TABLE XII. Ethylene torsion barrier (eV) computed
with various methods and a DZP basis set.

Method Barrier
SF-TDDFT/5050 3.48
TCSCF-CISD 3.27
CCSD 3.91
EOM-SF-CCSD/UHF 3.23
EOM-DEA-CCSD/+2 3.20
EOM-DEA-CCSD/+0 4.09
EOM-DEA-CCSD∗∗/+0 3.41
∗∗ Dihedral angle = 89.9999o.
This allows the symmetry of
molecule remain in D2 point group.

TABLE XIII. Ethylene. Vertical excitation energies (eV) at the equi-
librium geometry using EOM-DEA-CCSD with aug-cc-pVTZ.

State Orbital assign Exp. DEA-CCSD EE-CCSD
3B1u

3(π,π∗) 4.36 4.48 4.50
3B3u

3(π,3s) 6.98 6.82 7.31
1B3u

1(π,3s) 7.11 6.92 7.44
1B1u

1(π,π∗) 7.68(8.0) 7.79 8.04
2B3u

2(π) 10.5 10.43 10.43
1Ag

1(π∗,π∗) - 12.86 -

rCC = 1.330 Å, rC−H = 1.076 Å, Θtor 900 ,
and θHCH = 116o.

TABLE XIV. One-particle state and transition properties for ethy-
lene computed with EOM-EE-CCSD and EOM-DEA-CCSD; aug-
cc-pVTZ basis set.

State nu,nl fl ||γ|| ZHE e-h sepa

EOM-EE-CCSD
3B1u 2.00 0.00 0.94 1.39 1.82
3B3u 2.00 0.00 0.91 1.03 3.60
1B3u 2.00 0.08 0.91 1.01 3.71
1B1u 2.00 0.37 0.92 1.80 2.59
1Ag - - - - -

EOM-DEA-CCSD
3B1u 2.00 0.00 0.91 1.37 1.87
3B3u 2.00 0.00 0.95 1.02 3.64
1B3u 2.00 0.09 0.91 1.01 3.74
1B1u 2.00 0.38 0.93 1.41 2.81
1Ag 0.55 - - - -

a e-h sep = electron hole separation in Å.

G. Butadiene

Butadiene is the smallest polyene, representing an impor-
tant motif commonly occurring in photoactive molecules and
dyes. The theoretical description of the two lowest states in
polyenes is challenging due to their different character. In
butadiene, the lowest excited state, 11B+

u , is a bright, dipole-
allowed, singly excited state. The second excited state, 21A−g

is dark, dipole-forbidden state, which is believed to have sub-
stantial doubly excited character. UV-VIS absorption spec-
trum of butadiene places the 11B+

u state at 5.92 eV above the
ground state (vertically). Because butadiene is able to fluo-
resce, the consensus is that the dark state is located above the
bright state. In longer polyenes, the dark state drops below
the bright state, which leads to fluorescence quenching. The
exact positions, and even the ordering, of the two states in
short polyenes, butadiene and hexatriene, has been debated,
as summarized, for example, in Ref. 56. The difficulties in
resolving this issue theoretically stem from the strong dynam-
ical correlation effects in the bright state and some doubly ex-
cited character of the dark state. Only high-level methods,
such as EOM-EE-CCSDT, can provide an accurate descrip-
tion of these two effects. Moreover, because of the contri-
butions of Rydberg excitations into the dark state, the results
(including wave function composition) are sensitive to the ba-
sis set. Consequently, the results of approximate treatments
vary widely. Multi-reference methods tend to overestimate
the doubly excited character of the dark state and underesti-
mate the contributions from Rydberg excitations. In contrast,
single-reference methods, such as EOM-CCSD or ADC, un-
derestimate doubly excited contributions in the dark state.

X1A-
g 1.99 1.88 0.08 0.02

21A-
g 1.97 0.25 0.80 0.93

11B+
u 1.99 0.98 0.96 0.02

FIG. 8. Butadiene. Natural frontier orbitals and their occupations
computed using the EOM-DEA-CCSD/aug-cc-pVTZ wave func-
tions (using dication reference orbitals).

Our results show that the EOM-DEA-CCSD ansatz is ca-
pable of describing both states on the same footing, yielding
excitation energies of the two states in good agreement with
the reference EOM-EE-CCSDT values. This is illustrated by
the data in Table XV, which compares excitation energies for
the bright (11B+

u ) and dark (21A−g ) excited states of trans-
butadiene computed with the EOM-EE-CCSD, EOM-DEA-
CCSD, EOM-EE-CC3, and EOM-EE-CCSDT methods with
different basis sets. For EOM-DEA-CCSD, we report the re-
sults obtained with two references: one constructed using the
default dication orbitals and one constructed using the orbitals
from the neutral system. Excitation energies for both states us-
ing EOM-DEA-CCSD are comparable to EOM-EE-CCSDT
and EOM-EE-CC3.

For the bright state, the effect of triple excitations is small
and the difference between EOM-EE-CCSD and EOM-EE-
CCSDT is ∼0.1 eV; as usual, inclusion of triples brings the
excitation energies down. The EOM-DEA-CCSD values are
slightly below EOM-EE-CCSD and, therefore, are slightly
closer to EOM-EE-CCSDT. Using neutral orbitals increases
the excitation energy, which can be attributed to better de-
scription of the ground state. The effect of the basis set is
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TABLE XV. Vertical excitation energies (eV) for the 11B+
u and 21A−g in butadiene

Basis EE-CCSDa DEA-CCSD/+2b DEA-CCSD/0b EE-CC3b EE-CCSDTa

11B+
u 21A−g 11B+

u 21A−g 11B+
u 21A−g 11B+

u 21A−g 11B+
u 21A−g

cc-pVDZ 6.918 7.648 6.893 7.412 6.857 7.449 6.776 6.968 6.794 6.830
cc-pVTZ 6.660 7.555 6.643 7.206 6.632 7.296 6.514 6.870 6.535 6.763
cc-pVQZ 6.562 7.458 6.520 7.074 - - - - - 6.722
aug-cc-pVDZ 6.389 7.057 6.265 6.684 6.353 6.867 6.269 6.661 6.285 6.577
aug-cc-pVTZ 6.365 7.093 6.241 6.679 6.343 6.883 6.238 6.654 6.241c -

a Ref. 56. b This work. c Estimated with nine frozen orbitals and extrapolation56.

noticeable — including diffuse functions lowers the excitation
energy of the bright state by 0.2 eV.

The results for 21A−g show larger differences between
EOM-EE-CCSD and EOM-EE-CCSDT. In the small basis
set (cc-pVDZ), the difference is 0.8 eV, but it shrinks to 0.3
eV when diffuse functions are included. This illustrates the
importance of Rydberg contributions and that the effect of
double excitations is exaggerated when using compact ba-
sis sets (this is why most multi-reference calculations sig-
nificantly overestimate doubly excited character of the dark
state). EOM-DEA-CCSD energies for the dark state are closer
to EOM-EE-CCSDT, yielding smaller errors than those of
EOM-EE-CCSD. In aug-cc-pVDZ basis, the energy of the
dark state is overestimated by only 0.1 eV by EOM-DEA-
CCSD.The CC3 results show similar trends.

These observations are supported by the wave function
analysis of the EOM-EE-CCSD, EOM-EE-CC3, and EOM-
DEA-CCSD wave functions, summarized in Table XVI (see
also Table S1 in the SI). Fig. 8 shows the occupancy of
natural orbitals for ground and two excited states (described
by EOM-DEA-CCSD with dicationic reference). Occupa-
tions of the frontier NOs clearly reveal singly excited char-
acter of the 11B+

u state and contributions from doubly ex-
cited configurations in the 21A−g state. The comparison of
||γ|| computed with EOM-EE-CCSD,CC3, and EOM-DEA-
CCSD shows that doubly excited character increases (in CC3
and EOM-DEA-CCSD relative to EOM-EE-CCSD), but over-
all is not dominant. Similar conclusions can be drawn from
the values of R2

2 (collected in Table S1 in the SI). The compar-
ison between the regular and augmented basis sets also show
that the doubly excited character is overestimated when the
basis does not capture substantial Rydberg character in the
21A−g state.

H. Potential energy surfaces and conical intersections in
retinal chromophore

Retinal is a well studied model system44–46, featuring coni-
cal intersections between the two lowest electronic states rele-
vant to the cis-trans photoinduced isomerization of rhodopsin.
The two lowest states are the ground state and a bright ππ∗

excited state. Photoexcitation changes the conjugation patter
and initiates twisting, which imparts diradical character into
the ground state, somewhat similar to the ethylene torsion. We

TABLE XVI. One-particle state and transition properties of buta-
diene computed with EOM-EE-CCSD, EOM-EE-CC3, and EOM-
DEA-CCSD.

State nu,nl fl ||γ|| ZHE PRnto

EE-CC3/cc-pVDZ
11B+

u - 0.71 0.86 1.92 1.12
21A−g - 0.00 0.54 4.19 2.00
EE-CC3/aug-cc-pVDZ
11B+

u - 0.67 0.85 1.74 1.09
21A−g - 0.00 0.65 3.31 1.63
EE-CC3/aug-cc-pVTZ
11B+

u - 0.66 0.85 1.75 1.09
21A−g - 0.00 0.65 3.39 1.66
EE-CCSD/aug-cc-pVTZ
11B+

u 2.00 0.71 0.88 1.71 1.09
21A−g 2.10 0.00 0.82 2.14 1.25
DEA-CCSD/+2/aug-cc-pVTZ
11B+

u 2.00 0.79 0.91 1.43 1.06
21A−g 2.11 0.00 0.78 1.30 1.04

use this example to assess the ability of EOM-DEA-CCSD to
describe conical intersections. Fig. 9 shows the PES of the
lowest electronic state as function of the two key coordinates:
bond-length alternation (BLA) and twining reaction coordi-
nate (RC). As one can see, the character of the lowest adi-
abatic state changes because the two lowest states exchange
their character. The location of conical intersection is very
sensitive to the electronic structure method, as it requires bal-
anced description of the two electronic states. Previous bench-
mark studies44–46 have shown that EOM-SF-CCSD(dT) and
and MR-CISD+Q results are in very good agreement, while
lower-level methods show large discrepancies.

Fig. 10 shows the PES scans along the BLA coordinate.
The shape of the PES of the diradical state along BLA co-
ordinate computed by EOM-DEA-CCSD agrees well with
the MR-CISD+Q results, and is not affected by using differ-
ent reference orbitals (+1 or +3). The situation is different
for the charge-transfer state. Overall shape agrees with MR-
CISD+Q, the energy relative to the diradical state depends on
the orbital choice, which results in large differences in the
location of conical intersection. Using +3 Hartree-Fock or-
bitals in EOM-DEA-CCSD, the conical intersection appears
too early along BLA coordinate, as compared with MR-CISD.
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PSB3 also reproduces several features of the S0 potential
energy surface of opsin-embedded rPSB. In both chromo-
phores, a loop constructed with the branching plane vectors
and encompassing the CI passes through regions of different
electronic character (see the bottom of Figure 1 and the
legend).19,20 In one region, the molecule has its positive charge
fully localized on the Schiff-base-containing moiety, similar to
the S0 reactant (cis-PSB3) and the product (trans-PSB3); thus,
the underlying wave function has predominantly a covalent/
diradical character (ΨDIR). In the other region, the positive
charge is almost completely translocated to the other end of the
molecule (the allyl group in the case of PSB3, or the β-ionone-
containing moiety in the case of rPSB). In this region the wave
function is predominantly of charge-transfer character (ΨCT). A
schematic representation of the S0 energy surface around the CI
point is given in Figure 1a. Moreover, in both PSB310 and
rPSB,19 each region also hosts a transition state (TS) that could
mediate thermal (i.e., proceeding on the ground state)
isomerization of the chromophore. One TS (TSDIR) lies in
the ΨDIR region and, therefore, corresponds to the homolytic
cleavage of the isomerizing double bond. The other TS (TSCT)
is in the ΨCT region and is reached by heterolytic cleavage of
the double bond. Both TSs are ca. 90° twisted, similar to the
CI, and the main structural difference between TSDIR, TSCT,
and the CI is along the bond length alternation (BLA)
coordinate (see Scheme 1B), with the CI situated between the
two TSs at the CASSCF level of theory.
The S0 CASSCF energy surface near the CI of PSB3 was

characterized by mapping the surface along three potential
energy paths (see Figure 1).10 The first path (the BLA path)
connects the two TSs and intercepts the CI point shown in
Scheme 1B. The other two paths are minimum energy paths

(MEPs) connecting cis-PSB3 to trans-PSB3 through TSDIR and
TSCT (MEPDIR and MEPCT paths, respectively). The MEPCT
path, therefore, starts and ends in the ΨDIR regions while
intersecting the ΨCT region, whereas the MEPDIR path is
confined to the ΨDIR region of the S0 surface (therefore, the
molecule maintains a covalent/diradical character in the S0 state
along this path). The two-root SA-CASSCF/6-31G* energy
profiles and the corresponding wave functions along the three
paths are shown in Figure 2. Details regarding the generation of
these paths are provided in the Methods section.
Owing to the complexity of its potential energy surfaces,

sensitivity to the methodology, as well as small molecular size
and chemical relevance as a model for rPSB, PSB3 is a useful
benchmark system for testing different computational methods.
In the present contribution, we extend previous benchmark
studies to include single-reference EOM-CC methods.21−24

The EOM-CC (or linear response CC) methods allow one to

Scheme 1. (A) The Structures of the 11-cis-Retinal
Protonated Schiff Base (rPSB) Connected to the Lys296
Residue in Bovine Rhodopsin and Its Reduced Model, the
cis-Penta-2,4-dieniminium Cation (PSB3) and (B) Selected
CASSCF/6-31G* Geometrical Parameters (Bond Lengths in
Ångstroms and C1−C2−C3−C4 Dihedrals in Degrees) for
the cis-PSB3, trans-PSB3, TSCT, TSDIR, and the CIa,b

aThe resonance formula also provides a qualitative representation of
the singlet electron pairing and charge distribution. bThe CI structure
shown is the one intercepted by the Bond Length Alternation (BLA)
coordinate.

Figure 1. Top. Schematic two-dimensional cut of the S0 potential
energy surface of PSB3. The two coordinates can be described as bond
length alternation (BLA) and the C2−C3 twisting reaction coordinate
(RC), respectively. The region in which the wave function has
predominantly a charge-transfer character (ψCT) is displayed in brown,
whereas the part corresponding to a covalent/diradical wave function
(ψDIR) is displayed in green. The electronic structure of the two
transition states is illustrated by a bubble diagram showing the values
of the CASSCF Mulliken charges along the backbone (charges
summed onto heavy atoms). The three paths used in the present study
(the BLA, MEPCT, and MEPDIR paths) are shown by dashed lines on
the surface. Bottom left. A schematic magnification of the S0/S1 CI
region. A loop centered around the CI and constructed using the
branching plane vectors parallel to the BLA and RC coordinates is
shown by the red dashed line on the S0 surface. The angle α
corresponds to the 0−2π coordinate defining the position along the
circular loop. Bottom right. The S0 and S1 CASSCF energies (colored
according to the dominant electronic configuration) as well as the S0
charge transfer character (gray area) along the angle α following the
loop around the CI. The charge-transfer character is determined by
summing the CASSCF Mulliken charges on the allyl (i.e., the C5H2
C4H−C3H−) fragment of the PSB3. The energies and charge transfer
character are obtained from ref 10.
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FIG. 9. Potential energy surface in retinal showing the location of
the conical intersection (CoIn or CI) between the charge transfer and
diradical states. The two coordinates are bond-alternation (BLA) and
twisting reaction coordinate (RC). Relevant mechanistic paths are in-
dicated as white dashed lines. MEPCT: minimum energy path on the
ground state that connects the cis and trans retinal equilibrium ge-
ometries through a transition state (TSCT). MEPDIR: connects cis,
TSDIR and trans structures of the ΨDIR state. The BLA path con-
nects the TSCT and TSDIR transition states and also intercepts a CoIn
(CI) point. Atomic charges of the two transition states are illustrated
by bubble diagrams. Reproduced with permission from Ref. 44.

In contrast, when using +1 Hartree-Fock orbitals, conical in-
tersection appears too late along the BLA coordinate, as com-
pared to MR-CISD+Q. Due to large positive charge in +3 HF
reference, the molecular orbital and their energy shows large
deviations from +1 reference, and 3p1h part of the EOM-
DEA-CCSD ansatz is not sufficient to describe both orbital
relaxation and the correlation effects in the charge-transfer
state. Consequently, the total energy of charge-transfer state
is higher, leading to the shift in the conical intersection posi-
tion. This also leads to an opposite trend in energy gap (S0 and
S1) at TSCT and TSDIR, when compared with MR-CISD+Q,
as shown in Table XVII.

TABLE XVII. The S0 and S1 energy gaps (kcal/mol) at TSCT , TSDIR,
and cis-PSB3 geometry of retinal; 6-31G∗ basis set.

Method TSCT TSDIR cis-PSB3
MRCISD+Q 10.2 0.6 101.4
MRCISD 8.8 1.6 104.8
CASSCF 4.5 7.4 110.3
EE-CCSD 16.6 6.9
SF-CCSD/UHF 2.4 7.5
SF-CCSD/ROHF 5.8 6.0 105.5
SF-CCSD(dT)/ROHF 11.1 0.6 102.1
SF-CCSD(fT)/ROHF 10.2 0.6
DEA-CCSD/+3 1.49 12.71 105.2
DEA-CCSD/+1 15.13 4.39 104.6
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FIG. 10. The S0 and S1 energy profiles (retinal) along the BLA coor-
dinate computed with EOM-DEA-CCSD (with orbitals from the +3
and +1 charged Hartree-Fock reference) and MRCISD+Q using the
6-31G∗ basis set. The energy values are relative to cis-PSB3.

I. Excited states in water and ammonia

In this section we consider two small molecules (water and
ammonia) from Head-Gordon’s data set and assess the perfor-
mance of EOM-DEA-CCSD for the singly excited states. In
both molecules, the low-lying states have predominantly Ry-
dberg character. Tables XVIII and XIX compare vertical ex-
citation energies computed with EOM-DEA-CCSD and other
methods using aug-cc-pVQZ for ammonia and water, respec-
tively. The results show that EOM-DEA-CCSD excitation
energies are generally below exFCI ones (extrapolated FCI).
This can be attributed to using compact dicationic reference
orbitals. Table XIX shows EOM-DEA-CCSD excitation en-
ergies computed using neutral reference orbitals. In this calcu-
lation, excitation energies are overestimated relative to exFCI.
These results indicate the effect of the reference orbitals on
the computed excitation energies.

Table XX and XXI compare the state and transition proper-
ties computed with EOM-EE-CCSD and EOM-DEA-CCSD
(aug-cc-pVQZ) for ammonia and water, respectively. All
properties are very close, confirming that EOM-DEA-CCSD
and EOM-EE-CCSD yield wave function of broadly similar
quality for singly excited states, despite using dicationic or-
bitals.

J. Conical intersection in HeH2

It is well established that EOM-EE-CC methods have de-
fects44,75–79 close to conical intersections between excited
states of the same symmetry. Yet, because the excited states
are described on the same footing, one can obtain a physically
correct description by appropriately modifying the EOM-CC
method.78,80 Ground state intersections present a more diffi-
cult challenge: the intersecting states are described on an un-
equal footing and the CC ground-state wave function does not
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TABLE XVIII. Ammonia. Vertical excitation energies (eV) for the four lowest singlets and the lowest triplet states with different methods;
aug-cc-pVQZ basis. Geometry from Ref. 59.

State EE-CC3a EE-CCSDT a exFCI a EE-CCSDb DEA-CCSD b Exp.c
1A2(n→3s) 6.61 6.61 6.64 6.67 6.14 6.39
1E(n→3p) 8.18 8.17 8.22 8.21 7.66 7.93
1A1(n→3p) 9.11 9.10 9.14 9.15 8.68 8.26
1A2(n→4s) 9.96 9.77 9.77 9.81 9.27
3A2(n→3s) 6.31 6.33 6.35 6.37 5.85 6.02d

a Ref. 59. b This work. c Electron impact experiment from Ref. 72. d Ref. 73.

TABLE XIX. Water. Vertical excitation energies (eV) for the 3 lowest singlet and 3 lowest triplet states computed with different methods;
aug-cc-pVQZ basis. Geometry from Ref. 59.

State EE-CC3a EE-CCSDT a exFCI a EE-CCSDb DEA-CCSD/+2b DEA-CCSD/0b Exp.c
1B1(ny→3s) 7.65 7.64 7.68 7.68 6.97 7.92 7.41
1A2(nz→3p) 9.43 9.41 9.46 9.44 8.72 9.70 9.20
1A1(nz→3s) 10.00 9.98 10.02 10.02 10.49 11.28 9.67
3B1(ny→3s) 7.28 7.26 7.30 7.29 6.62 7.53 7.20
3A2(nz→3p) 9.26 9.25 9.28 9.27 8.57 9.53 8.90
3A1(nz→3s) 9.56 9.54 9.58 9.55 9.74 10.66 9.46

a Ref. 59. b This work. c Energy loss experiment from ref. 74.

TABLE XX. Ammonia. One-particle state and transition proper-
ties computed with EOM-EE-CCSD and EOM-DEA-CCSD; aug-cc-
pVQZ basis set.

State nu,nl fl ||γ|| ZHE e-h sepa

EOM-EE-CCSD
1A2(n→3s) 2.00 0.08 0.91 1.02 3.02
1E(n→3p) 2.00 0.00 0.92 1.01 3.79
1A1(n→3p) 1.91 0.00 0.91 1.19 3.46
1A2(n→4s) 2.00 0.00 0.91 1.01 4.57
3A2(n→3s) 2.00 0.00 0.92 1.05 2.86
EOM-DEA-CCSD
1A2(n→3s) 1.99 0.10 0.92 1.01 3.04
1E(n→3p) 2.00 0.00 0.92 1.00 3.80
1A1(n→3p) 1.82 0.00 0.91 1.07 3.52
1A2(n→4s) 2.00 0.00 0.92 1.00 4.57
3A2(n→3s) 2.00 0.00 0.92 1.03 2.89

a e-h sep = electron hole separation in Å.

adequately capture the required multi-configurational charac-
ter. These drawbacks can be removed by changing the ref-
erence wave function, as is done in EOM-SF, EOM-DIP, and
EOM-DEA. In these cases both states are associated with non-
zero eigenvalues of the Jacobian and the intersections are ex-
pected to resemble those between excited states in EOM-EE-
CC.

The HeH2 system provides a simple test case for describing
near-degeneracies between the ground state and first excited
state. The states can be characterized by inspecting the natural
orbitals and their occupations (see Fig. 12). At short bond

TABLE XXI. Water. One-particle state and transition properties
computed with EOM-EE-CCSD and EOM-DEA-CCSD; aug-cc-
pVQZ basis set.

State nu,nl fl ||γ|| ZHE e-h sepa

EOM-EE-CCSD
1B1(ny→3s) 2.00 0.05 0.92 1.01 2.60
1A2(nz→3p) 2.00 0.00 0.92 1.01 3.22
1A1(nz→3s) 2.00 0.10 0.92 1.55 2.67
3B1(ny→3s) 2.00 0.00 0.92 1.04 2.45
3A2(nz→3p) 2.00 0.00 0.92 1.02 3.06
3A1(nz→3s) 2.00 0.00 0.92 1.12 2.49
EOM-DEA-CCSD
1B1(ny→3s) 2.00 0.06 0.92 1.01 2.63
1A2(nz→3p) 2.00 0.00 0.92 1.00 3.23
1A1(nz→3s) 1.82 0.00 0.92 1.12 3.00
3B1(ny→3s) 2.00 0.00 0.93 1.02 2.48
3A2(nz→3p) 2.00 0.00 0.92 1.01 3.09
3A1(nz→3s) 2.00 0.00 0.94 1.07 2.78

a e-h sep = electron hole separation in Å.

FIG. 11. HeH2 molecule. One He-H bond length is varied (R).

lengths, the ground state has two electrons in the 1a′ and 2a′
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orbitals. At the long bond lengths, one electron has moved
from 2a′ to 3a′. The situation is reversed for the first excited
state.

1A’ 2A’ 3A’

X1A’

11A’

1.998 1.941 0.028
1.996 1.086 0.909

1.996 1.112 0.882
1.997 1.939 0.029

FIG. 12. Natural orbitals and their occupation numbers for ground
and first excited state. Black color corresponds to geometry at He-H
= 0.6 Å. Red color corresponds to geometry at He-H = 0.8 Å.

We consider a set of Cs geometries where one of the He–H
bond lengths is varied (see Fig. 11). Figure 13 shows po-
tential energy curves obtained using EOM-EE-CCSD, EOM-
DEA-CCSD, and FCI. The EOM-EE-CCSD and EOM-DEA-
CCSD curves are similar but shifted relative to FCI. However,
upon closer inspection, we see that EOM-EE-CCSD has de-
fective points and a region where we are not able to converge
the equations because EOM-CC roots become complex (see
the right panel of Fig. 13). In this particular scan, EOM-
DEA-CCSD gives an avoided crossing. Closer to the inter-
section, we expect to see complex pairs and defects in EOM-
DEA-CCSD—just like for excited states in EOM-EE-CCSD.
However, EOM-DEA-CCSD should give a generally more ac-
curate description of the intersecting states. Furthermore, de-
fects encountered with EOM-DEA-CCSD can be removed by
using the similarity constrained CC approach.78,80
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FIG. 13. Conical intersection between X1A
′

and 11A
′

computed us-
ing EOM-DEA-CCSD, EOM-EE-CCSD, and full configuration in-
teraction (FCI) methods with the aug-cc-pVDZ basis set. The left
pane shows all three limits for the full range of bond lengths (0.6 to
0.8 Å). The right pane zooms in on the near-degeneracy for EOM-
DEA-CCSD and EOM-EE-CCSD.

IV. CONCLUSIONS

In this contribution, we have documented a production-
level implementation of EOM-DEA-CCSD, including calcu-
lation of state and transition properties. This ansatz is suitable
for treating electronic structure patterns that can be described
as two-electrons-in-many orbitals. Hence, it extends the scope
of applicability of EOM-CC methods, including the domain
traditionally described as multi-reference22. Following the pi-
oneering work of Bartlett and coworkers16,17,21, here we il-
lustrate the advantages and limitations of EOM-DEA-CCSD
relative to other EOM-CCSD methods (EOM-EE-CCSD and
EOM-SF-CCSD) by considering a diverse set of examples
comprising well-behaved singly excited states, doubly excited
states, diradicals, bond-breaking, and conical intersections.
The results can be summarized as follows:

1. Excited states in closed-shell molecules, which can
be qualitatively characterized as excitations from the
HOMO, are described with similar accuracy as in
EOM-EE-CCSD; the performance for excited states de-
rived by excitations from lower occupied orbitals is
poor, as the method is clearly not designed for such ap-
plications.

2. Diradical states are described as accurately as by EOM-
SF-CCSD, but within spin-adapted framework. The
benefits are no spin-contamination and faster calcula-
tion. Furthermore, EOM-DEA-CCSD allows access to
higher excited states, beyond primary SF manifold.

3. EOM-DEA-CCSD can describe states with significant
or even pure doubly excited character.

4. EOM-DEA-CCSD describes PES along bond breaking
reasonably well, as illustrated in ethylene torsion exam-
ple.

5. EOM-DEA-CCSD can also treat some problems in-
volving conical intersections, where standard EOM-
EE-CCSD is inapplicable.

6. Orbital relaxation is somewhat of a problem. In most
cases, using default dicationic reference orbitals yields
robust performance, but sometimes the charge of the
reference needs to be tweaked.

The results show that EOM-DEA-CCSD represents a use-
ful addition to EOM-CC family of methods. We hope that this
contribution provides a useful guide for choosing the most ap-
propriate EOM-CC method to tackle specific applications.
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V. APPENDIX A

The left and right EOM σ -vectors are defined as:

σ1 = ([H̄SS−Ecc]R1)1 +(H̄SDR2)1, (21)

σ2 = (H̄DSR1)2 +([H̄DD−Ecc]R2)2, (22)

σ̃1 = (L1[H̄SS−Ecc])1 +(L2H̄DS)1, (23)

σ̃2 = (L1H̄SD)2 +(L2[H̄DD−Ecc])2. (24)

TABLE XXII. Programmable expressions for the right (σ ) and left
(σ̃ ) vectors in EOM-DEA-CCSD.

σab = P(ab)(∑c Fbcrac− 1
2

∑icd I7
ibcdracd

i )

+
1
2

∑cd rcdI5
abcd +∑ic Ficrabc

i

σabc
i =

1
2

P(abc)(∑d Fcdrabd
i −∑ jd I1

id jcrabd
j +

1
2

∑de I5
abdercde

i

−∑ j H6
jct

ab
i j −∑d I3

idabrcd)−∑ j Fi jrabc
j

σ̃ab = P(ab)(∑c lacFac−
1
2

∑icd lacd
i I3

ibcd)−∑ic H7
icI7

icab

+
1
2
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σ̃abc
i =

1
2
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i Fdc−∑ jd labd

j I1
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1
2
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i I5
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idab)

−∑ j labc
j Fji

TABLE XXIII. Intermediates used in EOM-DEA-CCSD σ -vectors.

Fia = fia +∑ jb tb
j 〈i j||ab〉

Fi j = fi j +∑a ta
i f ja +∑ka ta

k 〈 jk||ia〉+∑kab ta
i tb
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TABLE XXIV. Programmable expressions for EOM-DEA-CCSD
density matrices.

γi j = γ̃i j +δi j
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i
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