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Unlike ferromagnetism, antiferromagnetism cannot readily be included in the quasiclassical Keldysh theory
because of the rapid spatial variation in the directions of of the magnetic moments. The quasiclassical framework
is useful because it separates the quantum effects occurring at length scales comparable to the Fermi wavelength
from other length scales, and has successfully been used to study a wide range of phenomena involving
both superconductivity and ferromagnetism. Starting from a tight-binding Hamiltonian, we develop general
quasiclassical equations of motion and boundary conditions which can, be used to describe two-sublattice metallic
antiferromagnets in the dirty limit. The boundary conditions are applicable also for spin-active boundaries that
can be either compensated or uncompensated. Additionally, we show how nonuniform or dynamic magnetic
textures influence the equations and we derive a general expression for observables within this framework.

I. INTRODUCTION

The quasiclassical Keldysh Green’s function technique [1–
5] is a powerful tool to study mesoscopic structures [5–24].
It is applicable to systems where the Fermi wavelength is
much smaller than all other length scales and can be used to
study a wide range of systems, including heterostructure with
multiple competing types of order, such as superconductivity
and ferromagnetism [6–12], both in and out of equilibrium. In
addition, the quasiclassical framework is versatile in regards to
sample geometry [18–20] and the details of external or intrinsic
fields, such as applied magnetic fields [22, 23] or spin-orbit
coupling [15, 21], whether they are time-dependent [9, 13–
15] or spatially inhomogeneous [11, 20, 24]. This makes
the quasiclassical framework especially useful to the field
of superconducting spintronics [25], which aims to utilize
superconductivity in the field of spintronics. In spintronics, spin
is used as an information carrier rather than the electric charge
used in conventional electronics [26, 27]. The combination of
superconductivity and magnetism is therefore at the core of
superconducting spintronics.

While the presence of a magnetic field typically suppresses
superconductivity, the relationship between ferromagnets and
superconductors (SC) can be synergistic [8, 25]. The interplay
between magnetic and superconducting orders may give rise
to spin-polarized superconductivity which can transport spin
angular momentum with zero resistance [8, 28], and the pres-
ence of superconductivity has also been shown to be beneficial
for other central effects in spintronics, such as giving rise to
infinite magnetoresistance [29].

Antiferromagnets (AFs) have many important advantages
over ferromagnets in the context of spintronics [30]. The
alternating magnetic moments mean that they are more robust
and impervious to external magnetic fields while creating
negligible magnetic stray fields of their own. As a result, they
are less intrusive to neighboring components. Moreover, the
resonance frequencies in AFs are on the order of terahertz [31,
32], which allows for very fast information processing. The
fact that spin transport has been shown to be long-ranged in
AFs [33] also makes them promising and an active research
topic in spintronics.

Superconductivity may coexist with antiferromagnetism [34–
36], and AFs have a prominent role in the context of high-𝑇𝑐 su-
perconductivity [36–38]. Despite this, AFs are much less stud-
ied in the field of superconducting spintronics compared to fer-
romagnets. Heterostructures composed of superconductors and
ferromagnets, including strongly polarized ferromagnets [6],
has been studied theoretically in a wide range of systems [6–
12], including in systems with complex geometries [19, 20].
On the other hand, while antiferromagnetic-superconductor
junctions have been studied theoretically [39–44], such studies
are typically limited to simple geometries and clean systems.
This is because the rapid variation of the magnetic moments
in AFs means that they, unlike ferromagnets, cannot readily
be incorporated into the quasiclassical framework used for
normal metals. The quasiclassical Keldysh theory separates
the short-range quantum effects from the long-range semiclas-
sical dynamics, thereby allowing the inclusion of long-range
spatial and temporal gradients. As such, it is desirable with
a quasiclassical framework that is applicable to systems with
both superconductivity and AFs.

One approach, which has been used previously when study-
ing the superconducting proximity effect in antiferromagnetic
metals (AFMs) [45–47], is to treat the AFM as a normal metal.
The reasoning is that the magnetic order is compensated on the
length scale of the superconducting correlation length. Using
this framework, Hübener et al. [45] studied AFM/SC/AFM
structures and found an anomalous strong suppression of the
proximity effect happening when the thickness of the AFM
exceeded around 6 nm. They argued that the drop in supercon-
ducting critical temperature could possibly be associated with
the onset of an incommensurate spin-density wave (SDW) state.
However, based on the theory presented in the present work, the
observed suppression is expected even without the SDW state.
This is because Hübener et al. [45] also reported a mean free
path of 5.3 nm for their samples, and the theory presented here
shows that even nonmagnetic impurities behave magnetically
in the presence of antiferromagnetic order. As such, conven-
tional, spin-singlet superconductivity can be expected to be
suppressed in antiferromagnetic systems when they enter the
diffusive regime, and in particular more so than in diffusive
normal metals. This happens when the system size exceeds the
mean free path, which was exactly the case in ref. [45].
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Quasiclassical equations of motion for AFMs, but without
superconductivity, have been derived by Manchon [48]. This
was done by defining sublattice-resolved Green’s function.
Such Green’s functions can be treated quasiclassically because,
while the magnetic order varies rapidly in the antiferromagnet,
the Néel order varies slowly. More recently, Bobkov et al. [49]
derived a sublattice-resolved quasiclassical theory for antifer-
romagnetic insulators with superconductivity. Other related
types of magnetically ordered systems that have been studied
within quasiclassical theory are spiral ferromagnets [50, 51]
and SDW AFs [52, 53]. Spiral ferromagnets have compensated
magnetic order similar to AFs. However, in order for these to be
treated quasiclassically, the spatial modulation of the magnetic
order must be slow compared to the Fermi wavelength. SDW
is also a state of matter with spatial modulation of the magnetic
order, typically formed by itinerant particles with Fermi-surface
nesting [54, 55]. SDW can also coexist with SC [54, 56], and
quasiclassical theory has been developed to model systems
with both SDW and SC [52, 53]. This is possible because the
SDW state can be modeled using a mean-field approach with a
slowly varying SDW order parameter.

Here, we develop quasiclassical equations of motion for
two-sublattice AFMs with superconductivity and impurities,
as well as external fields and spin-orbit coupling, and where
all the parameters, including the direction of the Néel vector,
may be inhomogeneous in time and space, as long as it is not
rapidly varying on the atomic length scale. We also develop
boundary conditions for the diffusive regime, which work also
for spin-active interfaces that can be either uncompensated or
compensated. Because we consider antiferromagnetic metals,
we assume that the Fermi level is deep within the conduction
band compared to other energy scales except for the exchange
energy between localized spins and itinerant electrons, as
illustrated in fig. 1. This exchange energy may be either large or
small compared to the distance between the Fermi level and the
edges of the conduction band. The quasiclassical theory can
therefore not be used to model heavy-fermion antiferromagnetic
superconductors, where the Fermi energy is comparable to the
superconducting gap [57]. On the other hand, it is well suited
to study heterostructures or other systems in which the Fermi
level can be assumed to lie deep within the conduction band.

Although our starting point is similar to that presented in
refs. [48, 49], except that we additionally consider the other
effects mentioned above, there are a few important differences.
Instead of equations for sublattice-resolved Green’s functions,
we derive equations for the conduction band Green’s functions.
This is possible because there is no rapidly varying magnetic
order for these Green’s functions, just as there is no rapidly
varying magnetic order for sublattice-resolved Green’s func-
tions. The reason why we project onto the conduction band
is that only states close to the Fermi level contribute to the
quasiclassical Green’s function, and the Fermi level lies deep
inside the conduction band. As a result, we end up with fewer
Green’s functions to solve for. More importantly, however, it
means that the chemical potential drops out of the equations,
similar to how it drops out in Keldysh theory for normal metals.
Therefore, we can consistently let it be much larger than other
energies. This procedure, leaving only the conduction band,

𝜉𝛼+

𝜉𝛼−

𝐸

𝒌

2|𝐽𝛼 |

Δ𝐸 𝛼

FIG. 1: A sketch of the energy bands in an antiferromagnet, where
𝜉𝛼± = −𝜇𝛼 ±

√︁
(𝐽𝛼)2 + (𝐾𝛼)2. Here, 𝛼 labels different materials,

𝜇𝛼 is the chemical potential, 𝐽𝛼 is the exchange coupling between
itinerant electrons and localized magnetic moments and 𝐾𝛼 is the
kinetic energy and Δ𝐸𝛼 is the smallest difference between the Fermi
level and the edges of the conduction band. The gap between the energy
bands is 2|𝐽𝛼 |. This gap can be arbitrary within the quasiclassical
theory developed here, but Δ𝐸𝛼 must be large compared to other
energies in the system, not including the gap.

means that the spin- and sublattice degrees of freedom are not
independent. An important consequence of this fact is that
the effect of nonmagnetic impurities in AFMs is similar to the
effect of magnetic impurities in normal metals.

We summarize the main results, outline how they are derived
and describe the necessary assumptions in section II. The
derivations are presented in sections III–XIV. This includes
the derivation of quasiclassical equations of motion, boundary
conditions for the diffusive regime and a general expression
for computing observables. Concluding remarks are given in
section XV.

II. OUTLINE

The main results are equations for the isotropic part of the
quasiclassical Green’s function, �̌�𝛼𝑠 , and the matrix current,
�̌�
𝛼, where 𝛼 labels the materials in the junction. Under the

assumptions that the quasiclassical Green’s function is approxi-
mately spherically symmetric and that the energy difference
between the Fermi level and the edges of the conduction band is
larger than all other energy scales, except possibly the exchange
energy 𝐽𝛼, we find in section XI that �̌�𝛼𝑠 and �̌�

𝛼 solve

𝑖∇̃ ◦ �̌�
𝛼 +

[
𝜏𝑧𝜀 − �̌� 𝛼𝑠 +

𝑖(𝐽𝛼)2
2𝜏𝛼imp (𝜂𝛼)2

𝜎𝑧𝜏𝑧 �̌�
𝛼
𝑠 𝜎𝑧𝜏𝑧 , �̌�

𝛼
𝑠

]
◦
= 0,

(1a)

�̌�
𝛼
= −�̌�𝛼𝑠 ◦ ∇̃ ◦ (𝐷𝛼�̌�𝛼𝑠 ) − �̌�𝛼𝑠 ◦

[ (𝐽𝛼)2
2(𝜂𝛼)2𝜎𝑧𝜏𝑧 �̌�

𝛼
𝑠 𝜎𝑧𝜏𝑧 , �̌�

𝛼
]
◦
,

(1b)
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where all the symbols are explained below. In the absence
of antiferromagnetism, 𝐽𝛼 → 0, eq. (1) reduces to the well-
known Usadel equation for normal metals [4]. In the limit
of very strong exchange coupling, such that (𝐽𝛼/𝜂𝛼)2 → 1,
the short-range correlations become negligible in the diffusive
limit, as we show in section XI.

The itinerant electrons in an AFM are described by a Hamil-
tonian including kinetic energy 𝐾𝛼, exchange energy to the
magnetic lattice 𝐽𝛼, chemical potential 𝜇𝛼 as well as other
additional terms coming from superconductivity, impurity scat-
tering, external fields or spin-orbit coupling. Equation (1) is
valid under the assumption that 𝐾𝛼 at the Fermi level is large
compared to all additional energies such as the impurity scatter-
ing rate and the superconducting gap. Note that 𝐾𝛼 need not
be large compared to 𝐽𝛼. As a result, the fraction (𝐽𝛼)2/(𝜂𝛼)2,
where 𝜂𝛼 =

√︁
(𝐽𝛼)2 + (𝐾𝛼)2, can take any value between 0

and 1.
The second assumption behind eq. (1) is that the system is

in the dirty regime. This means two things. First, it means that
the elastic impurity scattering rate, 1/𝜏imp is dominant out of
all the additional energies in the system, not including 𝐾𝛼, 𝐽𝛼
and 𝜇𝛼. Second, it means that the matrix current �̌�

𝛼 is small
compared to the Fermi velocity. As we show in section XI, this
is the case if the variation in �̌�𝛼𝑠 is small compared to 1 over
the length of the mean free path, either because the mean free
path is short or because the proximity effect is weak.

To complete the theory for use in systems involving more
than one material, we derive the boundary condition

𝒆𝑛 · �̌�𝛼 =
[
T̂
𝛼𝛽
𝑙 ◦ �̌�

𝛽
𝑠 (𝒙𝛽𝑙 ) ◦ T̂

𝛽𝛼
𝑙 + 𝑖(𝑆𝛼𝑐 )𝑇 �̂�𝑙𝑆𝛼𝑐 , �̌�𝛼𝑠

]
◦
, (2)

which are valid when the quasiclassical Green’s function is
isotropic also close to the interface. This is the case for
instance when the tunneling is weak. Equation (2) can be used
to model interfaces that are compensated or uncompensated,
magnetic or non-magnetic and conducting or isolating. In
the absence of antiferromagnetism, eq. (2) reduces to the
generalized Kupriyanov-Lukichev boundary condition for spin-
active boundaries [58, 59].

In section XIV, we derive a general expression for computing
observables which can be used to compute quantities such as
densities and currents once �̌�𝛼𝑠 and �̌�

𝛼 have been found. The
expression, eq. (198), contains not only the contribution from
states captured by the quasiclassical Green’s function but also
a general expression for the contribution from states further
away from the Fermi level.

We present a detailed, self-contained derivation of eqs. (1)
and (2), starting from a general tight-binding Hamiltonian
with a tunneling contact, introduced in section III. The full
Green’s functions and their equations of motion are presented
in section IV. Impurity averaging is performed in section V,
where we derive the impurity self-energy to second order in
the impurity potential. This is valid as long as the impurity
potential is weak, but since the self-energy depends only on
the isotropic part of the Green’s function, effects such as
skew scattering [60] would require going to third order. In
section VI, we use the tunneling Hamiltonian to remove the
intermaterial Green’s functions from the equations of motion.

In section VII we Fourier transform in relative coordinates, and
it is taken into consideration both that the system is defined on a
discrete lattice and, more importantly, different matrix elements
correspond to different relative spatial positions because of
the relative displacement between the two sublattices. In
section VIII we transform the Green’s functions into the basis
of the antiferromagnetic energy bands, and thereby extract
the conduction band. From this, we carefully define the
quasiclassical Green’s functions in section IX and use them
to remove higher-order spatial derivatives from the gradient
expansion. Next, in section X, we derive the quasiclassical
expression for the impurity scattering and show how it is
modified by the antiferromagnetic order. The main results
are then derived in section XI and section XII. Finally, in
section XIII we show how the equations are influenced by
nonuniform magnetic textures.

A B A B

B A B A

A B A B

xαn

δα

Unit cell

FIG. 2: Sketch of a plane in material 𝛼 for the case of a square lattice.
Each unit cell contains two orbitals. One is located at sublattice A,
𝒙𝛼𝑛 , and one is located at sublattice B, 𝒙𝛼𝑛 + 𝜹𝛼.

III. HAMILTONIAN

We consider a system composed of two materials, which we
label material 𝐿 and material 𝑅, connected through a tunneling
contact. The Hamiltonian is

H(𝑡) = H𝐿 (𝑡) +H𝑅 (𝑡) +H𝑇 . (3)

Here,

H𝛼 (𝑡) =
∑︁

𝑛,𝑚∈𝐴𝛼

𝑐𝛼†𝑛
[
𝐻𝛼0 (𝑡) +𝑉 𝛼 (𝑡)

]
𝑛𝑚
𝑐𝛼𝑚, (4)

where 𝛼 ∈ {𝐿, 𝑅} denotes material, 𝐴𝛼 is the set of unit cells
in material 𝛼. As sketched in fig. 2, each unit cell, labeled by a
3-tuple 𝑛, contains one orbital associated with the 𝐴-sublattice
at position 𝒙𝛼𝑛 , and one orbital associated with the 𝐵-sublattice
at position 𝒙𝛼𝑛 + 𝜹𝛼. We let the annihilation operators for the
orbitals with spin 𝜎 at unit cell 𝑛 in material 𝛼 at the 𝐴- and
𝐵-sublattice be 𝑐𝛼𝑛𝐴𝜎 and 𝑐𝛼𝑛𝐵𝜎 , respectively, and define

𝑐𝛼†𝑛 =
(
𝑐𝛼†
𝑛𝐴↑ 𝑐

𝛼†
𝑛𝐴↓ 𝑐

𝛼†
𝑛𝐵↑ 𝑐

𝛼†
𝑛𝐵↓ 𝑐

𝛼
𝑛𝐴↓ −𝑐𝛼𝑛𝐴↑ 𝑐𝛼𝑛𝐵↓ −𝑐𝛼𝑛𝐵↑

)
.

(5)
We include only nearest neighbor hopping and assume that

this hopping is only between the two different sublattices.
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The hopping parameter, 𝑡𝛼, chemical potential, 𝜇𝛼, and the
exchange energy 𝐽𝛼 between localized spins and conducting
electrons are collected in𝐻𝛼0 . The full electrochemical potential
need not be constant. However, we take 𝜇𝛼 to be constant.
Any deviation in the electrochemical potential away from 𝜇𝛼

is included in 𝑉 𝛼. If 𝝈 is the vector of Pauli matrices in
spin-space, 𝝉 are the Pauli matrices in Nambu-space and 𝝆 are
the Pauli matrices in sublattice-space, then

(𝐻𝛼0 )𝑛𝑚 (𝑡) = −
1
4
𝑡𝛼 (𝜌𝑥 + 𝑖𝜌𝑦)𝜏𝑧 𝜒N.N. (𝒙𝛼𝑛 − 𝜹𝛼 − 𝒙𝛼𝑚)

− 1
4
𝑡𝛼 (𝜌𝑥 − 𝑖𝜌𝑦)𝜏𝑧 𝜒N.N. (𝒙𝛼𝑛 + 𝜹𝛼 − 𝒙𝛼𝑚) −

1
2
𝛿𝑛𝑚𝜇

𝛼𝜏𝑧

− 1
2
𝛿𝑛𝑚𝐽

𝛼𝜌𝑧𝝈 ·
[
1 + 𝜌𝑧

2
𝒏(𝒙𝛼𝑛 , 𝑡) +

1 − 𝜌𝑧
2

𝒏(𝒙𝛼𝑛 + 𝜹𝛼, 𝑡)
]
,

(6)

where 𝒏 = (sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃) is the direction of the
Néel vector, and 𝜒N.N (𝒙) is a nearest neighbor characteristic
function which is 1 if 𝒙 is a nearest neighbor vector between
a 𝐴-lattice point and a 𝐵-lattice point and 0 otherwise. Be-
cause the direction Néel vector generally is influenced by the
dynamics of the itinerant electron, it should be solved for self-
consistently. This can be done with the Landau-Lifshitz-Gilbert
equation [30].

The term proportional to𝑉 𝛼 in eq. (4) contains all additional
effects that may be present in the model, such as supercon-
ductivity, external spin-splitting fields and corrections to the
hopping term from the vector potential or spin-orbit coupling.
Additionally, 𝑉 𝛼 importantly also determines the spatial geom-
etry of material 𝛼 by a potential that is zero inside the material
and very large outside the material. We can therefore let the
lattice, 𝐴𝛼, run to infinity in all spatial directions, meaning
that 𝐴𝛼 = Z3, where Z is the set of integers, while still having
the system be confined to a finite region of space. Note that
the potential can also be spin-dependent, for instance if there
is a spin-splitting field in the neighboring region. This will
influence the boundary condition we derive in section XII.

Finally, the tunneling Hamiltonian is

H𝑇 =
∑︁

𝑛,𝑚∈Z3

𝑐𝐿†𝑛 𝑇
𝐿𝑅
𝑛𝑚 𝑐

𝑅
𝑚 =

∑︁
𝑖, 𝑗∈Z3

𝑐𝑅†𝑛 𝑇
𝑅𝐿
𝑛𝑚 𝑐

𝐿
𝑚, (7)

where 𝑇𝑅𝐿 and 𝑇𝐿𝑅 = (𝑇𝑅𝐿)† are matrices satisfying 𝑇𝐿𝑅 =
diag(𝑇, 𝑖𝜎𝑦𝑇∗𝑖𝜎𝑦) for some 4 × 4 matrix 𝑇 .

We rotate spin space such that the Néel vector is always
parallel to the 𝑧-axis. To do this we define the rotation matrix

𝑅(𝒙, 𝑡) = exp
{
−𝑖 𝜃 [𝒏(𝒙, 𝑡) × 𝒆𝑧] · 𝝈

2 sin 𝜃

}
, (8)

and

𝑐𝛼𝑛 (𝑡) =
[
1 + 𝜌𝑧

2
𝑅† (𝒙𝛼𝑛 , 𝑡) +

1 − 𝜌𝑧
2

𝑅† (𝒙𝛼𝑛 + 𝜹𝛼, 𝑡)
]
𝑐𝛼𝑛 , (9)

such that

H𝛼 (𝑡) =
∑︁

𝑛,𝑚∈Z3

𝑐𝛼†𝑛 (𝑡)
[
�̃�𝛼0 (𝑡) + �̃� 𝛼 (𝑡)

]
𝑛𝑚
𝑐𝛼𝑚 (𝑡), (10)

where, if we assume that 𝒏 varies slowly in space over the
distance of neighboring lattice points,

(�̃�𝛼0 )𝑛𝑚 (𝑡) = −
1
2
𝛿𝑛𝑚 [𝐽𝛼𝜌𝑧𝜎𝑧 + 𝜇𝜏𝑧] + 1

2
𝐾𝛼𝑛𝑚𝜏𝑧

− 𝜏𝑧
2

(
𝐾𝛼𝑛𝑚 [𝒙𝛼𝑛 − 𝒙𝛼𝑚] +

[
𝜹𝛼𝜌𝐵, 𝐾

𝛼
𝑛𝑚

] ) · (𝑅†∇𝑅) (
𝒙𝛼𝑛 , 𝑡

)
.

(11)

where the kinetic term is

𝐾𝛼𝑛𝑚 = − 𝑡
𝛼

2
[(𝜌𝑥 + 𝑖𝜌𝑦)𝜒N.N. (𝒙𝛼𝑛 − 𝜹𝛼 − 𝒙𝛼𝑚)
+ (𝜌𝑥 − 𝑖𝜌𝑦)𝜒N.N. (𝒙𝛼𝑛 + 𝜹𝛼 − 𝒙𝛼𝑚)

]
(12)

Finally, we also define the projection operators in sublattice
space,

𝜌𝐴 =
1 + 𝜌𝑧

2
and 𝜌𝐵 =

1 − 𝜌𝑧
2

, (13)

for ease of notation.

IV. GREEN’S FUNCTIONS AND EQUATIONS OF
MOTION

In this section, we define the full Green’s functions. These
are the starting point of our derivation and will later be used to
define the quasiclassical, impurity-averaged conduction band
Green’s functions which are the objects of the final equations.
To obtain the final equations we must first derive the equation
of motion for the full Green’s function. These are called the
Gor’kov equations and are derived in this section.

The retarded, advanced and Keldysh Green’s functions are
defined respectively as

�̂�
𝑅,𝛼𝛽
𝑛𝑚 (𝑡1, 𝑡2) = −𝑖𝜏𝑧

〈{
𝑐𝛼𝑛 (𝑡1), 𝑐𝛽†𝑚 (𝑡2)

}〉
𝜃 (𝑡1 − 𝑡2) (14a)

�̂�
𝐴,𝛼𝛽
𝑛𝑚 (𝑡1, 𝑡2) = +𝑖𝜏𝑧

〈{
𝑐𝛼𝑛 (𝑡1), 𝑐𝛽†𝑚 (𝑡2)

}〉
𝜃 (𝑡2 − 𝑡1) (14b)

�̂�
𝐾,𝛼𝛽
𝑛𝑚 (𝑡1, 𝑡2) = −𝑖𝜏𝑧

〈[
𝑐𝛼𝑛 (𝑡1), 𝑐𝛽†𝑚 (𝑡2)

]〉
. (14c)

These are 8 × 8 matrices, and are collected in larger 16 × 16
matrices,

�̌�
𝛼𝛽
𝑛𝑚 =

(
�̂�
𝑅,𝛼𝛽
𝑛𝑚 �̂�

𝐾,𝛼𝛽
𝑛𝑚

�̂�
𝐴,𝛼𝛽
𝑛𝑚

)
, (15)

and even larger 32 × 32 matrices,

�̆�𝑛𝑚 =

(
�̌�𝐿𝐿𝑛𝑚 �̌�𝐿𝑅𝑛𝑚
�̌�𝑅𝐿𝑛𝑚 �̌�𝑅𝑅𝑛𝑚

)
. (16)

We use the notation that ·̂ indicates a nontrivial matrix structure
in Nambu-space, ·̌ indicates a nontrivial structure in Keldysh-
space and ·̆ indicates a nontrivial structure in material-space.

In order to derive the equations of motion, we use that any
operator, 𝐴, evolves in time according to

𝜕

𝜕𝑡
𝐴 = 𝑖[H, 𝐴] +

(
𝜕𝐴

𝜕𝑡

)
H

. (17)
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From this, together with the relation [𝐴𝐵,𝐶] = 𝐴{𝐵,𝐶} −
{𝐴,𝐶}𝐵, we find

𝜕𝑐𝛼𝑛
𝜕𝑡

= −2𝑖
∑︁
𝑚∈Z3

[
�̃�𝛼0 (𝑡) + �̃� 𝛼 (𝑡)

]
𝑛𝑚
𝑐𝛼𝑚 − 𝑖

∑︁
𝑚∈Z3

𝑇
𝛼𝛽
𝑛𝑚 𝑐

𝛽
𝑚

−
[
𝜌𝐴

(
𝑅† ¤𝑅

)
(𝒙𝑛, 𝑡) + 𝜌𝐵

(
𝑅† ¤𝑅

)
(𝒙𝑛 + 𝜹, 𝑡)

]
𝑐𝛼𝑛 , (18)

where 𝛽 ≠ 𝛼, and

𝜕𝑐𝛼†𝑛
𝜕𝑡

= 2𝑖
∑︁
𝑚∈Z3

𝑐𝛼†𝑚
[
�̃�𝛼0 (𝑡) + �̃� 𝛼 (𝑡)

]
𝑚𝑛
+ 𝑖

∑︁
𝑚∈Z3

𝑇
𝛼𝛽
𝑛𝑚 𝑐

𝛽
𝑚

+ 𝑐𝛼†𝑛
[
𝜌𝐴

(
𝑅† ¤𝑅

)
(𝒙𝑛, 𝑡) + 𝜌𝐵

(
𝑅† ¤𝑅

)
(𝒙𝑛 + 𝜹, 𝑡)

]
. (19)

From this, we derive the Gor’kov equations,

𝑖𝜏𝑧
𝜕�̆�

𝜕𝑡
− Σ̆ • �̆� = 𝛿(𝑡1 − 𝑡2)𝛿𝑛𝑚, (20a)

𝜕�̆�

𝜕𝑡 ′
𝑖𝜏𝑧 + �̆� • Σ̆ = −𝛿(𝑡1 − 𝑡2)𝛿𝑛𝑚, (20b)

where

Σ̆ =

(
�̂�𝐿0 + �̌�𝐿 𝑇𝐿𝑅

𝑇𝑅𝐿 �̂�𝑅0 + �̌�𝑅
)
, (21)

and

(�̂�𝛼0 )𝑛𝑚 (𝑡1, 𝑡2) =
(
𝐾𝛼𝑛𝑚 − 𝛿𝑛𝑚 [𝐽𝛼𝜌𝑧𝜎𝑧𝜏𝑧 + 𝜇]

)
𝛿(𝑡1 − 𝑡2),

(22a)

(𝑇 𝛼𝛽)𝑛𝑚 (𝑡1, 𝑡2) = 𝑇 𝛼𝛽𝑛𝑚 𝜏𝑧𝛿(𝑡1 − 𝑡2), (22b)

�̌� 𝛼𝑛𝑚 (𝑡1, 𝑡2) =
(
Σ̌𝛼inel

)
𝑛𝑚
(𝑡1, 𝑡2) +

{
2�̃� 𝛼𝑛𝑚 (𝑡)

− 𝜏𝑧
(
𝐾𝛼𝑛𝑚 [𝒙𝛼𝑛 − 𝒙𝛼𝑚] +

[
𝜹𝛼𝜌𝐵, 𝐾

𝛼
𝑛𝑚

] )
·
(
𝑅†∇𝑅

) (
𝒙𝛼𝑛 , 𝑡1

) − 𝑖 [𝜌𝐴 (
𝑅† ¤𝑅

)
(𝒙𝑛, 𝑡1)

+ 𝜌𝐵
(
𝑅† ¤𝑅

)
(𝒙𝑛 + 𝜹, 𝑡)

]
𝛿𝑛𝑚

}
𝜏𝑧𝛿(𝑡1 − 𝑡2).

(22c)

We have added in �̌� 𝛼𝑛𝑚 a term which models inelastic processes,
Σ̌𝛼inel. The bullet product between two matrix-valued functions,
𝐴 and 𝐵, is defined as

(𝐴 • 𝐵)𝑛𝑚 (𝑡1, 𝑡2) =
∫ ∞
−∞

d𝑡
∑︁
𝑙∈Z3

𝐴𝑛𝑙 (𝑡1, 𝑡)𝐵𝑙𝑚 (𝑡, 𝑡2). (23)

We also define the circle-product to be the integral over time,

(𝐴 ◦ 𝐵) (𝑡1, 𝑡2) =
∫ ∞
−∞

d𝑡 𝐴(𝑡1, 𝑡)𝐵(𝑡, 𝑡2). (24)

From eq. (20) we also get the Dyson equations,

�̆� = �̆�0 + �̆�0 • 𝛿Σ̆ • �̆�, (25a)
�̆� = �̆�0 + �̆� • 𝛿Σ̆ • �̆�0, (25b)

if Σ̆ = Σ̆0 + 𝛿Σ̆ and �̆�0 solves

𝑖𝜏𝑧
𝜕�̆�0
𝜕𝑡1
− Σ̆0 • �̆�0 = 𝛿(𝑡1 − 𝑡2)𝛿𝑛𝑚, (26a)

𝜕�̆�0
𝜕𝑡2

𝑖𝜏𝑧 + �̆�0 • Σ̆0 = −𝛿(𝑡1 − 𝑡2)𝛿𝑛𝑚. (26b)

Equation (25) can be derived by taking bullet products of
eqs. (26a) and (26b) with �̆� from the left and right, respec-
tively, and using that 𝐴 • (𝜕𝐵/𝜕𝑡1) = −(𝜕𝐴/𝜕𝑡2) • 𝐵 when
lim𝑡→±∞ 𝐴(𝑡1, 𝑡)𝐵(𝑡, 𝑡2) = 0.

V. IMPURITY AVERAGING

In this section, we average over impurities and identify
the self-energy which relates the impurity-averaged Green’s
function to the Green’s function in the absence of impurities.
The impurity-averaged Green’s function can then be found by
replacing the impurity potential in the Gor’kov equations with
this self-energy. We determine this self-energy to second order
in the impurity potential. This is valid under the assumption
that the impurity potentials are weak, although the number
of impurities may be large. By not going to third order, the
self-energy depends only on the isotropic part of the Green’s
function and therefore does not capture effects such as skew
scattering [60].

Let 𝑚𝛼𝑋 be the number of impurities in material 𝛼 on
sublattice 𝑋 ∈ {𝐴, 𝐵}. Next, we assume that the impurity
potentials are local and that the potential strength and position
of the 𝑖’th impurity in material 𝛼 on sublattice 𝑋 are 𝑈𝛼𝑋𝑖
and 𝑟𝛼𝑋𝑖 , respectively. The self-energy term from the impurity
potential is then

�̆�
imp
𝑛𝑚 = 𝛿𝑛𝑚𝛿(𝑡1 − 𝑡2)

×
∑︁

𝑋 ∈{𝐴,𝐵}

(∑𝑚𝐿𝑋

𝑖=1 𝜌𝑋𝑈
𝐿𝑋
𝑖 𝛿𝑛𝑟𝐿𝑋

𝑖 ∑𝑚𝑅𝑋

𝑖=1 𝜌𝑋𝑈
𝑅𝑋
𝑖 𝛿𝑛𝑟𝑅𝑋

𝑖

)
.

(27)

Next, we define the impurity average as the sum over all
possible impurity locations and impurity potential strengths,
weighted by some normalized distribution function 𝑝imp :
{𝑈𝑖}, {𝑟𝑖} ↦→ R, where {𝑈𝑖} and {𝑟𝑖} denote the set of potential
strengths and locations, respectively. That is,

〈𝐴〉imp =
∏

𝛼∈{𝐿,𝑅}

∏
𝑋 ∈{𝐴,𝐵}

𝑚𝛼𝑋∏
𝑖=1

∫ ∞
−∞

d𝑈𝛼𝑋𝑖

×
∑︁

𝑟 𝛼𝑋
𝑖
∈Z3

𝑝imp ({𝑈𝑖}, {𝑟𝑖})𝐴({𝑈𝑖}, {𝑟𝑖}). (28)

We do not specify 𝑝imp, but we assume it is such that im-
purities are independently and uniformly distributed. By
assuming that they are uniformly distributed in space, we
have that 〈𝛿𝑛𝑟 𝛼𝑋

𝑗
〉imp = 1/𝑁𝛼 = 𝑛𝛼𝑋imp/𝑚𝛼𝑋 , where 𝑁𝛼 is

the number of unit cells in material 𝛼 and 𝑛𝛼𝑋imp = 𝑚𝛼𝑋/𝑁𝛼
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is the impurity density on sublattice 𝑋 in material 𝛼.
The assumption that impurities are independent means that
〈𝑈𝛼𝑋𝑖 𝛿𝑛𝑟 𝛼𝑋

𝑖
𝑈
𝛽𝑌
𝑗 𝛿

𝑚𝑟
𝛽𝑌

𝑗

〉imp = 〈𝑈𝛼𝑋𝑖 𝛿𝑛𝑟 𝛼𝑋
𝑖
〉imp〈𝑈𝛽𝑌𝑗 𝛿

𝑚𝑟
𝛽𝑌

𝑗

〉imp

if 𝑖 ≠ 𝑗 , 𝛼 ≠ 𝛽 or 𝑋 ≠ 𝑌 . Finally, we also assume that the
strengths and locations of impurities are uncorrelated, such that
〈𝑈𝛼𝑋𝑖 𝛿𝑛𝑟 𝛼𝑋

𝑖
〉imp = 〈𝑈𝛼𝑋𝑖 〉imp〈𝛿𝑛𝑟 𝛼𝑋

𝑖
〉imp, and that the impuri-

ties on each sublattice and material are identically distributed,
such that 〈𝑈𝛼𝑋𝑖 〉imp = 〈𝑈𝛼𝑋𝑗 〉imp C 〈𝑈𝛼𝑋 〉imp for all 𝑖 and 𝑗 .

To find how the impurity-averaged Green’s function, �̆� imp B

〈�̆�〉imp is related to the Green’s function in the absence of
impurities, �̆�0, we take the impurity average of eq. (25a) with
𝛿Σ̆ = �̆� imp to obtain

�̆� imp = �̆�0 + �̆�0 •
〈
�̆� imp • �̆�〉

imp . (29)

We want an equation on the form

�̆� imp = �̆�0 + �̆�0 • Σ̆imp • �̆� imp. (30)

That is, we want to remove �̆�, which depends on the specific
realizations of the impurity configuration. To find Σ̆imp to
second order in �̆� imp, we again set 𝛿Σ̆ = �̆� imp and insert
eq. (25a) twice into eq. (29) to obtain

�̆� imp = �̆�0 + �̆�0 •
〈
�̆� imp〉

imp • �̆�0

+ �̆�0 •
〈
�̆� imp • �̆�0 • �̆� imp〉

imp • �̆�0

+ �̆�0 •
〈
�̆� imp • �̆�0 • �̆� imp • �̆�0 • �̆� imp • �̆�〉

imp . (31)

We need �̆�0 as a function of �̆� imp to get eq. (30). This can be
found to the appropriate order in �̆� imp in inserting eq. (25a)
with 𝛿Σ̆ = �̆� imp once into eq. (29) and solving for �̆�0, giving

�̆�0 = �̆� imp − �̆�0 •
〈
�̆� imp〉

imp • �̆�0

− �̆�0 •
〈
�̆� imp • �̆�0 • �̆� imp • �̆�〉

imp . (32)

In order to find a self-consistent expression for the impurity
self-energy Σ̆imp as a function of �̆� imp and �̆� imp, we insert the
expression for �̆�0 iteratively into eq. (31). By comparing the
result to eq. (30), this gives that, to second order in �̆� imp,

Σ̆imp =
〈
�̆� imp〉

imp +
〈
�̆� imp • �̆� imp • �̆� imp〉

imp

− 〈
�̆� imp〉

imp • �̆� imp •
〈
�̆� imp〉

imp . (33)

Using the properties of 𝑝imp, we see that the first order term,[
Σ̆(1)imp (𝑡1, 𝑡2)

]
𝑛𝑚

=
[〈
�̆� imp〉

imp (𝑡1, 𝑡2)
]
𝑛𝑚

= 𝛿𝑛𝑚𝛿(𝑡1 − 𝑡2)

×
∑︁

𝑋 ∈{𝐴,𝐵}

(
𝑛𝐿𝑋imp𝜌𝑋 〈𝑈𝐿𝑋 〉imp

𝑛𝑅𝑋imp𝜌𝑋 〈𝑈𝑅𝑋 〉imp

)
, (34)

is an energy shift that may be sublattice-dependent if the number
or strength of impurities is different on the two sublattices. It
may in general also be spin-dependent if the impurities are

magnetic, meaning that𝑈𝛼𝑋𝑖 has a nontrivial structure in spin-
space. Here we assume that the impurities are not magnetic.
Nevertheless, we shall see in section X that they will have an
effective magnetic component in the final equations.

To evaluate the second-order term,

Σ̆(2)imp =
〈
�̆� imp • �̆� imp • �̆� imp〉

imp−
〈
�̆� imp〉

imp•�̆� imp•
〈
�̆� imp〉

imp .

(35)
note that the assumption that the impurities are independent
means that the contributions with different impurities to the
left and right of the Green’s function cancel. Hence,

[
Σ̆(2)imp (𝑡1, 𝑡2)

] 𝛼𝛽
𝑛𝑚

= 𝛿𝛼𝛽
∑︁

𝑋 ∈{𝐴,𝐵}

𝑚𝛼𝑋∑︁
𝑖=1

×
[
𝜌𝑋 (�̌�𝛼𝛼imp)𝑛𝑚𝜌𝑋

〈
𝑈𝛼𝑋𝑖 𝛿𝑛𝑟 𝛼𝑋

𝑖
𝑈𝛼𝑋𝑖 𝛿𝑚𝑟 𝛼𝑋

𝑖

〉
imp

− 𝜌𝑋 (�̌�𝛼𝛼imp)𝑛𝑚𝜌𝑋
〈
𝑈𝛼𝑋𝑖 𝛿𝑛𝑟 𝛼𝑋

𝑖

〉
imp

〈
𝑈𝛼𝑋𝑖 𝛿𝑚𝑟 𝛼𝑋

𝑖

〉
imp

]
= 𝛿𝛼𝛽

∑︁
𝑋 ∈{𝐴,𝐵}

𝛿𝑛𝑚𝑛
𝛼𝑋
imp

〈
𝑈𝑋𝛼𝑈𝑋𝛼

〉
imp 𝜌𝑋 (�̌�𝛼𝛼imp)𝑛𝑛𝜌𝑋

− 𝛿𝛼𝛽
∑︁

𝑋 ∈{𝐴,𝐵}

𝑛𝛼𝑋imp

𝑁𝛼
〈
𝑈𝑋𝛼

〉2
imp 𝜌𝑋 (�̌�𝛼𝛼imp)𝑛𝑚𝜌𝑋 . (36)

We can neglect the second term because 𝑁𝛼 is large and the
amplitude of the Green’s function decreases as a function of
relative distance in the presence of impurities, as will be shown
later. Thus, to second order the impurity self-energy is[

Σ̆imp (𝑡1, 𝑡2)
] 𝛼𝛽
𝑛𝑚

= 𝛿𝛼𝛽𝛿𝑛𝑚
∑︁

𝑋 ∈{𝐴,𝐵}
𝑛𝛼𝑋imp

(
𝜌𝑋

〈
𝑈𝑋𝛼

〉
imp

+ 〈
𝑈𝑋𝛼𝑈𝑋𝛼

〉
imp 𝜌𝑋 (�̌�𝛼𝛼imp)𝑛𝑛 (𝑡1, 𝑡2)𝜌𝑋

)
. (37)

From here on we drop the subscript on the impurity averaged
Green’s function, such that �̆� imp → �̆�.

VI. TUNNELING

In order to get closed equations for �̌�𝐿𝐿 and �̌�𝑅𝑅, we must
first remove �̌�𝐿𝑅 and �̌�𝑅𝐿 . In this section, we do this by
treating the tunneling self-energy as the perturbation in the
Dyson equation. However, we note that the derived effective
tunneling self-energy is still of infinite order in the tunneling
amplitudes 𝑇𝐿𝑅.

Let

𝑇 =

(
𝑇𝐿𝑅

𝑇𝑅𝐿

)
, (38)

and let �̆�0 be the Green’s function with 𝑇𝑅𝐿 = 𝑇𝐿𝑅 = 0, mean-
ing that it solves eq. (26) with 𝛿Σ̆ = Σ̆ − 𝑇 = diag(Σ̌𝐿𝐿 , Σ̌𝑅𝑅).
Here 𝛿Σ̆ includes the impurity self-energy term obtained from
the impurity average above. Note that this means that �̌�𝑅𝑅0
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still depends on �̌�𝐿𝐿 . This is because �̌�𝑅𝑅0 depend on �̌�𝑅𝑅

through the impurity self-energy found in section V, and �̌�𝑅𝑅
depend on �̌�𝐿𝐿 . For the same reason �̌�𝐿𝐿0 depends on �̌�𝑅𝑅.

From the Dyson equation, (25), we have that

�̆� = �̆�0 + �̆�0 • 𝑇 • �̆�, (39a)
�̆� = �̆�0 + �̆� • 𝑇 • �̆�0. (39b)

From the upper right block of eq. (39a) we have that

�̌�𝐿𝑅 = �̌�𝐿𝑅0 + �̌�𝐿𝑅0 • 𝑇𝑅𝐿 • �̌�𝐿𝑅 + �̌�𝐿𝐿0 • 𝑇𝐿𝑅 • �̌�𝑅𝑅

= �̌�𝐿𝑅0 •
(
𝑖𝜏𝑧
𝜕�̌�𝑅𝑅

𝜕𝑡
− Σ̌𝑅𝑅 • �̌�𝑅𝑅 − 𝑇𝑅𝐿 • �̌�𝐿𝑅

)
+ �̌�𝐿𝑅0 • 𝑇𝑅𝐿 • �̌�𝐿𝑅 + �̌�𝐿𝐿0 • 𝑇𝐿𝑅 • �̌�𝑅𝑅

= −
(
𝜕�̌�𝐿𝑅0
𝜕𝑡 ′

𝑖𝜏𝑧 + �̌�𝐿𝑅0 • Σ̌𝑅𝑅
)
• �̌�𝑅𝑅 + �̌�𝐿𝐿0 • 𝑇𝐿𝑅 • �̌�𝑅𝑅

= �̌�𝐿𝐿0 • 𝑇𝐿𝑅 • �̌�𝑅𝑅, (40)

where we used eq. (26) in the last equality.
Doing the same for �̌�𝐿𝑅, and from similar calculations using

eq. (39b) we find that

�̌�𝐿𝑅 = �̌�𝐿𝐿0 • 𝑇𝐿𝑅 • �̌�𝑅𝑅 = �̌�𝐿𝐿 • 𝑇𝐿𝑅 • �̌�𝑅𝑅0 , (41a)
�̌�𝑅𝐿 = �̌�𝑅𝑅0 • 𝑇𝑅𝐿 • �̌�𝐿𝐿 = �̌�𝑅𝑅 • 𝑇𝑅𝐿 • �̌�𝐿𝐿0 . (41b)

Inserting this into the Gor’kov equation, we can remove �̌�𝑅𝐿
and �̌�𝐿𝑅 and get a block-diagonal self-energy,

Σ̆ = �̆�0 + �̆� + Σ̆imp + Σ̆𝑇 , (42)

where

�̆�0 =

(
�̂�𝐿0

�̂�𝑅0

)
, (43a)

�̆� =

(
�̌�𝐿

�̌�𝑅

)
, (43b)

Σ̆𝑇 =

(
𝑇𝐿𝑅 • �̌�𝑅𝑅0 • 𝑇𝑅𝐿

𝑇𝑅𝐿 • �̌�𝐿𝐿0 • 𝑇𝐿𝑅
)
. (43c)

VII. FOURIER TRANSFORM AND WIGNER
COORDINATES

In the quasiclassical framework, functions vary slowly with
the center-of-mass (COM) coordinates, and quickly with the
relative coordinates. It is therefore useful to Fourier transform
in the relative coordinates to obtain functions of momentum,
energy, COM time and COM position, also known as Wigner
coordinates. The Fourier transform in relative time reads

F𝑡 (𝐴) (𝑇, 𝜀) =
∫ ∞
−∞

d𝑡 𝐴(𝑇 + 𝑡/2, 𝑇 − 𝑡/2)e𝑖 𝜀𝑡 , (44)

and for the Fourier transform in relative position we use

F𝑟 (𝐴) (𝒌, 𝒙𝛼𝑛 ) =
∑︁
𝑚∈Z3

e−𝑖𝜌𝐵𝒌 ·𝜹
𝛼

𝐴(𝑛+𝑚)𝑛e𝑖𝜌𝐵𝒌 ·𝜹
𝛼

e−𝑖𝒌 ·𝒙
𝛼
𝑚 .

(45)

This is is a three-dimensional discrete-time Fourier transform
(DTFT), and the inverse transform is given by

F−1
𝑟 (𝐴) (𝑛+𝑚)𝑛 = 𝑉 𝛼𝑒

∫
^𝛼

d3𝑘

(2𝜋)3 e𝑖𝜌𝐵𝒌 ·𝜹
𝛼

𝐴(𝒌, 𝒙𝛼𝑛 )e−𝑖𝜌𝐵𝒌 ·𝜹
𝛼

e𝑖𝒌 ·𝒙
𝛼
𝑚 ,

(46)
where 𝑉 𝛼𝑒 is the volume of the unit cell and ^𝛼 is the first
Brillouin zone in material 𝛼. Note that 𝒙𝛼𝑛 in eq. (45) is not
exactly the COM position, since the COM position for term 𝑚
on the right is (𝒙𝛼𝑛 + 𝒙𝛼𝑚)/2.

We use the same symbols as before to denote the bullet and
circle products in the Wigner coordinates, meaning that they
satisfy

F𝑟 [F𝑡 (𝐴)] • F𝑟 [F𝑡 (𝐵)] = F𝑟 [F𝑡 (𝐴 • 𝐵)] (47)

and

F𝑡 (𝐴) ◦ F𝑡 (𝐵) = F𝑡 (𝐴 ◦ 𝐵). (48)

Thus, the Gor’kov equations in the Wigner coordinates read

𝜏𝑧𝜀 ◦ �̆� − Σ̆ • �̆� = 1, (49a)
�̆� ◦ 𝜏𝑧𝜀 − �̆� • Σ̆ = 1. (49b)

The circle product in the Wigner product is the same as in
continuous models for normal metals [5, 61],

𝐴 ◦ 𝐵 = exp
(
𝑖

2
𝜕𝐴𝜀 𝜕

𝐵
𝑇 −

𝑖

2
𝜕𝐴𝑇 𝜕

𝐵
𝜀

)
𝐴𝐵, (50)

where the superscripts on the differential operators denote
which function they act on. The spatial part of the bullet
product, on the other hand, is different, and there are three
reasons for this. First, since we are working on a discrete lattice,
we cannot Taylor expand, which is how the series expansion in
differential operators is achieved in eq. (50). Second, since we
are working with two sublattices that are located differently in
space, the COM positions and relative positions are different
for different matrix elements. Third, the COM position is not
set constant in the way we have defined the Fourier transform in
eq. (45). Nevertheless, the bullet product can still be written as
a series of differential operators of increasing order. To derive
the explicit series expansion, one can use the Newton forward
difference equation, which is the discrete analog to the Taylor
series expansion. The zeroth order term is the same, namely
just the normal matrix product, and we will end up keeping
only the zeroth order terms, except for the kinetic energy term,
the tunneling term, and the potential which is large outside
the material. We will evaluate these terms explicitly when
considering the boundary condition. Note, however, that we
cannot neglect the higher-order terms at this stage because the
Green’s function is strongly peaked in momentum space.

To evaluate �̂�𝛼0 • �̌�𝛼𝛼 and �̌�𝛼𝛼 • �̂�𝛼0 in Wigner coordinates,
note that

F𝑟 [𝐴 • 𝐵] (𝒌, 𝒙𝛼𝑛 ) =
∑︁
𝑚∈Z3

F[𝐴] (𝒌, 𝒙𝛼𝑚 + 𝒙𝛼𝑛 )

◦ e−𝑖𝜌𝐵𝒌 ·𝜹
𝛼

𝐵 (𝑛+𝑚)𝑛e𝑖𝜌𝐵𝒌 ·𝜹
𝛼

e−𝑖𝒌 ·𝒙
𝛼
𝑚 . (51)
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Hence, as �̂�𝛼0 does not depend on COM-position,

F𝑡
{
F𝑟

[
�̂�𝛼0 • �̌�𝛼𝛼

]} (𝒌, 𝒙𝛼𝑛 ) = �̂�𝛼0 (𝒌)�̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑛 ). (52)

Here,

�̂�𝛼0 (𝒌) = 𝜌𝑥𝐾𝛼 (𝒌) − (𝐽𝛼𝜌𝑧𝜎𝑧𝜏𝑧 + 𝜇), (53)

and

𝐾𝛼 (𝒌) = −
∑︁

𝜹𝑖 ∈N.N.
𝑡𝛼 cos(𝒌 · 𝜹𝑖) (54)

where the sum goes over all the six nearest neighbor displace-
ment vectors.

Interchanging the order, we find that

F𝑡
{
F𝑟

[
�̌�𝛼𝛼 • �̂�𝛼0

]}
= �̌�𝛼𝛼�̂�𝛼0

− 1
2

∑︁
𝜹𝑖 ∈N.N.

(
Δ𝑅�̌�

𝛼𝛼
)
· (𝜹𝑖 + 𝜹𝛼) (𝜌𝑥 + 𝑖𝜌𝑦)𝑡𝛼e−𝑖𝒌 ·𝜹𝑖

− 1
2

∑︁
𝜹𝑖 ∈N.N.

(
Δ𝑅�̌�

𝛼𝛼
)
· (𝜹𝑖 − 𝜹𝛼) (𝜌𝑥 − 𝑖𝜌𝑦)𝑡𝛼e−𝑖𝒌 ·𝜹𝑖 (55)

where the symbols on the right-hand side denote functions of
Wigner coordinates and the discrete finite difference operator
is defined as

𝒙𝛼𝑚 ·Δ𝑅�̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑛 ) = �̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑛 +𝒙𝛼𝑚)−�̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑛 ). (56)

The finite difference is only well-defined when 𝒙𝛼𝑚 is a lattice
vector, meaning that 𝒙𝛼𝑚 is a displacement vector from one unit
cell to another. However, we can define

𝜹𝑖 · Δ𝑅�̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑛 ) = [�̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑛 + 2𝜹𝑖) − �̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑛 )]/2.
(57)

This is possible because we assume that 2𝜹𝑖 is a lattice vector
when 𝜹𝑖 is a nearest neighbor displacement vector. With this,

𝜹𝑖 · Δ𝑅�̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑛 ) + 𝜹𝛼 · Δ𝑅�̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑛 )

= (𝜹𝑖 + 𝜹𝛼) · Δ𝑅�̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑛 ) +
1
2
�̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑛 + 2𝜹𝑖)

+ 1
2
�̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑛 + 2𝜹𝛼) − �̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑛 + 𝜹𝑖 + 𝜹𝛼). (58)

The last three terms are equal to |𝜹𝑖 − 𝜹𝛼 |2/2 times the sec-
ond order central difference of �̌�𝛼𝛼, so they are negligi-
ble under the assumption that the Green’s function changes
slowly as a function COM position compared to the interlat-
tice spacing. By the same reasoning we also approximate
(−𝒙𝛼𝑚) ·Δ𝑅�̌�𝛼𝛼 = −𝒙𝛼𝑚 ·Δ𝑅�̌�𝛼𝛼, since the difference is equal
to the

��𝒙𝛼𝑚��2 multiplied by the second order derivative of �̌�𝛼𝛼.
With this we have

F𝑡
{
F𝑟

[
�̌�𝛼𝛼 • �̂�𝛼0

]}
= �̌�𝛼𝛼�̂�𝛼0

+ 𝑖
(
Δ𝑅�̌�

𝛼𝛼
)
· (𝜌𝑥∇𝑘𝐾𝛼 + 𝜹𝛼𝜌𝑦𝐾𝛼) . (59)

The dot product in the last term must be interpreted in the
following sense: If ∇𝑘𝐾𝛼 = 𝐴1𝜹1 + 𝐴2𝜹2 + 𝐴3𝜹3, where 𝜹1,
𝜹2 and 𝜹3 are three different, linearly independent, nearest
neighbor displacement vectors, then(

Δ𝑅�̌�
𝛼𝛼

)
· ∇𝑘𝐾𝛼 =

3∑︁
𝑖=1

𝜹𝑖 ·
(
Δ𝑅�̌�

𝛼𝛼
)
𝐴𝑖 . (60)

VIII. EXTRACTING THE CONDUCTION BAND

The main idea behind the quasiclassical theory is that most
of the interesting physics happens close to the Fermi surface.
Therefore, it is of interest to isolate the contribution from
states close to the Fermi surface. In our model there are two
energy bands that are not overlapping, so only one of these
can pass through the Fermi surface. In real materials, it is not
always the case that the energy bands are not overlapping. It
is sufficient that the energy bands are not overlapping near the
Fermi surface.

To separate the two bands, we must diagonalize �̂�𝛼0 . We
find that

�̂�𝛼0 = 𝑆𝛼𝐷𝛼 (𝑆𝛼)𝑇 , (61)

where

𝐷𝛼 = diag(𝜉𝛼− , 𝜉𝛼− , 𝜉𝛼− , 𝜉𝛼− , 𝜉𝛼+ , 𝜉𝛼+ , 𝜉𝛼+ , 𝜉𝛼+ ) (62)

and (𝑆𝛼)𝑇 denotes the transpose of

𝑆𝛼 =
1√︁
2𝜂𝛼


©­­­«
−𝜎0 0 𝜎0 0
𝜎0 0 𝜎0 0
0 −𝜎0 0 𝜎0
0 𝜎0 0 𝜎0

ª®®®¬𝑠
𝛼

−
©­­­«
𝜎𝑧 0 𝜎𝑧 0
𝜎𝑧 0 −𝜎𝑧 0
0 −𝜎𝑧 0 −𝜎𝑧
0 −𝜎𝑧 0 𝜎𝑧

ª®®®¬Δ𝑠
𝛼

 , (63)

where 𝜎0 is the 2 × 2 identity matrix, 𝜂𝛼 =
√︁
(𝐽𝛼)2 + (𝐾𝛼)2,

𝜉𝛼± = −𝜇𝛼 ± 𝜂𝛼, 𝑠𝛼 = (𝑠𝛼+ + 𝑠𝛼− )/2 and Δ𝑠𝛼 = (𝑠𝛼+ − 𝑠𝛼− )/2,
with 𝑠𝛼± =

√
𝜂𝛼 ± 𝐽𝛼.

Next, we define(
�̌�𝛼𝛼−− �̌�𝛼𝛼−+
�̌�𝛼𝛼+− �̌�𝛼𝛼++

)
= (𝑆𝛼)𝑇 �̌�𝛼𝛼𝑆𝛼 . (64)

We want an equation for the Green’s function associated with
the energy band which crosses the Fermi surface. This can
be either �̌�𝛼𝛼−− or �̌�𝛼𝛼++ . Here we choose �̌�𝛼𝛼−− . To derive this
equation, we first find that

(𝑆𝛼)𝑇 𝜌𝑥∇𝑘𝐾𝛼𝑆𝛼 = ∇𝑘𝐷 + 𝐽
𝛼∇𝑘𝜂𝛼
𝐾𝛼

©­­­«
0 0 𝜎𝑧 0
0 0 0 −𝜎𝑧
𝜎𝑧 0 0 0
0 −𝜎𝑧 0 0

ª®®®¬
(65)
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and

(𝑆𝛼)𝑇 𝑖𝜌𝑦𝑆𝛼 =
©­­­«

0 0 −𝜎0 0
0 0 0 −𝜎0
𝜎0 0 0 0
0 𝜎0 0 0

ª®®®¬. (66)

Additionally, we continue to use 𝜏𝑧 to denote the third Pauli
matrix in Nambu-space after transforming to the band basis,
which means that

(𝑆𝛼)𝑇 𝜏𝑧𝑆𝛼 =
©­­­«
𝜎0 0 0 0
0 −𝜎0 0 0
0 0 𝜎0 0
0 0 0 −𝜎0

ª®®®¬ =

(
𝜏𝑧 0
0 𝜏𝑧

)
. (67)

Transforming the first Gor’kov equation to the AFM en-
ergy band basis and extracting the block corresponding to the
conduction band, we get

𝜏𝑧𝜀 ◦ �̌�𝛼𝛼−− − 𝜉𝛼− �̌�𝛼𝛼−− −
[(Σ̌𝛼 − �̂�𝛼0 ) • �̌�𝛼𝛼]−− = 1, (68)

where Σ̌𝛼 is the block of Σ̆, given by eq. (42), corresponding to
material 𝛼 and the subscript on the last term on the left-hand
side means that one should take the upper left block in the
conduction band basis. That is, for a general matrix 𝐴 in the
sublattice basis, (

𝐴−− 𝐴−+
𝐴+− 𝐴++

)
= (𝑆𝛼)𝑇 𝐴𝑆𝛼 . (69)

The second Gor’kov equation becomes

�̌�𝛼𝛼−− ◦ 𝜏𝑧𝜀 − 𝜉𝛼− �̌�𝛼𝛼−− − 𝑖∇𝑘𝜉𝛼− · Δ𝑅�̌�𝛼𝛼−−
− 𝑖𝐽

𝛼∇𝑘𝜂𝛼
𝐾𝛼

· Δ𝑅�̌�𝛼𝛼−+ 𝜏𝑧𝜎𝑧 − 𝐾𝛼𝜹𝛼 · Δ𝑅�̌�𝛼𝛼−+
− [
�̌�𝛼𝛼 • (Σ̌𝛼 − �̂�𝛼0 )

]
−− = 1. (70)

IX. QUASICLASSICAL GREEN’S FUNCTIONS

In this section, we derive the quasiclassical equations of
motion. To do so, we must integrate the Green’s function over
momenta. Note that since we only want the contribution from
states close to the Fermi surface, we cannot integrate over all
momenta, but must instead integrate over a contour close to the
Fermi surface. While it is true that the Green’s function will
be strongly peaked around the Fermi surface, the contribution
from far away from the Fermi surface is not negligible. This is
because the retarded and advanced Green’s function goes as
1/𝜉𝛼− far away from the Fermi surface.

Observables are given as integrals over all momenta. To
extract the quasiclassical contribution, one must decompose
this integral into one part which includes the contribution close
to the Fermi surface and one part which includes the rest. By
using the Eilenberger decomposition [3], as illustrated in fig. 3,
the contribution from the Fermi surface is included as two
closed contours in the complex plane, which simplifies the
calculations. We show how observables can be expressed as a
quasiclassical contribution and a rest-term in section XIV.

∫
d𝜉𝛼−

= 1
2

∮
d𝜉𝛼−

+ 1
2

⨏
d𝜉𝛼−

FIG. 3: A sketch of the integration decomposition introduced by
Eilenberger [3].

To get the quasiclassical equations of motion, we must
integrate the Gor’kov equations over the closed contours. This
allows us to simplify many of the bullet products when the
self-energy varies slowly as a function of COM position, as
we show in this section. Note that the tunneling term and the
potential which is large outside of the material change rapidly
as a function of COM position. These can therefore not be
simplified in the same way. However, these terms are only
nonzero at the interface. In this section, we consider only
positions inside the material and therefore ignore these terms.
We will return to them when deriving the boundary conditions.
Hence, as long as we consider COM positions away from the
boundaries,

Σ̌𝛼 − �̂�𝛼0 = �̌� 𝛼 + Σ̌𝛼imp. (71)

To simplify the bullet product, we can use the gradient expan-
sion. However, the gradient expansion is more complicated in
our case compared to the continuous case. This is because we
are working with two discrete sublattices. To derive the gradient
expansion for discrete lattices, we can use the Newton forward
difference equation. If the basis vectors are {𝒗𝛼1 , 𝒗𝛼2 , 𝒗𝛼3 }, such
that 𝒙𝛼𝑚 = 𝑎𝑚1 𝒗𝛼1 + 𝑎𝑚2 𝒗𝛼2 + 𝑎𝑚3 𝒗𝛼3 , with integers 𝑎𝑚1 , 𝑎𝑚2 and 𝑎𝑚3 ,
then

𝐴(𝒙𝛼𝑛 + 𝒙𝛼𝑚) =
∑︁
𝑗∈N3

0

(𝒙𝛼𝑚) 𝑗
𝑗!

3∏
𝑖=1

(
[sgn(𝑎𝑚𝑖 )𝒗𝛼𝑖 ] · Δ𝑅��𝒗𝛼𝑖 ��

) 𝑗𝑖
𝐴(𝒙𝛼𝑛 ),

(72)
where 𝑗 = ( 𝑗1, 𝑗2, 𝑗3) is a multi-index, 𝑗! = 𝑗1! 𝑗2! 𝑗3! and

(𝒙𝛼𝑚) 𝑗 = (𝑎𝑚1 𝒗𝛼1 ) 𝑗1 (𝑎𝑚2 𝒗𝛼2 ) 𝑗2 (𝑎𝑚3 𝒗𝛼3 ) 𝑗3 , (73a)
(𝑎𝑚𝑖 𝒗𝛼𝑖 ) 𝑗𝑖 = sgn(𝑎𝑚𝑖 ) 𝑗𝑖

��𝒗𝛼𝑖 �� [��𝑎𝑚𝑖 �� − (𝑛 − 1)] (��𝑎𝑚𝑖 𝒗𝛼𝑖 ��) 𝑗𝑖−1 ,

(73b)

Hence, we see from eq. (51) that the bullet product can be
written as a series expansion in derivative operators,

𝐴 • 𝐵 = 𝐴 ◦ 𝐵 + [Δ𝑅𝐴] ◦ (𝑖∇𝑘𝐵 − [𝜹𝛼𝜌𝐵, 𝐵]) + · · · , (74)

where the circle product in the second term on the right-
hand side includes a dot product, which must be interpreted
according to eq. (60). Equation (74) is the gradient expansion.
The gradient expansion is useful because the higher-order terms
can be neglected after a proper integral over momenta.

We define the quasiclassical Green’s function

�̌�𝛼 =
𝑖

𝜋

∮
d𝜉𝛼− �̌�𝛼𝛼−− , (75)
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where the closed paths are illustrated in fig. 3. They follow the
real line from 𝜉𝛼− = −𝐸 𝛼𝑐 to 𝜉𝛼− = 𝐸 𝛼𝑐 and then split into two
semicircular paths to close the contours. Here, 𝐸 𝛼𝑐 is some
cutoff that is far larger than the other energies in the system,
but smaller than |𝜇𝛼 |. Since the interval (−𝐸 𝛼𝑐 , 𝐸 𝛼𝑐 ) must be
inside the conduction band, 𝐸 𝛼𝑐 must also be smaller than, Δ𝐸 𝛼,
which is the smallest energy difference between the Fermi level
and the edges of the conduction band.

We can relate the kinetic energy𝐾𝛼 at the Fermi level toΔ𝐸 𝛼.
To do so, note that 𝜉𝛼− +Δ𝐸 𝛼 = −𝜇𝛼−

√︁
(𝐽𝛼)2 + (𝐾𝛼)2+Δ𝐸 𝛼 ≤

−𝜇𝛼 − |𝐽𝛼 | means that(
𝐽𝛼

𝐾𝛼

)2
≤ (𝐽𝛼)2

2|𝐽𝛼 |Δ𝐸 𝛼 + (Δ𝐸 𝛼)2 . (76)

It is possible that Δ𝐸 𝛼 � 𝐽𝛼. For this reason, one can
still consider 𝐽𝛼 � 𝐾𝛼 within this framework, meaning that
𝐽𝛼/𝜂𝛼 = 𝐽𝛼/

√︁
(𝐽𝛼)2 + (𝐾𝛼)2 → 1. The only requirement

for the quasiclassical theory presented here to be valid is that
Δ𝐸 𝛼 is large compared to all other energies except possibly the
exchange energy 𝐽𝛼. We can have any ratio 𝐽𝛼/𝐾𝛼, and the
limit 𝐽𝛼/𝐾𝛼 → 0 should reproduce the quasiclassical theory
for normal metals.

Since the contours are closed in the complex plane and we
assume that the functions are analytic in 𝜉𝛼− , we can use the
residue theorem to evaluate

�̌�𝛼 = −
∑︁
𝜉𝑖

sgn(Im[𝜉𝑖]) Res
(
�̌�𝛼𝛼−− , 𝜉𝑖

)
, (77)

where the sum goes over all poles of �̌�𝛼𝛼−− which are inside the
contours and Res

(
�̌�𝛼𝛼−− , 𝜉𝑖) denote the corresponding residues.

To obtain an equation for the quasiclassical Green’s function,
we integrate the Gor’kov equations, eqs. (68) and (70), over
momenta and use eqs. (74) and (75).

Consider first terms on the form �̌�𝛼𝛼−− • 𝐴, for some 𝐴. The
zeroth order term in gradients is �̌�𝛼𝛼−− ◦ 𝐴. If 𝐴(𝜉𝛼− ) has no
poles inside the contour, we see that

𝑖

𝜋

∮
d𝜉𝛼− �̌�𝛼𝛼−− ◦𝐴 = −

∑︁
𝜉𝑖

sgn(Im[𝜉𝑖]) Res
(
�̌�𝛼𝛼−− , 𝜉𝑖

)
◦𝐴(𝜉𝛼− )

= �̌�𝛼 ◦ 𝐴(0) + O(�̌�𝛼 ◦ 𝑎𝜕𝜉 𝛼− 𝐴), (78)

where 𝑎 is the maximal distance from the poles of �̌�𝛼𝛼−− to
𝜉𝛼− = 0. It is therefore much smaller than 𝐸 𝛼𝑐 . We can neglect
the second term when 𝐴 varies slowly as a function of 𝜉𝛼− , such
that

��𝑎𝜕𝜉 𝛼− 𝐴
�� � |𝐴|. Note that this is not true when 𝐴 = 𝜉𝛼− ,

which is the case for the second terms on the left-hand sides of
eqs. (68) and (70). We can therefore not evaluate

∮
d𝜉𝛼− 𝜉𝛼− �̌�𝛼𝛼−−

in terms of the quasiclassical Green’s function.
From eq. (37) we see that (Σ̌𝛼imp)−− only depend on mo-

mentum through 𝑆. Equation (22c) shows that �̌� 𝛼𝑛𝑚 depend
on relative coordinates if there are magnetic textures or if the
Hamiltonian includes terms other than the kinetic term which
depend on relative position. Corrections to the hopping term
from the vector potential or spin-orbit coupling are included in
�̌� 𝛼𝑛𝑚, and these terms will depend on relative position. As a re-
sult, (�̌� 𝛼)−− depends on momentum, and therefore also on 𝜉𝛼− .

However, we assume that the dependence on momentum and
𝜉𝛼− is sufficiently slow, such that the condition

��𝑎𝜕𝜉 𝛼− 𝐴
�� � |𝐴|

is valid when 𝐴 = (�̌� 𝛼 + Σ̌𝛼imp)−−. As we now show, this
assumption is reasonable as long as the Fermi level is far away
from the bottom of the conduction band.

Fourier transforming the term in eq. (22c) coming from the
magnetic texture, we get that

F𝑟

{(
𝐾𝛼𝑛𝑚 [𝒙𝛼𝑛 − 𝒙𝛼𝑚] +

[
𝜹𝛼𝜌𝐵, 𝐾

𝛼
𝑛𝑚

] ) · (𝑅†∇𝑅) (
𝒙𝛼𝑛 , 𝑡1

)}
= 𝑖∇𝑘F𝑟 {𝐾𝛼𝑛𝑚}(𝒌, 𝒙𝛼𝑛 ) ·

(
𝑅†∇𝑅

) (
𝒙𝛼𝑛 , 𝑡1

)
. (79)

As long as the Fermi level is sufficiently far away from the
bottom of the conduction band, the gradient ∇𝑘F𝑟 {𝐾𝛼𝑛𝑚} =
∇𝑘𝐾𝛼 will be approximately constant near the Fermi surface.
This can be seen from eq. (54), since����𝑎𝜕𝜉 𝛼− ∇𝑘𝐾𝛼

∇𝑘𝐾𝛼
���� = ����� 𝑎

𝒗𝛼𝐹 · �̂�𝐹

∑
𝜹𝑖 𝜹𝑖 (𝜹𝑖 · �̂�𝐹 ) cos(𝒌𝐹 · 𝜹𝑖)∑
𝜹𝑖 (𝜹𝑖 · �̂�𝐹 ) sin(𝒌𝐹 · 𝜹𝑖)

�����
<

����� 𝑎

𝒗𝛼𝐹 · �̂�𝐹

∑
𝜹𝑖 𝜹𝑖 (𝜹𝑖 · �̂�𝐹 ) cos(𝒌𝐹 · 𝜹𝑖)∑

𝜹𝑖 (𝜹𝑖 · �̂�𝐹 ) (𝒌𝐹 · 𝜹𝑖)

����� . 𝑎𝜆𝐹

|𝒗𝛼𝐹 · �̂�𝐹 |
,

(80)

where 𝒗𝛼𝐹 = ∇𝑘𝜉𝛼− is the Fermi velocity, 𝜆𝐹 = 1/|𝒌𝐹 | is the
Fermi wavelength and �̂�𝐹 is the unit vector in the direction of
𝒌𝐹 . Hence, the variation in ∇𝑘𝐾𝛼 is negligible provided that
𝜆𝐹 � |𝒗𝛼𝐹 |/𝑎.

Physically, the condition can be understood in the following
sense. The inverse energy 1/𝑎 defines a time, so |𝒗𝛼𝐹 |/𝑎 is
the distance an electron with speed |𝒗𝛼𝐹 | travels in this time.
For instance, when the dominant energy scale, other than 𝐽𝛼
and 𝐾𝛼, comes from the impurity scattering, then 𝑎 is at
most the impurity scattering rate. In this case, the condition
𝜆𝐹 � |𝒗𝛼𝐹 |/𝑎 implies that the mean free path should be much
greater than the Fermi wavelength. This condition holds
provided that the energy difference between the Fermi level and
the bottom of the conduction band is sufficiently large. Under
this assumption, we can approximate

𝑖

𝜋

∮
d𝜉𝛼− �̌�𝛼𝛼−− ◦ (�̌� 𝛼 + Σ̌𝛼imp)−− = �̌�𝛼 ◦ (�̌� 𝛼 + Σ̌𝛼imp)−− (81)

in the presence of an inhomogeneous magnetic texture. A
similar argument can be used to show that the same assumptions
also imply that the condition

��𝑎𝜕𝜉 𝛼− 𝐴
�� � |𝐴| holds in the

presence of corrections to the hopping amplitude, which can
come from an external vector potential or spin-orbit coupling.
With these assumptions,

𝑖

𝜋

∮
d𝜉𝛼−

[
(�̌� 𝛼 + Σ̌𝛼imp) ◦ �̌�𝛼𝛼

]
−−
≈ (�̌� 𝛼 + Σ̌𝛼imp)−− ◦ �̌�𝛼

+ 𝑖
𝜋

∮
d𝜉𝛼− (�̌� 𝛼 + Σ̌𝛼imp)−+ ◦ �̌�𝛼𝛼+− . (82)

Equation (78) works the same when reversing the order of 𝐴
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and �̌�𝛼𝛼−− , so it is also true that

𝑖

𝜋

∮
d𝜉𝛼−

[
�̌�𝛼𝛼 ◦ (�̌� 𝛼 + Σ̌𝛼imp)

]
−−
≈ �̌�𝛼 ◦ (�̌� 𝛼 + Σ̌𝛼imp)−−

+ 𝑖
𝜋

∮
d𝜉𝛼− �̌�𝛼𝛼−+ ◦ (�̌� 𝛼 + Σ̌𝛼imp)+−. (83)

If we are also sufficiently far away from the top of the conduc-
tion band, then the velocity 𝒗𝛼𝐹 = ∇𝑘𝜉𝛼− is also approximately
constant at all the poles of the Green’s function. By approxi-
mately constant, we mean that the variation is small compared
to 𝒗𝛼𝐹 . To see why, note that

∇𝑘𝜉𝛼− =

√︁
(𝜇𝛼 − 𝜉𝛼− )2 − (𝐽𝛼)2∇𝑘𝐾𝛼

(𝜇𝛼 − 𝜉𝛼− )
. (84)

Differentiating with respect to 𝜉𝛼− gives��𝑎𝜕𝜉 𝛼− ∇𝑘𝜉𝛼−
��

|∇𝑘F𝑟 {𝐾𝛼𝑛𝑚}|
=

���� 𝑎(𝐽𝛼)2
(𝜉𝛼− − 𝜇𝛼) (𝐾𝛼)2

+ 𝑎𝜕𝜉
𝛼− ∇𝑘𝐾𝛼
∇𝑘𝐾𝛼

���� . (85)

From eq. (76), we know that (𝐽𝛼/𝐾𝛼)2 < |𝐽𝛼 |/2Δ𝐸 𝛼. Since
|𝐽𝛼/(𝜉𝛼− − 𝜇𝛼) | ≈ |𝐽𝛼/𝜇𝛼 | < 1 and 𝑎/Δ𝐸 𝛼 � 1, the first
term on the right-hand side of eq. (85) is small. We have
shown that the second term on the right-hand side of eq. (85)
is also negligible. As a result, integrating the third term on the
left-hand side of eq. (70) gives

− 𝑖

𝜋

∮
d𝜉𝛼− 𝑖∇𝑘𝜉𝛼− · Δ𝑅�̌�𝛼𝛼−− = −𝑖𝒗𝛼𝐹 · Δ𝑅 �̌�𝛼 . (86)

Next, consider the higher-order terms in the gradient expan-
sion. We will show that we can ignore these terms when the
Hamiltonian, and therefore the Green’s function, vary slowly
in the center-of-mass (COM) spatial coordinate. Assuming��𝑎𝜕𝜉 𝛼− 𝐴

�� � |𝐴|,
𝑖

𝜋

∮
d𝜉𝛼− [Δ𝑅�̌�𝛼𝛼−− ] ◦ (𝑖∇𝑘𝐴 − [𝜹𝛼𝜌𝐵, 𝐴])

≈ [Δ𝑅 �̌�𝛼] ◦ (𝑖∇𝑘𝐴 − [𝜹𝛼𝜌𝐵, 𝐴]), (87)

where we used eq. (78). The gradient ∇𝑘𝐴 is evaluated at the
Fermi surface. We define the characteristic COM length scale
𝐿 to be the smallest number satisfying

|Δ𝑅 �̌�𝛼 | < |�̌�
𝛼 |
𝐿
, (88)

everywhere and for all momentum directions, where the norms
can be understood using an appropriate matrix norm such
as the Frobenius norm. In the quasiclassical framework, 𝐿
is assumed to be much larger than the length of the nearest
neighbor displacement vectors and the Fermi wavelength. As a
result,

|Δ𝑅 �̌�𝛼 ◦ [𝜹𝛼𝜌𝐵, 𝐴] | < |𝜹
𝛼 |
𝐿
|�̌�𝛼 | ◦ |𝐴| � |�̌�𝛼 | ◦ |𝐴|, (89)

meaning that the second term in eq. (87) is negligible compared
to the zeroth order term, �̌�𝛼 ◦ 𝐴. The magnitude of the first
term is

| [Δ𝑅 �̌�𝛼] ◦ (𝑖∇𝑘𝐴) | <
��𝒗𝛼𝐹 ��
𝐿
|�̌�𝛼 | ◦

��𝜕𝜉 𝛼− 𝐴
��. (90)

Therefore, this term is negligible compared to the zeroth order
term if

����𝒗𝛼𝐹 ��𝜕𝜉 𝛼− 𝐴/𝐿
�� � |𝐴|. This is guaranteed to be the

case if 𝐿 >
��𝒗𝛼𝐹 ��/𝑎, since

��𝑎𝜕𝜉 𝛼− 𝐴
�� � |𝐴|. Physically, this

criterion can again be understood by considering the time scale
defined by 1/𝑎. For instance, 1/𝑎 can be on the order of the
elastic impurity scattering time. The condition 𝐿 >

��𝒗𝛼𝐹 ��/𝑎
then states that the variation is small over a distance equal to
the mean free path. However, we note that this condition is too
strict. It assumes only that

��𝜕𝜉 𝛼− 𝐴
��/|𝐴| � 1/𝑎, but if one can

replace 1/𝑎 with a smaller number, then one can also loosen
the condition on 𝐿.

With these assumptions, we neglect the first order terms in
the gradient expansion of �̌�𝛼𝛼−− • 𝐴 after integration over 𝜉𝛼− .
Since 𝐿 is large, higher order terms will be even smaller than
the first order terms, so we neglect all terms except the zeroth
order term in the gradient expansion of �̌�𝛼𝛼−− • 𝐴. Next, we
must consider

𝑖

𝜋

∮
d𝜉𝛼− [Δ𝑅𝐴] ◦ (𝑖∇𝑘�̌�𝛼𝛼−− − [𝜹𝛼𝜌𝐵, �̌�𝛼𝛼−− ]). (91)

We can use eq. (78) one the second term on the right-hand
side, which we see can be neglected since |Δ𝑅𝐴| < |𝐴|/𝐿 and
|𝜹𝛼 |/𝐿 � 1. However, we cannot use eq. (78) to evaluate the
first term on the right-hand side of eq. (91). This is because
�̌�𝛼𝛼−− varies rapidly as a function of 𝒌 near its poles. To proceed,
we can use the contour integral of a total derivative is zero.
This implies that∮

𝑑𝜉𝐴
𝜕𝐵

𝜕𝑘
=

∮
𝑑𝜉𝐴

𝜕𝜉𝛼−
𝜕𝑘

𝜕𝐵

𝜕𝜉𝛼−
= −

∮
𝑑𝜉

𝜕

𝜕𝜉𝛼−

(
𝐴
𝜕𝜉𝛼−
𝜕𝑘

)
𝐵,

(92)
for any 𝐴 and 𝐵, where 𝜕/𝜕𝑘 is differentiation with respect to
the amplitude of 𝒌 in spherical coordinates. This is not to be
confused with the gradient operator ∇𝑘 . We already assume
that ∇𝑘𝜉𝛼− is approximately constant on all the poles of �̌�𝛼𝛼−− .
Using this we find that

𝑖

𝜋

∮
d𝜉 Δ𝑅𝐴 ◦ ∇𝑘�̌�𝛼𝛼−− =

Δ𝑅𝐴
𝑘𝐹
◦

[
𝒆𝜃

𝜕

𝜕𝜃
+ 𝒆𝜙 1

sin 𝜃
𝜕

𝜕𝜙

]
�̌�𝛼

− 𝒆𝑘 · (𝜕𝑘Δ𝑅𝐴) ◦ �̌�𝛼, (93)

where 𝑘𝛼𝐹 is the Fermi momentum, satisfying 𝜉𝛼− (𝑘𝛼𝐹 ) = 0 and
𝜃 and 𝜙 are the azimuthal and polar angles in momentum space,
respectively. As long as �̌�𝛼 does not vary rapidly as a function
of 𝜃 and 𝜙, the right-hand side of eq. (93) is negligible under
the same assumptions as eq. (87). Hence, we can also neglect
the higher order terms in the gradient expansion of 𝐴 • �̌�𝛼𝛼−− .
Combining the above results,

𝑖

𝜋

∮
d𝜉𝛼−

[(Σ̌𝛼 − �̂�𝛼0 ) • �̌�𝛼𝛼]−− = (Σ̌𝛼 − �̂�𝛼0 )−− ◦ �̌�𝛼
+ 𝑖
𝜋

∮
d𝜉𝛼− (Σ̌𝛼 − �̂�𝛼0 )−+ ◦ �̌�𝛼𝛼+− , (94)

and

𝑖

𝜋

∮
d𝜉𝛼−

[
�̌�𝛼𝛼 • (Σ̌𝛼 − �̂�𝛼0 )

]
−− = �̌�

𝛼 ◦ (Σ̌𝛼 − �̂�𝛼0 )−−

+ 𝑖
𝜋

∮
d𝜉𝛼− �̌�𝛼𝛼−+ ◦ (Σ̌𝛼 − �̂�𝛼0 )+−. (95)
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The circle-products in the last terms on the right-hand side
of eqs. (94) and (95) comes from a truncation in the gradient
expansion which is valid for the same reasons as the truncation
in the gradient expansions involving �̌�𝛼𝛼−− .

To complete the derivation of the quasiclassical equations,
we must remove the terms involving �̌�𝛼𝛼−+ and �̌�𝛼𝛼+− . Physically,
this can be done because the energy difference between the two
bands is large for momenta close to the Fermi surface. This
means that there is negligible coupling between the electrons
near the Fermi surface and the electrons in the other band. In
order to show���� 𝑖𝜋 ∮

d𝜉𝛼− �̌�𝛼𝛼−+

���� � |�̌�𝛼 | and
���� 𝑖𝜋 ∮

d𝜉𝛼− �̌�𝛼𝛼+−

���� � |�̌�𝛼 |,
(96)

we define

�̌�𝛼±∓ =
𝑖

𝜋

∮
d𝜉𝛼− �̌�𝛼𝛼±∓ . (97)

We get from the first Gor’kov equation that

𝜏𝑧𝜀 ◦ �̌�𝛼+− − 𝜉𝛼+ �̌�𝛼+− − (Σ̌𝛼 − �̂�𝛼0 )++ ◦ �̌�𝛼+−
− (Σ̌𝛼 − �̂�𝛼0 )+− ◦ �̌�𝛼 = 0, (98)

where 𝜉𝛼+ (𝒌𝐹 ) = −𝜇𝛼 + 𝜂𝛼 (𝒌𝛼𝐹 ) is evaluated at the Fermi
surface defined by 𝜉𝛼− (𝒌𝐹 ) = −𝜇𝛼 − 𝜂𝛼 (𝒌𝛼𝐹 ) = 0. As a result,��𝜉𝛼+ �� = 2|𝜇𝛼 |, which is much larger than

��(Σ̌𝛼 − �̂�𝛼0 )+−�� by
assumption. We will also assume |𝜀 | � 𝐸 𝛼𝑐 , and consider larger
|𝜀 | separately when computing observables in section XIV.
Therefore, �̌�𝛼+− ≈ (Σ̌𝛼 − �̂�𝛼0 )+− ◦ �̌�𝛼/𝜉𝛼+ is negligible. The
same argument from the second Gor’kov equation shows that
�̌�𝛼−+ is negligible as well.

Finally, integrating the Gor’kov equations, eqs. (68) and (70),
over the contours in 𝜉𝛼− -space and using eqs. (94)–(96) we get

𝜏𝑧𝜀 ◦ �̌�𝛼 − (Σ̌𝛼 − �̂�𝛼0 )−− ◦ �̌�𝛼 =
𝑖

𝜋

∮
d𝜉𝛼− 𝜉𝛼− �̌�𝛼𝛼−− , (99a)

�̌�𝛼 ◦ 𝜏𝑧𝜀 − 𝑖𝒗𝛼𝐹 · Δ𝑅 �̌�𝛼 − �̌�𝛼 ◦ (Σ̌𝛼 − �̂�𝛼0 )−−
=
𝑖

𝜋

∮
d𝜉𝛼− 𝜉𝛼− �̌�𝛼𝛼−− . (99b)

We have no way to evaluate the right-hand sides because it
would require first finding the poles of �̌�𝛼𝛼−− . Instead, we can
subtract eq. (99b) from eq. (99a) to obtain the Eilenberger
equation,

𝑖𝒗𝛼𝐹 · Δ𝑅 �̌�𝛼 +
[
𝜏𝑧𝜀 − (Σ̌𝛼 − �̂�𝛼0 )−−, �̌�𝛼

]
◦ = 0. (100)

The distances between neighboring points are short compared
to the characteristic COM length scale 𝐿, defined in eq. (88),
so we can approximate �̌�𝛼 by a continuous function in COM
position and replace Δ𝑅 by the gradient operator, ∇𝑅. One way
to do this rigorously is to define the continuous function as a
weighted average,

�̌�𝛼𝑐 (𝑹) =
∑︁
𝑛∈Z3

�̌�𝛼 (𝒙𝛼𝑛 )
1

𝐶 (𝑹) e
−(𝑹−𝒙𝛼

𝑛 )2/𝑙2 , (101)

where 𝑙 � 𝐿 and 𝐶 (𝑹) = ∑
𝑛∈Z3 e−(𝑹−𝒙𝛼

𝑛 )2/𝑙2 . From the fact
that 𝑙 � 𝐿, it is clear that �̌�𝛼 (𝒙𝛼𝑛 ) ≈ �̌�𝛼𝑐 (𝒙𝛼𝑛 ). Moreover, if��𝒙𝛼𝑚�� � 𝐿,

(𝒙𝛼𝑚·Δ𝑅 �̌�𝛼) (𝒙𝛼𝑛 ) ≈
∑︁
𝑛∈Z3

(𝒙𝛼𝑚·Δ𝑅 �̌�𝛼) (𝒙𝛼𝑛 )
1

𝐶 (𝑹) e
−(𝑹−𝒙𝛼

𝑛 )2/(2𝑙)

=
∑︁
𝑛∈Z3

[
�̌�𝛼 (𝒙𝛼𝑛 + 𝒙𝛼𝑚) − �̌�𝛼 (𝒙𝛼𝑛 )

] 1
𝐶 (𝑹) e

−(𝑹−𝒙𝛼
𝑛 )2/(2𝑙)

=
∑︁
𝑛∈Z3

�̌�𝛼 (𝒙𝛼𝑛 )
[
e−(𝑹+𝒙𝛼

𝑚−𝒙𝛼
𝑛 )2/(2𝑙)

𝐶 (𝑹 + 𝒙𝛼𝑚)
− e−(𝑹−𝒙𝛼

𝑛 )2/(2𝑙)

𝐶 (𝑹)

]
≈ 𝒙𝛼𝑚 · ∇𝑅 �̌�𝛼𝑐 (𝒙𝛼𝑛 ). (102)

Inserting this into eq. (100) and relabeling �̌�𝛼𝑐 → �̌�𝛼, the
Eilenberger equation now becomes, in terms of continuous
COM coordinates,

𝑖𝒗𝛼𝐹 · ∇𝑅 �̌�𝛼 +
[
𝜏𝑧𝜀 − (Σ̌𝛼 − �̂�𝛼0 )−−, �̌�𝛼

]
◦ = 0. (103)

The Eilenberger equation does not have a unique steady-state
solution. This can be seen from the fact that any constant
multiple of the identity matrix is a solution. To compensate
for this, one typically assumes a normalization condition. In a
spatially and temporally uniform system, we see from eq. (70)
that

�̌�𝛼𝛼−− =
(
𝜏𝑧𝜀 − 𝜉𝛼− − �̌� 𝛼 − Σ̌𝛼imp

)−1

= 𝑃(−𝜉𝛼− + 𝐷)−1𝑃−1, (104)

where 𝜏𝑧𝜀 − �̌� 𝛼 − Σ̌𝛼imp = 𝑃𝐷𝑃−1 and 𝐷 is diagonal. Since 𝐷
varies slowly as a function of 𝜉𝛼− within the contour, we see
that

𝑖

𝜋

∮
d𝜉𝛼− (−𝜉𝛼− + 𝐷)−1

𝑙𝑙 = − sgn[Im(𝐷𝑙𝑙)], (105)

which implies that �̌�𝛼�̌�𝛼 = 1. More generally, we assume that
�̌�𝛼 ◦ �̌�𝛼 = 1. This is consistent with the fact that �̌�𝛼 ◦ �̌�𝛼 = 1
must also solve the Eilenberger equation, as can be seen by
taking the circle product of the Eilenberger equation by �̌�𝛼
from the left and from the right, as well as the fact that the initial
condition, if taken at 𝑇 → −∞, should be a time-invariant state,
such that �̌�𝛼 ◦ �̌�𝛼 = �̌�𝛼�̌�𝛼 = 1. Moreover, it is possible to
derive �̌�𝛼 ◦ �̌�𝛼 = 1 if one defines the quasiclassical Green’s
function in terms of trajectory Green’s function, as shown by
Shelankov [62].

X. QUASICLASSICAL IMPURITY SELF-ENERGY

Before deriving the dirty limit equation of motion for the
quasiclassical Green’s function, we must express the impurity
self-energy in terms of the quasiclassical Green’s function.
From section V we have that

Σ̌𝛼imp (𝜀, 𝑇, 𝒌, 𝒙𝛼𝑛 ) =
∑︁

𝑋 ∈{𝐴,𝐵}
𝑛𝛼𝑋imp

(
𝜌𝑋

〈
𝑈𝑋𝛼

〉
imp

+ 〈
𝑈𝑋𝛼𝑈𝑋𝛼

〉
imp 𝜌𝑋 (�̌�𝛼𝛼)𝑛𝑛 (𝜀, 𝑇)𝜌𝑋

)
. (106)
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If on average there are an equal amount of impurities of equal
average strength on both sublattices, and the impurities are not
magnetic, then the first term is simply equivalent to a shift in
the electrochemical potential. It can therefore be absorbed into
𝜇𝛼.

To evaluate the second term in eq. (106) we use the Eilen-
berger contour,

(�̌�𝛼𝛼)𝑛𝑛 = 𝑉 𝛼𝑒
∫
^𝛼

d3𝑘

(2𝜋)3 e𝑖𝜌𝐵𝒌 ·𝜹
𝛼

�̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑛 )e−𝑖𝜌𝐵𝒌 ·𝜹
𝛼

= 𝑉 𝛼𝑒

∫
dΩ
4𝜋

∫ 𝜉max

𝜉min

𝑝2 d𝜉𝛼−
2𝜋2 (𝜉𝛼− ) ′

e𝑖𝜌𝐵𝒌 ·𝜹
𝛼

�̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑛 )e−𝑖𝜌𝐵𝒌 ·𝜹
𝛼

= 𝑉 𝛼𝑒

∫
dΩ
4𝜋

∮
𝑘2 d𝜉𝛼−
2𝜋2𝑣𝛼𝐹

e𝑖𝜌𝐵𝒌 ·𝜹
𝛼

�̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑛 )e−𝑖𝜌𝐵𝒌 ·𝜹
𝛼

+𝑉 𝛼𝑒
∫

dΩ
4𝜋

⨏
𝑘2 d𝜉𝛼−

2𝜋2 (𝜉𝛼− ) ′
e𝑖𝜌𝐵𝒌 ·𝜹

𝛼

�̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑛 )e−𝑖𝜌𝐵𝒌 ·𝜹
𝛼

.

(107)

Using that

𝜌𝑋e𝑖𝜌𝐵𝒌 ·𝜹
𝛼

�̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑛 )e−𝑖𝜌𝐵𝒌 ·𝜹
𝛼

𝜌𝑋 = 𝜌𝑋 �̌�
𝛼𝛼 (𝒌, 𝒙𝛼𝑛 )𝜌𝑋 ,

(108)
where 𝑋 ∈ {𝐴, 𝐵}, we see that we can remove the exponentials
in eq. (107). The first term on the right-hand side of eq. (107) is
what gives us the quasiclassical Green’s function. To evaluate
the second term, we can use the fact that we are far away
from the Fermi surface, so, if we neglect spatial and temporal
derivatives in the Gor’kov equations,

�̌�𝛼𝛼 ≈
(
𝜀𝜏𝑧 − �̂�𝛼0 − �̌� 𝛼 − Σ̌𝛼imp

)−1
=

(−�̂�𝛼0 )−1

− (
�̂�𝛼0

)−1
(
𝜀𝜏𝑧 − �̌� 𝛼 − Σ̌𝛼imp

) (
�̂�𝛼0

)−1 + O( [𝜉𝛼− ]−3) (109)

We can neglect the second term after integration for the fol-
lowing reason. We can complete the contour in

⨏
d𝜉𝛼− with

a semicircle of radius ( |𝜉min | + |𝜉max |)/2. Since there are
no poles inside the closed contour, the integral

⨏
d𝜉𝛼− must

be equal to minus the integral over the semicircle arc. The
integral over this arc is negligible because it is less than
𝜋( |𝜉min | + |𝜉max |)/2× 𝑎max(𝑁𝛼0 )/min( |𝜉min |, |𝜉max |)2, which
is O(𝑁𝛼0 (0)𝑎/Δ𝐸 𝛼), where 𝑎 is again an order of magnitude
estimate of the elements of (𝜀𝜏𝑧 − �̌� 𝛼 − Σ̌𝛼imp), and therefore
much smaller than Δ𝐸 𝛼, and

𝑁𝛼0 (𝜀) =
∫

d3𝑘

(2𝜋)3 𝛿 (𝜉 (𝒌) − 𝜀) =
∫

dΩ
4𝜋

∫
𝑘2 d𝜉
2𝜋2𝜉 ′

𝛿 (𝜉 (𝒌) − 𝜀)
(110)

is the normal state density of states per spin. For the same
reason, the terms of higher order in (𝜉𝛼− )−1 are also negligible.
The first term, however, is not negligible, as the same argument
shows that this integral is O(𝑁0 (0)), which is the same as the
quasiclassical term.

Evaluating the
(
−�̂�𝛼0

)−1
and applying the projection opera-

tors, we get∑︁
𝑋 ∈𝐴,𝐵

𝜌𝑋
(−�̂�0

)−1
𝜌𝑋 =

𝜇𝛼 − 𝐽𝛼𝜌𝑧𝜎𝑧𝜏𝑧
𝜉𝛼− 𝜉𝛼+

. (111)

Integrating out the momentum dependence, we see that we get
constant matrices with the same matrix structure as a chemical
potential and an antiferromagnetic spin-splitting. We can
therefore include this by renormalizing 𝜇𝛼 and 𝐽𝛼.

In order to evaluate the quasiclassical contribution, we define

𝑆𝛼
(
1
0

)
= 𝑆𝛼𝑐 , (112)

where 1 and 0 are 4 × 4 matrices, such that

𝐴−− = (𝑆𝛼𝑐 )𝑇 𝐴𝑆𝛼𝑐 . (113)

Since only the contribution from the conduction band is non-
negligible close to the Fermi surface, we have that∮

𝑘2 d𝜉𝛼−
2𝜋2𝑣𝛼𝐹

�̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑛 ) = −𝑖𝜋𝑁𝛼0 (0)𝑆𝛼𝑐 �̌�𝛼 (𝑆𝛼𝑐 )𝑇 , (114)

where 𝑆𝛼𝑐 is evaluated at the Fermi surface.
Hence, if we define

�̌�𝛼𝑠 B

∫
dΩ
4𝜋
�̌�𝛼 = 〈�̌�𝛼〉 , (115)

where in the last equality we also defined the angular average
in momentum space as 〈·〉, then

(Σ̌𝛼imp)−− = −
𝑖

𝜏imp

∑︁
𝑋 ∈{𝐴,𝐵}

(𝑆𝛼𝑐 )𝑇 𝜌𝑋𝑆𝛼𝑐 �̌�𝛼𝑠 (𝑆𝛼𝑐 )𝑇 𝜌𝑋𝑆𝛼𝑐 ,

(116)

where

𝜏𝛼imp =
(
𝜋𝑁𝛼0 (0)𝑉 𝛼𝑒 𝑛𝛼𝐴imp

〈
𝑈𝐴𝛼𝑈𝐴𝛼

〉
imp

)−1
(117)

is the impurity scattering time.
Next, we find that

(𝑆𝛼𝑐 )𝑇 𝜌𝐴/𝐵𝑆𝛼𝑐 =
1
2

(
1 ± 𝐽

𝛼

𝜂𝛼
𝜎𝑧𝜏𝑧

)
, (118)

such that

(Σ̌𝛼imp)−− = −
𝑖

2𝜏𝛼imp

(
�̌�𝛼𝑠 +

(𝐽𝛼)2
(𝜂𝛼)2𝜎𝑧𝜏𝑧 �̌�

𝛼
𝑠 𝜎𝑧𝜏𝑧

)
. (119)

This reduces to the normal state impurity self-energy in the
absence of antiferromagnetism when 𝐽𝛼 = 0. However, when
𝐽𝛼 ≠ 0 we get an additional term which is the same as one
gets when adding magnetic impurities in the quasiclassical
theory for normal metals. This is an important result which
means that impurities in the antiferromagnet behave as if
they were magnetic. This effect becomes important when the
system size becomes larger than the mean free path, and this is
why one should expect the critical temperature to decrease in
superconducting proximity structures when the antiferromagnet
becomes larger than its mean free path, which explains the
findings of Hübener et al. [45], as alluded to in section I.
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Physical consequences of well eq. (119), as well as a physical
explanation for its existence is further discussed in ref. [63].

The effective magnetic component of non-magnetic impuri-
ties is similar to how interfacial disorder in antiferromagnetic
insulators has been shown to give rise to magnetic effects when
the interface is uncompensated [64], except that here it is a bulk
effect. As a result, it is present even though the magnetization is
fully compensated. Another type of material in which one can
find effective “magnetic” coupling from non-magnetic impuri-
ties is in Rashba superconductors [65, 66]. The strong coupling
between spin and momentum degrees of freedom in Rashba
superconductors means that non-magnetic impurities get a
non-trivial matrix structure in the helical basis [65]. However,
the effective “magnetic” impurities in Rashba superconductors
are different from what we see here. They couple to the 𝑝-wave
part of the Green’s function and not the 𝑠-wave part. They are
“magnetic” in the sense that they couple different components
in the helical basis, but not in the sense that it is as if the sys-
tem has magnetic impurities. Here we find that non-magnetic
impurities in AFMs are mathematically equivalent to having
magnetic impurities in the original model.

XI. THE DIRTY LIMIT

In this section, we derive the equations of motion in the
dirty limit, which are valid for diffusive systems. There are
two central assumptions in the dirty limit. First, it is assumed
that the quasiclassical Green’s function is dominated by the
𝑠-wave and 𝑝-wave components. Second, it is assumed that
the elastic impurity scattering rate is large compared to the
other energies in the system, except for the minimal distance
between the Fermi level and the edges of the conduction band,
Δ𝐸 𝛼, and possibly 𝐽𝛼. We show that the resulting equations
are valid if the variation in �̌�𝛼 over the length scale of the mean
free path is small compared to 1. This is the case for instance
if the system varies slowly in space or the proximity effect is
small. In the limit of very strong exchange coupling, such that
(𝐽𝛼)2/(𝜂𝛼)2 = O(1), we show that the quasiclassical Green’s
function can be separated into short-range correlations and long-
range components, where the former vanish in the diffusive
limit. Therefore, this regime can be solved by projecting the
Green’s function onto the set of long-range components. The
derivation is done by averaging the Eilenberger equation,

𝑖𝒗𝛼𝐹 · ∇𝑅 �̌�𝛼 + [𝜏𝑧𝜀 − �̌� 𝛼−− − (Σ̌𝛼imp)−−, �̌�𝛼]◦ = 0, (120)

over momentum directions. This will reduce the problem
from having infinitely many coupled Green’s functions, one for
each momentum direction, to having only two coupled Green’s
functions.

Before proceeding, we first replace the gradient term with
the covariant derivative. This is done by extracting the 𝑝-wave
part of �̌� 𝛼−−, meaning that we write

�̌� 𝛼−− = −𝒗𝛼𝐹 · �̂�
𝛼 + �̌� 𝛼𝑠 + Δ�̌� 𝛼, (121)

where �̌� 𝛼𝑠 = 〈�̌� 𝛼−−〉 is the 𝑠-wave part and −𝒗𝛼𝐹 · �̂�
𝛼 is the

𝑝-wave part of �̌� 𝛼−−. The 𝑝-wave contribution includes the

vector gauge potential from the electromagnetic field as well as
spin-orbit coupling and the spatial variation in the Néel vector.
The covariant derivative is then defined as

∇̃ ◦ �̌� = ∇𝑅 �̌� − 𝑖
[
�̂�, �̌�

]
◦, (122)

such that

𝑖𝒗𝛼𝐹 · ∇̃◦ �̌�𝛼+
[
𝜏𝑧𝜀 − �̌� 𝛼𝑠 − Δ�̌� 𝛼 − (Σ̌𝛼imp)−−, �̌�𝛼

]
◦
= 0. (123)

Doing an angular average of eq. (123), we get

𝑖∇̃ ◦ 〈𝒗𝛼𝐹 �̌�𝛼〉 + [
𝜏𝑧𝜀 − �̌� 𝛼𝑠 +

𝑖(𝐽𝛼)2
2𝜏𝛼imp (𝜂𝛼)2

𝜎𝑧𝜏𝑧 �̌�
𝛼
𝑠 𝜎𝑧𝜏𝑧 , �̌�

𝛼
𝑠

]
◦

− 〈[
Δ�̌� 𝛼, �̌�𝛼

]
◦
〉
= 0. (124)

If we take the product with 𝒗𝛼𝐹 before averaging, we get

𝑖∇̃ ◦ 〈
𝒗𝛼𝐹 ⊗ 𝒗𝛼𝐹 �̌�

𝛼
〉 + [

𝜏𝑧𝜀 − �̌� 𝛼𝑠 +
𝑖

2𝜏𝛼imp
�̌�𝛼𝑠 ,

〈
𝒗𝛼𝐹 �̌�

𝛼
〉]
◦

+
[

𝑖(𝐽𝛼)2
2𝜏𝛼imp (𝜂𝛼)2

𝜎𝑧𝜏𝑧 �̌�
𝛼
𝑠 𝜎𝑧𝜏𝑧 ,

〈
𝒗𝛼𝐹 �̌�

𝛼
〉]
◦

− 〈[
Δ�̌� 𝛼, 𝒗𝛼𝐹 �̌�

𝛼
]
◦
〉
= 0, (125)

where ⊗ denotes the tensor product. Next, we define the matrix
current

�̌�
𝛼
B

〈
𝒗𝛼𝐹 �̌�

𝛼
〉
. (126)

The aim is a set of equations for �̌�
𝛼 and �̌�𝛼𝑠 = 〈�̌�𝛼〉. This

can be obtained from eqs. (124) and (125) if we assume that
Δ�̌� 𝛼 is negligible. Neglecting the terms proportional to Δ�̌� 𝛼,
multiplying eq. (125) by 𝜏𝛼imp, and defining the diffusion tensor,

𝐷𝛼 B 𝜏𝛼imp
〈
𝒗𝛼𝐹 ⊗ 𝒗𝛼𝐹

〉
, (127)

eqs. (124) and (125) become

𝑖∇̃◦ �̌�𝛼+
[
𝜏𝑧𝜀 − �̌� 𝛼𝑠 +

𝑖(𝐽𝛼)2
2𝜏𝛼imp (𝜂𝛼)2

𝜎𝑧𝜏𝑧 �̌�
𝛼
𝑠 𝜎𝑧𝜏𝑧 , �̌�

𝛼
𝑠

]
◦
= 0.

(128)

and

�̌�𝛼𝑠 ◦ �̌�
𝛼
= −∇̃ ◦ (

𝐷𝛼�̌�𝛼𝑠
) + 𝑖𝜏𝛼imp

[
𝜏𝑧𝜀 − �̌� 𝛼𝑠 , �̌�

𝛼]
◦

−
[ (𝐽𝛼)2
2(𝜂𝛼)2𝜎𝑧𝜏𝑧 �̌�

𝛼
𝑠 𝜎𝑧𝜏𝑧 , �̌�

𝛼
]
◦
, (129)

respectively. In eq. (129) we assumed that the higher order
spherical harmonics in �̌�𝛼 are small, and used that { �̌�𝛼, �̌�𝛼𝑠 } =
0. The latter follows from the former together with the 𝑝-wave
component of the normalization condition, 〈𝒗𝛼𝐹 �̌�𝛼 ◦ �̌�𝛼〉 =
{ �̌�𝛼, �̌�𝛼𝑠 } = 0. The assumption that the 𝑑-wave component is
negligible compared to 1 is consistent as long as �̌�

𝛼 is small
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compared to the Fermi velocity. To see why, note that the
normalization condition,

�̌�𝛼 ◦ �̌�𝛼 = �̌�𝛼𝑠 ◦ �̌�𝛼𝑠 + {�̌�𝛼𝑠 , Δ�̌�𝛼}◦ + Δ�̌�𝛼 ◦ Δ�̌�𝛼 = 1, (130)

must be satisfied for all momenta. Hence, ifΔ�̌�𝛼 = �̌�𝛼𝑝+�̌�𝛼𝑑 +· · · ,
where �̌�𝛼𝑝 is the 𝑝-wave component and �̌�𝛼𝑑 is the 𝑑-wave
component, the 𝑑-wave component resulting from �̌�𝛼𝑝 ◦ �̌�𝛼𝑝 must
be cancelled by the 𝑑-wave term in {�̌�𝛼𝑠 , �̌�𝛼𝑑 }◦. If �̌�𝑠 = O(1),
then �̌�𝛼𝑑 will be O[( �̌�𝛼 · 𝒗𝛼𝐹/(𝑣𝛼𝐹 )2)2], which we assume is
negligible compared to 1. Hence,

𝜏𝛼imp
〈
𝒗𝛼𝐹 ⊗ 𝒗𝛼𝐹 �̌�

𝛼
〉 ≈ 𝐷𝛼�̌�𝛼𝑠 + 𝜏𝛼imp

〈
𝒗𝛼𝐹 ⊗ 𝒗𝛼𝐹 ( �̌�

𝛼 · 𝒗𝛼𝐹 )
(𝑣𝛼𝐹 )2

〉
≈ 𝐷𝛼�̌�𝛼𝑠 . (131)

If the Fermi surface is spherically symmetric, then 𝐷𝛼𝑖 𝑗 =

𝛿𝑖 𝑗𝜏
𝛼
imp (𝑣𝛼𝐹 )2/3.

For a complete description in terms of �̌�
𝛼 and �̌�𝛼𝑠 , we must

also express the normalization condition, �̌�𝛼 ◦ �̌�𝛼 = 1 in terms
of �̌�𝛼𝑠 and �̌�

𝛼. Taking the angular average of the normalization
condition and using that 〈𝒗𝛼𝐹/(𝒗𝛼𝐹 )2〉 = 0, we get that

�̌�𝛼𝑠 ◦ �̌�𝛼𝑠 = 1 + O( | �̌�𝛼/𝑣𝛼𝐹 |2). (132)

We have already assumed that ( �̌�𝛼 · 𝒗𝛼𝐹/(𝑣𝛼𝐹 )2)2 is negligible
compared to 1, so

�̌�𝛼𝑠 ◦ �̌�𝛼𝑠 = 1. (133)

Using eq. (133), we can rewrite eq. (129) to

�̌�
𝛼
= −�̌�𝛼𝑠 ◦ ∇̃ ◦

(
𝐷𝛼�̌�𝛼𝑠

) + 𝑖𝜏𝛼imp�̌�
𝛼
𝑠 ◦

[
𝜏𝑧𝜀 − �̌� 𝛼𝑠 , �̌�

𝛼]
◦

− �̌�𝛼𝑠 ◦
[ (𝐽𝛼)2
2(𝜂𝛼)2𝜎𝑧𝜏𝑧 �̌�

𝛼
𝑠 𝜎𝑧𝜏𝑧 , �̌�

𝛼
]
◦
. (134)

Equations (128), (133) and (134) can be used to study systems
with an arbitrary amount of disorder, provided that the matrix
current squared, | �̌�𝛼 |2, is small compared to the Fermi velocity
squared, |𝒗𝛼𝐹 |2. To say that | �̌�𝛼 |2 � |𝒗𝛼𝐹 |2 is the same as
saying that the quasiclassical Green’s function is approximately
isotropic in momentum space. Physically, this is expected to
be the case when the elastic scattering time, 𝜏𝛼imp, is small, but
this it can also happen for example if the tunneling is weak. In
section XII we show that the matrix current at the boundary
is proportional to the square amplitude of the tunneling in the
absence of spin-active boundaries.

We can also simplify eq. (134) a bit further if we assume that
|𝜏𝛼imp�̌�

𝛼
𝑠 | � 1 and only consider energies |𝜀 | � 1/𝜏𝛼imp. In this

case, we can neglect the second term on the right-hand side of
eq. (134), since this term must be much smaller in magnitude
than �̌�

𝛼. Hence,

�̌�
𝛼
= −�̌�𝛼𝑠 ◦ ∇̃ ◦ (𝐷𝛼�̌�𝛼𝑠 ) − �̌�𝛼𝑠 ◦

[ (𝐽𝛼)2
2(𝜂𝛼)2𝜎𝑧𝜏𝑧 �̌�

𝛼
𝑠 𝜎𝑧𝜏𝑧 , �̌�

𝛼
]
◦
.

(135)

At this point, it might be tempting to also assume that the last
term in the commutator in eq. (128) is dominant, but this is not
generally true. Although 1/𝜏𝛼imp � |�̌� 𝛼𝑠 |, one can not say in
general that�����

[
𝑖(𝐽𝛼)2

2𝜏𝛼imp (𝜂𝛼)2
𝜎𝑧𝜏𝑧 �̌�

𝛼
𝑠 𝜎𝑧𝜏𝑧 , �̌�

𝛼
𝑠

]
◦

����� � �� [�̌� 𝛼𝑠 , �̌�𝛼𝑠 ]
◦
�� . (136)

This can be because the prefactor (𝐽𝛼)2/(𝜂𝛼)2 is small, or it can
be because the matrices on the right-hand side commute. even
for very strong antiferromagnets with (𝐽𝛼)2/(𝜂𝛼)2 = O(1).
This is because, even though the prefactor can be large, the
commutator can still be small. Thus, one must in general keep
all terms in eq. (128).

Next, consider the case of very strong exchange coupling,
such that (𝐽𝛼)2/(𝜂𝛼)2 = O(1). In this case the prefac-
tor (𝐽𝛼)2/[2𝜏𝛼imp (𝜂𝛼)2] is large in the diffusive limit. This
will strongly suppress some components of the quasiclassical
Green’s function, making them negligible in the diffusive limit.
We can write the quasiclassical Green’s functions in terms of
Pauli matrices in spin-space and Nambu-space as

�̌�𝛼 =
3∑︁
𝑖=0

3∑︁
𝑗=0
𝑐𝑖 𝑗𝜏𝑖𝜎𝑗 , (137)

where 𝜎0 and 𝜏0 are identity matrices and {𝑐𝑖 𝑗 } is a set of scalar
functions. We can separate these components into long-range
components, satisfying

𝜎𝑧𝜏𝑧𝑐𝑖 𝑗𝜏𝑖𝜎𝑗𝜎𝑧𝜏𝑧 = 𝑐𝑖 𝑗𝜏𝑖𝜎𝑗 , (138)

and short-range components, satisfying

𝜎𝑧𝜏𝑧𝑐𝑖 𝑗𝜏𝑖𝜎𝑗𝜎𝑧𝜏𝑧 = −𝑐𝑖 𝑗𝜏𝑖𝜎𝑗 . (139)

That is, long-range components have either 𝑖 ∈ {0, 3} and
𝑗 ∈ {0, 3} or 𝑖 ∈ {1, 2} and 𝑗 ∈ {1, 2}, while the short-range
components are the remaining components. Note that the
product of two long-ranged components or two short-ranged
components is a long-range component, while the product of
one long-range component and one short-range component is a
short-range component.

Let the subscripts SR and LR denote the short-range and
long-range components, respectively, such that �̌�𝛼 = �̌�𝛼SR + �̌�𝛼LR.
Using the product properties of long-range and short-range
components, the long-range component of eq. (128) becomes

𝑖∇̃LR ◦ �̌�
𝛼
LR +

[
𝜏𝑧𝜀 − �̌� 𝛼LR,𝑠 , �̌�

𝛼
LR,𝑠

]
◦
+ [

�̂�SR, �̌�
𝛼
SR

]
◦

−
[
�̌� 𝛼SR,𝑠 , �̌�

𝛼
SR,𝑠

]
◦
= 0, (140)

where ∇̃LR ◦ �̌�𝛼LR = ∇𝑅 · �̌�𝛼LR − 𝑖[ �̂�LR, �̌�
𝛼
LR]◦. We want to show

that the short-range components vanish from the equations in
the diffusive limit when (𝐽𝛼)2/(𝜂𝛼)2 → 1. This means that
in this limit one can solve quasiclassical equations by simply
setting the short-ranged components to zero.
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Assuming that (𝐽𝛼)2/(𝜂𝛼)2 ≈ 1, |𝜏𝛼imp�̌�
𝛼
𝑠 | � 1 and only

considering energies |𝜀 | � 1/𝜏𝛼imp, the Eilenberger equation
for the short-range components becomes

∇̃ ◦ (𝒗𝛼𝐹 �̌�𝛼SR) +
1
𝜏𝛼imp

[〈
�̌�𝛼LR

〉
, �̌�𝛼SR

]
◦ = 0. (141)

The short-range correlations and the long-range correlations
will generally not commute. As a result, we see that the short-
range correlations decay exponentially over a distance equal to
the mean free path in this case.

Making no assumptions other than assuming that 𝜏imp is
small and �̌�𝛼𝑠 ◦ �̌�𝛼𝑠 = 1, which is valid even if the short-
range components are not isotropic, provided they are small in
magnitude, the short-range component of eq. (125) becomes

�̌�
𝛼
SR = −𝜏𝛼imp

(
�̌�𝛼𝑠 ◦ ∇̃ ◦

〈
𝒗𝛼𝐹 ⊗ 𝒗𝛼𝐹 �̌�

𝛼
〉)

SR

−
(
�̌�𝛼𝑠
2
◦ [〈

�̌�𝛼LR
〉 − 〈

�̌�𝛼SR
〉
, �̌�

𝛼]
◦

)
SR
. (142)

Using that �̌�𝛼SR decays exponentially away from the interface
with over a length-scale equal to the mean free path, eq. (142)
implies that, since �̌�𝛼LR = O(1),

�̌�𝛼SR = O

(
𝑙𝛼mfp �̌�

𝛼
SR

|𝐷𝛼 |

)
, (143)

where 𝑙𝛼mfp = 𝑣𝛼𝐹𝜏
𝛼
imp is the mean free path. The short-range

component of the matrix current will be largest closest to
the interface, where it will be determined by the boundary
conditions. Moreover, in the diffusive regime, the matrix
current is small at the interface, as discussed in section XII.
Hence, in the diffusive regime we see that �̌�𝛼SR = O(𝜏𝛼imp).
Hence, to zeroth order in 𝜏𝛼imp the long-ranged components
can be solved for consistently in the limit (𝐽𝛼)2/(𝜂𝛼)2 → 1
by setting the short-ranged components to zero, effectively
projecting out these components from the Green’s function.

Very close to the interface the term
[
�̂�SR, �̌�

𝛼
SR

]
◦ can give

a contribution to eq. (140). This is not a problem if �̂�SR = 0,
but in section XIII we show that, similar to spin-orbit coupling,
nonuniform magnetic textures can induce a non-zero �̂�SR. This
means that if there are domain walls very close to the interface
to a spin-singlet superconductor, it can induce long-ranged
superconducting correlations in the antiferromagnetic metal.
As long as �̂�SR = 0, the limit of very strong exchange coupling,
(𝐽𝛼)2/(𝜂𝛼)2 → 1, can be consistently captured by setting the
short-range components to zero and solving

𝑖∇̃LR ◦ �̌�
𝛼
LR +

[
𝜏𝑧𝜀 − �̌� 𝛼LR,𝑠 , �̌�

𝛼
LR,𝑠

]
◦
= 0. (144)

The matrix current can be found by doing the same projection in
eq. (125), which in the limit (𝐽𝛼)2/(𝜂𝛼)2 → 1 simply becomes

�̌�
𝛼
LR = −

�̌�𝛼LR,𝑠 ◦ ∇̃ ◦
(
𝐷𝛼�̌�𝛼LR,𝑠

)
2

. (145)

From eq. (135) we see that �̌�
𝛼 · 𝒗𝛼𝐹/(𝑣𝛼𝐹 )2 = O(𝑙𝛼imp∇̃ ◦ �̌�𝛼𝑠 ),

where 𝑙𝛼imp = 𝑣𝛼𝐹𝜏
𝛼
imp is the mean free path. As a result, the

assumption that �̌�𝛼𝑠 ◦ �̌�𝛼𝑠 = 1 is consistent as long as the change
in �̌�𝛼𝑠 over the length of the mean free path is small compared
to 1. In the limit of strong exchange coupling, the short-ranged
components can decay over a length scale equal to the mean free
path, but these components also become negligible, as shown
above. Therefore, although the short-ranged components are
not necessarily isotropic in the limit 𝐽𝛼 → ∞, one can still
solve the diffusive equations as long as there is no strong spin-
orbit coupling or sudden change in the Néel vector close to
the interface. To simplify the equations in this limit, one can
project out the long-range components. Spin-orbit coupling
or non-uniform Néel vector close to the boundary can induce
long-range components from the short-range components of the
matrix current. In this case, it is therefore not always consistent
to simply set the short-range components to zero. Instead, if
the limit of very strong exchange coupling is necessary, one
should solve the full Eilenberger equation for the short-ranged
components.

Equations (128) and (135) are our main results, together
with the boundary condition derived in section XII. They
provide general equations of motion which can be solved to
obtain information about currents, densities, the local density
of states and superconducting correlations in systems with
antiferromagnetism and arbitrary geometry both in and out of
equilibrium. In the absence of antiferromagnetism, meaning
that 𝐽𝛼 → 0, eqs. (128) and (135) reduce to the well-known
Usadel equation for normal dirty metals [4]. In the presence of
antiferromagnetism, there are three important differences. First,
all self-energies must be projected onto the conduction band,
which means that they must be transformed according to the
𝑆𝛼𝑐 matrix. Second, the coupling between spin and sublattice
gives rise to effective magnetic impurities with scattering time
𝜏𝛼imp (𝜂𝛼)2/(𝐽𝛼)2. Third, the magnetic impurities also modify
the equation for the matrix current, which in the normal metal
case is simply �̌�

𝛼
= −�̌�𝛼𝑠 ◦ ∇̃ ◦ (𝐷𝛼�̌�𝛼𝑠 ).

One can solve eq. (135) for 𝒋𝛼 in time-independent situations.
If we can diagonalize (�̌�𝛼𝑠 𝜎𝑧𝜏𝑧 �̌�𝛼𝑠 𝜎𝑧𝜏𝑧)𝑖 𝑗 = �̌�−1

𝑖𝑘 𝜆𝑘�̌�𝑘 𝑗 , we find
that

�̌�
𝛼
𝑖 𝑗 = −�̌�−1

𝑖𝑘

�̌�𝑘𝑚 [�̌�𝛼𝑠 ∇̃ · (𝐷𝛼�̌�𝛼𝑠 )]𝑚𝑛�̌�−1
𝑚𝑙

1 + (𝐽𝛼)2 (𝜆𝑘 + 𝜆𝑙)/[2(𝜂𝛼)2]
�̌�𝑙 𝑗 , (146)

with summation over repeated indices. Alternatively, since
(𝐽𝛼/𝜂𝛼)2 is smaller by 1 by definition, one can solve for �̌�

𝛼

by iteratively inserting into the right-hand side of eq. (135). To
get a series expansion with a faster convergence rate it can be
beneficial to rewrite eq. (135) as

�̌�
𝛼
= − [

1 + (𝐽𝛼/𝜂𝛼)2]−1
{
�̌�𝛼𝑠 ◦ ∇̃ ◦ (𝐷𝛼�̌�𝛼𝑠 )

+ �̌�𝛼𝑠 ◦
[ (𝐽𝛼)2
2(𝜂𝛼)2𝜎𝑧𝜏𝑧 [�̌�

𝛼
𝑠 , 𝜎𝑧𝜏𝑧], �̌�

𝛼
]
◦

}
. (147)

This is because the effective magnetic impurities in eq. (128)
will tend to suppress [�̌�𝛼𝑠 , 𝜎𝑧𝜏𝑧]. In the limit of small
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𝐽𝛼/𝜂𝛼 or vanishing [�̌�𝛼𝑠 , 𝜎𝑧𝜏𝑧], one can solve eqs. (128)
and (135) in the same way as the Usadel equation for nor-
mal metals, but with a renormalized diffusion coefficient,
𝐷𝛼 → 𝐷𝛼/[1 + (𝐽𝛼/𝜂𝛼)2] , additional magnetic impurities
and self-energies which are projected onto the conduction band
of the antiferromagnet. Otherwise, in the more general case,
one can for instance solve eqs. (128) and (135) numerically
using the algorithm presented in appendix A.

XII. BOUNDARY CONDITION

Next, we derive the boundary condition which is valid in the
diffusive regime. To do so, we must evaluate the two terms
which we could neglect in the equation of motion inside the
materials. These are the tunneling terms and the potentials
which are large only outside the materials. Here we consider
the interface between material 𝐿 and 𝑅. To get the boundary
condition at the interface to a vacuum or an insulator, one need
only set the tunneling to zero. As before, let (𝛼, 𝛽) be either
(𝐿, 𝑅) or (𝑅, 𝐿). We assume that the Green’s functions are
approximately spherically symmetric also close to the interface.
This is the case as long as the matrix current at the interface
is small compared to the Fermi velocity, which happens for
instance when the tunneling amplitudes are small.

The way the boundary condition is derived here is that we
sum the Gor’kov equations over a small set of unit cells which
includes the interface. We take this set to be the shape of a
wide cylinder. The width of this cylinder is much larger than
its length but much smaller than the characteristic length scale
𝐿 of the bulk as defined in section IX. Then we integrate over
all momentum directions and integrate over the Eilenberger
contour. First, we consider the potential which is large only
outside material 𝛼,

(Σ̂𝛼𝑅)𝑛𝑚 (𝑡1, 𝑡2) = �̂�𝛼𝑛 (𝑡1)𝛿𝑛𝑚𝛿(𝑡1 − 𝑡2), (148)

where �̂�𝛼𝑛 is nonzero only at the boundary and outside of
material 𝛼. Taking the bullet product with �̌�𝛼𝛼, we have

(�̌�𝛼𝛼 • Σ̂𝛼𝑅)𝑛𝑚 (𝑡1, 𝑡2) = �̌�𝛼𝛼𝑛𝑚 (𝑡1, 𝑡2) �̂�𝛼𝑚 (𝑡2). (149)

Next, we sum this over a set of unit cells 𝑉 and define 𝐼 ⊂ 𝑉
to be the subset of 𝑉 which is at the interface. We get〈

𝑖

𝜋

∮
d𝜉𝛼−

∑︁
𝑛∈𝑉

�̌�𝛼𝛼 • Σ̂𝛼𝑅
〉
=

∑︁
𝑛∈𝐼

𝑆𝛼𝑐 �̌�
𝛼
𝑠 (𝒙𝛼𝑛 ) (𝑆𝛼𝑐 )𝑇 ◦ �̂�𝛼𝑛 .

(150)
Note that in our model Σ̂𝛼𝑅 is very large outside material 𝛼,
such that �̌�𝛼𝛼 (𝒌, 𝒙)Σ̂𝛼𝑅 (𝒙) ∼ 1 when 𝒙 is outside material
𝛼. Nevertheless, only the points in 𝐼 contribute in eq. (150).
This is because the poles of �̌�𝛼𝛼 are shifted outside of the
Eilenberger contour when 𝒙 is outside of material 𝛼, rendering
the quasiclassical Green’s function exactly equal to zero. The
points at, or very close to, the interface are therefore the only
points where both �̌�𝛼 and �̂�𝛼𝑛 are different from 0.

Since the width of the cylinder is small compared to 𝐿, �̌�𝛼𝑠 is
approximately constant on the points in 𝐼. We further assume

that �̂�𝛼𝑛 is also approximately constant on the points in 𝐼. This
means that if 𝑙 ∈ 𝐼 and Γ is the number of unit cells in 𝐼, then〈

𝑖

𝜋

∮
d𝜉𝛼−

∑︁
𝑛∈𝑉

�̌�𝛼𝛼 • Σ̂𝛼𝑅
〉
= Γ𝑆𝛼𝑐 �̌�

𝛼
𝑠 (𝒙𝛼𝑙 ) (𝑆𝛼𝑐 )𝑇 ◦�̂�𝛼𝑙 . (151)

Next, we must evaluate(
Σ̂𝛼𝑅 • �̌�𝛼𝛼

)
(𝒌, 𝒙𝛼𝑛 ) = 𝑉 𝛼𝑒

∑︁
𝑚∈Z3

∫
^𝛼

d3𝑞

(2𝜋)3 �̂�
𝛼
𝑚

◦ e−𝑖𝜌𝐵 (𝒌−𝒒) ·𝜹
𝛼

�̌�𝛼𝛼 (𝒒, 𝒙𝑛)e𝑖𝜌𝐵 (𝒌−𝒒) ·𝜹
𝛼

× e−𝑖 (𝒌−𝒒) ·(𝒙
𝛼
𝑚−𝒙𝛼

𝑛 ) . (152)

First, we evaluate the sum over 𝑚. We use that �̂�𝛼𝑚 = �̂�𝛼𝑙 ,
where 𝒙𝛼𝑙 is a point on the interface close to 𝒙𝛼𝑛 , whenever 𝒙𝛼𝑚
is on the interface. Otherwise, �̂�𝛼𝑚 = 0. We find that(

Σ̂𝛼𝑅 • �̌�𝛼𝛼
)
𝑖 𝑗
(𝒌, 𝒙𝛼𝑛 ) = �̂�𝛼𝑙 ◦

∫
^𝛼

d3𝑞

(2𝜋)3 𝑓𝑖 𝑗 (𝒒)

× �̌�𝛼𝛼𝑖 𝑗 (𝒌 + 𝒒, 𝒙𝑛), (153)

where 𝑓𝑖 𝑗 is a normalized function which is peaked at 𝒒 = 0.
Next, integrating over the Eilenberger contour and averaging
over momentum directions, we find that〈

𝑖

𝜋

∮
d𝜉𝛼−

∑︁
𝑛∈𝑉

Σ̂𝑅 • �̌�𝛼𝛼
〉
= Γ�̂�𝑙 ◦ 𝑆𝛼𝑐 �̌�𝛼𝑠 (𝒙𝛼𝑙 ) (𝑆𝛼𝑐 )𝑇 . (154)

Next, we must evaluate the tunneling self-energy,

Σ̌𝛼𝑇 = 𝑇 𝛼𝛽 • �̌�𝛽𝛽0 • 𝑇𝛽𝛼 . (155)

To proceed, we must assume some properties of the tunneling
term. The tunneling should be short-ranged and only at lattice
points at the interface between the two materials. For each
unit cell in material 𝛼 at the interface we assume that there is
exactly one connected unit cell in material 𝛽. For simplicity,
we label the connected unit cells the same. This means that if
𝒙𝛼𝑛 is at the interface, then the connected unit cell in material 𝛽
is 𝒙𝛽𝑛 . With this we have

𝑇
𝛼𝛽
𝑛𝑚 =

∑︁
𝑙∈int

𝑡
𝛼𝛽
𝑙 𝛿𝑙𝑛𝛿𝑙𝑚, (156)

where the sum goes over all the points at the interface. Hence,
if 𝜒int is the characteristic function which is 1 if the argument
is at the interface and 0 otherwise, then(

Σ̌𝛼𝑇

)
𝑛𝑚
(𝑡1, 𝑡2)

= 𝑡𝛼𝛽𝑛 (𝑡1)
(
�̌�
𝛽𝛽
0

)
𝑛𝑚
(𝑡1, 𝑡2)𝑡𝛽𝛼𝑚 (𝑡2)𝜒int (𝑛)𝜒int (𝑚), (157)

In order to evaluate the bullet product(
�̌�𝛼𝛼 • Σ̂𝛼𝑇

)
(𝒌, 𝒙𝛼𝑛 ) = 𝜒int (𝑛)

∑︁
𝑚∈int

�̌�𝛼𝛼 (𝒌, 𝒙𝛼𝑚)

◦ e−𝑖𝜌𝐵𝒌 ·𝜹
𝛼

𝑡
𝛼𝛽
𝑚 ◦

(
�̌�
𝛽𝛽
0

)
𝑚𝑛
◦ 𝑡𝛽𝛼𝑛 e𝑖𝜌𝐵𝒌 ·𝜹

𝛼

e−𝑖𝒌 · (𝒙
𝛼
𝑚−𝒙𝛼

𝑛 ) ,

(158)
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we write

(
�̌�
𝛽𝛽
0

)
𝑚𝑛

= 𝑉𝛽𝑒

∫
^𝛽

d3𝑝

(2𝜋)3 e𝑖𝜌𝐵𝒑 ·𝜹𝛽 �̌�𝛽𝛽0 (𝒙
𝛽
𝑛 , 𝒑)e−𝑖𝜌𝐵𝒑 ·𝜹𝛽

× e𝑖𝒑 · (𝒙
𝛽
𝑚−𝒙𝛽

𝑛) . (159)

We can separate this integral into the quasiclassical contribution
and a rest term, or high-energy contribution, according to the
Eilenberger contour. The high-energy contribution was not
negligible when we calculated the impurity self-energy. This
was because we evaluated the Green’s function at 𝑚 = 𝑛.
The high-energy contribution to the term in eq. (158) with
𝑚 = 𝑛 will only renormalize �̂�𝑛, because it only depends
on �̂�

𝛽
0 , as we showed earlier. When evaluated at 𝑚 ≠ 𝑛

the oscillating exponential suppresses the integral for the high-
energy contribution. For this reason, we neglect the high-energy
contribution.

Next, we must evaluate the quasiclassical part. Close to
the Fermi surface we have 𝜉𝛽− (𝑝) = 0 + (𝑝 − 𝑝𝛽𝐹 ) (𝜉𝛽− ) ′(𝑝

𝛽
𝐹 ) =

𝑣
𝛽
𝐹 (𝑝 − 𝑝

𝛽
𝐹 ). Hence, if the poles are located at {𝜉𝑖}𝑖 ,

𝑖

𝜋

∮
d𝜉𝛽− �̌�

𝛽𝛽
0 e𝑖𝒑 ·𝒓 = −

∑︁
𝜉𝑖

sgn(Im[𝜉𝑖]) Res
(
�̌�
𝛽𝛽
0 , 𝜉𝑖

)
× exp

(
𝑖𝒓 · 𝒆𝑝 [𝑝𝐹 + 𝜉𝑖/𝑣𝛽𝐹 ]

)
(160)

From eq. (119) we know that impurity scattering gives rise to
an imaginary shift in the pole location, such that |Im(𝜉𝑖) | ≥
1/2𝜏𝛽imp. Therefore,

���e𝑖𝑟 𝜉𝑖/𝑣𝛽𝐹 ��� < e−𝑟/2𝑙
𝛽

mfp , (161)

where 𝑙𝛽mfp = 𝜏𝛽imp𝑣
𝛽
𝐹 is the mean free path. The effective mean

free path very close to the interface may additionally be lowered
by interfacial disorder.

The exponential decay means that we need only consider
relative distances up to around the mean free path in the sum
over 𝑚 ∈ int. In the dirty limit, which is what we consider
here, it is assumed that 1/2𝜏𝛽imp is much larger than all the
other self-energy contributions, and therefore |Im(𝜉𝑖) | is much
larger than the real part of 𝜉𝑖 . As a result, when 𝑟 < 2𝑙𝛽mfp,
𝑟 Re(𝜉𝑖)/𝑣𝛽𝐹 < 2𝜏𝛽imp Re(𝜉𝑖) � 1, which means that we can
neglect Re 𝜉𝑖/𝑣𝛽𝐹 in the exponential function when 𝑟 < 2𝑙𝛽mfp.
Hence,

𝑖

𝜋

∮
d𝜉𝛽− �̌�

𝛽𝛽
0 e𝑖𝒑 ·𝒓 = 𝑆𝛽𝑐 �̌�

𝛽
0 (𝑆

𝛽
𝑐 )𝑇 e𝑖𝒓 ·𝒑

𝛽

𝐹 𝑓 𝛽 (𝒓). (162)

where 𝑓 𝛽 (𝒓) is an exponentially decaying function that gives
rise to a soft cutoff as a function of relative distance at |𝒓 | ≈

2𝑙𝛽mfp. Hence, we find that〈
𝑖

𝜋

∮
d𝜉𝛼−

∑︁
𝑛∈𝑉

�̌�𝛼𝛼 • Σ̂𝑇
〉
= −𝑖𝜋𝑉𝛽𝑒

∑︁
𝑛∈𝐼

∑︁
𝑚∈int

∫ dΩ𝑝

4𝜋

×
∫

dΩ𝑘
4𝜋

𝑓 𝛽 (𝒙𝛽𝑚 − 𝒙𝛽𝑛 ) ( 𝒑𝛽𝐹 )2
2𝜋𝒗𝛽𝐹

𝑆𝛼𝑐 �̌�
𝛼 (𝒌𝛼𝐹 , 𝒙𝛼𝑚) (𝑆𝛼𝑐 )𝑇

◦ e−𝑖𝜌𝐵𝒌
𝛼
𝐹 ·𝜹𝛼

𝑡
𝛼𝛽
𝑛 e𝑖𝜌𝐵𝒑

𝛽

𝐹
·𝜹𝛽𝑆𝛽𝑐 �̌�

𝛽
0 ( 𝒑

𝛽
𝐹 , 𝒙

𝛽
𝑛 ) (𝑆𝛽𝑐 )𝑇

◦ e−𝑖𝜌𝐵𝒑
𝛽

𝐹
·𝜹𝛽 𝑡𝛽𝛼𝑚 e𝑖𝜌𝐵𝒌

𝛼
𝐹 ·𝜹𝛼

e−𝑖𝒌
𝛼
𝐹 · (𝒙𝛼

𝑚−𝒙𝛼
𝑛 )

× e𝑖𝒑
𝛽

𝐹
· (𝒙𝛽

𝑚−𝒙𝛽
𝑛) . (163)

Next, we assume that the averaging over all momentum direc-
tions for both 𝒑𝛽𝐹 and 𝒌𝛼𝐹 gives the 𝑠-wave contribution from
the Green’s function together with a renormalization of the
tunneling amplitudes. This is the case because we assume that
the Green’s functions are approximately spherically symmetric
also close to the interface. As a result, we finally have〈

𝑖

𝜋

∮
d𝜉𝛼−

∑︁
𝑛∈𝑉

�̌�𝛼𝛼 • Σ̂𝑇
〉
−−

= −𝑖
∑︁
𝑛∈𝐼

�̌�𝛼𝑠 (𝒙𝛼𝑛 ) ◦ T̂𝛼𝛽𝑛 ◦ �̌�𝛽0,𝑠 (𝒙
𝛽
𝑛 ) ◦ T̂𝛽𝛼𝑛 , (164)

where

T̂
𝛼𝛽
𝑛 = (𝑆𝛼𝑐 )𝑇 ˆ̃𝑡𝛼𝛽𝑛 𝑆

𝛽
𝑐 , (165)

and where ˆ̃𝑡𝛼𝛽𝑛 are the renormalized versions of 𝑡𝛼𝛽𝑛 resulting
from the average over momentum directions. Similarly, T̂𝛽𝛼𝑛 =
(𝑆𝛽𝑐 )𝑇 ˆ̃𝑡𝛽𝛼𝑛 𝑆𝛼𝑐 . In a similar way, we find that〈

𝑖

𝜋

∮
d𝜉𝛼−

∑︁
𝑛∈𝑉

Σ̂𝑇 • �̌�𝛼𝛼
〉
−−

= −𝑖
∑︁
𝑛∈𝐼

T̂
𝛼𝛽
𝑛 ◦ �̌�𝛽0,𝑠 (𝒙

𝛽
𝑛 ) ◦ T̂𝛽𝛼𝑛 ◦ �̌�𝛼𝑠 (𝒙𝛼𝑛 ). (166)

We choose the volume defined by the unit cells in 𝑉 to be
approximately the shape of a wide cylinder which includes
the interface. Let the discs at the ends of this cylinder have
Γ2 points and define a plane. Let 𝒆𝑛 be the unit vector that
is orthogonal to this plane and points out of material 𝛼. We
assume that the width of the cylinder is much larger than the
length. Inserting eqs. (151) and (164) into eq. (70), integrating
over the Eilenberger contour and momentum directions and
summing over the unit cells in 𝑉 , we get that

𝑖Γ2𝒆𝑛 · �̌�𝛼 (𝒙𝛼𝑙 )/|𝜹 | +
∑︁
𝑛∈𝑉

�̌�𝛼𝑠 ◦ 𝜀𝜏𝑧

−
〈
𝑖

𝜋

∮
d𝜉𝛼−

∑︁
𝑛∈𝑉

�̌�𝛼𝛼 • (Σ̌𝛼imp + �̌� 𝛼)
〉
−−

+ 𝑖Γ�̌�𝛼𝑠 (𝒙𝛼𝑙 ) ◦ T̂𝛼𝛽𝑙 ◦ �̌�
𝛽
0,𝑠 (𝒙

𝛽
𝑙 ) ◦ T̂

𝛽𝛼
𝑙

− Γ�̌�𝛼𝑠 (𝒙𝛼𝑙 ) ◦ (𝑆𝛼𝑐 )𝑇 �̂�𝑙𝑆𝛼𝑐 =

〈
𝑖

𝜋

∮
d𝜉𝛼−

∑︁
𝑛∈𝑉

�̌�𝛼𝛼𝜉𝛼−

〉
,

(167)
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where 𝑙 is again a unit cell in 𝐼 and |𝜹 | is the distance between
nearest neighbors in the direction of 𝒆𝑛. We note that Γ/Γ2 can
in general be different from 1 because the interface need not
lie in a perfect plane parallel to the ends of the cylinder. We
assume that the second and third terms on the left-hand side of
eq. (167) are negligible compared to the fourth and fifth terms
because the width of the cylinder is much larger than its length
and �̂�𝑙 and T̂

𝛼𝛽
𝑙 T̂

𝛽𝛼
𝑙 are large compared to 𝜀 and (Σ̌𝛼imp + �̌� 𝛼).

However, we cannot neglect the term on the right-hand side.
The way to remove this term is again to use the other Gor’kov
equation. From the other Gor’kov equation, eq. (68), we get,
using eqs. (154) and (166), that

∑︁
𝑛∈𝑉

𝜀𝜏𝑧 ◦ �̌�𝛼𝑠 −
〈
𝑖

𝜋

∮
d𝜉𝛼−

∑︁
𝑛∈𝑉
(Σ̌𝛼imp + �̌� 𝛼) • �̌�𝛼𝛼

〉
−−

+ 𝑖ΓT̂𝛼𝛽𝑙 ◦ �̌�
𝛽
0,𝑠 (𝒙

𝛽
𝑙 ) ◦ T̂

𝛽𝛼
𝑙 ◦ �̌�𝛼𝑠 (𝒙𝛼𝑙 )

− Γ(𝑆𝛼𝑐 )𝑇 �̂�𝑙𝑆𝛼𝑐 ◦ �̌�𝛼𝑠 (𝒙𝛼𝑙 ) =
〈
𝑖

𝜋

∮
d𝜉𝛼−

∑︁
𝑛∈𝑉

�̌�𝛼𝛼𝜉𝛼−

〉
.

(168)

Here, we neglect the first two terms for the same reason as
above. Combining eqs. (167) and (168) and absorbing the
factor |𝜹 |Γ/Γ2 into the reflection and tunneling matrices, we
finally get the boundary condition,

𝒆𝑛 · �̌�𝛼 =
[
T̂
𝛼𝛽
𝑙 ◦ �̌�

𝛽
0,𝑠 (𝒙

𝛽
𝑙 ) ◦ T̂

𝛽𝛼
𝑙 + 𝑖(𝑆𝛼𝑐 )𝑇 �̂�𝑙𝑆𝛼𝑐 , �̌�𝛼𝑠

]
◦
.

(169)
One can use the Dyson equation to write �̌�𝛽0,𝑠 as a series

expansion in �̌�𝛽𝑠 and the tunneling matrix. In principle, this
should produce a generalization of the Nazarov boundary
condition [67, 68]. However, we are here interested in the
diffusive regime, meaning that the matrix current is small
compared to the Fermi velocity. This is the case when the
tunneling and reflection amplitudes are small. For this reason,
we need only consider eq. (169) to the lowest order in the
tunneling matrices, which are obtained by setting �̌�𝛽0,𝑠 = �̌�

𝛽
𝑠 ,

yielding

𝒆𝑛 · �̌�𝛼 =
[
T̂
𝛼𝛽
𝑙 ◦ �̌�

𝛽
𝑠 (𝒙𝛽𝑙 ) ◦ T̂

𝛽𝛼
𝑙 + 𝑖(𝑆𝛼𝑐 )𝑇 �̂�𝑙𝑆𝛼𝑐 , �̌�𝛼𝑠

]
◦
. (170)

We note that in the absence of antiferromagnetism, this exactly
reproduces the generalized Kupriyanov-Lukichev boundary
condition for spin-active boundaries in the quasiclassical theory
for normal metals [58, 59].

XIII. NONUNIFORM MAGNETIC TEXTURES

In this section, we derive the self-energy terms associated
with nonuniform magnetic textures in antiferromagnets. We
find that a spatial gradient in the magnetic texture gives rise to
a term in the covariant gradient, similar to spin-orbit coupling,
and a temporal gradient gives rise to an effective magnetic
field.

In both cases, we must evaluate 𝑅†𝜕𝑅, where 𝜕 can be either
the time derivative or gradient operator and 𝑅 is given by eq. (8).
We find that

𝑅†𝜕𝑅 = − 𝑖
2
𝜕 (𝜃 sin 𝜙𝜎𝑥 − 𝜃 cos 𝜙𝜎𝑦), (171)

where the direction of the Néel vector is 𝒏 =
(sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃). From eq. (22c) we see that
the spatial gradient of the Néel vector gives rise to a self-energy
term equal to

(Σ𝛼𝑠 )𝑛𝑚 (𝑡1, 𝑡2) = −
(
𝐾𝛼𝑛𝑚

[
𝒙𝛼𝑛 − 𝒙𝛼𝑚

] + [
𝜹𝛼𝜌𝐵, 𝐾

𝛼
𝑛𝑚

] )
·
(
𝑅†∇𝑅

)
(𝒙𝛼𝑛 , 𝑡1)𝛿(𝑡1 − 𝑡2). (172)

To get how it looks in the final equation, we must Fourier
transform and project onto the conduction band by use of 𝑆𝛼𝑐 .
By doing this, we get

(𝑆𝛼𝑐 )𝑇 Σ𝛼𝑠 (𝒌, 𝒙𝛼𝑛 , 𝑇)𝑆𝛼𝑐 = − 𝒗
𝛼
𝐹

2
·∇(𝜃 sin 𝜙𝜎𝑥−𝜃 cos 𝜙𝜎𝑦).

(173)

Since this is a momentum-dependent self-energy, we see that
this is supposed to go into the covariant derivative. As a result,
the covariant derivative looks like

∇̃ ◦ �̌�𝛼 = ∇�̌�𝛼 − 𝑖
[
1
2
∇(𝜃 sin 𝜙𝜎𝑥 − 𝜃 cos 𝜙𝜎𝑦), �̌�𝛼

]
− 𝑖[ �̌�rest, �̌�

𝛼], (174)

where �̌�rest is the remaining 𝑝-wave contribution, which may
come from the vector gauge field or spin-orbit coupling.

The temporal gradient gives rise to a term similar to a
magnetic field. From eq. (22c) we see that the temporal
gradient of the Néel vector gives rise to a self-energy term
equal to

(Σ𝛼𝑡 )𝑛𝑚 (𝑡1, 𝑡2) = −𝑖𝜏𝑧
(
𝑅† ¤𝑅

)
(𝒙𝛼𝑛 , 𝑡1)𝛿𝑛𝑚𝛿(𝑡1 − 𝑡2), (175)

since

𝜌𝐴

(
𝑅† ¤𝑅

)
(𝒙𝛼𝑛 , 𝑡1)+𝜌𝐵

(
𝑅† ¤𝑅

)
(𝒙𝛼𝑛 +𝜹𝛼, 𝑡1) ≈

(
𝑅† ¤𝑅

)
(𝒙𝛼𝑛 , 𝑡1).

(176)
If we again Fourier transform in relative coordinates and trans-
form using 𝑆𝛼𝑐 , we get

(𝑆𝛼𝑐 )𝑇 Σ𝛼𝑡 (𝒌, 𝒙𝛼𝑛 , 𝑇)𝑆𝛼𝑐 = −1
2

√︃
1 − (𝐽𝛼/𝜂𝛼)2

× 𝜏𝑧𝜕𝑇 (𝜃 sin 𝜙𝜎𝑥 − 𝜃 cos 𝜙𝜎𝑦). (177)

The factor
√︁

1 − (𝐽𝛼/𝜂𝛼)2 comes from the projection of 𝜎𝑥
and 𝜎𝑦 onto the conduction band. To understand the physical
reason for this factor, consider a general electron state near the
Fermi level. An electron near the Fermi level will in general be
in a superposition of spin-up and spin-down, but the spin-up
component and the spin-down component will have different
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spatial distributions. For the spin of this electron at a given
lattice site to have a non-zero projection in a direction orthogo-
nal to the Néel vector, it will need to be in a superposition of
spin-up and spin-down. At 𝐽𝛼/𝜂𝛼 = 0, an electron state near
the Fermi level which is in an equal superposition of spin-up
and spin-down will have spin everywhere orthogonal to the
Néel vector. However, as 𝐽𝛼/𝜂𝛼 increases, the spin-up and
spin-down component starts to separate in space, and in the
limit 𝐽𝛼/𝜂𝛼 → 1, any superposition of spin-up and spin-down
has all of its spin-up component localized on one sublattice and
all of its spin-down component localized on the other sublattice.
This means that it has spin along the Néel vector everywhere in
space. As a result, the effect of spin-splitting fields orthogonal
to the Néel vector is suppressed as 𝐽𝛼/𝜂𝛼 increases.

XIV. OBSERVABLES

Generally, observables such as densities or currents may be
written

𝑄(𝒙𝛼𝑛 , 𝑇) =
〈
𝑐𝛼†𝑛 (𝑇)𝑀 (𝒙𝛼𝑛 ,−𝑖Δ𝑅)𝑐𝛼𝑛 (𝑇)

− (𝑐𝛼𝑛 )𝑇 (𝑇)𝑀𝑇 (𝒙𝛼𝑛 ,−𝑖Δ𝑅) (𝑐𝛼†𝑛 )𝑇 (𝑇)
〉 + 𝐶, (178)

where 𝐶 is a constant and 𝑀 is a matrix that depends on
the observable. We can relate this to our Green’s functions
which are defined by the spin-rotated creation and annihilation
operators 𝑐𝛼𝑛 , as defined by eq. (9), if we define

�̃� =
[
𝜌𝐴𝑅

† (𝒙𝛼𝑛 , 𝑡) + 𝜌𝐵𝑅† (𝒙𝛼𝑛 + 𝜹𝛼, 𝑡)
]
𝑀

× [
𝜌𝐴𝑅(𝒙𝛼𝑛 , 𝑡) + 𝜌𝐵𝑅(𝒙𝛼𝑛 + 𝜹𝛼, 𝑡)

]
. (179)

With this,

𝑄(𝒙𝛼𝑛 , 𝑇) = 𝐶 + 𝑖
∫
^𝛼

d3𝑘

(2𝜋)3
∫ ∞
−∞

d𝜀
2𝜋

× Tr
[
�̃� (𝒙𝛼𝑛 , 𝒌)𝜏𝑧�̂�𝐾,𝛼𝛼 (𝒌, 𝒙𝛼𝑛 , 𝑇, 𝜀)

]
. (180)

The quasiclassical treatment is only valid for 𝜀 � 𝐸 𝛼𝑐 . As a
result, we should split the energy integral,∫

^𝛼

d3𝑘

(2𝜋)3
∫ ∞
−∞

d𝜀
2𝜋

Tr
[
�̃� (𝒙𝛼𝑛 , 𝒌)𝜏𝑧�̂�𝐾,𝛼𝛼 (𝒌, 𝒙𝛼𝑛 , 𝑇, 𝜀)

]
=

∫ 𝑎

−𝑎

d𝜀
2𝜋

∫
^𝛼

d3𝑘

(2𝜋)3 Tr
[
�̃� (𝒙𝛼𝑛 , 𝒌)𝜏𝑧�̂�𝐾,𝛼𝛼 (𝒌, 𝒙𝛼𝑛 , 𝑇, 𝜀)

]
+

(∫ −𝑎
−∞

d𝜀
2𝜋
+

∫ ∞
𝑎

d𝜀
2𝜋

) ∫
d3𝑘

(2𝜋)3
× Tr

[
�̃� (𝒙𝛼𝑛 , 𝒌)𝜏𝑧�̂�𝐾,𝛼𝛼 (𝒌, 𝒙𝛼𝑛 , 𝑇, 𝜀)

]
, (181)

where 𝑎 is much smaller than 𝐸 𝛼𝑐 . In the diffusive regime, 𝑎
should also be much smaller than the elastic impurity scattering
rate. We can rewrite the first term on the right-hand side by
again using the Eilenberger contour. The Keldysh Green’s
function is ∼ 1/(𝜉𝛼− )2 for large (𝜉𝛼− )2, so we can neglect the

high energy contribution,
⨏

d𝜉𝛼− . Hence,∫ 𝑎

−𝑎

d𝜀
2𝜋

∫
^𝛼

d3𝑘

(2𝜋)3 Tr
[
�̃� (𝒙𝛼𝑛 , 𝒌)𝜏𝑧�̂�𝐾,𝛼𝛼 (𝒌, 𝒙𝛼𝑛 , 𝑇, 𝜀)

]
= −𝑖𝜋𝑁𝛼0

〈∫ 𝑎

−𝑎

d𝜀
2𝜋

Tr
[(𝑆𝛼𝑐 )𝑇 �̃� (𝒙𝛼𝑛 , 𝒌𝐹 )𝑆𝛼𝑐

× 𝜏𝑧 �̂�𝐾,𝛼 (𝒌𝐹 , 𝒙𝛼𝑛 , 𝑇, 𝜀)
]〉
. (182)

Next, we must evaluate the second term on the right-hand
side of eq. (181). Generally, we can write

�̂�𝑅,𝛼𝛼 =
(
𝜏𝑧𝜀 − �̂�𝛼0 − Σ̂𝑅,𝛼

)−1
+ 𝛿�̂�𝑅,𝛼𝛼 . (183)

Inserting this into the equation

𝜏𝑧𝜀 ◦ �̂�𝑅,𝛼𝛼 − �̂�𝛼0 �̂�𝑅,𝛼𝛼 − Σ̂𝑅,𝛼 • �̂�𝑅,𝛼𝛼 = 1, (184)

one gets an equation for 𝛿�̂�𝑅,𝛼𝛼. We find that the contribution
to the expression for the observable from 𝛿�̂�𝑅,𝛼𝛼 is negligible,
so we neglect it in the following. We assume that 𝑎 is sufficiently
large such that states at |𝜀 | ≥ 𝑎 are either completely occupied
or completely unoccupied. Moreover, 𝑎 is much larger than
the superconducting gap, so the density of states at energies
above 𝑎 should not be affected by superconductivity. For this
reason, we assume that we can neglect superconductivity when
considering the high-energy contribution. When this is the
case,

�̂�𝐾,𝛼𝛼 = sgn(𝜀) [�̂�𝑅,𝛼𝛼 − (�̂�𝑅,𝛼𝛼)†] . (185)

By neglecting 𝛿�̂�𝑅,𝛼𝛼, we find that

�̂�𝑅,𝛼𝛼 = 𝑆𝛼
[
𝜏𝑧𝜀 −

(
𝜉𝛼−

𝜉𝛼+

)
− (𝑆𝛼)𝑇 Σ̂𝑅,𝛼𝑆𝛼

]−1
(𝑆𝛼)𝑇 .

(186)

Let (𝑆𝛼)𝑇 Σ̂𝑅,𝛼𝑆𝛼 = 𝐴, then

[(𝑆𝛼)𝑇 �̂�𝑅,𝛼𝛼𝑆𝛼]−− =
[
𝜏𝑧𝜀 − 𝜉𝛼− − 𝐴−−

−𝐴−+ (𝜏𝑧𝜀 − 𝜉𝛼+ − 𝐴++)−1𝐴+−
]−1
, (187a)

[(𝑆𝛼)𝑇 �̂�𝑅,𝛼𝛼𝑆𝛼]++ =
[
𝜏𝑧𝜀 − 𝜉𝛼+ − 𝐴++

−𝐴+− (𝜏𝑧𝜀 − 𝜉𝛼− − 𝐴−−)−1𝐴−+
]−1
, (187b)

[(𝑆𝛼)𝑇 �̂�𝑅,𝛼𝛼𝑆𝛼]−+ = −[(𝑆𝛼)𝑇 �̂�𝑅,𝛼𝛼𝑆𝛼]−−𝐴−+
× (𝜏𝑧𝜀 − 𝜉𝛼+ − 𝐴++)−1, (187c)

[(𝑆𝛼)𝑇 �̂�𝑅,𝛼𝛼𝑆𝛼]+− = −[(𝑆𝛼)𝑇 �̂�𝑅,𝛼𝛼𝑆𝛼]++𝐴+−
× (𝜏𝑧𝜀 − 𝜉𝛼− − 𝐴−−)−1. (187d)

If

𝐴−− − 𝐴−+ (𝜏𝑧𝜀 − 𝜉𝛼+ − 𝐴++)−1𝐴+− = 𝑃−𝐽−𝑃†−, (188a)

𝐴++ − 𝐴+− (𝜏𝑧𝜀 − 𝜉𝛼− − 𝐴−−)−1𝐴−+ = 𝑃+𝐽+𝑃†+, (188b)
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where 𝐽− and 𝐽+ are diagonal, we find that

[(𝑆𝛼)𝑇 �̂�𝑘,𝛼𝛼𝑆𝛼]±±,𝑖 𝑗 = 2𝜋𝑖 sgn(𝜀)
∑︁
𝑙

𝑃±,𝑖𝑙

× Im(𝐽±,𝑙𝑙)/𝜋
[𝜀𝜏𝑧,𝑙𝑙 − 𝜉𝛼± − Re(𝐽±,𝑙𝑙)]2 + [Im(𝐽±,𝑙𝑙)]2

𝑃†±,𝑙 𝑗 . (189)

If not for the fact that 𝐽± depends on 𝜀, this would be a sum of
Lorentz distribution as functions of 𝜀. However, the dependence
of 𝐽± on 𝜀 is very weak close to the peak of the distribution.
For this reason, we neglect the dependence of both 𝑃± and
𝐽± on 𝜀. From eq. (187) we can see that [(𝑆𝛼)𝑇 �̂�𝑅,𝛼𝛼𝑆𝛼]±∓
are products of two functions with peaks at distantly separated
values of 𝜀. One peak is close to 𝜉𝛼− and the other is close to
𝜉𝛼+ . As a result, we neglect these terms.

To proceed, we must evaluate terms that look like

𝐼± B
(∫ −𝑎
−∞

d𝜀
2𝜋
+

∫ ∞
𝑎

d𝜀
2𝜋

) ∫ 𝜉max

𝜉min

d𝜉𝛼− 2𝜋 sgn(𝜀)𝑔(𝜉𝛼− )

× Im(𝐽±,𝑙𝑙)/𝜋
[𝜀𝜏𝑧,𝑙𝑙 − 𝜉𝛼± − Re(𝐽±,𝑙𝑙)]2 + [Im(𝐽±,𝑙𝑙)]2

, (190)

where the function 𝑔 can be identified from eqs. (181) and (189).
From the fact that the retarded Green’s function should be

nonzero only for positive relative times, we have that Im(𝐽−,𝑙𝑙) =
𝜏𝑧,𝑙𝑙

��Im(𝐽−,𝑙𝑙)��. If we define

𝑓 (𝑦) =
∫ 𝑦

−∞
d𝑥

��Im(𝐽±,𝑙𝑙)��/𝜋
𝑥2 + [Im(𝐽±,𝑙𝑙)]2

, (191)

we find that

𝐼− =
∫ 𝜉max

𝑎−Re(𝐽±,𝑙𝑙)+𝐶
d𝜉𝛼− 𝑔(𝜉𝛼− ) −

∫ −𝑎−Re(𝐽±,𝑙𝑙)−𝐶

𝜉min

d𝜉𝛼− 𝑔(𝜉𝛼− )

+
∫ 𝐶

−𝐶
d𝜉𝛼− 𝑓 (𝜉𝛼− )

{
𝑔[𝜉𝛼− + 𝑎 − Re(𝐽±,𝑙𝑙)]

− 𝑔[−𝜉𝛼− − 𝑎 − Re(𝐽±,𝑙𝑙)]
}
, (192)

where 𝐶 is a number which is on the order of Im(𝐽±,𝑙𝑙), and
sufficiently large such that 𝑓 (𝑦) ≈ 0 for 𝑦 ≤ −𝐶 and 𝑓 (𝑦) = 1
for 𝑦 ≥ 𝐶. From eqs. (181) and (189), one can see that 𝑔 is a
slowly varying function. For this reason, we can neglect the
last integral in eq. (192). Next, we rewrite 𝐼− as one term which
depend on 𝐽±,𝑙𝑙 and one which does not, as

𝐼− ≈
∫ 𝜉max

𝑎+𝐶
d𝜉𝛼− 𝑔(𝜉𝛼− ) −

∫ −𝑎−𝐶
𝜉min

d𝜉𝛼− 𝑔(𝜉𝛼− )

+ Re(𝐽±,𝑙𝑙) [𝑔(𝑎) + 𝑔(−𝑎)], (193)

so that, since 𝑔(±𝑎) ≈ 𝑔(0),(∫ −𝑎
−∞

d𝜀
2𝜋
+

∫ ∞
𝑎

d𝜀
2𝜋

) ∫ 𝜉max

𝜉min

d𝜉𝛼− 𝑔(𝜉𝛼− ) [(𝑆𝛼)𝑇 �̂�𝑘,𝛼𝛼𝑆𝛼]−−,𝑖 𝑗

= 𝑖𝛿𝑖 𝑗

∫ 𝜉max

𝑎+𝐶
d𝜉𝛼− 𝑔(𝜉𝛼− ) − 𝑖𝛿𝑖 𝑗

∫ −𝑎−𝐶
𝜉min

d𝜉𝛼− 𝑔(𝜉𝛼− )

+ 𝑖𝑔(0) [𝐴−− + 𝐴†−−]𝑖 𝑗 , (194)

where we have used that for 𝜉𝛼− ≈ 0,

2𝑃− Re(𝐽−)𝑃†− = 𝑃−𝐽−𝑃†− +
(
𝑃−𝐽−𝑃†−

)†
≈ 𝐴−− + 𝐴†−−. (195)

Evaluating 𝐼+ is less difficult because 𝜉𝛼+ � 𝑎 for all 𝒌.
Hence,

𝐼+ =
∫ 𝜉max

𝜉min

d𝜉𝛼− 𝑔(𝜉𝛼− ). (196)

Inserting this into the expression for the high-𝜀 contribution to
the observable, we find(∫ −𝑎

−∞

d𝜀
2𝜋
+

∫ ∞
𝑎

d𝜀
2𝜋

) ∫
d3𝑘

(2𝜋)3 Tr
[
�̃�𝜏𝑧�̂�

𝐾,𝛼𝛼
]

= 𝑖

〈∫ 𝜉max

𝜉min

d𝜉𝛼− 𝑁𝛼0 (𝜉𝛼− ) Tr
{[(𝑆𝛼)𝑇 �̃�𝑆𝛼]++𝜏𝑧}〉

+ 𝑖
〈∫ 𝜉max

𝑎+𝐶
d𝜉𝛼− 𝑁𝛼0 (𝜉𝛼− ) Tr

{[(𝑆𝛼)𝑇 �̃�𝑆𝛼]−−𝜏𝑧}〉
− 𝑖

〈∫ −𝑎−𝐶
𝜉min

d𝜉𝛼− 𝑁𝛼0 (𝜉𝛼− ) Tr
{[(𝑆𝛼)𝑇 �̃�𝑆𝛼]−−𝜏𝑧}〉

+ 𝑖 〈𝑁𝛼0 Tr
{[(𝑆𝛼)𝑇 �̃�𝑆𝛼]−−𝜏𝑧 [𝐴−− + 𝐴†−−]}〉 . (197)

The first three terms on the right-hand side are just constants
and can be absorbed into the constant 𝐶 in the expression for
the observable. By doing this, we get that the observable can
finally be written

𝑄 = 𝐶 + 𝑁
𝛼
0
2

〈∫ 𝑎

−𝑎
d𝜀 Tr

[(𝑆𝛼𝑐 )𝑇 �̃�𝑆𝛼𝑐 𝜏𝑧 �̂�𝐾,𝛼]〉
− 𝑁𝛼0

〈
Tr

{
[(𝑆𝛼𝑐 )𝑇 �̃�𝑆𝛼𝑐 𝜏𝑧

× (𝑆𝛼𝑐 )𝑇
[
Σ̂𝑅,𝛼 + (Σ̂𝑅,𝛼)†] 𝑆𝛼𝑐 }〉

. (198)

To compute observables from the quasiclassical Green’s func-
tions, one therefore generally also need to take into account
the contribution from the self-energy term. Note that since
the quasiclassical Green’s function is not gauge-invariant, the
second term in eq. (198) is required to make the observables
gauge-invariant.

For concrete examples of observables, consider the electric
charge density in material 𝛼, 𝑛𝛼𝑒 , and the spin densities in
material 𝛼, 𝒔𝛼 = (𝑠𝛼𝑥 , 𝑠𝛼𝑦 , 𝑠𝛼𝑧 ). For the electric charge density
�̃� = 𝑒𝜏𝑧/4, which can be confirmed by inserting this into
eq. (178). The denominator 4 comes from the fact that we
count each electron 4 times in eq. (178). To derive the formula
for electric charge density, we can insert this into eq. (198),
giving

𝑛𝛼𝑒 =
𝑁𝛼0 𝑒

8

∫ 𝑎

−𝑎
d𝜀 Tr

(
�̂�𝐾,𝛼𝑠

)
− 2𝑁𝛼0 𝑒𝜙

𝛼
𝑒 , (199)

where we dropped the constant and 𝜙𝛼𝑒 is the deviation in the
electrochemical potential away from 𝜇𝛼, and may therefore
vary in both time and space. In other words, 𝜙𝛼𝑒 is the real, diag-
onal part of the self-energy. Equation (199) reproduces earlier
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results for charge density in the quasiclassical regime [1, 69].
We can see that the second term in eq. (199) is necessary to re-
tain gauge invariance. Take for example a non-superconducting
stationary system in equilibrium with an electrochemical po-
tential 𝜙𝛼𝑒 . The symmetric part of the quasiclassical Keldysh
function is then �̂�𝐾,𝛼𝑠 = 2 diag(tanh[𝛽(𝜀 + 𝜙𝛼𝑒 )/2], tanh[𝛽(𝜀 +
𝜙𝛼𝑒 )/2],− tanh[𝛽(𝜀 − 𝜙𝛼𝑒 )/2],− tanh[𝛽(𝜀 − 𝜙𝛼𝑒 )/2]), where 𝛽
is inverse temperature. Taking the trace and integrating over
energies, we get

𝑁𝛼0 𝑒

8

∫ 𝑎

−𝑎
d𝜀 Tr

(
�̂�𝐾,𝛼𝑠

)
=
𝑁𝛼0 𝑒

8
16𝜙𝛼𝑒 = 2𝑁𝛼0 𝑒𝜙

𝛼
𝑒 . (200)

The electrochemical potential is gauge-dependent, so the second
term in eq. (199) is required to cancel the gauge-dependent
contribution from �̂�𝐾,𝛼𝑠 in this case.

For the spin density in direction 𝑖, �̃� = 𝜎𝑖/8. The pro-
jection of spin Pauli matrices onto the conduction band is
trivial for the 𝑧-direction since it commutes with the 𝑆𝛼 ma-
trix. That is, (𝑆𝛼𝑐 )𝑇𝜎𝑧𝑆𝛼𝑐 = 𝜎𝑧 . However, (𝑆𝛼𝑐 )𝑇𝜎𝑥/𝑦𝑆𝛼𝑐 =√︁

1 − (𝐽𝛼/𝜂𝛼)2𝜎𝑥/𝑦 , so for the directions orthogonal to the
Néel vector we get an additional factor

√︁
1 − (𝐽𝛼/𝜂𝛼)2. If

the initial Hamiltonian in material 𝛼, given by eq. (4), has a
Zeeman spin-splitting field 𝒉𝛼, this gives rise to a self-energy
term equal to Σ̂𝑅,𝛼𝑍 = 𝒉𝛼 · 𝝈𝜏𝑧 before projection onto the
conduction band. Inserting this into eq. (198), we get that the
spin densities are given by

𝑠𝛼𝑥 =

√︄
1 −

(
𝐽𝛼

𝜂𝛼

)2 𝑁𝛼0
16

∫ 𝑎

−𝑎
d𝜀 Tr

(
𝜎𝑥𝜏𝑧 �̂�

𝐾,𝛼
𝑠

)
−

[
1 −

(
𝐽𝛼

𝜂𝛼

)2
]
𝑁𝛼0 ℎ

𝛼
𝑥 , (201a)

𝑠𝛼𝑦 =

√︄
1 −

(
𝐽𝛼

𝜂𝛼

)2 𝑁𝛼0
16

∫ 𝑎

−𝑎
d𝜀 Tr

(
𝜎𝑦𝜏𝑧 �̂�

𝐾,𝛼
𝑠

)
−

[
1 −

(
𝐽𝛼

𝜂𝛼

)2
]
𝑁𝛼0 ℎ

𝛼
𝑦 , (201b)

𝑠𝛼𝑧 =
𝑁𝛼0
16

∫ 𝑎

−𝑎
d𝜀 Tr

(
𝜎𝑦𝜏𝑧 �̂�

𝐾,𝛼
𝑠

)
− 𝑁𝛼0 ℎ𝛼𝑦 , (201c)

where we again dropped the constant. The extra factor of√︁
1 − (𝐽𝛼/𝜂𝛼)2 comes from the fact itinerant electrons become

more polarized in the direction of the Néel vector as 𝐽𝛼/𝜂𝛼 in-
creases, as discussed above. This polarization comes in through
two different aspects. First, the Zeeman spin-splitting felt by
the itinerant electrons is reduced by a factor

√︁
1 − (𝐽𝛼/𝜂𝛼)2.

Second, the 𝜎𝑥 and 𝜎𝑦 components of the Green’s function do
not correspond to spin in the same sense as in a normal metal.
In the limit of very strong exchange coupling 𝐽𝛼, the itinerant
electrons become fully polarized, and 𝑠𝛼𝑥 = 𝑠𝛼𝑦 = 0.

To compute the sublattice-resolved charge densities, one can
use eq. (118) together with �̃� = 𝑒𝜏𝑧𝜌𝐴/𝐵/4, which gives

𝑛𝛼𝐴/𝐵 =
1
2
𝑛𝛼𝑒 ±

𝑒𝐽𝛼

𝜂𝛼
𝑠𝛼𝑧 . (202)

One can similarly use eq. (198) to compute energy and spin-
energy densities [70] and all associated current. Another way
to derive expressions for currents is to use the expressions for
densities together with eq. (128) to obtain conservation-laws
of the form 𝜕𝑛/𝜕𝑡 + ∇ · 𝒋 = 𝑆, where 𝑛 is the density, 𝒋
can be identified as the current and 𝑆 is a source-term. For
instance, multiplying eq. (128) with −𝑖𝑒𝑁0𝜏𝑧/8, taking the
trace, integrating over energy and adding −2𝑁0𝑒𝜕𝜙

𝛼
𝑒 /𝜕𝑡 to

both sides of the equality sign, one obtains 𝜕𝑛𝛼𝑒 /𝜕𝑡+∇· 𝒋𝛼𝑒 = 𝑆𝛼𝑒 ,
where the electric current density can be identified as

𝒋𝛼𝑒 =
𝑁𝛼0 𝑒

8

∫ 𝑎

−𝑎
d𝜀 Tr

(
𝜏𝑧 �̂�

𝐾,𝛼
)
. (203)

XV. CONCLUSION

We have derived quasiclassical equations of motion which are
valid for mesoscopic heterostructures with antiferromagnetic
order, superconductivity, impurity scattering, external electric
or magnetic fields, spin-orbit coupling, temporally or spatially
inhomogeneous Néel vector, or, in principle any other effect
that can be modeled using a quadratic Hamiltonian. These are
valid when the distance between the Fermi level and the edges
of the conduction band, Δ𝐸 𝛼, is larger than all other energy
scales except possibly the exchange energy which couples
the itinerant electrons to the localized, antiferromagnetically
ordered spins. The ratio between the exchange energy and the
chemical potential relative to the center of the two energy bands,
𝐽𝛼/𝜂𝛼, can take any value between 0 and 1. Our main results
are the quasiclassical equation in the dirty regime, which are
valid when the elastic impurity scattering rate is high compared
to other energies, except forΔ𝐸 𝛼 and possibly 𝐽𝛼, and when the
isotropic part of the quasiclassical Green’s function dominates.
The latter is true when the matrix current is small, which
happens for instance when the system varies slowly on the
scale of the mean free path, or when the proximity effect is
small. In the limit of very strong exchange coupling, such that
(𝐽𝛼/𝜂𝛼)2 → 1, the short-ranged correlations can vary on the
scale of the mean free path. However, these correlations become
vanishingly small in the diffusive limit. Therefore, one can solve
the equations by projecting the Green’s functions onto the set
of long-range components. Being based on Keldysh theory, the
equations can be used to study non-equilibrium situations, such
as externally driven currents or spin injection. Additionally,
they can also be solved to study time-dependent phenomena,
as there are ways to evaluate the circle products [9, 13–15]. In
the absence of antiferromagnetism, the equations reduce to the
Eilenberger equation [3] and Usadel equation [4] for normal
metals, as expected. However, with antiferromagnetism, there
are a few important differences. First, all self-energy terms
must be projected onto the conduction band. Second, even
nonmagnetic impurities behave magnetically because of the
coupling between spin and sublattice. Finally, this also changes
the equation for the matrix current in the dirty regime. We
discuss the physical origin and implications of these effects in
ref. [63].

We have also derived boundary conditions that are valid in
the diffusive regime. These are valid as long as the tunneling
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amplitudes are small, such that the matrix current is small
compared to the Fermi velocity. They take into account both
tunneling and reflection and allow for both compensated and
uncompensated interfaces, meaning that the coupling can be
asymmetric in sublattice. Additionally, the boundary conditions
allow for spin-active boundaries and isolating, spin-active
boundaries can be obtained by setting the tunneling matrices
to zero. In the absence of antiferromagnetism, the boundary
conditions reduce to the generalized Kupriyanov-Lukichev
boundary conditions for spin-active boundaries [58, 59].

Finally, we have derived an expression that can be used to
compute observables from the quasiclassical Green’s function.
This expression also includes the contribution from energies
which are not captured by the quasiclassical Green’s function.
As we saw in the example of charge density, the high-energy
contribution is needed to make the observables gauge-invariant.

Appendix A: Numerical solution algorithm

As an example, we illustrate how one can solve eqs. (128),
(135) and (170) in a time-independent one-dimensional sys-
tem at thermal equilibrium. The components of the Green’s
function are not independent because of the normalization
condition, so it is necessary to use a parametrization scheme.
For instance, one can use the Ricatti-parametrization [71, 72]
or the 𝜃-parametrization [73]. In order to solve eqs. (128),
(135) and (170) numerically, one must first define a set of
algebraic equations. These equations can then be solved for
the unknown parameters. For simplicity, assume we need only
solve eqs. (128), (135) and (170) in one material because the
solution is known in all neighboring materials. For this reason,
we remove the superscript 𝛼. Let there be 𝑁 discretization
points, and denote by 𝑢 𝑗𝑛 the 𝑗 th parameter at discretization
point 𝑛 ∈ {1, . . . , 𝑁}. The spherically symmetric part of the
quasiclassical Green’s function at point 𝑛 is a function of the 𝑀
parameters. Depending on the problem, the number of different
parameters needed to characterize the system will vary. At
most, 𝑀 = 8 in thermal equilibrium since it is only necessary
to compute the retarded Green’s function. Let �̌�𝑅𝑠,𝑛 be the
spherically symmetric part of the retarded Green’s function
in position 𝑥 = (𝑛 − 1)Δ𝑥, where Δ𝑥 is the distance between
discretization points. Then,

�̂�𝑅𝑠,𝑛 = �̂�
𝑅
𝑠,𝑛 (𝑢1

𝑛, 𝑢
2
𝑛, . . . , 𝑢

𝑀
𝑛 ) (A1)

is a function of only the local parameters (𝑢1
𝑛, 𝑢

2
𝑛, . . . , 𝑢

𝑀
𝑛 ).

In order to solve eqs. (128) and (135), we need not only
the Green’s function but also its spatial derivative. Let the
derivative at point 𝑛 be (𝜕𝑥 �̌�𝑅𝑠 )𝑛. This can be obtained from
the gradients of the parameters,

(𝜕𝑥 �̌�𝑅𝑠 )𝑛 =
𝑀∑︁
𝑗=1

𝜕�̂�𝑅𝑠,𝑛

𝜕𝑢
𝑗
𝑛

𝜕𝑢
𝑗
𝑛

𝜕𝑥
. (A2)

Thus, we have 2𝑀 unknown parameters at each point:
(𝑢1
𝑛, . . . , 𝑢

𝑀
𝑛 , 𝜕𝑥𝑢

1
𝑛, . . . , 𝜕𝑥𝑢

𝑀
𝑛 ). The circle products reduce

to normal matrix products in a static system, so, if 𝑗𝑅𝑛 is the
retarded matrix current at point 𝑛, we get from eq. (135) that

𝑗𝑅𝑛 = −𝐷�̂�𝑅𝑠,𝑛 (𝜕𝑥 �̂�𝑅𝑠 )𝑛 + 𝑖𝐷�̂�𝑅𝑠,𝑛 [𝐴𝑅𝑥 , �̂�𝑅𝑠,𝑛]

− �̂�𝑅𝑠,𝑛
[
𝐽2

2𝜂2𝜎𝑧𝜏𝑧 �̂�
𝑅
𝑠,𝑛𝜎𝑧𝜏𝑧 , 𝑗

𝑅
𝑛

]
. (A3)

Algorithm 1 Numerical scheme for solving eqs. (128), (135)
and (170).

Require: (𝑛𝑖 , 𝑚𝑖) for 𝑖 ∈ {1, . . . , 𝑁} are 𝑁 different intervals and
(𝑤𝑖1, . . . , 𝑤𝑖𝑚𝑖−𝑛𝑖 ) are corresponding numerical weights.

1: function R({𝑢 𝑗𝑛}, {𝜕𝑥𝑢 𝑗𝑛})
2: for 𝑖 ← 1 to 𝑁 do
3: �̂�𝑅𝑠,𝑖 ← �̂�𝑅𝑠,𝑖 (𝑢1

𝑖 , . . . , 𝑢
𝑀
𝑖 )

4: (𝜕𝑥 �̂�𝑅𝑠 )𝑖 ← (𝜕𝑥 �̂�𝑅𝑠 )𝑖 (𝑢1
𝑖 , . . . , 𝑢

𝑀
𝑖 , 𝜕𝑥𝑢

1
𝑖 , . . . , 𝜕𝑥𝑢

𝑀
𝑖 )

5: if 𝑖 = 1 or 𝑖 = 𝑁 then
6: 𝑗𝑅𝑖 ← 𝑗𝑅𝑖 (�̂�𝑅𝑠,𝑖 , (𝜕𝑥 �̂�𝑅𝑠 )𝑖) ⊲ eq. (A4)
7: else
8: 𝑗𝑅

𝑖,0 ← 0
9: 𝑗𝑅𝑖 ← 𝑗𝑅𝑖 (�̂�𝑅𝑠,𝑖 , (𝜕𝑥 �̂�𝑅𝑠 )𝑖 , 𝑗𝑅𝑖,0) ⊲ eq. (A3)

10: while | 𝑗𝑅𝑖 − 𝑗𝑅𝑖,0 | > tolerance do
11: 𝑗𝑅

𝑖,0 ← 𝑗𝑅𝑖
12: 𝑗𝑅𝑖 ← 𝑗𝑅𝑖 (�̂�𝑅𝑠,𝑖 , (𝜕𝑥 �̂�𝑅𝑠 )𝑖 , 𝑗𝑅𝑖,0) ⊲ eq. (A3)
13: end while
14: end if
15: end for
16: for 𝑖 ← 1 to 𝑁 do
17: 𝑟𝑖1 ← 𝑗𝑅𝑚𝑖

− 𝑗𝑅𝑛𝑖 +
∑ 𝑗
𝑘=1 𝑤

𝑖
𝑘
𝐹𝑛𝑖+𝑘 ⊲ eq. (A7)

18: 𝑟𝑖2 ←
{
𝑢
𝑝
𝑚𝑖
− 𝑢𝑝𝑛𝑖 −

∑ 𝑗
𝑘=1 𝑤

𝑖
𝑘
𝜕𝑥𝑢

𝑝
𝑛𝑖+𝑘

}
𝑝

19: end for
20: return {𝑟𝑖1}, {𝑟2}
21: end function
22: Solve 𝑅({𝑢 𝑗𝑛}, {𝜕𝑥𝑢 𝑗𝑛}) = 0

The boundary conditions, given by eq. (170), is in this case

𝑗𝑅1 = −
[
𝑇𝐿 �̂�

𝑅
𝑠,𝐿𝑇

†
𝐿 + 𝑖�̂�𝐿 , �̂�𝑅𝑠,1

]
, (A4a)

𝑗𝑅𝑁 =
[
𝑇𝑅 �̂�

𝑅
𝑠,𝑅𝑇

†
𝑅 + 𝑖�̂�𝑅, �̂�𝑅𝑠,𝑁

]
, (A4b)

where 𝑇𝐿 and 𝑇𝑅 are the tunneling matrices, �̂�𝐿 and �̂�𝑅 are
the reflection matrices and �̂�𝑅𝑠,𝐿 and �̂�𝑅𝑠,𝑅 are the quasiclassical
Green’s functions on the left (𝑥 = 0) and right (𝑥 = [𝑁 −
1]Δ𝑥) side, respectively. If a boundary is insulating, then the
corresponding tunneling matrix is zero. A magnetic insulator
will have nonzero magnetic components in the reflection matrix,
so that �̂� = 𝑟0 + 𝒎 · 𝝈 for some scalar 𝑟0 and some vector 𝒎.

We have 2𝑁𝑀 unknown parameters, so we need 2𝑁𝑀
algebraic equations. These can be obtained by integrating
eq. (128) in space. Equation (128) can in this case be written

𝜕 𝑗𝑅

𝜕𝑥
+ 𝐹 = 0, (A5)
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where

𝐹 = −𝑖
[
𝜏𝑧𝜀 − �̂�𝑅𝑠 +

𝑖𝐽2

2𝜏imp𝜂2𝜎𝑧𝜏𝑧 �̂�
𝑅
𝑠 𝜎𝑧𝜏𝑧 , �̂�

𝑅
𝑠

]
− 𝑖 [ �̂�𝑅𝑥 , 𝑗𝑅] .

(A6)
To obtain algebraic equations, we can integrate eq. (A5) between
two discretization points and use a numerical integration scheme
to approximate the integral of 𝐹. Integrating between (𝑖−1)Δ𝑥
and (𝑖 + 𝑗 − 1)Δ𝑥, we get

𝑗𝑅𝑖+ 𝑗 − 𝑗𝑅𝑖 +
𝑗∑︁
𝑘=1

𝑤𝑘𝐹𝑖+𝑘 = 0, (A7)

where (𝑤1, . . . , 𝑤 𝑗 ) is the set of weights defined by the nu-
merical integration scheme and 𝐹𝑛 is eq. (A6) evaluated with
�̂�𝑅𝑠 = �̂�𝑅𝑠,𝑛 and 𝑗𝑅𝑠 = 𝑗𝑅𝑠,𝑛. Equation (A7) is a matrix-valued
equation from which one can take 𝑀 independent scalar equa-
tions. For instance, in the most general case with 𝑀 = 8, one
can take the upper right and lower left 2 × 2 blocks of eq. (A7).
Another 𝑀 algebraic equations can be found from the same
interval by integrating 𝜕𝑥𝑢𝑝 for 𝑝 ∈ 1, . . . , 𝑀 ,

𝑢𝑝𝑖+ 𝑗 − 𝑢𝑝𝑖 −
𝑗∑︁
𝑘=1

𝑤𝑘𝜕𝑥𝑢
𝑝
𝑖+𝑘 = 0. (A8)

To obtain 2𝑁𝑀 algebraic equations, one can choose 𝑁

different subintervals, each of which defines 2𝑀 algebraic
equations through eqs. (A7) and (A8). These can be solved
using Newton’s method, and one can use for instance forward-
mode automatic differentiation or finite differences to determine
the Jacobian. The algorithm for solving eqs. (128), (135)
and (170) for arbitrary values of 𝐽/𝜂 in one dimension is
summarized in algorithm 1. Having found the retarded Green’s
function, one can determine the advanced and Keldysh Green’s
functions, and thereby compute observables, through

�̂�𝐴𝑠 = −𝜏𝑧 (�̂�𝑅𝑠 )†𝜏𝑧 , (A9a)
�̂�𝐾𝑠 = (�̂�𝑅𝑠 − �̂�𝐴𝑠 ) tanh(𝛽𝜀/2), (A9b)

where 𝛽 is inverse temperature. Equation (A9a) follows from the
definition of the advanced and retarded Green’s function while
eq. (A9b) follows from the fluctuation-dissipation theorem.
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