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ABSTRACT: We present efficient implementations of the multi-
level CC2 (MLCC2) and multilevel CCSD (MLCCSD) models. As
the system size increases, MLCC2 and MLCCSD exhibit the scaling
of the lower-level coupled cluster model. To treat large systems, we
combine MLCC2 and MLCCSD with a reduced-space approach in
which the multilevel coupled cluster calculation is performed in a
significantly truncated molecular orbital basis. The truncation
scheme is based on the selection of an active region of the
molecular system and the subsequent construction of localized
Hartree−Fock orbitals. These orbitals are used in the multilevel
coupled cluster calculation. The electron repulsion integrals are
Cholesky decomposed using a screening protocol that guarantees
accuracy in the truncated molecular orbital basis and reduces
computational cost. The Cholesky factors are constructed directly in the truncated basis, ensuring low storage requirements. Systems
for which Hartree−Fock is too expensive can be treated by using a multilevel Hartree−Fock reference. With the reduced-space
approach, we can handle systems with more than a thousand atoms. This is demonstrated for paranitroaniline in aqueous solution.

■ INTRODUCTION

The scaling properties of the coupled cluster hierarchy of
methods severely limits the systems for which it is applicable.1

The methods have polynomial computational scaling, N( )n ,
where N is a measure of system size and n increases with
accuracy of the method. Memory and disk space requirements
also increase significantly as one moves up through the
hierarchy.
The development of reduced cost and reduced scaling

coupled cluster methods has been an active topic for decades.
Arguably, the most popular approach has emerged from the
work of Pulay and Sæbø.2,3 They demonstrated that dynamical
electronic correlation could be compactly described using
localized orbitals rather than canonical orbitals; specifically,
they used localized occupied molecular orbitals (MOs), such
as Boys4 or Pipek-Mezey5 orbitals, and projected atomic
orbitals2,3 (PAOs) to span the virtual space. Their local
correlation approach was later applied to coupled cluster
theory by Hampel, Werner, and Schütz.6,7 Other local coupled
cluster methods include the local pair natural orbital8,9 and the
orbital-specific-virtual10 coupled cluster methods. Whereas the
success of these local coupled cluster methods in the
description of the ground state correlation energy is
indisputable, their extension to excited states has turned out
to be more complicated.11−16

A different approach originates from the multireference
coupled cluster method of Oliphant and Adamowicz.17−19

While introduced to describe multireference character, the
method is formulated in the framework of single reference
coupled cluster theory. An active orbital space is used, and
higher order excitation operators (e.g., triple or quadruple
excitations) are included with some indices restricted to the
active space. Köhn and Olsen20 recognized that the method
could be used to reduce the cost for single reference systems,
and this was further demonstrated by Kaĺlay and Rolik.21 The
multilevel coupled cluster (MLCC) approach, introduced by
Myhre et al.,22−24 is closely related to this active space
approach.
In MLCC, the goal is to accurately describe excitation

energies and other intensive properties, rather than extensive
properties such as correlation energies. This is done by
restricting the higher order excitation operators to excite
within an active orbital space. For example, in the multilevel
CCSD (MLCCSD)22,25 method, the double excitation

Received: June 9, 2020
Published: January 8, 2021

Articlepubs.acs.org/JCTC

© 2021 American Chemical Society
714

https://dx.doi.org/10.1021/acs.jctc.0c00590
J. Chem. Theory Comput. 2021, 17, 714−726

Made available through a Creative Commons CC-BY License

D
ow

nl
oa

de
d 

vi
a 

N
O

R
W

E
G

IA
N

 U
N

IV
 S

C
IE

N
C

E
 &

 T
E

C
H

N
O

L
O

G
Y

 o
n 

M
ar

ch
 7

, 2
02

4 
at

 1
1:

11
:4

5 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sarai+Dery+Folkestad"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eirik+F.+Kj%C3%B8nstad"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Linda+Goletto"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Henrik+Koch"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.0c00590&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00590?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00590?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00590?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00590?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jctcce/17/2?ref=pdf
https://pubs.acs.org/toc/jctcce/17/2?ref=pdf
https://pubs.acs.org/toc/jctcce/17/2?ref=pdf
https://pubs.acs.org/toc/jctcce/17/2?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00590?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
http://pubs.acs.org/page/policy/authorchoice/index.html
https://creativecommons.org/licenses/by/4.0/


operator is restricted to excite out of active occupied orbitals
and into active virtual orbitals. In this work, we demonstrate
the available computational savings of the multilevel CC2
(MLCC2) and MLCCSD models introduced in ref 25; for
sufficiently large inactive spaces, we show that the cost is
dominated by the lower-level method. This has previously
been demonstrated for multilevel CC3 (MLCC3) by Myhre et
al.24

The scaling of the lower-level model cannot, however, be
avoided. Therefore, in order to use these methods for large
systems, they must be combined with other multilevel or
multiscale approaches. For instance, MLCC could be used
within a QM/MM26,27 framework or with the polarizable
continnum model.28,29 Here, we have chosen to perform
MLCC calculations in a significantly truncated MO basis. The
truncation of the MO basis in coupled cluster calculations is
used routinely. For example, the frozen core approximation
falls into this category, and there are several examples of
truncation of natural orbitals, both of the virtual and occupied
spaces.30−35 The LoFEx36,37 and CorNFLEx38 approaches are
also notable reduced space coupled cluster approaches that
target accuracy in the excited states. In these approaches, a
mixed orbital basis consisting of natural transition orbitals
(NTOs)39−41 and localized orbitals is used. The active space is
expanded until the excitation energies have converged to
within a predefined threshold. One drawback of LoFEx and
CorNFLEx is that they are state specific methods, that is,
several subsequent calculations with different truncated MO
bases must be performed to obtain a set of excitation energies.
As a consequence, the calculation of transition moments
between excited states is complicated by the fact that the states
are nonorthogonal and interacting. An orbital selection
procedure similar to that of LoFEx and CorNFLEx has also
been used for reduced scaling second-order algebraic
diagrammatic construction (ADC(2)) calculations by Mester
et al.35,42

Here, we use a truncation scheme for the MOs where
semilocalized Hartree−Fock orbitals (virtual and occupied) are
constructed and used to calculate localized intensive properties
in large molecular systems. When the region of interest is
sufficiently small compared to the full system, the number of
MOs (nMO) in the coupled cluster calculation is much smaller
than the number of atomic orbitals (AOs) denoted NAO. This
reduced space approach has previously been used with
standard coupled cluster models,43,44 and a very similar
approach has been used together with local coupled cluster
models.45 For sufficiently large systems, the cost of Hartree−
Fock can become a limiting factor. When this is the case, we
handle it by combining the reduced space MLCC approach
with a multilevel Hartree−Fock46,47 (MLHF) reference wave
function.
The MLCC2 and MLCCSD implementations are based on

Cholesky decomposed electron repulsion integrals.48,49 We use
the two-step Cholesky decomposition algorithm introduced in
ref 50. In this algorithm, the Cholesky basis and the Cholesky
vectors are determined in two separate steps. We have
implemented a direct construction of the Cholesky vectors in
the truncated MO basis. This reduces the memory requirement
of the vectors from N( )AO

3 to N n( )AO MO
2 , making it possible

to efficiently perform reduced space calculations on systems
with several thousands of basis functions. We use n as a
measure of the size of the active space, which does not scale

with the system. It should be noted that storage of the
Cholesky vectors in the AO basis, albeit temporary, can only be
avoided in a decomposition algorithm that determines the
Cholesky basis and the Cholesky vectors in separate steps. In
the Cholesky decomposition, we also use the MO screening
procedure that was introduced in ref 50. This MO screening
leads to fewer Cholesky vectors, further reducing the memory
requirement of the Cholesky vectors to n( )MO

3 .

■ THEORY
In coupled cluster theory, the wave function is defined as

X X xCC exp( ) HF , ∑ τ⟩ = ⟩ =
μ

μ μ (1)

where |HF⟩ is the Hartree−Fock reference, X are the cluster
operator, xμ are cluster amplitudes, and τμ are the excitation
operators. The standard models within the coupled cluster
hierarchy are defined by restricting X to include the excitation
operators up to a certain order. In the CCn models, such as
CC251 and CC3,52 the nth order excitations are treated
perturbatively.
In the following, the indices α, β, γ, ... and p, q, r, ... refer to

spatial atomic and molecular orbitals, respectively, and the
indices i, j, k, ... and a, b, c, ... refer to occupied and virtual
orbitals. The total number of occupied and virtual orbitals are
denoted by No and Nv, respectively, and the number of active
occupied and active virtual orbitals are denoted by no

a and nv
a.

■ MULTILEVEL CC2 AND CCSD
The MLCC2 cluster operator is given by

X X SMLCC2
1 2= + (2)

where the single excitation operator, X1, is unrestricted, that is,
defined for all orbitals, whereas the double excitation operator,
S2, is restricted to excite within an active orbital space. As in
standard CC2, S2 is treated perturbatively. The MLCC2
ground state equations are given by

H H S, HF 01 21
μΩ = ⟨ ̂ + [ ̂ ] ⟩ =μ (3)

H F S, HF 0S
2 2S

2
μΩ = ⟨ | ̂ + [ ]| ⟩ =μ (4)

where Ĥ is the X1-transformed Hamiltonian and F is the Fock
operator. The doubles projection space, {⟨μ2

S|}, is associated
with S2. Except for the restriction of S2 and the projection
space, these equations are equivalent to the standard CC2
ground state equations. The MLCC2 equations are solved in a
basis where the active-active blocks of the occupied-occupied
and virtual-virtual Fock matrices are diagonal. In this
semicanonical basis, eq 4 can be solved analytically for the S2
amplitudes in each iteration. The double amplitudes are
inserted into eq 3, which is solved with a DIIS-accelerated53

quasi-Newton solver54 to obtain X1. The MLCC2 equations
are formulated in terms of the Cholesky vectors in the X1-basis.
See Appendix A for detailed expressions.
If we consider a fixed active space, the overall scaling of the

MLCC2 ground state equations is N( )4 : the X1-trans-
formation of the Cholesky vectors scales as N( )4 , as does the
computation of the Fock matrix in the X1-basis and the
correlation energy. The construction of Ω scales as N( )2 .
The MLCC2 excitation energies are determined as the

eigenvalues of the Jacobian matrix,
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A
H H S H

H F

, , , HF , HF

, HF , HFS S
MLCC2 1 2 1

2 2

S

S

1 1 2

1 2

μ τ τ μ τ

μ τ μ τ
=

⟨ |[ ̂ ] + [[ ̂ ] ]| ⟩ ⟨ |[ ̂ ]| ⟩

⟨ |[ ̂ ]| ⟩ ⟨ |[ ]| ⟩

ν ν ν

ν ν

i

k

jjjjjjjjj

y

{

zzzzzzzzz
(5)

Here, S
2

τν is a double excitation included in S2. The excited
state equations also assume the same form as in standard CC2,
except for the restrictions of S2, and the same strategies can
therefore be used to solve the MLCC2 equations.51,55 The
most expensive term in the transformation by AMLCC2 appears
at the CCS level of theory (see Appendix A); these terms scale
as N( )4 and no indices are restricted to the active space.
Thus, the overall scaling is N( )4 .
In MLCCSD, one defines two sets of active orbitals, where

one is a subset of the other. The cluster operator has the form

X X S TMLCCSD
1 2 2= + + (6)

where X1 is unrestricted, S2 is restricted to the larger active
orbital space, and T2 is restricted to the smaller active orbital
space. The S2 operator is treated perturbatively (as in CC2 and
MLCC2) and T2 acts as a correction to S2 in the smaller active
space. This framework is flexible, since it allows for both two-
level calculations (CCS/CCSD and CC2/CCSD) and three-
level calculations (CCS/CC2/CCSD). Previously, we have
found that the less expensive and significantly simpler CCS/
CCSD method performs very well.25 In the CCS/CCSD
method, the MLCCSD cluster operator reduces to

X X TMLCCSD
1 2= + (7)

and only the active space for T2 is needed. In this work, we
only consider the CCS/CCSD method.
The MLCCSD (CCS/CCSD) ground state equations are

H H T, HF 01 21
μΩ = ⟨ | ̂ + [ ̂ ]| ⟩ =μ (8)

H H T H T T,
1
2

, , HF 0T
2 2 2 2T

2
μΩ = ⟨ | ̂ + [ ̂ ] + [[ ̂ ] ]| ⟩ =μ

(9)

where the doubles projection space, {⟨μ2
T|}, is associated with

T2. Equations 8 and 9 are equivalent to the standard CCSD
equations, except for the restriction of T2 and the projection
space. The construction of the singles part of Ω, eq 8, has the
same cost as constructing the MLCC2 Ω ( N( )2 ). When the
active space is fixed, the construction of the doubles part of Ω,
eq 9, scales as N( ) due to the calculation of the integrals
from the Cholesky vectors; all orbital indices are restricted to
the active space.
The excitation energies are obtained as the eigenvalues of

the MLCCSD Jacobian,

A
H H T H

H H T H H T

, , , HF , HF

, , , HF , , , HFT T

MLCCSD

1 2 1

2 2 2 2

T

T T

1 1 2

1 1 2 2

μ τ τ μ τ

μ τ τ μ τ τ

=
⟨ |[ ̂ ] + [[ ̂ ] ]| ⟩ ⟨ |[ ̂ ]| ⟩

⟨ |[ ̂ ] + [[ ̂ ] ]| ⟩ ⟨ |[ ̂ ] + [[ ̂ ] ]| ⟩

ν ν ν

ν ν ν ν

i

k

jjjjjjjjj

y

{

zzzzzzzzz
(10)

where T
2

τν is a double excitation included in T2.
In addition to the terms of the transformation by AMLCC2

that enter the transformation by AMLCCSD, there are terms
which scale as (1), N( ), and N( )2 . Integral construction
for the different terms scales, depending on the number of
restricted indices, as N( ), N( )2 , or N( )3 . See Appendix A
for detailed expressions.

Partitioning the Orbital Space. Selecting the active
orbital space for a multilevel coupled cluster calculation is not
trivial. Generally, the canonical Hartree−Fock orbitals must be
transformedthrough occupied-occupied and virtual-virtual
rotationsto an orbital basis that can be intuitively
partitioned. To determine the type of orbitals to use, both
the targeted property and the system must be considered.
There are two main approaches to select the active spaces. If
the property of interest is adequately described at a lower level
of theory, then the information from that lower level can be
exploited to partition the orbitals. An example is the use of
correlated NTOs (CNTOs).25,41 If the property of interest is
spatially localized, then localized or semilocalized orbitals can
be applied. For instance, Cholesky orbitals44,56 have been used
in multilevel coupled cluster calculations by Myhre et al.23,24,57

The CNTOs are constructed using excitation vectors, R,
from a lower-level calculation. The matrices

M R R R R
1
2

(1 )ij
a

ai aj
abk

ai bk ij aibk ajbk,∑ ∑ δ δ= + +
(11)

N R R R R
1
2

(1 )ab
i

ai bi
ijc

ai cj ab aicj bicj,∑ ∑ δ δ= + +
(12)

are diagonalized; the matrices that diagonalizeM and N are the
transformation matrices of the occupied and virtual orbitals,
respectively. From eqs 11 and 12 it may seem that the lower
level method must include double excitation amplitudes in its
parametrization. However, CNTOs can be generated from
CCS excitation vectors by constructing approximate double
excitation vectors:

R
g1

1aibj
ai bj

aibj

ij
ab

CCS

,
CCSδ ω

= −
+

̅
ϵ − (13)

Here, ωCCS is the CCS excitation energy, and ϵij
ab = ϵa + ϵb −

ϵi−ϵj, where the ϵq are orbital energies. The integrals g̅aibj are
defined as

g R L L R L Laibj ij
ab

cJ
ci bj

J
ac
J

kJ
bk kj

J
ai
J∑ ∑̅ = −

i

k

jjjjjjj
y

{

zzzzzzz (14)

where gpqrs = ∑JLpq
J Lrs

J is the electronic repulsion integrals in
the MO basis and I I Iij

ab
aibj aibj bjai= + (Iaibj are elements of a

rank-4 tensor). Equations 13 and 14 were suggested by Baudin
and Kristensen38 and are based on CIS(D).58 In our previous
work, we have found that the CNTOs obtained from a CCS
calculation (using eqs 13 and 14) perform well, considering
accuracy and cost, compared to CNTOs from a CC2
calculation.25 It should be noted, however, that these orbitals
are not expected to perform well for states dominated by
double excitations with respect to the reference.
The active space is selected by considering the eigenvalues

of M and N: active orbitals result from the eigenvectors
corresponding to the largest eigenvalues. In this work, we
either explicitly select the number of active occupied and active
virtual orbitals (no

a and nv
a) or we select no

a and let the number of
active virtual orbitals be determined from the total fraction of
virtual to occupied orbitals; that is,

n
N
N

nv
v

o
o

a a=
(15)
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Alternatively, one can use the selection criterion given in ref
41. The latter approach is more suitable for production
calculations; on the other hand, eq 15 is convenient for testing
the models. Several excited states can be considered
simultaneously by diagonalizing sums of M and N matrices
generated from the individual excitation vectors (eqs 11 and
12).25

Cholesky orbitals44,56 are obtained by a restricted Cholesky
decomposition of the Hartree−Fock densities (occupied and
virtual); the pivots of the decomposition procedure are
restricted to correspond to AOs centered on active atoms.
As an alternative to Cholesky orbitals for the virtual space,

one can use projected atomic orbitals3 (PAOs). To construct
the PAOs, the occupied orbitals are projected out of the AOs,
{χα}, centered on the active atoms:

DS

C C

i
i i

i
i i

PAO ∑

∑

∑

χ χ ϕ χ ϕ

χ χ χ χ

χ χ

= − ⟨ | ⟩

= − ⟨ | ⟩

= − [ ]

α α α

α
βγ

β γ β α γ

α
γ

γ γα
(16)

Here, C is the orbital coefficient matrix, D is the idempotent
Hartree−Fock density, and S is the AO overlap matrix. The
orbital coefficient matrix for the active PAOs is therefore
CPAO = I − DS′, where S′ is rectangular and contains the
columns of S which correspond to AOs on active atomic
centers. The PAOs are nonorthogonal and linearly dependent.
To remove linear dependence and orthonormalize the active

virtual orbitals, we use the Löwdin canonical orthonormaliza-
tion procedure.59 The inactive virtual orbitals are obtained in a
similar way: the occupied orbitals, as well as the active virtual
orbitals, are projected out of the AOs and the resulting orbitals
are finally orthonormalized.
After the orbitals have been partitionedregardless of

which orbitals are usedwe transform to the semicanonical
MO basis that is used in MLCC2 and MLCCSD calculations.
This transformation involves block-diagonalizing the virtual-
virtual and occupied-occupied Fock matrices such that the
active-active and inactive-inactive blocks become diagonal.

Reduced Space Multilevel Coupled Cluster. Recall that
MLCC methods exhibit the scaling of the lower-level coupled
cluster model. To overcome this limitation, we apply a reduced
space approach in which only a subregion of the molecule is
described at the coupled cluster level. The orbitals in this
subregion are divided into active and inactive sets for the
MLCC calculation. The rationale behind this approach is that
localized intensive properties can be described by using
accurate and expensive methods only for the region of interest.
In particular, it is assumed that the effect of the more distant
environment is sufficiently well captured through contributions
to the Fock matrix. A few numerical results43,44 indicate that
excitation energies can be described accurately with this f rozen
Hartree−Fock approach. However, a comprehensive study has
not yet been published.
To perform reduced space MLCC calculations, we must first

choose the region of the molecular system to be treated with
MLCC. After the Hartree−Fock calculation, localized
occupied and virtual orbitals are constructed for the active
region. Any localization procedure can be employed; however,

Figure 1. Different levels of active atoms used in reduced space MLCC calculations. Left panels show active atoms configurations of reduced space
MLCC calculation with an HF reference. Right panels show active atom configurations of reduced space MLCC calculation with an MLHF
reference. The two lower panels show the active atom configurations when Cholesky/PAOs are used to determine the active orbitals of the MLCC
calculation.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00590
J. Chem. Theory Comput. 2021, 17, 714−726

717

https://pubs.acs.org/doi/10.1021/acs.jctc.0c00590?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00590?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00590?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00590?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00590?ref=pdf


we use Cholesky orbitals for the occupied space and PAOs for
the virtual space. This set of orbitals enters the MLCC
calculation. The remaining occupied orbitals enter the
equations through their contributions to the Fock matrix,

F h g g g g

h g g F

(2 ) (2 )

(2 )

pq pq
i

N

pqii piiq
I

N

pqII pIIq

pq
i

N

pqii piiq pq
f

1 1

1

o o
f

o

∑ ∑

∑

= + − + −

= + − +

= =

= (17)

Here, No
f is the number of frozen occupied orbitals and the

index I denotes a frozen occupied orbital. The multilevel
coupled cluster calculation now has nMO ≪ NAO, but the
procedure is otherwise unchanged: the reduced set of MOs is
partitioned into active and inactive sets and the MLCC
equations are solved. We write nMO (with lower case n) to
indicate that the number of MOs does not scale with the
system in such calculations.
A multilevel Hartree−Fock46,47 (MLHF) reference can also

be used. As in MLCC, one first determines the active orbitals:
a set of active atoms is selected, and the active occupied
orbitals are obtained through a partial limited Cholesky
decomposition of the initial idempotent density; PAOs can
be used to determine the active virtual orbitals. Only the active
orbitals are optimized in the Roothan−Hall procedure, which
is performed in the MO basis.47 The inactive orbitals enter the
optimization through an ef fective Fock matrix that assumes the
same form as in eq 17. The inactive two-electron contribution
(Ff) is only computed once at the beginning of the calculation
and is subsequently transformed to the updated MO basis in
every iteration (for details, see ref 46).
The reduced space MLCC approach relies on the definition

of levels of active regions of the system, see Figure 1. We must
first select which atoms are active in the Hartree−Fock (HF)
calculation. If all atoms are active, we have a standard HF
reference. Second, we must determine which atoms enter the
MLCC calculation. Lastly, if we use Cholesky/PAOs to
partition the orbitals in the MLCC calculation, we must
determine which atoms should be treated with the higher level
coupled cluster method. This is not necessary when CNTOs
are used. Note that the active atom sets for higher level
methods are contained within the active atom sets of lower
level methods (see Figure 1).
Since these methods rely on selecting active regions, they are

especially well suited for solute/solvent systems. They may also
be used for other large systems where the region of interest is
known.
Integral Handling for Reduced Space Calculations.

When nMO ≪ NAO and NAO is large, as is often the case in
reduced space calculations, the electron repulsion integrals
must be handled carefully to avoid prohibitive scaling with
total system size. In the AO basis, the Cholesky vectors, LJ,
have a storage requirement of N( )AO

3 ; as demonstrated by
Røeggen and Wisløff-Nilssen,60 the number of Cholesky
vectors, NJ, is approximately MNAO when a decomposition
threshold of 10−M is used. For example, with a loose
decomposition threshold of 10−2, about 28 TB of memory is
needed to store the Cholesky vectors of a molecular system
with 12000 AOsassuming double precision and no screen-
ing.
We have previously suggested a two-step Cholesky

decomposition algorithm50 in which the Cholesky basis (i.e.,

the set of pivots), , is determined in the first step. The
Cholesky vectors are constructed in the second step through
an RI-like expression,

QL K( )J

K

T
KJ∑ αβ= [ ]αβ

−

(18)

where the matrix Q is the Cholesky factor of the matrix SKL =
(K|L) for K L, ∈ . This two-step algorithm makes it possible
to directly construct the Cholesky vectors in the MO basis:

Q

L C L C

C C K( )

pq
J

p
J

q

K
p q

T
KJ

∑

∑ αβ

=

= | [ ]

αβ
α αβ β

αβ
α β

−

(19)

We emphasize that it is not possible to avoid storing the AO
Cholesky vectors with a one-step Cholesky decomposition of
the AO electron repulsion integral matrix. Alternatively, the
MO electron repulsion integrals can be constructed from the
AO integrals. To reduce the scaling, one can combine
screening on the AO integrals and the MO-coefficients.
Below we outline an algorithm to construct and store the

vectors directly in the MO basis (see Algorithm 1). This is
done after the elements of the basis K ∈ have been
determined, S has been constructed and decomposed, and Q
has been inverted. When the MO Cholesky factor, L, is too
large to store in memory, Lpq

J is constructed for a maximum
number of p indices (resulting in several batches, P1, P2, ..., Pn).
The direct construction of the Cholesky vectors in the MO
basis reduces the storage requirement to N n( )AO MO

2 . Note
that this is linear, rather than cubic, in NAO.
Algorithm 1 is designed to avoid the IO operations involved

in temporary storage and reordering of the intermediate X.
Alternatively, X can be constructed and stored on disk before L
is constructed in batches over p or q. With the latter approach,
the integrals (αβ|K) are never recalculated. It should be noted,
however, that when nMO ≪ NAO, batching over p is typically
not necessary.

The number of Cholesky vectors, NJ, canthrough a
method-specific screeningbe made to scale with nMO rather
than NAO. Consequently, the storage requirements become

n( )MO
3 . Method-specific decompositions were first considered

by Boman et al.61 We use the active space screening given in
ref 50. In a given iteration of the Cholesky decomposition
procedure, the next element of the basis is determined by
considering the updated diagonal of the integral matrix

D g L( )
J

J 2∑= −αβ αβαβ αβ
∈ (20)
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Here, the sum is over the current elements of the basis. In the
standard decomposition algorithm, the next element of the
basis is selected as the K = αβ corresponding to the largest
element of D. The decomposition procedure is terminated
when

Dmax τ<
αβ

αβ (21)

where τ is the decomposition threshold. In the spirit of method
specific Cholesky decomposition,61 one can consider the
Cholesky decomposition of the matrix with elements

M C C g C Cpq rs p q r s,
a a a a=αβ γδ α β αβγδ γ δ (22)

The positive semidefiniteness of M follows directly from the
positive semidefiniteness of g. The diagonal of M,

M C C D C Cpq pq p q p q,
a a a a=αβ αβ α β αβ α β (23)

is bound from above by

M v v Dpq pq, ≤αβ αβ α β αβ (24)

where

Cmax( )
p

p
a 2ν =α α

(25)

and where Ca is the MO coefficient matrix of the reduced space
MLCC calculation. We can modify the procedure to determine
the Cholesky basis. The selection and termination criteria are
changed by considering the screened diagonal

D Dν ν̃ =αβ α αβ β (26)

instead of D. Using eq 26, we obtain a smaller Cholesky basis
compared to the standard decomposition. The MO integrals
are, thus, given by

g L L( )pqrs
J

pq
J

rs
J

pq rs,∑ ∑= + Δ
αβγδ

αβ γδ αβ γδ
(27)

where the errors Δαβpq,γδrs are less than τ.
Finally, let us briefly consider the computational scaling of

the decomposition procedure. Except for the initial integral
cutoff screening, which scales as N( )AO

2 in our implementa-
tion, the MO-screened decomposition algorithm scales as

n( )MO
3 . The prescreening step can be implemented with a

lower scaling; however, this step is not time-limiting in any of
the reported calculations.

■ RESULTS AND DISCUSSION

The MLCC2 and MLCCSD methods have been implemented
in a development version of the eT program.43 The following
thresholds are applied, unless otherwise stated: the Hartree−
Fock equations are solved to within a gradient threshold of
10−8; the Cholesky decomposition threshold is 10−3; the
coupled cluster amplitude equations are solved such that
|Ω| < 10−6; the excited state equations are solved to within a
residual threshold of 10−4; and occupied Cholesky orbitals are
constructed using a threshold of 10−2 on the pivots. The frozen

Figure 2. Rifampicin on the left and adenosine on the right.

Table 1. MLCC2/aug-cc-pVDZ and CC2/aug-cc-pVDZ Calculations for Rifampicina

method no
a nv

a ω [eV] tgs [h] tes [h] tCNTO [h] PMU [GB]

MLCC2 40 400 2.78 0.3 0.9 1.9 500.0
60 600 2.65 0.5 4.8 2.0 500.0
80 800 2.59 0.9 12.3 1.9 500.0

CC2 161 1645 2.57 32.2 183.8 498.3
ano

a and nv
a are the number of active occupied and virtual orbitals, and ω is the lowest excitation energy. The wall times to solve the ground and

excited state equations (tgs and tes) and to construct the CNTOs (tCNTO) are also given. The calculations were performed on two Intel Xeon E5-
2699 v4 processors using 44 threads. The calculations were performed with 500 GB memory available. Peak memory usage (PMU) is given in GB.

Table 2. MLCCSD/aug-cc-pVDZ and CCSD/aug-cc-pVDZ Calculations on Adenosinea

method no
a nv

a ω1 [eV] ω2 [eV] ω3 [eV] tgs [min] tes [h] tCNTO [min] PMU [GB]

MLCCSD 25 225 5.26 5.37 5.41 2.3 0.8 1.9 40.3
30 270 5.25 5.36 5.41 4.9 1.8 1.9 77.2
35 315 5.25 5.35 5.41 9.9 4.0 1.8 138.0

CCSD 51 484 5.25 5.35 5.41 75.3 38.3 288.1
ano

a and nv
a are the number of active occupied and virtual orbitals, and ωi is the ith excitation energy. The wall times to solve the ground and excited

state equations (tgs and tes) and to construct the CNTOs (tCNTO) are also given. The calculations were performed on two Intel Xeon Gold 6138
processors with 40 threads and 355 GB memory available. Peak memory usage (PMU) is given in GB.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00590
J. Chem. Theory Comput. 2021, 17, 714−726

719

https://pubs.acs.org/doi/10.1021/acs.jctc.0c00590?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00590?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00590?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00590?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00590?ref=pdf


core approximation is used throughout. All geometries are
available from ref 62.
Performance and Scaling. The MLCC2 and MLCCSD

methods can be used to obtain excitation energies of CC2 and
CCSD quality, at significantly reduced cost. This is
demonstrated for rifampicin and adenosine, see Figure 2. For
rifampicin, the lowest excitation energy is calculated at the
MLCC2/aug-cc-pVDZ and CC2/aug-cc-pVDZ levels of
theory. For adenosine, the three lowest excitation energies
are calculated at the MLCCSD/aug-cc-pVDZ and CCSD/aug-
cc-pVDZ levels of theory. We have used CNTOs to partition
the orbitals. The results are given in Tables 1 and 2,
respectively. These show that the error in the MLCCSD and
MLCC2 excitation energies with respect to CC2 and CCSD is
smaller than the expected error of CC2 and CCSD.63,64

Furthermore, the cost is drastically reduced in all cases.
In Tables 1−3, we have given the available memory and

peak memory used in these calculations. Note that the

calculations may be performed with less memory since the
models are implemented with batching for the memory
intensive terms to use no more storage than the specified
available memory.
The lowest excitation energy of rifampicin was also

calculated with MLCCSD/aug-cc-pVDZ, see Table 3. Since
the system has 1806 MOs, a full CCSD calculation would be
demanding; therefore, we do not present a reference CCSD
calculation. However, the variation of the excitation energy is
less than 0.05 eV for the different active spaces and can
therefore be considered converged. In our experience,
MLCCSD excitation energies converge smoothly to the
CCSD values.25 Note that the MLCC2 and MLCCSD timings
cannot be compared as the calculations were performed on
different processors.
To demonstrate the scaling properties, we consider a system

of PNA and water molecules. The size of the active space is
fixedwith 36 occupied and 247 virtual orbitalsand the

system size is increased by adding water molecules (see Figure
3). We use the aug-cc-pVDZ basis set.
In Figure 4, we show the overall wall times of the Hartree−

Fock calculation, the CNTO construction, and the MLCC

ground and excited state calculations. The steep N( )5 scaling
of the CNTO construction is apparent: for the largest system,
it is the most expensive step. The ground and excited state
MLCC equations scale as N( )4 ; however, for the larger
systems we have considered, the Hartree−Fock calculation is
seen to be more expensive. This must be understood in the
context of system size and the use of an augmented basis set.
For sufficiently large inactive spaces, the N( )4 terms of
MLCC2 and MLCCSD will become more expensive than
Hartree−Fock.
In Figure 5, we present a timing breakdown of an iteration to

solve the MLCC ground state equations. The iteration is
dominated by the N( )4 step to construct the X1-transformed
Cholesky vectors. The calculation of the energy, and the
necessary blocks of the Fock matrix in the X1-basis, also scale
as N( )4 , but the prefactor is lower for these operations. The
construction of the Ω-vector scales as N( )2 . In MLCCSD,
the Ω-vector contains additional contractions, compared to
MLCC2, that scale as (1) or N( ) (see Appendix A).

Table 3. MLCCSD/aug-cc-pVDZ Calculations for
Rifampicina

no
a nv

a ω [eV] tgs [h] tes [h] tCNTO [h] PMU [GB]

40 400 3.04 8.5 5.6 7.5 354.5
50 500 3.02 13.1 9.3 7.6 354.5
60 600 3.00 14.1 21.1 5.6 354.5

ano
a and nv

a are the number of active occupied and virtual orbitals, and
ω is the lowest excitation energy. The wall times to solve the ground
and excited state equations (tgs and tes) and to construct the CNTOs
(tCNTO) are also given. The calculations were performed on two Intel
Xeon Gold 6138 processors with 40 threads and 355 GB memory
available. Peak memory usage (PMU) is given in GB.

Figure 3. PNA and water.

Figure 4. Timings for MLCC2 (top) and MLCCSD (bottom)
calculations on PNA and water. Nw is the number of water molecules,
tHF is the full Hartree−Fock calculation time, tGS,MLCC2 and tGS,MLCCSD
are the MLCC ground state calculation times, tES,MLCC2 and tES,MLCCSD
are the MLCC excited state calculation times to obtain a single
excited state, tERI is the time to Cholesky decompose the electron
repulsion integrals, and tCNTO is the time to construct the CNTOs.
The calculations were performed on two Intel Xeon E5-2699 v4
processors using 44 threads and with 1.4 TB memory available.
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In Figure 6, we plot the wall time of the Jacobian matrix
transformation together with the time spent on terms that arise

at the CCS, CC2, and CCSD level of theory. The CCS terms
scale more steeply ( N( )4 ), and for MLCC2, we see that
these terms dominate when the inactive space is sufficiently
large. For MLCCSD, the CCS terms are significant, but they
do not dominate for any of the systems.
Reduced Space Calculations. We now consider a larger

PNA-in-water system. The geometry is extracted from a single
snapshot of a molecular dynamics simulation taken from ref 65.
The PNA-in-water system is restricted to a sphere centered on

PNA with a 15 Å radius and includes 499 water molecules, see
Figure 7.

To assess the accuracy of the MO screening procedure of
eqs 25 and 26, we consider the lowest MLCCSD-in-HF
excitation energy of the system, which corresponds to a charge
transfer process in PNA. We compare the MO-screened
Cholesky decomposition with the standard Cholesky decom-
position. Note that we use the partitioned Cholesky
decomposition (PCD) algorithm, described in ref 50, with
two batches. In these MLCCSD calculations, the atoms within
a sphere of 5 Å are included in the MLCC region (rCCS = 5 Å)
and the atoms within a sphere of radius 3.5 Å are defined as
active at the CCSD level of theory (rCCSD = 3.5 Å). The
orbitals are partitioned with the Cholesky/PAO approach. For
the CCSD/CCS/HF levels of theory, we use the aug-cc-
pVDZ/cc-pVDZ/STO-3G basis sets. The total number of
basis functions is 3971, and in the MLCCSD-in-HF
calculations, we have no

CCSD = 90, nv
CCSD = 287, no

CCS = 57,
and nv

CCS = 219, that is, nMO = 653. The results are given in
Table 4.
The MO screening yields significantly fewer Cholesky

vectors without introducing large errors in the excitation
energies. As expected, the number of Cholesky vectors, NJ, is
seen to be on the same order of magnitude as NAO and nMO for
the standard and MO-screened decomposition algorithms,
respectively. Fewer Cholesky vectors reduces the cost of the
coupled cluster calculation, for which the Cholesky vectors are
either used to construct the integrals or applied directly in
Cholesky vector-based algorithms. Moreover, the decomposi-
tion time is reduced when the MO screening is employed; for
instance, with a threshold of 10−4, the decomposition time was
1161 s without screening and 286 s with screening. In any case,
the decomposition time is not a bottleneck in any of these
calculations.
The largest error in the approximated AO integral matrix, ϵ,

is also given in Table 4. For standard PCD, the errors are
comparable to the decomposition threshold. With MO
screening, ϵ is large because AO integrals that do not
contribute to the MO integrals are not described by the
Cholesky vectors. Without MO screening, a Cholesky
decomposition threshold of 10−2 or 10−3 is typically

Figure 5. Timing breakdown of the MLCC2 (top) and MLCCSD
(bottom) ground state iteration for PNA and water. Nw is the number
of water molecules, tEnergy is the time to compute the MLCC
correlation energy, tF is the time to construct the necessary blocks of
the Fock matrix in the X1-basis, tΩ is the time to construct the Ω-
vector, and tX1

is the time to X1-transform the Cholesky vectors. The
calculations were performed on two Intel Xeon E5−2699 v4
processors using 44 threads and with 1.4 TB memory available.

Figure 6. Wall times of the linear transformation by the MLCC2
(top) and MLCCSD (bottom) Jacobian matrices (t AMLCC2 and
t AMLCCSD) for systems of PNA and water. The contribution from
terms that arise at the CCS level and at the CC2 or CCSD level of
theory are plotted separately. Nw is the number of water molecules.
The calculations were performed on two Intel Xeon E5−2699 v4
processors using 44 threads and with 1.4 TB memory available.

Figure 7. PNA with 499 water molecules.
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sufficient.50 For MLCC2 or MLCCSD in a reduced space
calculation, the MO screening can be used and a threshold of
10−4 seems suitable. In the calculation with MO screening and
a threshold of 10−2, the MLCCSD calculation did not
converge.
We have also performed MLCC calculations on the PNA-in-

water system in Figure 7 with larger basis sets. In Table 5, we
present timings for MLCC2-in-HF/MLHF and MLCCSD-in-
HF/MLHF calculations with rCCS = 6.0 Å and rCC2/CCSD = 3.5
Å. The aug-cc-pVDZ basis is used for all atoms included in the
CC active region, and cc-pVDZ is used on the remaining
atoms. In total, there are 12669 AOs and 1498 MOs in the
coupled cluster calculation. The Cholesky decomposition is
performed with MO screening using a threshold of 10−4. For
the reference calculations, a gradient threshold of 10−6 is used.
Comparing Tables 4 and 5, we see that the MLCCSD-in-HF

excitation energies do not change significantly with a larger
basis and an increased rCCS. For the calculations presented in
Table 5, the reference calculation is the most expensive step.
Since the active region of the MLHF calculation is large (10.0
Å), we do not obtain large savings using an MLHF reference.
However, this can be achieved by reducing rHF. Furthermore,
MLHF is applicable for systems where standard Hartree−Fock
is not computationally feasible. The CC2-in-HF calculation for
this system, with a CC2 radius of 6 Å, yields ω = 3.732 eV.
Hence, the error of using MLCC2, compared to CC2, is
approximately 0.1 eV. The effect of extending the CCS radius
to rCCS = 8.0 Å is to increase the excitation energy by 0.003 eV
to ω = 3.824 eV.
Solvation effects can be estimated by performing calculations

on a series of snapshots from a molecular mechanics
simulation, for instance using the QM/MM approach for the
individual snapshots, such as in ref 65. The calculations in this
paper demonstrate that a fully quantum mechanical
approachMLCC-in-HF and MLCC-in-MLHFcan be
used to determine such solvation effects. For the former of
these approaches, the Hartree−Fock calculation is likely to be
the time limiting step.

The MLCC-in-HF and MLCC-in-MLHF approaches are
not only applicable to solute−solvent systems. They can also
be used for large molecules. As a proof of concept, we present
MLCC-in-HF calculations for the lowest excitation in
rifampicin in Table 6. In Figure 8, we have plotted the

NTOs from a CCS/aug-cc-pVDZ calculation. The excitation is
seen to be located in a subregion of the molecule. It can
therefore be treated with CC-in-HF or MLCC-in-HF. In
Figure 8, we have also plotted the Hartree−Fock density of the
active occupied orbitals treated with CC or MLCC. The active
atoms in the CC and MLCC calculations were selected by
hand by inspecting the NTOs. CNTOs were used to partition
the orbitals in the case of MLCC2/MLCCSD. The shift
observed by going from X to X-in-HF is about 0.1 eV in all the
presented calculations. It should be noted that this system is
too small to be suitable for CC-in-HF and MLCC-in-HF, but is
chosen because the reference CC2 calculations are available.
The MLCC2 or MLCCSD methods are preferable for systems
of this size since, as can be seen from Tables 1 and 3, these
calculations can be performed with ease.

Table 4. Lowest MLCCSD-in-HF Excitation Energy of the PNA-in-Water System Obtained with Regular and MO-Screened
Cholesky Decompositiona

standard MO-screened

τ NJ NJ/NAO ϵ [au] ω [eV] NJ NJ/NMO ϵ [au] ω [eV]

10−2 8434 2.1 1.1 × 10−2 4.0501 606 0.9 4.77 no convergence
10−3 12297 3.1 1.1 × 10−3 4.0771 1440 2.2 4.77 4.1055
10−4 15474 3.9 1.7 × 10−4 4.0761 2445 3.7 4.77 4.0785
10−6 24826 6.3 1.6 × 10−6 4.0753 5378 8.2 4.76 4.0754

aThe PCD algorithm is used. The threshold, τ, the number of Cholesky vectors, NJ, and the largest error in the approximated matrix in the AO
basis, ϵ, are given. There are 3971 basis functions.

Table 5. Lowest Excitation Energy (ω) of the PNA-in-Water System, Calculated with MLCC2-in-HF, MLCC2-in-MLHF,
MLCCSD-in-HF, and MLCCSD-in-MLHF Using the Frozen Core Approximationa

MLCC2 MLCCSD

ref tref [h] ω [eV] tMLCC [h] PMU [GB] ω [eV] tMLCC [h] PMU [GB]

HF 48.1 3.821 3.1 370 4.075 6.7 382
MLHF 33.6 3.832 3.1 370 4.083 6.8 382

aThe atoms within a radius of 6 Å are included in the MLCC calculation, and the atoms within a radius of 3.5 Å are treated with the higher level
coupled cluster method (CC2 or CCSD). In the MLHF reference calculation, the atoms within a radius of 10 Å are active. The aug-cc-pVDZ basis
is used on the atoms that are included in the MLCC calculation, and cc-pVDZ is used on the remaining atoms. The wall times for the reference
calculation (tref) and the MLCC calculation (tMLCC) are also given. The calculations were performed on two Intel Xeon Gold 6152 processors with
44 threads and 1.4 TB memory available. The peak memory usage (PMU) is given in GB.

Table 6. X and X-in-HF Calculations for the Lowest
Excitation Energy in Rifampicin, with X = {MLCC2, CC2,
MLCCSD}a

method no
a nv

a ω [eV]

MLCC2 60 600 2.65
MLCC2-in-HF 60 600 2.77
CC2 161 1645 2.57
CC2-in-HF 131 981 2.70
MLCCSD 50 500 3.02
MLCCSD-in-HF 50 500 3.13
MLCCSD-in-HFb 50 500 3.16

aThe aug-cc-pVDZ basis is used, unless otherwise stated. The active
atoms in the CC and MLCC calculations were selected by hand (see
Figure 8). CNTOs were used to partition the orbitals in the MLCC
calculations. baug-cc-pVTZ on active atoms.
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■ CONCLUDING REMARKS
We have demonstrated the computational savings that can be
obtained with MLCC2 and CCS/CCSD MLCCSD. These
multilevel methods can be used for systems that are too large
to be described at the CC2 and CCSD level. However, the
MLCC2 and MLCCSD models are limited by the underlying
scaling of the lower-level coupled cluster method (CCS). We
have therefore presented a framework of reduced-space MLCC
that can be used for systems with several thousand AOs. In this
layered approach, MLCC is only applied to a restricted region
of the molecular system; the environment is optimized with
Hartree−Fock, or multilevel Hartree−Fock, and only contrib-
utes to the MLCC calculation through the Fock matrix.
Efficient implementation of this framework requires careful
handling of the electron repulsion integrals. We have
implemented a direct construction of MO Cholesky vectors
that reduces the storage requirement to N n( )AO MO

2 . With an
additional screening during the Cholesky decomposition
algorithm, we further reduce this requirement to n( )MO

3 ,
making the storage requirement independent of the size of the
environment. Exploiting the Cholesky factorization in this
manner, we can handle systems with several thousand basis
functions using existing MLCC implementations. The MLCC-
in-HF/MLHF framework is therefore suited to accurately
model solvation effects on intensive properties on the solute. It
can also be used for chromophores in biomolecules.

■ APPENDIX A
We use the following notation for the MLCC2 and MLCCSD
equations: indices a, b, c, ... denote active virtual orbitals; A, B,
C, ..., unrestricted virtual orbitals; i, j, k, ..., active occupied
orbitals; I, J, ..., unrestricted occupied orbitals; p, q, r, ..., general
active orbitals; and P, Q, R, ..., general unrestricted orbitals.
The index K is used to denote Cholesky vectors. We also
define no and nv as the number of active occupied and active
virtual orbitals, respectively, and No and Nv as the total number
of occupied and virtual orbitals. We also use NMO and NJ for
the number of MOs and Cholesky vectors, respectively. We
have adopted the Einstein notation with implicit summation
over repeated indices. In the following screening consid-
erations, we assume a fixed active space and expanding inactive
space.
The electron repulsion integrals are Cholesky decomposed,

g L LPQRS PQ
K

RS
K= (28)

The Cholesky vectors are stored in both the MO and the X1-
transformed basis. In general, X1-transformed quantities are
denoted with tilde; for example,

g L LPQRS PQ
K

RS
K̃ = ̃ ̃

(29)

When no indices are restricted to the active space, the
construction of g or g̃ from L or L̃, respectively, is an N( )5

operation.
The Ground State Equations and the Correlation Energy.

Solving the projected coupled cluster equations,

X H Xexp( ) exp( ) HF 0μΩ = ⟨ | − | ⟩ =μ (30)

entails the iterative construction of the Ω-vector, the iterative
construction of the Fock matrix in the X1-transformed basis
(F̃), and the calculation of the correlation energy. The
correlation energy is computed in every iteration; however,
this is not necessary as convergence can be determined purely
from the norm of Ω.
The Fock matrix in the X1-transformed basis is given by

F g g L L L L2 2PQ PQII PIIQ PQ
K

II
K

PI
K

IQ
K̃ = ̃ − ̃ = ̃ ̃ − ̃ ̃

(31)

and its construction, in terms of the Cholesky vectors, scales as
NMO

2 NONJ ( N( )4 ). However, depending on the coupled
cluster model, only certain subblocks of F̃ are needed to solve
eq 30.
In MLCCSD and MLCC2, the correlation energy is given by

E x x L x LI
A

J
B

IAJB ij
ab

iajbcorrelation = + (32)

where we have introduced LPQRS = 2gPQRS − gPSRQ. The last
term in eq 32 is restricted to the active space. The first term is
calculated according to

x x L L x L x L x L x2( ) ( ) ( ) ( )I
A

J
B

IAJB IA
K

I
A

JB
K

J
B

IB
K

J
B

JA
K

I
A= · − · (33)

which scales as NVNO
2NJ ( N( )4 ), avoiding the N( )5 integral

constructions.
The MLCC2 Ω-vector
In MLCC2, the cluster operator is given by

X X S1 2= + (34)

The Ω-vector becomes

H H S, HF 01 21
μΩ = ⟨ | ̃ + [ ̃ ]| ⟩ =μ (35)

H F S, HF 0S
2 22

μΩ = ⟨ | ̃ + [ ]| ⟩ =μ (36)

Equation 36 can be solved analytically for the s-amplitudes:

s
g

F F F Fij
ab aibj

aa bb ii jj
= −

̃

+ − − (37)

Figure 8. Dominant occupied (left) and virtual (center) NTOs (CCS/aug-cc-pVDZ) of the lowest excited state of rifampicin. The Hartree−Fock
density of the active occupied MOs used in the CC-in-HF/aug-cc-pVDZ and MLCC-in-HF/aug-cc-pVDZ calculations (right); the active atoms are
illustrated with “ball-and-stick” and the inactive atoms as “sticks”.
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where FPQ are elements of the Fock matrix. The Ω-vector is
coded as

F u L L u g

u F

(( ) ) ( )

( )

AI AI ij
bc

jc
K

Ab
K

Ii jk
ab

kbjI Aa

ij
ab

jb AI ai,

δ δ

δ

Ω = ̃ + ̃ ̃ − ̃

+ ̃ (38)

where uij
ab = 2sij

ab − sji
ab. The calculation of eq 38 entails two

contractions scaling as N( )2 and two contractions scaling as
N( ).

The MLCCSD Ω-vector
In MLCCSD, the cluster operator is given by

X X T1 2= + (39)

The Ω-vector is given by

H H T, HF 01 21
μΩ = ⟨ | ̃ + [ ̃ ]| ⟩ =μ (40)

H H T H T T,
1
2

, , HF 0.T
2 2 2 22

μΩ = ⟨ | ̃ + [ ̃ ] + [[ ̃ ] ]| ⟩ =μ

(41)

1
Ωμ is the same as in MLCC2, but with t-amplitudes in the

place of s-amplitudes.
2

Ωμ is given by

g g t t g t g

t Y t Y u g u L u

u g t F g u t F g u

( )

1
2

1
2

1
4

( ) ( )

aibj aibj acbd ij
cd

kl
ab

kilj ij
cd

kcld

ij
ab

kj
bc

aick ki
bc

ajck jk
bc

acki jk
bc

ldkc il
ad

jk
bc

aikc ij
ac

bc ldkc kl
bd

ik
ab

kj ldkc lj
dc

Ω = ̃ + ̃ + ̃ + ̃

+ − − − ̃ + ̃

+ ̃ + ̃ − ̃ − ̃ − ̃

i
k
jjj

y
{
zzz
(42)

where Y g t gaick kiac il
ad

kcld
1
2

= − and I I Iij
ab

aibj aibj bjai= + . All

orbital indices are restricted to the active space and only the
integral construction scales with the system (linear scaling,

N( )).
Jacobian Transformation
The linear transformation by the Jacobian matrix,

Acσ = (43)

must be calculated in order to obtain excitation energies in
coupled cluster theory.
MLCC2 Jacobian Transformation
The MLCC2 Jacobian matrix is given by

A
H H S H

H F

, , , HF , HF

, HF , HFS S
MLCC2 1 2 1

2 2

S

S

1 1 2

1 2

μ τ τ μ τ

μ τ μ τ
=

⟨ |[ ̃ ] + [[ ̃ ] ]| ⟩ ⟨ |[ ̃ ]| ⟩

⟨ |[ ̃ ]| ⟩ ⟨ |[ ]| ⟩

ν ν ν

ν ν

i

k

jjjjjjjjj

y

{

zzzzzzzzz (44)

The block F , HFS
2 S

2
μ τ⟨ |[ ]| ⟩ν reduces to S S S

2 2 2
δϵμ μ ν in the

semicanonical basis, where ϵaibj = Faa + Fbb − Fii − Fjj.
The terms of the singles part of the transformed vector are

F c F c L c L L c L

L c L u L c L u

X c Y c F c c

L c

2( ) ( )

2(( ) ) (( ) )

(2 )

AI AB BI JI AJ JB
K

BJ AI
K

AB
K

BJ JI
K

JB
K

BJ kc
K

ik
ac

AI ai kB
K

BJ Jc
K

ik
ac

AI ai

Ji AJ Ii aB BI Aa jb aibj ajbi

jbki akbj

MLCC2

, ,

σ

δ δ

δ δ

= ̃ − ̃ + ̃ ̃ − ̃ ̃

+ ̃ ̃ − ̃ ̃

− − + ̃ ̃ − ̃

− ̃ (45)

where cãibj = (1 + δai,bj)caibj. The intermediates X and Y,

X g uJi Jbkc ki
cb= ̃ (46)

Y g uaB kcjB jk
ac= ̃ (47)

are calculated once before the iterative loop. The fourth term
of eq 45 scales as N( )4 , and it is the steepest scaling term.
Additionally, there are several contractions that scale as N( )3 .
If we compare to the transformation by the CCS Jacobian,

F c F c L c L L c L2( ) ( )AI AB BI JI AJ JB
K

BJ AI
K

AB
K

BJ JI
KCCSσ = ̃ − ̃ + ̃ ̃ − ̃ ̃

(48)

we see that the steepest scaling term enters at the CCS level of
theory.
The terms of the doubles part of the transformed vector are

P
L c L g c c( )aibj

ij
ab

ai bj
bC
K

Cj ai
K

Kjai bK ij
ab

aibj
MLCC2

,
σ

δ
= ̃ ̃ − ̃ + ϵ

i

k

jjjjjjj
y

{

zzzzzzz (49)

Its construction entails two N( )2 (term 1 and the
construction of the integrals used in term 2) and two N( )
constructions.
MLCCSD CCS/CCSD Jacobian Transformation
The CCS/CCSD MLCCSD Jacobian matrix is given by

A
H H T H

H H T H H T

, , , HF , HF

, , , HF , , , HFT T

MLCCSD

1 2 1

2 2 2 2T T

1 1 2
T

1 1 2 2

μ τ τ μ τ

μ τ τ μ τ τ

=
⟨ |[ ̃ ] + [[ ̃ ] ]| ⟩ ⟨ |[ ̃ ]| ⟩

⟨ |[ ̃ ] + [[ ̃ ] ]| ⟩ ⟨ |[ ̃ ] + [[ ̃ ] ]| ⟩

ν ν ν

ν ν ν ν

i

k

jjjjjjjjj

y

{

zzzzzzzzz
(50)

The singles part of σMLCCSD is the same as in MLCC2, see eq
45. The doubles part is given by

Y Y

Y

Y

Y W W

Y Y

Y

L c L g c F t c

F t c c c g c t

L c t c g c t

g c t L c t L c t

c c L c t

L c t c c c

c c F c F c

g c c g c g c c

g c t g c g c

1
( ) ( )

( ) 1 2 ( )

( ) 3 ( )

( ) ( ) ( )

4 (2 ) ( )

( ) 5 1 2

6 7

(2 ) 8

( )

aibj
ij
ab

ai bj
bC
K

Cj ai
K

Kjai bK Kc ij
ac

bK

kC ik
ab

Cj Kjai bK Kjbi aK ljkC Ci lk
ba

ljKC CK il
ab

Kibj aK kDbc Di kj
ac

kcbD Dj ik
ca

kcbD Dj ik
ac

KCbd CK ij
ad

ckbj aick akci
ckl

kcld blck ij
ad

kcld ckdj il
ab

ckbj aick cb aicj kj aibk

aick bkcj ajck bkci bc aicj kj aibk

bjkc aick akci bckj aick kibc akcj klij akbl

kcld cidj kl
ab

kilj akbl acbd cidj

MLCCSD

,

∑

σ
δ

=
+

̃ ̃ − ̃ − ̃

− ̃ + [ ] + [ ] + ̃

− ̃ − [ ] − ̃

− ̃ + ̃ + ̃

+ [ ] ̃ − ̃ − ̃ ̃

− ̃ ̃ − [ ] ̃ − [ ] ̃ − [ ] ̃

+ [ ] ̃ + [ ] ̃ + ̃ ̃ − ̃ ̃

+ ̃ ̃ − ̃ − ̃ ̃ − ̃ ̃ + [ ] ̃

+ ̃ + ̃ ̃ + ̃ ̃

i

k
jjjjjj

y

{
zzzzzz

(51)

The contractions in eq 51 scale as either (0), N( ), or
N( )2 . Additionally, the integral constructions scale as N( ),
N( )2 , or N( )3 .
The intermediates are calculated once before the iterative

loop, and are defined as

Y g t1 Kjai Kjlc li
ac[ ] = ̃ (52)

Y g t2 Kjbi ljKc li
bc[ ] = ̃ (53)

Y g t3 Kibj Kcbd ij
cd[ ] = ̃ (54)

Y L t4 ckbj kcld jl
bd[ ] = ̃ (55)
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Y L t5 ckbj kcld lj
bd[ ] = ̃ (56)

Y g t6 aick ldkc il
da[ ] = ̃ (57)

Y g t7 ajck kdlc jl
da[ ] = ̃ (58)

Y g t8 klij kcld ij
cd[ ] = ̃ (59)

W L t1 cb kdlc lk
bd[ ] = ̃ (60)

W L t2 kj lckd lj
cd[ ] = ̃ (61)
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accuracy of a low scaling similarity transformed equation of motion
method for vertical excitation energies. J. Chem. Theory Comput. 2018,
14, 72−91.
(17) Oliphant, N.; Adamowicz, L. Multireference coupled-cluster
method using a single-reference formalism. J. Chem. Phys. 1991, 94,
1229−1235.
(18) Piecuch, P.; Oliphant, N.; Adamowicz, L. A state-selective
multireference coupled-cluster theory employing the single-reference
formalism. J. Chem. Phys. 1993, 99, 1875−1900.
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