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Abstract. Additive categories play a fundamental role in mathematics and related discip-
lines. Given an additive category equipped with a biadditive functor, one can construct its
category of extensions, which encodes important structural information. We study how func-
tors between categories of extensions relate to those at the level of the original categories.
When the additive categories in question are n-exangulated, this leads to a characterisation
of n-exangulated functors.

Our approach enables us to study n-exangulated categories from a 2-categorical per-
spective. We introduce n-exangulated natural transformations and characterise them using
categories of extensions. Our characterisations allow us to establish a 2-functor between the
2-categories of small n-exangulated categories and small exact categories. A similar result
with no smallness assumption is also proved.

We employ our theory to produce various examples of n-exangulated functors and natural
transformations. Although the motivation for this article stems from representation theory
and the study of n-exangulated categories, our results are widely applicable: several require
only an additive category equipped with a biadditive functor with no extra assumptions;
others can be applied by endowing an additive category with its split n-exangulated structure.
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1. Introduction

Additive categories appear in various branches of mathematics and related disciplines. For
the more algebraically inclined mathematician, perhaps the category of abelian groups is the
prototypical example; for the more analytical, perhaps the category of Banach spaces over
the real numbers; and the geometer may opt for some category of sheaves. The unsuspecting
theoretical physicist might uncover that certain additive categories control possibilities in
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string theory or, more broadly, particle physics. Phenomena of this last kind demonstrate
the power of category theory and the importance of its study.

The motivation for this article stems from algebra, yet many of the results are widely
applicable. Indeed, as we build up our theory, we ask only for an additive category C equipped
with a biadditive functor E(−,−) : Cop × C → Ab, where Ab denotes the category of abelian
groups. As an example, for any additive category C, one can already take E(C,A) to be the
abelian group C(C,A) of morphisms C → A; see Example 3.3. More interesting choices of E
can be made depending on the structure of C; see Section 5.

For now, let us focus on two examples from classical homological algebra, namely abelian
categories and triangulated categories. If C is a skeletally small abelian (or exact) cat-
egory, then a possible choice for E is the functor Ext1C. In this case, the abelian group
E(C,A) = Ext1C(C,A) consists of equivalence classes of short exact sequences in C of the
form 0 A − C 0. If C is a triangulated category with suspension functor
Σ, then one could set E(C,A) = C(C,ΣA), which is in bijection with equivalence classes of
distinguished triangles of the form A − C ΣA. In both these examples, we see
that the bifunctor E encodes the basic building blocks of the homological structure of C.

Nakaoka–Palu [57] recently used the observations above to establish the theory of extrian-
gulated categories, giving a simultaneous generalisation of exact and triangulated categories.
An extriangulated category consists of a triplet (C,E, s), where C is an additive category,
E : Cop × C → Ab is a biadditive functor and s is a realisation (see Definition 2.3), satisfying
certain axioms. This new framework has proven significance: aside from permitting the uni-
fication and extension of many known results (see e.g. [23, 24, 52, 55]), it has led to novel
insights and explained previously mysterious connections (see e.g. [41, 42, 60]). This again
underlines the benefits of abstraction in mathematics.

The realisation s of an extriangulated category (C,E, s) encapsulates a core idea from
classical homological algebra, namely that one realises each δ ∈ E(C,A) by an equivalence
class s(δ) = [ A B C ] of a pair of composable morphisms. Hence, the realisation
allows us to visualise the structure encoded by E via 3-term sequences. For an integer
n ⩾ 1, Iyama [32] discovered that n-cluster tilting subcategories of module categories ex-
hibit structures reminiscent of those from classical homological algebra, but now involving
longer sequences. It was demonstrated that (n + 2)-term sequences could be used to study
a higher-dimensional analogue of Auslander–Reiten theory in such settings. Jasso [36] form-
alised this idea by introducing n-exact and n-abelian categories. Similar observations in the
triangulated setting (see e.g. [32], [33], [35]) motivated the axiomatisation of (n+2)-angulated
categories by Geiss–Keller–Oppermann [21]. These formal frameworks constitute what has
become known as higher homological algebra, where the case n = 1 recovers classical the-
ory of exact, abelian and triangulated categories. Higher homological algebra is linked to
modern developments in various branches of mathematics, ranging from representation the-
ory, cluster theory, commutative algebra, algebraic geometry, homological mirror symmetry
and symplectic geometry to string theory, conformal field theory and combinatorics (see e.g.
[1, 14, 16, 21, 25, 28, 34, 39, 59, 66]).
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A central idea in the higher setup is that a suitable n-cluster tilting subcategory T of an
abelian (resp. triangulated) category A is n-abelian [36, Thm. 3.16] (resp. (n+ 2)-angulated
[21, Thm. 1]). Each admissible n-exact sequence A X1 · · · Xn C in the n-
abelian category T is obtained by splicing together n short exact sequences Y i−1 X i Y i

from A as indicated in the following diagram

A X1 X2 · · · Xn C.

Y 0 Y 1 · · · Y n

(∗)

In this way, the higher structure of T is compatible with the classical structure of A.
Of course, now one asks: What does “compatible” formally mean? The answer is work

in preparation by the authors (see [5, 4]), but is inspired by the results and methodology
from the present article. The approach taken involves the higher analogue of extriangulated
categories, namely n-exangulated categories in the sense of Herschend–Liu–Nakaoka [29] (see
Definition 2.5). As for extriangulated categories, an n-exangulated category consists of a
triplet (C,E, s) where C is an additive category and E : Cop×C → Ab a biadditive functor. For
each pair of objects A,C ∈ C and to each extension δ ∈ E(C,A), the realisation associates
an equivalence class s(δ) = [X•] = [ A X1 · · · Xn C ] of an (n + 2)-term
sequence. Each (n + 2)-angulated and n-exact category is n-exangulated (see Examples 5.3
and 5.4), and a category is extriangulated if and only if it is 1-exangulated (see Example 5.1).

Structure-preserving functors between n-exangulated categories have been formalised re-
cently in [6]. Given n-exangulated categories (C,E, s) and (C ′,E′, s′), an n-exangulated functor
(F ,Γ): (C,E, s) → (C ′,E′, s′) is a pair consisting of an additive functor F : C → C ′ and a
natural transformation Γ: E(−,−)⇒ E′(F−,F−) satisfying a certain condition (see Defini-
tion 3.15). Compatibility of structures can be naturally expressed by means of n-exangulated
functors in the case where the domain and codomain categories are both n-exangulated for
the same n.

Let us return to the example of the inclusion functor T ↪→ A of an n-cluster tilting sub-
category T into an ambient abelian category A. As soon as n > 1, we have that T and A
are higher abelian categories of differing “dimension”, and hence the established notion of an
n-exangulated functor does not apply. This demonstrates the need for terminology that allows
one to describe compatibility of structures also in this more general setup. A naive attempt to
fill this gap might be to define an (n, 1)-exangulated functor from an n-exangulated category
(C,E, s) to a 1-exangulated category (C ′,E′, s′) as a pair (F ,Γ), where F : C → C ′ is an addit-
ive functor as before, but where Γ is now a natural transformation from E to an n-fold product
arising from E′ satisfying some compatibility conditions. For instance, in the situation of (∗)
above, one would want Γ to take one equivalence class δ = [ A X1 · · · Xn C ]

of an admissible n-exact sequence to an n-tuple (ρn, . . . , ρ1) of equivalence classes of short
exact sequences with ρi = [ Y i−1 X i Y i ]. However, the careful reader quickly spots
that for n > 1 there cannot be a natural transformation Γ of this kind, as the domain and
codomain of Γ are functors with different domains. Furthermore, note that although we have
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focused on the (n, 1)-case above for expository purposes, we more generally aim to study
(n, q)-exangulated functors for q ⩾ 1.

Instead of expecting to describe compatibility of n-exangulated and q-exangulated struc-
tures by use of a natural transformation Γ as above, our main result of Section 3 (see The-
orem A) opens another avenue of approach. In this result, we characterise n-exangulated
functors via the corresponding categories of extensions. Given an additive category C with
a biadditive functor E : Cop × C → Ab, there is an associated category denoted by E -Ext(C),
which has as its objects extensions δ ∈ E(C,A) as A,C vary over objects in C. For the
unexplained terminology used in Theorem A, see Definitions 3.6 and 3.16.

Theorem A (See Theorem 3.17). Let (C,E, s) and (C ′,E′, s′) be n-exangulated categories.
Then there is a one-to-one correspondence{

n-exangulated functors
(F ,Γ): (C,E, s)→ (C ′,E′, s′)

}
←→


pairs (F ,E ) of additive functors F : C → C ′

and E : E -Ext(C)→ E′ -Ext(C ′), where E respects
morphisms and distinguished n-exangles over F

 .

The category E -Ext(C) comes equipped with an exact structure XE determined by the
sections and retractions in C; see Proposition 3.2 and Remark 3.4. Furthermore, if F : C → C ′

is an additive functor, then any functor E : E -Ext(C)→ E′ -Ext(C ′) which respects morphisms
over F satisfies E (XE) ⊆ XE′ , i.e. E is exact; see Proposition 3.11.

In addition to permitting a new perspective on the problem of defining structure-preserving
functors between higher exangulated categories of possibly different dimensions, the one-
to-one correspondence above is interesting in its own right. From Theorem A we deduce
Corollary B, which provides a characterisation of what it means for an additive functor
between n-exangulated categories to be n-exangulated. This is a useful tool for detecting
n-exangulated functors, because it is often easier to observe that distinguished n-exangles
are sent to distinguished n-exangles in a functorial way, than to check that the corresponding
natural transformation is indeed natural; see Examples 5.9 and 5.11.

Corollary B. Let (C,E, s) and (C ′,E′, s′) be n-exangulated categories. For an additive functor
F : C → C ′, the following statements are equivalent.

(i) There exists a natural transformation Γ: E(−,−) ⇒ E′(F−,F−) such that the pair
(F ,Γ) is an n-exangulated functor.

(ii) There exists an additive functor E : E -Ext(C)→ E′ -Ext(C ′) which respects both morph-
isms and distinguished n-exangles over F .

In Section 4 we study n-exangulated categories in a 2-category-theoretic setting by consid-
ering morphisms of n-exangulated functors. We introduce a higher version of natural trans-
formations of extriangulated functors as defined by Nakaoka–Ogawa–Sakai [56, Def. 2.11(3)],
which we call n-exangulated natural transformations ; see Definition 4.1. Applying Theorem A
and using the notation E(F ,Γ) for the exact functor (E -Ext(C),XE)→ (E′ -Ext(C ′),XE′) arising
from an n-exangulated functor (F ,Γ): (C,E, s) → (C ′,E′, s′), we give a characterisation of
n-exangulated natural transformations; see Theorem C. In the following we use the Hebrew
letter ב (beth). See Definition 4.18 for the meaning of balanced.
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Theorem C (See Theorem 4.19). Suppose (F ,Γ), (G ,Λ): (C,E, s)→ (C ′,E′, s′) are n-exan-
gulated functors. Then there is a one-to-one correspondence between n-exangulated natural
transformations (F ,Γ)

ב
=⇒ (G ,Λ) and balanced natural transformations E(F ,Γ)

⟨ב⟩
=⇒ E(G ,Λ) .

For n ⩾ 1, we consider the category n -Exang of all n-exangulated categories, which
has properties just like a 2-category (see e.g. Proposition 4.12). However, due to the set-
theoretic issue outlined in Remark 4.13, we cannot formally call n -Exang a 2-category. If we
consider instead small categories, then we avoid such problems, and may talk of the 2-category
n - exang of small n-exangulated categories. We use the correspondences of Theorems A and
C to construct a 2-functor from n - exang to the 2-category exact of small exact categories.

Theorem D (See Corollary 4.25). There is 2-functor n - exang→ exact, which sends a 0-cell
(C,E, s) to (E -Ext(C),XE), a 1-cell (F ,Γ) to E(F ,Γ) and a 2-cell ב to .⟨ב⟩

Theorem D is a consequence of Theorem 4.22. This latter result is more general, in that
one can construct a functor from n -Exang to the category Exact of all exact categories which
behaves just like the 2-functor described in Theorem D. Ignoring Remark 4.13, one should
interpret Theorem 4.22 as establishing a 2-functor n -Exang→ Exact.

In Section 5 we provide several examples of n-exangulated categories, functors and natural
transformations. Some of these examples also produce n-exangulated subcategories in the
sense of [24, Def. 3.7].

Conventions. We write A ∈ C to denote that an object A lies in a category C. For
A,B ∈ C, we write C(A,B) for the collection of morphisms A → B in C. Unless stated
otherwise: our subcategories are always assumed to be full; and our functors are always
assumed to be covariant. We write Ab for the category of abelian groups. Throughout this
paper, let n ⩾ 1 denote a positive integer.

2. Preliminaries on n-exangulated categories

We follow [29, Sec. 2] in briefly recalling the definition of an n-exangulated category, which
is a higher analogue of an extriangulated category as introduced in [57]. See also [30].

Setup 2.1. Throughout this section, we assume that C is an additive category and that
E : Cop×C → Ab is a biadditive functor. The latter means that for all A,C ∈ C, the functors
E(C,−) : C → Ab and E(−, A) : Cop → Ab are both additive.

Let A,C ∈ C be arbitrary. The identity element of the abelian group E(C,A) is denoted
by 0A C . An element δ of E(C,A) is called an E-extension, and we set

xEδ := E(C, x)(δ) ∈ E(C,X) and zEδ := E(z, A)(δ) ∈ E(Z,A)

for morphisms x : A → X and z : Z → C in C. It follows that zExEδ = E(z, x)(δ) = xEz
Eδ.

Given δ ∈ E(C,A) and ρ ∈ E(D,B), a morphism of E-extensions from δ to ρ is a pair (a, c)

of morphisms a : A→ B and c : C → D in C such that

aEδ = cEρ. (2.1)
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If there is no confusion about the biadditive functor involved, E-extensions and morphisms
of E-extensions are simply called extensions and morphisms of extensions, respectively. The
Yoneda Lemma yields two natural transformations denoted and defined by

δE : C(A,−) =⇒ E(C,−)
δE X : x 7−→ xEδ

and
δE : C(−, C) =⇒ E(−, A)
δE Z : z 7−→ zEδ.

In order to explain how to associate a homotopy class of a complex to each extension, we
recall some terminology and notation. We denote by Cn

C the subcategory of the category of
complexes CC in C consisting of complexes concentrated in degrees 0, 1, . . . , n, n+1. That is,
if X• ∈ Cn

C, then X i is zero if i < 0 or i > n+ 1. We write such a complex as

X0 X1 · · · Xn Xn+1.
d0X d1X dn−1

X dnX

Definition 2.2. (See [29, Def. 2.13].) Suppose X• ∈ Cn
C and δ ∈ E(Xn+1, X0). If

C(−, X0) C(−, X1) · · · C(−, Xn+1) E(−, X0)
C(−, d0X) C(−, d1X) C(−, dnX) δE

and

C(Xn+1,−) C(Xn,−) · · · C(X0,−) E(Xn+1,−)
C(dnX ,−) C(dn−1

X ,−) C(d0X ,−) δE

are both exact sequences of functors, then we call the pair ⟨X•, δ⟩ an n-exangle.

For A,C ∈ C the not-necessarily-full subcategory Cn
(A,C) of Cn

C is defined as follows. Objects
of Cn

(A,C) are complexes X• ∈ Cn
C with X0 = A and Xn+1 = C. Given X•, Y • ∈ Cn

(A,C), set

Cn
(A,C)(X

•, Y •) := { f • = (f 0, . . . , fn+1) ∈ Cn
C(X

•, Y •) | f 0 = idA and fn+1 = idC } .

The usual notion of a homotopy between morphisms of complexes restricts to give an equi-
valence relation ∼ on Cn

(A,C)(X
•, Y •). This gives rise to a new category Kn

(A,C) with the same
objects as Cn

(A,C) and with Kn
(A,C)(X

•, Y •) := Cn
(A,C)(X

•, Y •)/∼. If the image of a morphism
f • ∈ Cn

(A,C)(X
•, Y •) in Kn

(A,C)(X
•, Y •) is an isomorphism, then f • is called a homotopy equi-

valence and we say that X• and Y • are homotopy equivalent. We denote the isomorphism
class in Kn

(A,C) of an object X• by [X•].

Definition 2.3. (See [29, Def. 2.22].) Let s be a correspondence that, for each A,C ∈ C,
associates to an extension δ ∈ E(C,A) an isomorphism class s(δ) = [X•] in Kn

(A,C). Such an s

is said to be an exact realisation of E if the following conditions are satisfied.

(R0) Let δ ∈ E(C,A) and ρ ∈ E(D,B) be extensions with s(δ) = [X•] and s(ρ) = [Y •].
For any morphism of extensions (a, c) : δ → ρ, there exists f • ∈ Cn

C(X
•, Y •) such that

f 0 = a and fn+1 = c. In this setting, we say that X• realises δ and f • realises (a, c).

(R1) The pair ⟨X•, δ⟩ is an n-exangle whenever s(δ) = [X•].

(R2) For all A ∈ C, we have s( 0A 0) = [ A A 0 · · · 0
idA ] and

s( 00 A) = [ 0 · · · 0 A A
idA ].
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If s is an exact realisation of E and s(δ) = [X•] = [ X0 X1 · · · Xn Xn+1
d0X dnX ],

then d0
X is known as an s-inflation and dn

X as an s-deflation.
Before stating the main definition of this section, we recall the notion of a mapping cone.

Definition 2.4. (See [29, Def. 2.27].) Suppose f • ∈ Cn
C(X

•, Y •) with f 0 = idA for some
A = X0 = Y 0. The mapping cone M • := MC(f)• of f • is the complex

X1 X2 ⊕ Y 1 X3 ⊕ Y 2 · · · Xn+1 ⊕ Y n Y n+1
d0M d1M d2M dn−1

M dnM

in Cn
C, where d0

M :=
(

−d1X
f1

)
, dn

M := ( fn+1 dn
Y ), and di

M :=
(

−di+1
X

0

fi+1 diY

)
when 0 < i < n.

Definition 2.5. (See [29, Def. 2.32].) Let C be an additive category, E : Cop × C → Ab

a biadditive functor and s an exact realisation of E. The triplet (C,E, s) is called an n-
exangulated category if the following conditions are satisfied.

(EA1) The composition of any two s-inflations is again an s-inflation, and the composition
of any two s-deflations is again an s-deflation.

(EA2) For any δ ∈ E(D,A) and any c ∈ C(C,D) with s(cEδ) = [X•] and s(δ) = [Y •], there
exists a morphism f • : X• → Y • realising (idA, c) such that s((d0

X)Eδ) = [MC(f)•].

(EA2op) Dual of (EA2).

If (C,E, s) is an n-exangulated category and s(δ) = [X•] for an extension δ ∈ E(C,A), then
we call ⟨X•, δ⟩ a distinguished n-exangle.

3. The category of extensions and n-exangulated functors

Our main result in Section 3 is Theorem 3.17, which is Theorem A from Section 1. In
Section 3.1 we recall the definition of the category of extensions associated to an additive
category equipped with a biadditive functor. In Subsection 3.2 we characterise natural trans-
formations of a certain form; see Setup 3.5 and Proposition 3.14. In Subsection 3.3 we use
this characterisation to prove Theorem 3.17.

3.1. The category of extensions. For this subsection, assume that C is an additive cat-
egory and that E : Cop×C → Ab is a biadditive functor (see Setup 2.1). The category E -Ext(C)
of E-extensions was considered in [57, Def. 2.3]. The authors thank Thomas Brüstle for in-
forming them that similar ideas already appeared in the literature before; see Remark 3.4.

The objects and morphisms of E -Ext(C) are given by E-extensions and morphisms of E-
extensions, respectively, as defined in Section 2. Recall that, for δ ∈ E(C,A) and ρ ∈ E(D,B),
a morphism δ → ρ of E-extensions is a pair (a, c) of morphisms a : A→ B and c : C → D in
C such that aEδ = cEρ; see (2.1). If δ is an extension in E(C,A), then the identity morphism
idδ of δ is given by the pair (idA, idC). The composition of morphisms (a, c) : δ → ρ and
(b, d) : ρ → η in E -Ext(C) is the pair (ba, dc). It is straightforward to check that (ba, dc) is
again a morphism of extensions and that E -Ext(C) is a category under this composition rule.

As one might expect, the category of E-extensions is an additive category. Moreover,
motivated by [18, Sec. 9.1, Exam. 5], we show that E -Ext(C) can be equipped with an
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exact structure XE that is not necessarily the split exact structure. Suppose δ ∈ E(C,A),
ρ′ ∈ E(D,B) and η ∈ E(C ′, A′). We declare that a sequence

δ ρ′ η
(a, c) (b, d)

(3.1)

of morphisms in E -Ext(C) lies in XE if and only if a and c are both sections with b = coker a

and d = coker c. It follows from [63, Prop. 2.7] that (3.1) belongs to XE if and only if b and d

are both retractions with a = ker b and c = ker d. This is again equivalent to the underlying
sequences A B A′a b and C D C ′c d being split exact in C. We call a sequence
(3.1) belonging to XE a conflation, and in this case the morphism (a, c) an inflation and (b, d)

a deflation. Notice that XE is closed under isomorphisms.
We use column and row notation ιX =

(
idX
0

)
: X → X⊕Y and πX = ( idX 0 ) : X⊕Y → X

for the canonical inclusion and projection, respectively, associated to the biproduct of two
objects X and Y in the additive category C. Then, given a conflation (3.1), there are
isomorphisms h : B → A⊕ A′ and g : D → C ⊕ C ′ in C such that (3.1) is isomorphic to

δ ρ η,
(ιA, ιC) (πA′ , πC′ )

(3.2)

where ρ = (g−1)EhEρ
′. Moreover, the sequence (3.2) also lies in XE. If (a, c) is a morphism

in E -Ext(C) consisting of a pair of sections both admitting cokernels, it is not a priori clear
that it is an inflation. The following lemma verifies this.

Lemma 3.1. Let (a, c) : δ → ρ′ be a morphism in E -Ext(C) for δ ∈ E(C,A) and ρ′ ∈ E(D,B).
Suppose a and c are sections with cokernels b = coker a and d = coker c. Then (a, c) completes
to a kernel-cokernel pair (3.1), which is in XE.

Proof. By our remarks above, we may assume B = A ⊕ A′, D = C ⊕ C ′ and that (a, c) is
of the form (ιA, ιC) : δ → ρ. Consider the sequence (3.2) with η := (ιC′)E(πA′ )Eρ. Using that
(ιA, ιC) is a morphism in E -Ext(C) and writing idD as ιCπC + ιC′πC′ , it is straightforward to
check that (πA′ , πC′ ) is a morphism of extensions ρ→ η. It follows that (3.2) is in XE.

To show that (3.2) is a kernel-cokernel pair, we first observe that (πA′ , πC′ )(ιA, ιC) = 0.
Let α ∈ E(Z,X) be an extension and consider a morphism (( x

x′ ), (
z
z′ )) : α → ρ in E -Ext(C)

with (πA′ , πC′ ) ((
x
x′ ), (

z
z′ )) = (0, 0). This implies that x′ and z′ are zero. We claim that (x, z)

is a morphism of extensions α→ δ. Indeed, we have

(ιA)ExEα = ( x
0 )Eα = ( x

x′ )Eα = ( z
z′ )

E
ρ = ( z

0 )
E
ρ = zE(ιC)

Eρ = (ιA)Ez
Eδ,

where the last equality follows from (ιA, ιC) being a morphism of extensions. As (ιA)E is monic
since ιA is a section, this yields xEα = zEδ. Moreover, we conclude that (x, z) is the unique
morphism α → δ satisfying (( x

x′ ), (
z
z′ )) = (ιA, ιC)(x, z), so (ιA, ιC) is a kernel of (πA′ , πC′ ).

Similarly, one can verify that (πA′ , πC′ ) is a cokernel of (ιA, ιC).

We are now ready to show that XE is an exact structure on E -Ext(C).

Proposition 3.2. The pair (E -Ext(C),XE) is an exact category.

Proof. We first verify that E -Ext(C) is an additive category. Let δ ∈ E(C,A) and ρ ∈ E(D,B)

be extensions. The collection of morphisms of extensions δ → ρ in E -Ext(C) is a set, since
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C(A,B) and C(C,D) are both groups and hence sets. The addition of morphisms (a, c) : δ → ρ

and (a′, c′) : δ → ρ is defined by the pair (a+a′, c+c′), which is a morphism δ → ρ of extensions
as E is biadditive. This establishes that E -Ext(C) is preadditive. By the biadditivity of E,
we have a natural isomorphism E(C ⊕D,A⊕B) ∼= E(C,A)⊕E(C,B)⊕E(D,A)⊕E(D,B).

As in [29, Def. 2.6], we let δ ⊕ ρ ∈ E(C ⊕ D,A ⊕ B) denote the element corresponding to
(δ, 0, 0, ρ) via this isomorphism. It is straightforward to check that this gives a biproduct of
extensions making E -Ext(C) an additive category; see, for instance, Liu–Tan [64, Rem. 2].
In particular, note that the biproduct inclusion and projection morphisms are of the form
ιδ = (ιA, ιC) : δ → δ ⊕ ρ and πδ = (πA, πC ) : δ ⊕ ρ→ δ.

Next we show that XE is an exact structure on E -Ext(C). It follows from Lemma 3.1 that
XE consists of kernel-cokernel pairs, using that (co)kernels are unique up to isomorphism.
To check the axioms as in Bühler [10, Def. 2.1] of an exact category, it suffices to consider
sequences of the form (3.2) as XE is closed under isomorphisms. The identity morphism
of δ ∈ E(C,A) is idδ = (idA, idC), which is a pair of sections admitting cokernels, so (E0)
holds. The collection of morphisms of extensions that consist of pairs of sections that admit
cokernels is closed under composition, so (E1) follows from Lemma 3.1. We prove (E2) below,
and note that axioms (E0op), (E1op) and (E2op) can be shown dually.

For (E2), suppose we have a conflation (3.2). Let (u,w) : δ → β be an arbitrary morphism
where β ∈ E(W,U). By the universal property of the product in E -Ext(C), there exists a
unique morphism (e, f) : δ → β ⊕ ρ for which πβ(e, f) = (−u,−w) and πρ(e, f) = (ιA, ιC). It

follows that (e, f) =
(( −u

idA
0

)
,
( −w

idC
0

))
is a pair of sections with l := coker e =

(
idU u 0

0 0 id
A′

)
and

m := coker f =
(

idW w 0

0 0 id
C′

)
. By Lemma 3.1, this implies that (e, f) fits into a conflation

δ β ⊕ ρ γ
(e, f) (l,m)

with γ ∈ E(W ⊕ C ′, U ⊕ A′). It is straightforward to check that
γ equipped with (l,m)ιβ : β → γ and (l,m)ιρ : ρ → γ is a pushout of (ιA, ιC) along (u,w).
Lastly, we note that (l,m)ιβ =

((
idU
0

)
,
(

idW
0

))
is a pair of sections admitting cokernels, and

hence an inflation by Lemma 3.1.

In Example 3.3 we consider the category of extensions given by the Hom-bifunctor.

Example 3.3. Consider the biadditive functor E(−,−) := C(−,−) : Cop × C → Ab. With
this choice, the objects in E -Ext(C) coincide with morphisms in C. For δ ∈ E(C,A) and
ρ ∈ E(D,B), a morphism δ → ρ in E -Ext(C) is given by a pair (a, c) with a ∈ C(A,B) and
c ∈ C(C,D) such that aEδ = cEρ, i.e. such that the square

C A

D B

c

δ

a

ρ

commutes in C. It follows that E -Ext(C) is the arrow category of C. Furthermore, note that
given δ ∈ E(C,A) and ρ ∈ E(D,B), the biproduct δ⊕ ρ in the additive category E -Ext(C) is
the morphism ( δ 0

0 ρ ) : C ⊕D → A⊕B.
A sequence (3.2) in XE corresponds to a morphism ( δ α

0 η ) : C⊕C ′ → A⊕A′, where α : C ′ → A

can be taken to be arbitrary. Such a conflation is trivial if and only if we have α = δγ − βη
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for some γ : C ′ → C and some β : A′ → A. For an example of a non-trivial conflation, one
may hence take C = Ab, α = idZ and δ = η to be the endomorphism of Z given by d 7→ 2d.

Remark 3.4. The authors are grateful to Thomas Brüstle for pointing out that variants of the
category E -Ext(C) have been studied before. Gabriel–Nazarova–Roiter–Sergeichuk–Vossieck
[17, Sec. 1] considered a category of M -spaces for a functor M from an aggregate (that is, a
skeletally small, Hom-finite, Krull–Schmidt category) to a category of vector spaces. Gabriel–
Roiter [18, p. 88, Exam. 5] looked more generally at a category defined by a bifunctor on a
pair of aggregates, and this context was generalised further by Dräxler–Reiten–Smalø–Solberg
[13, p. 670]. These examples also have analogues, where one restricts the focus to extensions
of the form δ ∈ E(C,A) with A = C; see, for example, Crawley-Boevey [11], Tiefenbrunner
[65], Geiß [20] and Brüstle–Hille [9].

3.2. Functors between categories of extensions. In this subsection we discuss how func-
tors between categories of extensions relate to functors on the underlying categories. This
culminates in Proposition 3.14, from which Theorem 3.17 in the next subsection will follow.

Setup 3.5. For the remainder of this subsection, let F : C → C ′ be a functor between
additive categories C and C ′. Suppose also that E : Cop × C → Ab and E′ : (C ′)op × C ′ → Ab

are biadditive functors.

In Setup 3.5 we do not assume the functor F to be additive. We explicitly impose this
requirement whenever needed in the results that follow. Associated to F is the opposite
functor F op : Cop → (C ′)op, and we usually abuse notation by writing F instead of F op.

Definition 3.6. We say that a functor E : E -Ext(C)→ E′ -Ext(C ′) respects morphisms over
F if, for every morphism (a, c) : δ → ρ in E -Ext(C), the morphism E (a, c) : E (δ)→ E (ρ) in
E′ -Ext(C ′) is given by the pair (Fa,F c).

Building on Example 3.3, the following shows that a functor F between additive categories
always induces a functor between categories of extensions that respects morphisms over F .

Example 3.7. Recall that if we put E(−,−) = C(−,−) and E′(−,−) = C ′(−,−), then
E -Ext(C) and E′ -Ext(C ′) coincide with the arrow categories of C and C ′, respectively; see
Example 3.3. Since functors preserve commutative squares, any functor F : C → C ′ induces
a functor E : E -Ext(C)→ E′ -Ext(C ′). This functor is defined by E (δ) = F δ for δ ∈ E(C,A),
and by E (a, c) = (Fa,F c) : E (δ) → E (ρ) for each morphism (a, c) : δ → ρ in E -Ext(C).
Note that E respects morphisms over F by construction.

Note that Lemma 3.10 below holds trivially in the setup of this example. In particular, the
equations in Lemma 3.10(ii) say that F respects composition of morphisms. It is clear that if
F is additive, then E is additive. The converse also holds, but involves a trick; see the proof
of Proposition 3.11. In this case, we have E (δ1 + δ2) = E (δ1) + E (δ2) for δ1, δ2 ∈ E(C,A).
These statements hold more generally; see Proposition 3.11 and Proposition 3.13.

Remark 3.8. Note that even though a functor E : E -Ext(C) → E′ -Ext(C ′) that respects
morphisms over F sends a pair (a, c) of morphisms of C to the pair (Fa,F c) of morphisms
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of C ′, this does not mean that E is determined on all morphisms of E -Ext(C). For instance,
in Example 3.7 one could also consider a functor Ẽ that respects morphisms over F , but is
defined by Ẽ (δ) = −F δ on objects. Despite E (a, c) and Ẽ (a, c) both being equal to (Fa,F c)

as pairs of morphisms of C ′, we might have E (a, c) ̸= Ẽ (a, c) as morphisms in E′ -Ext(C ′),
since the domains or the codomains may not agree. Indeed, if F δ ̸= −F δ in E′(FC,FA),
then the morphisms E (idδ) = idFδ and Ẽ (idδ) = id−Fδ are not the same identity morphisms
in E′ -Ext(C ′), even though they are both given by the pair (idFA, idFC). Hence, the notion
of respecting morphisms is not as strict as it may seem. In particular, a functor that is
determined on all morphisms is automatically also determined on all objects, but this is not
necessarily the case for functors respecting morphisms.

As the point made in Remark 3.8 is subtle, we now spell out explicitly what it means for
two morphisms in the category E -Ext(C) to be equal.

Remark 3.9. Let δ ∈ E(C,A), δ′ ∈ E(C ′, A′), ρ ∈ E(D,B) and ρ′ ∈ E(D′, B′) be extensions.
Suppose one fixes morphisms (a, c) : δ → ρ and (a′, c′) : δ′ → ρ′ in the category E -Ext(C).
These morphisms are equal in E -Ext(C) if and only if we have the equalities:

(i) A = A′, B = B′, C = C ′ and D = D′ as objects in C;
(ii) δ = δ′ as elements in E(C,A) and ρ = ρ′ as elements in E(D,B); and

(iii) a = a′ and c = c′ as morphisms in C.
When checking that two morphisms (a, c) : δ → ρ and (a′, c′) : δ′ → ρ′ as above are equal,
it is usually straightforward—but nonetheless essential—to verify requirements (i) and (ii).
The verification of (iii) is typically less straightforward and often involves Definition 3.6.

Our next lemma, which we use to prove Propositions 3.13 and 3.14, describes natural
compatibility properties for a functor that respects morphisms over F .

Lemma 3.10. Let E : E -Ext(C)→ E′ -Ext(C ′) be a functor that respects morphisms over F .
The following statements hold for δ ∈ E(C,A).

(i) The extension E (δ) lies in E′(FC,FA).

(ii) If x : A→ X and z : Z → C are morphisms in C, then

E (xEδ) = (Fx)E′E (δ) and E (zEδ) = (Fz)E
′
E (δ).

Proof. (i) As E is a functor, we have idE (δ) = E (idA, idC). Since E respects morphisms over
F , this equals (F idA,F idC) = (idFA, idFC), so E (δ) ∈ E′(FC,FA).

(ii) We only demonstrate the first identity, as the second is dual. By [29, Rem. 2.4],
the pair (x, idC) : δ → xEδ is a morphism in E -Ext(C). Since E is a functor and respects
morphisms over F , this implies that E (x, idC) = (Fx, idFC) is a morphism E (δ)→ E (xEδ)

in E′ -Ext(C ′). Consequently, we have (Fx)E′E (δ) = (idFC)
E′

E (xEδ) = E (xEδ).

The following proposition establishes the connection between the additivity of a functor
F and that of, or the exactness of, a functor which respects morphisms over F .

Proposition 3.11. Let E : E -Ext(C) → E′ -Ext(C ′) be a functor that respects morphisms
over F . The following statements are equivalent.
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(i) The functor F : C → C ′ is additive.

(ii) The functor E : E -Ext(C)→ E′ -Ext(C ′) is additive.

(iii) The functor E : (E -Ext(C),XE)→ (E′ -Ext(C ′),XE′) is exact.

Proof. (i)⇒ (iii) For a conflation (3.1) in XE, the underlying sequences A B A′ and
C D C ′ are split exact in C. As F is additive, their images FA FB FA′

and FC FD FC ′ under F are split exact in C ′. Since E respects morphisms over
F , the image E (δ) E (ρ′) E (η) of (3.1) under E is a sequence in XE′ .

(iii)⇒ (ii) An exact functor preserves finite biproducts and is hence additive.
(ii) ⇒ (i) Recall that for any morphism a : A → B in C and for the unique element

δ ∈ E(0, A), there is a morphism (a, id0) : δ → aEδ in E -Ext(C). Let a, b : A→ B be morph-
isms in C. Note that the morphisms (a, id0) : δ → aEδ and (b, id0) : δ → bEδ in E -Ext(C)
have the same codomain, as aEδ = bEδ in the trivial abelian group E(0, B). Consequently,
we can add (a, id0) and (b, id0) as morphisms δ → aEδ, and so the sum E (a, id0) + E (b, id0)

also makes sense. We then have

(F (a+ b),F id0) = E (a+ b, id0) as E respects morphisms over F

= E (a+ b, id0 + id0) as C(0, 0) = { id0 } is trivial

= E (a, id0) + E (b, id0) as E is additive by assumption

= (Fa,F id0) + (F b,F id0) as E respects morphisms over F

= (Fa+ F b,F id0 + F id0).

The computation yields F (a+ b) = Fa+ F b, and so F is additive.

In the proof of Proposition 3.14, we use that functors which respect morphisms over additive
functors preserve the additivity of extensions. This is shown in Proposition 3.13 below, for
which we first recall some notation.

Notation 3.12. (See [29, Def. 2.6].) Given an object X in an additive category, we use
the notation ιX,1 and ιX,2 for the canonical inclusion morphisms X → X ⊕ X into the first
and second summand of the biproduct, respectively. Similarly, we write πX,1 and πX,2 for the
canonical projection morphisms X⊕X → X. Let ∆X : X → X⊕X (resp. ∇X : X⊕X → X)
denote the diagonal (resp. codiagonal) morphism of X, i.e. the unique morphism such that
πX,i ◦ ∆X = idX (resp. ∇X ◦ ιX,i = idX) for i = 1, 2. Note that for any A,C ∈ C and any
extensions δ1, δ2 ∈ E(C,A), the addition in the abelian group E(C,A) relates to the biproduct
in E -Ext(C) via the equation

δ1 + δ2 = E(∆C ,∇A)(δ1 ⊕ δ2). (3.3)

Proposition 3.13. Suppose that F is additive and let E : E -Ext(C)→ E′ -Ext(C ′) be a func-
tor that respects morphisms over F . For all A,C ∈ C and for all extensions δ1, δ2 ∈ E(C,A),
we have that E (δ1 + δ2) = E (δ1) + E (δ2).
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Proof. Since F is additive, there exists an isomorphism fX : F (X ⊕X) → FX ⊕FX for
each X ∈ C, such that for each i = 1, 2 the diagram

F (X ⊕X)

FX FX

FX ⊕FX

∼=fX

F ιX,i

ιFX,i

FπX,i

πFX,i

(3.4)

in C ′ commutes. For 1 ⩽ i, j ⩽ 2, it follows that

E′(ιFC,i, πFA,j) = E′(F ιC,i,FπA,j) ◦ E′(fC , f
−1
A ). (3.5)

Recall from [29, Def. 2.6] that δ1 ⊕ δ2 is the unique element in E(C ⊕C,A⊕A) satisfying

E(ιC,i, πA,j)(δ1 ⊕ δ2) =

δi if i = j

0A C if i ̸= j,
(3.6)

and that E (δ1)⊕ E (δ2) is the unique element in E′(FC ⊕FC,FA⊕FA) satisfying

E′(ιFC,i, πFA,j)(E (δ1)⊕ E (δ2)) =

E (δi) if i = j

0FA FC if i ̸= j.
(3.7)

Consider the element η := E′(fC , f
−1
A )−1(E (δ1 ⊕ δ2)) in E′(FC ⊕FC,FA ⊕FA). We

claim that η and E (δ1) ⊕ E (δ2) are equal. Note that it suffices to show that η satisfies the
defining equations (3.7) of E (δ1)⊕E (δ2). In order to verify this, let us first consider the zero
morphism 0A : A→ A. The induced homomorphism (0A)E = E(C, 0A) : E(C,A)→ E(C,A) is
trivial, and hence (0A)E( 0A C) = 0A C . Similarly, the homomorphism (0FA)E′ is the zero map,
so (0FA)E′(E ( 0A C)) = 0FA FC . Using these observations, we have that

E ( 0A C) = E ((0A)E( 0A C))

= (F0A)E′(E ( 0A C)) by Lemma 3.10(ii)

= (0FA)E′(E ( 0A C)) since F is additive

= 0FA FC .

This gives

E′(F ιC,i,FπA,j)(E (δ1 ⊕ δ2)) = E (E(ιC,i, πA,j)(δ1 ⊕ δ2)) =

E (δi) if i = j

0FA FC if i ̸= j,
(3.8)

where the first equality is by Lemma 3.10(ii) and the second holds by (3.6) and the observa-
tions above. We next see that

E′(ιFC,i, πFA,j)(η) = E′(F ιC,i,FπA,j) ◦ E′(fC , f
−1
A )(η) using (3.5)

= E′(F ιC,i,FπA,j)(E (δ1 ⊕ δ2)) using the definition of η

=

E (δi) if i = j

0FA FC if i ̸= j
by (3.8).
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Uniqueness hence yields E′(fC , f
−1
A )−1(E (δ1 ⊕ δ2)) = η = E (δ1)⊕ E (δ2), which implies that

E (δ1 ⊕ δ2) = E′(fC , f
−1
A )(E (δ1)⊕ E (δ2)). (3.9)

The commutativity of (3.4) combined with uniqueness statements from the universal prop-
erties of the diagonal ∆FC and the codiagonal ∇FA gives

∆FC = fC ◦F∆C and ∇FA = (F∇A) ◦ f−1
A . (3.10)

Altogether, we conclude that

E (E(∆C ,∇A)(δ1 ⊕ δ2)) = E′(F∆C ,F∇A)(E (δ1 ⊕ δ2)) by Lemma 3.10(ii)

= E′(F∆C ,F∇A)E′(fC , f
−1
A )(E (δ1)⊕ E (δ2)) by (3.9)

= E′(∆FC ,∇FA)(E (δ1)⊕ E (δ2)) by (3.10).

Thus, using the description in (3.3), we see that E (δ1 + δ2) = E (δ1) + E (δ2), as required.

We are now ready to prove the main result of this subsection, characterising the existence of
an additive functor between categories of extensions that respects morphisms. This is the key
ingredient in the proof of Theorem 3.17. We remark that, by Proposition 3.11, the functors
E appearing in the right-hand side of the statement of Proposition 3.14 are exact functors of
the form (E -Ext(C),XE) → (E′ -Ext(C ′),XE′). Moreover, we note that the assignment from
left to right in Proposition 3.14 has been proven independently by Børve–Trygsland; see [8,
Lem. 4.2]. We include the argument for completeness.

Proposition 3.14. For an additive functor F : C → C ′, there is a one-to-one correspondence{
natural transformations

Γ: E(−,−)⇒ E′(F−,F−)

}
←→

{
additive functors E : E -Ext(C)→ E′ -Ext(C ′)

that respect morphisms over F

}
Γ 7−−→ E(F ,Γ)

Γ(F ,E ) ←−− [ E ,

where E(F ,Γ) (δ) := Γ(C,A)(δ) and (Γ(F ,E ))(C,A)(δ) := E (δ) for each δ ∈ E(C,A).

Proof. Suppose that Γ: E(−,−) ⇒ E′(F−,F−) is a natural transformation. We define
E (F ,Γ) by setting E(F ,Γ) (δ) := Γ(C,A)(δ) for objects δ ∈ E(C,A) and E(F ,Γ) (a, c) := (Fa,F c)

for morphisms (a, c) : δ → ρ in E -Ext(C). We need to show that this gives an additive functor
E -Ext(C)→ E′ -Ext(C ′) which respects morphisms over F .

Let us first check that E(F ,Γ) (a, c) = (Fa,F c) is a morphism from E(F ,Γ) (δ) = Γ(C,A)(δ)

to E(F ,Γ) (ρ) = Γ(D,B)(ρ) in E′ -Ext(C ′) whenever (a, c) is a morphism from δ ∈ E(C,A) to
ρ ∈ E(D,B) in E -Ext(C). Note that by the naturality of Γ, for any pair of morphisms
a : A→ B and c : C → D of C, the diagram

E(C,A) E(C,B) E(D,B)

E′(FC,FA) E′(FC,FB) E′(FD,FB)

E(C, a)

Γ(C,A) Γ(C,B) Γ(D,B)

E(c,B)

E′(FC,Fa) E′(F c,FB)
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commutes. Suppose furthermore that the pair (a, c) defines a morphism δ → ρ in E -Ext(C),
where δ ∈ E(C,A) and ρ ∈ E(D,B). Assuming additionally (a, c) : δ → ρ is a morphism in
E -Ext(C), we have E(C, a)(δ) = E(c, B)(ρ). Applying Γ(C,B) to this equality, the commut-
ativity above gives

E′(FC,Fa)(Γ(C,A)(δ)) = E′(F c,FB)(Γ(D,B)(ρ)),

so (Fa,F c) : Γ(C,A)(δ) → Γ(D,B)(ρ) is a morphism in E′ -Ext(C ′). It is clear that the as-
signment E (F ,Γ) respects identity morphisms and composition, and thus defines a functor
E -Ext(C) → E′ -Ext(C ′). Notice that E(F ,Γ) respects morphisms over F by construction.
The additivity of E(F ,Γ) follows from the additivity of F by Proposition 3.11.

Conversely, suppose we are given an additive functor E : E -Ext(C) → E′ -Ext(C ′) that
respects morphisms over F . Note that by Lemma 3.10(i), we have E (δ) ∈ E′(FC,FA)

whenever δ ∈ E(C,A). For each pair A,C ∈ C, we can hence write (Γ(F ,E ))(C,A)(δ) := E (δ)

to define a function (Γ(F ,E ))(C,A) : E(C,A)→ E′(FC,FA). It follows from Proposition 3.13
that the functions (Γ(F ,E ))(C,A) are group homomorphisms. The diagram

E(Z,A) E(C,A) E(C,X)

E′(FZ,FA) E′(FC,FA) E′(FC,FX)

(Γ(F ,E ))(Z,A)

E(z,A) E(C, x)

(Γ(F ,E ))(C,A) (Γ(F ,E ))(C,X)

E′(FC,Fx)E′(Fz,FA)

commutes for any pair of morphisms x : A → X and z : Z → C of C by Lemma 3.10(ii).
Commutativity of diagrams of the above form imply the naturality of the transformation
Γ(F ,E ) = {(Γ(F ,E ))(C,A)}(C,A)∈Cop×C : E(−,−) =⇒ E′(F−,F−).

By the arguments above, we see that the assignments Γ 7→ E(F ,Γ) and E 7→ Γ(F ,E ) from
the statement of the proposition are well-defined. It is straightforward to check that they are
mutually inverse, and hence define a one-to-one correspondence.

3.3. A characterisation of n-exangulated functors. In this subsection we first recall
the definition of an n-exangulated functor as introduced in [6]. This notion captures what it
means for a functor between n-exangulated categories to be structure-preserving. We then
prove the main result of Section 3, namely Theorem 3.17, which gives a characterisation of
n-exangulated functors in terms of functors on the associated categories of extensions. We
conclude with a lemma pertaining to the composition of these kinds of functors, which will
allow us to take a 2-categorical perspective on n-exangulated categories in Section 4.

Recall that given an additive functor F : C → C ′ between additive categories, there is
an induced functor FC : CC → CC′ between the corresponding categories of complexes. For
X• ∈ CC, the object FCX

• ∈ CC′ has (FCX
•)i = F (X i) in degree i ∈ Z. The differential of

FCX
• is given by di

FCX
= F (di

X), where dX denotes the differential of X•. For a morphism f •

in CC, we have FCf
• = (. . . ,F (f i−1),F (f i),F (f i+1), . . .). For the remainder of this section,

let (C,E, s) and (C ′,E′, s′) be n-exangulated categories.
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Definition 3.15. (See [6, Def. 2.32].) Let F : C → C ′ be an additive functor and let

Γ = {Γ(C,A)}(C,A)∈Cop×C : E(−,−) =⇒ E′(F op−,F−)

be a natural transformation. We call the pair (F ,Γ): (C,E, s)→ (C ′,E′, s′) an n-exangulated
functor if, for all X0, Xn+1 ∈ C and each δ ∈ E(Xn+1, X0), we have that s(δ) = [X•] implies
s′(Γ(Xn+1,X0)(δ)) = [FCX

•].

A similar structure-preservation condition exists for functors on categories of extensions.

Definition 3.16. Suppose F : C → C ′ is an additive functor. We say that a functor
E : E -Ext(C) → E′ -Ext(C ′) respects distinguished n-exangles over F if s(δ) = [X•] implies
s′(E (δ)) = [FCX

•].

We are now ready to prove Theorem A from Section 1. Again, by Proposition 3.11, each
E in the statement below is an exact functor (E -Ext(C),XE)→ (E′ -Ext(C ′),XE′).

Theorem 3.17. There is a one-to-one correspondence{
n-exangulated functors

(F ,Γ): (C,E, s)→ (C ′,E′, s′)

}
←→


pairs (F ,E ) of additive functors F : C → C ′

and E : E -Ext(C)→ E′ -Ext(C ′), where E respects
morphisms and distinguished n-exangles over F


(F ,Γ) 7−−→ (F ,E(F ,Γ) )

(F ,Γ(F ,E )) ←−− [ (F ,E ),

where E(F ,Γ) (δ) := Γ(C,A)(δ) and (Γ(F ,E ))(C,A)(δ) := E (δ) for δ ∈ E(C,A).

Proof. Suppose first that (F ,Γ): (C,E, s) → (C ′,E′, s′) is an n-exangulated functor. The
functor F : C → C ′ is hence additive, and Proposition 3.14 yields that E(F ,Γ) as defined above
is an additive functor E -Ext(C)→ E′ -Ext(C ′) that respects morphisms over F . As (F ,Γ) is
n-exangulated, we have that s(δ) = [X•] implies s′(E(F ,Γ) (δ)) = s′(Γ(Xn+1,X0)(δ)) = [FCX

•],
so E(F ,Γ) respects distinguished n-exangles over F .

On the other hand, consider a pair (F ,E ) from the right-hand side of the claimed corres-
pondence. Proposition 3.14 yields that Γ(F ,E ) as defined above is a natural transformation
E(−,−) ⇒ E′(F−,F−). If s(δ) = [X•], then we have s′((Γ(F ,E ))(Xn+1,X0)(δ)) = [FCX

•] by
assumption, so (F ,Γ(F ,E )) : (C,E, s)→ (C ′,E′, s′) is an n-exangulated functor.

Consequently, the assignments (F ,Γ) 7→ (F ,E(F ,Γ) ) and (F ,E ) 7→ (F ,Γ(F ,E )) from
the statement of theorem are well-defined. It is straightforward to check that these two
assignments are mutually inverse, and hence define a one-to-one correspondence.

Recall that Corollary B of Section 1 interprets, in terms of functors between categories
of extensions, what it means for an additive functor between n-exangulated categories to be
structure-preserving. This corollary is an immediate consequence of Theorem 3.17.

For the remainder of this section, suppose also that (C ′′,E′′, s′′) is an n-exangulated cat-
egory and that (F ,Γ): (C,E, s) → (C ′,E′, s′) and (L ,Φ): (C ′,E′, s′) → (C ′′,E′′, s′′) are
n-exangulated functors. There is then a natural transformation

ΦF×F = {Φ(FC,FA)}(C,A)∈Cop×C : E′(F−,F−) =⇒ E′′(L F−,L F−).
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This is known as the whiskering of F ×F and Φ. We also use whiskerings in Section 4; see
Notation 4.5 and onward.

Whiskerings enable us to define the composition of n-exangulated functors. This is a higher
analogue of the composition of extriangulated functors from [56, Def. 2.11(2)].

Definition 3.18. (i) The identity n-exangulated functor of (C,E, s) is the pair (idC, idE).

(ii) The composite of (F ,Γ) and (L ,Φ) is (L ,Φ) ◦ (F ,Γ) := (L ◦F ,ΦF×F ◦ Γ).

We conclude the section by justifying our terminology in Definition 3.18 and showing that
the left-to-right assignment in Theorem 3.17 is compatible with identity and composition of
n-exangulated functors.

Lemma 3.19. The following statements hold.

(i) The pair (idC, idE) is an n-exangulated functor (C,E, s)→ (C,E, s).
(ii) The composite (L ,Φ) ◦ (F ,Γ): (C,E, s)→ (C ′′,E′′, s′′) is n-exangulated. This compos-

ition is associative and unital with respect to identity n-exangulated functors.

(iii) There are equalities E(idC ,idE)
= idE -Ext(C) and E(L ,Φ)◦(F ,Γ) = E(L ,Φ) ◦ E(F ,Γ) .

Proof. Checking (i), (ii) and the first part of (iii) is straightforward. For the second claim of
(iii), note that E(L ,Φ)◦(F ,Γ) = E(L F ,Φ

F×F
Γ) and E(L ,Φ) ◦ E(F ,Γ) agree on objects of E -Ext(C).

By Theorem 3.17, the functors E(F ,Γ) , E(L ,Φ) and E(L F ,Φ
F×F

Γ) respect morphisms over F ,
L and L F , respectively. Since E(L ,Φ) (E(F ,Γ) (a, c)) = (L Fa,L F c) = E(L F ,Φ

F×F
Γ) (a, c)

for each morphism (a, c) in E -Ext(C), it follows from Remark 3.9 that E(L F ,Φ
F×F

Γ) and
E(L ,Φ) ◦ E(F ,Γ) also agree on morphisms of E -Ext(C), and hence are equal as functors.

4. A 2-categorical perspective on n-exangulated categories

The authors are very grateful to Hiroyuki Nakaoka for encouraging them to think about
morphisms between n-exangulated functors, which prompted the results in this section. In
particular, we introduce the notion of n-exangulated natural transformations, which recov-
ers [56, Def. 2.11(3)] in the case n = 1. This enables us to make considerations that are
2-category-theoretic in the sense of [54, Sec. XII.3]. Some definitions have been developed in-
dependently in He–He–Zhou [26] and in Enomoto–Saito [15]. The 2-category of small abelian
categories has been studied before; see, for example, work of Prest–Rajani [62].

A 2-category consists of 0-cells, 1-cells and 2-cells, which should be thought of as objects,
morphisms between objects, and morphisms between morphisms, respectively, satisfying some
axioms; see e.g. [54, p. 273]. We show that the category n - exang of small n-exangulated
categories is a 2-category, with n-exangulated functors as 1-cells and n-exangulated natural
transformations as 2-cells; see Corollary 4.15. Recall that a category is said to be small if the
class of objects and the class of morphisms are sets. More generally, we prove that similar
properties hold for the category n -Exang of all n-exangulated categories; see Proposition 4.12.

We start this section by giving the definition of n-exangulated natural transformations,
before considering their compositions in Subsection 4.1. Having established a notion of
morphisms between n-exangulated functors, we will be in position to introduce and study
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n-exangulated adjoints and equivalences in Subsection 4.2. In Subsection 4.3 we continue
our 2-categorical approach, leading to the construction of a 2-functor C : n - exang → exact

to the 2-category of small exact categories; see Corollary 4.25, which yields Theorem D from
Section 1. The proof of this statement goes via a more general result, namely Theorem 4.22,
where we establish a functor C : n -Exang → Exact with similar properties, but without
any smallness assumptions. If one ignores the set-theoretic issue described in Remark 4.13,
one can interpret our work in Subsection 4.3 as constructing a 2-functor C from the cat-
egory n -Exang to the category Exact of all exact categories. A fundamental step in defining
C : n -Exang → Exact is the characterisation of n-exangulated natural transformations given
in Theorem 4.19. A full definition of C is given in Definition 4.20.

For n-exangulated natural transformations we use Hebrew letters ב (beth) and ד (daleth).

Definition 4.1. Let (F ,Γ), (G ,Λ): (C,E, s) → (C ′,E′, s′) be n-exangulated functors and
ב : F ⇒ G a natural transformation. We call ב : (F ,Γ) ⇒ (G ,Λ) an n-exangulated natural
transformation if, for all A,C ∈ C and each δ ∈ E(C,A), the pair ,Aב) (Cב is a morphism
Γ(C,A)(δ)→ Λ(C,A)(δ) in E′ -Ext(C ′), i.e.

E′Γ(C,A)(δ)(Aב) = (Cב)
E′
Λ(C,A)(δ). (4.1)

See Examples 5.1, 5.3 and 5.4 for discussions on the notion of an n-exangulated natural
transformation in some familiar settings.

Setup 4.2. For the remainder of this section, we use the standing assumptions and notation
as indicated in the diagram below. Fix n ⩾ 1. We assume that the categories (C,E, s),
(C ′,E′, s′) and (C ′′,E′′, s′′) are n-exangulated. The seven functors between these categories,
drawn horizontally, and the four natural transformations, draw vertically, are assumed to be
n-exangulated functors and n-exangulated natural transformations, respectively.

(C,E, s) (C ′,E′, s′) (C ′′,E′′, s′′)

ב ד
(F ,Γ)

(G ,Λ)

(H ,Θ)

′ב

(L ,Φ)

(M ,Ψ)

(N ,Ω)

(A ,Ξ)

′ד

4.1. Composing n-exangulated natural transformations. In a 2-category, one should
be able to compose 2-cells in two ways that are associative and unital [54, p. 273]. Our
aim in this section is hence to consider two notions of composition of n-exangulated natural
transformations. These are defined by using the classical notions of vertical and horizontal
compositions, which apply to natural transformations in general [54, pp. 40, 42].

Definition 4.3. (i) We define the identity id(F ,Γ) of (F ,Γ) to be idF : F ⇒ F .

(ii) The vertical composition ′ב ◦v ב is given by ′ב) ◦v X(ב := ′ב
XבX for each X ∈ C.
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(iii) The n-exangulated natural transformation ב is said to be an n-exangulated natural
isomorphism if it has an n-exangulated inverse under vertical composition. Note that
this is equivalent to Xב being an isomorphism for every X ∈ C.

(iv) The horizontal composition ד ◦h ב is given by ד) ◦h X(ב := GXד ◦ (L (Xב for each X ∈ C.

It follows from classical theory that the vertical and horizontal compositions of n-exangu-
lated natural transformations are again natural [54, pp. 40, 42–43]. However, it is not clear
that these compositions are n-exangulated. This is checked in Proposition 4.8.

First, we verify associativity and unitality, as well as a useful commutativity property
known as the interchange law (or middle-four exchange).

Lemma 4.4. The following statements hold.

(i) The identity id(F ,Γ) : (F ,Γ)⇒ (F ,Γ) of (F ,Γ) is n-exangulated.

(ii) Both ◦v and ◦h are associative and unital on n-exangulated natural transformations.

(iii) The interchange law ′ד) ◦h (′ב ◦v ד) ◦h (ב = ′ד) ◦v (ד ◦h ′ב) ◦v (ב holds.

Proof. Equation (4.1) is trivially satisfied when Λ = Γ and ב = idF , which yields (i). The
claims of (ii) and (iii) hold for natural transformations in general; see [54, pp. 40, 43].

To show that compositions of n-exangulated natural transformations are again n-exangu-
lated, we use whiskering [54, p. 275], which is a special case of horizontal composition.

Notation 4.5. (i) The whiskering Gד : L G ⇒MG of G and ד is the natural transform-
ation given by Gד) )X := GXד for X ∈ C.

(ii) The whiskering L ב : L F ⇒ L G of ב and L is the natural transformation given by
(L X(ב := L Xב for X ∈ C.

Remark 4.6. One can view horizontal composition as the vertical composition of some whisker-
ings [54, p. 43]. Note that Gד = ד ◦h idG and L ב = idL ◦h .ב Hence, unitality of vertical
composition combined with the interchange law (see (ii) and (iii) of Lemma 4.4) yields

ד ◦h ב = ד) ◦v idL ) ◦h (idG ◦v (ב = ד) ◦h idG ) ◦v (idL ◦h (ב = Gד ◦v L .ב (4.2)

Recall from Theorem 3.17 the exact functor E(F ,Γ) : (E -Ext(C),XE) → (E′ -Ext(C ′),XE′)

given by E(F ,Γ) (δ) = Γ(C,A)(δ) on objects δ ∈ E(C,A), and recall also that E(F ,Γ) respects
morphisms and distinguished n-exangles over F .

Proposition 4.7. The following statements hold.

(i) The whiskering Gד : (L ,Φ) ◦ (G ,Λ)⇒ (M ,Ψ) ◦ (G ,Λ) is n-exangulated.

(ii) The whiskering L ב : (L ,Φ) ◦ (F ,Γ)⇒ (L ,Φ) ◦ (G ,Λ) is n-exangulated.

Proof. (i) By Lemma 3.19(ii), we have that the composites (L ,Φ) ◦ (G ,Λ) = (L G ,ΦG×GΛ)

and (M ,Ψ)◦(G ,Λ) = (MG ,ΨG×GΛ) are n-exangulated functors from (C,E, s) to (C ′′,E′′, s′′).
Given an extension δ ∈ E(C,A), we have Λ(C,A)(δ) ∈ E′(GC,GA). As ד : (L ,Φ) ⇒ (M ,Ψ)

is an n-exangulated natural transformation, we thus obtain

E′′Φ(GC,GA)(Λ(C,A)(δ))(GAד) = (GCד)
E′′
Ψ(GC,GA)(Λ(C,A)(δ)),
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which verifies that Gד is an n-exangulated natural transformation.
(ii) The pairs (L ,Φ) ◦ (F ,Γ) = (L F ,ΦF×FΓ) and (L ,Φ) ◦ (G ,Λ) = (L G ,ΦG×GΛ) are

n-exangulated functors from (C,E, s) to (C ′′,E′′, s′′) by Lemma 3.19(ii). Consider the functor
E(L ,Φ) : E′ -Ext(C ′)→ E′′ -Ext(C ′′) from Theorem 3.17. For δ ∈ E(C,A), we have

(L A)E′′Φ(FC,FA)(Γ(C,A)(δ))ב = (L A)E′′E(Lב ,Φ) (Γ(C,A)(δ)) using the definition of E(L ,Φ)

= E(L ,Φ) (E′Γ(C,A)(δ)(Aב)) by Lemma 3.10(ii)

= E(L ,Φ) (Cב))
E′
Λ(C,A)(δ)) as ב is n-exangulated

= (L (Cב
E′′

E(L ,Φ) (Λ(C,A)(δ)) by Lemma 3.10(ii)

= (L (Cב
E′′
Φ(GC,GA)(Λ(C,A)(δ)) using the definition of E(L ,Φ) .

This verifies that L ב is an n-exangulated natural transformation.

We are now in position to show that the collection of n-exangulated natural transformations
is closed under vertical and horizontal composition.

Proposition 4.8. The following statements hold.

(i) The vertical composition ′ב ◦v ב : (F ,Γ)⇒ (H ,Θ) is n-exangulated.

(ii) The horizontal composition h◦ד ב : (L ,Φ)◦ (F ,Γ)⇒ (M ,Ψ)◦ (G ,Λ) is n-exangulated.

Proof. (i) Let δ ∈ E(C,A) be arbitrary. We have

′ב)) ◦v A)E′Γ(C,A)(δ)(ב = ′ב)
A)E′(בA)E′Γ(C,A)(δ) using the definition of ◦v

= ′ב)
A)E′(בC)

E′
Λ(C,A)(δ) as ב is n-exangulated

= (Cב)
E′
′ב)

C)
E′
Θ(C,A)(δ) as ′ב is n-exangulated

= ′ב)) ◦v (C(ב
E′
Θ(C,A)(δ) using the definition of ◦v,

which verifies that ′ב ◦v ב is n-exangulated.
(ii) This follows from (4.2), Proposition 4.7 and part (i) above.

4.2. n-exangulated adjoints and equivalences. In this subsection we discuss adjunctions
and equivalences between n-exangulated categories. An important property of the functor
C : n -Exang → Exact, which will be defined in Definition 4.20, is that it preserves adjoint
pairs and equivalences; see Corollary 4.23.

Recall from Setup 4.2 that we consider n-exangulated functors (F ,Γ): (C,E, s) (C ′,E′, s′)

and (A ,Ξ): (C ′,E′, s′)→ (C,E, s). In the case n = 1, part (ii) in Definition 4.9 recovers the
notion of an equivalence of extriangulated categories as defined in [56, Prop. 2.13]. In the
following we use the Hebrew letters צ (tsadi) and מ (mem).

Definition 4.9. (i) We call ((F ,Γ), (A ,Ξ)) an n-exangulated adjoint pair if (F ,A ) is
an adjoint pair for which the unit צ and counit מ give n-exangulated natural transform-
ations צ : (idC, idE)⇒ (A ,Ξ) ◦ (F ,Γ) and מ : (F ,Γ) ◦ (A ,Ξ)⇒ (idC′ , idE′).

(ii) We call (F ,Γ) an n-exangulated equivalence if there is an n-exangulated adjoint pair
((F ,Γ), (A ,Ξ)) whose unit and counit give n-exangulated natural isomorphisms.
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Recall that if (F ,A ) is an adjoint pair with unit צ : idC ⇒ A F and counit מ : FA ⇒ idC′ ,
then one has the triangle identities (or counit-unit equations)

(XצF)FXמ = idFX and (A Yמ Aצ( Y = idA Y (4.3)

for all X ∈ C and Y ∈ C ′; see e.g. [54, Thm. IV.1.1(ii)]. In terms of vertical and horizontal
compositions of (n-exangulated) natural transformations, the equations in (4.3) give

מ) ◦h id(F ,Γ)) ◦v (id(F ,Γ) ◦h (צ = id(F ,Γ) and (id(A ,Ξ) ◦h (מ ◦v צ) ◦h id(A ,Ξ)) = id(A ,Ξ). (4.4)

If (F ,A ) is an adjoint equivalence, we also have 1−מ
FX = FצX in C ′ and 1−צ

A Y = A Yמ in C.
We use the following lemma to characterise n-exangulated equivalences. Notice the simil-

arity between the equations in the statement below and the triangle identities above.

Lemma 4.10. Let ((F ,Γ), (A ,Ξ)) be an n-exangulated adjoint pair with unit צ and counit
.מ Then for all A,C ∈ C and B,D ∈ C ′, we have:

(i) (CצF)′E(FAמ)
E′
(ΓA ×AΞ)(FC,FA) = idE′(FC,FA); and

(ii) (A Aצ)B)Eמ D)
E(ΞF×FΓ)(A D,A B) = idE(A D,A B).

Proof. We just show (i), as the proof of (ii) is similar. Let δ′ ∈ E′(FC,FA) be arbitrary.
Since מ : (FA ,ΓA ×AΞ)⇒ (idC′ , idE′) is an n-exangulated natural transformation, we get

(FצC)
E′
E′(ΓA(FAמ) ×AΞ)(FC,FA)(δ

′) = (FצC)
E′
(FCמ)

E′
(δ′) = δ′,

where the first equality follows from (4.1) and the second from (4.3).

Proposition 4.11 below is a higher analogue of [56, Prop. 2.13], giving a characterisation of
when an n-exangulated functor is an n-exangulated equivalence. One direction in the proof is
provided in [56] for the extriangulated case and easily translates to the n-exangulated setting,
so we omit this here. We provide a proof for the other implication. The following statement
has also appeared independently; see [26, Prop. 2.14].

Proposition 4.11. The pair (F ,Γ) is an n-exangulated equivalence if and only if F is an
equivalence of categories and Γ is a natural isomorphism.

Proof. (⇒) Suppose that we are given an n-exangulated adjoint pair ((F ,Γ), (A ,Ξ)) with
corresponding n-exangulated natural isomorphisms צ : (idC, idE) ⇒ (A ,Ξ) ◦ (F ,Γ) and
מ : (F ,Γ) ◦ (A ,Ξ)⇒ (idC′ , idE′) defined by the unit and counit, respectively. It follows from
classical theory that F is an equivalence. Thus, it remains to show that for all A,C ∈ C,
the induced homomorphism Γ(C,A) : E(C,A)→ E′(FC,FA) is invertible. We claim that the
composition

1−צ)
A )E(צC)

EΞ(FC,FA) : E′(FC,FA)→ E(C,A)

is a two-sided inverse of Γ(C,A). First, for each δ ∈ E(C,A), notice that

1−צ)
A )E(צC)

EΞ(FC,FA)Γ(C,A)(δ) = 1−צ)
A )E(צA)EidE(δ) = δ,
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where the first equality follows from (4.1) for .צ It remains to check that 1−צ)
A )E(צC)

EΞ(C,A)

is a right inverse of Γ(C,A). For δ′ ∈ E′(FC,FA), we have that

Γ(C,A)(צ
−1
A )E(צC)

EΞ(FC,FA)(δ
′) = (F1−צ

A )E′(FצC)
E′
Γ(A FC,A FA)Ξ(FC,FA)(δ

′)

= (CצF)′E(FAמ)
E′
Γ(A FC,A FA)Ξ(FC,FA)(δ

′),

where the first equality is by the naturality of Γ and the second follows from (4.3). This last
term is equal to δ′ by Lemma 4.10(i), as required.

4.3. A 2-categorical viewpoint. We start this subsection by using what we have shown
so far to prove that n - exang is a 2-category. More generally, we establish a Hom-category
for each pair of n-exangulated categories, as explained in the proposition below.

Proposition 4.12. For each pair (C,E, s) and (C ′,E′, s′) of n-exangulated categories, there
is a category N := n -Exang((C,E, s), (C ′,E′, s′)) whose objects are n-exangulated functors
(C,E, s)→ (C ′,E′, s′) and whose morphisms are n-exangulated natural transformations.

Proof. Define composition of morphisms in N to be vertical composition ◦v of natural trans-
formations, which is well-defined by Proposition 4.8(i). Lemma 4.4(i) and (ii) imply that N
is a category.

Remark 4.13. Note that in this article, and in particular in Proposition 4.12, the term ‘cat-
egory’ does not require smallness, i.e. the collections of objects and morphisms associated to
a category are not assumed to form sets. In spite of this, we have so far usually considered
additive categories. These are necessarily locally small, which means that the collection of
morphisms between any two objects is a set, since a group is a set.

Due to a set-theoretic issue, care must be taken when referring to the established notion
of a 2-category. In order to ensure that the collection of 2-cells between a pair of fixed 1-cells
forms a set instead of a proper class, it is common from a 2-categorical viewpoint to only
consider small categories; see e.g. [54, p. 43]. Consequently, we do not refer to the categories
n -Exang and Exact as 2-categories, since collections of 2-cells between pairs of 1-cells need
not form sets. Yet, it is still natural to adopt a 2-categorical perspective on these categories.
Nevertheless, for accuracy and in the interest of not abusing established terminology, we
avoid the terms ‘2-category’ and ‘2-functor’ in Proposition 4.12 and Theorem 4.22.

So far, we have used the notation n -Exang (resp. Exact) for the 1-category of all n-
exangulated (resp. exact) categories. Similarly, we have used n - exang and exact to denote the
subcategories obtained by restricting to small categories. In order to formally place n - exang

and exact in a 2-categorical framework, we make our terminology more precise by indicating
below the 0-cells, 1-cells and 2-cells of these structures.

Notation 4.14. We write n -Exang and Exact for the collections of 0-cells, 1-cells and 2-cells
described in the table below.
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n -Exang Exact

0-cells n-exangulated categories exact categories
1-cells n-exangulated functors exact functors
2-cells n-exangulated natural transformations natural transformations

The i-cells above also induce i-cells for n - exang and exact, where the only difference is that
for 0-cells we restrict to small categories.

It is well-known that the composition of two exact functors is an exact functor, and hence
exact is a 2-category; see e.g. [50, 1.4(a)]. From the theory developed in Subsection 4.1 and in
this subsection so far, one can deduce that n -Exang has the characteristics of a 2-category.
When restricting to small categories, the set-theoretic issue described in Remark 4.13 is
avoided and we obtain the following immediate corollary.

Corollary 4.15. The category n - exang is a 2-category.

The final aim of this section is to provide a 2-categorical understanding of how n-exangulat-
ed concepts relate to notions on the level of associated categories of extensions, bringing toge-
ther our work in Sections 3 and 4. We do this by constructing a functor C : n -Exang→ Exact

that respects the 2-categorical properties of the categories involved. In particular, this induces
a 2-functor C : n - exang→ exact in the sense of [54, p. 278].

In order to have a 2-functor, one must give an assignment of i-cells in the domain 2-category
to i-cells in the codomain 2-category for i ∈ {0, 1, 2}, satisfying certain compatibility condi-
tions. Based on the theory developed in Section 3, we can define the functor C on 0-cells by
sending an n-exangulated category to its category of extensions, and on 1-cells by sending an
n-exangulated functor (F ,Γ) to E(F ,Γ) as described in Theorem 3.17. It remains to consider
how C acts on 2-cells, that is, on n-exangulated natural transformations. The next lemma
constitutes a first step in this direction. We use the Hebrew letter א (aleph).

Lemma 4.16. Any natural transformation א : E(F ,Γ) ⇒ E(G ,Λ) gives rise to natural trans-
formations ℓא : F ⇒ G and rא : F ⇒ G such that δא = ℓא)

A, rא
C) for each δ ∈ E(C,A).

Proof. Since א : E(F ,Γ) ⇒ E(G ,Λ) is a natural transformation, for each δ ∈ E(C,A), there is
a morphism δא : Γ(C,A)(δ) → Λ(C,A)(δ) in E′ -Ext(C ′). This implies that there are morphisms
ℓδ : FA → GA and rδ : FC → GC in C ′ such that δא = (ℓδ, rδ). We claim that ℓδ depends
only on the object A. To see this, recall that for each Z ∈ C we write 0Z 0 for the trivial
element of the abelian group E(0, Z). Consider the morphism (idA, 0) : 0A 0 → δ for a fixed
extension δ ∈ E(C,A). By Remark 3.9, we have the equalities

((G idA)ℓ 0
A 0

, 0) = E(G ,Λ) (idA, 0) ◦ א 0
A 0

as E(G ,Λ) respects morphisms over G

= δא ◦ E(F ,Γ) (idA, 0) as א is natural

= (ℓδ(F idA), 0) as E(F ,Γ) respects morphisms over F ,

as morphisms Γ(0,A)( 0A 0) → Λ(C,A)(δ) in E′ -Ext(C ′). Consequently, the morphism ℓδ = ℓ 0
A 0

depends only on A, and we write ℓא
A := ℓδ : FA→ GA. Similarly, the morphism rδ depends

only on C, and we write rא
C := rδ : FC → GC.
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It remains to show that ℓא := { ℓא
A }A∈C and rא := { rא

C }C∈C define natural transformations
F ⇒ G . Fix a morphism x : X → Y in C. The pair (x, 0) : 0X 0 → 0Y 0 is a morphism in
E -Ext(C), so א 0

Y 0
E(F ,Γ) (x, 0) = E(G ,Λ) (x, א(0 0

X 0
as א is natural. This yields ℓא

Y Fx = (G x)אℓ
X ,

so ℓא is a natural transformation. The proof that rא is natural is similar.

Note that it does not necessarily follow that ℓא and rא coincide in the lemma above, as
demonstrated by the following example.

Example 4.17. Let C be a non-zero additive category. Equip C with its split n-exangulated
structure (C,E, s), which is induced by the split n-exact structure as explained in Ex-
ample 5.5. Consider the identity n-exangulated functor (idC, idE) : (C,E, s) → (C,E, s). By
Theorem 3.17 and Lemma 3.19(iii), we obtain the additive functor E(idC ,idE)

= idE -Ext(C).
For δ ∈ E(C,A), define δא : δ = E(idC ,idE)

(δ) → E(idC ,idE)
(δ) = δ by δא = (idA, 0). Note

that δא is a morphism δ → δ in E -Ext(C) since E(C,A) is trivial. It is straightforward to
check that א = δ∈E{δא} -Ext(C) defines a natural transformation E(idC ,idE)

⇒ E(idC ,idE)
. Since

ℓא
A = idA ̸= 0 = rא

A for any non-zero A ∈ C, we have that א is not balanced in the sense of
Definition 4.18 below.

Definition 4.18. Let א : E(F ,Γ) ⇒ E(G ,Λ) be a natural transformation. In the notation of
Lemma 4.16, we call א balanced provided that ℓא = .rא

We can now prove Theorem C from Section 1.

Theorem 4.19. There is a one-to-one correspondence{
n-exangulated natural transformations

ב : (F ,Γ) =⇒ (G ,Λ)

}
←→

{
balanced natural transformations

א : E(F ,Γ) =⇒ E(G ,Λ)

}
ב 7−−→ ⟨ב⟩

ℓא = rא ←−− [ ,א

where δ⟨ב⟩ = ,Aב) (Cב for all A,C ∈ C and each δ ∈ E(C,A).

Proof. Suppose first that ב : (F ,Γ) ⇒ (G ,Λ) is an n-exangulated natural transformation,
and consider the collection ⟨ב⟩ = { δ⟨ב⟩ }δ∈E -Ext(C) where δ⟨ב⟩ is as defined in the statement
of the theorem. Since ב is n-exangulated, each pair δ⟨ב⟩ = ,Aב) (Cב is a morphism from
E(F ,Γ) (δ) = Γ(C,A)(δ) to Λ(C,A)(δ) = E(G ,Λ) (δ) in E′ -Ext(C ′). Let (a, c) : δ → ρ be a morphism
in E -Ext(C) with δ ∈ E(C,A) and ρ ∈ E(D,B). We must show that the square

E(F ,Γ) (δ) E(G ,Λ) (δ)

E(F ,Γ) (ρ) E(G ,Λ) (ρ)

δ⟨ב⟩

E(F ,Γ) (a, c) E(G ,Λ) (a, c)

ρ⟨ב⟩
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commutes in E′ -Ext(C ′). By Remark 3.9, it is enough to observe that

E(G ,Λ) (a, c)⟨ב⟩δ = (G a,G c)(בA, (Cב as E(G ,Λ) respects morphisms over G

= ,BFaב) DFב c) since ב is natural

= ρE(F⟨ב⟩ ,Γ) (a, c) as E(F ,Γ) respects morphisms over F .

This means that ⟨ב⟩ : E(F ,Γ) ⇒ E(G ,Λ) is natural, and it is balanced by construction.
On the other hand, suppose א : E(F ,Γ) ⇒ E(G ,Λ) is balanced. Write ℓא = rא : F ⇒ G for

the natural transformation from Lemma 4.16 satisfying δא = ℓא)
A, ℓא

C) for each δ ∈ E(C,A).
The pair δא = ℓא)

A, ℓא
C) is a morphism from Γ(C,A)(δ) = E(F ,Γ) (δ) to E(G ,Λ) (δ) = Λ(C,A)(δ), so

ℓא is an n-exangulated natural transformation.
We can thus conclude that the two assignments ב 7→ ⟨ב⟩ and א 7→ ℓא = rא from the

statement of the theorem are well-defined. It is straightforward to check that they are
mutually inverse, and hence define a one-to-one correspondence.

Just as Theorem 3.17 allowed us to define the functor C : n -Exang→ Exact on 1-cells, the
characterisation in Theorem 4.19 enables us to define C on 2-cells by sending an n-exangulated
natural transformation ב to the balanced natural transformation .⟨ב⟩ We can hence complete
the definition of C. For i ∈ {0, 1, 2}, denote by n -Exangi and Exacti the collection of i-cells
of n -Exang and Exact, respectively.

Definition 4.20. Let C = (C0,C1,C2) : n -Exang → Exact be defined by the assignments
Ci : n -Exangi → Exacti, where:

C0(C,E, s) := (E -Ext(C),XE),

C1(F ,Γ) := E(F ,Γ) ,

C2(ב) := .⟨ב⟩

Remark 4.21. We discuss Definition 4.20 with a view towards explaining Theorem 4.22.

(i) The assignments Ci are well-defined: by Proposition 3.2, the assignment C0 takes an
object of n -Exang to an object of Exact; by Theorem 3.17 and Proposition 3.11,
C1 associates an exact functor C1(F ,Γ) = E(F ,Γ) from C0(C,E, s) to C0(C ′,E′, s′)

to each n-exangulated functor (F ,Γ): (C,E, s) → (C ′,E′, s′); and C2 takes an n-
exangulated natural transformation ב : (F ,Γ) ⇒ (G ,Λ) to a natural transformation
C2(ב) = ⟨ב⟩ : C1(F ,Γ)→ C1(G ,Λ) by Theorem 4.19.

(ii) In Theorem 4.22 below, given n-exangulated categories (C,E, s) and (C ′,E′, s′), we
denote by A := Exact((E -Ext(C),XE), (E′ -Ext(C ′),XE′)) the category whose objects
are exact functors from (E -Ext(C),XE) to (E′ -Ext(C ′),XE′) and whose morphisms are
natural transformations. Composition of morphisms in A is vertical composition of
natural transformations. It follows from [54, pp. 40, 43] that A is a category.

(iii) If one ignores the set-theoretic issue from Remark 4.13, then Theorem 4.22 below
can be interpreted as showing that the triplet C satisfies the properties of a 2-functor
n -Exang→ Exact; see [38, Prop. 4.1.8].

Theorem 4.22. The following statements hold for the assignments C0, C1 and C2.
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(i) The pair (C0,C1) defines a functor n -Exang→ Exact.

(ii) Given n-exangulated categories (C,E, s) and (C ′,E′, s′), the pair (C1,C2) defines a func-
tor N → A in the notation of Proposition 4.12 and Remark 4.21(ii).

(iii) The assignment C2 preserves horizontal composition.

Proof. (i) This part follows from Remark 4.21(i) and Lemma 3.19(iii).
(ii) The second statement holds by Remark 4.21(i) combined with a straightforward check

to see that C2 preserves identity morphisms (i.e. identity n-exangulated natural transforma-
tions) and (vertical) composition.

(iii) We must show that the natural transformations C2(ד◦hב) : E(L ,Φ)◦(F ,Γ) ⇒ E(M ,Ψ)◦(G ,Λ)

and (C2ד) ◦h (C2ב) : E(L ,Φ) ◦ E(F ,Γ) ⇒ E(M ,Ψ) ◦ E(G ,Λ) are equal. Notice first that their
domains (resp. codomains) agree by Lemma 3.19(iii). Consequently, for δ ∈ E(C,A), the
morphisms (C2(ד◦h δ((ב and ((C2ד)◦h (C2ב))δ have the same domain (resp. codomain). Thus,
by Remark 3.9, it is enough to note that

(C2(ד ◦h δ((ב = ד⟩ ◦h δ⟨ב by the definition of C2

= ד)) ◦h ,A(ב ד) ◦h (C(ב see Theorem 4.19

= GA(Lד) ,(Aב GC(Lד ((Cב see Definition 4.3

= ,GAד) GC)(Lד A,Lב (Cב by the definition of composition in E′′ -Ext(C ′′)

= E⟨ד⟩
(G ,Λ)

(δ)E(L ,Φ) (δ⟨ב⟩) as E(L ,Φ) respects morphisms over L

= ⟨ד⟩) ◦h δ(⟨ב⟩ using the definition of ◦h
= ((C2ד) ◦h (C2ב))δ by the definition of C2.

As Theorem 4.22 establishes that the functor C : n -Exang → Exact behaves just like a
2-functor, it enjoys similar properties. For example, it is known that 2-functors preserve
adjunctions; see e.g. [38, Prop. 6.1.7]. Thus, we deduce the following result, which is readily
shown by applying C2 to the triangle identities (4.4), and using that C2 preserves vertical
and horizontal composition and identities of 2-cells.

Corollary 4.23. If ((F ,Γ), (A ,Ξ)) is an n-exangulated adjoint pair, then (E(F ,Γ) ,E(A ,Ξ) )

is an adjoint pair of exact functors.

Corollary 4.25 below yields Theorem D from Section 1. It follows immediately from The-
orem 4.22 that the restriction of C = (C0,C1,C2) to n - exang is a 2-functor. One checks that
C is faithful on 1-cells by using that any morphism x : X → Y in C induces a morphism
(x, 0) : 0X 0 → 0Y 0 of extensions. For an example showing that C is not full on 1-cells, see
Example 4.24 below. The 2-functor is faithful but not full on 2-cells by Theorem 4.19 and
Example 4.17, respectively.

Example 4.24. Let C be a non-zero additive category. Equip C with the split n-exangulated
structure (C,E, s), which is induced by the split n-exact structure as explained in Ex-
ample 5.5. Hence, the category E -Ext(C) consists of objects of the form 0A C , one for
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each pair A,C ∈ C. Any conflation in (E -Ext(C),XE) is isomorphic to one of the form
0A C 0A⊕A′ C⊕C′ 0A′ C′ given by (ιA, ιC) and (πA′ , πC′ ); see the discussion around (3.2).
Define E : E -Ext(C) → E -Ext(C) by 0A C 7→ 0C A and (a, c) 7→ (c, a). It is straightforward

to check that E is a functor by noting that any pair of morphisms a : A→ B and c : C → D

in C defines a morphism (a, c) : 0A C → 0B D in E -Ext(C). Furthermore, a conflation of the
form described above is sent under E to the sequence 0C A 0C⊕C′ A⊕A′ 0C′ A′ given by
the morphisms (ιC , ιA) and (πC′ , πA′ ). This is an element of XE, so E is exact.

We claim that E ̸= E(F ,Γ) for every n-exangulated functor (F ,Γ): (C,E, s) → (C,E, s).
To see this, assume there exists some additive functor F : C → C such that E respects
morphisms over F . Then it must be the case that FX = X for all X ∈ C, as

(idX , idX) = E (idX , idX) = (F idX ,F idX) = (idFX , idFX).

Now consider A,C ∈ C with A ≇ C. The identity (idA, idC) : 0A C → 0A C is equal to
(idFA, idFC) = (F idA,F idC) = E (idA, idC) = (idC , idA). This implies that idA = idC , which
is a contradiction.

Corollary 4.25. Restriction of the assignments Ci from Definition 4.20 yields a 2-functor
C = (C0,C1,C2) : n - exang → exact. This 2-functor is faithful on 1-cells and 2-cells, but is
full on neither 1-cells nor 2-cells.

5. Examples of n-exangulated categories, functors and natural
transformations

Let n ⩾ 1 be an integer. We begin this section by recalling some known classes of n-
exangulated categories arising from extriangulated, (n + 2)-angulated and n-exact settings;
see Examples 5.1, 5.3 and 5.4, respectively. In each of these cases, we discuss what it means
for functors and natural transformations to respect the n-exangulated structure. We then
show that any additive category admits a “smallest” n-exangulated structure in Example 5.5.

We move on to considering n-exangulated functors for which the type of structure of
the domain category differs from that of the codomain category, providing examples of n-
exangulated functors which are neither (n+2)-angulated nor n-exact in general. Our charac-
terisation in Theorem 3.17 is applied to establish many of these examples. In Examples 5.6
and 5.8, we study structure-preserving functors from n-exact to (n+2)-angulated categories,
before the canonical functor from a Frobenius n-exangulated category to its (n+2)-angulated
stable category is shown to be n-exangulated in Example 5.9. Additionally, we demonstrate
how the relative theory of n-exangulated categories can be used to equip a triangulated cat-
egory with its pure-exact extriangulated structure; see Examples 5.10 and 5.11. In doing so,
we show that the restricted Yoneda embedding gives an example of an extriangulated functor
which is neither exact nor triangulated in general.

Our first three examples each consists of two parts. In part (i) we focus on n-exangulated
functors. In part (ii) we discuss what it means for natural transformations to be n-exangu-
lated.
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Example 5.1. Extriangulated categories were introduced by Nakaoka–Palu in [57] as a sim-
ultaneous generalisation of triangulated and exact categories. Examples, which are neither
triangulated nor exact in general, include extension-closed subcategories [57, Rem. 2.18] and
certain ideal quotients [57, Prop. 3.30] of triangulated categories. A category is extriangu-
lated if and only if it is 1-exangulated [29, Prop. 4.3]. Thus, we obtain a plethora of categories
with interesting n-exangulated structures for n = 1.

(i) A 1-exangulated functor is also called extriangulated [6, Def. 2.32]. In Examples 5.6
and 5.11, we exhibit extriangulated functors from work of Keller [44] and Krause [48],
respectively.

(ii) Following (i), by an extriangulated natural transformation we refer to the case n = 1

in Definition 4.1. Morphisms of extriangulated functors were introduced by Nakaoka–
Ogawa–Sakai [56, Def. 2.11(3)]. The equation [56, (2.2)] defining such morphisms is
precisely (4.1) in the case n = 1, and so this notion coincides with that of an extri-
angulated natural transformation. In Example 5.6 we exhibit extriangulated natural
transformations which arise in [44].

In Examples 5.3 and 5.4, we use the following notation.

Notation 5.2. Suppose that (C,E, s) and (C ′,E′, s′) are n-exangulated categories, and let
ב : F ⇒ G be a natural transformation of additive functors C → C ′. For δ ∈ E(C,A) with
s(δ) = [X•], we note that setting iב

X := ב
Xi for each i defines a morphism of complexes

X•ב : FCX
• → GCX

• by the naturality of .ב In particular, we have 0ב
X = Aב and n+1ב

X = Cב .

Example 5.3. An (n + 2)-angulated category (see [21, Def. 2.1]) is the higher homological
analogue of a triangulated category. Any (n + 2)-angulated category (C,Σn, ) has the
structure of an n-exangulated category (C,E , s ); see [29, Sec. 4.2]. In this case, we have
E (C,A) := C(C,ΣnA) and s (δ) := [X•] whenever δ ∈ E (Xn+1, X0) = C(Xn+1,ΣnX

0)

completes to a distinguished (n+ 2)-angle

X0 X1 · · · Xn Xn+1 ΣnX
0.

d0X dnX δ (5.1)

(i) For (n + 2)-angulated categories (C,Σn, ) and (C ′,Σ′
n,

′), the notion of an (n + 2)-
angulated functor F : C → C ′ was introduced by Bergh–Thaule [7, Sec. 4]. The functor
F is (n+2)-angulated if it is additive and comes equipped with a natural isomorphism
Θ: FΣn ⇒ Σ′

nF such that for any distinguished (n + 2)-angle of the form (5.1) one
obtains a distinguished (n+ 2)-angle

FX0 FX1 · · · FXn FXn+1 Σ′
nFX0.

Fd0X FdnX ΘX0 ◦F δ

For F and Θ as above, setting Γ(Xn+1,X0)(δ) = ΘX0
◦ F δ defines a natural trans-

formation Γ: C(−,Σn−) ⇒ C ′(F−,Σ′
nF−). In [6, Thm. 2.33], it is shown that the

existence of an (n+ 2)-angulated functor F with natural isomorphism Θ is equivalent
to the existence of an n-exangulated functor (F ,Γ) from (C,E , s ) to (C ′,E ′ , s ′).

(ii) As noted in [56, Rem. 2.12], the notion of an extriangulated natural transformation
is equivalent to the definition of a morphism of triangulated functors in the sense of
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Kashiwara–Schapira [43, Def. 10.1.9(ii)], whenever the extriangulated categories in-
volved correspond to triangulated categories.

Keeping the notation from above, suppose that (F ,Γ) and (G ,Λ) are n-exangulated
functors (C,E , s ) → (C ′,E ′ , s ′) corresponding to (n + 2)-angulated functors. Note
that a natural transformation ב : F ⇒ G satisfies (4.1) if and only if each square

FXn+1 Σ′
nFX0

GXn+1 Σ′
nGX0

Xn+1ב

Γ(Xn+1,X0)(δ)

Σ′
nבX0

Λ(Xn+1,X0)(δ)

commutes, in which case the sequence 1ב)
X , . . . , nב

X) defines a morphism of (n+ 2)-Σ′
n-

sequences in C ′ in the sense of [21, Def. 2.1].

Parallel to the (n+ 2)-angulated story is the n-exact one.

Example 5.4. Higher versions of abelian and exact categories were introduced in [36]. Ana-
logously to the classical theory, every n-abelian category carries an n-exact structure [36,
Thm. 4.4]. Any skeletally small n-exact category (C,X ), where X is the collection of admiss-
ible n-exact sequences, gives rise to an n-exangulated category (C,EX , sX ); see [29, Sec. 4.3].
In this case, we have EX (X

n+1, X0) := { [X•] | X• ∈ X }, where [X•] is the equivalence class
with respect to the homotopy relation ∼ described in Section 2.

(i) For n-exact categories (C,X ) and (C ′,X ′), an additive functor F : C → C ′ is called
n-exact provided FCX

• ∈ X ′ whenever X• ∈ X [6, Def. 2.18]. Assuming that the
categories involved are skeletally small and considering the associated n-exangulated
structures, the existence of an n-exact functor F is equivalent to the existence of an n-
exangulated functor (F ,Γ) from (C,EX , sX ) to (C ′,EX ′ , sX ′); see [6, Thm. 2.34]. In this
case, the natural transformation Γ is uniquely defined by Γ(Xn+1,X0)([X

•]) = [FCX
•].

(ii) Keeping the notation from above, suppose that F and G are n-exact functors C → C ′

and consider a natural transformation ב : F ⇒ G . As noted in [56, Rem. 2.12], equation
(4.1) is automatically satisfied for the corresponding n-exangulated functors in the case
n = 1. We now show that this holds for any integer n ⩾ 1.

Consider the equivalence class δ = [X•] ∈ EX (C,A) of an admissible n-exact sequence
X• ∈ X . As F and G are n-exact, we have FCX

•,GCX
• ∈ X ′, so X•ב : FCX

• → GCX
• is

a morphism of admissible n-exact sequences. By the existence of n-pushout diagrams
in the n-exact category (C ′,X ′), we obtain a morphism p• : FCX

• → EX′FCX(Aב)
• with

p0 = Aב and pn+1 = idFC ; see [36, Def. 4.2(E2) and Prop. 4.8]. Dually, there is also a
morphism q• : (Cב)

EX′GCX
• → GCX

• with q0 = idGA and qn+1 = Cב . By [36, Prop. 4.9],
there exists a morphism l• : EX′FCX(Aב)

• → GCX
• satisfying l•p• ∼ X•ב , l0 = idGA

and ln+1 = Cב . On the other hand, the dual of [36, Prop. 4.9] yields a morphism
m• : EX′FCX(Aב)

• → (Cב)
EX′GCX

• with q•m• ∼ l•, m0 = l0 = idGA and mn+1 = idFC .
Note that m• is an equivalence of n-exact sequences in the sense of [36, Def. 2.9]. This
implies that ′EX(Aב) [FCX

•] = EX′FCX(Aב)]
•] = (Cב)]

EX′GCX
•] = (Cב)

EX′ [GCX
•] by [36,

Prop. 4.10], which verifies (4.1).
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Our next example shows that any additive category C carries a smallest n-exangulated
structure (C,En-split, sn-split) arising from an n-exact structure for each integer n ⩾ 1. In
particular, we have that (C,En-split, sn-split) is an n-exangulated subcategory, in the sense of
[24, Def. 3.7], of any n-exangulated structure (C,E, s) we impose on C. Recall that an
n-exangulated subcategory of (C,E, s) is an isomorphism-closed subcategory A of C with an
n-exangulated structure (A,E′, s′) for which the inclusion F of A in C gives an n-exangulated
functor (F ,Γ): (A,E′, s′)→ (C,E, s) where each Γ(C,A) is an inclusion of abelian groups.

Example 5.5. By [36, Rem. 4.7], any additive category C admits a smallest n-exact structure
(C,Xn-split), where Xn-split denotes the class of all contractible n-exact sequences. Recall that
a sequence is contractible if it is homotopy equivalent to the zero complex. We call Xn-split the
split n-exact structure of C. Notice that for all A,C ∈ C, any contractible n-exact sequence
starting in A and ending in C is homotopic to

A A 0 · · · 0 C C.
idA idC (5.2)

Note that in the case n = 1, the sequence (5.2) is of the form A A⊕ C C.

(
idA
0

)
( 0 idC )

As seen in Example 5.4, the n-exact category (C,Xn-split) yields an n-exangulated structure
(C,En-split, sn-split), which we call the split n-exangulated structure of C. Note that no set-
theoretic issues arise as En-split(C,A) = { 0A C} is the trivial abelian group for all A,C ∈ C.

We claim that this is the smallest n-exangulated structure on C. To see this, suppose that
(C,E, s) is an n-exangulated category. Consider the identity functor idC : C → C and the
natural transformation Γ: En-split ⇒ E given by Γ(C,A)( 0A C) = 0A C . Note that, by (R2) and
[29, Prop. 3.3], we have

sn-split( 0A C) = s( 0A C) = [ A A 0 · · · 0 C C
idA idC ].

Consequently, the pair (idC,Γ): (C,En-split, sn-split)→ (C,E, s) is an n-exangulated functor. As
Γ(C,A) is an inclusion for all A,C ∈ C, this implies that (C,En-split, sn-split) is an n-exangulated
subcategory of (C,E, s). In particular, the split n-exangulated structure is the smallest
n-exangulated structure we can impose on C.

In Example 5.6 we describe extriangulated functors from an exact or abelian category to
a triangulated category. Some of these examples are classical and others have been of very
recent interest. The authors would like to thank Peter Jørgensen for pointing out Linckelmann
[51, Rem. 6.8], which is used in (ii) below.

Example 5.6. Structure-preserving functors from exact to triangulated categories, or more
generally from exact to suspended categories in the sense of Keller–Vossieck [46], have been
considered in the literature previously. Such functors are called δ-functors in [44, pp. 701–
702]. Let A be an exact category for which Ext1A(C,A) is a set for all A,C ∈ A. Consider a
triangulated category C with suspension functor Σ. Suppose that F : A → C is an additive
functor and that Γ: Ext1A(−,−) ⇒ C(F−,ΣF−) is a natural transformation. The pair
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(F ,Γ) is called a δ-functor if each conflation

0 A B C 0
f g

(5.3)

in A is sent to a distinguished triangle in C of the form

FA FB FC ΣFA,
Ff Fg Γ(C,A)(ρ)

(5.4)

where ρ denotes the equivalence class of the conflation (5.3). Before translating the language
of δ-functors to that of extriangulated functors, we recall some examples.

(i) Let A be a skeletally small exact category and C its derived category with suspension
functor Σ; see Keller [45, p. 692]. If F : A → C denotes the canonical inclusion,
then there is a natural transformation Γ: Ext1A(−,−) ⇒ C(F−,ΣF−) such that the
equivalence class of a conflation (5.3) is sent to a distinguished triangle (5.4); see [44,
pp. 701–702]. The pair (F ,Γ) is a δ-functor A → C.

(ii) Suppose C is a triangulated category with suspension functor Σ. Let F : A → C denote
the inclusion of an isomorphism-closed additive subcategory A ⊆ C. Assume that A
is a distinguished abelian subcategory in the sense of [51, Def. 1.1]. This means that
A is abelian and, given a short exact sequence (5.3) in A, there exists a morphism
Γ(C,A)(ρ) : FC → ΣFA in C such that (5.4) is a distinguished triangle in C. A morph-
ism of short exact sequences in the abelian category A uniquely determines a morphism
of distinguished triangles in the triangulated category C; see [51, Rem. 6.8]. This implies
that Γ = {Γ(C,A)}(C,A)∈Aop×A : Ext1A(−,−)⇒ C(F−,ΣF−) is a natural transformation.
The pair (F ,Γ) is hence a δ-functor A → C. Similarly, the inclusions of proper abelian
subcategories (see Jørgensen [40, Def. 1.2]) and admissible abelian subcategories (see
Bĕılinson–Bernstein–Deligne [2, Def. 1.2.5]) into their ambient triangulated categories
give rise to δ-functors; see [40, Rem. 1.3].

Consider the extriangulated categories that arise from A and C being exact and triangulated,
respectively. Following Example 5.3 and Example 5.4 with n = 1, we obtain extriangulated
categories (A,E, s) and (C,E′, s′) with E := Ext1A(−,−) and E′ := C(−,Σ−). The pair (F ,Γ)

is a δ-functor A → C if and only if it is an extriangulated functor (A,E, s)→ (C,E′, s′).
Furthermore, morphisms of δ-functors are also defined and studied in [44, p. 702]. If (F ,Γ)

and (G ,Λ) are δ-functors A → C, then a morphism (F ,Γ) ⇒ (G ,Λ) is given by a natural
transformation ב : F ⇒ G satisfying (ΣבA) ◦ Γ(C,A)(ρ) = Λ(C,A)(ρ) ◦ Cב for each extension
ρ ∈ E(C,A). This defining condition is precisely (4.1) in the context of this example. Thus,
the notion of a morphism of δ-functors coincides with that of an extriangulated natural
transformation.

Remark 5.7. The prototypical example of a δ-functor is the canonical embedding of an exact
category into its derived category; see Example 5.6(i). Morphisms of δ-functors were studied
in [44] in the search for some universal property of the derived category. Thus, interesting
examples of n-exangulated natural transformations with n > 1 may arise from a generalisation
of this to a higher-dimensional setting. This would require the construction of a derived
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category of an n-exact category—a problem for which there seems so far to be no obvious
solution; see Jasso–Külshammer [37].

Although δ-functors provide formal language to express what it means for functors to send
conflations to distinguished triangles in a functorial way, it has two apparent limitations.
First, in its current form this notion cannot be used in higher homological algebra. Second,
a δ-functor must go from an exact category to a triangulated (or suspended) category, but
not vice versa. The language of n-exangulated functors addresses both these limitations, as
we will see across Examples 5.8, 5.9 and 5.11.

In the next example, we show how recent work of Klapproth [47] (see also [27, 68]) pro-
duces examples of n-exangulated functors from an n-exact category into an ambient (n+2)-
angulated category. This also gives more examples of n-exangulated subcategories.

Example 5.8. Let (C,Σn, ) be a Krull–Schmidt (n + 2)-angulated category and consider
the n-exangulated structure (C,E , s ) described in Example 5.3. Let A be a subcategory of
C which is closed under direct sums and summands, and closed under n-extensions, meaning
that for all A,C ∈ A and each δ ∈ A(C,ΣnA) there is a distinguished (n+ 2)-angle

A X1 · · · Xn C ΣnA
d0X dnX δ (5.5)

in C with X i ∈ A for i = 1, . . . , n; see [47, Def. 1.1]. This also implies A is an extension
closed subcategory of (C,E , s ) in the sense of [30, Def. 4.1].

Suppose, moreover, that A(ΣnC,A) = 0 for any A,C ∈ A. Following [47, Sec. 3], an
A-conflation is a complex X• : A X1 · · · Xn C that forms part of a
distinguished (n+ 2)-angle (5.5). Let EA := A(−,Σn−) be the restriction of E to Aop ×A.
Restricting s defines an exact realisation sA of EA by [30, Prop. 4.2(1)]. In an A-conflation
X• as above, the morphism d0

X is called an A-inflation and dn+1
X is called an A-deflation. By

[47, Lem. 3.8] and its dual, we have that both A-inflations and A-deflations are closed under
composition. This implies that (A,EA, sA) is an n-exangulated category by [30, Prop. 4.2(2)].
Furthermore, it is an n-exangulated subcategory of (C,E , s ); see [24, Exam. 3.8(1)].

We denote the collection of all A-conflations by XA, each member of which is an n-exact
sequence by [47, Lem. 3.3]. It follows from [47, Thm. I(1)] that the pair (A,XA) is an n-exact
category. For A,C ∈ A, there is an abelian group YExtn(A,XA)(C,A) of equivalence classes
[X•] of A-conflations X• ∈ XA with A = X0 and C = Xn+1. Note that no set-theoretic
problems arise here, since the size of YExtn(A,XA)(C,A) is bounded by the size of the set
A(C,ΣnA). Hence, this gives a biadditive functor E := YExtn(A,XA) : Aop × A → Ab and an
n-exangulated category (A,E, s) as in Example 5.4. By [47, Thm. I(2)], there is a natural
isomorphism Γ: E ⇒ EA given by Γ([X•]) = δ, where X• is part of (5.5). Thus, the pair
(idA,Γ): (A,E, s)→ (A,EA, sA) is an n-exangulated equivalence by Proposition 4.11.

Frobenius exact categories are studied in Happel [22, Sec. I.2], and their higher analogues
were introduced in [36, Sec. 5]. In these setups, the quotient functor from a Frobenius
exact (resp. n-exact) category to its stable category sends admissible exact (resp. n-exact)
sequences to distinguished triangles (resp. (n + 2)-angles). In Example 5.9 we follow the
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terminology introduced by Liu–Zhou [53, Def. 3.2], and we show that these aforementioned
quotient functors are instances of extriangulated (resp. n-exangulated) functors.

Example 5.9. Let (C,E, s) be an n-exangulated category. An object I ∈ C is called E-
injective if for each distinguished n-exangle ⟨X•, δ⟩, which is depicted as

X0 X1 · · · Xn Xn+1 ,
d0X d1X dn−1

X dnX δ (5.6)

and for each x ∈ C(X0, I), there exists y ∈ C(X1, I) such that yd0
X = x. The category C is

said to have enough E-injectives if for any X0 ∈ C, there is a distinguished n-exangle

X0 I1 · · · In Z ,
δX0

(5.7)

where I i is E-injective for 1 ⩽ i ⩽ n. Dually, one defines what it means for an object of
C to be E-projective and for the category C to have enough E-projectives. If C has enough
E-projectives and enough E-injectives, and if an object in C is E-projective if and only if it
is E-injective, then we say that (C,E, s) is a Frobenius n-exangulated category.

Let (C,E, s) be Frobenius n-exangulated. Denote by C the stable category C/I in the sense
of [53, p. 169], where I is the subcategory of E-projective-injectives. Consider the canonical
quotient functor Q : C → C. Note that Q(X) = X in C for each X ∈ C. Since (C,E, s)
is Frobenius, setting SX0 := Z in (5.7) yields a well-defined autoequivalence of C; see [53,
Prop. 3.7]. Given any distinguished n-exangle (5.6), there is a morphism

X0 X1 · · · Xn Xn+1

X0 I1 · · · In SX0

d0X d1X dn−1
X dnX

dn+1
X

δ

δX0

(5.8)

of distinguished n-exangles in C, using that I1 is E-injective and [29, Prop. 3.6(1)]. Further-
more, there is a natural isomorphism E(−,−) ∼= C(Q−, SQ−) given by δ 7→ Q(dn+1

X ); see
[53, Lem. 3.11]. It is shown in [53, Thm. 3.13] (see also Zheng–Wei [67, Prop. 3.17]) that
there is an (n+ 2)-angulation of (C, S) consisting of (n+ 2)-angles of the form

X0 X1 · · · Xn Xn+1 SX0.
Q(d0X) Q(d1X) Q(dn−1

X ) Q(dnX) Q(dn+1
X )

(5.9)

This gives an n-exangulated category (C,E, s), where E(Xn+1, X0) = C(Xn+1, SX0) and

s(Q(dn+1
X )) = [ X0 X1 · · · Xn Xn+1

Q(d0X) Q(d1X) Q(dn−1
X ) Q(dnX)

]

whenever the morphism Q(dn+1
X ) ∈ C(Xn+1, SX0) fits into an (n+ 2)-angle (5.9).

Using Theorem 3.17, it is straightforward to check that there exists a natural transforma-
tion Γ: E(−,−) =⇒ E(Q−,Q−), such that (Q,Γ): (C,E, s)→ (C,E, s) is an n-exangulated
functor. Indeed, in the notation above, consider the functor E : E -Ext(C) → E -Ext(C)
given by E (δ) = Q(dn+1

X ) on objects and by E (a, c) = (Qa,Qc) on morphisms. Note that
(Q(f 0),Q(fn)) is a morphism in E -Ext(C) by [53, Lem. 3.11]. It is clear that E respects
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morphisms and distinguished n-exangles over Q. By Proposition 3.11, we see that E is ad-
ditive, and thus Theorem 3.17 applies. Without the theorem, proving the naturality of Γ
requires a non-trivial amount of extra work.

In Examples 5.10 and 5.11, we use relative n-exangulated structures. We provide some
key definitions here, but refer the reader to [29, Sec. 3.2] for details. Let (C,E, s) be an
n-exangulated category and I be a subcategory of C. Then the assignment EI : Cop×C → Ab

given by EI(C,A) := { δ ∈ E(C,A) | δE X = 0 for all X ∈ I } defines a subfunctor of E. The
restriction sI of s to the extensions δ ∈ EI(C,A) for A,C ∈ C is an exact realisation of EI.
Moreover, it follows from [29, Props. 3.16, 3.19] that (C,EI, sI) is an n-exangulated category,
and by [41, Thm. 2.12] that it is an n-exangulated subcategory of (C,E, s).

The next two examples concern compactly generated triangulated categories. We recall rel-
evant definitions in Example 5.10; for more details, see work of the first author [3], Garkusha–
Prest [19], Krause [48], Neeman [58], and Prest [61]. In this example we recall how equipping
a compactly generated triangulated category with its class of pure-exact triangles results in an
extriangulated substructure of the triangulated structure. This was first noted in Hu–Zhang–
Zhou [31, Rem. 3.3] from a different perspective. In Example 5.11 we show that a certain
restricted Yoneda functor is extriangulated, and preserves and reflects injective objects.

Example 5.10. Let C be a triangulated category with suspension functor Σ. Then C has
the structure of an extriangulated category, which we denote by (C,E, s); see Example 5.3.
Suppose C has all set-indexed coproducts. Following Neeman [58, pp. 210–211], an object
X ∈ C is called compact if the functor C(X,−) commutes with all coproducts, and we denote
by Cc the subcategory of C consisting of compact objects. The category C is compactly
generated provided there is a set S of objects in Cc such that, for each A ∈ C, if C(X,A) = 0

for all X ∈ S, then A must be the zero object. Suppose that C is compactly generated.
As defined in [48, Def. 1.1(3)], a distinguished triangle

A B C ΣAδ (5.10)

in C is called pure-exact if, for any object X ∈ Cc, there is an induced short exact sequence
0 C(X,A) C(X,B) C(X,C) 0 of abelian groups. A morphism δ : C → ΣA

in C is phantom if C(X, δ) is the zero morphism C(X,C)→ C(X,ΣA) for all X ∈ Cc (see [48,
p. 104]). For a morphism δ : C → ΣA that fits into a distinguished triangle (5.10), there is a
natural transformation δE − = C(−, δ) : C(−, C) ⇒ C(−,ΣA) (see Section 2). Consequently,
the morphism δ is phantom if and only if δE X = 0 for all X ∈ Cc. By Krause [49, Lem. 1.3], one
has that the distinguished triangle (5.10) is pure-exact if and only if δ : C → ΣA is phantom.

This implies that (C,ECc , sCc) is an extriangulated category in which ⟨ A B C
f g

, δ⟩

is a distinguished extriangle if and only if A B C ΣA
f g δ is a pure-exact triangle

in C. By our discussion above this example, we have that (C,ECc , sCc) is an extriangulated
(i.e. 1-exangulated) subcategory of the (ex)triangulated category (C,E, s). Furthermore, if C
contains a non-zero object, then (C,ECc , sCc) is not triangulated; and if there is a non-split
pure-exact distinguished triangle, then it is not exact (cf. [31, Rem. 3.3]).
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Building on Example 5.10, the next example shows that a certain restricted Yoneda functor
Y : C → Mod – Cc preserves extriangles. Like in Example 5.9, the characterisation of n-
exangulated functors of in Theorem 3.17 makes light work of this. We also show that Y

both preserves and reflects injective objects. Relevant definitions are provided as needed.

Example 5.11. Suppose that C is a triangulated category with suspension functor Σ. As-
sume that C has all set-indexed coproducts and is compactly generated. Denote by (C,E, s)
the extriangulated category arising from the triangulated structure on C. In Example 5.10
we showed that the relative structure induced by the subcategory Cc of compact objects in
C gives an extriangulated subcategory (C,ECc , sCc). Recall that the distinguished extriangles
of (C,ECc , sCc) correspond to the pure-exact triangles in C.

Assume that Cc is skeletally small. Let Mod – Cc be the category of additive functors
(Cc)op → Ab, which is a Grothendieck abelian category; see [61, Thm. 10.1.3]. In particular,
it has enough injectives (see [61, Thm. E.1.8]), so for all L,N ∈ Mod – Cc, the collection of
equivalence classes of short exact sequences of the form 0 L − N 0 is a
set. Thus, we have that the Ext-bifunctor E′ := Ext1Mod – Cc : (Mod – Cc)op ×Mod – Cc → Ab is
well-defined. Consequently, equipping Mod – Cc with E′ and the canonical realisation s′ yields
an extriangulated category (Mod – Cc,E′, s′).

Write Y : C → Mod – Cc for the restricted Yoneda functor, which is defined on objects by
Y (Z) = C(−, Z)|Cc (see [48, p. 105]). In the rest of this example, we show the following two
statements.

(i) There is an extriangulated functor (Y ,Γ): (C,ECc , sCc)→ (Mod – Cc,E′, s′).

(ii) The functor Y both preserves and reflects injective objects.

Let us first prove (i). By Theorem 3.17, it is sufficient to define an additive functor

E : ECc -Ext(C)→ E′ -Ext(Mod – Cc)

which respects both morphisms and distinguished extriangles over Y . Given δ ∈ ECc(C,A),

there is a pure-exact distinguished triangle A B C ΣAδ that is unique up to
isomorphism. Thus, we define E on objects by setting

E (δ) := [ 0 Y (A) Y (B) Y (C) 0 ].

A morphism (a, c) : δ → δ′ in ECc -Ext(C) extends to a morphism of triangles between the
pure-exact triangles associated to δ and δ′. Hence, the pair (Y a,Y c) : E (δ) → E (δ′) is a
morphism in E′ -Ext(Mod – Cc), and we can define E (a, c) := (Y a,Y c). It is straightforward
to check that E is a functor, and it respects morphisms and distinguished extriangles over Y

by construction. Since Y is additive, so is E by Proposition 3.11. This verifies (i). Note that
if C contains a non-zero object and at least one non-split pure exact triangle, then (Y ,Γ(Y ,E ))

is neither an exact functor nor a triangulated functor.
Now we show (ii). A morphism f : A → B in the triangulated category C is a pure

monomorphism if the morphism Y (f)X = C(X, f) : C(X,A)→ C(X,B) is injective for each
compact object X ∈ Cc (see [48, Def. 1.1(1)]). An object C ∈ C is pure-injective provided
any pure monomorphism with domain C splits (see [48, Def. 1.1(2)]). Following the dual of
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[57, Def. 3.23, Prop. 3.24], an object I in an extriangulated category (D,F, t) is F-injective
if and only if F(D, I) = 0 for all D ∈ D. Thus, it follows from [48, Lem. 1.4] that an object
in the extriangulated category (C,ECc , sCc) is ECc-injective if and only if it is pure-injective
in the triangulated category (C,E, s). Furthermore, by [48, Thm. 1.8], we have that A ∈ C
is pure-injective in (C,E, s) if and only if Y A is E′-injective in (Mod – Cc,E′, s′). That is,
the extriangulated functor (Y ,Γ) from (C,ECc , sCc) to (Mod – Cc,E′, s′) preserves and reflects
injective objects.

Remark 5.12. Suppose that in Examples 5.10 and 5.11 we replace the compactly generated
triangulated category with a finitely accessible category, and also that we swap compact
objects with finitely presented objects. With this exchange, one can make analogous obser-
vations about the restricted Yoneda functor to those made in Example 5.11 using results of
Crawley-Boevey [12]. We omit this example, however, since the restricted Yoneda functor in
this case is in fact an exact functor.
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