Amirhossein Vakili

A Comparative Analysis of Machine
Learning Models in Prognostics and

wv
E Prediction of Remaining Useful Life
7 of Aircraft Turbofan Engines
g
g Master’s thesis in Reliability, Availability, Maintainability and Safety
S (RAMS)

Supervisor: Professor Yiliu Liu

October 2023

NTNU

Norwegian University of Science and Technology
Faculty of Engineering

Department of Mechanical and Industrial Engineering

@ NTNU

Norwegian University of
Science and Technology

Amirhossein Vakili

A Comparative Analysis of Machine
Learning Models in Prognostics and
Prediction of Remaining Useful Life of
Aircraft Turbofan Engines

Master’s thesis in Reliability, Availability, Maintainability and Safety
(RAMS)

Supervisor: Professor Yiliu Liu
October 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

@ NTNU

Norwegian University of
Science and Technology

Preface

This report is written during the fall semester of 2023 in Reliability, Availability, Maintainabil-
ity, and Safety (RAMS) at the Department of Mechanical and Industrial Engineering (MTP) at
NTNU. My main drive in selecting this topic stemmed from a deep-rooted interest in the con-
cept of prognostics and the prediction of the Remaining Useful Life of components and systems.
Pairing this with a curiosity in programming and machine learning made this an exciting jour-
ney. While the thesis is primarily targeted at those with a foundational grasp of programming
and reliability theory, the methods and techniques discussed, especially those related to ma-
chine learning, are introduced in a way that should be approachable for readers unfamiliar with
the topic.

Trondheim, 2023-10-31

Amirhossein Vakili

ii
Acknowledgment

First and foremost, I would like to express my sincere gratitude to Professor Yiliu Liu for his
invaluable guidance throughout this thesis journey. His insights were crucial in shaping my
research direction and in navigating the complexities of machine learning and prognostic tech-
niques.

I'm also deeply appreciative of my fellow RAMS student, Mahshid Aghamalizadeh. Her con-
sistent support, sharing of knowledge, and enriching discussions played a significant role in the
formulation and completion of this report.

Amirhossein Vakili

iii
Executive Summary

In the pursuit of enhancing the safety and reliability of complex industrial systems, Prognostics
Health Management (PHM) technology, especially its components of fault diagnosis and prog-
nosis, has found increasing relevance in various industries. Fundamental to PHM technology
is the prediction of the Remaining Useful Life (RUL). An accurate estimation of RUL not only
leads to accident prevention but also facilitates optimal equipment maintenance scheduling
in complex systems. This strategic foresight can decrease maintenance costs and spearhead a
more systematic approach to predictive maintenance. While RUL prediction techniques span
from model-based to data-driven approaches, the latter, which establishes relationships be-
tween RUL and historical data through a learning-based model, is gaining attention due to its
independence from prior knowledge.

Building on this foundation, this master thesis delves into the application of Machine Learn-
ing (ML) models and Artificial Neural Networks (ANNs) to predict the remaining useful life of
turbofan engines, using the turbofan degradation dataset by National Aeronautics and Space
Administration (NASA) as a case study. The research starts with an introduction to the princi-
ples of prognostic health management and RUL, establishing the context and relevance of the
study. Subsequent chapters explore the domains of Artificial Intelligence (AI), underscoring its
intersections with machine learning and Deep Learning (DL). A comprehensive overview of ma-
chine learning paradigms, including supervised and unsupervised methodologies, is provided,
setting the stage for a deep dive into various regression models. Given the dataset’s properties
and the continuous, labeled nature of the data, the theoretical foundations of regression mod-
els, including linear regression, polynomial regression, support vector regression, decision tree,
and random forest regression, alongside artificial neural networks, are elaborated. Each model
is thoroughly constructed, ran on the dataset, and a detailed comparative analysis of results
is provided. The study further enhances its practical value by addressing data visualization,
feature selection, data treatment and hyperparameter tuning, highlighting the significant im-
provements achieved after treatment, reinforcing the potential of machine learning and deep

learning in prognostics and prediction of remaining useful life.

Contents

Preface e
Acknowledgment L

Executive Summary e

Introduction

1.1 Background e e
1.2 ODbJeCtiVES o v ot e e e e e e e e e e e
1.3 Approach e e e e
1.4 Outline e e e e

Prognostic and Remaining Useful Life

2.1 Prognostics health management

2.2 PrognostiCS. o v v i i e e e e e e e e e

2.3 Remainingusefullife L
2.3.1 RULasafunctionofCM
2.3.2 RULasafunctionofRF

Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL)

3.1 Artificialintelligence e

3.2 Machinelearningvsdeeplearning Lo oL

3.3 Machine learning paradigms Lo L e
3.3.1 Supervisedlearning e
3.3.2 Unsupervisedlearning e
3.3.3 Semi-supervisedlearning L o oo oL
3.3.4 Reinforcementlearning o L.

3.4 Supervised learningalgorithms Lo o oo L oL
3.4.1 LinearregresSiOn vttt e e e e e e e e e e
3.4.2 SupportVector Regression (SVR)
3.4.3 Decisiontree e e e e
344 Randomforest.

iv

ii

iii

CONTENTS

3.5 Artificial Neural Network (ANN) o i o e e e e e e e e e e e
3.5.1 Activationfunction e e
3.5.2 Costfunction e

4 Building The Machine Learning Models
4.1 Programminglanguage
4.2 Libraries e
4.3 Introductionofthedataset
4.4 DatapreproCessiNg o v v v ittt e e e e e e e e e
4.4.1 Importingthedataset
4.4.2 Datavisualization. e
4.4.3 FeatureextraCtion
4.4.4 Standardization
4.5 Buildingmodels
4.5.1 Linearregressiont i ittt e e e e e
4.5.2 Polynomialregression
4.5.3 SupportVector Regression (SVR),
4.5.4 Decisiontreeregressiono i e e e e
4.5.5 Random forestregressiono
4.5.6 Artificialneuralnetwork Lo L oo oo
4.6 Results e

5 Conclusions
5.1 Summaryand conclusions e

5.2 Recommendation for furtherwork
A Acronyms
B Code Templates

Bibliography

24
27
29

32
32
33
34
36
36
39
41
41
44
44
44
45
45
46
46
47

51
51
52

55

57

61

Chapter 1

Introduction

1.1 Background

The prediction of the Remaining Useful Life (RUL) is pivotal in the domain of Prognostics Health
Management (PHM) technology. RUL essentially measures the time from the current point until
a system is expected to fail. An accurate RUL prediction can serve as a warning, enabling users
to initiate timely maintenance actions, reducing subsequent costs, and offering a foundation for
insightful maintenance decisions. As a critical element promoting the safety and reliability of
complex industrial systems, RUL prediction, especially within PHM, is essential for various in-
dustries. Through its accurate implementation, one can accurately schedule equipment main-
tenance, optimizing the efficiency and cost-effectiveness of complex systems, while ensuring
the proactive care of equipment.Zhang et al. (2022)

There are various methodologies employed for RUL prediction like model-based approaches,
data-driven approaches, and hybrid approaches. Model-based strategies require a deep under-
standing and a precise mechanical model of the target system, with robust prior knowledge.
However, data-driven approaches are becoming more and more popular due to their capacity
to recognize patterns between RUL and historical data without the need for prior system knowl-
edge. These data-driven methods are typically divided into two major categories: conventional
machine learning approaches and the burgeoning deep learning approaches. While conven-
tional machine learning techniques like linear regression, Support Vector Machine (SVR), de-
cision tree and Random Forest are used in the field, they sometimes show constraints in both
accuracy and computational efficacy, particularly when handling vast datasets. Zhang et al.
(2023)

On the contrary, emerging deep learning methods, such as the Artificial Neural Network
(ANN), Recurrent Neural Network (RNN), and convolutional neural network (CNN) have demon-
strated superior performance in managing extensive data, potentially overshadowing traditional
techniques. This thesis tries to explore both traditional machine learning regression techniques

CHAPTER 1. INTRODUCTION 3

and compare their efficiency and results with artificial neural network model, primarily focusing
on the RUL prediction of turbofan engines, using turbofan degradation data set by NASA.

1.2 Objectives

This Master thesis strives to offer a foundational guide for individuals keen on utilizing ma-
chine learning for forecasting and predicting the remaining useful life. Initially, it introduces
key concepts such as prognostics health management, prognostics, remaining useful life, ma-
chine learning, and deep learning. Subsequently, the thesis aims to shed light on ML regression
techniques, illustrating how to construct and implement machine learning models, with a spe-
cial focus on deploying artificial neural network.

1.3 Approach

This thesis delves into key areas such as prognostics, remaining useful life, machine learning,
and artificial neural networks. Given that the big dataset from NASA comes with labels, the
study is focused on supervised ML techniques. Comprehensive details, ranging from theoreti-
cal insights to practical steps, coding examples, and relevant tools, are provided to guide read-
ers through the process of forecasting the RUL of turbofan engines. Both traditional regression
machine learning models and ANN have been employed, with the corresponding results show-

cased.

1.4 OQOutline

The remainder of this thesis is structured as follows:

* Chapter 2. Prognostic and remaining useful life: This chapter explains the fundamental
principles of prognostics health management, emphasizing prognostic techniques and
the concept of remaining useful life. It further dives into understanding RUL as functions

of different parameters such as Condition Monitoring (CM) and Reliability Factor (RF).

* Chapter 3. Artificial intelligence, machine learning, and deep learning: This chapter clari-
fies the theoretical foundations of Al, drawing a clear distinction between machine learn-
ing and deep learning. It delves into diverse paradigms of ML such as supervised, unsu-
pervised, semi-supervised, and reinforcement learning. The chapter also provides com-
prehensive insights into several regression algorithms, including but not limited to linear

regression and its variants, support vector regression, decision tree, and random forest.

CHAPTER 1. INTRODUCTION 4

The latter part of the chapter introduces deep learning concepts, focusing on the architec-
ture and components of artificial neural networks, notably activation and cost functions.

* Chapter 4.Building the machine learning models: In this chapter, the choice of program-
ming language and essential libraries for building the models is discussed. An introduc-
tion to the turbofan degradation dataset is provided, followed by a systematic walkthrough
of data preprocessing techniques ranging from importing the dataset, visualization, fea-
ture extraction using a heatmap to data standardization. Subsequently, the procedure for
building a series of machine learning models, including linear regression, polynomial re-
gression, support vector regression, decision tree regression, random forest regression,
and an ANN model, is illustrated in detail. The primary objective of these models is to
determine the remaining useful life of turbofan engines. This chapter concludes with a

presentation of the results derived from each model.

Chapter 5. Conclusions

¢ Acronym

Appendix B: Code templates

Bibliography

Chapter 2
Prognostic and Remaining Useful Life

In the quest for enhanced safety and reliability of complex industrial systems, Prognostics Health
Management (PHM) technology, which includes fault diagnosis and prognosis, is gaining widespread
attention across various industries. Central to PHM technology is the prediction of the Remain-
ing Useful Life (RUL). Devoted to accident prevention, RUL plays a crucial role, and its accurate
estimation ensures equipment maintenance in these complex systems is optimally scheduled.
This, in turn, can reduce maintenance costs and facilitate systematic predictive maintenance.
Zhang et al. (2023)

Traditionally, engineering prognostics, a tool employed by industries to mitigate business
risks arising from unforeseen equipment failures, basically relies on the intuition and expertise
of personnel familiar with the respective equipment. Yet, challenges emerge as the reliability
of assets improves and the engineering workforce ages, making it harder to collect such exper-
tise. Moreover, human decisions, when confronted with equipment characterized by numerous
interrelated failure modes, may not always be consistent or accurate. Recognizing these chal-
lenges, recent years have witnessed an increase in research efforts to prepare models that reduce
the industry’s reliance on individuals, ensuring more accurate and reliable decision-making

processes. Sikorska et al. (2011)

2.1 Prognostics health management

Maintenance of complex systems ensures that machines operate in their correct functioning
conditions and reduce unforeseen downtimes. Recently, research has been shifted towards
predictive maintenance and condition monitoring, especially prognostic health management.
PHM uses machine learning and artificial intelligence to analyze data from sensors on ma-
chines, convert it into valuable insights, determining their remaining useful life and enhancing

the maintenance planning process. Calabrese et al. (2019)

CHAPTER 2. PROGNOSTIC AND REMAINING USEFUL LIFE 6

2.2 Prognostics

There are many definitions for prognostic:

1. An estimation of time to failure and risk for one or more existing and future failure modes.
Tobon-Mejia et al. (2010)

2. The capability to provide early detecting of the precursor and/or incipient fault condition of
a component, and to have the technology and means to manage and predict the progression
of this fault condition to component failure. Engel et al. (2000)

3. Predictive diagnostics, which includes determining the remaining life or time span of proper

operation of a component. Hess et al. (2005)

4. Failure prognosis involves forecasting of system degradation based on observed system con-
dition. Luo et al. (2003)

From all these definitions we can conclude some characteristics for prognostic such as: Siko-
rska et al. (2011)

Prognostics ideally focuses on individual parts or components within a system.

It is about forecasting how a particular malfunction develops over time until the compo-

nent breaks down.

Understanding how the component will work in the future is crucial.

While prognostics is linked to diagnostics, the two are not identical.

Most experts agree that prognostics is closely tied to, and often depends on, diagnostics. Yet,
the clear boundary between them is not always well-defined in existing literature. A straightfor-
ward way to differentiate these two is: diagnostics focuses on identifying and measuring dam-
age that has already happened—it looks back. On the other hand, prognostics aims to foresee
potential future damage. Even though diagnostics can offer valuable insights independently,
prognostics relies on diagnostic findings, meaning prognostics cannot operate entirely on its
own. Sikorska et al. (2011)

The 1SO13381-1 standard describes prognostics as a forecast of how long it will take for
a failure to happen, considering both current and upcoming failure modes. This means that
prognostics is not just about predicting outcomes based on known failure modes but also un-
derstanding how these problems might initiate other failure modes. More specifically, when

thinking about prognostics, we should look into: Sikorska et al. (2011)

1. existing failure mode and how fast they’re getting worse,

CHAPTER 2. PROGNOSTIC AND REMAINING USEFUL LIFE 7

2. initiation criteria for future failure modes,
3. how different failure modes might relate to each other and their progression rates,

4. how good our monitoring tools and analysis techniques are at catching these progression

rates,
5. how maintenance efforts can impact these deteriorations, and

6. the condition and assumption behind the prognoses.

Based on this description, (1) to (3) can be seen as diagnostic questions, while the remaining
three pertain to prognostics. Continual diagnostic assessments are vital to identify new events,
ensuring that prognostic predictions remain correct and precise.

2.3 Remaining useful life

The concept of remaining useful life which is occasionally called remaining service life or resid-
ual life denotes the time remaining before a potential failure occurs, considering the current age
and state of a machine, as well as its past and future operational profile. RUL for any asset or
mechanism is described as the time span from the present moment to the end of the useful life.
It is defined as remaining lifetime of a system at any given time t, considering all information of
the system at time t. There are two primary mathematical definitions of RUL in the literatures,
depending on the estimation methodology and the data at hand: one that views RUL as a func-
tion of Condition Monitoring (CM) and another that considers it as a function of the Reliability

Function (RF). Moamar and Springerlink (2020)

2.3.1 RUL as a function of CM

Here, RUL is considered as an outcome of a system’s CM, represented as Z(t). This representa-
tion encloses the historical operating state of the system and co-variables outlining its present

state. The formulation is: Moamar and Springerlink (2020)

RUL(t|Z)=T—t|T>t,Z(1) (2.1)
Where:
e T: time to failure,
e f: current time or age,

e Z(1): condition trajectory up until now.

CHAPTER 2. PROGNOSTIC AND REMAINING USEFUL LIFE 8

pdf of RUL at time t

- = - = g i il

Failure threshold p
y

Zit) (CM)

Time
>

[€ > I
RUL :

Figure 2.1: RUL as a function of CM from (Moamar and Springerlink (2020)).

This formula is visually represented in Figure 2.1. Depending on the insights from Z(#), RUL
might be calculated as either deterministic, statistical (expectation), or a probabilistic variable
(probability density function). The dashed gray boundary indicates the uncertainty concerning
forthcoming operational condition and the environment of the system. Moamar and Springer-
link (2020)

2.3.2 RUL as a function of RF

Data derived from condition monitoring can be included into a reliability assessment by as-
suming the hazard rate function as a probabilistic function. Various techniques exist for calcu-
lating both conditional and unconditional reliability functions and for computing the RUL as
a function of current conditions. In classical reliability analysis, RF is primarily determined in
two scenarios: one that is unconditional, presuming the component has not started operation
(P(T > 1)), and the second that is conditional, based on the assumption that the component has
not yet failed until a specific moment x (P(T > ¢|T > x)). Moamar and Springerlink (2020)

When we consider that a system is operating at time ¢, the RUL is denoted as a time v. Here,
the probability that the system’s state Z at ¢ + v, denoted P[Z(t+ v) = L|Z(t)], approximates the
known failure probability q. The formulation for RUL is:

RUL(t,q) =sup{v: P[Z(t+v) = LIZ(D)] < q} (2.2)

In this equation, L is the threshold for failure, and P[Z(t + v) = L|Z(t)] is defined as the
system’s reliability.

RUL is a key measure to understand how a system is performing while it is in use. It serves
as a predictor of the remaining operational period a system or component has before it is likely

CHAPTER 2. PROGNOSTIC AND REMAINING USEFUL LIFE 9

to fail. In fact, RUL bridges the gap between current health status and the point of operational

failure.

Moreover, it gives insights into when the system might need maintenance. This information

is critical for scheduling timely maintenance, aiming to minimize any interruptions or down-

times. There are many reasons why knowing RUL is important: Berghout and Benbouzid (2022)

Enhancing maintenance strategies: By transitioning from traditional reactive or calendar-
based maintenance to predictive maintenance, industries can ensure the equipment is

serviced just in time before failure, ensuring minimal disruptions.

Cost efficiency: An accurate RUL prediction avoids premature replacements and unnec-

essary inspections, which can lead to substantial cost savings in maintenance operations.

Ensuring reliability: A timely maintenance or replacement, as dictated by the RUL, en-

sures systems operate at peak performance, thereby guaranteeing operational reliability.

Risk mitigation: Knowing when a system is likely to fail helps industries prepare or make

alternate arrangements, thereby minimizing potential risks.

RUL prediction techniques generally fall into a few categories: model-based, data-driven,

and hybrid models that combine both approaches. Berghout and Benbouzid (2022)

Model-based: These utilize mathematical models built upon the fundamental principles
governing the system’s operations. For instance, fatigue analysis for metal components
can give insights into their RUL. However, this approach can be intricate and may not

consider all real-world variabilities.

Data-driven: Rather than relying on theoretical models, these predictions analyze histor-
ical operational data, sensor readings, and past failures to forecast RUL. This method is
especially useful for complex systems where traditional modeling can be restrictive.

Hybrid models: By combining the theoretical strengths of model-based predictions and
the practical insights from data-driven predictions, hybrid models aim to give a better and
more precise RUL estimation. Berghout and Benbouzid (2022); Zhang et al. (2023)

Data-driven approach has drawn attention recently duo to its power to predict complex re-

lationships between sensor data and system degradation or fault. It helps estimation of RUL in

many ways such as: Berghout and Benbouzid (2022)

Managing complex data sets: Modern machinery often comes equipped with multiple
sensors that generate massive amounts of data. Machine learning algorithms, with their
ability to handle high-dimensional data, can analyze these complex data sets to derive

meaningful insights.

CHAPTER 2. PROGNOSTIC AND REMAINING USEFUL LIFE 10

¢ Self-improvement: ML models can learn from new data. As more data becomes avail-
able, these models refine themselves, leading to increasingly accurate RUL predictions
over time.

* Deep learning capabilities: Deep learning, a subset of ML, can automatically discover
the representations needed for feature detection from raw data. This is particularly useful
when dealing with unstructured data or when it is challenging to identify what specific

features or patterns correlate with system failures.

* Real-time predictions: ML models can process data and provide insights in real-time.
As systems evolve or external conditions change, ML can quickly adjust its predictions,
ensuring industries always have up-to-date information on their machinery’s health.

Data-driven RUL predictions are further divided into traditional machine learning models
and the newer deep learning techniques. These data-driven approaches are evolving rapidly.
They are designed to adapt to various data challenges, addressing attributes such as the sheer
amount of data (volume), the speed at which it is generated (velocity), and the diversity of data
types (variety). Berghout and Benbouzid (2022)

Chapter 3

Artificial Intelligence (AI), Machine
Learning (ML) and Deep Learning (DL)

3.1 Artificial intelligence

Artificial Intelligence (Al) aims to equip machines with capabilities similar to the human brain.
In computer science, Al delves into the study of "intelligent agents", which are devices that can
assess their environments and act in ways that maximize their success. Generally, we talk about
artificial intelligence when machines can carry out tasks we typically attribute to the human
mind, like learning and problem-solving. Given that learning is vital for machines, machine

learning emerges as a specialized branch within Al. Shinde and Shah (2018)

3.2 Machine learning vs deep learning

Machine learning and deep learning, both popular topics under the artificial intelligence um-
brella, have been popular recently. Machine learning is using algorithms to parse data, learn
from it, and then decide or predict. It enables computers to learn automatically and improve
from experience without being explicitly programmed. Deep learning, which is a subset of ma-
chine learning, uses Neural Networks (NN) to tackle complex and difficult problems. Neural
networks are inspired by our understanding of the biology of our brains and built with layers,
connections, neurons, and directions of data propagation.

The ability of learning without the need for being programmed makes them especially pop-
ular in applications where the large datasets are accessible, such as natural language processing,
financial decision making and image recognition.

In recent years, due to the growing availability of big datasets as well as increasing compu-

tational power of computers, there has been a significant shift in research and advancement in

11

CHAPTER 3. ARTIFICIAL INTELLIGENCE (AD), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)12

Train (|
\ | . Model
St | Learner .; [
Model
\ - s Tagged
g Execution data
/
Produc g
tion
data

Figure 3.1: Machine learning operational model (Kumar et al. (2020)).

the field of machine learning and deep learning. Sharifani and Amini (2023); Laerum (2018)

3.3 Machine learning paradigms

In machine learning, the learning procedure is split into two main stages: training and test-
ing. Initially, the system undergoes several iterations of training. During this phase, it processes
training data samples and, using a learning algorithm, picks up features to construct a learn-
ing model. Following this, the model is tested. At this stage, the learning model employs an
execution engine to predict outcomes for either production or test data. The results from the
learning model are referred to as tagged data, which provide either classified outcomes or the
final predicted data. (Figure 3.1) Kumar et al. (2020)

The learning process is divided into different categories:

3.3.1 Supervised learning

For this kind of machine learning algorithm, external help is required. The input dataset is split
into two groups: training and testing. The training data includes the input as well as the cor-
rect output. It is essential to categorize and forecast the output of the training dataset. These
algorithms identify patterns from the training data, and then they classify or predict using the
test data. There are many algorithms under supervised learning, depending on the nature of the
task (classification, regression, etc.) and the type of data. Here are some of the most common
supervised learning algorithms: Kumar et al. (2020)

* Linear regression: used for regression problems where the outcome is continuous.

CHAPTER 3. ARTIFICIAL INTELLIGENCE (AD), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)13

* Logistic regression: despite its name, it is used for binary classification problems.
* Decision tree: can be used for both classification and regression tasks.

* Random forest: an ensemble method that creates a 'forest’ of decision trees and merges

their outputs.

* Support Vector Machines (SVM): mainly used for classification problems but can be adapted

for regression.

* k-Nearest Neighbors (k-NN): used for classification and regression. It works by finding
the 'k’ training examples closest to a point. Bishop (2006)

3.3.2 Unsupervised learning

Unsupervised learning algorithms work by discovering patterns and structures in data without
explicit labels. They extract features from the data autonomously, and when new data is in-
troduced, the algorithms classify or cluster the data based on the features they have previously
identified. Unlike supervised learning, where models are trained using labeled data, unsuper-
vised learning methods operate on datasets without prior knowledge of the outcome. Kumar et
al. (2020)

The primary applications of unsupervised learning include:

* Clustering: This is the process of grouping similar data points together based on certain

features. Common algorithms used for clustering are: Bishop (2006)

— K-means clustering: K-means clustering is a technique used to group similar data
points together based on certain features. It works by partitioning the data into 'k’
clusters, where 'k’ is a user-defined number. The algorithm assigns each data point
to the nearest cluster centroid, and it iteratively updates the centroids until conver-
gence. K-means clustering is widely used for tasks like customer segmentation, im-

age compression, and document categorization.

- Hierarchical clustering: Hierarchical clustering is another method for grouping data
points. It creates a hierarchy of clusters in the form of a tree-like structure, where
each data point starts as its own cluster and then merges or splits based on similar-
ities. Hierarchical clustering can be bottom-up or top-down. It is useful when the
number of clusters is not known in advance and provides a visual representation of

the clustering process.

* Dimensionality reduction: This involves reducing the number of features or dimensions

in a dataset while retaining as much information as possible. It is particularly useful for

CHAPTER 3. ARTIFICIAL INTELLIGENCE (Al), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)14

visualizing high-dimensional data and improving the efficiency of other algorithms. Some
of the popular methods are: Bishop (2006)

— Principal Component Analysis (PCA): PCA is a dimensionality reduction technique
thatidentifies a new set of orthogonal axes (principal components) in the data. These
components capture the most significant variance in the data, allowing to represent
it in a lower-dimensional space. It is widely used for data compression, feature se-
lection, and visualization.

- Independent Component Analysis (ICA): ICA is a technique for finding statistically
independent sources from observed data. It is commonly used in signal processing
and image analysis. It can separate mixed signals into their original source signals,

making it useful in applications like blind source separation and noise reduction.

* Association rule learning: This is about finding interesting relationships or associations
between variables in large databases. A classic example is market basket analysis, where

the goal is to discover what products customers tend to purchase together. Bishop (2006)

3.3.3 Semi-supervised learning

Semi-supervised learning harnesses the strengths of both supervised and unsupervised learning
techniques. This approach is especially useful when there is an abundance of unlabeled data
and limited labeled data, as obtaining labels can often be time-consuming, costly, or infeasible.
By leveraging both types of data, semi-supervised learning can make better predictions and
generalizations compared to using solely labeled or solely unlabeled data. Kumar et al. (2020)

In this method, the labeled data helps guide the model’s learning process, while the unla-
beled data assists in refining the model’s structure and understanding of underlying patterns.
An application example of Semi-supervised learning is:

e Natural Language Processing (NLP): In tasks such as sentiment analysis or text classifi-
cation, obtaining labeled data for every piece of text can be daunting. Semi-supervised
learning can utilize the vast amounts of available unlabeled text data alongside smaller

sets of labeled data for improved model performance. Bishop (2006)

3.3.4 Reinforcement learning

Reinforcement Learning (RL) is a type of machine learning paradigm where an agent learns to
behave in an environment by performing certain actions and receiving rewards or penalties in
return. The objective is to learn a strategy, often called a policy, that will maximize the cumula-
tive reward for the agent over time. Unlike supervised learning, where the correct answers are

CHAPTER 3. ARTIFICIAL INTELLIGENCE (AD), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)15

Machine

Leamning types
|
1 1 1
Sepervised Unsupervised Semi-supervised Reinforcement
Learning Learning Learning Learning
Continuous Categorical Target variable Categorical Categorical Target variable
Target Variable Target VAriable not available Target Variable Target Variable not available
Regression Classification clustering J— Assosiation Classification J— Clustering Classification Control
K- Clust C -
Linear R : Fopichc e m};m hus:l1mg |Assiosiation Rule] [Natural Language K-means
Inear Regression ogistic Regression Cl?am i Learning Processing Clustering
Support Vector Decision Tree ustering
Resgression (SVR) Randotn Forest
Decision Tree KNN
Random Forest Support Vector
Machine

Figure 3.2: Machine learning paradigms, alogorithms, and their applications.

provided, and unsupervised learning, where only input data is given, RL is characterized by not
having the right action provided explicitly. Instead, the agent discovers the optimal action by
exploring the environment and exploiting its current knowledge. As the agent interacts more
with its environment, it uses feedback in the form of rewards or penalties to refine its strategy.
This process involves a balance between exploration (trying new actions) and exploitation (re-
lying on known actions that yield good rewards). The mention of "trial and error search" and
"delayed outcome" reflects the idea that the agent must try out different actions and might not
realize the long-term consequences of an action immediately. Kumar et al. (2020); Bishop (2006)

Figure 3.2 illustrates all machine learning paradigms, related algorithms, and their applica-

tions.

3.4 Supervised learning algorithms

Supervised learning is a paradigm in machine learning where an algorithm is trained on a la-
beled dataset. This dataset consists of input examples paired with the correct output, allowing
the model to learn the relationship between the inputs and outputs. The main components in
supervised learning include: Janiesch et al. (2021)

Input features (X variables): Often known as matrix of features, are the factors or character-
istics that influence the prediction. Examples include metrics like the number of sold products
or positive user reviews.

Target variable (Y variable): Often known as dependent variable vector, is the output the

model is trying to predict based on the input features. It could be a numeric prediction, like the

CHAPTER 3. ARTIFICIAL INTELLIGENCE (Al), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)16

number of active users on a platform, or a categorical prediction, such as identifying users as
"lookers" or "buyers".

Once the algorithm has been trained on this data, it can then be used to make predictions
on new, unseen data. The goal is to adjust the model parameters in such a way that it makes
accurate predictions.

Two main applications of supervised learning are regression and classification:

* Regression: In regression problems, the aim is to predict a continuous value. For instance,

forecasting the number of active users on a platform based on various metrics.

* Classification: In classification problems, the objective is to predict a discrete label or
category. For example, classifying users as "lookers" or "buyers" based on their browsing

and purchasing behavior.

Various regression techniques, ranging from linear regression to more complex ones like
support vector regression and decision tree as well as random forest regression, offer unique
advantages depending on the nature of the data and the problem at hand. In the following
these methods and the theory behind them are presented and discussed. Janiesch et al. (2021)

3.4.1 Linear regression

Linear regression is a statistical method used to forecast the association between two variables.
This approach assumes a linear bond between the independent and dependent variables and
tries to identify the optimal line that captures this bond. The chosen line minimizes the sum of

the squared differences between the estimated and observed values. Mali (2021)

Simple linear regression

Simple linear regression is used for modeling the relationship between a dependent variable and
one independent variable. It assumes a linear relationship between the two, aiming to find the
slope and intercept of the straight line that best describes this relationship. The slope indicates
how much the dependent variable shifts with a unit change in the independent variable. The
intercept is the predicted value of the dependent variable when the independent variable is at
zero. Eremenko (2023)

Figure 3.3 illustrates the linear connection between the dependent variable (y) and the inde-
pendent variable (x). The line represents the optimal linear fit. In linear regression the aim is to
draw a line that best aligns with the provided data points based on the given information. Mali
(2021)

The formula for simple linear regression is:

y=Po+pP1x 3.1)

CHAPTER 3. ARTIFICIAL INTELLIGENCE (Al), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)17

35 L]

=] 5]
[=] (%3}

i)
L

Dependent variable

10

0 2 4 B B 10
Indepndent variable

Figure 3.3: Regression line and scatter plot of real values.

* yisthe dependent variable.

* xis the independent variable.
* By is the y-intercept.

* [is the slope coefficient.

For any given value of x;, the residual €;, refers to the difference between the actual value of
the dependent variable (y;) and its estimated value (ypredicted i)-

€i = Ypredictedi — Vi 3.2)

where:

YVpredictedi = Bo + P1x; 3.3)

Multiple linear regression

Multiple linear regression is a statistical technique that is used to understand the relationship
between a single dependent variable and multiple independent variables. In simple linear re-
gression, there is a one-to-one relationship between the input variable and the output variable.
However, in multiple linear regression, there is a many-to-one relationship, between a number

of independent variables and one dependent variable. Ray (2019); Alzubi et al. (2018)

CHAPTER 3. ARTIFICIAL INTELLIGENCE (AD), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)18

The formulation for multiple linear regression is similar to simple linear regression, with the
small change that instead of having one beta variable, we will now have betas for all the variables
used. The formula is given as:

y=Po+Pix1+Paxo++ Prnxy (3.4)

where:

e yisthe dependent variable.
* By is the intercept.
* f1,B2,..., Bn are the coefficients for the independent variables.

* X1,X2,..., X, are the independent variables.

The beta coefficients can be estimated using a variety of methods, such as ordinary least
squares. The estimated beta coefficients can then be used to predict the value of the dependent
variable for a given set of independent variables. Mali (2021)

Polynomial regression

Polynomial regression is a type of linear regression that incorporates polynomial terms because
of the non-linear relationship between the predictor and the response variable. This allows the
model to capture more complex patterns in the data.

In this approach, the relationship between the output and input variable is expressed as an
nth-degree polynomial. For instance, a second-degree polynomial leads to a quadratic model,
while a third-degree polynomial results in a cubic model, and the pattern continues for higher
degrees.

In mathematical term: Mali (2021)

¥ =Po+ Prx+ Box® + Pax’ + -+ + Bpx” (3.5)

During the preprocessing phase, before inputting data into a model, we transform the input
variables by adding polynomial terms based on a specified degree. The choice of this degree is a
hyperparameter that requires careful selection. Choosing a higher degree of polynomial might
lead to overfitting, while a lower degree might result in underfitting. Thus, it is essential to find
the best degree value. Typically, polynomial regression models are calibrated using the least
squares method, which aims to minimize the variability of the coefficients. Mali (2021)

CHAPTER 3. ARTIFICIAL INTELLIGENCE (AD), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)19

Ordinary Least Square method (OLS)

The Ordinary Least Squares (OLS) method is used to find the best-fitting line through the data
points such that the sum of the squared vertical distances of the points from the line is mini-
mized.

The technique focuses on reducing the total of squared differences between observed val-
ues (actual values of the dependent variable) and the values estimated by the model (predicted
values). The difference between an observed and estimated value is called a residual, some-
times referred to as an error. The sum of these squared differences is called the Residual Sum of
Squares (RSS). By determining the optimal values for the coefficients to achieve the least RSS,
the OLS method defines the most fitting line for the data, named the regression line. Kumar
(2022)

Mathematically, this is expressed as minimizing following equation:

Z(yi -)/predictedi)2 3.6)

where y; is the actual value, ypredicted; i the predicted value.

Evaluation metrics

The best fit line is the one that most closely matches the provided scatter plot. In linear regres-
sion the aim is to minimize the differences between the observed value and the predicted value.
The effectiveness of a linear regression model can be assessed through different evaluation in-
dicators. These metrics typically give insights into how accurately the model predicts observed
outputs. Mali (2021)

The most commonly employed metrics include:

* Coefficient of determination or R-squared: R-squared quantifies the proportion of vari-
ance in the data that is captured by the model. Its value lies between 0 and 1. Generally, a

higher R-squared value indicates a better fit of the model to the data.

In mathematical terms, it is expressed as:

RSS
TSS
The residual sum of squares represents the total of the squared differences between the

R*>=1 (3.7)

predicted and actual values for every data point in the dataset.

RSS=) (yi—9)* (3.8)
i=1

Where:

CHAPTER 3. ARTIFICIAL INTELLIGENCE (AD), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)20

R-squared = 1.00 R-squared = 0.96 R-squared = 0 68

Figure 3.4: Different R-squared values for different regression lines.

— y; represents the actual observed value.

— J; represents the predicted value from the regression.

The Total Sum of Squares (TSS) represents the cumulative squared deviations of the data
points from the average of the response variable. In mathematical notation, TSS is ex-
pressed as:

TSS=Y (yi—* (3.9)
i=1

Where:
- jyrepresents the mean of the observed data.
Figure 3.4 illustrates different values for R-squared.

Root Mean Squared Error (RMSE): The Root Mean Squared Error (RMSE) is derived from
the square root of the residual variances. It measures the model’s accuracy in terms of how
near the observed data points align with the forecasted values. In mathematical terms,
RMSE is given by:

RSS
RMSE =/ — (3.10)

Where:

— nis the number of observations or data points.

CHAPTER 3. ARTIFICIAL INTELLIGENCE (Al), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)21

20 . —— Hyperplane
™ —=-- Decision boundary

0o

—05

-10

-15

Figure 3.5: Hyperplane and decision boundaries in SVR.

R-squared is a more preferable metric than RMSE. This is because the value of the root
mean squared error is unit-dependent (i.e., it is not standardized), so its value can vary if
the unit of the variables changes. Mali (2021)

3.4.2 Support Vector Regression (SVR)

Support Vector Machines (SVM) aim to determine an optimal hyperplane within an n-dimensional
space to effectively separate or predict data points. Critical to this method are the data points,
called support vectors, that are close but outside to this hyperplane from both sides. These vec-
tors play a pivotal role in shaping the hyperplane’s orientation and position, helping to build the
SVM’s structure. Awad and Khanna (2015)

Unlike support vector machines which are utilized for classification, SVR is designed to de-
termine a hyperplane that represents data points in a continuous space. This objective is ac-
complished by projecting the input variables into a higher-dimensional feature space and find-
ing a hyperplane that both maximizes the distance between itself and the nearest data points
and minimizes the prediction error.

SVR is adept at navigating non-linear correlations between input variables and the target
variable, thanks to kernel functions that transport the data to a higher dimensional space. This
capability makes SVR a potent tool for regression challenges where complex relationships may
exist between input variables and the target variable. Mali (2021)

Think of the two gray dashed lines as the boundary for making decisions (Figure 3.5), with
the red line representing the hyperplane. In SVR, our main focus is on the data points contained
within these gray boundary lines. The optimal hyperplane is the one including the highest num-
ber of these points.

Assume these boundaries are set at a specific distance, called €, from the hyperplane. These

lines are drawn at positions +€ and —e relative to the hyperplane.

CHAPTER 3. ARTIFICIAL INTELLIGENCE (AD), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)22

ROOT Node

: Branch/ Sub-Tree
7 i
Splitting Pl : ™~

A DecisinnNadeJ

Decision Node

Terminal Node

‘ Terminal Node Decision Node] Terminal Node

"B C

I Terminal Node -. WJ

Figure 3.6: Decition tree architecture from (Mali (2021)).

Assume the following is the equation for the hyperplane:
fxX)=(w,x)+Db 3.11)
The decision boundaries can then be mathematically expressed as:

fx)+e (3.12)

flx)—¢ (3.13)

Therefore, for a hyperplane to be valid in our SVR framework, it should fulfill:

—-e<f(x)-(w,x)+b)<e€ (3.14)

3.4.3 Decision tree

A decision tree is a predictive model structured similarly to a flowchart; guiding decisions based
on input data. It divides the data into subsets through branches, eventually leading to outcomes
at its terminal points, or leaf nodes. This model is versatile, suitable for both classification and
regression tasks, and stands out for its intuitive, visual representation. Mali (2021)

This hierarchical tool shows various decisions and their potential consequences. It oper-
ates using conditional control statements and represents a non-parametric, supervised learn-
ing method. The tree’s structure originates from a root node according to Figure 3.6, extending
through branches and internal nodes, ultimately culminating in leaf nodes, which are terminal
points where decisions are made.

CHAPTER 3. ARTIFICIAL INTELLIGENCE (AD), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)23

Essentially, a decision tree systematically breaks down data based on feature distinctions,
starting from a foundational root node, and progressing through a series of splits, resulting in
decisions at the leaves.

Key terminologies associated with decision trees include: Mali (2021)

* Root nodes: The starting point of a decision tree, from which data begins to branch based

on various features.
¢ Decision nodes: Nodes derived from the division of root or other internal nodes.

¢ Leaf nodes (terminal nodes): Endpoints of the tree where no further splits occur, repre-

senting final decisions or outcomes.

* Sub-tree: A smaller section of the larger tree, similar to how a sub-graph is a portion of a

larger graph.

* Pruning: The process of trimming certain branches or nodes to prevent overfitting, thereby

optimizing the tree’s performance.

3.4.4 Random forest

Random Forest (RF) is a versatile machine learning technique employed for both classification
and regression tasks. Essentially, it works by combining multiple decision trees to generate
a consolidated prediction. The power of RF lies in its ensemble approach, where numerous
trees are built from the training data and internally tested to provide predictions for future data
points. There are various forms of RE differentiated by three main aspects: Boulesteix et al.
(2012)

¢ Tree construction: This relates to the methodology employed to build each individual tree
within the forest.

e Data generation: This refers to the approach used to create the altered datasets on which
every individual tree is formulated.

* Prediction aggregation: This deals with how the outputs from each tree are combined to

generate a singular, consensus prediction.

In the general random forest method, every tree is a conventional Classification or Regres-
sion Tree (CART). This method uses a specific criterion known as the decrease of Gini impurity
(DGI) for splitting nodes. Furthermore, instead of using all predictors for splits, only a ran-
dom subset of predictors is chosen at each node split, adding a layer of randomness that often

CHAPTER 3. ARTIFICIAL INTELLIGENCE (Al), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)24

improves model performance. To build each tree, a bootstrap sample (a sample taken with re-
placement) is drawn from the original dataset. Finally, when it comes to making predictions,
the outputs from all trees are aggregated, often through a majority vote, ensuring a robust and
less overfitting outcome. Boulesteix et al. (2012)

Random forests are particularly esteemed for their ability to handle large data sets with
higher dimensionality. They can also assess the importance of different features in the dataset,
which can be instrumental for feature selection. While they tend to be resistant to overfitting
due to their ensemble nature, they can still become complex and computationally intensive

when the number of trees is significantly large. Boulesteix et al. (2012)

3.5 Artificial Neural Network (ANN)

Deep learning, a specialized branch of machine learning, draws its inspiration from the intrica-
cies of the human brain. It employs Artificial Neural Networks (ANN) that attempt to replicate
the functionalities of the human brain, enabling machines to learn from experiences and data,
much like we do. Deepanshi (2021)

Artificial neural networks, also known as Neural Networks (NNs) are advanced computa-
tional structures inspired by the human brain. They have been applied across diverse fields,
from computing and medicine to engineering and economics. Rooted in optimization theory;,
an ANN is constructed using a series of artificial neurons, or processing units, linked by various
weights. These weights signify the strength of connections between neurons, dictating how one
neuron influences another. The term 'network’ in neural network points to the intricate links
between these neurons across multiple layers of the system. Zakaria et al. (2014)

Similar to our brain, artificial neural networks consist of multiple layers of neurons (Fig-
ure 3.7), often termed as nodes. In the context of ANNs, the dendrites in biological networks
symbolize inputs, the cell nuclei stand for nodes, synapses indicate weights, and axons depict
the output. Kalita (2022)

The most basic form of a neural network consists of a single unit, referred to as a neuron or
node, depicted in Figure 3.8. To construct a more complex NN, multiple such neurons are com-
bined. The procedure of processing data from input to output is consistent across all neurons in
the system. A typical NN comprises an input layer, one or several hidden layers, and an output
layer. Every layer contains a specified number of nodes. Any layer that is not explicitly an input
or output layer is considered a hidden layer. The output layer produces the predicted data or
results. Laeerum (2018)

In this architecture, each neuron undertakes basic tasks: it multiplies its inputs (xy, x2, ..., X;)
by specific weights (w;, wo, ..., w,), aggregates the results (Z), and then passes this sum through
a typically nonlinear activation function (a), producing an output (y), as illustrated in Figure 3.9.

CHAPTER 3. ARTIFICIAL INTELLIGENCE (AD), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)25

Call body
| Axn Telodendria ~
| - ! R
- | f Y i E
| Y ' i
L e)
Nucleus H"-__.-L‘_’J
]
== Axon hillock | Synaphc berminals

¥ .
~
\ Golgi apparatus

£ -
Milochondrion '\‘ = Dgsruchribey

\\
/I I\“ —= Dandritic branches

Figure 3.7: Human brain’s neuron from (Kalita (2022)).

Neuron or node

Input Output

Figure 3.8: ANN with a single neuron from (Laerum (2018)).

Despite the simplicity of individual nodes, when grouped into dense networks, they have the
capacity to represent highly intricate functions. These functions are characterized by the neuron
weights, which are well-tuned during the training phase. Rosa et al. (2019)

Figure 3.9 depicts key components of a single neuron, and they are as follows: Kalita (2022)

* Input: This refers to the specific features provided to the model for training.

* Weights: Weights determine the degree of influence an input has on the outcome. Less
relevant inputs get reduced emphasis, while more related ones are given more impor-

X; XWwWj

Transfer Function L .
))) Activation Function
X2 w2 (adding bias b)
X3 X W3 ¥y
= a(z

z=X(wixXx;)+b y=atz)

Xn * Wiy

Figure 3.9: Key components of a neuron from (Rosa et al. (2019)).

CHAPTER 3. ARTIFICIAL INTELLIGENCE (Al), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)26

() INPUT LAYER HIDDEN LAYERS () OUTPUT LAYER
Figure 3.10: ANN with two hidden layers from (Rosa et al. (2019)).

tance. For instance, in sentiment analysis, a negative term would be more influential in

the decision-making process compared to a neutral term.

* Bias: Bias helps regulate the activation of a neuron. It can either accelerate or delay this

activation.

e Transfer function: This function’s role is to combine the inputs (which have been multi-

plied by their weights) in preparation for the application of the activation function.

¢ Activation function: This function determines if a neuron should be activated. It employs
mathematical operations to decide whether the provided input is significant enough for

the neuron to be activated.

When several neurons are grouped together, they form a layer. Likewise, when multiple such
layers are combined, it results in a multi-layer neural network as shown in Figure 3.10.
The primary elements of this arrangement include: Kalita (2022)

* Input layer: This is the initial layer in a neural network. Its function is to bring the data

into the system for subsequent processing by the succeeding layers of artificial neurons.

* Hidden layers: These layers follow the input layer. Their role is to transform the incoming
inputs in a non-linear manner. Each hidden layer can produce outputs tailored to specific

tasks.

* Output layer: This is where the data, having been processed by the hidden layers, makes
the final prediction. The ultimate result or decision of the network emerges from this layer.

CHAPTER 3. ARTIFICIAL INTELLIGENCE (Al), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)27

All incoming inputs are summed up, with each input being adjusted based on its specific
weight. This scaling, determined by the weights, is optimized during the network’s training pro-
cess to ensure the neuron responds to the right features. In addition to the weights, the neuron’s
bias is another trained parameter that plays a role in this summation. The bias acts as an off-
set addition to the weighted sum, effectively shifting the activation function’s outcome either
positively or negatively. Kalita (2022)

Let’s assume we have a neuron that receives two inputs, x; and x,. These inputs are each
multiplied by their respective weights, w; and w». These product values are then combined and
an additional bias, b, can be added. Here, you can see the representation of the input, horizontal

vector X, and the weight, vertical vector W.

X =[x, x2] (3.15)
w= | (3.16)
wy

The equation that represents the combined total of inputs multiplied by their weights, along
with the bias, is as follows:
Z=X-W+b (3.17)

After having multiplication of two vectors, we have: Kalita (2022)

n
X-W=) xijw;=xwi +Xw, (3.18)
i=1

After adjusting the inputs according to their weights, combining them, and adding the bias
to get the value Z, we need to use the activation function on Z to determine the neuron’s output

as previously depicted in Figure 3.9.

3.5.1 Activation function

Activation functions play an important role in neural networks. Without activation functions,
neural networks would be much less powerful and unable to model complex, non-linear re-
lationships in data. They transform the linear combinations of weights and inputs in a way
that allows the model to approximate any function, given a suitable architecture and enough
data. The primary purpose of the activation function is to introduce non-linearity into the net-
work. Without non-linearity, no matter how many layers the network has, it would behave just
like a single layer because summing these layers would give just another linear function. Non-
linearity allows the network to capture complex patterns and relationships in the data, making

deep learning possible. Moreover, activation functions help in transforming and shaping the

CHAPTER 3. ARTIFICIAL INTELLIGENCE (AD), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)28

m

0
E WiXi
i=1

Figure 3.11: Threshold activation function from (Eremenko (2023)).

Y

o i WiX;
i=1
Figure 3.12: Sigmoid activation function from (Eremenko (2023)).

output in a way that can be helpful for the subsequent layer to learn from. This sequential
transformation of features allows the network to learn hierarchical representations. Eremenko
(2023)

Most common activation functions are as follows: Eremenko (2023)

e Threshold function: The threshold function is a basic form of activation function. It op-
erates by choosing a threshold. If the weighted sum input, here denoted as Z, surpasses

this threshold, which is zero in this case, then the neuron gets activated. (Figure 3.11)

1 ifZ=0
f(Z)= (3.19)
0 ifZ<0

 Sigmoid function: The sigmoid activation function is commonly used in neural networks.
It is characterized by its s-shaped curve. Sigmoid function converts the value between the
range 0 and 1. (Figure 3.12)

f2)= (3.20)

1+e 2

* Hyperbolic Tangent (Tanh): The hyperbolic tangent activation function is like the sig-

CHAPTER 3. ARTIFICIAL INTELLIGENCE (AD), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)29

m
0
E WiXi
i=1

Figure 3.13: Hyperbolic tangent activation function from (Eremenko (2023)).

y

o i WiX;
i=1
Figure 3.14: Rectified linear unit activation function from (Eremenko (2023)).

moid function, representing an s-like curve. However, its output values range from —1 to
1. (Figure 3.13)

el —e”
eZ +e 2

V4

f2)= (3.21)

* The Rectified Linear Unit (ReLU): ReLU is a type of activation function that is widely used
in deep learning models. Graphically, the function looks like a ramp that starts from 0
and grows linearly with positive values of Z. If the input is Z, the output will be Z if Z is

positive, otherwise, it outputs zero.(Figure 3.14)

f(Z) =max(0, Z) (3.22)

3.5.2 Cost function

After training the neural network, it is essential to evaluate its performance. This is where the
concept of a cost function becomes pivotal. The cost function quantifies the discrepancy or
error between the predicted outcomes and the actual results. It essentially offers a numerical

representation of the model’s inaccuracies or mispredictions. In neural networks, the learning

CHAPTER 3. ARTIFICIAL INTELLIGENCE (AD), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)30

or training phase revolves around optimizing this cost function. The objective is to adjust the
model’s parameters in such a way that this error measure, often denoted as J or C, is minimized.
Commonly used cost functions include the Mean Squared Error (MSE) and the Mean Absolute
Error (MAE) as defined in (3.23 & 3.24), where M represents the total number of samples, x;
denotes the input vector, y; is the expected output, and w stands for the model’s weights. By
optimizing these functions, neural networks refine their predictions, aiming to achieve better
performance on new data. Rosa et al. (2019)

1 M
MSE(x,y, w) = — Y [ANN(x;, w) - y;)? (3.23)
i=1
1 M
MAE(x, y,w) = — Y |ANN(x;, w) - yi (3.24)
i=1

To address this optimization problem, gradient descent and backpropagation are used. Gra-
dient descent is a repetitive process that navigates the cost function in the opposite direction
of the gradient. When training ANNSs, backpropagation is used to determine the gradient of the
cost function with respect to the weights. Throughout the training process, the error’s derivative
with respect to each weight is propagated back through the network (which is why it is termed
backpropagation), facilitating the adjustment of the weights according to equation (3.25): Rosa
et al. (2019)

o]
(n) _ "7
n ow lwm

In this context, J signifies the cost function, w represents a generic weight, and w™* D is the

w = (3.25)

value of that weight when it gets updated. Additionally, 1 is a scalar referred to as the learning
rate. Backpropagation uses the chain rule, offering a simplified method to iteratively compute
the cost function’s gradient based on the derivatives of the activation functions. The rule for
backpropagation is denoted as (3.26), where u,, indicates the input of the weight’s net in the
feed-forward network, and v,, stands for the input of the same weight’s net during the back-

propagation process. Rosa et al. (2019)

R (3.26)

The learning rate controls how much influence the gradient has on weight adjustments.
When set too high, the learning rate might cause the algorithm to surpass the lowest point of
the loss function or, in more extreme cases, stay away from it. Conversely, a too small learning
rate may result in a slow convergence, as depicted in Figure 3.15. The learning rate is a pivotal
hyperparameter as it governs the direction (either towards convergence or divergence) of the
optimization algorithm. Rosa et al. (2019)

CHAPTER 3. ARTIFICIAL INTELLIGENCE (Al), MACHINE LEARNING (ML) AND DEEP LEARNING (DL)31

—&— High learning rate
0,30 —%— Good learning rate
—+— Low learning rate
0,254
0.204
Wi
V1
o
0,15
0,10+
0,05 .
e
¥
Yy rr vy

||||||||||

epoch

Figure 3.15: Evolution of the error with different learning rates from (Rosa et al. (2019)).

Chapter 4
Building The Machine Learning Models

This chapter provides an overview of the programming language Python, tools, libraries, and
platforms employed in the development of machine learning models. Then presents the process
of constructing and programming these models for preliminary testing. All models, along with
the data preprocessing, aim to predict the remaining useful life of the aircraft turbofan engine
based on the degradation simulation dataset from NASA. The performance metrics adopted are
root mean squared error (RMSE) and R-squared. Libraries such as NumPy, Scikit-learn, Tensor-
Flow, Pandas, and Matplotlib are employed in this work. All coding tasks are executed within
the Python Jupyter notebook environment.

4.1 Programming language

Python, created by Guido van Rossum and first released in 1991, is a high-level, versatile pro-
gramming language renowned for its clear syntax and readability, which was inspired by the ABC
language. Over the decades, Python has evolved and gained widespread adoption, especially in
scientific and academic communities. In the realm of machine learning, Python has become
the language of choice due to its vast ecosystem of specialized libraries like TensorFlow, Keras,
and Scikit-learn. These libraries provide pre-built functions and tools that simplify the devel-
opment and implementation of complex machine learning algorithms. Additionally, Python’s
adaptability and integration capabilities make it easy to work with large datasets, conduct data
analysis, and interface with other technologies. Inoxoft (2022)
There are several types of environments that we can develop to run Python code like:

o Text editors
e Full IDEs

¢ Notebook environments

32

CHAPTER 4. BUILDING THE MACHINE LEARNING MODELS 33

In this master thesis, the Jupyter notebook as the most popular notebook environment for
executing Python code is employed. Jupyter notebook provides an interactive interface that
facilitates the integration of live code, visualizations, and narrative text within a single docu-
ment. This notebook environment is particularly advantageous for Python programming and
data analysis as it allows for real-time execution and feedback, enabling iterative development
and immediate visualization of results. Eremenko (2023)

4.2 Libraries

In programming, a library refers to a set of precompiled codes that can be utilized in subsequent
programs for some specific operations. Beyond just precompiled codes, a library can have doc-
umentation, configuration settings, message templates, and various elements such as classes
and values. In Python, a library represents an assembly of related modules. These modules con-
sist of code segments that can be used across different programs repeatedly, thereby simplifying
the programming process, and improving efficiency. By eliminating the need to repeatedly write
the same code for different applications, Python libraries become crucial, especially in areas like

machine learning, data science, and data visualization. Eremenko (2023)

e NumPy: NumPy, which stands for Numerical Python, is one of the foundational packages
for numerical computations in Python. It provides support for large multi-dimensional
arrays and matrices, along with a collection of high-level mathematical functions to oper-

ate on these arrays. Eremenko (2023)

e Pandas: Pandas is a powerful and widely used open-source data analysis and manipula-
tion library for the Python programming language. It provides flexible data structures that
make it easy to efficiently manipulate structured data. Given its capabilities and versatil-
ity, Pandas has become a vital tool for data scientists, analysts, and researchers working
with Python, especially for tasks related to data cleaning, transformation, and exploration.
Eremenko (2023)

* Matplotlib: Matplotlib is a comprehensive library for creating static, animated, and inter-
active visualizations in Python. It can produce a wide variety of plots and figures, includ-
ing line plots, scatter plots, bar plots, histograms, error charts, pie charts, box plots, and
even more complex visualizations like 3D plots. Eremenko (2023)

 Scikit-learn: Scikit-learn, often referred to simply as Sklearn, is a machine learning li-
brary in Python. It is built based on NumPy, SciPy, and Matplotlib. It is known for its
user-friendly and straightforward Application Programming Interface (API), as well as its

CHAPTER 4. BUILDING THE MACHINE LEARNING MODELS 34

Table 4.1: The dataset description of aircraft turbofan engine. (Zhang et al. (2023))

Dataset ‘ FDO001 FD002 FDO003 FDO004
Fault modes ‘ 1 1 2 2
Operational conditions ‘ 1 6 1 6
Training engines ‘ 100 260 100 249
Testing engines ‘ 100 259 100 248

efficiency and utility in standard machine learning tasks. It includes a wide variety of algo-
rithms for supervised and unsupervised learning like classification, regression, clustering,
dimensionality reduction, and more. Beyond algorithms, it provides tools for model selec-
tion, data preprocessing, and evaluation. This includes functions for feature scaling, en-

coding categorical variables and imputing missing values among others. Eremenko (2023)

e TensorFlow: TensorFlow is one of the most widely used open-source frameworks for deep
learning and machine learning tasks. While TensorFlow is known primarily for deep learn-
ing, it is versatile enough to be used for a wide range of machine learning tasks. It pro-
vides both high-level APIs for quick model development and low-level APIs for more cus-
tom, intricate work. TensorFlow’s comprehensive features make it a leading choice for
researchers and developers aiming to harness the power of machine learning and deep
learning. Eremenko (2023)

4.3 Introduction of the dataset

The Prediction Center at NASA Ames offers a comprehensive dataset for aircraft turbofan en-
gines, derived from the Commercial Modular Aero-Propulsion System Simulation (CMAPSS).
This dataset contains data across four distinct operational conditions. Table 4.1 presents the
structure and details of this dataset. Zhang et al. (2023)

Each of these subsets offers simulated run-to-failure paths of turbofan engines under varied
operational conditions and fault modes. Each subset is further divided into a training dataset
and a testing dataset. The datasets include readings of 21 sensors as presented in Table 4.2, that
record the run-to-failure data. Every dataset forms a matrix with m x 26 dimension, where m
represents the number of data points for each engine. In these matrices, rows indicate cycle-
wise data, while columns represent elements like engine number, operational cycle number,
three different operational settings, and the values from the 21 sensors. In total, the CMAPSS
dataset consists of four training sets, four testing sets, and four RUL files. A distinguishing factor
between the training and testing datasets is the endpoint data. In the training sets, the last data

represents the engine’s failure time, whereas the testing sets stop capturing sensor data some

CHAPTER 4. BUILDING THE MACHINE LEARNING MODELS 35

Table 4.2: Details of 21 sensors for a turbofan engine. (Esfahani et al. (2021))

Sensor No. ‘ Symbol Description

1 T2 The total temperature at the fan inlet
2 ‘ T24 The total temperature at the LPC outlet
3 ‘ T30 The total temperature at the HPC outlet
4 ‘ T50 The total temperature at the LPT outlet
5 ‘ P2 Pressure at fan inlet

6 ‘ P15 The total pressure in bypass-duct

7 ‘ P30 The total pressure at HPC outlet

8 ‘ Nf Physical fan speed

9 ‘ Nc Physical core speed

10 ‘ epr Engine pressure ratio (P50/P2)

11 ‘ Ps30 Static pressureat HPC outlet

12 ‘ phi The ratio of fuel flow to Ps30

13 ‘ NRf Corrected fan speed

14 ‘ NRc Corrected core speed

15 ‘ BPR Bypass ratio

16 ‘ farB Burner fuel-air ratio

17 ‘ htBleed Bleed enthalpy

18 ‘ Nf-dmd Demanded fan speed

19 ‘ PCNfR-dmd Demanded corrected fan speed

20 ‘ w31 HPT coolant bleed

21 ‘ w32 LPT coolant bleed

time ahead of the actual failure, and the estimation of remaining useful life of the engine is
expected. However, for validation purposes, actual RUL values are provided separately. For the
scope of this master thesis, the first dataset, FD001, which operates under a single fault mode
and one operational condition is used, to evaluate the efficacy and functionality of previously
proposed machine learning and ANN models. In this chapter, the accuracy and performance of
proposed models are analyzed based on two evaluation metrics, R-squared and RMSE. Esfahani
et al. (2021)

CHAPTER 4. BUILDING THE MACHINE LEARNING MODELS 36

4.4 Data preprocessing

The dataset is provided in a zip-compressed text file consisting of 26 columns of numbers, each
separated by a space. Each row represents a set of data from a single operational cycle, while
each column stands for a unique variable. These columns represent: NASA Repository (2023)

Column 1: Unit number

Column 2: Cycle

Column 3 to 5: Operational setting

Column 6 to 26: Sensor measurements

Within the training set FD001, each engine’s measurements start from cycle one and con-
tinue for each cycle up to the point of failure. The data recorded at each cycle or row acts as an
example. However, each example lacks a directly associated RUL. This means that there is not a
direct corresponding y-value for each x.

Based on this data structure, several preprocessing steps are necessary. The initial step in-
volves importing three files including train_FD0O01, test_FD0O1 and RUL_FDOO1 as training
set, test set, and RUL for test set, respectively into the Jupyter notebook. Subsequently, finding
a corresponding label or Y-value for train set or X. Finally, it is essential to remove the “Unit
Number” and “Cycle” columns, as they are not relevant features for RUL.

The first number in the dataset, labeled “unit number”, corresponds to a specific engine. For
every new engine, the “cycle” number always starts from one and continues to increase with
every operational cycle until the engine breaks down. By inverting the cycle column for every
engine, each example or row can be assigned a respective RUL, or the number of cycles left

before failure.

4.4.1 Importing the dataset

In the following code, Figure 4.1, first the necessary libraries are imported. For enhanced clarity,
each column is assigned a name. Subsequently, all three files are loaded as Pandas framework:
the training set, test set, and the remaining useful life (RUL). The first 5 rows of the training set
are illustrated in Figure 4.1.

The y_test vector has the shape of (100,1) and represents the remaining useful life (RUL)
for 100 engines. On the other hand, the x_test matrix has a shape of (13096,26). In x_test,
each engine starts from an initial point and ends at a random cycle, with all the cycle records
provided. However, for RUL prediction purposes, only the last cycle for each engine is of interest.

Since the true RUL values in the y_test for the test set are provided solely for the last time cycle

CHAPTER 4. BUILDING THE MACHINE LEARNING MODELS 37

importing libraries

import pandas as pd

import numpy as np

define column names for easy indexing

index_names = ['unit_number’, 'cycles']

setting_names = ['setting 1', 'setting_ 2', 'setting 3']

sensor_names = ['s_{}'.format(i) for i in range(1,22)]

col_names = index_names + setting_names + sensor_names

read data

train = pd.read_csv('train_FD@eli.txt',sep="%s+', header-None, names=col_names)
%x_test = pd.read_csv('test_FD@ol.txt',sep="\s+', header=None, names=col_names)
y_test = pd.read_csv{'RUL_FD@®1.txt', sep="\s+', header=None, names=['RUL'])
train.head()

unit_number cycles setting_1 setting_2 setting_3 s_1 5 2 5 3 5 4 55 .. s_12 s_13 s5_14 515 s_ 16 s_17 s 18 s_19
0 1 1 -0.0007 -0.0004 100.0 518.67 641.82 1589.70 1400.60 14.62 .. 521.66 2388.02 813862 84195 0.03 392 2388 1000
1 1 2 0.0019 -0.0003 1000 51867 64215 1591.82 140314 1462 52228 238807 813149 84318 003 392 2338 1000
2 1 3 -0.0043 0.0003 100.0 51867 64235 1587.99 140420 1462 .. 52242 2388.03 813323 84178 0.03 390 2388 1000
3 1 4 0.0007 0.0000 100.0 518.67 64235 158279 1401.87 1462 .. 52286 2388.08 813383 83682 0.03 392 2388 1000
4 1 5 -0.0019 -0.0002 100.0 518.67 64237 1582.85 1406.22 14.62 .. 52219 2388.04 813380 84294 0.03 393 2388 1000

5 rows x 26 columns

Figure 4.1: Importing libraries and dataset files.

removing all extra rows and keep only Last cycl of each engine
x_test = x_test.groupby('unit_number').last().reset_index()
¥_test.shape

(188, 26)

Figure 4.2: Removing extra rows in x_test.

of each engine, the test set is adjusted to represent this as illustrated in Figure 4.2. As a result,
all rows except the last one for each engine are removed and now the x_test and y_test are
synchronized.

With both test sets (x_test and y_test) now prepared, our attention shifts towards the con-
struction of the training sets, x_train and y_train. Unlike the test set, the training set does not
have a direct RUL column for each cycle. To address this, a function called add_remaining_useful_life,
detailed in Figure 4.3, is introduced.

The function operates by determining the RUL for each row in the following manner: it sub-
tracts the current cycle number from the maximum cycle of the respective engine. This com-
putation yields the RUL value for that specific row. After this RUL computation, the auxiliary
column labeled max_cycle (which was used temporarily to facilitate the computation) is dis-
carded. Heading of the modified training set can be reviewed in Figure 4.3.

In Figure 4.4, a detailed representation of the training set is presented. One noteworthy
observation from this figure is the consistency in the values of the setting_3 column. Given its
static values, it is evident that this column does not show any variability, making its contribution
to the predictive modeling process negligible. So, this column is removed from the train set.

CHAPTER 4. BUILDING THE MACHINE LEARNING MODELS

def add_remaining_useful life(df):
Get the total number of cycles for each unit
grouped_by unit = df.groupby(by="unit_number"})
max_cycle = grouped by unit["cycles"].max()

Merge the max cycle back into the original frame
result_frame = df.merge(max_cycle.to_frame(name="max_cycle'), left_on="unit_number', right_index=True)

Calculate remagining useful Llife for each row
remaining_useful_life = result frame["max_cycle"] - result_frame["cycles"]
result_frame["RUL"] = remaining_useful life

drop max_cycle as it's no Longer needed
result_frame = result_frame.drop(“max_cycle”, axis=1)
return result_frame

train = add_remaining_useful life(train)

train.head()

1ber cycles setting_1 setting_2 setting_3 s_1 5_2 8_3 54 50w s_13 5 14 515 s_16 s_17 s_18 s_19 s_20 s_21 RUL
1) -0.0007 -0.0004 100.0 51867 641.82 1580.70 140060 1462 .. 238302 813862 84195 003 392 2388 1000 39.06 234190 191
1 2 0.0019 -0.0003 100.0 51867 64215 1591.82 140314 1462 .. 2353.07 813149 84318 003 392 2388 1000 39.00 234236 190
1 3 -0.0043 0.0003 100.0 51867 64235 1587.99 140420 1462 .. 238303 813323 84178 003 390 2383 1000 3395 233442 139
1 4 0.0007 0.0000 100.0 51867 64235 158279 140187 1462 238808 813383 83682 0.03 392 2388 1000 3888 233739 188
1 5 -0.0019 -0.0002 100.0 51867 64237 158285 140622 1462 .. 232304 B8133.80 84204 003 393 2388 1000 3300 234044 187

Figure 4.3: Defining a function to create RUL column in train set.

unit_number cycles setting_1 setting_2 setting_3 s5_1 5 _2 s_3 s 4 s 5

count 20631.000000 20631.000000 20831.000000 20631.000000 20631.0 2.063100e+04 20631.000000 20631.000000 20631.000000 2.063100e<04 .. 20631.00

mean 51.506568 108.807862 -0.000009 0.000002 100.0 5.186700e+02 642680934 1590523119 1408933782 1.462000e+01 .. 238809
std 29.227633 68.820990 0.002187 0.000292 0.0 65371562e-11 0.500053 6.131150 9.000605 3.394700e-12 .. 0.07
min 1.000000 1.000000 -0.008700 -0.000600 100.0 5.186700e+02 541210000 1571.040000 1382250000 1.462000e+01 .. 238788
25% 26.000000 52.000000 -0.001500 -0.000200 100.0 5.156700e+02 642325000 1586.260000 1402.360000 1.462000e+01 .. 238804
50% 52.000000 104.000000 0.000000 0.000000 100.0 5.186700e+02 642640000 1590100000 1408.040000 1.462000e+01 .. 238809
5% T77.000000 156.000000 0.001500 0.000300 100.0 5.186700e+02 643.000000 1594.380000 1414.555000 1.462000e+01 .. 238814
max 100.000000 362.000000 0.008700 0.000600 100.0 5.186700e+02 544530000 1616.910000 1441.450000 1.462000e+01 .. 238858

8 rows = 27 columns

Figure 4.4: Training set headings.

CHAPTER 4. BUILDING THE MACHINE LEARNING MODELS 39

import matplotlib.pyplot as plt
def plot_sensor(sensor_name, ax):
for i1 in train['unit_number'].unique():

if (1 X 18 == 8): # only plot every 16th unit number
ax.plot('RUL', sensor_name,
data=train[train[unit_number’'] == i])
ax.set_x1im(258, 8) # reverse the x-axis so RUL counts down to zero

ax.set_xticks(np.arange(8, 275, 25))
ax.set_ylabel{sensor_name)
ax.set_xlabel('Remaining Useful Life')
fig, axes = plt.subplots(7, 3, figsize=(15, 17.5)) # 7 rows, 3 columns
for sensor_name, ax in zip(sensor_names, axes.ravel()}):
plot_sensor(sensor_name, ax)
plt.tight_layout()
plt.show()

Figure 4.5: Function for plotting sensor data.

4.4.2 Datavisualization

Before deploying machine learning models, data visualization plays a pivotal role in shaping the
analytics process. It allows for a comprehensive understanding of data distributions, aiding in
recognizing inherent patterns and potential anomalies. By illustrating data graphically, outliers
(which might distort the model’s performance) can be easily identified and addressed. Beyond
outliers, visual tools can shed light on how various features interact with one another. This can
be instrumental in refining feature selection or engineering.

So, the next step is examining the sensor signals in relation to RUL to differentiate between
"useful" and "irrelevant" sensors. Specifically, the aim is to identify sensors rich in information
versus those that are not as informative. To achieve this, a function called plot_sensor is used
and depicted in Figure 4.5, which plots the sensor signals for every tenth turbofan. Illustrations
of these plots for all sensors can be viewed in Figures 4.6-4.8.

Upon examining the visualizations, it appears that sensors 1, 5, 10, 16, 18, and 19 offer min-
imal or no significant information to aid in predicting the remaining useful life (RUL). These
columns should be removed before any prediction tasks to enhance the speed and generaliza-
tion of the algorithms.

Additional analysis, revealed by the provided heatmap in the next step, suggests that sensors
resembling the patterns of sensors 6, 9, and 14 should also be excluded from the features.

It is noticeable that the remaining sensors exhibit a strong relationship with the RUL, par-
ticularly in the range of 0 to 125. This observation implies that for RUL values greater than 125,
there is not any noticeable change in sensor data. So, in order to ensure the model performs
better, all higher values of RUL (above 125) should be clipped to 125 to help improve RUL pre-
diction. However, all machine learning models will be applied without clipping the RUL. Then,
for comparative analysis, we will subsequently clip the RUL and examine the impact on our

results and predictions.

CHAPTER 4. BUILDING THE MACHINE LEARNING MODELS 40

540 1 644 1610
530 1 1500
- 520 ~ 643 "
w! ! w! 1590
510
500 | 642 1580
T T T T T T T T T T T T T T T T T T 1570 T T T T T T T T T
50 25 200 175 150 125 100 75 50 25 250 225 200 175 150 125 100 75 50 B 250 225 200 175 150 125 W00 75 50 5
Remaining Useful Life Remaining Useful Life Remaining Useful Life
+2.16el
1440 0010
150 0.008
1420 0.006
‘fl IJ.‘I 1]
L b 11 " n.oo4
1400 4 0002
40
T T T T T T T T T T T T T T T T T T 0000 T T T T T T T T T
50 225 200 175 150 135 100 75 S50 5 250 235 200 175 150 125 100 75 50 B B0 225 200 175 150 125 100 75 S0 5
Remaining Useful Life Remaining Useful Life Remaining Useful Life
3883
555 1 9150
554 23882
:| 553 ?.l 23881 3| 9100
552 1
388.0
551 S050
T T T T T 879 T T T T T T 1 T T T T T T 1
250 25 200 175 150 125 100 75 S0 25 0O 250 25 200 175 150 125 100 75 S0 2% 0 20 225 200 175 150 125 100 75 S0 5 0
Remaining Useful Life Remaining Useful Life Remaining Useful Life
. . y
Figure 4.6: Sensor’s plots from s_1 to s_9.
523
1350
1325 450 522
[=] - ~N
'::Ilm- :Iﬂ5 521
12751
520
1250 470
%0 25 00 175 150 25 100 75 S0 5 O 0 25 00 175 150 125 100 75 50 B 0 20 225 200 175 150 125 W00 75 0 25 O
Remaining Useful Life Remaining Useful Life Remaining Useful Life
8225 855
23883
8200
2388.2 50
ul . 3.Au3 A 8es
1 "
“ . A B150 a‘o
2388.0 4
B125 835
L B e
B0 25 W0 175 150 125 100 TS OS50 B 0 250 15 200 175 150 125 100 75 S50 B 0 250 225 200 175 150 125 W00 V5 SO B 0
Remaining Useful Life Remaining Useful Life Remaining Useful Life
398 500
0.031
396 2450
= 0.030 R, 5, 200
“w “ w
392 350
0.029 1 100 7300
50 225 00 175 150 125 100 75 S0 25 0 250 25 200 175 150 125 100 75 5 5 0 %0 225 200 175 150 125 100 75 %0 35 0
Remaining Useful Life Remaining Useful Life Remaining Useful Life

Figure 4.7: Sensor’s plots from s_10 to s_18.

CHAPTER 4. BUILDING THE MACHINE LEARNING MODELS 41

104 39.25 -
102 39.00 4

o 2
100 ~38.75 1

% 38.50 1

96 38.251

350 25 00 175 150 125 100 75 50 25 0 250 25 00 175 150 125 100 75 5 35 0 20 25 00 U5 150 125 00 75 % 5 0
Remaining Useful Life Remaining Useful Life Remaining Useful Life

Figure 4.8: Sensor’s plots from s_19 to s_21.

4.4.3 Feature extraction

Heatmap is a data visualization tool that uses color to represent the correlation between fea-
tures. A heatmap can provide a visual representation of how two variables (features) are related.
Correlation quantifies the degree to which two variables (or features) move in relation to one

another. Measure of correlation ranges between -1 and 1.

* A correlation of 1 indicates a perfect positive relationship.
* A correlation of -1 indicates a perfect negative relationship.

e A correlation close to 0 indicates little to no relationship.

Figure 4.9 illustrates the heatmap of features in train set.

Based on the code presented in Figure 4.10, only those features with an absolute correlation
value with RUL of 0.5 or greater are selected. This is carried out to select only the essential
features for model building, thereby preventing the issue of overfitting. Clearly, sensors that
have a strong correlation with RUL, as shown in Figure 4.9, demonstrate the previous findings
from visualizing the sensor data in section 4.4.2.

Now, only these important features will be retained in both the train and test sets. Moreover,
the train set should be split into x_train and y_train to start building models. All these steps
are shown in Figure 4.11.

Before beginning the model-building process, a function to evaluate machine learning mod-
els’ performance is created as depicted in Figure 4.12. This function provides both R-squared
and RMSE values, helping to eliminate redundancy in writing evaluation code for each model.

4.4.4 Standardization

Standardization is a preprocessing method used in machine learning and statistics to scale fea-
tures (or variables) to have a mean of zero and a standard deviation of one. This is done to
ensure that all features have the same scale, which can be important for many machine learn-

ing algorithms. When features in a dataset have different scales, algorithms might be influenced

CHAPTER 4. BUILDING THE MACHINE LEARNING MODELS

wal_numizer
rycles
sl _1
settiey T o . L : f 4 1.1e-13 i1

w1 4 § Be-] 1 Ge-131 G100 L9e-14

511 3 g 074 Llel

512 11 e 072 468 D62

513 181 98-1] ©

514 0 3] Ge

463 075 gEERE]

LR ERREEEERE] 067 0.6 075 Eiid

o
]
E
5
S
=

4358 059 474

466 .67 .61

463 083 458

475 075 4E&D

463 083 056

020 929 439

T Ap-136-131 de-14

477 997 07

£65 066 461

Figure 4.9: Heatmap visualization of sensors’ correlation.

correlation=train.corr({)

#selecting highly correlated features

train_relevant_features = correlation[abs(correlation['RUL"])»=8.5]
train_relevant_features['RUL"]

cycles -8.736241

Siid -0. 686454
s 3 -8.5845208
s 4 -8.678048
s 7 8.657223
5 8 -8.563968
s 11 -8.696228
5 12 8.671983
5_13 -8.562569
g -8.642667
L3 F g -8.686154
5 28 0.620428
s 8.635662
RUL 1.c66ec0

Figure 4.10: Selecting only relevant features to RUL.

42

o0

a7s

aso

nis

(1)

- —0.25

- i1 51

CHAPTER 4. BUILDING THE MACHINE LEARNING MODELS

creating a List of only important features.
list relevant features=train_relevant features.index
list_relevant_features=list_relevant_features[1:]

Now we will keep onlt these imprtant features in train set.
train=train[list_relevant_features]

splitting train set into x_train and y_ train(RUL).
y_train=train[‘RUL"]

x_train=train.drop(['RUL"],axis=1)

keeping only train columns/features in the test set as well.
x_test=x_test[x_train.columns]

%x_train.head()

5_2 8 3 5_4 s_T 58 s_ 11 s_12 513 s_15 s_17 s_20 5_21

0 64182 158070 1400.60 55436 238806 4747 52166 238802 84195 392 3906 23.4190
1 64215 15891.82 140314 55375 238504 4749 52228 238807 84318 392 3900 234236
2 64235 1587.99 140420 55426 2385.08 4727 52242 238503 84178 390 3595 233442
3 64235 158279 140187 55445 238811 4713 52286 238808 83682 392 3888 233739

4 64237 158285 140622 554.00 238306 4728 52219 238804 84204 393 3890 234044

Figure 4.11: Keeping only significant sensors and splitting the train set.

create an evalugte function to calculate R-squared and RMSE
from sklearn.metrics import r2_score, mean_squared_error
def evaluate(y_true, y_hat, label="test'):
mse = mean_squarad_error(y_true, y_hat)
rmse = np.sqri(mse)
variance = r2_score(y_true, y_hat)
print('{} set RMSE:{}, R2:{}'.format(label, rmse, variance))
return rmse,variance;

Figure 4.12: Evaluation function.

CHAPTER 4. BUILDING THE MACHINE LEARNING MODELS 44

Standardization of features

from sklearn.preprocessing import StandardScaler
sc = StandardScaler()

X_train_trans = sc.fit_transform(x_train)
x_test_trans = sc.transform(x_test)

Figure 4.13: Standardization of features.

by those with larger scales. Standardizing the data helps in making the training process more
efficient and can lead to better model performance. (Larum (2018))

As depicted in Figure 4.4, there is a noticeable variance in values across different sensors.
Given this observation, it is important to standardize these values, ensuring all features are
rescaled to possess a mean of zero and a variance of one. This standardization process can be
conveniently executed using Sklearn’s StandardScaler () method followed by fit_transform().
Consequently, as illustrated in Figure 4.13, both x_train and x_test have been standardized.
In the subsequent stages of model building, the transformed values, x_train_transand x_test_trans
will be used.

4.5 Building models

In this section, various machine learning models, including linear regression, polynomial re-
gression, support vector regression, decision tree, random forest, and the artificial neural net-
work are constructed, to compare their results. The process of building and training these mod-
els is made considerably straightforward due to the robust capabilities of the Scikit-learn and

TensorFlow libraries. In the following, all codes related to model construction are provided.

4.5.1 Linear regression

Figure 4.14 displays the code block for the linear regression model. Both R-squared and RMSE
are employed as evaluation metrics for the training and test sets. Observing the training set, we
note an R-squared value of approximately 0.56. While this is not too good, it can potentially be
related to the data not being strictly linear. However, when applying the model to the test set,
the R-squared value decreases to 0.35, which is considerably low. Given this, we will proceed to

build further more models to see how they are performing.

4.5.2 Polynomial regression

Executing the polynomial regression does not yield superior results. As depicted in Figure 4.15,
the R-squared value for the training set is marginally better than that of the linear regression with
the value of 0.61. However, its performance on the test set is inferior to the linear regression with
R-squared of 0.29.

CHAPTER 4. BUILDING THE MACHINE LEARNING MODELS

Linear regression model

from sklearn.linear_model import LinearRegression

Im = LinearRegression()

Im.fit(x_train_trans, y train)

predict and evaluate

y_hat_train = lm.predict(x_train_trans)
RMSE_Train,R2_Train=evaluate(y_train, y_hat_train, 'train’)
y_hat_test = Im.predict(x test_trans)
RMSE_Test,R2_Test-evaluate(y test, y_hat_test, 'test’)

train set RMSE:45.61466877868371, R2:8.56143780899126991
test set RMSE:33.301161878181, R2:0.3578164845370345

Figure 4.14: Linear regression code block.

Polynomial regression

from sklearn.linear_model import LinearRegression

from sklearn.preprocessing import PolynomialFeatures

poly reg = PolynomialFeatures(degree = 4)

x_poly = poly_reg.fit_transform(x_train_trans)

lin_reg_2 = LinearRegression()

lin_reg_2.fit(x poly, y_train)

predict and evaluate

y_hat_train = lin_reg 2.predict(x_poly)
RMSE_Train,R2_Train=evaluate(y_train, y_hat_train,'train’)
y_hat_test = lin_reg 2.predict(poly_reg.fit_transform(x_test trans})
RMSE_Test,R2_Test=evaluate(y_test, y hat test, 'test’)

train set RMSE:42.893723560802194, R2:8.6121982317815551
test set RMSE:34.879920839@35894, R2:6.295453083124645

Figure 4.15: Polynomial regression code block.

4.5.3 Support Vector Regression (SVR)

45

From the results depicted in Figure 4.16, it is evident that support vector regression outperforms

both linear and polynomial regression, achieving an R-squared value of 0.54 on the test set. Typ-

ically, SVR exhibits superior performance compared to other classical machine learning models,

especially when dealing with non-linear data. We continue to try other models.

4.5.4 Decision tree regression

The results for the decision tree are presented in Figure 4.17. While it exhibits the best perfor-

mance on the training data, boasting an R-squared value of 0.71 compared to previous models,

its performance significantly declines on the test set with an R-squared value of 0.15. One possi-

ble explanation for this discrepancy is model overfitting, where the model performs exception-

SVR

from sklearn.svm import SVR

regressor = SVR(kernel = 'rbf")
regressor.fit(x_train_trans, y_train)

predict and evaluate

y_hat_train = regressor.predict(x_train_trans)
RMSE_Train,R2_Train=evaluate(y_train, y_hat_train)
y_hat_test = regressor.predict(x_test_trans)
RMSE_Test,R2_Test=evaluate(y_test, y_hat_test)

test set RMSE:45.288918558380134, R2:8.5678320152955834
test set RMSE:28.84397984661384, R2:8.5445720842978832

Figure 4.16: Support vector regression code block.

CHAPTER 4. BUILDING THE MACHINE LEARNING MODELS 46

Decision Tree

from sklearn.tree import DecisionTreeRegressor

dt = DecisionTreeRegressor(random_state=42, max_depth=15, min_samples_leaf=18)
dt.fit(x_train_trans, y_train)

predict and evaluate

y_hat_train = dt.predict(x_train_trans)

RMSE_Train,R2_Train=evaluate(y_ train, y_hat_train, 'train')

y_hat_test = dt.predict(x test_trans)

RMSE_Test,R2_Test=evaluate(y test, y_hat_test)

train set RMSE:36.77513644517802, R2:8.7140435402153497
test set RM5E:38.31216453338052, R2:6.1580080065299418

Figure 4.17: Decision tree regression code block.

Random Forest

from sklearn.ensemble import RandomForestRegressor

rf = RandomForestRegressor(random_state=42, n_jobs=-1, max_depth=6, min_samples leaf=5)
rf.fit(x_train_trans, y_train)

predict and evalugte

y_hat_train = rf.predict(x_train_trans)

RMSE_Train,R2_Train=evaluate(y_train, y_hat_train, "train’)

y_hat_test = rf.predict(x test_trans)

RMSE_Test,R2_Test=evaluate(y test, y_hat_test)

train set RMSE:44.793331149655884, R2:8.5778889724280527
test set RMSE:32.42845735268085, R2:6.39103401537952@87

Figure 4.18: Random forest regression code block.

ally well on the training data but fails to generalize effectively to new data.

4.5.5 Random forest regression

Based on the results for the random forest regression model presented in Figure 4.18, it did
not face the same overfitting issue as the decision tree model. This is evident in its improved
performance on the test set, achieving an R-squared value of 0.39. However, this is still not
an optimal outcome. In subsequent sections, an artificial neural network (ANN) model will be

implemented to evaluate if it can outperform the other models.

4.5.6 Artificial neural network

In this section, we attempt to construct an artificial neural network by selecting hyperparame-
ters that optimize performance for our dataset. Hyperparameters dictate the architecture and
behavior of the network during its training phase. They encompass various elements includ-
ing the number of layers, nodes within each layer, activation functions, batch size, choice of
optimizer, and number of epochs, among others. The act of hyperparameter tuning in neural
networks is essentially a search to find the best combination of these variables. This process
involves exploring different hyperparameter values, training and assessing the network perfor-
mance under each configuration. Importantly, there is not a generic formula for this process. In
fact, selecting the right hyperparameters is largely an iterative and intuitive process.

As depicted in Figure 4.19, we first start with an ANN architecture comprising two hidden

CHAPTER 4. BUILDING THE MACHINE LEARNING MODELS 47

ANN

import tensorflow as tf

ann = tf.keras.models.Sequential()
ann.add(tf.keras.layers.Dense{units=18, activation="relu'))
ann.add(tf.keras.layers.Dense(units=18, activation="relu"))
ann.add(tf.keras.layers.Dense{units=1))

ann.compile(optimizer="adam', loss="mean_squared_error’)
ann.fit(x_train_trans,y_train, batch_size=32,epochs=75)
predict and evalugte

y_hat_train = ann.predict(x_train_trans)
RMSE_Train,R2_Train=evaluate(y train, y_hat_train, ‘train')
y_hat_test = ann.predict(x_test_trans)
RMSE_Test,R2_Test=evaluate(y_test, y_hat_test, 'test’)

Epoch 1/75
645/645 [===] - 25 2ms/step - loss: 7156.7144

Figure 4.19: Artificial neural network code block.

layers, each with 10 nodes. The rectified linear unit (ReLU) was selected as the activation func-
tion for both layers, and a batch size of 32 was employed. Considering the performance, ANN’s
results are somewhat comparable to the linear regression model, achieving an R-squared value
of 0.35 on the test set and 0.58 on the training set.

4.6 Results

After evaluating all the models, the support vector regression (SVR) demonstrated the highest
performance on the test set, achieving an R-squared score of 0.54. To gain a deeper understand-
ing, we visually assessed the result of the SVR model to ensure its accuracy and reliability. It is
essential to visualize predicted values against actual ones because a single metric, such as R-
squared, does not always capture the complete picture. While the majority of predictions might
be accurate, the presence of a significant outlier could make the model unsuitable for produc-
tion. Figure 4.20 demonstrates the actual values of RUL versus predicted one in test set for SVR
model.

From Figure 4.20, it is evident that the algorithm tends to overestimate its predictions espe-
cially in higher range of RUL. To address this issue, we try to clip the RUL, as elaborated in Sec-
tion 4.4.2. Implementing RUL clipping, make the maximum RUL value in train set 125, which
will enhance prediction accuracy, as we will see subsequently. This approach logically makes
sense because for instance, sensor readings for the RUL of 175 are similar to those with an RUL
of 125, making it challenging for the algorithm to differentiate effectively among this range. Fol-
lowing this strategy, we clipped the RUL at 125 and re-executed all models. A comparative result
before and after clipping the data are provided in Table 4.3.

When we compare the results before and after clipping the dataset, there is a remarkable
enhancement in prediction accuracy. Specifically, the R-squared value nearly doubled for all
models after clipping. The RSME saw a decline of approximately 13 for the ANN model, with
almost similar reductions observed for other models, a truly noteworthy improvement. From

CHAPTER 4. BUILDING THE MACHINE LEARNING MODELS 48
175 — Actual
— Predicted
150
125
100
=
)
[a's
75
50
25 E V
i}
o] 20 40 60 100
Figure 4.20: Actual RUL vs predicted RUL of the test data for SVR model.
Table 4.3: Models’ results on train and test set.
Before clipping After clipping
Model | RSME-Train R2-Train RSME-Test R2-Test | RSME-Train R2-Train RSME-Test R2-Test
LR 45.61 0.56 33.30 0.35 22.73 0.70 22.91 0.69
PR 42.89 0.61 34.87 0.29 19.99 0.77 21.26 0.74
SVR 45.28 0.57 28.04 0.54 21.42 0.73 21.82 0.72
DT 36.77 0.71 38.31 0.15 17.51 0.82 21.18 0.74
RF 44,79 0.57 32.42 0.39 21.11 0.74 20.81 0.75
ANN 44 .23 0.58 33.46 0.35 20.35 0.76 20.34 0.76

CHAPTER 4. BUILDING THE MACHINE LEARNING MODELS 49

— Actual
140 | = Predicted

1z0

S

100 r

&0

RUL

: i
m /|

Figure 4.21: Actual RUL vs predicted RUL of the test data for ANN model.

these outcomes, it is evident that the ANN model has the best performance with an R-squared of
0.76. It is closely followed by the random forest and decision tree models with R-squared of 0.75
and 0.74, respectively. Polynomial regression recorded 0.74, SVR 0.72, while linear regression,
being the least effective, registered an R-squared of 0.69. Figure 4.21 illustrates a comparison
between the actual and predicted RUL values for the ANN model on the test set. Our preference
for the ANN model stems from its standout performance, same reason in the previous section
for showcasing the predictive outcomes of the SVR model. Within these illustrations, it is appar-

ent that model accuracy in predicting RUL has improved, particularly in the upper RUL range.

Hyperparameter tuning

The last step for improving the result is applying the hyperparameter tuning. Hyperparameter
tuning is the process of systematically searching for the best combination of hyperparameters
that will produce the optimal performance of the ANN model. Hyperparameter tuning with grid
search is applied in this part to find the best set of hyperparameters for the ANN model. Typical
hyperparameters include the batch size, optimizer, number of neurons in each layer, number of
epochs and activation functions.

Figure 4.22 shows the definition of the function called create_model which creates and re-
turns our ANN model. This allows us to modify hyperparameters within the function.

According to Figure 4.23, we define a dictionary of hyperparameters we would like to search
over. The dictionary keys are the parameter names, and the values are lists of settings to try.

Applying grid search, shows that setting with this combination of hyperparameters (batch

size = 20, epochs = 50, optimizer = adam, number of nodes = 15, activation function = relu)

CHAPTER 4. BUILDING THE MACHINE LEARNING MODELS

import Library

from tensorflow.keras.wrappers.scikit learn import KerasRegressor

defining function which returns ANN model with ability to get different hyperparameters
def create_model(optimizer='adam', units=18, activation="relu')

ann

ann.
ann.
ann.

ann

= tf.keras.models.Sequential()
add(tf.keras.layers.Dense(units=units, activation=activation))
add(tf.keras.layers.Dense(units=units, activation=activation))
add(tf.keras.layers.Dense(units=1))

.compile(optimizer=optimizer, loss="mean_squared_error')

return ann

model =

KerasRegressor(build fn=create_model)

Figure 4.22: Defining function which returns ANN model.

Grid search parameters

param_grid = {
‘batch_size': [1@, 28, 32, 48],
‘epochs’: [18, 58, 75],
‘optimizer': ['adam’, "rmsprop’],
‘units®: [5, 18, 15],
‘activation’: ['relu’, "tanh’']

Figure 4.23: Grid search hyperparameters to search through.

improves the R-squared of the ANN model to 0.77.

50

Chapter 5

Conclusions

5.1 Summary and conclusions

In the pursuit of enhancing the safety and reliability of industrial systems this thesis explored
the domain of Prognostics Health Management (PHM) technology with a keen focus on pre-
dicting the Remaining Useful Life (RUL) of aircraft turbofan engines. The core objective of this
research was to critically assess the capabilities of data-driven models in predicting the remain-
ing useful life. As industrial landscapes evolve, higher importance is placed on safety, reliability,
and predictability. Accurately predicting when a component might degrade or fail has profound
implications for operational safety, maintenance costs, and system efficiency.
Key insights from this investigation include:

* Data-driven over model-based approaches: Traditionally, predictive models in industries
often relied on well-established deterministic models or domain-specific expertise. How-
ever, this study highlighted the increasing shift towards data-driven methods, particularly
leveraging machine learning models and artificial neural networks. The data-driven ap-
proach’s main strength lies in its capability to establish complex relationships from histor-

ical data without relying on prior domain knowledge.

* Significance of data preprocessing: Data, in its raw form, often requires rigorous refine-
ment to be suitable for modeling. The initial dataset, though rich in information, was
laden with redundant variables and lacked direct RUL values for each cycle. The prepro-
cessing steps were pivotal in transforming raw data into structured and meaningful inputs
for models. This step was not just technical but foundational, ensuring that subsequent
models operated on optimized and relevant datasets that led to enhancement of overall

model performance.

* Power of data visualization: Empirical analysis was complemented by data visualization

51

CHAPTER 5. CONCLUSIONS 52

to obtain deeper insights from the datasets. Beyond graphical representation, visualiza-
tion played a pivotal role in understanding data distributions, inherent patterns, and po-
tential anomalies. By thoroughly filtering out less informative sensors, the study ensured

that the predictive models interfaced with the most significant and relevant variables.

¢ Algorithmic evaluation: A comparative analysis was conducted across multiple algorithms,
ranging from linear and polynomial regression to sophisticated artificial neural networks,
to determine the most effective predictive model. While each algorithm had its strengths
and challenges, the decision to clip the RUL in train set to address overestimation issues
in the upper range, a strategy derived from the data visualization, was instrumental in

achieving enhanced prediction accuracies.

e Superiority of neural networks: Although, amongst the evaluated models, traditional
machine learning models like SVR showcased worthy performance, the artificial neural
network emerged as a frontrunner. Its inherent capability to process complex, non-linear
relationships positioned it as the most proficient model for this specific prognostic task.
Its performance, with an impressive R-squared value of 0.77 after hyperparameter tuning,
was indicative of its potency in handling intricate prediction tasks.

* Essentiality of hyperparameter tuning: The significance of hyperparameter tuning can-
not be understated. It transforms a well-performing model into an outstanding one. Through
iterative and time-consuming grid search trials, the study was able to refine the ANN

model to its optimal performance.

5.2 Recommendation for further work

Future avenues for exploration are, indeed, manifold. Despite the focus on classic machine
learning models and a foundational artificial neural network in this thesis, the results, as sum-
marized in Table 5.1, are already promising. It is worth noting that we conducted a compre-
hensive evaluation of various traditional machine learning models, including linear regression,
support vector regression, polynomial regression, decision tree, and random forest, in addition
to the ANN. These models were assessed based on the Root Mean Square Error (RMSE) as a
performance metric and their results as well as some other recent works are provided in Table
5.1.

These findings, when compared to other recent works in the field, indicate that although our
models may not have achieved the lowest RMSE values, they still demonstrate strong predictive
capabilities. In particular, the data preprocessing techniques employed in this thesis like visual-
izing the data and feature extraction using heatmap, as well as the utilization of RUL clipping in

the dataset, have contributed to the effectiveness of our classic machine learning models. While

CHAPTER 5. CONCLUSIONS 53

Table 5.1: RUL prediction performance comparision with other recent works.

Approach ‘ RSME
Linear regression ‘ 2291
Support vector regression (SVR) ‘ 21.82
Polynomial regression ‘ 21.26
Decision tree ‘ 21.18
Random forest ‘ 20.81
KNN (Zhang et al. (2017)) | 20.46
ANN | 20.14
CNN (Babu et al. (2016)) ‘ 18.45
CNN + RNN (Zhang et al. (2019)) ‘ 16.89
CNN + LSTM (Kong et al. (2019)) ‘ 16.13
LSTM (Liet al. (2018)) ‘ 13.52

there are models in recent research that outperform our results, these findings underscore the
significance of our methodology, especially in contexts where the implementation of advanced
neural architectures might not be feasible due to resource constraints or other practical consid-
erations.

Recent advancements in the field, particularly in neural network architectures, offer promis-
ing directions for continued research. For instance, delving into more advanced neural architec-
tures such as Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Convo-
lutional Neural Networks (CNN) could substantially enhance the RUL prediction capabilities as
illustrated in Table 5.1, especially given their demonstrated proficiency in handling sequential
and complex data structures. Moreover, the emerging trend of Transfer Learning (TL) has drawn
significant attention due to its powerful capacity to leverage pre-trained models on sizable and
intricate datasets.

Furthermore, integrating domain-specific expertise with these advanced data-driven tech-
niques may offer another promising avenue. This hybrid approach could converge the strengths
of traditional domain knowledge with current machine learning paradigms, thereby combining
the benefits of both methodologies.

In conclusion, the capability to precisely predict the remaining useful life of machinery rep-
resents a profound intersection of domain expertise, classic modeling, and state-of-the-art ma-
chine learning methodologies. While our current findings are promising, they also highlight the
expansive horizon of opportunities for further refinement and innovation. The landscape of
prognostics health management is dynamically evolving, and its future holds immense poten-

CHAPTER 5. CONCLUSIONS

tial for enhanced predictive accuracy, operational safety, and system efficiency.

54

Appendix A
Acronyms

Al Artificial intelligence

ANN Artificial neural network

API Application programming interface

CART C(lassification and regression tree

CM Condition monitoring

CMAPSS Commercial modular aero-propulsion system simulation
CNN Convolutional neural network

DGI Decrease of gini impurity

DL Deep learning

ICA Independent component analysis

KNN k-nearest neighbors

LSTM Long short-term memory

MAE Mean absolute error

ML Machine learning

MSE Mean squared error

NASA National aeronautics and space administration

NLP Natural language processing

55

APPENDIXA. ACRONYMS

NN Neural network

OLS Ordinary least square

PCA Principal component analysis
PHM Prognostic health management
ReLU Rectified linear unit

RF Reliability function

RL Random forest

RNN Recurrent neural network
RSME Root mean squared error
RSS Residual sum of squares

RUL Remaining useful life

SVM Support vector machine

SVR Support vector regression

TL Transfer learning

TSS Total sum of squares

56

Appendix B
Code Templates

This chapter presents a collection of code templates used throughout this master’s thesis. These
code examples have played a role in carrying out experiments and analyses. While some of the
code templates were inspired by existing works and the wider research community, I would also
like to acknowledge the contribution made by Eremenko (2023)’s "Machine Learning A-Z™: A,
Python &R [2023]" course on Udemy. This course has provided me with knowledge and practical
skills enabling me to create many of these code templates.

The purpose of including these code templates in this chapter is to enhance transparency
regarding this research methodology and provide a resource for researchers and practitioners in
the field.

importing Libraries
import pandas as pd
import numpy as np

define column names for easy indexing

index_names = ['unit_number', ‘cycles']

setting_names = ['setting 1', ‘setting_2', 'setting 3']
sensor_names = ['s_{}'.format(i) for i in range(1,22)]

col_names = index_names + setting_names + sensor_names

reading data

train = pd.read_csv('train FDeel.txt',sep="\s+', header=None, names=col_names)
x_test = pd.read_csv('test FD@@1.txt',sep='\s+', header=None, names=col_names)
y_test = pd.read_csv('RUL_FD@@1.txt', sep="\s+', header=None, names=['RUL'])
removing all extra rows and keep only Last cycl of each engine

x_test = x_test.groupby(unit_number').last().reset_index()

¥_test.shape

removing 'setting 3" from train set
train=train.drop('setting 3',axis=1)

Figure B.1: Importing data set and defining label for columns.

S57

APPENDIX B. CODE TEMPLATES

defining function to ad RUL column in train set
def add_remaining_useful_life(df):
Get the total number of cycles for each unit
grouped_by_unit = df.groupby(by="unit_number")
max_cycle = grouped by unit["cycles"].max()

Merge the max cycle back into the original frame
result_frame = df.merge(max_cycle.to_frame(name="max_cycle'), left_on="unit_number', right_index=True)

Calculate remaining useful life for each row
remaining_useful_life = result frame["max_cycle"] - result_frame["cycles"]
result_frame["RUL"] = remaining_useful_life

drop max_cycle as it is no longer needed
result_frame = result_frame.drop("max_cycle”, axis=1)
return result_frame

train = add_remaining_useful_life(train)

Figure B.2: Defining a function to add RUL in train set.

ploting sensor data
import matpleotlib.pyplot as plt
def plot_sensor(sensor_name, ax):
for i in train['unit_number'].unique():
if (i % 18 == @): # only plot every 16th unit number
ax.plot('RUL", sensor_name,
data=train[train['unit_number’'] == i])
ax.set_x1im(258, B) # reverse the x-axis so RUL counts down to zero
ax.set_xticks(np.arange(8, 275, 25))
ax.set_ylabel(sensor_name)
ax.set_xlabel('Remaining Useful Life')
fig, axes = plt.subplots(?, 3, figsize=(15, 17.5)) # 7 rows, 3 columns
for sensor_name, ax in zip(sensor_names, axes.ravel()):
plot_sensor{sensor_name, ax)
plt.tight_layout()
plt.show()

x %

Figure B.3: PLoting the sensors’ data.

visualizing heatmap to find correlations
import seaborn as sns; sns.set()
plt.figure(figsize=(25,18))
sns.heatmap(train.corr(),annot=True ,cmap='Reds")
plt.show()

Selecting highly correlated features
correlation=train.corr()
train_relevant_features = correlation[abs(correlation['RUL"])»=8.5]

creating a list of only important features.
list_relevant_features=train_relevant_features.index
list relevant features=list relevant features[1:]

Now we will keep onlt these imprtant features in train set.
train=train[list_relevant_features]

splitting train set inte x train and y_train(RUL).
y_train=train[‘RUL"]

x_train=train.drop(['RUL"],axis=1)

keeping only train columns/features in the test set as well.
x_test=x_test[x_train.columns]

Figure B.4: Feature selection and splitting the dataset.

58

APPENDIX B. CODE TEMPLATES

create an evaluate function to calculate R-squared and RMSE
from sklearn.metrics import r2_score, mean_squared_error
def evaluate(y_true, y_hat, label="test'):
mse = mean_squared_error{y_true, y_hat)
rmse = np.sqri{mse)
variance = r2_score(y_true, y_hat)
print('{} set RMSE:{}, R2:{}'.format(label, rmse, variance))
return rmse,variance;

Standardization of features

from sklearn.preprocessing import StandardScaler
sc = StandardScaler()

%_train_trans = sc.fit_transform(x_train)
x_test_trans = sc.transform(x_test)

clipping the RUL(y train) at 125
y_train= y_train.clip{upper=125)

Figure B.5: Creating evaluation function, data standardization and clipping RUL.

Linear regression model

from sklearn.linear_model import LinearRegression

Im = LinearRegression()

Im.fit(x_train_trans, y_train)

predict and evaluate

y_hat_train = Im.predict(x_train_trans)
RMSE_Train,R2_Train=evaluate(y_train, y_hat_train,'train’)
y_hat_test = lm.predict(x test_trans)
RMSE_Test,R2_Test=ewvaluate(y test, y hat test, 'test’)

Figure B.6: Linear regression model.

Polynomial regression

from sklearn.linear_model import LinearRegression

from sklearn.preprocessing import PolynomialFeatures
poly_reg = PolynomialFeatures{degree = 4)

x_poly = poly reg.fit transform(x_train_trans)

lin_reg_2 = LinearRegression()

lin_reg_2.fit(x_poly, y_train)

predict and evaluate

y_hat_train = lin_reg 2.predict(x_poly)
RMSE_Train,R2_Train=evaluate(y_train, y_hat_train,'train’)
y_hat_test = lin_reg 2.predict{poly reg.fit_transform(x_test trans))
RMSE_Test,R2_Test=evaluate(y_test, y_hat_test, 'test’)

Figure B.7: Polynomial regression model.

SVR
from sklearn.svm import SVR
regressor = SVR(kernel = 'rbf’")

regressor.fit(x_train_trans, y_train)

predict and evaluate

y_hat_train = regressor.predict(x_train_trans)
RMSE_Train,R2_Train=evaluate(y_train, y_hat_train)
y_hat_test = regressor.predict(x_test_trans)
RMSE_Test,R2_Test-evaluate(y test, y hat_test)

Figure B.8: Support vector regression model.

Decision Tree

from sklearn.tree import DecisionTreeRegressor

dt = DecisionTreeRegressor(random_state=42, max_depth=15, min_samples_leaf=18)
dt.fit(x_train_trans, y train)

predict and evaluate

y_hat_train = dt.predict(x_train_trans)

RMSE_Train,R2_Train=evaluate(y_train, y_hat_train, "train’)

y_hat_test = dt.predict(x test_trans)

RMSE_Test,R2_Test=evaluate(y_test, y_hat_test)

Figure B.9: Decision tree regression model.

APPENDIX B. CODE TEMPLATES

Random Forest

from sklearn.ensemble import RandomForestRegressor

rf = RandomForestRegressor{random_state=42, n_jobs=-1, max_depth=6, min_samples_leaf=5)
rf.fit(x_train_trans, y_train)

predict and evaluate

y_hat_train = rf.predict(x_train_trans)

RMSE_Train,R2_Train=evaluate(y train, y_hat_train, "train’)

y_hat_test = rf.predict(x test_trans)

RMSE_Test,R2_Test=evaluate(y_test, y_hat_test)

Figure B.10: Random forest regression model.

ANN

import tensorflow as tf

ann = tf.keras.models.Sequential()
ann.add(tf.keras.layers.Dense{units=18, activation="reslu'))
ann.add(tf.keras.layers.Dense(units=18, activation="relu'))
ann.add(tf.keras.layers.Dense(units=1))
ann.compile(optimizer="adam’, loss='mean_squared_error')
ann.fit(x_train_trans,y_train, batch_size=32,epochs=75)

predict and evaluate

y_hat_train = ann.predict(x_train_trans)
RMSE_Train,R2_Train=evaluate(y_train, y_hat_train, 'train')
y_hat_test = ann.predict(x_test trans)
RMSE_Test,R2_Test=evaluate(y_test, y_hat_test, 'test’)

Figure B.11: Artificial neural network model.

Plot Actual Vs Predicted RUL for Test Data

fig = plt.figure();

plt.figure(figsize=[15,7])

plt.plot(y_test,color="blue", linewidth=2.5, linestyle="-",label="Actual")
plt.plot(y_hat_test,color="red”, linewidth=2.5, linestyle="-",label="Predicted")

fig.suptitle(Actual and Predicted’, fontsize=28) # Plot heading
plt.xlabel('Index’, fontsize=18) # X-Label
plt.ylabel('RUL', fontsize=16) # Y-label

plt.legend()
plt.title("Actual RUL Vs Predicted RUL for Test Data™)

Figure B.12: Plotting the prediction results vs actual values.

import Library

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.wrappers.scikit_learn import KerasRegressor

from sklearn.model_selection import GridSearchCV

defining function which returns ANN model with ability to get different hyperparameters

def create_model(optimizer='adam’, units=18, activation='relu'):
ann = tf.keras.models.Sequential()
ann.add(tf.keras.layers.Dense(units=units, activation=activation))
ann.add(tf.keras.layers.Dense(units=units, activation=activation))
ann.add(tf.keras.layers.Dense(units=1))
ann.compile(optimizer-optimizer, loss='mean_squared_srror')
return ann

model = KerasRegressor(build_fn=create_model)

Grid search parameters

param_grid = {
"batch_size': [18, 28, 32, 48],
"epochs’: [18, 58, 75],
‘optimizer': ['adam', ‘rmsprop’],
"units': [5, 1@, 15],
"activation': ['relu’, ‘tanh’']

}

running grid search and setting cross validation on 3
grid = GridSearchCV(estimator=model, param_grid=param_grid, scoring='neg_mean_squared_error’, cv=3)
grid_result = grid.fit(x_train_trans, y_train)

Figure B.13: Applying grid search and hyperparameter tuning.

60

Bibliography

Zhang, J., Li, X,, Tian, J., Luo, H., and Yin, S. (2023). An integrated multi-head dual sparse self-
attention network for remaining useful life prediction. Reliability Engineering and System
Safety, 233, 109096-109096. https://doi.org/10.1016/j.ress.2023.109096

Zhang, J., Jiang, Y., Wu, S., Li, X,, Luo, H., and Yin, S. (2022). Prediction of remaining useful life
based on bidirectional gated recurrent unit with temporal self-attention mechanism. Relia-
bility Engineering and System Safety, 221, 108297. https://doi.org/10.1016/j.ress.2021.108297

Saxena, A., Goebel, K., Simon, D., and Eklund, N. (2008). Damage propagation modeling for
aircraft engine run-to-failure simulation. 2008 International Conference on Prognostics and
Health Management. https://doi.org/10.1109/phm.2008.4711414

Sikorska, J. Z., Hodkiewicz, M., and Ma, L. (2011). Prognostic modelling options for remain-
ing useful life estimation by industry. Mechanical Systems and Signal Processing, 25(5),
1803-1836. https://doi.org/10.1016/j.ymssp.2010.11.018

Tobon-Mejia, D., Medjaher, K., and Zerhouni, N. (2010). The ISO 13381-1 standard’s failure prog-
nostics process through an example. 2010 Prognostics and System Health Management Con-

ference, 1-12.

Engel, S. J., Gilmartin, B. J., Bongort, K., and Hess, A. (n.d.). Prognostics, the real issues in-
volved with predicting life remaining. 2000 IEEE Aerospace Conference. Proceedings (Cat.
No.00TH8484). https://doi.org/10.1109/aero.2000.877920

Hess, A. P, Calvello, G., and Frith, P. (2005). Challenges, issues, and lessons learned chasing the
“Big P”. Real predictive prognostics. Part 1. https://doi.org/10.1109/aero.2005.1559666

Luo, J., M. Namburu, Pattipati, K. R., Qiao, L., Kawamoto, M., and Shunsuke Chigusa.
(2003). Model-based prognostic techniques [maintenance applications]. AUTOTESTCON.
https://doi.org/10.1109/autest.2003.1243596

61

BIBLIOGRAPHY 62

Berghout, T, and Benbouzid, M. (2022). A Systematic Guide for Predict-
ing Remaining Useful Life with Machine Learning. Electronics, 11(7), 1125.
https://doi.org/10.3390/electronics11071125

Calabrese, E, Regattieri, A., Botti, L., and Galizia, E G. (2019). Prognostic Health Management of
Production Systems. New Proposed Approach and Experimental Evidences. Procedia Manu-
facturing, 39, 260-269. https://doi.org/10.1016/j.promfg.2020.01.333

Shinde, P. P, and Shah, S. (2018, August 1). A Review of Machine Learning and Deep Learning
Applications. IEEE Xplore. https://doi.org/10.1109/ICCUBEA.2018.8697857

Sharifani, K., and Amini, M. (2023). Machine Learning and Deep Learning: A Review of Methods
and Applications. Social Science Research Network. https://ssrn.com/abstract=4458723

Leerum, K.H. (2018). A study of Machine Learning for Predictive Maintenance - A topic and pro-

gramming guidance.

Copeland, M. (2016, July 29). The Difference between Al, Machine Learning, and Deep Learning?
NVIDIA Blog. The Official NVIDIA Blog. https://blogs.nvidia.com/blog/2016/07/29/whats-

difference-artificial-intelligence-machine-learning-deep-learning-ai/

Kumar, Y., Kaur, K, and Singh, G. (2020, January 1). Machine Learning As-
pects and its Applications Towards Different Research Areas. IEEE Xplore.
https://doi.org/10.1109/ICCAKM46823.2020.9051502

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Janiesch, C., Zschech, P, and Heinrich, K. (2021). Machine learning and deep learning. Elec-
tronic Markets, 31, 685-695. Springer. https://doi.org/10.1007/s12525-021-00475-2

Ray, S. (2019, February 1). A Quick Review of Machine Learning Algorithms. IEEE Xplore.
https://doi.org/10.1109/COMITCon.2019.8862451

Eremenko, K. (2023). Machine Learning A-Z™: Al, Python and R + ChatGPT Bonus. Udemy:
https://www.udemy.com/

Mali, K. (2021, October 4). Linear Regression | Everything you need to Know about Linear Re-
gression. Analytics Vidhya. https://www.analyticsvidhya.com/blog/2021/10/everything-you-

need-to-know-about-linear-regression/

Alzubi, J., Nayyar, A., and Kumar, A. (2018). Machine Learning from Theory to Algorithms: An
Overview. Journal of Physics: Conference Series, 1142, 012012. https://doi.org/10.1088/1742-
6596/1142/1/012012

BIBLIOGRAPHY 63

Kumar, A. (2022, February 27). Ordinary Least Squares Method: Concepts and Examples. Data
Analytics. https://vitalflux.com/ordinary-least-squares-method-concepts-examples

Awad, M., and Khanna, R. (2015). Support Vector Regression. Efficient Learning Machines,
67-80. https://doi.org/10.1007/978-1-4302-5990-9-4

Boulesteix, A.-L., Janitza, S., Kruppa, J., and Koénig, I. R. (2012). Overview of random forest
methodology and practical guidance with emphasis on computational biology and bioin-
formatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(6),
493-507. https://doi.org/10.1002/widm.1072

Deepanshi. (2021, May 25). Artificial Neural Network | Beginners Guide to ANN. Ana-
lytics Vidhya. https://www.analyticsvidhya.com/blog/2021/05/beginners-guide-to-artificial-
neural-network/

Zakaria, M., Mabrouka, A. S., and Sarhan, S. (2014). Artificial neural network: a brief overview.

neural networks, 1, 2.

Kalita, D. (2022, March 30). An Overview and Applications of Artificial Neural Networks. Analyt-
ics Vidhya. https://www.analyticsvidhya.com/blog/2022/03/an-overview-and-applications-

of-artificial-neural-networks-ann/

Rosa, Daniel, Nuno, Ricardo, and Nuno. (2019). Using Artificial Neural Networks for Analog In-
tegrated Circuit Design Automation. Springer Nature.

4 Reasons Why is Python Used for Machine Learning | Inoxoft. (2022, April 1). Inoxoft.com.
https://inoxoft.com/blog/why-use-python-for-machine-learning/

Esfahani, Z., Karim Salahshoor, Behnam Farsi, and Eicker, U. (2021). A New Hybrid Model for
RUL Prediction through Machine Learning. Journal of Failure Analysis and Prevention, 21(5),
1596-1604. https://doi.org/10.1007/s11668-021-01205-8

Prognostics Center of Excellence Data Set Repository - NASA. (n.d.). Retrieved October
25, 2023, from https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-

health/pcoe/pcoe-data-set-repository/

Moamar Sayed-Mouchaweh, and Springerlink (Online Service. (2020). Artificial Intelligence
Techniques for a Scalable Energy Transition : Advanced Methods, Digital Technologies, De-

cision Support Tools, and Applications. Springer International Publishing, Imprint Springer.

Zhang, C., Lim, P, Qin, A. K., and Tan, K. C. (2017). Multiobjective Deep Belief Networks Ensem-
ble for Remaining Useful Life Estimation in Prognostics. IEEE Transactions on Neural Net-
works and Learning Systems, 28(10), 2306-2318. https://doi.org/10.1109/tnnls.2016.2582798

BIBLIOGRAPHY 64

Babu, G.S., Zhao, P, and Li, X. (2016). Deep Convolutional Neural Network Based Regression
Approach for Estimation of Remaining Useful Life. International Conference on Database Sys-

tems for Advanced Applications.

Zhang, X., Dong, Y, Wen, L., Fang, L., and Li, W. (2019). Remaining Useful
Life Estimation Based on a New Convolutional and Recurrent Neural Network.
https://doi.org/10.1109/coase.2019.8843078

Kong, Z., Cuj, Y, Xia, Z., and Ly, H. (2019). Convolution and Long Short-Term Memory Hybrid
Deep Neural Networks for Remaining Useful Life Prognostics. Applied Sciences, 9(19), 4156.
https://doi.org/10.3390/app9194156

Li, X,, Ding, Q., and Sun, J.-Q. (2018). Remaining useful life estimation in prognostics us-
ing deep convolution neural networks. Reliability Engineering and System Safety, 172, 1-11.
https://doi.org/10.1016/j.ress.2017.11.021

@ NTNU

Norwegian University of
Science and Technology

	Preface
	Acknowledgment
	Executive Summary
	Introduction
	Background
	Objectives
	Approach
	Outline

	Prognostic and Remaining Useful Life
	Prognostics health management
	Prognostics
	Remaining useful life
	RUL as a function of CM
	RUL as a function of RF

	Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL)
	Artificial intelligence
	Machine learning vs deep learning
	Machine learning paradigms
	Supervised learning
	Unsupervised learning
	Semi-supervised learning
	Reinforcement learning

	Supervised learning algorithms
	Linear regression
	Support Vector Regression (SVR)
	Decision tree
	Random forest

	Artificial Neural Network (ANN)
	Activation function
	Cost function

	Building The Machine Learning Models
	Programming language
	Libraries
	Introduction of the dataset
	Data preprocessing
	Importing the dataset
	Data visualization
	Feature extraction
	Standardization

	Building models
	Linear regression
	Polynomial regression
	Support Vector Regression (SVR)
	Decision tree regression
	Random forest regression
	Artificial neural network

	Results

	Conclusions
	Summary and conclusions
	Recommendation for further work

	Acronyms
	Code Templates
	Bibliography

