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A class of antiferromagnets with spin-polarized electron bands, yet zero net magnetization, called altermagnets
is attracting increasing attention due to their potential use in spintronics. Here, we study spin injection into
an altermagnet via spin pumping from a ferromagnetic insulator. We find that the spin pumping behaves
qualitatively different depending on how the altermagnet is crystallographically oriented relative the interface to
the ferromagnetic insulator. The altermagnetic state can enhance or suppress spin pumping, which we explain in
terms of spin-split altermagnetic band structure and the spin-flip probability for the incident modes. Including the
effect of interfacial Rashba spin-orbit coupling, we find that the spin-pumping effect is in general magnified, but
that it can display a non-monotonic behavior as a function of the spin-orbit coupling strength. We show that
there exists an optimal value of the spin-orbit coupling strength which causes an order of magnitude increase in
the pumped spin current, even for the crystallographic orientation of the altermagnet which suppresses the spin
pumping.

Introduction. – Spin pumping is a mechanism for generating
spin currents in which the precessing magnetization in a mag-
netic material transfers angular momentum into its adjacent
nonmagnetic layers [1–5]. Compared with metals, magnetic
insulators can function as efficient spin-current sources with
low dissipation and reduced energy loss [4], in which the ferro-
magnetic insulator (FI) YIG demonstrates the lowest known
spin dissipation with an exceptionally low Gilbert damping
[6, 7]. In conventional FI/normal metal (NM) heterostructures,
the injected spin current affects the magnetization dynamics
in the FI and creates a spin accumulation in the NM, resulting
in a measurable damping increase in the linewidth of a ferro-
magnetic resonance (FMR) signal, which has been extensively
investigated [3, 8–10]. When the NM is replaced by another
material such as a superconductor, the spin pumping effect
is considerably modulated by various superconducting gap
properties and interfacial effects [11–18].

Recently, a new magnetic phase dubbed altermagnetism [19–
22] has attracted increasing attention. Such materials exhibit a
large momentum-dependent spin-splitting and vanishing net
macroscopic magnetization at the same time, thus combining
features from conventional ferromagnets and antiferromagnets
[23–26]. The spin splitting in the altermagnet (AM), which is of
a strong non relativistic origin, is protected by the broken sym-
metries of the spin arrangements on the crystal, distinct from
ferromagnetic and relativistically spin-orbit coupled (SOC)
systems [23, 24, 27]. It is predicted that AM can span a large
range of materials, from insulators like FeF2 and MnF2, semi-
conductors like MnTe, metals like RuO2, to superconductors
like La2CuO4 [23, 28–30]. These novel properties make AM
a fascinating material platform to investigate superconducting
[25, 31–35] and spintronics phenomena [36–40].

In this work, we theoretically determine spin pumping from a
FI into a metallic AM in a FI/AM bilayer (see Fig. 1). To cover
different crystallographic orientations of the interface relative
to the spin-polarized lobes of the altermagnetic Fermi surface,
two representative metallic AMs, as shown in Figs. 1(a) and
1(b), are studied in detail. In addition to the non relativistic
interfacial effect induced by the AM, a relativistic Rashba SOC
is included at the FI/AM interface in our model. We find that
the spin pumping current can be enhanced or suppressed by

FIG. 1. (Color online) Spin pumping is considered in a bilayer
consisting of a ferromagnetic insulator (FI) and an altermagnet (AM).
The magnetization 𝑴 (𝑡) in the FI is precessing around the 𝑧 axis
at the FMR frenquency Ω. Different interface orientations are also
considered, effectively rotating the spin-resolved Fermi surface in
the AM for 𝑒 ↑ (red ellipse) and 𝑒 ↓ (blue ellipse) spin carriers. For
notation simplicity, the two AM orientations are referred as AM1 and
AM2, respectively.

altermagnetism, depending on the interface orientation, thus
offering versatility. This is explained in terms of the spin-split
altermagnetic band structure and the spin-flip probability for
the incident modes toward the interface. In addition, the spin
pumping current shows a non-monotonic behavior as a function
of the interfacial SOC strength. We show that the interfacial
SOC can, in a certain range, increase the spin pumping current
in a FI/AM bilayer by more than an order of magnitude.

Theory. – The effective low-energy Hamiltonian for the
AM shown in Fig. 1(a), using an electron field operator basis
𝜓 = [𝜓↑, 𝜓↓]𝑇 , is given by

𝐻AM = −ℏ2▽2

2𝑚𝑒

− 𝜇 + 𝛼𝜎𝑧𝑘𝑥𝑘𝑦 , (1)

in which 𝛼 is the parameter characterizes the altermag-
netism strength, 𝜎𝑧 denotes the Pauli matrix, 𝑚𝑒 is the
electron mass and 𝜇 is the chemical potential. By
solving the stationary Schrödinger equation as an eigen-
value problem (see SM for details), the 𝑥-components of
the wave vectors in the AM with energy 𝐸 are given

ar
X

iv
:2

30
8.

12
33

5v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
3 

A
ug

 2
02

3



2

by 𝑘𝑒↑(↓) ,± = ±ℏ−1
√︃

2𝑚𝑒 (𝜇 + 𝐸) − ℏ2𝑘2
𝑦 + 𝛼2𝑚2

𝑒𝑘
2
𝑦/ℏ2 ∓′

𝛼𝑚𝑒𝑘𝑦/ℏ2, in which the ± sign denotes the propagation di-
rection along the ±𝑥, 𝑒 ↑ (↓) describes electron with spin up
(down), and ∓′

= −(+) for ↑ (↓). Here we assume translational
invariance in the 𝑦-direction with belonging momentum 𝑘𝑦 of
the incident particle.

On the other hand, the Hamiltonian for the FI has the form

𝐻FI = −ℏ2▽2

2𝑚𝑒

+𝑈 + 𝐽�̂� · 𝑴 (𝑡), (2)

in which �̂� denotes the Pauli matrix vector and 𝐽 is the ex-
change interaction. Here the potential 𝑈 is larger than 𝜇

in the nearby AM to ensure the ferromagnet to be insulat-
ing. The normalized magnetization is defined as 𝑴 (𝑡) =

(𝑚 cosΩ𝑡, 𝑚 sinΩ𝑡,
√

1 − 𝑚2), where 𝑚 ∈ [0, 1] is the mag-
netization oscillation amplitude and Ω denotes the FMR fre-
quency for spin pumping. By employing a wavefunction with
the structure (𝑒− 𝑖Ω𝑡

2 , 𝑒
𝑖Ω𝑡

2 )𝑇 for its additional time-dependence,
the non-stationary Schrödinger equation can be solved as an
eigenvalue problem (see SM for details). The two eigen-
pairs are obtained as: 𝐸1 = 𝐸+ with (𝑎+, 𝑏+)𝑇 and 𝐸2 = 𝐸−

with (𝑎− , 𝑏−)𝑇 , in which 𝐸± = 𝑈 + ℏ2 (𝑘2
𝑥+𝑘2

𝑦 )
2𝑚𝑒

± 𝐽𝑅 with
𝑅 = (1 − 2𝛽

√
1 − 𝑚2 + 𝛽2)1/2 and 𝛽 = ℏΩ/2𝐽.

To study the spin pumping effect, we first consider an 𝑒 ↑
incident electron with excitation energy 𝐸 from the AM side
based on the FI/AM bilayer. The wavefunctions are given by

ΨAM,𝑒↑ =

[(
1
0

)
𝑒𝑖𝑘𝑒↑,− 𝑥 + 𝑟

(
1
0

)
𝑒𝑖𝑘𝑒↑,+𝑥

]
𝑒−

𝑖𝐸𝑡
ℏ

+ 𝑟 ′
(
0
1

)
𝑒
𝑖𝑘

′
𝑒↓,+𝑥𝑒−

𝑖𝐸
′
𝑡

ℏ , (3)

ΨFI,𝑒↑ = 𝑡

(
𝑎+𝑒

−𝑖Ω𝑡
2

𝑏+𝑒
𝑖Ω𝑡

2

)
𝑒−𝑖𝑘F1,𝑒↑𝑥𝑒

−𝑖𝐸1𝑡
ℏ

+ 𝑝
(
𝑎−𝑒

−𝑖Ω𝑡
2

𝑏−𝑒
𝑖Ω𝑡

2

)
𝑒−𝑖𝑘F2,𝑒↑𝑥𝑒

−𝑖𝐸2𝑡
ℏ , (4)

in which 𝑟 and 𝑟 ′ are coefficients describing reflection with-
out and with spin-flip in the AM, respectively, and 𝑡 and
𝑝 are transmission coefficients in the FI. To differentiate
it from the incident energy 𝐸 , the energy after the spin-
flip in the AM due to spin pumping is denoted as 𝐸 ′ . By
matching the time-dependence of the wavefunction compo-
nents on the AM and FI sides, we obtain 𝐸

′
= 𝐸 − ℏΩ

and 𝐸1 = 𝐸2 = 𝐸 − ℏΩ
2 . In terms of 𝐸 , the correspond-

ing 𝑥-component of the two wave vectors in the FI are ex-
pressed as 𝑘F1,𝑒↑ = ℏ−1

√︃
2𝑚𝑒 [𝐸 −𝑈 − 𝐽 (𝑅 + 𝛽)] − ℏ2𝑘2

𝑦 and

𝑘F2,𝑒↑ = ℏ−1
√︃

2𝑚𝑒 [𝐸 −𝑈 + 𝐽 (𝑅 − 𝛽)] − ℏ2𝑘2
𝑦 . Note that the

wave numbers in the FI possess imaginary values due to a
large potential 𝑈, ensuring evanescent electron states in the
FI. Details of the wave functions induced by an 𝑒 ↓ incident
partice with excitation energy 𝐸 from the AM can be found in
the SM, in which we have 𝐸 ′

= 𝐸 + ℏΩ.

Appropriate boundary conditions are required to solve the
reflection and transmissions coefficients in the wavefunctions.
Here we consider a Rashba spin-orbit coupled interface with
the Hamiltonian

𝐻𝐼 = [𝑈0+
𝑈SO
𝑘𝐹

�̂� · (�̂�×𝒌)]𝛿(𝑥) = [𝑈0−
𝑈SO
𝑘𝐹

𝑘𝑦𝜎𝑧]𝛿(𝑥), (5)

in which𝑈0 is the interfacial energy barrier,𝑈SO describes the
Rashba SOC, 𝑘𝐹 =

√︁
2𝑚𝑒𝜇/ℏ is the Fermi wave vector and �̂�

denotes the interface normal. On the other hand, to derive the
boundary condition, antisymmetrization of the altermagnetic
term 𝛼𝑘𝑥𝑘𝑦𝜎𝑧 → 𝛼𝑘𝑦

2 {𝑘𝑥 ,Θ(𝑥)}𝜎𝑧 is necessary to ensure
hermiticity of the Hamilton-operator, where Θ(𝑥) is the step
function and 𝑘𝑥 = −i𝜕𝑥 . Combing all related Hamiltonian
contributions in the FI/AM system, we obtain ΨAM,𝑒↑

��
𝑥=0 =

ΨFI,𝑒↑
��
𝑥=0 = ( 𝑓 , 𝑔)𝑇 and

𝜕𝑥ΨAM,𝑒↑
��
𝑥=0 − 𝜕𝑥ΨFI,𝑒↑

��
𝑥=0 =

(
𝑘𝛼,+1 𝑓
𝑘𝛼,−1𝑔

)
, (6)

where 𝑘𝛼,𝜎 =
2𝑚𝑒

ℏ2 [𝑈0 − ( i𝛼
2 + 𝑈SO

𝑘𝐹
)𝑘𝑦𝜎] with 𝜎 = +1(−1).

Here the imaginary number i appears in 𝑘𝛼,𝜎 since we consider
𝑘𝑦 invariance (unlike 𝑘𝑥 = −i𝜕𝑥). Note that the boundary
conditions for 𝑒 ↓ incident from the AM side have the same
forms as 𝑒 ↑ with different explicit expressions of 𝑓 and 𝑔 in
the wave functions.

The longitudinal quantum mechanical spin current polarized
along the 𝑧 axis in the AM is given by

𝑗𝑠𝑧,𝑒↑(↓) =
ℏ2

2𝑚𝑒

(ℑm{ 𝑓 ∗∇ 𝑓 }−ℑm{𝑔∗∇𝑔})+
𝛼𝑘𝑦

2
( | 𝑓 |2+|𝑔 |2).

(7)
Integrating over all energies and all possible transverse modes
via

∫
𝑑𝑘𝑥 =

∫
𝑑𝐸 (𝑑𝑘𝑥/𝑑𝐸) and

∫
𝑑𝑘𝑦 , the spin pumping

current is calculated as

𝐼𝑠,𝑒↑(↓) =

∫
𝑑𝑘𝑦

∫
𝑑𝐸

𝑑𝑘𝑥

𝑑𝐸
𝑗𝑠𝑧,𝑒↑(↓) 𝑓0 (𝐸), (8)

in which 𝑓0 (𝐸) denotes the Fermi-Dirac distribution. Note
that 𝑑𝑘𝑥/𝑑𝐸 plays the role of 1D DOS in the AM instead of
2D DOS since here

∫
𝑑𝑘𝑦 is included separately. Including

contributions from both 𝑒 ↑ and 𝑒 ↓ incidents, the total spin
pumping current is 𝐼𝑠 = 𝐼𝑠,𝑒↑ + 𝐼𝑠,𝑒↓. In general, a backflow
spin current exists due to a spin accumulation that is built up
in the material connected to the precessessing FI [1], which
diminishes the magnitude of the total spin current flowing across
the interface. The backflow spin current can safely be neglected
in the present case of a ballistic large AM reservoir. To show
how the crystallographic orientation of the interface between
the materials affects the spin pumping, the AM corresponding
to a 45 degree rotation of the interface, as shown in Fig. 1(b), is
modeled by replacing 𝛼𝑘𝑥𝑘𝑦 → 𝛼(𝑘2

𝑥 − 𝑘2
𝑦)/2 in 𝐻AM. This

leads to different expressions for the wavevectors, boundary
conditions and quantum mechanical spin pumping current (see
SM for details). Our model can also be expanded to a AM with
arbitrary rotation by combination of the established 0 and 45
degree cases, i.e., using 𝛼1𝑘𝑥𝑘𝑦𝜎𝑧 +𝛼2 (𝑘2

𝑥 − 𝑘2
𝑦)𝜎𝑧/2 in 𝐻AM

with the arbitrary angle determined by 𝜃𝛼 = 1
2 arctan(𝛼1/𝛼2).
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Results: Altermagnetism dependence. – For notation sim-
plicity, we refer the altermagnetic Fermi surface structures
shown in Figs. 1(a) and 1(b) as AM1 and AM2, respectively,
corresponding to different interface orientations by effectively
rotating 45 degree of the spin-resolved Fermi-surfaces. To
ensure each spin-polarized lobe of the altermagnetic Fermi
surface described by 𝐻AM defines a closed integral path or
ellipse rather than a hyperbola, 𝛼 < ℏ2/𝑚𝑒 ≡ 𝛼𝑐 should be
satisfied (see SM for details). The semi-major (minor) axis 𝑎
(𝑏) of the ellipse can be obtained as

𝑎 =

√︄
2𝑚𝑒 (𝜇 + 𝐸)
ℏ2 − 𝑚𝑒𝛼

, 𝑏 =

√︄
2𝑚𝑒 (𝜇 + 𝐸)
ℏ2 + 𝑚𝑒𝛼

, (9)

based on which 𝑎 (𝑏) increases (decreases) with 𝛼.
In the absence of Rashba SOC, the dimensionless param-

eter 𝑍 =
𝑚𝑒𝑈0
ℏ2𝑘𝐹

characterizes the quality of electric contact
between the FI and AM. To model high-transparent to tun-
neling interfaces, we investigate the spin pumping current 𝐼𝑠
with 𝑍 = 0, 1, 3 in Fig. 2. As is reasonable, 𝐼𝑠 decreases as 𝑍
increases. More importantly, we find that 𝐼𝑠 increases with 𝛼 in
FI/AM1 [Fig. 2(a)] while it decreases with 𝛼 in FI/AM2 [Fig.
2(b)], indicating the crucial role of the interface orientation in
FI/AM for spin pumping.

To understand the altermagnetism dependence behavior,
it is instructional to consider the altermagnetic Fermi sur-
faces and energy bands. For simplicity, let us focus on par-
ticles close to normal incidence, 𝑘𝑦 → 0, which contribute
the most to the transport across the junction. In AM1, the
wavevectors of the 𝑒 ↑ and 𝑒 ↓ incident particles are the
same, i.e., 𝑘𝑒↑(↓) ,± = ±ℏ−1

√︁
2𝑚𝑒 (𝜇 + 𝐸), just like the NM

case. This analogy also applies when integrating over all
possible 𝑘𝑦 values, i.e., the total spin polarization of the in-
cident particles cancels since spin-↓ is the majority carrier
for 𝑘𝑦 > 0 and spin-↑ is the majority carrier for 𝑘𝑦 < 0 and
the two spin bands contribute equally. On the other hand,
in AM2, the wavevectors can be strongly mismatched even
for 𝑘𝑦 → 0, i.e., 𝑘𝑒↑,± = ±ℏ−1

√︁
2𝑚𝑒 (𝜇 + 𝐸)/(ℏ2 + 𝑚𝑒𝛼) and

𝑘𝑒↓,± = ±ℏ−1
√︁

2𝑚𝑒 (𝜇 + 𝐸)/(ℏ2 − 𝑚𝑒𝛼). This is similar to
the ferromagnetic metal (FM) case, in which a large mis-
match between these wavevectors is induced by a (momentum-
independent) spin-splitting or exchange energy 𝐽ex by consider-
ing the Hamiltonian 𝐻FM = − ℏ2▽2

2𝑚𝑒
− 𝜇 + 𝐽ex𝜎𝑧 . Therefore, it is

useful to compare the spin pumping current based on FI/NM
and FI/FM, as shown in Figs. 2(c) and 2(d), respectively.

The total spin current is determined by the spin-flip proba-
bility between 𝑒 ↑ and 𝑒 ↓ states induced by spin pumping, and
also the number of available 𝑘𝑦 modes for spin-flip. Let us first
consider the altermagnetism dependence of the number of 𝑘𝑦
modes. As discussed before, 𝑎 (𝑏) increases (decreases) with 𝛼.
In AM1, the allowed number of 𝑘𝑦 mode or |𝑘𝑦 | maximum for
both 𝑒 ↑ and 𝑒 ↓ bands increases with 𝛼 as the semi-major axis
𝑎 increases, giving rise to more available transverse 𝑘𝑦 modes
in which the the spin-flip between 𝑒 ↑ and 𝑒 ↓ can be realized.
Note that the asymmetry between incident spin 𝑒 ↑ and 𝑒 ↓
is broken by the spin pumping FMR frequecy Ω. Therefore,
the total spin current 𝐼𝑠, which includes contributions from
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FIG. 2. (Color online) Normalized spin pumping current 𝐼𝑠/𝐼𝑠0 as
a function of altermganetism for FI/AM1 and FI/AM2 in (a) and
(b), respectively. (c) 𝐼𝑠/𝐼𝑠0 as a function of chemical potential 𝜇 for
FI/NM. (d) 𝐼𝑠/𝐼𝑠0 as a function of exchange energy 𝐽ex for FI/FM. In
the absence of Rashba SOC, different interfacial barriers 𝑍 = 0, 1, 3
are considered. Here 𝑚 = 0.2 and ℏΩ = 0.5 meV are utilized. 𝐼𝑠0
corresponds to the spin pumping current for FI/NM with 𝜇/𝜇0 = 1.

both 𝑒 ↑ and 𝑒 ↓ incidents, is enhanced when integrating over
𝑘𝑦 . This is consistent with the trends shown in Fig. 2(a).
Similarly, the allowed 𝑘𝑦 range for spin-flip can be increased
by increasing 𝜇 in the NM, giving rise to an enhanced 𝐼𝑠 with
a high-transparent 𝑍 = 0 interface [see blue curve in Fig. 2(c)].
However, it can be seen that the trends change for large 𝑍 ,
indicating a difference between increasing 𝛼 and 𝜇, although
in both cases the number of 𝑘𝑦 states that carry spin current
increases. This can be explained by considering the spin-flip
probability for each 𝑘𝑦 mode, which we will get back to.

On the other hand, in AM2, the allowed 𝑘𝑦 modes increase
with increasing 𝛼 and semi-major axis 𝑎 for the 𝑒 ↑ band while
they decrease with increasing 𝛼 and decreasing semi-minor
axis 𝑏 for the 𝑒 ↓ band. This results in an enhanced mismatch
between the spin-bands at a given value of 𝑘𝑦 , and therefore
less transverse modes available to realize spin-flip between the
two bands. This corresponds to the trend that 𝐼𝑠 is suppressed
with 𝛼, as shown in Fig. 2(b). The same mechanism applies
for FM in Fig. 2(d), in which the mismatch between available
𝑘𝑦 modes for 𝑒 ↑ and 𝑒 ↓ bands is enhanced with increasing
𝐽ex, confirming the similarity between AM2 and FM.

Next, we turn to the spin-flip probability at a fixed 𝑘𝑦 , in
particular small |𝑘𝑦 | close to normal incidence which contribute
the most. As calculated in detail in the SM (see Fig. 4), it is
found that the spin-flip probability increases (decreases) with
altermagnetism for FI/AM1(AM2) , which corresponds to the
trends shown in Fig. 2. The spin-flip probability behavior can
be understood by considering the magnitude of momentum
transfer (along 𝑥), e.g., when a (spin-flip) reflection requires a
large momentum transfer, its probability is diminished [41, 42].
In AM1 (AM2), the magnitude of the momentum transfer [e.g.,
between 𝑘𝑒↑,− and 𝑘

′

𝑒↓,+ in Eq. (3)] at fixed 𝑘𝑦 decreases
(increases) with altermagnetism. Similarly, in FI/NM, the
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FIG. 3. (Color online) Normalized spin pumping current 𝐼𝑠/𝐼𝑠0
as a function of Rashba 𝑍SOC for FI/AM1 and FI/AM2 in (a) and
(b), respectively, in which 𝛼/𝛼𝑐 = 0.6. (c) 𝐼𝑠/𝐼𝑠0 as a function of
𝑍SOC for FI/NM. (d) 𝐼𝑠/𝐼𝑠0 as a function of 𝑍SOC for FI/FM with
𝐽ex/𝜇0 = 0.6. Different interfacial barriers 𝑍 = 0, 1, 3 are considered.
Here 𝑚 = 0.2 and ℏΩ = 0.5 meV are utilized. 𝐼𝑠0 corresponds to the
spin pumping current for FI/NM with 𝜇/𝜇0 = 1 in the absence of
Rashba SOC, the same as 𝐼𝑠0 used in Fig. 2.

magnitude of momentum transfer for spin-flip increases as 𝜇,
which suppresses the spin-flip probability. This compensates
the fact that more 𝑘𝑦 modes are available when 𝜇 increases, as
discussed before, giving a total suppression of spin current for
large 𝑍 in Fig. 2(c).

Results: Spin-orbit dependence. – Similar to the barrier
𝑍 =

𝑚𝑒𝑈0
ℏ2𝑘𝐹

, the interfacial Rashba SOC can be characterized
by introducing the dimensionless parameter 𝑍SOC =

𝑚𝑒𝑈SO
ℏ2𝑘𝐹

,
based on which 𝑘𝛼,𝜎 in Eq. (6) can be written as 𝑘𝛼,𝜎 =

2𝑍𝑘𝐹 − 2𝑍SOC𝑘𝑦𝜎 − i 𝛼𝑚𝑒𝑘𝑦

ℏ2 𝜎 with 𝜎 = +1(−1). In Fig. 3,
the spin pumping current is plotted as a function of 𝑍SOC for
different bilayers with gradually increasing interface barrier
𝑍 = 0, 1, 3. A non-monotonic behavior with a maximum whose
position can be shifted with 𝑍 is achieved in all setups. This
is related to the effective spin-dependent barrier induced by

SOC in the form of 𝑘𝑦𝜎 in 𝑘𝛼,𝜎 . When 𝑍SOC is present and
𝑍 is fixed, there exists an optimal value of 𝑍SOC where the
barrier is strongly reduced for many angles of incidence (i.e.,
𝑘𝑦 modes) of a given spin type due to the 𝑘𝑦𝜎 dependence
in the boundary condition, resulting in enhanced spin-flip and
spin current. When 𝑍SOC continues to increase, the total barrier
then increases again which causes less spin-flip and reduces
the spin current. Note that the Fermi-level mismatch between
the two layers also results in normal reflection and acts as an
effective barrier even when 𝑍 = 0 [43], which can thus be
compensated by 𝑍SOC to achieve the optimal spin current via
the argument above.

In the absence of 𝑍SOC, it is shown in Fig. 2 that FI/AM1
produces a larger spin pumping current compared with FI/AM2,
indicating that AM1 is the spin pumping-enhanced-orientation.
However, this changes when 𝑍SOC is present. FI/AM2 with the
spin pumping-suppressed-orientation can in that case generate
a much larger spin current compared with FI/AM1 when 𝑍SOC
is tuned to its optimal value, as shown in Fig. 3(b). Similar
behavior can be observed in FI/FM [Fig. 3(d)] but with a smaller
spin pumping current maximum compared with FI/AM2. The
suppression of spin current due to interfacial Rashba interaction
via spin memory loss and spin current absorption has been
studied previously [27] within a perturbative framework.

Concluding remarks. – We investigate spin pumping from
a FI to an AM by considering two representative AMs with 0
and 45-degree rotation relative to the interface. We find the
spin pumping current can be both enhanced and suppressed
by altermagnetism depending on the interface orientation. In
addition, the inclusion of interfacial Rashba SOC strongly
affects the spin pumping current by changing the preferred
interface orientation for altermagnetism when the SOC strength
is optimized, indicating the crucial role of the interfacial
properties for spin pumping in altermagnets.
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The effective low-energy Hamiltonian for the AM1, as shown in Fig. 1(a) in the main text, using an electron field operator basis
𝜓 = [𝜓↑, 𝜓↓]𝑇 , is given by

𝐻AM = −ℏ2▽2

2𝑚𝑒

− 𝜇 + 𝛼𝜎𝑧𝑘𝑥𝑘𝑦 , (A1)

in which 𝛼 is the parameter characterizes the altermagnetism strength, 𝜎𝑧 denotes the Pauli matrix, 𝑚𝑒 is the electron mass and 𝜇
is the chemical potential. The two eigenpairs are obtained as: 𝐸1 = 𝐸+ with (1, 0)𝑇 for 𝑒 ↑ (electron with spin-up) and 𝐸2 = 𝐸−
with (0, 1)𝑇 for 𝑒 ↓ (electron with spin-down). The eigenenergies are described by

𝐸± =
ℏ2 (𝑘2

𝑥 + 𝑘2
𝑦)

2𝑚𝑒

− 𝜇 ± 𝛼𝑘𝑥𝑘𝑦 . (A2)

Applying 𝐸1 = 𝐸2 = 𝐸 , the 𝑥-components of the wave vectors in the AM are given by

𝑘𝑒↑,± = ±1
ℏ

√︄
2𝑚𝑒 (𝜇 + 𝐸) − ℏ2𝑘2

𝑦 +
𝛼2𝑚2

𝑒𝑘
2
𝑦

ℏ2 −
𝛼𝑚𝑒𝑘𝑦

ℏ2 , (A3)

𝑘𝑒↓,± = ±1
ℏ

√︄
2𝑚𝑒 (𝜇 + 𝐸) − ℏ2𝑘2

𝑦 +
𝛼2𝑚2

𝑒𝑘
2
𝑦

ℏ2 +
𝛼𝑚𝑒𝑘𝑦

ℏ2 , (A4)
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in which the ± sign in the subscript denotes the propagation direction along the ±𝑥. Here we assume translational invariance in the
𝑦-direction with belonging conserved momentum 𝑘𝑦 . The momentum 𝑘𝑦 of the incident particle appearing in Eqs. (A3,A4) is
determined by the Fermi surface of the incident particle, which is described as follows.

Consider an 𝑒 ↑ particle in the AM. We then have 𝐸 = 𝐸+ =
ℏ2 (𝑘2

𝑥+𝑘2
𝑦 )

2𝑚𝑒
− 𝜇 + 𝛼𝑘𝑥𝑘𝑦 in Eq. (A2), which defines an elliptical

Fermi surface in the 𝒌-space when 𝛼 < ℏ2/𝑚𝑒 ≡ 𝛼𝑐. On the other hand, Eq. (A2) corresponds to a hyperbola when 𝛼 > 𝛼𝑐, which
can not define a closed integral path. Therefore, we confine 𝛼 < 𝛼𝑐 in this work. The general equation of the ellipse is given by

ℏ2𝑘2
𝑥

2𝑚𝑒

+ 𝛼𝑘𝑥𝑘𝑦 +
ℏ2𝑘2

𝑦

2𝑚𝑒

− (𝜇 + 𝐸) = 0, (A5)

from which the semi-major (minor) axis can be obtained as

𝑎1 =

√︄
2𝑚𝑒 (𝜇 + 𝐸)
ℏ2 − 𝑚𝑒𝛼

, 𝑏1 =

√︄
2𝑚𝑒 (𝜇 + 𝐸)
ℏ2 + 𝑚𝑒𝛼

. (A6)

Consequently, the wave vectors on the Fermi surface of 𝑒 ↑ in the AM are described by

𝑘𝑦,𝑒↑ = 𝑟1 sin 𝜃, 𝑘𝑥,𝑒↑ = 𝑟1 cos 𝜃, 𝑟1 =
𝑎1𝑏1√︃

𝑏2
1 cos2 (𝜃 + 𝜋/4) + 𝑎2

1 sin2 (𝜃 + 𝜋/4)
, (A7)

in which 𝜃 is the incident angle in the AM with respect to the 𝑥-axis.
Similarly, we can obtain the wave vectors on the Fermi surface of 𝑒 ↓ particle in the AM, i.e.,

𝑘𝑦,𝑒↓ = 𝑟2 sin 𝜃, 𝑘𝑥,𝑒↓ = 𝑟2 cos 𝜃,

𝑟2 =
𝑎2𝑏2√︃

𝑏2
2 cos2 (𝜃 − 𝜋/4) + 𝑎2

2 sin2 (𝜃 − 𝜋/4)
, 𝑎2 =

√︄
2𝑚𝑒 (𝜇 + 𝐸)
ℏ2 − 𝑚𝑒𝛼

, 𝑏2 =

√︄
2𝑚𝑒 (𝜇 + 𝐸)
ℏ2 + 𝑚𝑒𝛼

. (A8)

Consider the 𝑒 ↑ incident from the AM side based on the FI/AM bilayer, we have

ΨAM,𝑒↑ =

[(
1
0

)
𝑒𝑖𝑘𝑒↑,− 𝑥 + 𝑟

(
1
0

)
𝑒𝑖𝑘𝑒↑,+𝑥

]
𝑒−

𝑖𝐸𝑡
ℏ + 𝑟 ′

(
0
1

)
𝑒
𝑖𝑘

′
𝑒↓,+𝑥𝑒−

𝑖𝐸
′
𝑡

ℏ , (A9)

in which we use 𝑘𝑦 = 𝑘𝑦,𝑒↑ given in Eq. (A7). 𝑟 and 𝑟 ′ are coefficients describing reflection without and with spin-flip, respectively.
These coefficients can be determined by applying appropriate boundary conditions, which we will get back to. To differentiate it
from the incident energy 𝐸 , the energy after the spin-flip is denoted as 𝐸 ′ . Similarly, 𝑘 ′

𝑒↑,± and 𝑘 ′

𝑒↓,± have the same forms as
shown in Eqs. (A3,A4) with respect to 𝐸 ′ .

Consider the 𝑒 ↓ incident from the AM side based on the FI/AM bilayer, we have

ΨAM,𝑒↓ =

[(
0
1

)
𝑒𝑖𝑘𝑒↓,− 𝑥 + 𝑟

(
0
1

)
𝑒𝑖𝑘𝑒↓,+𝑥

]
𝑒−

𝑖𝐸𝑡
ℏ + 𝑟 ′

(
1
0

)
𝑒
𝑖𝑘

′
𝑒↑,+𝑥𝑒−

𝑖𝐸
′
𝑡

ℏ , (A10)

in which we use 𝑘𝑦 = 𝑘𝑦,𝑒↓ given in Eq. (A8).

Appendix B: Expressions in the FI

In the FI, the Hamiltonian for electron-like quasiparticles has the form

𝐻FI = −ℏ2▽2

2𝑚𝑒

+𝑈 + 𝐽�̂� · 𝑴 (𝑡), (B1)

in which �̂� denotes the Pauli matrix vector. The potential𝑈 is larger than the chemical potential 𝜇 in the nearby AM. 𝐽 decribes
the exchange interaction in the ferromagnet between the localized spin magnetization and the itinerant electrons. The normalized
magnetization is defined as

𝑴 (𝑡) = (𝑚 cosΩ𝑡, 𝑚 sinΩ𝑡,
√︁

1 − 𝑚2), (B2)
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where 𝑚 ∈ [0, 1] is the magnetization oscillation amplitude and Ω denotes the FMR frequency for spin pumping. By employing
a wavefunction with the structure 𝑒− 𝑖𝐸𝑡

ℏ (𝑒− 𝑖Ω𝑡
2 , 𝑒

𝑖Ω𝑡
2 )𝑇 for its time-dependence, the non-stationary Schrödinger equation can be

solved as an eigenvalue problem. The two eigenpairs are obtained as: 𝐸1 = 𝐸+ with (𝑎+, 𝑏+)𝑇 and 𝐸2 = 𝐸− with (𝑎− , 𝑏−)𝑇 . In
terms of the adiabaticity parameter 𝛽 = ℏΩ

2𝐽 , the eigenenergies are given by

𝐸± = 𝑈 +
ℏ2 (𝑘2

𝑥 + 𝑘2
𝑦)

2𝑚𝑒

± 𝐽
√︃

1 − 2𝛽
√︁

1 − 𝑚2 + 𝛽2. (B3)

The corresponding eigenstates are described by the coefficients

𝑎± =
𝜂±√︁
𝜂2
± + 1

, 𝑏± =
1√︁
𝜂2
± + 1

, (B4)

𝜂± =

√
1 − 𝑚2 − 𝛽 ±

√︃
1 − 2𝛽

√
1 − 𝑚2 + 𝛽2

𝑚
, (B5)

which satisfy

𝑎− = −𝑏+, 𝑏− = 𝑎+. (B6)

Note when 𝑚 = 0, we have 𝑎+ = 1, 𝑏+ = 0, 𝑎− = 0 and 𝑏− = 1.
Based on the above, the total wavefunction in the FI is constructed as

ΨFI = 𝑡

(
𝑎+𝑒

−𝑖Ω𝑡
2

𝑏+𝑒
𝑖Ω𝑡

2

)
𝑒−𝑖𝑘F1𝑥𝑒

−𝑖𝐸1𝑡
ℏ + 𝑝

(
𝑎−𝑒

−𝑖Ω𝑡
2

𝑏−𝑒
𝑖Ω𝑡

2

)
𝑒−𝑖𝑘F2𝑥𝑒

−𝑖𝐸2𝑡
ℏ , (B7)

where 𝑡 and 𝑝 are transmission coefficients to be determined by applying appropriate boundary conditions.
Consider the 𝑒 ↑ incident from the AM side based on the FI/AM bilayer, in order to match the time-dependence of the

wavefunction components on the FI and AM sides, we can obtain 𝐸 ′
= 𝐸 − ℏΩ and 𝐸1 = 𝐸2 = 𝐸 − ℏΩ

2 . In terms of 𝐸 , the
corresponding 𝑥 component of the two wave vectors in the FI are expressed as

𝑘F1,𝑒↑ =

√︂
2𝑚𝑒 [𝐸 −𝑈 − 𝐽 (

√︃
1 − 2𝛽

√
1 − 𝑚2 + 𝛽2 + 𝛽)] − ℏ2𝑘2

𝑦

ℏ
, (B8)

𝑘F2,𝑒↑ =

√︂
2𝑚𝑒 [𝐸 −𝑈 + 𝐽 (

√︃
1 − 2𝛽

√
1 − 𝑚2 + 𝛽2 − 𝛽)] − ℏ2𝑘2

𝑦

ℏ
. (B9)

Based on the above, we write down

ΨFI,𝑒↑ = 𝑡

(
𝑎+𝑒

−𝑖Ω𝑡
2

𝑏+𝑒
𝑖Ω𝑡

2

)
𝑒−𝑖𝑘F1,𝑒↑𝑥𝑒

−𝑖𝐸1𝑡
ℏ + 𝑝

(
𝑎−𝑒

−𝑖Ω𝑡
2

𝑏−𝑒
𝑖Ω𝑡

2

)
𝑒−𝑖𝑘F2,𝑒↑𝑥𝑒

−𝑖𝐸2𝑡
ℏ . (B10)

Consider the 𝑒 ↓ incident from the AM side based on the FI/AM bilayer, in order to match the time-dependence of the
wavefunction components on the FI and AM sides, we can obtain 𝐸 ′

= 𝐸 + ℏΩ and 𝐸1 = 𝐸2 = 𝐸 + ℏΩ
2 . In terms of 𝐸 , the

corresponding 𝑥 component of the two wave vectors in the FI are expressed as

𝑘FI1,𝑒↓ =

√︂
2𝑚𝑒 [𝐸 −𝑈 − 𝐽 (

√︃
1 − 2𝛽

√
1 − 𝑚2 + 𝛽2 − 𝛽)] − ℏ2𝑘2

𝑦

ℏ
, (B11)

𝑘F2,𝑒↓ =

√︂
2𝑚𝑒 [𝐸 −𝑈 + 𝐽 (

√︃
1 − 2𝛽

√
1 − 𝑚2 + 𝛽2 + 𝛽)] − ℏ2𝑘2

𝑦

ℏ
. (B12)

Based on the above, we write down

ΨFI,𝑒↓ = 𝑡

(
𝑎+𝑒

−𝑖Ω𝑡
2

𝑏+𝑒
𝑖Ω𝑡

2

)
𝑒−𝑖𝑘F1,𝑒↓𝑥𝑒

−𝑖𝐸1𝑡
ℏ + 𝑝

(
𝑎−𝑒

−𝑖Ω𝑡
2

𝑏−𝑒
𝑖Ω𝑡

2

)
𝑒−𝑖𝑘F2,𝑒↓𝑥𝑒

−𝑖𝐸2𝑡
ℏ . (B13)

Note that all wave numbers in the FI possess imaginary values since a large potential𝑈 is required to ensure the ferromagnet to
be insulating. To ensure this, we use𝑈 = 2𝜇 throughout this work.
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Appendix C: Wavefunctions in the AM and FI

Here we summarize the wavefunctions in the AM and FI, in which the time-dependence is omitted since we have applied equal
time-dependence on both sides.

Consider the 𝑒 ↑ incident from the AM side based on the FI/AM bilayer, we have

ΨAM,𝑒↑ =

(
1
0

)
𝑒𝑖𝑘𝑒↑,− 𝑥 + 𝑟

(
1
0

)
𝑒𝑖𝑘𝑒↑,+𝑥 + 𝑟 ′

(
0
1

)
𝑒
𝑖𝑘

′
𝑒↓,+𝑥 , (C1)

ΨFI,𝑒↑ = 𝑡

(
𝑎+
𝑏+

)
𝑒−𝑖𝑘F1,𝑒↑𝑥 + 𝑝

(
𝑎−
𝑏−

)
𝑒−𝑖𝑘F2,𝑒↑𝑥 , (C2)

in which 𝐸 ′
= 𝐸 − ℏΩ.

Consider the 𝑒 ↓ incident from the AM side based on the FI/AM bilayer, we have

ΨAM,𝑒↓ =

(
0
1

)
𝑒𝑖𝑘𝑒↓,− 𝑥 + 𝑟

(
0
1

)
𝑒𝑖𝑘𝑒↓,+𝑥 + 𝑟 ′

(
1
0

)
𝑒
𝑖𝑘

′
𝑒↑,+𝑥 , (C3)

ΨFI,𝑒↓ = 𝑡

(
𝑎+
𝑏+

)
𝑒−𝑖𝑘F1,𝑒↓𝑥 + 𝑝

(
𝑎−
𝑏−

)
𝑒−𝑖𝑘F2,𝑒↓𝑥 , (C4)

in which 𝐸 ′
= 𝐸 + ℏΩ.

Appendix D: Boundary conditions

We consider a planar FI in contact with AM1 through a Rashba spin-orbit coupled interface. This interfacial contribution to the
Hamiltonian takes the form

𝐻𝐼 = [𝑈0 +
𝑈SO
𝑘𝐹

�̂� · (�̂� × 𝒌)]𝛿(𝑥)

= [𝑈0 −
𝑈SO
𝑘𝐹

𝑘𝑦𝜎𝑧]𝛿(𝑥), (D1)

in which we take 𝒏 = 𝒙 and 𝑘𝐹 =
√︁

2𝑚𝑒𝜇/ℏ is the Fermi wave vector. This 𝛿-function will influence the boundary conditions that
the scattering wavefunctions have to satisfy. Consequently, the Hamiltonian of the bilayer system becomes

𝐻 = −ℏ2∇2

2𝑚𝑒

+ 𝐻𝐼 +
𝛼𝑘𝑦

2
{𝑘𝑥 ,Θ(𝑥)}𝜎𝑧 , (D2)

in which only the terms affecting the boundary conditions are included. Note here antisymmetrization of the altermagnetic term
𝛼𝑘𝑥𝑘𝑦𝜎𝑧 → 𝛼𝑘𝑦

2 {𝑘𝑥 ,Θ(𝑥)}𝜎𝑧 is necessary to ensure hermiticity of the Hamilton-operator, where Θ(𝑥) is the step function.
Above, 𝑘𝑥 = −i𝜕𝑥 .

Eq. (D2) can be rewritten as

𝐻 = −ℏ2∇2

2𝑚𝑒

+ (𝑈0 −
𝑈SO
𝑘𝐹

𝑘𝑦𝜎)𝛿(𝑥) +
𝛼𝑘𝑦𝜎

2
{𝑘𝑥 ,Θ(𝑥)}, (D3)

where 𝜎 = +1(−1) for 𝑒 ↑ (↓). In Eq. (D3), we have

{𝑘𝑥 ,Θ(𝑥)}Ψ = 𝑘𝑥 [Θ(𝑥)Ψ] + Θ(𝑥) (𝑘𝑥Ψ)
= −i[Ψ𝜕𝑥Θ(𝑥) + Θ(𝑥)𝜕𝑥Ψ] − iΘ(𝑥)𝜕𝑥Ψ
= −i𝛿(𝑥)Ψ − 2iΘ(𝑥)𝜕𝑥Ψ.

(D4)

Apply 𝐻Ψ = 𝐸Ψ and integrate over [−𝜖, 𝜖] with 𝜖 → 0, we have∫ +𝜖

−𝜖

𝜕2
𝑥Ψ𝑑𝑥 =

2𝑚𝑒

ℏ2

∫ +𝜖

−𝜖

[𝑈0 − ( i𝛼
2

+ 𝑈SO
𝑘𝐹

)𝑘𝑦𝜎]𝛿(𝑥)Ψ𝑑𝑥

− 2𝑚𝑒

ℏ2

∫ +𝜖

−𝜖

i𝛼𝑘𝑦𝜎Θ(𝑥)𝜕𝑥Ψ𝑑𝑥 −
2𝑚𝑒

ℏ2

∫ +𝜖

−𝜖

𝐸Ψ𝑑𝑥. (D5)
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Consequently, the remaining nonzero terms are

𝜕𝑥Ψ
��
+𝜖 − 𝜕𝑥Ψ

��
−𝜖

=
2𝑚𝑒

ℏ2 [𝑈0 − ( i𝛼
2

+ 𝑈SO
𝑘𝐹

)𝑘𝑦𝜎]Ψ
��
+𝜖 (D6)

with Ψ
��
+𝜖 = Ψ

��
−𝜖

and 𝜎 = +1(−1) for 𝑒 ↑ (↓).
For notation convenience, we rewrite the boundary conditions for 𝑒 ↑ incident from the AM side based on the FI/AM bilayer as

ΨAM
��
𝑥=0 = ΨFI

��
𝑥=0 =

(
𝑓

𝑔

)
, (D7)

𝜕𝑥ΨAM
��
𝑥=0 − 𝜕𝑥ΨFI

��
𝑥=0 =

(
𝑘𝛼,+1 𝑓
𝑘𝛼,−1𝑔

)
, (D8)

where 𝑘𝛼,𝜎 =
2𝑚𝑒

ℏ2 [𝑈0 − ( i𝛼
2 + 𝑈SO

𝑘𝐹
)𝑘𝑦𝜎] with 𝜎 = +1(−1).

The boundary conditions for 𝑒 ↓ incident from the AM side have the same forms as Eqs. (D7,D8) with different explicit
expressions for 𝑓 and 𝑔.

Appendix E: 1D DOS and 2D DOS in the AM

For 𝑒 ↑ incident from the AM1 side based on the FI/AM1 bilayer, we have

𝐸 = 𝐸+ =
ℏ2 (𝑘2

𝑥 + 𝑘2
𝑦)

2𝑚𝑒

− 𝜇 + 𝛼𝑘𝑥𝑘𝑦 , (E1)

based on which the 1D density of states (DOS) can be calculated as

𝑑𝑘𝑥/𝑑𝐸 = ( ℏ
2𝑘𝑥
𝑚𝑒

+ 𝛼𝑘𝑦)−1. (E2)

On the other hand, the general expression for 2D DOS is given by

𝑁 (𝐸) = 1
4𝜋2

∫
𝑑𝑙

|∇𝒌𝐸 (𝒌) |
, (E3)

which can be used for anisotropic DOS. In Eq. (E3), we can use

𝑑𝑙 =

√︂
( 𝑑𝑘𝑥
𝑑𝜃

)2 + (
𝑑𝑘𝑦

𝑑𝜃
)2𝑑𝜃, (E4)

|∇𝒌𝐸 (𝒌) | =
√︄
( 𝜕𝐸
𝜕𝑘𝑥

)2 + ( 𝜕𝐸
𝜕𝑘𝑦

)2

=

√︄
( ℏ

2𝑘𝑥
𝑚𝑒

+ 𝛼𝑘𝑦)2 + (
ℏ2𝑘𝑦

𝑚𝑒

+ 𝛼𝑘𝑥)2. (E5)

Insert 𝑘𝑥 = 𝑘𝑥,𝑒↑ and 𝑘𝑦 = 𝑘𝑦,𝑒↑ in Eq. (A7) into Eqs. (E4) and (E5), |∇𝒌𝐸 (𝒌) | is expressed in terms of 𝐸 and 𝜃, i.e.,
|∇𝒌𝐸 (𝒌) | = 𝐾 (𝐸, 𝜃). Consequently, Eq. (E3) can be rewritten as

𝑁 (𝐸) =
∫ 2𝜋

0
𝑁 (𝐸, 𝜃)𝑑𝜃, (E6)

𝑁 (𝐸, 𝜃) = 1
4𝜋2

√︃
(𝑑𝑘𝑥,𝑒↑/𝑑𝜃)2 + (𝑑𝑘𝑦,𝑒↑/𝑑𝜃)2

𝐾 (𝐸, 𝜃) (E7)

in which 𝑁 (𝐸, 𝜃) corresponds to the DOS at a given incident angle 𝜃.
Following the same procedure as described above, the DOS in the AM for 𝑒 ↓ incident with 𝐸 = 𝐸− can be calculated. Note

that 1D DOS instead of 2D DOS is utilized in the main text since
∫
𝑘𝑦 is included separately.
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Appendix F: Backflow spin-current

In general, a backflow spin current exists due to a spin accumulation that is built up in the material connected to the precessing
FI [1]. This backflow current diminishes the magnitude of the total spin current flowing across the interface. Assuming that the
material which the spin current is pumped into act as a highly conductive reservoir which drains the spin current, the backflow
spin current may be neglected. For a ferromagnet/normal metal bilayer with a Rashba spin-orbit coupled interface, as in the
present system, Ref. [27] derived a backflow factor 𝜉 ∝ (𝜆sd/𝑙mfp)coth(𝑑𝑁/𝜆sd) where 𝜆sd is the spin diffusion length, 𝑙mfp is the
electronic mean free path, and 𝑑𝑁 is the thickness of the normal layer. For ballistic, large reservoirs, 𝜉 → 0.

Appendix G: 45-degree rotated AM2

Here we summarize the useful equations for the rotated Hamiltonian of AM2 shown in Fig. 1(b) in the main text, i.e.,

𝐻AM = −ℏ2▽2

2𝑚𝑒

− 𝜇 + 𝛼
2
(𝑘2

𝑥 − 𝑘2
𝑦)𝜎𝑧 , (G1)

which corresponds to a 45 degree rotation of the FI/AM1 interface.

• 1: eigenpairs:
The two eigenpairs are obtained as: 𝐸1 = 𝐸+ with (1, 0)𝑇 for 𝑒 ↑ and 𝐸2 = 𝐸− with (0, 1)𝑇 for 𝑒 ↓. The eigen-energies are
described by

𝐸± =
ℏ2 (𝑘2

𝑥 + 𝑘2
𝑦)

2𝑚𝑒

− 𝜇 ± 𝛼

2
(𝑘2

𝑥 − 𝑘2
𝑦). (G2)

• 2: wave vectors in the AM to construct the wave functions:

𝑘𝑒↑,± = ±

√︄
2𝑚𝑒 (𝜇 + 𝐸 + 𝛼𝑘2

𝑦/2) − ℏ2𝑘2
𝑦

ℏ2 + 𝑚𝑒𝛼
, (G3)

𝑘𝑒↓,± = ±

√︄
2𝑚𝑒 (𝜇 + 𝐸 − 𝛼𝑘2

𝑦/2) − ℏ2𝑘2
𝑦

ℏ2 − 𝑚𝑒𝛼
. (G4)

• 3: wave vectors on the AM Fermi surface:

𝑘𝑦,𝑒↑ = 𝑟1 sin 𝜃, 𝑘𝑥,𝑒↑ = 𝑟1 cos 𝜃,

𝑟1 =
𝑎1𝑏1√︃

𝑏2
1 cos2 (𝜃 + 𝜋/2) + 𝑎2

1 sin2 (𝜃 + 𝜋/2)
, 𝑎1 =

√︄
2𝑚𝑒 (𝜇 + 𝐸)
ℏ2 − 𝑚𝑒𝛼

, 𝑏1 =

√︄
2𝑚𝑒 (𝜇 + 𝐸)
ℏ2 + 𝑚𝑒𝛼

(G5)

𝑘𝑦,𝑒↓ = 𝑟2 sin 𝜃, 𝑘𝑥,𝑒↓ = 𝑟2 cos 𝜃,

𝑟2 =
𝑎2𝑏2√︃

𝑏2
2 cos2 𝜃 + 𝑎2

2 sin2 𝜃

, 𝑎2 =

√︄
2𝑚𝑒 (𝜇 + 𝐸)
ℏ2 − 𝑚𝑒𝛼

, 𝑏2 =

√︄
2𝑚𝑒 (𝜇 + 𝐸)
ℏ2 + 𝑚𝑒𝛼

. (G6)

• 4: boundary conditions:

ΨAM
��
𝑥=0 = ΨFI

��
𝑥=0 =

(
𝑓

𝑔

)
, (G7)

(
(1 + 𝑚𝑒𝛼/ℏ2)𝜕𝑥 𝑓AM
(1 − 𝑚𝑒𝛼/ℏ2)𝜕𝑥𝑔AM

) ��
𝑥=0 − 𝜕𝑥ΨFI

��
𝑥=0 =

(
𝑘𝛼,+1 𝑓
𝑘𝛼,−1𝑔

)
(G8)

for 𝑒 ↑ and 𝑒 ↓ incidents, in which 𝑘𝛼,𝜎 =
2𝑚𝑒

ℏ2 [𝑈0 − 𝑈SO
𝑘𝐹
𝑘𝑦𝜎] with 𝜎 = +1(−1). To get the above boundary conditions, we

follow the similar procedure as described in Sec. D by considering the Hermitian Hamiltonian of the bilayer system as

𝐻 = −ℏ2∇2

2𝑚𝑒

+ 𝐻𝐼 +
𝛼

2
[𝑘𝑥Θ(𝑥)𝑘𝑥 − 𝑘𝑦Θ(𝑥)𝑘𝑦]𝜎𝑧 , (G9)

in which 𝑘𝑥 = −i𝜕𝑥 .
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• 5: The longitudinal quantum mechanical spin current polarized along the 𝑧 axis in the AM:

𝑗𝑠𝑧,𝑒↑(↓) =
ℏ2

2𝑚𝑒

(ℑm{ 𝑓 ∗∇ 𝑓 } − ℑm{𝑔∗∇𝑔}) + 𝛼
2
(ℑm{ 𝑓 ∗∇ 𝑓 } + ℑm{𝑔∗∇𝑔}). (G10)

Appendix H: Spin-flip probability

Here we consider FI/AM1 as an example. If we write the wave function in the form of Ψ = ( 𝑓 , 𝑔)𝑇 , the probability current in
the AM is given by

𝑗AM
𝑃 =

ℏ

𝑚𝑒

[ℑm{ 𝑓 ∗∇ 𝑓 } + ℑm{𝑔∗∇𝑔}] +
𝛼𝑘𝑦

ℏ
( | 𝑓 |2 − |𝑔 |2). (H1)

Consider the 𝑒 ↑ incident from the AM side based on the FI/AM bilayer, we have ΨAM,𝑒↑ with 𝑓 = 𝑒𝑖𝑘𝑒↑,− 𝑥 + 𝑟𝑒𝑖𝑘𝑒↑,+𝑥 and
𝑔 = 𝑟

′
𝑒
𝑖𝑘

′
𝑒↓,+𝑥 , we have

ℑm{ 𝑓 ∗∇ 𝑓 } = 𝑘𝑒↑,−𝑒−2ℑm[𝑘𝑒↑,− ]𝑥 + 𝑘𝑒↑,+ |𝑟 |2𝑒−2ℑm[𝑘𝑒↑,+ ]𝑥 + Re[(𝑘𝑒↑,+ + 𝑘∗𝑒↑,−)𝑟𝑒
𝑖 (𝑘𝑒↑,+−𝑘∗𝑒↑,− )𝑥],

ℑm{𝑔∗∇𝑔} = 𝑘 ′

𝑒↓,+ |𝑟
′ |2𝑒−2ℑm[𝑘′

𝑒↓,+ ]𝑥 ,

| 𝑓 |2 = 𝑒−2ℑm[𝑘𝑒↑,− ]𝑥 + |𝑟 |2𝑒−2ℑm[𝑘𝑒↑,+ ]𝑥 + 2Re[𝑟𝑒𝑖 (𝑘𝑒↑,+−𝑘
∗
𝑒↑,− )𝑥],

|𝑔 |2 = |𝑟 ′ |2𝑒−2ℑm[𝑘′
𝑒↓,+ ]𝑥 .

(H2)

Therefore, the probability current is given by

𝑗
AM,𝑒↑
𝑃

= (
ℏ𝑘𝑒↑,−
𝑚𝑒

+
𝛼𝑘𝑦

ℏ
)𝑒−2ℑm[𝑘𝑒↑,− ]𝑥

+ (
ℏ𝑘𝑒↑,+
𝑚𝑒

+
𝛼𝑘𝑦

ℏ
) |𝑟 |2𝑒−2ℑm[𝑘𝑒↑,+ ]𝑥 + ℏ

𝑚𝑒

Re[(𝑘𝑒↑,+ + 𝑘∗𝑒↑,−)𝑟𝑒
𝑖 (𝑘𝑒↑,+−𝑘∗𝑒↑,− )𝑥] +

2𝛼𝑘𝑦
ℏ

Re[𝑟𝑒𝑖 (𝑘𝑒↑,+−𝑘
∗
𝑒↑,− )𝑥]

+ (
ℏ𝑘

′

𝑒↓,+
𝑚𝑒

−
𝛼𝑘𝑦

ℏ
) |𝑟 ′ |2𝑒−2ℑm[𝑘′

𝑒↓,+ ]𝑥 .

(H3)

On the other hand, the probability current in the FI is given by

𝑗FI
𝑃 =

ℏ

𝑚𝑒

[ℑm{ 𝑓 ∗∇ 𝑓 } + ℑm{𝑔∗∇𝑔}] . (H4)

For ΨFI,𝑒↑, we have 𝑓 = 𝑡𝑎+𝑒−𝑖𝑘F1,𝑒↑𝑥 + 𝑝𝑎−𝑒−𝑖𝑘F2,𝑒↑𝑥 and 𝑔 = 𝑡𝑏+𝑒−𝑖𝑘F1,𝑒↑𝑥 + 𝑝𝑏−𝑒−𝑖𝑘F2,𝑒↑𝑥 . Since the wavevectors in the FI are
imaginary, we apply 𝑘F1,𝑒↑ = 𝑖𝜅1 and 𝑘F2,𝑒↑ = 𝑖𝜅2 where 𝜅1 and 𝜅2 are real. Consequently, we have 𝑓 = 𝑡𝑎+𝑒𝜅1𝑥 + 𝑝𝑎−𝑒𝜅2𝑥 and
𝑔 = 𝑡𝑏+𝑒𝜅1𝑥 + 𝑝𝑏−𝑒𝜅2𝑥 .

ℑm{ 𝑓 ∗∇ 𝑓 } = ℑm{𝜅1 |𝑡 |2 |𝑎+ |2𝑒2𝜅1𝑥 + 𝜅2 |𝑝 |2 |𝑎− |2𝑒2𝜅2𝑥 + (𝜅1𝑎+𝑎
∗
−𝑡 𝑝

∗ + 𝜅2𝑎
∗
+𝑎−𝑡

∗𝑝)𝑒 (𝜅1+𝜅2 )𝑥}. (H5)

It is obvious that the first two terms in Eq. (H5) are zero since 𝜅1 and 𝜅2 are real. If 𝜅1 = 𝜅2, we can have ℑm{ 𝑓 ∗∇ 𝑓 } = 0.
However, we should have 𝜅1 ≠ 𝜅2 according to the exchange 𝐽 in Eqs. (B8,B9) of FI. Therefore, we have

ℑm{ 𝑓 ∗∇ 𝑓 } = ℑm{(𝜅1𝑎+𝑎
∗
−𝑡 𝑝

∗ + 𝜅2𝑎
∗
+𝑎−𝑡

∗𝑝)𝑒 (𝜅1+𝜅2 )𝑥}. (H6)

Similarly, we have

ℑm{𝑔∗∇𝑔} = ℑm{(𝜅1𝑏+𝑏
∗
−𝑡 𝑝

∗ + 𝜅2𝑏
∗
+𝑏−𝑡

∗𝑝)𝑒 (𝜅1+𝜅2 )𝑥}. (H7)

Consequently, the probability current is given by

𝑗
FI,𝑒↑
𝑃

=
ℏ

𝑚𝑒

ℑm{[𝜅1 (𝑎+𝑎∗− + 𝑏+𝑏∗−)𝑡 𝑝∗ + 𝜅2 (𝑎∗+𝑎− + 𝑏∗+𝑏−)𝑡∗𝑝]𝑒 (𝜅1+𝜅2 )𝑥}. (H8)

Note here there are no separate terms regarding the transmission coefficients 𝑡 and 𝑝 but the mixing terms between them.
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FIG. 4. (Color online) Spin-flip probability for different spin pumping bilayers for 𝑍 = 0 and 𝑍 = 3 at a fixed 𝑘𝑦 mode. Here a small 𝑘𝑦 = 0.1 is
utilized.

Apply 𝑗FI,𝑒↑
𝑃

= 𝑗
AM,𝑒↑
𝑃

and insert Eqs. (H3,H8),

1 = 𝐴(𝐸) + 𝐵(𝐸) + 𝐶 (𝐸),

𝐴(𝐸) = −
( ℏ𝑘𝑒↑,+

𝑚𝑒
+ 𝛼𝑘𝑦

ℏ
) |𝑟 |2𝑒−2ℑm[𝑘𝑒↑,+ ]𝑥 + ℏ

𝑚𝑒
Re[(𝑘𝑒↑,+ + 𝑘∗𝑒↑,−)𝑟𝑒

𝑖 (𝑘𝑒↑,+−𝑘∗𝑒↑,− )𝑥] + 2𝛼𝑘𝑦
ℏ

Re[𝑟𝑒𝑖 (𝑘𝑒↑,+−𝑘
∗
𝑒↑,− )𝑥]

( ℏ𝑘𝑒↑,−
𝑚𝑒

+ 𝛼𝑘𝑦

ℏ
)𝑒−2ℑm[𝑘𝑒↑,− ]𝑥

,

𝐵(𝐸) = −
(
ℏ𝑘

′
𝑒↓,+
𝑚𝑒

− 𝛼𝑘𝑦

ℏ
) |𝑟 ′ |2𝑒−2ℑm[𝑘′

𝑒↓,+ ]𝑥

( ℏ𝑘𝑒↑,−
𝑚𝑒

+ 𝛼𝑘𝑦

ℏ
)𝑒−2ℑm[𝑘𝑒↑,− ]𝑥

,

𝐶 (𝐸) =
ℏ
𝑚𝑒

ℑm{[𝜅1 (𝑎+𝑎∗− + 𝑏+𝑏∗−)𝑡 𝑝∗ + 𝜅2 (𝑎∗+𝑎− + 𝑏∗+𝑏−)𝑡∗𝑝]𝑒 (𝜅1+𝜅2 )𝑥}

( ℏ𝑘𝑒↑,−
𝑚𝑒

+ 𝛼𝑘𝑦

ℏ
)𝑒−2ℑm[𝑘𝑒↑,− ]𝑥

= 0,

(H9)

in which 𝐴(𝐸), 𝐵(𝐸) and 𝐶 (𝐸) are the probability coefficients regarding reflection without spin-flip (𝑟), reflection with spin-flip
(𝑟 ′ ) and transmission (𝑡 and 𝑝), respectively. Note that 𝐶 (𝐸) becomes zero when Eq. (B6) is employed. Next, we will focus on the
spin-flip probability regarding 𝐵(𝐸), which plays an important role in spin pumping.

In Fig. 4, the spin-flip probability is plotted for different spin pumping bilayers including FI/AM1(AM2) for 𝑍 = 0 and 𝑍 = 3,
in which it is found that the spin-flip probability increases (decreases) with altermagnetism in FI/AM1(AM2). On the other hand,
it is shown that the spin-flip probability decreases with 𝜇 in FI/NM for large 𝑍 . These observations are consistent with the spin
pumping current behavior shown in Fig. 2 in the main text.
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Appendix I: Arbitrary-angle rotated AM

The arbitrary-angle rotated AM can be modeled based on the combination of our established AM1 and AM2 cases, i.e., a more
general Hamiltonian is

𝐻AM = −ℏ2▽2

2𝑚𝑒

− 𝜇 + 𝛼1𝑘𝑥𝑘𝑦𝜎𝑧 + 𝛼2 (𝑘2
𝑥 − 𝑘2

𝑦)𝜎𝑧/2, (I1)

in which two different altermagnetism strength parameters 𝛼1 and 𝛼2 are introduced and the arbitrary angle is determined by
𝜃𝛼 = 1

2 arctan(𝛼1/𝛼2). Following the same procedure as introduced before, the eigenvalues and wave vectors can be solved from
the Hamiltonian, e.g.,

𝐸± =
ℏ2 (𝑘2

𝑥 + 𝑘2
𝑦)

2𝑚𝑒

− 𝜇 ± 𝛼1𝑘𝑥𝑘𝑦 ±
𝛼2
2
(𝑘2

𝑥 − 𝑘2
𝑦), (I2)

𝑘𝑒↑,± = ± 1
ℏ + 𝛼2𝑚𝑒/ℏ

√︄
2𝑚𝑒 (𝜇 + 𝐸) (1 + 𝛼2𝑚𝑒

ℏ2 ) − ℏ2𝑘2
𝑦 +

(𝛼2
1 + 𝛼

2
2)𝑚

2
𝑒𝑘

2
𝑦

ℏ2

−
𝛼1𝑚𝑒𝑘𝑦

ℏ2 + 𝑚𝑒𝛼2
, (I3)

which reveal features of both the AM1 and AM2 cases. To ensure that the energy dispersion corresponds to an elliptical energy
surface rather than a hyperbola, the altermagnetism parameters should satisfy �̄� ≡

√︃
𝛼2

1 + 𝛼
2
2 < 𝛼𝑐 ≡ ℏ2/𝑚𝑒. The corresponding

semi-major and semi-minor axes are 𝑎 =

√︃
2𝑚𝑒 (𝜇+𝐸 )
ℏ2−𝑚𝑒 �̄�

and 𝑏 =

√︃
2𝑚𝑒 (𝜇+𝐸 )
ℏ2+𝑚𝑒 �̄�

for electron incidents, based on which the DOS can
be calculated. Similarly, the boundary conditions and spin current expressions can be derived from the Hamiltonian with all
necessary details included in our previous explanation for the AM1 and AM2 cases.
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