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Abstract

This PhD thesis focuses on open-domain generation-based conversational agents, which are

chatbots that generate responses to any input or question using natural language processing

and deep learning techniques. The thesis identifies three major challenges faced by these

conversational agents.

(1) Generating appropriate responses for a wide range of topics and domains. Current

studies have focused on single-corpus training, which limits the model’s ability to

generate relevant responses for certain topics.

(2) Improving a model’s performance of context attention distribution in multi-turn set-

tings. The ability to distribute attention and assign importance to relevant information

is necessary to generate appropriate responses. However, most existing works have

treated multi-turn conversations as one-turn contexts, limiting the performance of the

agents.

(3) Integrating knowledge under the conversational question-answering task perspective.

There is a gap in research on integrating extractive question-answering techniques

with instruction-based tuning and prompt-based tuning. The thesis proposes several

approaches to address these challenges.

For (1), the thesis proposes Document-specific Frequency (DF) as an evaluation metric

and proposes several methods for balancing multiple corpora. The best method, which

integrates DF with the training, achieves an improvement by 34.1% on F1 performance

and at least 20.0% on DF. A thorough human evaluation shows a highly significant (p ¡

0.001) improvement in all of our proposed methods.
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For (2), the thesis proposes Distracting Attention Score ratio (DAS ratio) as an evalu-

ation metric and employs self-contained negative samples and summarization techniques

to improve a system’s performance on context attention distribution. The proposed self-

contained negative samples are applied as a training strategy, resulting in about 10% better

DAS ratio. The best summarization technique setting with ORACLE gains a 23% improve-

ment on the DAS ratio.

For (3), the thesis explores various settings of integrating extractive question answering

with instruction-based tuning, prompt-based tuning, and multi-task learning. When com-

bining prompt-based tuning with either instruction-based tuning or multi-task learning, the

F1 performance is improved by about 18% over the baseline.

Together, these techniques have improved the overall performance of multi-turn con-

versational agents on open domains.
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Chapter 1

Introduction

This chapter gives an overview of the work conducted during my PhD study. In Section 1.1,

we introduce the background and motivation of my research. In Section 1.2, we discuss

the research questions and the approaches to solving them. In Section 1.3, we summarize

the research publications and contributions. In Section 1.4, the structure of the thesis is

introduced. Finally, Section 1.5 briefly explains the research context.

1.1 Challenges on Open-Domain Generation-Based Con-

versational Agents

Open-domain generation-based conversational agents are a type of chatbot that use natural

language processing and deep learning techniques to generate responses to any question or

input, regardless of topic or goal. Unlike retrieval-based chatbots that rely on pre-defined

responses based on specific keywords or phrases, generation-based conversational agents

construct responses from scratch based on the context of the conversation. These systems

are designed to be more versatile and adaptable than task-specific conversational agents,

which are intended to perform specific tasks, such as making a reservation or providing

customer support. Despite notable advancements in recent years, open-domain generation-

based conversational agents still face several challenges that must be addressed to enhance

their effectiveness.

1



CHAPTER 1. INTRODUCTION 2

An important challenge for open-domain generation-based conversational agents is

their ability to generate appropriate responses for a wide range of topics and domains.

Most studies have been limited to single-corpus training and evaluation, which can result in

models that are unable to generate relevant responses for certain topics. For instance, while

the PersonaChat corpus provides examples of everyday conversations, it does not cover

technical topics found in Ubuntu chat logs. Therefore, when asked a technical question

about Ubuntu, the generated responses may not be relevant. To overcome this challenge,

open-domain conversational systems need to learn from multiple corpora using effective

learning techniques. This thesis explores various approaches for balancing multi-domain

corpora and a metric for evaluating the relevance of generated responses for each specific

corpus.

Another challenge faced by open-domain generation-based conversational agents is re-

lated to multi-turn conversations. To generate relevant responses in the context of such

conversations, the system must possess a good ability to distribute attention, namely con-

text attention distribution. This requires the system to distribute more attention to important

information in a multi-turn context, while ignoring unimportant utterances. However, most

existing works in this area have overlooked multi-turn modeling by treating a multi-turn

context as a 1-turn context. Some approaches have attempted to address this issue by us-

ing modified attention mechanisms, hierarchical structures, and utterance tokens. Despite

these efforts, the performance of multi-turn conversational agents on context attention dis-

tribution remains a challenge. In this thesis, we explore several architectures for a model’s

attention mechanism that addresses context attention distribution in multi-turn settings. We

also propose an evaluation metric to measure a model’s ability to distribute context attention

and improve its performance through self-contained distractions addressing the proposed

metric. Furthermore, we view the task of improving context attention distribution as a

summarization task and employ extractive summarization techniques to enhance a model’s

context attention distribution.

The third challenge for open-domain generation-based conversational agents is the inte-

gration of knowledge. To address this challenge, we propose using a conversational ques-

tion answering task perspective. Conversational question answering is a specialized dia-

logue system that can answer users’ questions by leveraging a given document. It extends
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traditional question answering systems to a conversational setting of multi-turn conver-

sations to fulfill a user’s information needs. The conversational question answering task

comprises two parts: extractive question answering, which uses answer spans as responses,

and generative question answering, which employs a generation-based conversational agent

to generate answers from scratch. In this thesis, we aim to enhance generation-based con-

versational agents for conversational question answering using an extractive question an-

swering system. We propose integrating instruction-based tuning, prompt-based tuning,

and multi-task learning to improve performance.

In summary, this thesis aims to tackle three challenges: balancing multi-domain corpora

to generate more relevant responses, improving a model’s performance of context atten-

tion distribution in multi-turn settings, and integrating knowledge using extractive question

answering with instruction-based and prompt-based tuning. We propose three research

questions with corresponding sub-questions and answer them through four publications,

each containing novel methodologies and extensive experimentation. While each of the

three challenges can be addressed independently, our work suggests a synergistic approach

to yield optimal performance. Specifically, balancing multi-domain corpora and improving

context attention distribution are fundamentally interrelated: a well-balanced corpus allows

the model to learn a more accurate context attention mechanism, which in turn enables the

generation of more relevant responses. Additionally, the integration of knowledge through

extractive question answering is influenced by how well the model understands the context,

thereby showing a dependency on effective attention distribution.

Industrial needs align closely with these challenges, particularly as businesses seek

to deploy conversational agents capable of complex, multi-turn dialogues across diverse

subject matters. Therefore, we see these three challenges as relevant to each other and

equally important. Solving these challenges collectively thus presents an opportunity for

substantial advancements, both academically and industrially.

1.2 Research Questions and Approaches

The general goal of the thesis can be summarized as integrating multi-domain corpora,
multi-turn context, and knowledge into open-domain generation-based conversational
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agents. Specifically, we focus on three research questions as listed below:

• RQ1 - How can we balance multi-domain training corpora for generation-based

conversational agents to improve the relevance of the generated responses?

RQ1.1 What kind of approaches can be integrated into generation-based conversa-

tional agents to balance the training corpora? How do they perform?

RQ1.2 How do we evaluate the relevance of the generated responses corresponding

to different corpora?

RQ1.3 How can we optimize the relevance of the generated responses for a generation-

based conversational agent based on the proposed evaluation metric?

• RQ2 - How can we improve the awareness of multi-turn context on generation-based

conversational agents?

RQ2.1 How do we evaluate the context awareness for a generation-based conversa-

tional agent?

RQ2.2 How can we optimize the context awareness for a generation-based conversa-

tional agent based on the proposed evaluation metric?

RQ2.3 How can we integrate summarization techniques into generation-based con-

versational agents to improve the context awareness of the multi-turn context?

• RQ3 - How can we improve the quality of generated responses on knowledge for

generation-based conversational agents under multi-turn conversational question

answering context?

RQ3.1 How can answer spans from the extractive question answering task be inte-

grated into generation-based conversational agents and improve the quality of gener-

ated responses on knowledge?

RQ3.2 How can prompt-based tuning and instruction-based tuning improve the qual-

ity of generated responses on knowledge?
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1.2.1 Approaches

We address the three main research questions through separate experiments regarding bal-

ancing multi-domain corpora for generation-based conversational agents, improving con-

text awareness of multi-turn generation-based conversational agents, and integrating knowl-

edge into multi-turn generation-based conversational agents, respectively. All the experi-

ments adopt state-of-the-art deep learning models of generation-based conversational agents

as the base models, namely LSTM (Hochreiter and Schmidhuber, 1997) and GPT-2 (Rad-

ford et al., 2019), whose structures are introduced in Chapter 2.2. Based on the state-of-

the-art generation-based conversational agents, we examine a variety of techniques in the

experiments to address the three main research questions respectively, which are introduced

in Section 1.3. The techniques are then evaluated on common open-source English datasets

such as Ubuntu (Lowe et al., 2015) and CoQA (Reddy et al., 2018), which addresses the

problem each research question focuses on. The datasets are introduced in detail in Chap-

ter 3 to Chapter 6. For evaluation, we propose two novel metrics: the Domain-specific

Frequency (DF) for evaluating the relevance of a generated response corresponding multi-

domain corpora, and Distracting Attention Score (DAS) ratio for evaluating the context

awareness of a multi-turn conversational agent. These evaluation metrics are introduced in

Chapter 3 and Chapter 4.

1.3 Publications and Contributions

In this section, we present the list of research papers published during the PhD studies, and

summarize the contributions brought by them regarding the research questions. For each

paper, we refer to the corresponding chapter where we include the content of the paper, and

point out the relevance of the aforementioned research questions.

Paper 1. Yujie Xing, Jinglun Cai, Nils Barlaug, Peng Liu, and Jon Atle Gulla. 2022.

Balancing Multi-Domain Corpora Learning for Open-Domain Response Generation. In

Findings of the Association for Computational Linguistics: NAACL 2022, pages 2104-

2120.

Summary: The content of this paper is included in Chapter 3 and aims to answer the
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research question RQ1.

Contributions: We focus on the problem of open-domain response generation and the

challenge of training and evaluating on multiple corpora from different domains. We ex-

plore several methods for making models generate relevant responses for each of the mul-

tiple corpora. The first method is interleaved learning, which intermingles the training data

instead of simply concatenating them. This method ensures that the model learns from

all corpora evenly. Interleaved learning serves as a baseline for the proposed methods. In

addition to interleaved learning, we explore two multi-domain learning methods: labeled

learning and multi-task labeled learning. Labeled learning is inspired by a control tech-

nique in response generation that focuses on controlling persona and style; however, it

controls corpus information with a given corpus embedding. Multi-task labeled learning,

although similar to labeled learning, minimizes both losses from both the corpus classifier

and response generator, which enables a model to use a corpus classifier to choose a corpus

embedding by itself.

Furthermore, we propose a novel method called weighted learning with Domain-specific

Frequency (DF). DF is a word-level importance weight that assigns different weights to the

same words from different corpora. In the training process, the model’s loss is weighted

with DF, so that the model focuses on the most important words for a specific corpus and

thus improve the relevance of the generated responses. In the evaluation process, DF can

be used for measuring the relevance of the generated responses. Results show that the

best method (weighted learning) improves precision by 27.4%, recall by 45.5%, and F1 by

34.1%. Furthermore, it has 20.0% higher DF, indicating that it uses more important words

from the most relevant corpus. To verify the automatic results, we also conduct an exten-

sive human evaluation on 2400 generated responses. The human evaluation shows a highly

significant improvement on all of the proposed methods, especially weighted learning.

Paper 2. Yujie Xing and Jon Atle Gulla. 2023. Evaluating and Improving Context

Attention Distribution on Multi-Turn Response Generation using Self-Contained Distrac-

tions. In Computer Science & Information Technology (CS & IT), volume 13, number 02,

pages 127-143.

Summary: The content of this paper is included in Chapter 4 and aims to answer the
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research question RQ2.1 and RQ2.2.

Contributions: We address evaluating and enhancing context attention distribution for

multi-turn conversational agents. We propose a novel evaluation metric tailored for multi-

turn conversational agents, Distracting Attention Score (DAS) ratio, to measure a model’s

performance on context attention distribution. Specifically, we propose the distracting test

as an evaluation method that adds distracting utterances to the context of each dialogue

and compares the attention scores of distracting utterances and original utterances. DAS

ratio is then calculated as the ratio of the average attention score of distracting utterances

to original utterances.

To further improve the performance of multi-turn conversational agents, we propose a

self-contained optimization strategy that inserts randomly picked utterances into the current

dialogue and teaches a model to minimize the attention paid to these unimportant extrane-

ous utterances. Extensive experiments on 23 model variants and 9 distracting test sets show

that the proposed optimization strategy has improved 10% on DAS ratio, meaning that the

attention paid to unimportant utterances is reduced and the models’ ability to distribute at-

tention to important utterances is improved.

Paper 3. Yujie Xing and Jon Atle Gulla. 2023. Improving Context-Awareness on Multi-

Turn Dialogue Modeling with Extractive Summarization Techniques. In 28th International

Conference on Natural Language and Information Systems (NLDB 2023).

Summary: The content of this paper is included in Chapter 5 and aims to answer the

research question RQ2.3.

Contributions: Following the aforementioned work, we investigate the application of

extractive summarization techniques to enhance the context awareness of multi-turn con-

versational models. Specifically, we filter out unimportant utterances using extractive sum-

marization techniques using the last utterance in the context, the query, as the reference,

since the responses to be generated are primarily focused on answering the query. To

achieve this, we use a PMI topic model to extract keywords from the context, which are

then passed to the dialogue model. Additionally, we employ the ORACLE algorithm, a

widely-used algorithm for generating gold labels for extractive summarization, to filter out
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utterances unrelated to the query before passing them to the dialogue model. We exam-

ine the effectiveness of these techniques on both non-hierarchical and hierarchical models,

where the best setting with ORACLE gains a 23% improvement on the DAS ratio, meaning

that unimportant utterances are filtered out properly.

Paper 4. Yujie Xing and Peng Liu. 2023. Prompt and Instruction-Based Tuning for

Response Generation in Conversational Question Answering. In 28th International Con-

ference on Natural Language and Information Systems (NLDB 2023).

Summary: The content of this paper is included in Chapter 6 and aims to answer the

research question RQ3.

Contributions: We propose a novel approach for enhancing response generation in con-

versational question answering by integrating prompt-based and instruction-based tuning.

This approach represents the first application of instruction tuning to response generation

in conversational question answering. In this paper, we first distinguish two angles from the

conversational question answering task: the extractive one and the generative one, where

the first employs answer spans as the expected response while the second asks for a gener-

ated response. We then adopt prompt-based tuning to improve the extractive angle in the

conversational question answering task and instruction-based tuning to enhance the gener-

ative angle. Finally, we investigate the integration of these two angles through multi-task

learning.

The experiments conducted in this study verify the influence of prompt-based tuning,

instruction-based tuning, and multi-task learning on conversational question answering

performance. Various settings, including prompt-based tuning with or without multi-task

learning, prompt-based with or without instruction-based tuning, and prompt-based tuning

with both multi-task learning and instruction-based tuning, are evaluated on GPT-2 using

two modes of evaluation on the F1 score. The results show that the prompt-based tuning

combined with either instruction-based tuning or multi-task learning improves the F1 score

by about 18% over the baseline. The extractive question answering angle of the settings

is assessed comparing with a GPT-2 fine-tuned on the extractive question answering task,

and the results show a maximum 13% improvement when combining all the examined

techniques.
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The relationship between the publications and the research questions is illustrated in

Table 1.1:

RQ1 RQ2 RQ3
Paper 1 •
Paper 2 •
Paper 3 •
Paper 4 •

Table 1.1: Relationship between ublications and research questions

1.4 Thesis Structure

The thesis is constituted of 7 chapters.

• Chapter 1 gives an overview and summarization of the thesis. Chapter 2 introduces

the technical background and recent progresses in generation-based conversational

agents.

• Chapter 3 includes Paper 1, which focuses on balancing multi-domain corpora for

improving the relevance of generated responses.

• Chapter 4 includes Paper 2, which focuses on improving and evaluating context

awareness in multi-turn context with self-contained distractions.

• Chapter 5 includes Paper 3, which focuses on improving context awareness with

extractive summarization techniques.

• Chapter 6 includes Paper 4, which focuses on integrating knowledge using the con-

versational question answering task with prompt-based and instruction-based tuning.

• Finally, Chapter 7 gives a conclusion regarding the proposed research questions.
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1.5 Research Context

The research work in this PhD thesis has been carried out as part of a four-year PhD pro-

gram at the Department of Computer Science at Norwegian University of Science and Tech-

nology within the DNB collaboration project. The DNB collaboration project is funded by

DNB (Den Norske Bank) with project number 90393101. The main objective of the DNB

collaboration project is to research and develop the next-generation conversational agents

for the bank system. The work is also carried out in collaboration with the Norwegian

Research Center for AI Innovation (NorwAI) at NTNU, with project number 990109102.



Chapter 2

Background

In this section, we introduce the background of the thesis. We start with literature reviews

in Section 2.1, where we give a thorough review of the topics covered in this thesis. We then

illustrate the technical background in Section 2.2, where we introduce the architecture of all

the basic models that we use as baselines in this thesis. Finally, we describe the challenges

in Section 2.3, where we identify the challenges that the research questions come from.

2.1 Literature Reviews

2.1.1 A Brief Introduction to Conversational Agents

Conversational agents are specialized software programs designed to engage with users

in natural language dialogue, facilitating various tasks or simply providing information.

They are rooted in Natural Language Processing (NLP), a subfield of artificial intelligence

(AI), and they focus on the interaction between computers and humans through natural

language (Diederich et al., 2022). Conversational agents are often designed to understand

context, manage conversation flow, and even adapt to users over time. They are typically

more advanced than traditional chatbots, which are usually scripted and rule-based, lacking

the ability to handle a wide variety of conversational contexts. Chatbots generally follow

predetermined pathways or use simple keyword matching to interact with users.

On the other hand, a dialogue system is a broader term that encompasses both chatbots

11
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and conversational agents (Arora et al., 2013). It refers to any system that is designed to

converse with humans, whether through text, voice, or other modalities. Dialogue systems

can range from rudimentary systems that rely on pre-defined scripts to highly sophisticated

ones that use machine learning and NLP to interpret and generate human-like responses.

While all conversational agents and chatbots are dialogue systems, not all dialogue systems

can be accurately described as conversational agents or chatbots. For example, automated

phone systems that navigate through a series of preset options are technically dialogue

systems but lack the natural language understanding and generation capabilities of conver-

sational agents.

Some conversational agents can interact through various modes such as speech, text,

multi-modal interfaces, or even videos (Pelachaud, 2005). Speech-based conversational

agents often find applications in voice-activated systems like smart home devices and are

integral to technologies like Siri, Alexa, or Google Assistant. They focus on understand-

ing spoken language and providing audio responses. Text-based conversational agents are

more commonly found in customer service applications, messaging platforms, and other

written forms of communication. Multi-modal conversational agents are more versatile,

combining text, speech, and sometimes even gestures to interact with users, often found

in advanced robotics or augmented reality interfaces. Video-based conversational agents

add another layer of complexity by incorporating visual cues, such as facial expressions or

body language, to make the interaction more human-like.

In this thesis, we will focus on pure text-based conversational agents. These agents

deal solely with written language, interpreting text input from users and generating text re-

sponses. Despite not having the auditory or visual cues available in other modes, text-based

conversational agents have seen widespread adoption across various industries, primarily

due to their lightweight and efficient nature. Unlike video or speech-based agents, text-

based systems don’t require heavy computational resources for processing audio-visual

data, making them more accessible and easier to deploy.

An example of a generation-based conversational agent (Brown et al., 2020) is as fol-

lows:

User: ”What’s your favorite color?”

Agent: ”I don’t have preferences like humans do, but I can tell you that blue is often
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associated with calmness and red with passion. What’s your favorite color?”

User: ”I like green.”

Agent: ”Green is a color often associated with nature and renewal. It’s interesting that

you like green; it’s a color that has a lot of positive connotations.”

User: ”Tell me a joke.”

Agent: ”Sure, why did the scarecrow win an award?”

User: ”I don’t know, why?”

Agent: ”Because he was outstanding in his field!”

2.1.2 Generation-Based Conversational Agents

As mentioned above, conversational agents can be categorized into three types: rule-based

conversational agents, information-retrieval-based (IR-based) conversational agents, and

generation-based conversational agents. Conventional rule-based conversational agents,

exemplified by ELIZA (Weizenbaum, 1966), rely on manually crafted templates to address

diverse query types. Despite garnering affirmative evaluations (Colby et al., 1972), the re-

liance on such handcrafted templates imposes significant constraints on both the range of

feasible answers and response patterns. The inherent limitation lies in the fact that these

templates can only furnish a finite array of outputs. In contrast, IR-based conversational

agents leverage extensive corpora to derive responses, drawing from the semantic like-

ness between inquiries and potential retorts within the corpus (Jurafsky and Martin, 2009).

By capitalizing on the voluminous expanse of the corpus, these agents surpass rule-based

counterparts in generating a wider spectrum of responses. Nonetheless, these agents are

confined to extracting information from the corpus, which hinders their ability to generate

entirely novel responses.

Generation-based conversational agents, in contrast to their corpus-dependent counter-

parts, utilize words from a vocabulary list to ”synthesize” responses autonomously, en-

abling the production of novel responses. The conceptual framework underlying these

agents is akin to that of machine translation, wherein the translation references are replaced

by the responses expected to be generated. The initial strides in open-domain response gen-

eration were heavily influenced by the work of Ritter et al. (2011), treating the task akin to
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machine translation. Subsequently, propelled by the advancements in neural network tech-

nologies, the application of sequence-to-sequence models (Sutskever et al., 2014) gained

prominence in the realm of generation-based conversational agents, as demonstrated by

the works of Vinyals and Le (2015), Shang et al. (2015) and Sordoni et al. (2015). How-

ever, the recent proliferation of robust large-scale language models like GPT-2 (Radford

et al., 2018, 2019) catalyzed a surge in the development of generation-based conversational

agents, outperforming their sequence-to-sequence predecessors by a considerable margin

(Zhang et al., 2020).

Figure 2.1 illustrates the difference in the architecture of rule-based, IR-based, and

generation-based conversational agents.

Figure 2.1: Different architecture of rule-based, IR-based and generation-based conversa-
tional agents

While generation-based methods offer an impressively fluid dialogue, there are sce-

narios where the two other methods remain favored. For instance, in financial institutions

where the margin for error is infinitesimal, rule-based systems can ensure 100% accuracy,

eliminating the risk of ”hallucinations” or inaccurately generated responses. Similarly, IR-

based agents are indispensable when detailed, lengthy, and specific answers are required,

as they can pull this information directly from verified sources. Moreover, these older
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methodologies may be preferable in environments where data collection is restricted or

sparse, making it challenging to train a robust generation-based model (Ji et al., 2023).

In aware of the above, Generation-based conversational agents are particularly well-

suited for scenarios that require a high degree of contextual understanding and flexibility

in responses, since they can adapt to the nuances of human language, provide more per-

sonalized responses, and manage a wide range of queries, all while maintaining a natural-

sounding conversation flow (Brown et al., 2020). Additionally, these agents can better

handle ambiguous or unclear questions by either generating a clarifying question or mak-

ing educated guesses based on context, something that rule-based or IR-based systems

might struggle with. An important scenario where generation-based methods shine is in

interactive applications that aim to provide a more human-like experience. In these con-

texts, the goal is often to emulate human interaction as closely as possible, making the dy-

namic and adaptive nature of generation-based agents invaluable. To achieve these goals,

a generation-based conversational agent should have the ability to balance multiple knowl-

edge domains, deal with multiple question-response turns, and integrate knowledge into

the dialogue, which we will address in this thesis.

2.1.3 Multi Domains for Conversational Agents

Multi-domain is a concept in the field of natural language processing that refers to the

ability of a system, such as a conversational agent, to operate effectively across multiple

topics, contexts, or types of data (Ben-David et al., 2007). In the field of conversational

agents, multi-domain competence is not just a luxury but a necessity. Conversational agents

are increasingly integrated into various aspects of our daily lives—from customer service

and healthcare to personal assistance and social interaction. As these applications span

multiple domains, from daily chats to diagnosing system malfunctions, the ability of a

conversational agent to understand and adapt to different domains becomes crucial.

In a single-domain setting, the conversational agent is specialized in handling tasks or

discussions related to one specific area or subject. A customer support bot for a telecom

company can help you with queries about your bill, new plans, or technical issues, but it

won’t be able to book a flight ticket for you or offer medical advice. Its domain or area
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of expertise is ‘telecom customer support’. On the contrary, multi-domain conversational

agents extend this functionality by being skilled in more than one domain. It’s not as spe-

cialized as a single-domain agent but has broader capabilities. Multi-domain conversational

agents need to manage which domain to refer to when they receive questions from different

domains.

An open-domain conversational agent aims to engage in conversation across any topic

you can think of—be it politics, philosophy, pop culture, or even personal advice. These

agents require a deeper understanding of human language, context, and intent as they aim

to generate meaningful, coherent, and contextually relevant responses across an unlimited

set of domains. Open-domain conversational agents are assumed to give stable responses

across multiple domains, but this is not always the case. Techniques like multi-domain

learning (Joshi et al., 2012) and multi-task learning (Luan et al., 2017; Niu and Bansal,

2018), and fine-tuning (Akama et al., 2017) have been employed for domain adaptation.

To sum it up, generation-based conversational agents often serve open domains, offer-

ing versatility without the complexity of handling any possible topic, which means that they

need to change among multiple domains smoothly and generate responses accordingly.

2.1.4 Multi Turns for Conversational Agents

Not all conversational agents are created equal, and one significant differentiator is their

ability to handle multi-turn conversations versus single-turn conversations.

Single-turn conversational agents (Zhang et al., 2020) respond to a single user input

with a single output and do not maintain any context or history of previous interactions.

Each exchange between the user and the agent is self-contained. For example, if you ask

a single-turn agent what the weather is like, it might respond, ”It’s sunny and 75 degrees.”

If you then ask, ”How about tomorrow?”, the agent will not understand that ”tomorrow”

refers to the weather because it has no memory or context of the previous interaction.

On the other hand, multi-turn conversational agents (Serban et al., 2016) can maintain a

dialogue context over multiple turns of exchanges. So, if you ask the same multi-turn agent

what the weather is like and then ask, ”How about tomorrow?”, it would understand that

you are still talking about the weather and provide a relevant answer, such as, ”Tomorrow,
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it’s expected to be cloudy with a high of 68 degrees.”

Multi-turn capability is crucial for more complex interactions and tasks. In real-life

conversations, questions and answers are often not self-contained but rely on the context

built up over multiple turns. For example, you might ask a travel agent, ”Can you rec-

ommend a holiday destination?”, followed by a series of related questions like, ”How’s

the weather there?”, ”What activities can we do?”, and so on. A multi-turn conversational

agent can provide much richer, context-aware interactions, closely mimicking the dynamics

of human conversation. While single-turn conversational agents can be useful for simple,

isolated tasks, multi-turn conversational agents offer a more sophisticated, natural, and sat-

isfying user experience, particularly for complex queries and tasks that require context and

ongoing dialogue.

2.1.5 Conversational Question Answering

Conversational Question Answering (CQA) (Reddy et al., 2018; Choi et al., 2018) is a spe-

cialized area within Natural Language Processing (NLP) that focuses on enabling machines

to understand, process, and respond to questions posed in natural language during a dia-

logue or conversation. Unlike traditional question-answering systems that provide answers

to isolated queries based on a given document, conversational agents built for CQA also

need to keep track of the context on the basis of a given document to generate contextually

appropriate and coherent answers.

An example of traditional question answering can be as follows.

User: “What is the capital of France?”

System: “The capital of France is Paris.”

An example of conversational question answering can be as follows.

User: ”Tell me about France.”

System: ”France is a country in Western Europe known for its culture, history, and

landmarks like the Eiffel Tower.”

User: ”What’s its capital?”

System: ”The capital of France is Paris.”

In the second example, the system recognizes that ”What’s its capital?” refers to France,
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which was mentioned earlier in the conversation. This is a simple instance, but CQA can

get quite complex, especially in lengthy dialogues or those that involve multiple entities,

changing topics, or nested questions.

2.1.6 Prompt-Based Tuning and Prompt-Based Tuning

On one hand, prompt-based tuning is essentially the practice of fine-tuning a conversational

model based on the way you structure the prompt or the query you send to the model, which

usually introduces special characters to the prompts (Zhong et al., 2022). On the other hand,

instruction tuning, similar to prompt-based tuning, involves the refinement and optimiza-

tion of the instructions provided to a language model (Gupta et al., 2022). The difference

is that it seeks to improve the model’s understanding of the task or context through clear

and specific instructions, which are in natural language. Here, you introduce a set of exam-

ple inputs and their instructions along with the expected outputs during the training phase.

The model then adjusts its internal parameters to better match these example outputs when

given similar inputs in the future.

Both methods aim to improve the performance of conversational agents, but they do so

in different ways. Prompt-based tuning is more structured while instruction-based tuning

can be formed as natural languages. A technical introduction to prompt-based tuning and

instruction-based tuning can be found in Section 6.2.4.

2.2 Technical Background

The basic task of generation-based conversational agents is to predict the next token given

all the past and current tokens from the context and response, and to make the predicted re-

sponse as similar to the original response as possible. Formally, the probability of response

Y given context X is predicted as:

P (Y |X) =
∏n

t=1 p(yt|y1, . . . , yt−1, X), (2.1)

where X = x1, . . . , xm and Y = y1, . . . , yn are a context-response pair.
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2.2.1 RRN-Based Models

Figure 2.2: The architecture of an LSTM unit1, adapted from Hochreiter and Schmidhuber
(1997)

Recurrent Neural Networks (RNNs) are a type of neural network that is designed to

handle sequential data, which suits the task of generation-based conversational agents. Un-

like traditional feedforward neural networks, which process a fixed-size input and output,

RNNs allow for the processing of variable-length input sequences by sharing the same set

of weights across all time steps. This allows the network to maintain an internal state,

which can capture important contextual information from the previous time steps and use

it to inform the current prediction. Long Short-Term Memory (LSTM) (Hochreiter and

Schmidhuber, 1997) is a type of RNN that was designed to address the vanishing gradi-

ent problem, which can occur when training traditional RNNs. The vanishing gradient

problem is caused by the fact that gradients can become exponentially small or large when

backpropagating through many time steps. LSTMs use a more complex gating mechanism

than traditional RNNs, which allows them to selectively retain or forget information from

the previous time steps based on the current input. This gating mechanism, which is com-

posed of input, forget, and output gates, helps LSTMs to maintain long-term dependencies

and prevent the gradients from vanishing or exploding during training. The structure of an
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LSTM unit is illustrated in Figure 2.2 and can be described as:

it = σ(WziE(zt) +Whiht−1 +Wcict + bi) (2.2)

ft = σ(WzfE(zt) +Whfht−1 +Wcfct + bf ) (2.3)

C̃t = tanh(WzcE(zt) +Whcht−1 +Wccct + bc) (2.4)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (2.5)

ot = σ(WzoE(zt) +Whoht−1 + bo) (2.6)

ht = ot ⊙ tanh(Ct) (2.7)

where E(zt) is the word embedding for word zt ∈ (x1, . . . , xm, y1, . . . , yn−1), ht−1 is the

hidden state vector from the previous step, and ct is the context vector passed only to the

decoder at step t. it is the input gate vector at step t, ft is the forget gate vector at step t,

C̃t is the candidate cell state vector at step t, Ct is the cell state vector at step t, ot is the

output gate vector at step t, and ht is the hidden state vector at step t. Wzi,Wzf ,Wzc,Wxo

are weight matrices applied to input vector zt. Whi,Whf ,Whc,Who are the weight matrices

applied to the hidden state vector ht−1. bi, bf , bc, bo are the bias terms. σ is the sigmoid

function, and ⊙ denotes element-wise multiplication.

In this thesis, we apply dot multiple in the attention mechanism when calculating the

context vector ct:

ct = H · (softmax(H⊤ · ht−1) (2.8)

where H ∈ Rd×m is the concatenation of hidden vectors from the encoder. ct is input to

step t in the decoder.

In the following chapters, we simplify the structure containing multiple layers of the

above-described LSTM units with attention unit as LSTM ∗. We calculate the hidden vector

ht at step t as:

ht = LSTM ∗(E(zt), ht−1, ct) (2.9)

where E(zt) is the word embedding for word zt ∈ (x1, . . . , xm, y1, . . . , yn−1), ht−1 ∈ Rdim

is the hidden vector at step t − 1, dim is the dimension of hidden vectors, and ct is the

1https://en.wikipedia.org/wiki/Long_short-term_memory

https://en.wikipedia.org/wiki/Long_short-term_memory
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context vector at step t.

2.2.2 Transformer-Based Models

Figure 2.3: The architecture of Transformer2, adapted from Vaswani et al. (2017)

The Transformer model (Vaswani et al., 2017) is a type of neural network architecture

that is based solely on the attention mechanism. Unlike previous sequence models, the

Transformer does not rely on recurrent neural networks (RNNs) or convolutions. Instead,

it uses multi-head attention to capture dependencies between different parts of the input

sequence, and position-wise fully connected feed-forward layers to transform the represen-

tations. The model consists of an encoder and a decoder, each of which contains multiple
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layers of self-attention and feedforward neural networks. The architecture of the Trans-

former model is illustrated in Figure 2.3.

The Multi-Head Attention module based on the Scaled Dot-Product Attention is the

core of the Transformer model. The structure of this module is illustrated in Figure 2.4.

It is clear from the figure that the multi-head attention consists of several ”heads,” each of

which applies Scaled Dot-Product Attention to a different projection of the input.

Figure 2.4: The architecture of the Scaled Dot-Product Attention and the Multi-Head At-
tention, adapted from (Vaswani et al., 2017)

The Scaled Dot-Product Attention conducts self-attention by transforming the input

sequence into three parts: the queries Q, the keys K, and the values V , all of which have the

same dimensionality dim. The Scaled Dot-Product Attention can be described as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
dim

)
V . (2.10)

This equation can be interpreted as a weighted sum of V , where the weights are de-

termined by the dot product between each Q and each K, scaled by the square root of the

dimensionality of each K. In practice, the transforming of the input vectors into Q,K,

2https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)

https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)
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and V is achieved through linear transformation, where each weight matrix has the same

dimensionality as the input vectors, and is learned during the training process.

Instead of performing a single self-attention on the input vectors with the model’s di-

mension, the multi-head attention splits the model dimension dim evenly h designated

heads with dimension hdim, which allows the model to attend to multiple aspects of the

input sequence simultaneously. The queries Q, the keys K, and the values K are split into

h sets and are projected into these hdim-dimensional subspaces using learned linear pro-

jection matrices, after which the Scaled Dot-Product Attention is applied separately to each

set of Q, K and V . It can be described as follows:

MultiHead(Q,K, V ) = Concat (head1, . . . , headh)W
O, (2.11)

where Q,K, V ∈ Rdim, WO ∈ Rdimh×dim, and dimh denotes for the sum for all hdim.

For each headi (i ∈ {1, . . . , h}), the Scaled Dot-Product Attention is applied as follows:

headi = Attention(Qi, Ki, Vi) = softmax
(

QiK
T
i√

hdim

)
V , (2.12)

where Qi, Ki and Vi are the projections from Q, K and V to the i-th head with the learned

linear projection matrices. In practice, usually hdim = dim/h.

The Multi-Head Attention module allows the model to jointly attend to different parts

of the input sequence in parallel, which can improve the model’s ability to capture complex

dependencies and long-range dependencies. Each of the multiple heads in the module

focuses on a different aspect of the input sequence, which allows the model to capture

both local and global dependencies between words, making it particularly suitable for the

response generation task.

After the Multi-Head Attention module, there follows the Position-Wise Feed-Forward

module, which consists of two linear transformations followed by a non-linear activation

function. Specifically, given an input vector x ∈ Rn×dim, where n is the length of the

sequence and dim is the hidden dimensionality of the model, the FFN can be expressed as

follows:

FFN(x) = max(0, xW1 + b1)W2 + b2, (2.13)
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where W1 ∈ Rdim×dff , b1 ∈ Rdff , W2 ∈ Rdff×dim, and b2 ∈ Rdim are learnable weight ma-

trices and bias vectors, and dff is the size of the hidden layer in the feed-forward network.

The non-linear activation function used in the Transformer is the ReLU function, which is

applied element-wise.

The purpose of the position-wise FFNs is to provide a simple yet powerful mechanism

for modeling complex relationships between input tokens, independent of their positions.

By applying a non-linear transformation to each token independently, the FFNs can capture

higher-order interactions between tokens that might not be captured by the self-attention

mechanism alone.

The Transformer has achieved state-of-the-art performance on a wide range of natural

language processing tasks, including machine translation, language modeling, and question

answering. For the response generation task, a sub-structure of the Transformer consisting

of only the decoder part is widely used, since the decoder part is designed to predict the

next word in a sequence based on the context of the previous words, which is exactly what

the task asks for. In this thesis, we employ GPT (Generative Pre-trained Transformer)

(Radford et al., 2018, 2019), which is a pre-trained transformer using only the decoder part

of the Transformer architecture. Specifically, we utilize GPT for a response generation task

following Wolf et al. (2019) and calculate the hidden vector to be input to the Transformer

block as follows:

h0[t] = E(X, Y[1:t]) + (E0, E1) +Wp, (2.14)

where Y[1:t] is (y1, . . . , yt), E(X, Y[1:t]) is the sub-word embedding for context X and re-

sponse Y[1:t]. E0 and E1 are dialogue-state embeddings, which tutor the model to dis-

tinguish between contexts and responses. Wp is a pre-trained position embedding. The

probability of the subword to generate is then calculated as:

h[t] = GPT Block(h0[t]) (2.15)

P (y)t+1 = softmax(E⊤(h[t])), (2.16)

where y ∈ V , and V stands for the sub-word vocabulary. We simplify the Transformer

block of GPT as GPT Block. We fill a mask to the attention matrix to ban past words from

attending to future words, which ensures that the model follows the traditional language



CHAPTER 2. BACKGROUND 25

modeling. The hidden vector of tth sub-word is used to generate the probability distribution

for the vocabulary (P (y), y ∈ V ) for (t + 1)th sub-word. E⊤ means that the model uses

the sub-word embeddings in calculating sub-word probabilities for generation.

2.3 Research Challenges

2.3.1 Balancing Multi Domains for Conversational Agents

In the last ten years, substantial improvements have been made (Serban et al., 2017; Li

et al., 2016; Wolf et al., 2019) on generation-based conversational agents; however, most

works are restricted to single-corpus training and evaluating, and there is a lack of work that

balance generation-based conversational agents over multiple corpora. We thus propose

research question RQ1: How can we balance multi-domain training corpora for generation-

based conversational agents to improve the relevance of the generated responses? We use

the first paper Paper 1 to answer the question. Paper 1 follows the common models of

open-domain conversational systems while studying the problem of multiple corpora where

each corpus comes from a different domain.

Previous works use embeddings to control response generation on extra information

such as persona (Li et al., 2016), profiles (Yang et al., 2017), coherence (Xu et al., 2018),

emotions (Huang et al., 2018), and dialogue attributes like response-relatedness (See et al.,

2019). Nevertheless, there is a dearth of studies that leverage embeddings to control re-

sponse generation across multiple corpora.

Another method to balance multi-domain over a generation-based conversational agent

is through multi-domain learning, which aims at making a conversational model learn from

multiple domains to prevent the performance from degrading due to domain differences

(Ben-David et al., 2007). There are two categories of solutions for multi-domain learning

(Joshi et al., 2012): (i) capturing domain-specific characteristics with additional parameters

while preserving parameters that captured domain-general behaviors (Daumé III, 2007);

(ii) capturing the relationship among different domains using tools like task-relationship

matrix (Saha et al., 2011). Some work of natural language generation and machine trans-

lation is related to multi-domain learning. Luan et al. (2017) and Niu and Bansal (2018)
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use multi-task learning for domain adaption respectively on speaker-role and politeness.

Wen et al. (2016) and Akama et al. (2017) utilize fine-tuning as a common way of domain

adaption for language generator and style transferer. For machine translation, in order to

deal with the mixed-domain parallel corpus, Zeng et al. (2018) adjust the weights of tar-

get words in the training objective based on their relevance to different domains. Paper 1
differs in that we propose DF and we deal with the response generation task. Chu et al.

(2017) propose mixed fine-tuning, which adds the out-of-domain pre-training data to the

fine-tuning dataset, and they observe an improvement of performance. In Paper 1, we also

mix small-scale fine-tuning datasets with out-of-domain training data, while the data we

add is not necessarily used during pre-training. Shi et al. (2015) state that fine-tuning can

be done by placing the corpus to be fine-tuned at the end of the entire corpus, which is an

extension of curriculum learning proposed by Bengio et al. (2009). We also explore how

the order of multiple corpora influences the result in Paper 1, but our focus is on balanc-

ing performance. Recently, Smith et al. (2020) investigated blending conversational skills

with knowledge and empathy skills, where they mix 3 corpora. They focus on selecting

appropriate skills and they propose a blended corpus with labels, while Paper 1 focuses on

generating responses that are most relevant to a specific corpus.

2.3.2 Dealing with Multi-Turn Conversational Agents

The majority of generation-based conversational agents employ a straightforward concate-

nation technique for modeling multi-turn conversations (Zhao et al., 2020a; Zhang et al.,

2020). Unfortunately, this method treats a multi-turn context as though it were a solitary

utterance, thereby impeding the conversational agent’s proficiency in handling multi-turn

contexts. In this thesis, we delve into the prospect of this problem guided by the follow-

ing research question RQ2: How can we improve the awareness of multi-turn context on

generation-based conversational agents? We answer RQ2 with papers Paper 2 and Paper
3.

A conventional approach to modeling multi-turn conversations involves utilizing a hi-

erarchical structure. Serban et al. (2016) and Serban et al. (2017) first introduce the hi-

erarchical structure to dialogue models. Tian et al. (2017) evaluate different methods for



CHAPTER 2. BACKGROUND 27

integrating context utterances in hierarchical structures. Zhang et al. (2018b) further eval-

uate the effectiveness of static and dynamic attention mechanism. Gu et al. (2021) apply a

similar hierarchical structure on Transformer, and propose masked utterance regression and

distributed utterance order ranking as the training objectives. Different from hierarchical

models, Li et al. (2021) encode each utterance with a special token [C] and apply a flow

module to train the model to predict the next [C]; then they use semantic influence (the

difference of the predicted and original tokens) to support generation. In Paper 2, instead

of modelling the relations of inter-context utterances as Gu et al. (2021) or the dialogue

flow as Li et al. (2021), we propose an optimization strategy that improves multi-turn mod-

elling by distinguishing important/unimportant utterances directly on the attention mech-

anism, which is also used as a novel evaluation metric. Common evaluation metrics for

conversational agents measure the similarity between the generated responses and the gold

responses, while they do not gauge a generation-based conversational agent’s proficiency in

handling multi-turn contexts. Liu et al. (2016) summarizes commonly used metrics: word

overlap-based metrics (e.g. BLEU) and embedding-based metrics. Bruni and Fernandez

(2017) propose an adversarial evaluation method, which uses a classifier to distinguish

human responses from generated responses. Lowe et al. (2017) propose a model that sim-

ulates human scoring for generated responses. Zemlyanskiy and Sha (2018) examine the

quality of generated responses in a different direction: how much information the speak-

ers exchange with each other. Recently, Li et al. (2021) propose a metric that evaluates the

human-likeness of the generated response by measuring the gap between the corresponding

semantic influences. Different from the above, the evaluation metric proposed by Paper 2
is based on the attention mechanism and is intended to measure a model’s performance on

attributing attention to important utterances in a multi-turn context.

In Paper 3, we examine using context-summarization modules to improve the aware-

ness of multi-turn context for conversational agents with and without hierarchical structure.

A similar direction of combining summarization and multi-turn dialogue modeling is the

integration of topic models, though current works in this direction are all on single-turn

dialogues. Li and Sun (2018) uses a classifier to select the keyword for a given query

from a pre-generated keyword list. Yao et al. (2017b) and Mou et al. (2016) use PMI to

choose a keyword for a given query from a big corpus. Similarly, Xing et al. (2017) and
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Baheti et al. (2018) uses a topic model to predict the keyword out from vocabulary words.

In Paper 3, we also examine if a topic model can improve the context-awareness of dia-

logue models. As mentioned in Yao et al. (2017a), a typical way to construct labeled data

for extractive summarization is to set ROUGE. Most works including Kedzie et al. (2018)

construct gold label sequences by greedily optimizing ROUGE-1, which is the algorithm

ORACLE. Further, although in Paper 3 we stick to extractive summarization due to lack

of suitable conversational datasets for abstractive summarization, we look forward to this

kind of dataset from Gliwa et al. (2019).

2.3.3 Conversational Question Answering, prompt-based tuning and
instruction-based tuning

For generation-based conversational agents, integrating knowledge is a hot topic to answer

(Parthasarathi and Pineau, 2018; Ghazvininejad et al., 2018), and we deal with it using

the task of generative conversational question answering (QA), which provides documents

as a knowledge source and require a model to answer a question based on the knowledge

source. We propose the research question RQ3: How can we improve the quality of gener-

ated responses on knowledge for generation-based conversational agents under multi-turn

conversational question answering context? In addressing this query, Paper 4 explores the

impact of incorporating instruction tuning, prompt tuning, and multi-task learning on the

performance of generation-based conversational agents under the task of multi-turn con-

versational question-answering.

Generative QA models (Izacard and Grave, 2021; Khashabi et al., 2020; Lewis et al.,

2020; Raffel et al., 2020) have shown remarkable performance, where the goal is to gener-

ate answers by autoregressively predicting tokens. Generative methods are more often used

in open domains (Izacard and Grave, 2021; Lewis et al., 2020; Raffel et al., 2020; Xiong

et al., 2021) and unified settings (Khashabi et al., 2020; Tafjord and Clark, 2021). Raffel

et al. (2020) proposed to use large pre-trained generative models, without using additional

knowledge, for open-domain question answering. Lewis et al. (2020) introduced retrieval-

augmented generative models for open-domain question answering. Khashabi et al. (2020)

and Tafjord and Clark (2021) proposed to learn various QA formats in a unified way to



CHAPTER 2. BACKGROUND 29

alleviate the manual effort of task-specific design.

In earlier times, recurrent neural networks (RNN) and attention variations were used to

model multi-turn conversational QA tasks (Reddy et al., 2018; Zhu et al., 2018). Modern

approaches leverage transformer-based pre-trained language models for QA by fine-tuning

the models on annotated data from downstream QA tasks (Joshi et al., 2020; Lan et al.,

2019; Chada and Natarajan, 2021; Ram et al., 2021). Capitalizing on pre-trained large

language models, recent efforts have incorporated prompt-based tuning into the realm of

multi-turn conversational question answering, which enhances the performance of gener-

ation through refining or optimizing the prompts given to a large language model. For

instance, Chada and Natarajan (2021) proposed to cast QA as a text-generation problem by

designing a prompt of a concatenation of the question and a special mask token representing

the answer span. Similarly, Chen et al. (2023) proposed to use Masked Language Model on

entities to enhance few-shot QA learning. A technical introduction of prompt-based tuning

can be found in Section 6.2.3.

However, none of the aforementioned research works adopt instructions in prompt-

based tuning for QA tasks. Recent literature has been motivated by building models that

are generalizable across a variety of NLP tasks when prompted with a few examples (Bragg

et al., 2021; Min et al., 2022a,b) or language definitions and constraints. Weller et al.

(2020); Xu et al. (2022) introduced natural language instructions to improve the perfor-

mance of LMs such as BART and GPT-3 for cross-task. Followed by this, FLAN Wei et al.

(2022) has been proposed, which uses instructions to achieve generalization across unseen

tasks. Recently, Khashabi et al. (2022) have shown that reframing instructional prompts

can boost both few-shot and zero-shot model performance. The InstructGPT model is pro-

posed, which is fine-tuned with human feedback (Ouyang et al., 2022). Puri et al. (2022)

introduced instruction augmentation to improve model performance in task-specific, multi-

task and cross-task learning paradigms. Prasad et al. (2022) introduced Gradient-free In-

structional Prompt Search (GrIPS) to improve task instructions for large language models.

Motivated by the effectiveness of instruction tuning. in Paper 4, we explore the potential

application of employing the combination of instruction-based and prompt-based tuning

for conversational question answering response generation.





Chapter 3

Balancing Multi-Domain Corpora

Open-domain conversational systems are assumed to generate equally good responses on

multiple domains. Previous work achieved good performance on the single corpus, but

training and evaluating on multiple corpora from different domains is less studied. This pa-

per explores methods of generating relevant responses for corpora from different domains.

We first examine interleaved learning which intermingles multiple corpora as the baseline.

We then investigate two multi-domain learning methods, labeled learning and multi-task

labeled learning, which encode each corpus through a unique corpus embedding. Further-

more, we propose Domain-specific Frequency (DF), a novel word-level importance weight

that measures the relative importance of a word for a specific corpus compared to other

corpora. Based on DF, we propose weighted learning, a method that integrates DF to the

loss function. We also adopt DF as a new evaluation metric. Extensive experiments show

that our methods gain significant improvements on both automatic and human evaluation.

We share our code and data for reproducibility.1

3.1 Introduction and Related Works

Recent work has achieved improvements in general performance for open-domain response

generation (Vinyals and Le, 2015; Serban et al., 2017; Li et al., 2016; Xu et al., 2018).

1https://github.com/yujie-xing/Balancing_Multi_Domain_Corpus_Learning_
for_Open_Domain_Response_Generation
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Context What are you going to do on the
remote system exactly?

PersonaChat I am going to be a pilot. I am
going to fly planes.

4 corpora
(concate-
nated)

I am going to go to the beach.

Table 3.1: Irrelevant responses generated from fine-tuned GPT-2. The GPT-2 model is
fine-tuned respectively on PersonaChat / concatenated 4 corpora (OpenSubtitles, Twitter,
Ubuntu, PersonaChat)

Test set
Fine-tune corpus OSDB TwitterUbuntuPersonaChat
PersonaChat 478.8 159.6 264.7 19.6
4 corpora
(concatenated) 392.8 110.7 199.2 19.0

Table 3.2: Imbalanced perplexity performance of fine-tuned GPT-2. The GPT-2 model
is fine-tuned on PersonaChat / concatenated 4 corpora (OpenSubtitles, Twitter, Ubuntu,
PersonaChat)

However, most studies are restricted to single-corpus training and evaluating, while there

is a lack of studies that train and evaluate corpora from different domains. Single-corpus

training has intrinsic limitations. For example, a corpus of everyday chats, e.g., the Per-

sonaChat corpus (Dinan et al., 2019), does not cover technical topics discussed in Ubuntu

chatlogs (Lowe et al., 2015). A conversational system that learns only from PersonaChat

or from multiple corpora without an appropriate technique is not likely to generate relevant

responses for certain topics (see Table 3.1). Therefore, it is necessary for an open-domain

conversational system to learn from multiple corpora, and to learn with good techniques.

Furthermore, the case of using a single small-scale open-domain corpus has apparent

weaknesses. A common way of dealing with a small-scale corpus is through fine-tuning

(Li et al., 2016; Akama et al., 2017; Chu et al., 2017). Fine-tuning on a single corpus tends

to make the model overfit on that specific corpus while performing worse on other corpora.

Table 3.2 shows the result of a GPT-2 model gaining good performance on PersonaChat

while performing poorly on other corpora.

This paper explores how to train and evaluate on multiple corpora from different do-

mains for the open-domain response generation task. We propose several methods to make
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a model generate relevant responses for each of the multiple corpora.

Since simply training multiple corpora one by one does not solve the imbalanced perfor-

mance (as shown in Table 3.1 and 3.2), we first investigate interleaved learning, a method

that intermingles the training data instead of simply concatenating, which ensures a model

learns from all corpora evenly. We use this method as a baseline. Additionally, we ex-

plore two multi-domain learning methods: labeled learning and multi-task labeled learn-

ing. Labeled learning comes from a control technique in response generation (Li et al.,

2016; Johnson et al., 2017; Yang et al., 2017). Previous works focus on controlling persona

and style, while our method controls the corpus’ information with the corpus embedding.

Multi-task labeled learning is inspired by work of domain adaption (Luan et al., 2017; Niu

and Bansal, 2018; Chu and Wang, 2018), where multiple losses from both the corpus clas-

sifier and response generator are minimized. To the best of our knowledge, this paper is the

first that uses corpus embeddings on the open-domain response generation task for multiple

corpora.

Furthermore, we propose a novel weighted learning with Domain-specific Frequency

(DF). DF is a word-level importance weight (Leopold and Kindermann, 2002) that assigns

different weights (importance) to the same words from different corpora. In the training

process, we weight the loss of a model with DF, so that the model focuses on the most

important words for a specific corpus.

For automatic evaluation metrics, we eliminate the stop words and use ROUGE-1 (pre-

cision, recall, F1) (Lin, 2004) to measure the relevance of the generated responses. In

addition, we adopt DF to see how relevant the generated response of a model is to a spe-

cific corpus. We will explain DF as an evaluation metric in Section 3.2.4. Results show that

for overall performance, the best method (weighted learning) improves 27.4% on precision,

45.5% on recall, and 34.1% on F1. Further, it has at least 20.0% higher DF, stating that it

uses more important words from the “correct” corpus. We also conduct an extensive human

evaluation on 2400 generated responses. The human evaluation shows a highly significant

(p < 0.001) improvement on all of our proposed methods, especially the weighted learning

method.

We summarize our work as follows:

• We explore the problem of training and evaluating on multiple corpora from different
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domains for open-domain response generation. The task is to make the conversa-

tional models generate relevant responses for each corpus.

• We examine several multi-domain corpora learning methods for their ability to solve

the proposed task.

• We propose Domain-specific Frequency (DF) as in weighted learning and as an eval-

uation metric. DF distinguishes important words for each corpus and helps a model

to focus on these important words in the training process.

3.2 Methodology

We use two base models: an LSTM Seq2Seq model with attention (Hochreiter and Schmid-

huber, 1997; Sutskever et al., 2014; Bahdanau et al., 2015) and a pre-trained GPT-2 model

(Radford et al., 2019). The LSTM Seq2Seq model with attention is a common model for

conversational systems (Li et al., 2016; See et al., 2019), and the GPT2 model is a state-of-

the-art model for the response generation task (Zhang et al., 2020; Zhao et al., 2020b). The

structure of the two base models are described in Section 2.2. We simplify an LSTM with

attention unit as LSTM ∗, and the structure of the transformer block in GPT2 as GPT block.

3.2.1 Interleaved Learning

Interleaving is a concept in cognitive psychology proven to be efficient for learning (Kor-

nell and Bjork, 2008): intermingling learning material of different topics helps students to

gain better learning results than learning the material topic by topic. Previous work from

machine learning also shows that training order greatly influences the performance (Bengio

et al., 2009). When the training is conducted on a simple concatenation of multiple corpora,

the model tends to concentrate on the last corpus (Shi et al., 2015). To address this issue, we

propose interleaved learning as an alternative: each time we collect one context-response

pair from each of the corpora, and we randomly shuffle them. For example, if there are 3

corpora (a1, a2, ...), (b1, b2, ...), (c1, c2, ...) where ai, bi and ci are context-response pairs, the

resulting mixed corpus might be (b1, a1, c1, c2, b2, a2, ...). Interleaved learning guarantees
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Which version ? [EOS] I use Ubuntu 16.04 .

I use Ubuntu 16.04 . [END]

Corpus Embedding

Corpus Classifier

Loss1 Loss2+

(a) Structure of multi-task labeled learning on LSTM model
Which Gversion ? [SEP] I Guse GUbuntu G16 .

Corpus EmbeddingContext Embedding

Position Embedding

+

+

04 .

(b) Corpus embeddings with sub-word embeddings on GPT-2

.

LSTM / GPT2

[EOS]?versionWhich 16.04UbuntuuseI

.16.04UbuntuuseI [END]

DFOSDB DFTwitter DFUbuntu DFPersonaChat

OSDB Twitter Ubuntu PersonaChat

.16.04UbuntuuseI [END]0.2

Loss
×

Backward

0.8 1.0 1.0 1.0 1.0

(c) Structure of weighted learning

Figure 3.1: Adapted models with labeled learning, multi-task labeled learning and weighted
learning
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that the combined corpus is evenly distributed, which helps the model learn from multiple

corpora evenly.

3.2.2 Labeled Learning

We propose our labeled learning as follows: each corpus is assigned a randomly initialized

unique embedding, and the conversational model learns these embeddings together with

conversations during the training period. We denote these embeddings as “corpus embed-

ding”, or Ec. A model captures each corpus’s characteristics through the corpus embedding

and uses it to control the generated responses. To know which corpus embedding to use,

each context-utterance is labeled with which corpus it comes from, and these labels are

provided to the model both in the training and generation period. We propose an approach

for each of our base models for encoding corpus embeddings.

For the LSTM model, following Li et al. (2016), we input the corpus embedding Ec

into the first layer of the decoder LSTM at every step, together with the response words.

Calculation of a hidden vector ht in the decoder LSTM is then adapted to:

ht = LSTM ∗(ht−1, E(yt), Ec). (3.1)

The structure is illustrated in the dashed red rectangle of Figure 3.1a.

For the GPT-2 model, our method is based on Wolf et al. (2019). Instead of two kinds

of dialogue-state embeddings (context embedding E0 and response embedding E1), we

replace the response embedding with corpus embeddings Ec. As a result, the model is

aware of which corpus the response belongs. Calculation of a hidden vector to be input to

the transformer block is adapted to:

h0[t] = E(X, Y[1:t]) + (E0, Ec) +Wp. (3.2)

The structure is illustrated in Figure 3.1b.
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3.2.3 Multi-Task Labeled Learning

Labeled learning needs corpus labels for both training and generation processes. To avoid

providing labels in the generation process, we combine multi-task learning with labeled

learning on multiple corpora. Here, the conversational model has to predict by itself which

corpus a context-utterance belongs to, which is expected to result in worse performance,

but less information is required. In the encoder, we have a classifier layer that uses the sum

of hidden vectors from the encoder (
∑

H) to predict the corpus of a context-utterance. The

loss of the classifier is calculated as:

Lc = −log
(
softmax

((∑
H
)
·W[c]

))
, (3.3)

where W[c] ∈ Rdim is the part from the classifier layer for target corpus c. Lc is summed

up with the loss from the response generator. The predicted corpus embedding is input into

the decoder like labeled learning (see Section 3.2.2). The simplified structure is illustrated

in Figure 3.1a.

3.2.4 Document-specific Frequency (DF)

We propose Domain-specific Frequency (DF) to measure how important a word is with

respect to a different corpus under a collection of corpora. DF is used for weighted learning

and evaluation. It is calculated as follows:

f(w)d = freq(w)d −minv{freq(v)d} (3.4)

df(w)d =

0 f(w)d = 0

f(w)d∑
d∈D f(w)d

f(w)d ̸= 0
(3.5)

DF(w)d =
df(w)d

maxv{df(v)d}
, (3.6)

where freq(w)d is the relative frequency of a word w in a corpus d, and D represents the set

of all corpora. It is easy to see from Equation 3.5 that DF(w)d represents the importance

of word w for corpus d compared to other corpora. For a word w that frequently appears in
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corpus d but seldom in other corpora (e.g., “upgrade” from Ubuntu corpus),
∑

d∈D f(w)d is

close to f(w)d, making DF(w)d approach 1. A word that frequently appears in all corpora

(e.g., “I”, “you”) is punished, resulting in a lower DF(w)d. A word that seldom appears in

corpus d but frequently appears in other corpora (e.g., “music” seldom appears in Ubuntu

corpus, but is common in other corpora) has the lowest DF(w)d. Words that appear minimal

times (e.g., once) in a corpus are ignored with Equation 3.4. Words that appear few times

(e.g., twice or three times) are not dealt with, yet they are not of great influence in our

experiments. We apply a normalization in the final step (Equation 3.6) to make DF(w)d of

each corpus d range from 0 to 1.

We show DF(w)Ubuntu and DF(w)PersonaChat of some words in Table 3.3. We also show the

results of TF-IDF (log normalization variant), a commonly used word importance weight,

as a comparison. As expected, for the corpus Ubuntu and PersonaChat, most unique words

w have very different DF(w)Ubuntu and DF(w)PersonaChat. Unique words of each corpus get

the highest values for the corresponding corpus, like “upgrade” for the Ubuntu corpus and

“music” for the PersonaChat corpus; these words receive the lowest values for incorrect

corpora, like “upgrade” for PersonaChat and “music” for Ubuntu. The stress on unique

words makes DF more suitable for our task.

Word TF-IDF(%) DF(%) αDF(α=100)

Ubuntu PersonaChat Ubuntu PersonaChat Ubuntu PersonaChat

i 100.0 62.6 20.8 42.1 2.6 7.3
to 64.6 32.8 26.9 24.9 3.8 3.1
it 83.2 21.7 38.5 14.5 5.1 2.1

laptop 5.4 0.2 89.8 4.5 76.0 1.0
upgrade 6.8 0.1 95.6 0.4 91.2 1.0

file 15.7 0.1 96.0 0.3 86.4 0
windows 12.2 0.1 97.1 0.1 86.3 1.0
ubuntu 27.5 0 99.9 0 99.5 0
teacher 0.1 2.2 0.7 77.8 1.0 53.5
music 1.5 7.6 4.8 82.9 1.2 49.1
travel 0.1 3.1 0.3 88.9 1.0 57.1
hobby 0.1 1.6 0.6 94.3 1.1 81.7
hiking 0 1.5 0 97.6 0 91.8

Table 3.3: Normalized TF-IDF (%), DF (%) and αDF of some words for Ubuntu and
PersonaChat (more examples on other corpora can be found in Section A.1)
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Weighted Learning with DF Weighted learning weights the loss of the predication y′ for

each target word w using DF(w)d. In the training period, each context is labeled with the

corpus d it belongs to, so that the model can use the DF(w)d of the corresponding corpus.

Here DF is calculated only on the training sets. In the generation step, corpus labels are not

provided, so DF is not used. The loss is weighted as follows :

Lweighted = DF(w)d · (−log (softmax (y′w))) , (3.7)

where y′w represents the model’s predicted score for the target word w. With the weighted

loss, the model concentrates on words that are important to the corpus of the current con-

text, and focuses less on frequent words or words that are not important to the current

corpus. The structure is illustrated in Figure 3.1c.

Evaluation with DF For the generated responses to be relevant to a specific corpus, they

have to be similar to that corpus, which includes using important words of that corpus

(e.g., responses generated for the Ubuntu corpus should have more technical words than

other corpora). Thus, we propose DF as an evaluation metric that shows to what extent the

generated responses use important words of the corresponding corpus. We want to decrease

the influence of common words like “i”, “to”, etc., and thus address the important words.

So we adopt exponential DF with α as the base (αDF):

αDF(w)d =

0 DF(w)d = 0

αDF(w)d DF(w)d ̸= 0,
(3.8)

where α is a constant. αDF(w)d rescales DF(w)d by exponent with α as a base. In our

experiments, we set α to be 100, which transforms the range of the metric from (0, 1) to

(0, 100). This makes the difference between high and low αDF more significant than DF

and gives a 100-scale score. For each corpus d ∈ D, we average αDF(w)d on word w from

the generated responses of each test set, which gives us αDFd scores (d ∈ D) for each

test set. Ideally, the generated responses of a specific corpus d should have a higher αDFd

score and lower αDFd score (d ∈ {d′ ∈ D | d′ ̸= d}). For example, generated responses

of the Ubuntu test set should have a higher αDFUbuntu score, while a lower αDFUbuntu score
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(Ubuntu ∈ {d′ ∈ D | d′ ̸= Ubuntu}). αDFd scores for responses from the original test sets

are the standard scores.

We show αDF(w)Ubuntu and αDF(w)PersonaChat (calculated purely on test set) in Table

3.3. As expected, αDF has a more significant difference between important words and

common words.

Is DF a Legal Evaluation Metric? Although DF is used for both weighted learning and

evaluation, we see DF as a suitable evaluation metric for our task and not biased in favor

of weighted learning due to: 1) A word receives multiple DF values in the training process

given the corpus that a context belongs to; 2) in the generation process, DF is never used.

3) In the evaluation process, DF can be calculated purely on the test sets. Note that since a

word receives multiple DF values in the training step, it is equivalently likely for the model

trained with weighted learning to be influenced by DF weights of incorrect corpus. Above

all, in the evaluation step, if the trained model is influenced more by DF weights from the

correct corpus, it already means that the model is good at distinguishing which corpus a

given context is from, thus is suitable for our task.

3.3 Experiment Setup

3.3.1 Datasets

Data Collection We collected 4 commonly used English corpora of different domains

from the ParlAI platform (Miller et al., 2017): OpenSubtitles corpus (OSDB)2 (Lison et al.,

2018), Twitter corpus3 (Miller et al., 2017), Ubuntu chatlogs corpus (Lowe et al., 2015)4 ,

and PersonaChat corpus (Zhang et al., 2018a) from the NeurIPS 2018 ConvAI2 Challenge

(Dinan et al., 2019). Each corpus contains 250K context-response pairs, as much as the

size of the original PersonaChat used in ConvAI2 competition. This gives us 1M context-

response pairs in total. The corpus for training is a combination of these 4 corpora. For

2http://www.opensubtitles.org/
3https://github.com/Marsan-Ma/chat_corpus/
4https://github.com/rkadlec/ubuntu-ranking-dataset-creator

http://www.opensubtitles.org/
https://github.com/Marsan-Ma/chat_corpus/
https://github.com/rkadlec/ubuntu-ranking-dataset-creator
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comparison, we have a single corpus–PersonaChat–trained on both base models. For test-

ing, each of the 4 corpora has a test set of 30K context-response pairs, which is the same

size of the test set of PersonaChat.

The OpenSubtitles corpus (OSDB) is a noisy dataset of film subtitles. We removed

films that belonged to genres that usually had few conversations, such as musical and doc-

umentary films. We regarded two neighboring sentences as a context-response pair follow-

ing Vinyals and Le (2015). The Twitter corpus contains one-turn dialogues extracted from

Twitter. The original author has already cleaned it, so we only removed special symbols

such as hashtags, Emojis, and @. The Ubuntu corpus contains dialogues about solving

technical problems of Ubuntu. The PersonaChat corpus contains dialogues between two

workers acting as specific personas; we focused on the dialogue part and ignored the per-

sona part. This corpus allows us to compare our base models with state-of-the-art perfor-

mance. These 4 corpora have very different characteristics, confirmed by the imbalanced

performance of GPT-2 fine-tuned on a single corpus (see Table 3.2).

3.3.2 Training and Decoding

We used Pytorch (Paszke et al., 2017) to implement the LSTM Seq2Seq model with at-

tention and the pre-trained GPT-2 models. For GPT-2, we adapted our model from the

implementation of the HuggingFace team5. The LSTM model has 4 layers and the dimen-

sion is 512. The training procedure was with a batch size of 256, learning rate of 1.0,

dropout rate of 0.2, and gradient clip threshold of 5. The vocabulary size is 50000. GPT-2

has 12 layers, 12 heads, and the dimension is 768, the same as the pre-trained model. The

training procedure was with Adam and we adopted a similar setup as Wolf et al. (2019):

the batch size was 32, learning rate was 6 × 10−5, β1 = 0.9, β2 = 0.999, L2 weight

decay set to 0.01, learning rate linearly decreased to zero at the end. We followed these

hyper-parameters to ensure state-of-the-art performance for the base models. We use the

same hyper-parameters for both base models and models with our proposed methods, so

the proposed methods work slightly (but not much) worse than it should be. This is to avoid

the extra improvement caused by hyper-parameters. We pre-trained the LSTM model on

5https://huggingface.co/.

https://huggingface.co/
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Table 3.4: Precision, recall and F1 of ROUGE-1 (‰) for baselines and proposed methods
fine-tuned on 4 corpora (stop words eliminated)

3 large-scale corpora (OSDB, Twitter and Ubuntu) with interleaved learning until con-

verging. GPT-2 is already pre-trained, so we directly used it for fine-tuning (details about
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Table 3.5: αDFd scores for generated responses from multiple corpora. The columns
“train” indicate train-set-αDFd. The columns “test” indicate test-set-αDFd.

pre-training convergence can be found in Section A.2). For decoding, we adopted greedy

decoding for all the models to ensure an equal condition.
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3.3.3 Evaluation

For automatic metrics, to measure the relevance of the generated responses, we eliminated

punctuation and stop words, and adopted Rouge-16 (precision, recall, F1) as multi-grams

become meaningless without stop words. However, Rouge-1 compares the generated re-

sponses with the golden ones, while there is never a standard response for any context, so

in addition to Rouge, we use αDF score that shows to what extent the generated responses

use important words of the corresponding corpus, as stated in Section 3.2.4. Due to the

limitation of automatic evaluation methods (Liu et al., 2016), we also conduct an extensive

human evaluation on the relevance of generated responses to contexts (see Section 3.4.1

for details).

Model \ Corpus OSDB Twitter Ubuntu PersonaChat Overall
PersonaChat (single) 1.53 1.43 1.21 2.09 1.56
Concatenated 1.67 1.71 1.60 2.16 1.78
Interleaved 2.04 1.89 2.18 2.24 2.09
Labeled 2.10 2.10 2.32 2.24 2.19
Multi-task Labeled 2.05 1.98 2.11 2.24 2.10
Weighted 2.40 2.45 2.61 2.47 2.48

Table 3.6: Average scores of human evaluation for GPT-2 based models on each corpus

3.4 Results

Our base models achieve perplexity scores of 28.9 (LSTM model) and 19.6 (GPT-2) on the

test set of the PersonaChat dataset from the ConvAI2 competition when fine-tuned with the

single PersonaChat corpus (more details can be found in Section A.3). These results would

likely advance the models to the second round in the competition.

Table 3.4 shows that models trained with our proposed methods gain better perfor-

mance on Rouge than baselines. Baselines concentrate on the last trained corpus (Per-

sonaChat), while with the proposed methods, performance is more balanced on multiple

corpora. Weighted learning has the best overall performance on all metrics, and it performs
6We used implementation from https://github.com/google-research/

google-research/tree/master/rouge.

https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
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Table 3.7: P-value for t-test on overall human evaluation scores of GPT-2 based models,
∗∗ p < 0.001

especially well on the Ubuntu corpus, indicating that it might be good at distinguishing

the unique technical words from the Ubuntu corpus. Labeled learning is the second best
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with stable improvement from interleaved learning, indicating that the corpus embeddings

function as expected. Multi-task labeled learning has slightly worse performance than in-

terleaved learning, indicating that predicting the corpus of a contexts is not easy, and wrong

predictions result in worse performance.

Table 3.5 shows αDFd scores for generated responses of each corpus. Full results can be

found in Section A.5. We use both αDFd calculated purely on the train set (train-set-αDF)

and αDFd calculated purely on the test set (test-set-αDF). The black scores are scores for

the corresponding corpus (we expect high scores for these parts), while the grey scores are

scores for non-related corpus–PersonaChat (we expect low scores for these parts). Note that

scores for different corpora are in different scales. From the table, we can see that train-set-

DF scores and test-set-DF scores are similar, and weighted learning always has the highest

score, indicating that weighted learning distinguishes well which corpus a context comes

from. Labeled learning is the second best, indicating that the learned corpus embeddings

help the model to use more important words of the corresponding corpus. Compared to the

concatenated corpus, the improvement is at least 20%, while the decrease in PersonaChat

is just 9% at most.

3.4.1 Human Evaluation

We conducted a human evaluation on all GPT-2 models: base models and models adapted

with our proposed methods. We randomly picked 2400 responses: 400 different contexts

evenly from 4 corpora with 6 responses generated by each of our models. 3 judges7 are

asked to pick the most and the least relevant response(s) for the given context. The most

relevant response(s) are given score 3, the least relevant response(s) are given score 1,

and the other(s) are given score 2. Table 3.6 shows the overall scores of all GPT-2 based

models. Table 3.7 shows the p-value for the t-test conducted between every two models.

The overall scores of our proposed methods are all highly significantly (p < 0.001) higher

than the concatenated models, especially the weighted learning method.

7Similar to previous work like Zhang et al. (2020), we have 3 judges. We have one random worker from
https://www.mturk.com/worker, one bachelor student, and one graduate student. An example of
the mTurk interface can be found in Section A.6.

https://www.mturk.com/worker
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3.4.2 Response Examples

The generated responses from better methods are more relevant to the corresponding cor-

pus, while worse methods cannot distinguish contexts from different corpora (e.g., they

may answer any questions in a “PersonaChat” way). To show an intuition of the difference

among our proposed methods, we present some response examples generated by GPT-2 in

Section A.7.

3.5 Conclusions

We have experimented with 4 methods–interleaved learning (baseline), labeled learning,

multi-task labeled learning, and weighted learning–to help common open-domain conver-

sational systems generate relevant responses for multiple corpora of different domains. We

adopted Rouge (precision, recall, F1) for auto evaluation. In addition, we used DF to eval-

uate how well a model uses relevant words for a corresponding corpus. We also did an

extensive human evaluation. Our results show significant improvement in performance for

our proposed methods, especially weighted learning.
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Chapter 4

Context Attention Distribution

Open-domain generation-based conversational agents have achieved great improvements

in recent years. Despite the rapid progress, most deployed systems continue to treat di-

alogue contexts as single-turns, while systems dealing with multi-turn contexts are less

studied. There is a lack of a reliable metric for evaluating multi-turn modelling, as well

as an effective solution for improving it. In this paper, we focus on an essential compo-

nent of multi-turn generation-based conversational agents: context attention distribution,

i.e. how systems distribute their attention on the dialogue’s context. For evaluation of

this component, we introduce a novel attention-mechanism-based metric: DAS ratio. To

improve performance on this component, we propose an optimization strategy that em-

ploys self-contained distractions. Our experiments on the Ubuntu chatlogs dataset show

that models with comparable perplexity can be distinguished by their ability on context

attention distribution. Our proposed optimization strategy improves both non-hierarchical

and hierarchical models on the proposed metric by about 10% from baselines.

4.1 Introduction and Related Works

In recent years, generation-based conversational agents have shown a lot of progress. How-

ever, multi-turn generation-based conversational agents are still facing challenges. Most

recent works ignore multi-turn modelling by considering a multi-turn context as a 1-turn

context Zhang et al. (2020); Zhao et al. (2020a). Some works try to deal with multi-turn

49
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User utterances
Taru Haha sucker.
Kuja ?
Taru Anyways, you made the changes right?
Kuja Yes.

Taru
Then from the terminal type: sudo apt-
get update

Kuja I did.

Table 4.1: An example of important utterances and unimportant utterances under the same
context in the Ubuntu chatlog dataset Lowe et al. (2015). Unimportant utterances are
marked in red.

modelling using modified attention mechanisms, hierarchical structures, utterance tokens,

etc. Serban et al. (2016, 2017); Li et al. (2021). The main difference between multi-turn

conversational agents and regular (1-turn) conversational agents is that instead of dealing

with an utterance in a context on word-level, multi-turn models deal with a dialogue on

utterance-level, so that models can understand an utterance as a whole and focus on impor-

tant utterances rather than important words. This paper focuses on an essential utterance-

level component for multi-turn modelling: context attention distribution, i.e. how much

attention is distributed respectively to important and unimportant utterances in a context.

An example of important/unimportant utterances existing in the same context is given by

Table 4.1. In this example, the first two utterances (“Haha sucker.” and “?”) are irrelevant

to the main topic of the context, thus are unimportant utterances. Human dialogues natu-

rally have many such unimportant utterances, which can distract a multi-turn model from

generating responses relevant to the main topic of a context. Therefore, it is crucial that a

multi-turn model pays less attention to these unimportant utterances, and more attention to

the important utterances in a context, which we define as a good ability on context attention

distribution.

We first propose an evaluation metric to measure a conversational agent’s performance

on context attention distribution. Recent works lack a measurement for multi-turn mod-

elling performance, especially for context attention distribution. They rely on general

evaluation metrics such as BLEU Papineni et al. (2002), which measures the quality of

generated responses. These metrics cannot directly describe a model’s ability on dealing
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with multi-turn contexts. The quality of the generated responses is influenced by many

aspects, including the performance of multi-turn modelling; better performance in deal-

ing with multi-turn context may result in better general performance, while not vice versa.

Thus, a general metric like BLEU is insufficient for analyzing all relevant aspects of the

conversational agents.

Since most multi-turn conversational agents have an attention mechanism and rely on

it to distribute attention to different utterances in a context, we propose the distracting test
as the evaluation method to examine if a model pays more attention to the important utter-

ances. The test adds distracting utterances to the context of each dialogue and compares

the attention scores of distracting utterances (i.e., unimportant utterances) and original ut-

terances (i.e., important utterances). The ratio of average attention score of distracting

utterances and original utterances is defined as the distracting attention score ratio (DAS
ratio). It is the evaluation metric for a model’s performance on context attention distribu-

tion. A model with good ability on context attention distribution should have higher scores

on original utterances and lower scores on distracting utterances, thus a lower DAS ratio.

Further, we propose a self-contained optimization strategy for improving a conversa-

tional agent’s performance on context attention distribution. For each dialogue, we ran-

domly pick some utterances from the training corpus outside the current dialogue as self-

contained distractions, and insert them into the current dialogue with different levels of pos-

sibilities. The attention paid to these distractions is minimized through multi-task learning.

With this optimization strategy, a model learns to distribute less attention to unimportant

utterances and more attention to important utterances.

In this paper, we examine the following research questions: 1) How do existing multi-

turn modelling structures perform on context attention distribution? 2) Can the proposed

optimization strategy improve performance on context attention distribution? 3) Which

probability level of inserting distractions is the best for the proposed optimization strategy?

Our contributions are as follows:

• We deal with a less studied problem: evaluating and improving context attention

distribution for multi-turn conversational agents.

• We propose a novel evaluation metric for context attention distribution: DAS ratio.



CHAPTER 4. CONTEXT ATTENTION DISTRIBUTION 52

It is tailored for multi-turn conversational agents by measuring a model’s ability on

context attention distribution.

• We propose an optimization strategy that minimizes the attention paid to self-contained

distractions. The strategy can easily be added and adapted to existing models.

Extensive experiments on 23 model variants and 9 distracting test sets show an overall

improvement in the performance of context attention distribution for the proposed strategy.

4.2 Methodology

Utterance Integration LSTM

Hm

Well , can I move the drivers ? Ah not like that . I would advise … the diskI guess I … via USB .

History 1 History 2 Query Response

LSTM Encoder LSTM Decoder

would advise you … disk .

LOSS

…h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16 hm-1 hm-1 hm

H1 H2 H3
ℋ𝒞𝒞

Attention Loss (Static) Attention Loss (Dynamic)

ℋ

Attention Loss (Non-hier)

Figure 4.1: Structure of non-hierarchical, static and dynamic attention loss.

Our proposed evaluation metric and optimization strategy can work on attention mech-

anisms including Transformers. In this paper, we choose an LSTM Seq2Seq model with

attention mechanism Hochreiter and Schmidhuber (1997); Sutskever et al. (2014); Bah-

danau et al. (2015) as the base model, since most hierarchical structured multi-turn conver-

sational agents are based on LSTM Serban et al. (2016, 2017); Tian et al. (2017); Zhang

et al. (2018b) while few are based on Transformers. The architecture of an LSTM model

with the attention mechanism and the description of the context vector ct in the attention

mechanism can be found in Section 2.2.

4.2.1 Attention Mechanism & Utterance Integration (UI)

We examine both non-hierarchical and hierarchical structures. For hierarchical structures,

following Zhang et al. (2018b), we develop two attention mechanisms: static and dynamic.
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Following Tian et al. (2017), we develop models that are both with and without utterance

integration LSTM units.

For the non-hierarchical structured model, there are no hidden vectors for utterances.

All hidden vectors of tokens in the encoder are concatenated and used in the attention

mechanism. Denoting the concatenated vector H = [h1, h2, ..., hm], we calculate the con-

text vector ct for each decoding step t as:

ct = H · (softmax(H⊤ · ht)) . (4.1)

For the hierarchical models, we use the hidden vector of each utterance’s last token as

the hidden vector of the utterance, and we discard the hidden vectors for the other tokens.

Thus, compared to the non-hierarchical structured model, we have much fewer hidden

vectors from the encoder.

The context vector of static attention mechanism is calculated based on the utterance-

level concatenated vector and the hidden vector of the last utterance in the context. Denot-

ing the hidden vector of kth utterance as Hk, and the hidden vector of the last utterance in

the context as Hq, we have the context’s concatenated vector HC = [H1, H2, ..., Hq]. We

calculate the context vector ct for static attention mechanism as:

ct = HC · (softmax(H⊤
C ·Hq)), (4.2)

where it is easy to see that the static context vector remains unchanged by the decoder.

The context vector of dynamic attention mechanism is calculated based on the utterance-

level concatenated vector and the hidden vector of each token in the decoding step. We

calculate the context vector ct for dynamic attention mechanism as:

ct = HC · (softmax(H⊤
C · ht)) . (4.3)

Compared to the static attention mechanism, the context vector ct varies at each decoding

step.

Finally, with the utterance integration LSTM unit, we calculate Hm from H1, H2, ...
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Hq:

Hm = LSTM(H1, H2, ..., Hq). (4.4)

For models with utterance integration (UI), Hm is input to the first step of the decoder,

while for models without UI, regular hm is input instead.

4.2.2 Distracting Test & Attention Score (AS)

We examine if a multi-turn conversational agent distributes more attention to important

utterances through the distracting test and attention scores.

In the distracting test, for each dialogue, we insert several distracting utterances be-

fore the end of the context. The distracting utterances can be randomly picked utterances

from the training corpus (random), be formed by frequent words from the training corpus

(frequent), or be formed by rare words from the training corpus (rare). We compare the

attention scores of the distracting utterances with the attention scores of the original ut-

terances. A well-performing model should distribute less attention to the distracting utter-

ances but more attention to the original utterances. For an utterance Hk, the corresponding

attention score AS(Hk) is calculated as:

AS(Hk) =



m

q
· meant

 ∑
hi∈Hk

exp(h⊤i · ht)∑m
i=1 exp(h

⊤
i · ht)


Non-hierarchical

q · exp(H⊤
k ·Hq)∑q

k=1 exp(H
⊤
k ·Hq)

Static attention

meant

 q · exp(H⊤
k · ht)∑q

k=1 exp(H
⊤
k · ht)


Dynamic attention

. (4.5)

hi denotes hidden vectors from the encoding steps and ht denotes hidden vectors from

the decoding steps. m is the number of tokens in a context, and q denotes the number of

utterances in a context. Note that for non-hierarchical models we multiply by an m in each

AS(Hk) to avoid bias caused by the total number of tokens in different contexts. Similarly



CHAPTER 4. CONTEXT ATTENTION DISTRIBUTION 55

for hierarchical models, we multiply by a q in each AS(Hk) to avoid bias caused by the

number of total utterances in different contexts. As a result, for an utterance Hq, AS(Hq)

will be 100% (or approximately 100% for non-hierarchical models) if the model assigns

Hq an about average attention score among all utterances.

We denote the last utterance in a context as Query and the rest of utterances in the

context as History. Since different models have different scalars on attention scores, we

calculate the average AS for all distracting utterances and all History in each dialogue, and

use the ratio of them for evaluation. This ratio is denoted as distracting attention score ratio

(DAS ratio), which measures a model’s ability on context attention distribution:

DAS ratio = meand∈D

(
mean(AS(HDistraction))

mean(AS(HHistory))

)
, (4.6)

where d means a single dialogue, and D denotes all dialogues in a test set. HDistraction are

distracting utterances, and HHistory are utterances in History.

4.2.3 Optimization with Self-Contained Distractions on Attention Mech-
anism

To train a conversational model to distribute more attention to important and less attention

to unimportant utterances, we propose the following optimization strategy: 1) For each

dialogue, we select some random utterances from other dialogues in the training corpus as

self-contained distractions. We decide whether to insert these distractions into the current

dialogue or not stochastically by a probability level. We denote the probability level as the

training inserting probability. The locations of inserting distractions are randomly decided,

while the locations are always before Query (the last utterance of the context). 2) We

create a bitmask M to track whether an utterance is original (0) or distracting (1). During

the training period, the model uses the bitmask to calculate the attention loss Lt
attention,

which is summed up with the loss from the response generator. For each decoding step t,
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the attention loss is calculated as:

Lt
attention =



MSE(softmax(H⊤ · ht)⊗M, 0)

Non-hierarchical

MSE(softmax(H⊤
C ·Hq)⊗M, 0)

Static attention

MSE(softmax(H⊤
C · ht)⊗M, 0)

Dynamic attention

(4.7)

where ⊗ means dimensional multiplication. As shown in Equation (4.7), our goal is to

minimize the attention assigned to all the self-contained distractions. During the distracting

test, no bitmask is offered to the model. The illustration of attention loss on both non-

hierarchical and hierarchical models is shown in Figure 4.1.

4.3 Experiments

4.3.1 Dataset

We use the Ubuntu chatlogs dataset Lowe et al. (2015) as the training and testing corpus,

which contains dialogues about solving technical problems of Ubuntu. We choose this

dataset because the dialogues have both technical topics and casual chats, meaning that

it is easier to distinguish important/unimportant utterances than datasets whose topics are

consistent. We use about 0.48M dialogues for training, 20K dialogues for validation, and

10K dialogues for testing. These are the original settings of the Ubuntu chatlogs dataset.

We removed all single-turn dialogues.

4.3.2 Training

Our methods are built on an LSTM Seq2Seq model with attention mechanism. We used

Pytorch Paszke et al. (2017) for implementation. The LSTM model has 4 layers and the

dimension is 512. The training procedure was with a batch size of 256, a learning rate of
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Random: 0.5 Random: 0.7 Random: 1.0

History

\ Well, can I move the drives? Yes.

Or kill all speedlink.
Anyways, you made the
changes right?

Well, can I move the drives?

Well, can I move the drives? Ah not like that.
Then from the terminal
type: sudo apt-get update.

Ah not like that. I did. Ah not like that.
Frequent: Begin Frequent: Middle Frequent: End

History

Why should I help you? Well, can I move the drives? Well, can I move the drives?
I have my right. Why should I help you? Ah not like that.
Well, can I move the drives? I have my right. Why should I help you?
Ah not like that. Ah not like that. I have my right.

Rare: Begin Rare: Middle Rare: End

History

Would you have lunch? Well, can I move the drives? Well, can I move the drives?
I should have lunch. Would you have lunch? Ah not like that.
Well, can I move the drives? I should have lunch. Would you have lunch?
Ah not like that. Ah not like that. I should have lunch.

Query I guess I could just get an enclosure and copy via USB.
Response I would advise you to get the disk.

Table 4.2: Examples of distracting test sets. Distracting utterances are marked red.

1.0, and a gradient clip threshold of 5. The vocabulary size is 25000 and the dropout rate

is 0.2. The learning rate is halved when the perplexity stops dropping, and the training is

stopped when the model converges.

4.3.3 Examined Models

We examine our proposed evaluation metric on 5 models: non-hierarchical LSTM (Non-

hier), static attention without utterance integration LSTM unit (Static), static attention with

utterance integration LSTM unit (StaticUI), dynamic attention without utterance integra-

tion LSTM unit (Dynamic), and dynamic attention with utterance integration LSTM unit

(DynamicUI). In addition, we examine our proposed optimization strategy on these 5 mod-

els with 3 training inserting probabilities–0.5, 0.7, and 1.0. Models with a training inserting

probability of 0 are regarded as baselines. For comparison, we pick the best overall model

and train the model with self-contained distractions but without training on the attention
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loss (Non-atten-loss), i.e. the model does not know which utterances are distractions. In

total, we train and evaluate 23 model variants.

4.3.4 Evaluation

For the distracting test, we set the number of distracting utterances for each dialogue to

2. We have 3 distracting test sets: 1) random distracting test set. Distracting utterances in

this test set are randomly picked from the training corpus (outside the current dialogue),

and they are randomly picked in every evaluation step, which means that there is not a pre-

prepared random distracting test set; 2) frequent distracting test set. Distracting utterances

in this test set are formed by frequent words in the training corpus, but these utterances do

not appear in the training corpus. In our experiments, we use “why should I help you” and

“I have my right” as examples of distracting utterances with frequent words; 3) rare dis-

tracting test set. Distracting utterances in this test set have words that are rare in the training

corpus, and these utterances do not appear in the training corpus. In our experiments, we

use “would you have lunch?” and “I should have lunch” as examples of distracting utter-

ances with rare words.

In the distracting test, we insert distracting utterances into different locations. For 1)

random, we insert utterances to a random location before Query in each context. Similar to

the optimization strategy, we use different probability levels to decide whether a distracting

utterance is to be inserted or not. We denote these as testing inserting probability. In our

experiments, we set the probability levels to be 0.5, 0.7, and 1.0. We expect the model to

perform stably on all different probability levels. For 2) frequent and 3) rare, we have three

kinds of inserting locations: at the beginning of a context (marked as Begin), in the middle

of the context (marked as Middle), and at the end of the context (before Query and after

History, marked as End). In total, we have 9 test sets for evaluation. See Table 4.2 for the

example of each test set.
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4.4 Results and Discussions

Table 4.3 shows DAS ratios of 23 trained model variants on 9 distracting test sets. Figure

4.2 shows the DAS ratios of 3 example model variants (StaticUI with training inserting

probability of 0.0 as the baseline, Non-atten-loss StaticUI with training inserting probabil-

ity of 0.7, and StaticUI with training inserting probability of 0.7) on 9 distracting test sets.

For the full results containing average AS (Attention Score) of distracting utterances and

average AS of History, please refer to Appendix B.1.

In Table 4.3, we show the perplexity and History’s average AS of each model on the

non-distracted test set under the “Original” column. Since perplexity scores on the distract-

ing test sets are similar, we show the perplexity scores on the non-distracted test set only.

We show the DAS ratios of each model on each of the distracting test sets under the “DAS

ratio for distracting test set” column. A lower DAS ratio means that a model distributes

less attention to distracting utterances (unimportant utterances) and more attention to the

original utterances in History (important utterances), from which it can be inferred that the

model has a better performance on context attention distribution. Both perplexity and DAS

ratio are the lower, the better.

4.4.1 Perplexity and Average AS on Non-Distracted Test Set

Perplexity scores are shown in the “Perp.” column, under the “Original” column in Table

4.3. Perplexity scores of the examined 23 models are similar; the Static models trained

with our proposed optimization strategy and a higher training inserting probability level

achieves slightly better performance than other models.

Average AS are shown in the “Avg.” column, under the “Original” column in Table

4.3. The average AS of History tells about a model’s attention distribution for History and

Query. A higher score indicates that less attention is distributed to Query. Recall that AS of

an utterance is 100% (or approximately 100% for non-hierarchical models) if the utterance

is paid about average attention among the dialogue. Overall, the models distribute attention

of lower than average to History, especially for models with static attention (i.e. the Static

model and StaticUI model), which distribute more attention to Query than non-hierarchical

models and models with dynamic attention. This is apparent from the structure of static
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Table 4.3: Results of perplexity (Perp.) and average AS of History (Avg.) on the original
test set (%) are shown in the “Original” column. We also show results of DAS ratios on 9
distracting test sets and 23 model variants.
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Figure 4.2: DAS ratios of 3 example model variants on 9 distracting test sets. The lower
the DAS ratio, the better the performance.

attention. We also show the results of a StaticUI model without training on the attention

loss (Non-atten-loss StaticUI model) as a comparison. The StaticUI model trained with our

optimization strategy distributes more attention to query than the Non-atten-loss StaticUI

model. This is because the optimization strategy decreases the model’s attention distributed

to distracting utterances in History, thus decreasing the overall attention distributed to His-

tory.

4.4.2 Distracting Test: Random

Results of the random distracting test with different testing inserting probabilities (0.5, 0.7,

and 1.0) are shown in the “Random” column in Table 4.3. Models with training inserting

probabilities of 0.0 (shown in the row where “Prob” is 0.0) are baseline models to which

our proposed optimization strategy is not applied. In general, our proposed optimization

strategy with training inserting probabilities of 0.5 or 0.7 achieves better performance on

DAS ratios (i.e. the models achieve lower DAS ratios) on random distracting test sets of all

3 testing inserting probabilities. The Static model and the DynamicUI model achieves the

best performance with a training inserting probability of 0.5, while the Non-hier model, the

StaticUI model and the Dynamic model achieve the best performance with a training insert-

ing probability of 0.7. A training inserting probability of 1.0 leads to worse performance.

One reasons is that it assumes there must be some distracting utterances in a context, while

that is not always the case.
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The StaticUI model with a training inserting probability of 0.7 achieves the best overall

performance on DAS ratio. As shown in Figure 4.2, on all the random distracting test sets

(probabilities of 0.5, 0.7, and 1.0), the StaticUI model is better than the baseline StaticUI

model and the Non-atten-loss StaticUI model. The baseline model is not trained with any

self-contained distractions (training inserting probability is 0.0), and it gets the worst per-

formance. The Non-atten-loss model is trained with self-contained distractions (with a

training inserting probability of 0.7) while not knowing which utterances are distractions,

and it achieves a better performance than the baseline. The StaticUI model with a train-

ing inserting probability of 0.7 is trained to minimize the attention loss of self-contained

distractions and it achieves the best performance. Naturally since the optimization strategy

minimizes the attention loss of distractions, the StaticUI model distributes less attention

to History and more attention to Query (refer to the “Avg” column in Appendix B.1 for

more details); nevertheless, a lower DAS ratio shows that the model distributes even less

attention to the distracting utterances compared to the original utterances in History.

Note that even if both our proposed strategy and the random distracting test use the

same trick: insert random distracting utterances among original utterances in History, the

random utterances inserted in the distracting test are different from those inserted in the

training process, thus it is difficult for the test to be biased in favor of models with our

proposed strategy. It is apparent that less attention is distributed to History, while DAS

ratio calculates the ratio between the distracting utterances and the original utterances in

History, so it shows the attention distributed to the distracting utterances regardless of the

total attention distributed to History. Moreover, we adopt three testing inserting probability

levels to ensure stable evaluation results for each model.

4.4.3 Distracting Test: Frequent and Rare

Results of the frequent and the rare distracting test are shown in the “Frequent” and “Rare”

columns in Table 4.3. Different from the random distracting test, the inserting locations of

these two tests are decided manually. As a nature of LSTM model, all models distribute

more attention to utterances near Query and less attention to utterances far away from

Query, as can be seen in Table 4.3 and Figure 4.2 that DAS ratios are higher for End test
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set (near Query) and lower for Begin test set (far away from Query). Since the results on

Begin and End test sets are biased by the structure of LSTM, we mainly analyze the results

on Middle test sets.

For the Middle test sets of both the frequent and rare distracting test, the best models

are still those trained with our proposed optimization strategy. StaticUI model with training

inserting probabilities of 0.5 and 0.7 achieve the best performance (lowest DAS ratios) on

the Frequent Middle and Rare Middle test sets. The Non-atten-loss models can be better

than the models trained with a wrong training inserting probability. Telling from similar

DAS ratios, the frequent distracting test set is as difficult for the trained models to distin-

guish as the rare distracting test set, although for humans, the rare distracting utterances are

much easier to distinguish than the frequent ones.

4.4.4 Summary of Results

DAS ratio can distinguish conversational agents with similar perplexity on their ability of

context attention distribution. In general, models trained with our proposed optimization

strategy focus less on distracting utterances and more on original utterances in History. For

most models, DAS ratios decrease by about 10% when trained with our proposed strategy

with a 0.5 or 0.7 probability level. 0.7 performs best as a training inserting probability.

4.5 Conclusions

We have studied context attention distribution, an essential component of multi-turn mod-

elling for open-domain conversational agents. We have proposed an evaluation metric for

context attention distribution based on the distracting test: DAS ratio. We have also im-

proved the performance of context attention distribution for common multi-turn conver-

sational agents through an optimization strategy via reducing the attention loss of self-

contained distracting utterances. Extensive experiments show that our proposed strategy

achieves improvements on most models, especially with a training inserting probability

level of 0.7.
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Chapter 5

Context-Awareness and Summarization

The study of context-awareness in multi-turn generation-based dialogue modeling is an im-

portant but relatively underexplored topic. Prior research has employed hierarchical struc-

tures to enhance the context-awareness of dialogue models. This paper aims to address this

issue by utilizing two extractive summarization techniques, namely the PMI topic model

and the ORACLE algorithm, to filter out unimportant utterances within a given context.

Our proposed approach is assessed on both non-hierarchical and hierarchical models us-

ing the distracting test, which evaluates the level of attention given to each utterance. Our

proposed methods gain significant improvement over the baselines in the distracting test.

5.1 Introduction and Related Works

Although generation-based dialogue models have achieved much progress in recent years,

multi-turn dialogue models are still facing challenges. Recent works deal with multi-turn

using modified attention mechanisms and hierarchical structures. One focus of dealing with

multi-turn is the ability of context-awareness on a dialogue model, which requires a model

to pay more attention to important utterances while less attention to unimportant ones. An

example of important/unimportant utterances is given by Table 5.1.

In Table 5.1, the first two utterances (“Haha sucker.” and “?”) are unimportant utter-

ances that are irrelevant to the main topic of the context. A multi-turn dialogue model with

good ability on context awareness should identify and ignore these unimportant utterances

65
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User utterances
Taru Haha sucker.
Kuja ?
Taru Anyways, you made the changes right?
Kuja Yes.

Taru
Then from the terminal type: sudo apt-
get update

Kuja I did.

Table 5.1: An example of important utterances and unimportant utterances under the same
context in the Ubuntu chatlog dataset Lowe et al. (2015). Unimportant utterances are
marked in red.

and focus only on the important ones. Thus, we propose that one way to improve the con-

text awareness of a model is to filter out the unimportant utterances, which is a task similar

to summarization: given a reference and a source, an extractive summarization algorithm

extracts all utterances related to the reference and eliminate all others in the source. In the

case of dialogue models, we do not have a reference for the context; nevertheless, the last

utterance in the context, i.e., Query, plays a crucial role in generating the response. In most

cases, responses aim to provide answers to Query while utilizing other utterances in the

context (we denote them as Source) as the source for answering. This paper investigates

improving context awareness for multi-turn dialogue models by filtering out unimportant

utterances using extractive summarization techniques with Query as the reference.

There are a few works that combine summarization with dialogue models. One of the

techniques used in these works is the topic model, where a keyword is predicted from

Query and the entire corpus to help a model generate detailed responses. In our paper,

we also use a PMI topic model to extract keywords from Source, while instead of using

the keywords to support the generation task, we pass the keywords directly to the dialogue

model. Additionally, we explore the ORACLE algorithm, a widely-used algorithm for

generating gold labels for extractive summarization, to filter out utterances unrelated to

Query before passing them to the dialogue model.

For evaluation, we use an evaluation method tailored for multi-turn dialogue models.

Since most multi-turn dialogue models have attention mechanisms and they rely on the

mechanism to assign different extents of focus to each utterance in the context, we use the
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distracting test to measure if a model pays more attention to the important utterances and

less to the unimportant ones. The test simply adds distracting utterances to each dialogue

and compares the attention scores on these distracting (unimportant) utterances with the

original (important) utterances in Source, thus measures the ability of context awareness

for a dialogue model.

In Section 5.2, we introduce the summarization techniques to be integrated. In Section

5.3, we describe our experiment settings, and we report the results in Section 5.4. Finally,

in Section 5.5, we give a conclusion to this chapter.

5.2 Proposed Methods

In this paper, we choose an LSTM Seq2Seq model with attention mechanism Hochreiter

and Schmidhuber (1997); Sutskever et al. (2014); Bahdanau et al. (2015) as the base model,

since most hierarchical structured multi-turn conversational agents are based on LSTM

Serban et al. (2016, 2017); Tian et al. (2017); Zhang et al. (2018b) while few are based on

Transformers. The architecture of an LSTM model with the attention mechanism and the

description of the context vector ct in the attention mechanism can be found in Section 2.2.

The description of various context vectors (e.g. static and dynamic context vectors) and the

utterance integration unit can be found in Section 4.2.1.

5.2.1 PMI-context

The method PMI-context uses a Pointwise Mutual Information (PMI) to select the k most

relevant words in a History given a Query. Given a word xs in Source, the total PMI of xs

given a query = xq1, ..., xql is calculated following Yao et al. (2017b):

PMI(xq1, ..., xql, xs) ≈
l∑
i

PMI(xqi, xs) . (5.1)

The selected k keywords xs1, ..., xsk and the query are combined through the static

attention mechanism described in Equation (4.2) to calculate the context vector ct. Note

that here a query does not attend to itself, but only to the selected keywords. The context
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vector ct, the selected k keywords, and the query are then inputted into the LSTM unit as

described in the following adapted version of Equation (2.9):

ht = LSTM∗(E(z′t), ht−1, ct) , (5.2)

where z′t ∈ {xs1, ..., xsk, xq1, ..., xql, y1, ..., yn−1}.

5.2.2 ORACLE-context

The method ORACLE-context is based on an extractive summarization algorithm named

the ORACLE algorithm. It uses the ORACLE algorithm to extract relevant utterances from

Source by greedily optimizing ROUGE-1 using Query as the summarization reference. The

extracted k most relevant utterances are then inputted into the LSTM unit as described in

the following adapted version of Equation (2.9):

ht = LSTM∗(E(z′′t ), ht−1, ct) , (5.3)

where z′′t ∈ {x1
s1, x

1
s2, ..., x

k
s1, x

k
s2, ..., xq1, ..., xql, y1, ..., yn−1}, and Xi = xi

s1, x
i
s2, ... (i ∈

{1, ..., k}) denotes for each of the extracted k most relevant utterances.

This method intends to filter out irrelevant utterances from Source given Query and

delete them from the inputs to the dialogue model, which helps the model to pay attention

correctly to the important utterances.

5.2.3 Evaluation

For the evaluation, since perplexity is considered not a good measure of how good a conver-

sation is (Liu et al., 2016), besides perplexity, we examine whether the model pays attention

to the correct utterance through the distracting test, attention scores, and DAS score. The

description of these can be found in Section 4.2.2.
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5.3 Experiment Setup

5.3.1 Dataset

We use the Ubuntu chatlogs dataset Lowe et al. (2015), which contains dialogues about

solving technical problems of Ubuntu, as the training and testing corpus. We have about

0.48M dialogues for training, 20K dialogues for validation, and 10K dialogues for testing.

These are the original settings of the Ubuntu chatlogs dataset. We removed all single-

turn dialogues, since single-turns do not have contexts that we need to study on. The last

utterance in the context is treated as Query, and the other utterances are treated as Source.

For the distracting test, we set the amount of distracting utterances for each dialogue

as 2. We have 3 distracting test datasets: 1) dataset distracted with utterances containing

frequent words, which are “why should I help you” and “I have my right”; 2) dataset

distracted with utterances containing rare words, which are “would you have lunch?” and “I

should have lunch”; 3) dataset distracted with utterances randomly picked from the training

set.

5.3.2 Training

Our methods are built on a basic LSTM Seq2Seq model. We used Pytorch Paszke et al.

(2017) for implementation. The LSTM model has 4 layers and the dimension is 512. The

training procedure was with a batch size of 256, a learning rate of 1.0, and a gradient clip

threshold of 5. The vocabulary size is 25000 and the dropout rate is 0.2.

5.3.3 Models to be examined

For the method PMI-context, we examine the maximum keyword amounts of both 10-

word level and 30-word level. For the method ORACLE-context, we examine the maxi-

mum extracted utterance amounts of both 5-utterance level and 10-utterance level. Also,

we examine ORACLE-context on 5 model variants, namely static attention with utterance

integration LSTM unit, static attention without utterance integration LSTM unit, dynamic

attention with utterance integration LSTM unit, and dynamic attention without utterance
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integration LSTM unit. Among these variants, one is non-hierarchical structured, and the

other four are hierarchical structured.

5.4 Results

We show the perplexity and attention scores of the models to be examined. For comparison,

we also show scores of non-hierarchical model trained on either the whole context (Source

and Query) or only Query. The results are shown in Table5.2.

For the distracting test, besides the attention scores of the distracting utterances, we also

show the average attention scores of Source. A lower score indicates that more attention is

paid to Query instead of Source. In addition, we calculate the ratio between the attention

scores of the distracting utterances and those of the original utterances in Source, to show

how much attention is paid to the distracting utterances compared to Source. A lower ratio

indicates that the model is less distracted by the distracting utterances.

Table 5.2 shows that the non-hierarchical model with the ORACLE-context method

of 10-utterance level has the best perplexity and the lowest attention scores’ ratio for the

frequent and rare distracting datasets, which indicates that this model is the least dis-

tracted from frequent and rare distracting utterances. Among the four kinds of hierarchical

models, the variant of static attention mechanism with utterance integration LSTM unit

(Static+UttLSTM) gets the best performance on the random distracting dataset, and most

of the other variants manage to exceed the non-hierarchical model on the random distract-

ing dataset, from which we can infer that the hierarchical models are less distracted from

random distracting utterances. PMI-context method of the 30-word level also gains a good

perplexity, but since perplexity is not a good method for evaluating responses’ quality, more

evaluation is needed.

It is easy to notice that while the perplexity scores of the ORACLE-context models

show marginal improvement over the baselines, they outperform the baselines in the dis-

tracting test, which is a better evaluation metric for the ability of context-awareness. To

assess the efficacy of the ORACLE algorithm, we further investigated the filtered-out and

extracted utterances. Results show that approximately 79%, 84%, and 82% of the distract-

ing utterances were filtered out in each of the three distracting datasets, respectively. In
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Method Model Original Distract: random
Perp Avg. Perp Distract (ratio) Avg.

\ Non-hier (Query only) 49.5 100 \ \
Non-hier 49.8 94.7 49.8 94.4 (0.99) 95.4

PMI PMI-10 49.5 \ 49.5 \
PMI-30 47.8 \ 47.8 \

ORACLE-5

Non-hier 48.1 86.2 48.7 82.4 (0.94) 87.2
static 49.0 68.0 49.3 56.8 (0.81) 70.0
static+UttLSTM 51.3 52.8 51.6 41.2 (0.76) 54.1
dynamic 49.7 86.8 50.2 81.4 (0.93) 88.0
dynamic+UttLSTM 50.7 93.8 51.2 91.3 (0.97) 94.4

ORACLE-10

Non-hier 47.1 86.5 47.7 82.5 (0.94) 87.4
static 49.5 60.7 49.9 47.1 (0.75) 62.4
static+UttLSTM 47.7 54.1 48.0 43.5 (0.79) 55.3
dynamic 49.9 85.5 50.3 80.0 (0.92) 86.7
dynamic+UttLSTM 49.6 95.0 49.9 93.4 (0.98) 95.3

(a) Results on the random distract testset

Method Model Distract: frequent Distract: rare
Perp Distract (ratio) Avg. Perp Distract (ratio) Avg.

\ Non-hier (query only) \ \ \ \
Non-hier 49.7 94.3 (0.98) 95.8 49.8 94.4 (0.99) 95.5

PMI PMI-10 49.5 \ 49.5 \
PMI-30 47.8 \ 47.8 \

ORACLE-5

Non-hier 48.3 74.8 (0.86) 86.9 48.4 78.1 (0.90) 86.3
static 49.1 65.1 (0.95) 68.7 49.2 63.0 (0.91) 69.3
static+UttLSTM 51.4 46.9 (0.88) 53.4 51.4 48.3 (0.90) 53.5
dynamic 49.9 79.3 (0.90) 88.3 50.0 83.0 (0.95) 87.5
dynamic+UttLSTM 50.8 89.3 (0.95) 94.6 50.9 94.3 (1.01) 93.0

ORACLE-10

Non-hier 47.3 69.9 (0.80) 87.3 47.3 74.3 (0.86) 86.8
static 49.7 51.0 (0.83) 61.7 49.7 55.3 (0.90) 61.5
static+UttLSTM 47.7 46.8 (0.86) 54.7 47.9 51.1 (0.95) 54.1
dynamic 50.1 79.3 (0.92) 86.4 50.1 87.9 (1.03) 85.0
dynamic+UttLSTM 49.7 91.1 (0.95) 95.9 49.8 94.6 (1.00) 94.3

(b) Results on the frequent and rare distracting dataset

Table 5.2: Perplexity (Perp), attention score of distracting utterances (Distract, %), atten-
tion score of average original utterances in Source (Avg., %), and their ratio (ratio). The
best attention scores of distracting utterances and the best ratios are bolded.

contrast, the algorithm extracted a considerable portion of the first and second utterances

closest to Query, which are typically regarded as important utterances in a Source, and

these make up 30% and 43% of the total extracted utterances, respectively. This means that
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the ORACLE algorithm does filter out unimportant utterances to some extent.

It is surprising to see that the models have the worst performance for the distracting

dataset with rare utterances. It is obvious for humans to identify “Would you have lunch?”

and “I should have lunch” as distracting utterances, while although the ORACLE algorithm

only keeps 16% of these distracting utterances, the model still cannot learn to pay less

attention to them.

5.5 Conclusions

We have integrated extractive summarization techniques with multi-turn dialogue models to

improve their ability of context-awareness. The techniques that we have examined are PMI

topic model and ORACLE algorithm; we have integrated them with both non-hierarchical

and hierarchical dialogue models. For evaluation, we have employed the distracting test to

evaluate the context-awareness of each model. With extractive summarization techniques

integrated, we find significant improvements in distracting tests for the multi-turn conver-

sational agents.
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Chapter 6

Integrating Knowledge

In recent years, prompt-based tuning and instruction-based tuning have emerged as popular

approaches for natural language processing. In this paper, we investigate the application of

prompt and instruction-based tuning approaches for response generation in conversational

question answering. We approach this task from both extractive and generative angles,

where we adopt prompt-based tuning for the extractive angle and instruction-based tuning

for the generative angle. Additionally, we utilize multi-task learning to integrate these two

angles. To evaluate the performance of our proposed approaches, we conduct experiments

on the GPT-2 model. The results show that the approaches improve performance by 18%

on F1 score over the baseline.

6.1 Introduction and Related Works

Conversational Question Answering (CQA) is a QA dialogue system that can answer user

questions based on a given document. CQA is an extension of traditional QA systems to a

conversational setting and engages in multi-turn conversation to satisfy a user’s information

needs. According to the types of QA, CQA is studied in two settings: extractive and

generative. In the extractive setting, the answer is marked as a span in the text paragraph,

whereas in the generative setting, i.e. response generation in CQA, the answer is free-form

text generated by autoregressively predicting tokens.

74
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With the rapid development of language modeling techniques, a lot of pre-trained lan-

guage models have been successfully applied to extractive CQA (Chen et al., 2023; Ram

et al., 2021), generative CQA (Izacard and Grave, 2021; Xiong et al., 2021) and unified sys-

tems that solve various CQA tasks through a single model (Khashabi et al., 2020; Tafjord

and Clark, 2021). Recently, Gekhman et al. (2022) have conducted a comprehensive robust-

ness study of history modeling approaches for CQA and propose a prompt-based history

highlighting method to improve robustness while maintaining overall high performance.

However, prompts are generally short and do not generalize well to reformulations and

new tasks.

Instruction tuning is an emergent paradigm where models are trained on a variety of

tasks with natural language instructions. Instructions in natural language make it easy

for questioners to ask questions, and are proven to achieve a good performance due to

the nature of the language model (Gupta et al., 2022). To the best of our knowledge, we

are the first to apply instruction tuning for response generation on conversational question

answering. Our paper proposes approaches for enhancing the response generation of con-

versational question answering by integrating prompt-based and instruction-based tuning.

We adopt the prompt-based tuning method introduced by Gekhman et al. (2022) to im-

prove from the extractive angle on the multi-turn scenario. Additionally, we propose an

instruction-based tuning method to enhance from the generative angle, based on the work

of Zhong et al. (2022) and Gupta et al. (2022). Furthermore, we investigate the integration

of these two angles through multi-task learning.

In our experiments, we verify the influence of prompt-based tuning, instruction-based

tuning, and multi-task learning for the task. We evaluate the performance of various set-

tings, including prompt-based tuning with or without multi-task learning, prompt-based

with or without instruction-based tuning, and prompt-based tuning with both multi-task

learning and instruction-based tuning. We conduct the experiments on GPT-2 and evaluate

the results on F1 score with 2 modes: the decoding mode and the evaluation mode. Ad-

ditionally, we assess the extractive question answering part of the settings with a GPT-2

fine-tuned on the extractive question answering task.
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The results show that our prompt-based tuning together with other approaches has im-

proved the performance by about 18% on F1 score over the baseline, and the instruction-

based tuning and multi-task learning settings have improved further at about 1% compared

to pure prompt-based tuning approach.

The main contributions of this work are:

• To the best of our knowledge, we are the first to incorporate instruction tuning in

conversational question answering.

• We investigate tuning approaches based on prompt and instruction for the response

generation task on conversational question answering. The approaches are simple

and easy to be adapted to other models.

• We conduct comprehensive experiments on the influence of instruction-based tuning,

prompt-based tuning and multi-task learning for this task. The results show that the

best approach improves about 18% on F1 score than the baseline.

We define our task and introduce the approaches used in our research in Section 6.2. In

Section 6.3 we describe the setups of our experiments, and in Section 6.4 we present our

results. Finally, in Section 6.5, we give a conclusion to this chapter.

6.2 Methodology

In this section, we first define the task of conversational question answering, and we intro-

duce how this task and response generation is realized under GPT-2. After that, we explain

the proposed multi-task learning, prompt tuning, and instruction tuning in detail.

6.2.1 Conversational Question Answering

The task of conversational question answering is to predict the answer span (start position,

end position) in a passage for the given question and the previous questions and answer

spans. The question answering task can be transferred to two classification tasks: one for

the start position, and the other for the end position. Given a question Q and a passage
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X , the tasks are to calculate the probability of the t-th token in the passage X is the start

position Pxt=start and is the end position Pxt=end:

P (xt = start | Q,X) (6.1)

P (xt = end | Q,X), (6.2)

where Q = q1, . . . , qk, X = x1, . . . , xm are sequences of tokens.

The difference between the task of conversational question answering with regular

question answering is that there are conversation histories, i.e. multiple turns of questions

and answer spans.

The question answering task is dealt with the GPT-2 model as follows. First, a hidden

vector that is to be input to the transformer block is calculated as:

h0 = E(Q,X) + (E0, E1) +Wp, (6.3)

where E(Q,X) is the sub-word embedding for question Q and passage X . E0 and E1 are

state embeddings, where E0 is assigned to the question, and E1 is assigned to the passage.

Wp is a pre-trained position embedding. Then, the probability of the subword t to be the

start or end position is calculated as:

hX = GPT block(h0)[X] (6.4)

P (xt = start) = softmax(A · hX)[t] (6.5)

P (xt = end) = softmax(B · hX)[t], (6.6)

where A ∈ R1×dim(h) and B ∈ R1×dim(h), hX denotes for slice of the passage X part in the

hidden vector, and [t] denotes for the t-th subword token in the passage X . We simplify

the structure of the transformer block as GPT block. In the block, a mask bans past words

from attending to future words. Equation 6.5 and Equation 6.6 transfer hX ∈ Rdim(h)×|X|

into sequences of probabilities for each subword token in X , where the probability of a

subword t being the start position or the end position can be obtained.
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6.2.2 Response Generation

The description of the task of response generation and the use of GPT-2 on this task can be

found in Section 2.2.

6.2.3 Prompt-Based Tuning

Following Gekhman et al. (2022), we add prompts to the passage for the conversational

question answering task, where the prompts indicate the answers to the previous questions.

For any turn i, all the answer spans of the previous turns (Sj, Aj) (j ∈ [1, . . . , i − 1]) are

marked in the passage X with the prompts <j>. Examples of prompt-based tuning can be

found in the following table:

Table 6.1: An example of prompt-based tuning

Turn Question Text of Answer
Span

Prompted Passage

1 What color was
Cotton?

a little white kit-
ten named Cotton

Once upon a time, in a barn near
a farm house, there lived a little
white kitten named Cotton. Cot-
ton lived high up...

2 Where did she
live?

in a barn near a
farm house, there
lived a little white
kitten

Once upon a time, in a barn near
a farm house, there lived <1>a
little white kitten named Cotton
<1>. Cotton lived high up...

3 Did she live
alone?

Cotton wasn’t
alone

Once upon a time, <2>in a
barn near a farm house, there
lived <1>a little white kitten
<2>named Cotton <1>. Cot-
ton lived high up...

Note that for any turn j that does not have an answer span, there is not a prompt <j>for

it.
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6.2.4 Instruction-Based Tuning

Furthermore, following Zhong et al. (2022) and Gupta et al. (2022), we add instructions to

the inputs. We use two kinds of instructions: an instruction at the beginning of the input,

and several guidances among the sections that constitute the input. The instruction at the

beginning of the input is word-based, and it introduces what the task is about. The guid-

ances are word-based with symbols, such as “[Instruction]:”, “[Question]:”, “[Passage]:”

and “[Answer]:”, which separate each section and clarify what each section is. We denote

an instruction as a sequence of tokens: I = I1, . . . , Ij , and guidances for each section as

GSection 1, GSection 2, . . .. The instruction and the guidances are inserted into the original input

as follows:

[Ginstruction, I, Gquestion, Q,Gpassage, X,Ganswer, Y ], (6.7)

where Q is the question, X is the passage, and Y is the answer. Q, X and Y are all se-

quences of tokens, and in Equation 6.7 they are concatenated. We denote XI = [Ginstruction, I,

Gquestion, Q,Gpassage, X,Ganswer], then the hidden vector to be input to the transformer block

is calculated as:

h0[t] = E(XI , Y[1:t]) + (E0, E1) +Wp, (6.8)

6.2.5 Multi-Task Learning

To fully leverage the extractive question answering task, we employ a multi-task learning

approach to integrate it with the response generation task. Specifically, we use the same

hidden vector as described in Equation 2.16 as input to the transformer block, which is

then used for calculating the probability distribution of the vocabulary for the next token,

as well as the probability of the start and end position for each token in the passage. The

multi-task learning approach optimizes both answer span extraction and response genera-

tion simultaneously. The loss is then integrated as:

LQA =
Lstart position + Lend position

2
(6.9)

L = LQA + Lresponse generation. (6.10)
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6.3 Experimental Setup

6.3.1 Dataset

We employ the CoQA (Conversational Question Answering) dataset (Reddy et al., 2018)

for our research. The CoQA dataset is a collection of conversational question answering in-

stances spanning a broad range of domains, such as literature, news, and Wikipedia articles.

The dataset is conversational because it includes conversational histories, i.e., the previous

turns in a conversation leading up to the current question-answer pair. The answers in the

dataset include both answer spans for extractive question answering and human-written

free-form answers for generative question answering.

6.3.2 Model and Tuning

In the experiments, we will evaluate 5 models:

(1) Response generation (baseline)

(2) Response generation with prompt-based tuning (prompt)

(3) Response generation with prompt-based tuning & instruction-based tuning

(w instruct)

(4) Response generation with prompt-based tuning & multi-task learning

(w multi-task)

(5) Response generation with prompt-based tuning & instruction-based tuning & multi-

task learning (w multi-task & w instruct)

We have excluded three other settings, namely response generation with instruction-

based tuning, response generation with multi-task learning, and response generation with

instruction-based tuning & multi-task learning, since prompts are necessary indicators for

multi-turns. Our task–the conversational question answering–is based on multi-turns, so

any model without prompt-based tuning, other than the baseline, is considered not relevant

to the task.
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The instructions and prompts that we used in the prompt-based tuning and instruction-

based tuning are described in the following table:

Table 6.2: An example for prompt and instruction based tuning

Prompt-Based Tuning Instruction-Based Tuning
Instruction \ [Instruction]:

Answer the question based on the
given passage.

Question Where did she live? [Question]:
Where did she live?

Passage Once upon a time, in a
barn near a farm house,
there lived <1>a lit-
tle white kitten named
Cotton <1>. Cotton
lived high up...

[Passage]:
Once upon a time, in a barn near a
farm house, there lived a little white
kitten named Cotton. Cotton lived
high up...

Answer in a barn [Answer]:
in a barn

6.3.3 Training

Our implementation makes use of Pytorch (Paszke et al., 2017) and the HuggingFace Trans-

formers 1. We adopted GPT-2 basic2 which has 12 layers and 12 heads with a dimension

of 768. The training procedure was with a batch size of 16, 10 epochs, a learning rate of

3 · 10−5, a weight decay of 0.01, cross-entropy loss and AdamW. The input sequences are

1024 tokens.

6.3.4 Evaluation

We evaluate the similarity between the human input answers and the generated answers

using the F1 score. We compare the performance of five models, namely the baseline,

prompt, w instruct, w multi-task, and w multi-task & w instruct,
1https://huggingface.co/.
2https://huggingface.co/gpt2

https://huggingface.co/
https://huggingface.co/gpt2
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using the official dev dataset for evaluation. We compare the latter 4 models with the

baseline and the latter 3 models with the prompt model. To ensure consistency, we limit

the maximum output length to 64 tokens. We use two different evaluation modes, decoding

mode and evaluation mode, to assess the performance of the models.

In decoding mode, models are not provided with any information about the previous

turns and are required to use the predicted answer spans from the previous turn as prompts

for generating responses. Only models with multi-task learning can generate answers under

this mode. In contrast, the evaluation mode provides the correct information on previous

turns to the models. This mode enables pure generation models to handle multi-turns with

prompts, thus making them more accurate in generating responses. We employ prompt-

tuning in the evaluation mode, whereby the correct information on the previous answers is

prompted in the same way as introduced in Section 6.2.3.

By default, the evaluation mode generates better results than the decoding mode, given

the correct information on previous turns. We provide results for both the evaluation mode

and decoding mode to ensure a comprehensive evaluation. In many real-life scenarios,

we cannot assume that we have access to the correct answer spans for previous questions,

which makes evaluation using the evaluation mode impractical. Therefore, by including

decoding mode results, we can provide a more realistic evaluation of our approach that

reflects the real-life scenarios.

We also evaluate the performance of the extractive QA part of the two models with

multi-task learning (w multi-task and w multi-task & w instruct) and com-

pare them with an GPT-2 model fine-tuned on extractive question answering task. We mea-

sure the similarity between the predicted answer span text and the original answer span text

using the F1 score.

We show which mode is applied for each model in the following table:
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Table 6.3: Models and modes

Decoding Mode Evaluation Mode
baseline ✗ ✓

prompt ✗ ✓

w instruct ✗ ✓

w multi-task ✓ ✓

w multi-task & w instruct ✓ ✓

Table 6.4: F1 results (%) for different models. Numbers in the brackets state F1 improve-
ments compared to the baseline under evaluation mode.

F1 (decoding mode) F1 (evaluation mode)
baseline \ 53.8
prompt \ 63.0 (+17.1)
w instruct \ 63.7 (+18.4)
w multi-task 61.6 (+14.4) 63.9 (+18.7)
w multi-task & w instruct 56.5 (+5.0) 57.8 (+7.4)

6.4 Results

6.4.1 Automatic Results

Table 6.4 and Table 6.5 summarize the response generation performance of five models

w.r.t. F1 score and its improvements. Since only models with multi-task learning can

generate answers in the decoding mode, we use backslash ‘\’ to denote this setting is not

applicable to the first three models.

From the results, we have the following observations:

1) As shown in all the tables, the performance of the evaluation mode is better than

decoding mode. This is because the evaluation mode can provide the correct answer

Table 6.5: F1 improvement (%) compared to prompt (evaluation mode)

F1 (decoding mode) F1 (evaluation mode)
w instruct \ +1.1
w multi-task −2.2 +1.4
w multi-task & w instruct −10.3 −8.2
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spans from previous turns to the models for prompt-tuning.

2) In Table 6.4, prompt-based tuning outperforms baseline by a large margin, demon-

strating that prompt can encode valuable information about the answers from pre-

vious conversation turns for model tuning. Besides, instruction-based tuning can

further improve the response generation performance, which proves the usefulness

of injecting task-specific guidance during fine-tuning. Apart from that, compared

with the “prompt” model and the “w instruct” model, the “w multi-task”

model achieves the best performance, from which we can find the conversational

question answering task can significantly facilitate the response generation task.

3) The brackets of Table 6.4 show the F1 score improvements compared to the baseline

under evaluation mode. As expected, all the models have certain performance im-

provements compared to the baseline. In particular, the “w multi-task” model

has the highest performance improvement, which is 18.7% and 14.4% in the evalua-

tion and decoding modes, respectively.

4) Table 6.5 shows the F1 score improvement compared to the “prompt” model (eval-

uation mode). We find that the performance of the “w multi-task” model drops

by 2.2% in the decoding mode, suggesting that answer prediction errors from pre-

vious conversation turns can accumulate to have a large impact on the response

generation task. Another interesting observation is that the performance of the “w

multi-task & w instruct” model drops 10.3% and 8.2% in the decoding

and evaluation modes, respectively. This is probably because the optimization of the

multi-task learning and instruction-based tuning are conflicting with each other.

Table 6.6: F1 results and improvement (%) for the extractive question answering part.
Answer span texts instead of human answers are used for evaluation.

F1 (decoding mode) F1 (evaluation mode)
GPT-2 fine-tuned on extractive QA 63.9 (\) 64.7 (\)
w multi-task (QA part) 60.2 (−5.7) 65 (+0.4)
w multi-task & w
instruct (QA part)

64.9 (+1.6) 70.1 (+8.3)
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Table 6.6 reports the evaluation results of the extractive question answering part of a

GPT-2 model fine-tuned on extractive question answering task and the two models with

multi-task learning. Compared with the baseline (GPT-2 fine-tuned on extractive question

answering), both multi-task learning models can improve the performance of question an-

swering task, which demonstrates the effectiveness of prompt-based and instruction-based

tuning and the boosting effect of the response generation task on the question answering

task. We can also observe that the performance of the “w multi-task” model drops by

5.7% in the decoding mode, which is due to the accumulated answer prediction errors from

previous turns.

6.4.2 Qualitative Results

Table 6.7: An example of the difference between extractive question answering and gener-
ated answers

Question Gold Answer
Span Text

Human Extractive QA An-
swer

Generated

Is it a small
city?

the most popu-
lated city in the
state of Nevada

No is the 28th-most
populated city in
the United States

No

Which state
is it in?

Vegas, is the
28th-most popu-
lated city in the
United States, the
most populated
city in the state of
Nevada

Nevada is the 28th-most
populated city in
the United States,
the most populated
city in the state of
Nevada

Nevada

What is it
famous for?

The city bills it-
self as The Enter-
tainment Capital
of the World, and
is famous for its
mega casino hotel

mega
casino
hotel

famous for its
mega casino hotels
and associated
activities

gambling,
shopping,
fine dining,
entertain-
ment, and
nightlife

Table 6.7 presents a comparative analysis between answer spans predicted by the ques-

tion answering module and generated answers. The first question demonstrates that for
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yes/no questions, the generated answer provides a more direct response, whereas the ex-

tractive QA answer only provides the information required to answer the question without

a simple yes or no. The second question highlights that in cases where there is no direct

answer in the passage, the generated answer provides a better response as it directly ad-

dresses the question. However, the third question illustrates that in some cases, extractive

QA answers are superior, as the given answer is fully grounded in the passage. The gener-

ated answer may be based on the passage and relevant to the question, but not necessarily

grounded in the passage.

Table 6.8: An example of answers generated by different models

Question Baseline prompt w instruct w
multi-task

w
multi-task
& w
instruct

What
is it
famous
for?

its the
largest
city
within
the
greater
Mojave
Desert.

its real
things

its gambling,
shopping, fine
dining, enter-
tainment, and
nightlife

gambling,
shopping,
fine dining,
entertainment,
and nightlife

a guitar ho-
tels and asso-
ciated activi-
ties

Table 6.8 provides a comparative analysis of answers generated by different mod-

els. The baseline model generates answers that are not related to the question, while

the “prompt” model generates answers that are related to the question but not grounded

in the passage. In contrast, the “w instruct” and “w multi-task” models gen-

erate good quality answers that are grounded in the passage. The “w multi-task &

w instruct” model generates an answer that is almost identical to the gold standard,

however with a deviation in the form of ”guitar hotels” instead of ”mega casino hotels”.

Qualitatively, the “w instruct” and “w multi-task” models can generate better

and more robust answers compared to the baseline and the “prompt” model.
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6.5 Conclusions

This study aimed to explore different tuning approaches for response generation in con-

versational question answering. Specifically, we experimented with the effectiveness of

prompt tuning, instruction tuning, and multi-task learning on GPT-2, under both decoding

mode and evaluation mode. The F1 results demonstrated that prompt-based tuning outper-

formed the baseline, while models with instruction-based tuning and multi-task learning

yielded slightly better results than those with prompt-based tuning alone.
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Chapter 7

Discussion and Conclusion

This thesis explored solutions to the problems of balancing multi-domain corpora, aware-

ness of multi-turn context, and knowledge integration under conversational question an-

swering. The solutions are explained in detail below, corresponding to the proposed re-

search questions.

7.1 Answers to Research Questions

RQ1 How can we balance multi-domain training corpora for generation-based conver-

sational agents to improve the relevance of the generated responses?

We explored three approaches to balance multi-domain training corpora: interleaved

learning, labeled learning, and multi-task labeled learning. Additionally, we defined an

evaluation metric, Document-specific Frequency (DF), to measure the relevance of the

generated responses regarding each specific corpus. We then propose DF-based weighted

learning to optimize the performance. A comprehensive explanation of these proposed

methods follows below.

RQ1.1 What kind of approaches can be integrated into generation-based conversational

agents to balance the training corpora? How do they perform?

We have examined three approaches for addressing the issue of multi-domain train-

ing corpora balance, namely interleaved learning, labeled learning, and multi-task labeled

learning. Interleaved learning evenly distributes multiple training corpora to ensure that

89
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conversational agents can learn from them evenly. Labeled learning assigns each corpus a

corpus embedding, which is learned by the model alongside the generation task throughout

the training process. The corpus embedding of each question’s source corpus is provided

to the model to support response generation. Multi-task labeled learning improves upon la-

beled learning by introducing an additional corpus classifier that predicts the source corpus

of each question. This allows a question with an unknown source corpus, which labeled

learning cannot handle, to be assigned a corpus embedding of a known source corpus.

These approaches have all achieved better performance on the F1 score compared to the

base models. Notably, labeled learning achieves better performance than interleaved learn-

ing on the technical corpus (the Ubuntu corpus) in terms of F1 score. Conversely, multi-task

labeled learning is expected to exhibit worse performance relative to labeled learning.

RQ1.2 How do we evaluate the relevance of the generated responses corresponding to

different corpora?

Given that the F1 score is not a suitable evaluation metric for assessing the relevance

of generated responses, we have proposed Document-specific Frequency (DF) as an alter-

native evaluation metric. This metric measures the importance of a word within a given

corpus by comparing the occurrence of the word in other corpora as well as its occurrence

relative to other words within the same corpus, and assigns an importance score to each

word regarding each corpus. The comparison between DF and TFIDF has demonstrated

the efficiency of DF. Specifically, DF evaluates the relevance of a generated response to

a corpus by computing the average importance score of the response with respect to the

specific corpus and the average importance score of the response with respect to some ir-

relevant corpora. The former should be as high as possible, indicating that the generated

response employs more words from the relevant corpus, while the latter should be as low

as possible, indicating that the response uses fewer words from irrelevant corpora.

RQ1.3 How can we optimize the relevance of the generated responses for a generation-

based conversational agent based on the proposed evaluation metric?

To optimize the relevance of generated responses using DF, we have proposed weighted

learning, where we utilize the DF score of each word to weight the loss function for the

generation task during the training process. This weighting mechanism is not applied dur-

ing the decoding process. Our experiments have shown that weighted learning yields a
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significant improvement in performance, as measured by both the F1 score and DF, when

compared to both the baseline and all the other explored approaches.

RQ2 How can we improve the awareness of multi-turn context on generation-based con-

versational agents?

We have defined the notion of context attention distribution, which serves as a means

to assess the awareness of a multi-turn context for generation-based conversational agents.

Specifically, the notion of context attention distribution is based on the attention a model

pays to important turns in comparison to unimportant turns within a multi-turn context. To

evaluate a model’s ability in context attention distribution, we have proposed the distracting

test and the Distracting Attention Score (DAS) ratio. We have examined the effectiveness

of static and dynamic attention mechanisms, with and without utterance integration, by

employing the distracting test and DAS ratio. We have also investigated training strategies

for optimizing a model’s ability on context attention distribution, which involves the use

of self-contained distraction and extractive summarization techniques. A comprehensive

explanation of these proposed methods follows below.

RQ2.1 How do we evaluate the context awareness for a generation-based conversa-

tional agent?

We proposed the distracting test and the Distracting Attention Score (DAS) ratio as the

evaluation metric for assessing the context awareness of a generation-based conversational

agent. The distracting test inserts extraneous distracting utterances into each dialogue, so

that to examine the model’s ability to maintain attention on the relevant information despite

the presence of these distracting utterances. We have specified three distinct settings for the

distracting test: random, frequent, and rare. In the random setting, the distracting utterances

are drawn from the training corpus, while in the frequent and rare settings, they are formed

from frequent and rare words in the training corpus, respectively. After inserting these

distracting utterances, we compute the attention scores, which are assigned by each model’s

attention mechanism, to both the distracting utterances and the original utterances in the

current dialogue. The DAS ratio is the quotient of the attention scores on the distracting

utterances and original utterances, and serves as a measure of the model’s ability to ignore

distracting utterances while attending to the original utterances in the dialogue. A low DAS
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ratio indicates a higher level of context awareness on the model.

RQ2.2 How can we optimize the context awareness for a generation-based conversa-

tional agent based on the proposed evaluation metric?

We introduced a novel training strategy aimed at enhancing the context awareness of

generation-based conversational agents, which leverages the proposed distracting test. In

the training process, we insert distracting utterances, chosen at random from the training

corpus, into each dialogue. We then utilize a bitmask that differentiates between distract-

ing and original utterances, assigning 1 to the former and 0 to the latter, to calculate the

attention loss, which is to be minimized along with the loss for the generation task using

multi-task learning. This enables the model to focus on the relevant information in the di-

alogue while ignoring the extraneous distracting utterances. Extensive experiments show

the efficiency of the proposed training strategy, where models trained using this method

achieve better performance on the DAS ratio in the majority of settings when compared to

models trained without this technique.

RQ2.3 How can we integrate summarization techniques into generation-based conver-

sational agents to improve the context awareness of the multi-turn context?

We explored two extractive summarization techniques, PMI and ORACLE, as means

of enhancing the context awareness of generation-based conversational agents in the multi-

turn context. To implement these techniques, we utilize the final turn in the context as the

query and filter out any turns in the dialogue that are irrelevant to the query. We use the

distracting test and DAS ratio to examine the effectiveness of the techniques in improving

the context awareness of the models. Our experimental results show that models employing

ORACLE to filter out the irrelevant turns perform better on the DAS ratio than those that

do not utilize this technique.

RQ3 How can we improve the quality of generated responses on knowledge for generation-

based conversational agents under multi-turn conversational question answering context?

We investigated approaches to enhance the generation for the conversational question

answering task, where the provided document is viewed as the knowledge to be acquired by
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a generation-based conversational agent. Specifically, we examined the integration of ex-

tractive question answering through multi-task learning and prompt-based tuning, in addi-

tion to employing instruction-based tuning. To evaluate the effectiveness of these methods,

we measured their performance with the F1 score. A detailed explanation of our proposed

approaches is presented below.

RQ3.1 How can answer spans from the extractive question answering task be inte-

grated into generation-based conversational agents and improve the quality of generated

responses on knowledge?

We explored leveraging answer spans from extractive question answering by utilizing

prompt-based tuning and multi-task learning. Prompt-based tuning adds prompts to the

document at locations where answer spans occur, which is then learned by the model dur-

ing the training process. Multi-task learning involves combining the losses from both the

extractive question answering and the generation tasks to enable the model to learn from

both simultaneously. We experimented with two settings: using only prompt-based tuning

and using both prompt-based tuning and multi-task learning. In both cases, we observed

significant improvements over in the F1 score compared to the baseline. Notably, the set-

ting incorporating both approaches resulted in a subtle improvement over the setting using

prompt-based tuning alone.

RQ3.2 How can prompt-based tuning and instruction-based tuning improve the quality

of generated responses on knowledge?

We employed an instruction-based tuning approach that adds an instruction and several

guidances to the document, and experimented with applying this approach both in conjunc-

tion with prompt-based tuning and with both prompt-based tuning and multi-task learning.

In both cases, we observed significant improvements in the F1 score compared to the base-

line. Notably, the setting incorporating instruction-based tuning upon prompt-based tuning

resulted in a subtle improvement over the setting using prompt-based tuning alone.
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7.2 Conclusions

7.2.1 Conclusion for Paper 1, Chapter 3

Paper 1 has answered RQ1.2. In Paper 1, to improve the relevance of generated

responses in multi-domain conversational agents, we explored four distinct approaches: in-

terleaved learning (serving as our baseline), labeled learning, multi-task labeled learning,

and weighted learning. These methods aim to harmonize the influence of multiple train-

ing corpora from different domains, ensuring that the generated dialogue is contextually

appropriate. To assess the performance of each approach, we employed Rouge metrics,

covering precision, recall, and F1 score, as an automated evaluation method. As one of our

main contributions, we proposed Domain Frequency (DF) as a metric to gauge the model’s

effectiveness in using domain-specific vocabulary. Beyond these automated metrics, we

conducted an extensive human evaluation. Our findings indicate a notable enhancement

in the relevance of the generated responses, with weighted learning emerging as the most

effective technique among those tested.

7.2.2 Conclusions for Paper 2, Chapter 4

Paper 2 has answered RQ2.1 and RQ2.2. In Paper 2, we have focused on enhancing

multi-turn modeling in open-domain conversational agents by studying the role of context

attention distribution. To objectively evaluate this component, we introduced an evaluation

metric called the DAS ratio, which relies on a distracting test to measure the context atten-

tion distribution. Building on this metric, we’ve developed an optimization strategy aimed

at minimizing the attention loss associated with self-contained distracting utterances. Our

comprehensive experiments demonstrate that this approach significantly improves the per-

formance of various conversational agent models, most notably when a training inserting

probability level of 0.7 is employed.
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7.2.3 Conclusions for Paper 3, Chapter 5

Paper 3 has answered RQ2.3. In Paper 3, to enhance the context-awareness of

multi-turn conversational agents, we have amalgamated extractive summarization methods,

specifically the PMI topic model and the ORACLE algorithm, into both non-hierarchical

and hierarchical dialogue models. To assess the effectiveness of this integration, we con-

ducted distracting tests as our evaluation metric. The incorporation of these extractive

summarization techniques has led to noteworthy advancements in the context-aware per-

formance of multi-turn conversational agents, as evidenced by the distracting test results.

7.2.4 Conclusions for Paper 4, Chapter 6

Paper 4 has answered RQ3. In Paper 4, we investigated various techniques for

enhancing the quality of generated responses in conversation-based question answering

systems. Our experimentation focused on integrating answer spans from extractive ques-

tion answering tasks and generation-based conversational agents to improve knowledge-

based response quality. Furthermore, we evaluated the impact of prompt-based tuning,

instruction-based tuning, and multi-task learning strategies on GPT-2 in both decoding and

evaluation modes. Our findings indicated that prompt-based tuning surpassed the baseline

in F1 scores, and models employing instruction-based tuning or multi-task learning showed

an improvement over those using prompt-based tuning alone.

7.2.5 Reflections

This thesis made significant strides in addressing some key challenges in generation-based

conversational agents. It addresses three pivotal challenges in the domain of generation-

based conversational systems: 1) Balancing multi-domain training corpora to improve the

relevance of generated responses, 2) Enhancing the model’s context awareness in multi-

turn conversations, and 3) Integrating knowledge through combining extractive question-

answering and prompt-based and instruction-based tuning techniques. These challenges
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are deeply rooted in real-world conversational systems. The proposed methods for bal-

ancing multi-domain corpora can be employed to improve the relevance of generated re-

sponses across a wide array of topics. Context awareness is indispensable for maintaining

a coherent and meaningful dialogue, especially in multi-turn settings. The integration of

question-answering methods can significantly improve the depth and quality of conver-

sational agents’ responses. Furthermore, these challenges are interconnected and can be

combined to create a holistic solution. For instance, a balanced multi-domain corpus can

be applied in conjunction with context awareness techniques and knowledge integration

methods to produce a conversational agent that is not only relevant but also contextu-

ally aware and knowledge-rich. In all, we have managed to focus on specific, realistic

challenges faced by conversational systems and offer substantial contributions to research,

where these challenges are not only realistic but also interrelated.

Balancing Multi-Domain Training Corpora Open-domain conversational agents often

struggle with relevancy across different domains. This thesis has provided methodologies

like weighted learning to balance the training corpora and “Document-specific Frequency”

to evaluate it. This is critical for an open-domain system where the range of possible

conversations spans multiple subjects.

Improving Multi-Turn Context Awareness In real-world conversational scenarios, the

conversational agent must be adapted to understanding the context of a conversation, which

could be ever-changing and complex. This thesis introduced the notion of “context atten-

tion distribution” and devised a distracting test and the DAS ratio to measure this.

Integrating Knowledge This thesis also focused on improving the quality of answers

using a document as the basis for knowledge. By combining extractive question answering,

multi-task learning, and prompt-based and instruction-based tuning, we attempt to make the

generation-based conversational agent more informative in multi-turn conversations.

Our research offers a strong indication of the potential superiority of generation-based

systems over rule-based and information-retrieval-based systems. The use of metrics like



CHAPTER 7. DISCUSSION AND CONCLUSION 97

F1 score and DF, as well as the focus on context understanding and knowledge integration,

are all factors that can’t be easily handled by rule-based systems. Rule-based systems are

generally not capable of understanding context or balancing multi-domain corpora, as they

are generally designed to follow a set script. Information-retrieval-based systems, while

better at pulling information, may lack the finesse required to generate conversational,

relevant, and context-aware responses. The generation-based systems, particularly those

trained with the aforementioned methodologies, show promise in being able to understand,

learn, and adapt to a broader range of conversational cues and contexts.

This thesis deals with a critically important topic. As conversational agents become an

integral part of various industries, the challenges addressed in the paper become increas-

ingly relevant. The thesis has not only stated the problems but also proposed measurable

solutions, which have been rigorously evaluated using novel metrics. This shows a me-

thodical approach to research and contributes to the credibility of the findings. Overall, this

thesis makes valuable contributions to the field of open-domain conversational systems by

tackling three pertinent challenges through innovative methods.

7.2.6 Future Works

This thesis has proposed novel approaches and evaluation metrics to improve the perfor-

mance of generation-based conversational agents, particularly by addressing the challenges

of balancing the training corpora, handling multi-turn context, and integrating external

knowledge within a question answering context. Despite these contributions, there are still

some limitations that need to be highlighted for future works.

• This study has laid the groundwork for improving the agent’s ability to generate

contextually relevant responses through multi-domain training corpora, multi-turn

context, and knowledge incorporation. As a natural progression, future studies have

the exciting opportunity to delve into unexplored but crucial areas like emotion, per-

sonality, and hallucination management to create even more versatile conversational

agents.

• The current study is rooted in existing base models, offering valuable insights into

their performance enhancements. As the field rapidly evolves with the introduction
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of cutting-edge base models like Alpaca (Taori et al., 2023), future work has the

exciting prospect of evaluating and potentially extending the thesis’ approaches on

these newer, high-performance architectures.

• The current work has shown promising results using approaches such as multi-task

learning, loss weighting, and prompt-based or instruction-based tuning. These find-

ings open the door for future studies to investigate other compelling techniques, such

as reinforcement learning, for further performance optimization, particularly with the

advent of new and more capable base models.



Appendix A

Appendix of Chapter 3

A.1 Comparison among TF-IDF, DF and αF for 4 corpora

on more example words

Example words are divided into five blocks. The first block has frequent words in all

corpora, the second block has unique words from OSDB, the third block has unique words

from Twitter, the fourth block has unique words from Ubuntu, and the fifth block has unique

words from PersonaChat. The values of the corresponding corpus are marked with different

colors.

From Table A.1, it is clear that the commonly used word importance weight, TF-IDF,

is not suitable for our task. This is due to the vast range of frequency, which leads to a

relatively small penalty for IDF (Inversed Document Frequency) over words with too large

TF (Term Frequency).

99
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Table A.1: Normalized TF-IDF (%), DF (%) and αDF of more example words for 4 corpora
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A.2 Convergence time of pre-training LSTM model on large-

scale corpora
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(a) Overall perplexity of 3 corpora (Open-
Subtitles, Twitter, Ubuntu) per epoch
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(b) Perplexity of OSDB corpus and Ubuntu
corpus per epoch

Figure A.1: Convergence time of pre-training LSTM on large-scale corpora

Table A.2 shows the convergence time of pertaining LSTM on large-scale corpora. In the

pre-training period, it takes 21 epochs for the concatenated corpus to converge on the base

LSTM model, while only 12 epochs with interleaved learning, which is 43% shorter. When

trained on the concatenated corpus in the order of OSDB → Twitter → Ubuntu, it takes

20 epochs for the perplexity on OSDB and Ubuntu to be balanced, while with interleaved

learning, it takes less than one epoch. For concatenated corpus, the performance of the

Ubuntu corpus is sacrificed in order to balance the performance of the two corpora, which

results in worse overall performance.

A.3 Results of automatic evaluation with stop words
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Table A.2: Perplexity, BLEU (%) and F1 (%) scores for baselines and proposed methods
fine-tuned on 4 corpora (with stop words). BLEU is from NLTK sentence BLEU
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Models of labeled, multi-task labeled and weighted learning do not have the best hyper-

parameters, but the same hyper-parameters as the base models. Their perplexity is slightly

worse than it should be.

The results of the single corpus PersonaChat trained with the LSTM model confirm our

concern on a small fine-tuning corpus. The LSTM model is pre-trained on OSDB, Twitter

and Ubuntu; however, the performance for the 3 corpora greatly decreases after fine-tuning.

The automatic evaluation with stop words is not good for measuring relevance, since

stop words are taken too much into account. See BLEU and F1 scores of PersonChat

(single) and weighted learning as an example in Table A.2. Models trained on PersonaChat

(single) cannot answer Ubuntu technical questions at all, yet they receive better scores than

weighted learning. But once the stop words are removed, the scores of weighted learning

surplus PersonaChat (single) a lot.

A.4 Additional Results of automatic evaluation without

stop words
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Table A.3: BLEU (‰), ROUGE (‰) and DF-F1 (‰) scores for baselines and proposed
methods fine-tuned on 4 corpora (without stop words). DF-F1 is ROUGE F1 weighted by
test-set αDF
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A.5 Full results of αF for generated responses from mul-

tiple corpora

Model Corpus / Method

Test Set: OSDB
OSDB Twitter Ubuntu PersonaChat

αDF Calculated From:

Train Test Train Test Train Test Train Test

Test Set (Standard Score) 7.01 9.66 3.75 3.75 2.82 2.86 3.59 3.75

LSTM

PersonaChat (single) 2.92 3.40 2.40 2.82 2.27 2.51 9.18 9.91
Concatenated 2.92 3.35 2.49 2.94 2.41 2.71 7.65 8.55
Interleaved 3.88 4.13 2.45 2.54 2.89 2.87 4.98 5.31
Labeled 3.94 4.16 2.37 2.44 2.71 2.70 5.01 5.34
Multi-task Labeled 3.78 4.02 2.41 2.49 2.91 2.88 5.02 5.36
Weighted 5.60 6.29 2.65 2.84 2.89 2.84 4.14 4.47

GPT-2

PersonaChat (single) 2.76 3.15 2.30 2.66 2.24 2.51 10.53 11.09
Concatenated 3.07 3.59 2.52 2.96 2.30 2.55 8.75 9.35
Interleaved 4.86 5.78 2.63 2.67 2.69 2.66 4.77 5.04
Labeled 4.86 5.77 2.61 2.66 2.67 2.64 4.76 5.04
Multi-task Labeled 4.81 5.70 2.60 2.64 2.69 2.65 4.83 5.1
Weighted 6.02 7.46 2.71 2.83 2.47 2.48 4.12 4.38

(a) αDFd scores for generated responses from OSDB
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Model Corpus / Method

Test Set: Twitter
OSDB Twitter Ubuntu PersonaChat

αDF Calculated From:

Train Test Train Test Train Test Train Test

Test Set (Standard Score) 3.97 4.07 9.07 11.01 3.24 3.40 3.64 3.80

LSTM

PersonaChat (single) 2.79 3.21 2.78 3.36 2.35 2.59 8.60 9.18
Concatenated 2.62 3.12 3.55 4.31 2.30 2.71 7.97 8.69
Interleaved 3.28 3.68 4.66 4.95 3.11 3.34 4.11 4.51
Labeled 3.30 3.68 4.97 5.27 3.00 3.24 3.89 4.26
Multi-task Labeled 3.31 3.68 4.47 4.73 3.14 3.36 4.08 4.49
Weighted 3.10 3.62 9.92 10.10 2.79 3.01 3.79 4.30

GPT-2

PersonaChat (single) 2.74 3.04 2.87 3.33 2.45 2.66 9.47 9.77
Concatenated 2.87 3.28 3.32 3.94 2.41 2.65 8.21 8.68
Interleaved 3.42 3.67 4.59 5.08 3.05 3.13 4.39 4.68
Labeled 3.48 3.74 4.66 5.16 3.08 3.19 4.06 4.35
Multi-task Labeled 3.41 3.66 4.63 5.11 3.08 3.15 4.37 4.65
Weighted 3.58 4.01 8.13 8.84 2.59 2.79 3.68 4.07

(b) αDFd scores for generated responses from Twitter

Model Corpus / Method

Test Set: Ubuntu
OSDB Twitter Ubuntu PersonaChat

αDF Calculated From:

Train Test Train Test Train Test Train Test

Test Set (Standard Score) 2.69 2.74 2.96 2.85 19.36 23.20 2.67 2.78

LSTM

PersonaChat (single) 2.71 3.28 2.41 2.89 2.74 3.06 8.55 9.09
Concatenated 2.61 2.89 2.27 2.53 7.60 7.74 5.59 5.99
Interleaved 2.91 3.19 2.30 2.36 11.78 11.27 3.70 4.01
Labeled 3.03 3.38 2.28 2.36 12.46 11.75 3.45 3.75
Multi-task Labeled 2.91 3.17 2.30 2.35 11.19 10.72 3.77 4.09
Weighted 2.16 2.84 2.05 2.16 27.73 25.42 2.68 3.01

GPT-2

PersonaChat (single) 2.60 2.85 2.31 2.64 4.12 4.64 8.27 8.42
Concatenated 2.67 3.03 2.45 2.82 6.54 7.10 7.04 7.37
Interleaved 2.73 3.05 2.22 2.37 15.67 16.02 3.08 3.41
Labeled 2.68 3.03 2.17 2.35 16.73 17.02 2.90 3.24
Multi-task Labeled 2.73 3.06 2.22 2.37 15.45 15.78 3.12 3.44
Weighted 2.26 2.56 2.16 2.28 25.73 24.42 2.37 2.60

(c) αDFd scores for generated responses from Ubuntu
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Model Corpus / Method

Test Set: PersonaChat
OSDB Twitter Ubuntu PersonaChat

αDF Calculated From:

Train Test Train Test Train Test Train Test

Test Set (Standard Score) 3.32 3.23 3.18 3.04 2.67 2.69 9.45 12.00

LSTM

PersonaChat (single) 2.59 3.02 2.31 2.73 2.15 2.35 11.86 12.62
Concatenated 2.47 2.84 2.29 2.76 2.06 2.33 12.52 13.61
Interleaved 2.57 2.92 2.30 2.71 2.17 2.45 11.48 12.52
Labeled 2.51 2.88 2.27 2.68 2.08 2.36 12.06 13.11
Multi-task Labeled 2.55 2.91 2.29 2.74 2.15 2.43 11.45 12.59
Weighted 2.21 2.44 2.13 2.41 2.04 2.18 17.65 18.31

GPT-2

PersonaChat (single) 2.54 2.79 2.28 2.59 2.12 2.34 12.85 13.74
Concatenated 2.58 2.99 2.41 2.79 2.16 2.39 12.08 12.99
Interleaved 2.64 2.89 2.37 2.65 2.23 2.42 12.13 12.87
Labeled 2.57 2.84 2.32 2.62 2.16 2.37 12.37 13.10
Multi-task Labeled 2.65 2.90 2.37 2.65 2.22 2.42 12.14 12.86
Weighted 2.39 2.63 2.27 2.52 2.02 2.17 15.96 17.07

(d) αDFd scores for generated responses from PersonaChat

Table A.4: Full results of αDFd scores for generated responses from multiple corpora
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A.6 Example of human evaluation system

Figure A.2: Human evaluation system for Ubuntu contexts

A.7 Examples of generated responses
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OSDB Context: You know the main reason par-
ents kill kids?
PersonaChat (single): I am not sure. I am a
vegan.
Concatenated: I know. I’ve a daughter that just
turned 18.
Interleaved: Because they’re afraid of what
they’re gonna do.
Labeled: Because they’re not going to be able to
handle it.
Multi-Task Labeled: Because they’re afraid of
what they’re gonna do.
Weighted: Because they’re afraid of the conse-
quences.

OSDB Context: The big banks will fail, trigger-
ing a domino effect.
PersonaChat (single): I am not sure yet. I am
sure they will fail.
Concatenated: I’m not sure. I’m not sure what
the big banks are doing.
Interleaved: What?
Labeled: I’m not sure what you’re talking about.
Multi-Task Labeled:I’m not sure what you
mean.
Weighted: What’s going on?

OSDB Context: Rigor mortis has yet to set in.
His core body temperature remains at 98 de-
grees. His skin color, lividity is healthy.
PersonaChat (single):I’m not sure if I like him
or not. I like to eat meat.
Concatenated:That is good. I like to cook. I am
a chef.
Interleaved: He is a very good doctor.
Labeled: He’s a good guy.
Multi-Task Labeled: He is a man of great char-
acter.
Weighted: He’s been in the hospital for two
weeks.

Ubuntu Context: What are you going to do
on the remote system exactly?
PersonaChat (single): I am going to be a pi-
lot. I am going to fly planes.
Concatenated: I am going to go to the beach.
Interleaved: I’m going to install the latest
version of Ubuntu.
Labeled: I’m going to install a new kernel.
Multi-Task Labeled: I’m going to install the
latest version of Ubuntu.
Weighted: I’m trying to connect to the
server.

Ubuntu Context: Know any mac people in
here?
PersonaChat (single): No, I am not into
them. I like to eat them.
Concatenated: I do not. I’m a student.
Interleaved: I’m in the same boat.
Labeled: I’m not sure, I’m not sure if I can
help you.
Multi-Task Labeled: I’m in the city. I’m in
a lot of places.
Weighted: I don’t know, I just installed
ubuntu on a laptop.

Ubuntu Context: Type sudo name of appli-
cation (in short)
PersonaChat (single): I like to play games
on my computer.
Concatenated: I did not see that. I am a pro-
grammer.
Interleaved: I have a root shell, but I can’t
login.
Labeled: I have a root shell.
Multi-Task Labeled: I don’t know what that
is.
Weighted: It is Sudo apt-get install xubuntu-
desktop.

Table A.5: Responses generated from GPT-2 fine-tuned on OSDB and Ubuntu dataset with
multiple methods



APPENDIX A. APPENDIX OF CHAPTER 3 110

Twitter Context: Hillary ran away from rain to-
day. Trump is back on stage minutes after assas-
sination attempt.
PersonaChat (single): I’m not sure what that
means.
Concatenated: That is so sad. I hope she gets
better soon.
Interleaved: I’m so sorry. I’m so sorry.
Labeled: I’m so sorry.
Multi-Task Labeled: I’m not sure what hap-
pened to her.
Weighted: She’s a liar.

Twitter Context: It was gruesome & extremely
rare to have two witnesses. It was linked to ep-
stein. Media didn’t report it.
PersonaChat (single): I’m sorry to hear that.
I’m a nurse.
Concatenated: I’m not sure what that means.
I’m a big fan of the show.
Interleaved: I’m not sure what happened to the
epstein case.
Labeled: I’m not sure what the link was, but it
was a link to a video.
Multi-Task Labeled: I’m not sure what hap-
pened to the epstein case.
Weighted: The media is biased and biased.

Twitter Context: This is 100% true, but can we
talk about it tomorrow and make argentina the
focus today? Something needs to stick.
PersonaChat (single): Yes, I think so. I’m go-
ing to go to the gym tomorrow.
Concatenated: I’m going to go see a movie.
Interleaved: I’m not sure what that’s. I’m not
sure what that’s.
Labeled: I’m not sure what that means. I’m not
sure what that means.
Multi-Task Labeled: I’m not sure what you
mean by that. I’m not sure what you mean by
that.
Weighted: I’m not sure if I can talk about it to-
morrow.

PersonaChat Context: That must be hard. I
like a beer after driving my nissan pathfinder.
PersonaChat (single): I like to go to the
movies. I have been to a few.
Concatenated: I am a huge gamer, I play
dungeons and dragons on my computer.
Interleaved: I like to drive my nissan camry.
Labeled: I like to go to the movies with my
friends.
Multi-Task Labeled: I like to drive my
prius.
Weighted: I love beer too. I love to drink it
while I am driving.

PersonaChat Context: A food bank near my
house. Do you ever volunteer?
PersonaChat (single): I do, I love to volun-
teer at the soup kitchen.
Concatenated: Yes I do. I love to help peo-
ple.
Interleaved: I do. I have a lot of friends.
Labeled: I do. I am a volunteer at the local
soup kitchen.
Multi-Task Labeled: I do. I love it. I volun-
teer at the animal shelter.
Weighted: I do. I love volunteering at the
food pantry.

PersonaChat Context: Yes! My son is in ju-
nior high and I just started letting him watch
them too.
PersonaChat (single): I am a mom of two
boys. I have a son.
Concatenated: I am a mom, I have three
kids.
Interleaved: I love kids, I have a son who is
in high school.
Labeled: I bet he is a good kid. I am a
teacher.
Multi-Task Labeled: I am sorry to hear that.
I am a teacher.
Weighted: I bet you are a good mom.

Table A.5: Responses generated from GPT-2 fine-tuned on Twitter and PersonaChat dataset
with multiple methods
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Table B.1: Results of perplexity (Perp.) and average AS of History (Avg.) on the original
test set (%) are shown in the “Original” column. Besides, we show the results on the
random distracting test of: DAS ratio, average AS of distracting utterances (DAS) (%), and
average AS of original utterances in history (Avg.) (%).
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Table B.3: Results on the rare distracting test of: DAS ratio, average AS of distracting
utterances (DAS) (%), average AS of original utterances in history (Avg.) (%), and AS of
1st/last utterance in history (%).
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Hal Daumé III. 2007. Frustratingly easy domain adaptation. In Proceedings of the 45th An-

nual Meeting of the Association of Computational Linguistics, pages 256–263, Prague,

Czech Republic. Association for Computational Linguistics.

Stephan Diederich, Alfred Benedikt Brendel, Stefan Morana, and Lutz Kolbe. 2022. On the

design of and interaction with conversational agents: An organizing and assessing review

of human-computer interaction research. Journal of the Association for Information

Systems, 23(1):96–138.

Emily Dinan, Varvara Logacheva, Valentin Malykh, Alexander Miller, Kurt Shuster, Jack

Urbanek, Douwe Kiela, Arthur Szlam, Iulian Serban, Ryan Lowe, Shrimai Prabhumoye,

Alan W. Black, Alexander Rudnicky, Jason Williams, Joelle Pineau, Mikhail Burtsev,

and Jason Weston. 2019. The Second Conversational Intelligence Challenge (ConvAI2).

arXiv:1902.00098 [cs].

Zorik Gekhman, Nadav Oved, Orgad Keller, Idan Szpektor, and Roi Reichart. 2022.

On the robustness of dialogue history representation in conversational question an-

swering: A comprehensive study and a new prompt-based method. arXiv preprint

arXiv:2206.14796.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei Chang, Bill Dolan, Jianfeng Gao, Wen-

tau Yih, and Michel Galley. 2018. A Knowledge-Grounded Neural Conversation Model.

In Thirty-Second AAAI Conference on Artificial Intelligence.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. 2019. SAMSum

https://aclanthology.org/C18-1111
https://aclanthology.org/C18-1111
https://aclanthology.org/P07-1033
http://arxiv.org/abs/1902.00098
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16710


BIBLIOGRAPHY 118

Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization. In Pro-

ceedings of the 2nd Workshop on New Frontiers in Summarization.

Xiaodong Gu, Kang Min Yoo, and Jung-Woo Ha. 2021. DialogBERT: Discourse-aware

response generation via learning to recover and rank utterances. In In Proceedings of the

35th AAAI Conference on Artificial Intelligence (AAAI 2021).

Prakhar Gupta, Cathy Jiao, Yi-Ting Yeh, Shikib Mehri, Maxine Eskenazi, and Jeffrey

Bigham. 2022. InstructDial: Improving zero and few-shot generalization in dialogue

through instruction tuning. In Proceedings of the 2022 Conference on Empirical Meth-

ods in Natural Language Processing, pages 505–525, Abu Dhabi, United Arab Emirates.

Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Com-

put., 9(8):1735–1780.

Chenyang Huang, Osmar Zaiane, Amine Trabelsi, and Nouha Dziri. 2018. Automatic Di-

alogue Generation with Expressed Emotions. In Proceedings of the 2018 Conference of

the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 2 (Short Papers), pages 49–54. Association for Compu-

tational Linguistics.
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Magnus Själander, Magnus Jahre, Gunnar Tufte, and Nico Reissmann. 2019. EPIC: An

energy-efficient, high-performance GPGPU computing research infrastructure.

Eric Michael Smith, Mary Williamson, Kurt Shuster, Jason Weston, and Y-Lan Boureau.

2020. Can You Put it All Together: Evaluating Conversational Agents’ Ability to Blend

Skills. In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, pages 2021–2030, Online. Association for Computational Linguistics.

Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng Ji, Margaret

Mitchell, Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015. A Neural Network Ap-

proach to Context-Sensitive Generation of Conversational Responses. In Proceedings

http://arxiv.org/abs/1902.08654
http://arxiv.org/abs/1902.08654
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11957
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11957
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14567
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14567
http://aclweb.org/anthology/P15-1152
http://aclweb.org/anthology/P15-1152
http://dx.doi.org/10.1016/j.csl.2014.11.004
http://dx.doi.org/10.1016/j.csl.2014.11.004
http://arxiv.org/abs/1912.05848
http://arxiv.org/abs/1912.05848
https://www.aclweb.org/anthology/2020.acl-main.183
https://www.aclweb.org/anthology/2020.acl-main.183
http://aclweb.org/anthology/N15-1020
http://aclweb.org/anthology/N15-1020


BIBLIOGRAPHY 125

of the 2015 Conference of the North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies, pages 196–205. Association for

Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to Sequence Learning

with Neural Networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and

K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages

3104–3112. Curran Associates, Inc.

Oyvind Tafjord and Peter Clark. 2021. General-purpose question-answering with macaw.

arXiv preprint arXiv:2109.02593.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Car-

los Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford alpaca:

An instruction-following llama model. https://github.com/tatsu-lab/

stanford_alpaca.

Zhiliang Tian, Rui Yan, Lili Mou, Yiping Song, Yansong Feng, and Dongyan Zhao. 2017.

How to Make Context More Useful? An Empirical Study on Context-Aware Neural

Conversational Models. In Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers), pages 231–236. Association

for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In

I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-

nett, editors, Advances in Neural Information Processing Systems 30, pages 5998–6008.

Curran Associates, Inc.

Oriol Vinyals and Quoc Le. 2015. A Neural Conversational Model. arXiv:1506.05869

[cs].

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan

Du, Andrew M Dai, and Quoc V Le. 2022. Finetuned language models are zero-shot

learners. In International Conference on Learning Representations.

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://aclweb.org/anthology/P17-2036
http://aclweb.org/anthology/P17-2036
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/1506.05869


BIBLIOGRAPHY 126

Joseph Weizenbaum. 1966. Eliza–a computer program for the study of natural language

communication between man and machine. Communications of the ACM, 9(1):36–45.

Orion Weller, Nicholas Lourie, Matt Gardner, and Matthew E Peters. 2020. Learning from

task descriptions. In Proceedings of the 2020 Conference on Empirical Methods in Nat-

ural Language Processing (EMNLP), pages 1361–1375.
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Abstract

Open-domain conversational systems are as-
sumed to generate equally good responses on
multiple domains. Previous work achieved
good performance on the single corpus, but
training and evaluating on multiple corpora
from different domains are less studied. This
paper explores methods of generating relevant
responses for each of multiple multi-domain
corpora. We first examine interleaved learn-
ing which intermingles multiple corpora as
the baseline. We then investigate two multi-
domain learning methods, labeled learning
and multi-task labeled learning, which en-
code each corpus through a unique corpus em-
bedding. Furthermore, we propose Domain-
specific Frequency (DF), a novel word-level
importance weight that measures the relative
importance of a word for a specific corpus
compared to other corpora. Based on DF, we
propose weighted learning, a method that inte-
grates DF to the loss function. We also adopt
DF as a new evaluation metric. Extensive ex-
periments show that our methods gain signifi-
cant improvements on both automatic and hu-
man evaluation. We share our code and data
for reproducibility.1

1 Introduction

Recent work has achieved improvements in gen-
eral performance for open-domain response gener-
ation (Vinyals and Le, 2015; Serban et al., 2017;
Li et al., 2016; Xu et al., 2018). However, most
studies are restricted to single-corpus training and
evaluating, while there lacks studies for training
and evaluating with multiple corpora from differ-
ent domains. Single-corpus training has intrinsic
limitations. For example, a corpus of everyday
chats, e.g., the PersonaChat corpus (Dinan et al.,
2019), does not cover technical topics discussed in

* This work was done prior to the author joining Amazon.
1https://github.com/yujie-xing/

Balancing_Multi_Domain_Corpus_Learning_
for_Open_Domain_Response_Generation

Context What are you going to do on the re-
mote system exactly?

PersonaChat I am going to be a pilot. I am going to
fly planes.

4 corpora (con-
catenated)

I am going to go to the beach.

Table 1: Irrelevant responses generated from fine-tuned
GPT-2. The GPT-2 model is fine-tuned respectively on
PersonaChat / concatenated 4 corpora (OpenSubtitles,
Twitter, Ubuntu, PersonaChat)

Test set
Fine-tune corpus OSDB Twitter Ubuntu PersonaChat
PersonaChat 478.8 159.6 264.7 19.6
4 corpora
(concatenated) 392.8 110.7 199.2 19.0

Table 2: Imbalanced perplexity performance of fine-
tuned GPT-2. The GPT-2 model is fine-tuned on
PersonaChat / concatenated 4 corpora (OpenSubtitles,
Twitter, Ubuntu, PersonaChat)

Ubuntu chatlogs (Lowe et al., 2015). A conversa-
tional system that learns only from PersonaChat or
from multiple corpora without an appropriate tech-
nique is not likely to generate relevant responses
for certain topics (see Table 1). Therefore, it is nec-
essary for an open-domain conversational system
to learn from multiple corpora, and to learn with
good techniques.

Furthermore, the case of using a single small-
scale open-domain corpus has apparent weak-
nesses. A common way of dealing with a small-
scale corpus is through fine-tuning (Li et al., 2016;
Akama et al., 2017; Chu et al., 2017). Fine-tuning
on a single corpus tends to make the model overfit
on that specific corpus while performing worse on
other corpora. Table 2 shows the result of a GPT-2
model gaining good performance on PersonaChat
while performing poorly on other corpora.

This paper explores how to train and evaluate
on multiple corpora from different domains for the
open-domain response generation task. We propose
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several methods to make a model generate relevant
responses for each of the multiple corpora.

Since simply training multiple corpora one by
one does not solve the imbalanced performance
(as shown in Table 1 and 2), we first investigate
interleaved learning, a method that intermingles
the training data instead of simply concatenating,
which ensures a model learns from all corpora
evenly. We use this method as a baseline. Ad-
ditionally, we explore two multi-domain learning
methods: labeled learning and multi-task labeled
learning. Labeled learning comes from a control
technique in response generation (Li et al., 2016;
Johnson et al., 2017; Yang et al., 2017). Previous
works focus on controlling persona and style, while
our method controls corpus’s information with the
corpus embedding. Multi-task labeled learning is
inspired by works of domain adaption (Luan et al.,
2017; Niu and Bansal, 2018; Chu and Wang, 2018),
where multiple losses from both the corpus clas-
sifier and response generator are minimized. To
the best of our knowledge, this paper is the first
that uses corpus embeddings on the open-domain
response generation task for multiple corpora.

Furthermore, we propose a novel weighted learn-
ing with Domain-specific Frequency (DF). DF is
a word-level importance weight (Leopold and Kin-
dermann, 2002) that assigns different weights (im-
portance) to the same words from different corpora.
In the training process, we weight the loss of a
model with DF, so that the model focuses on the
most important words for a specific corpus.

For automatic evaluation metrics, we eliminate
the stop words and use ROUGE-1 (precision, re-
call, F1) (Lin, 2004) to measure the relevance of
the generated responses. In addition, we adopt
DF to see how relevant the generated response of
a model is to a specific corpus. We will explain
DF as an evaluation metric in Section 4.4. Results
show that for overall performance, the best method
(weighted learning) improves 27.4% on precision,
45.5% on recall, and 34.1% on F1. Further, it has
at least 20.0% higher DF, stating that it uses more
important words from the “correct” corpus. We
also conduct an extensive human evaluation on
2400 generated responses. The human evaluation
shows a highly significant (p < 0.001) improve-
ment on all of our proposed methods, especially
the weighted learning method.

We summarize our work as follows:

• We explore the problem of training and eval-

uating on multiple corpora from different do-
mains for open-domain response generation.
The task is to make the conversational models
generate relevant responses for each corpus.

• We examine several multi-domain corpora
learning methods for their ability to solve the
proposed task.

• We propose Domain-specific Frequency (DF)
as in weighted learning and as an evaluation
metric. DF distinguishes important words for
each corpus and helps a model to focus on
these important words in the training process.

2 Related Work

Open-Domain Response Generation Recent
work of open-domain response generation gener-
ally follows the work of Ritter et al. (2011) where
the task is treated as a machine translation task, and
many of them use a Seq2Seq structure (Sutskever
et al., 2014) following previous work (Vinyals and
Le, 2015; Shang et al., 2015; Sordoni et al., 2015).
In recent years, substantial improvements have
been made (Serban et al., 2017; Li et al., 2016;
Wolf et al., 2019), and embeddings are used to
control response generation on extra information
such as persona (Li et al., 2016), profiles (Yang
et al., 2017), coherence (Xu et al., 2018), emotions
(Huang et al., 2018), and dialogue attributes like
response-relatedness (See et al., 2019). However,
there is a lack of work that uses embeddings to
control response generation over multiple corpora.
Our work follows the common models of open-
domain conversational systems, while we study the
problem of multiple corpora of different domains.

Multi-Domain Learning and Domain Adaption
Multi-domain learning aims at making a con-
versational model learn from multiple domains
to prevent the performance from degrading due
to domain differences (Ben-David et al., 2007).
There are two categories of solutions for multi-
domain learning (Joshi et al., 2012): (i) capturing
domain-specific characteristics in the parameters
(Daumé III, 2007); (ii) capturing the relationship
among different domains (Saha et al., 2011).

Some work of natural language generation and
machine translation is related to multi-domain
learning. Luan et al. (2017) and Niu and Bansal
(2018) use multi-task learning for domain adaption
respectively on speaker-role and politeness. Wen
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et al. (2016) and Akama et al. (2017) utilizes fine-
tuning as a common way of domain adaption for
language generator and style transferer. For ma-
chine translation, in order to deal with the mixed-
domain parallel corpus, Zeng et al. (2018) adjust
the weights of target words in the training objec-
tive based on their relevance to different domains.
We differ in that we propose DF and we deal with
the response generation task. Chu et al. (2017)
propose mixed fine-tuning, which adds the out-of-
domain pre-training data to the fine-tuning dataset,
and they observe an improvement of performance.
In this paper, we also mix small-scale fine-tuning
datasets with out-of-domain training data, while
the data we add is not necessarily used during pre-
training. Shi et al. (2015) state that fine-tuning can
be done by placing the corpus to be fine-tuned at
the end of the entire corpus, which is an extension
of curriculum learning proposed by Bengio et al.
(2009). We also explore how the order of multi-
ple corpora influences the result, but our focus is
on balancing performance. Recently, Smith et al.
(2020) investigated blending conversational skills
with knowledge and empathy skills, where they
mix 3 corpora. They focus on selecting appropri-
ate skills and they propose a blended corpus with
labels, while we focus on generating responses that
are most relevant to a specific corpus.

3 Base Models

We use two base models: an LSTM Seq2Seq model
with attention (Hochreiter and Schmidhuber, 1997;
Sutskever et al., 2014; Bahdanau et al., 2015) and
a pre-trained GPT-2 model (Radford et al., 2019).
The LSTM Seq2Seq model with attention is a com-
mon model for conversational systems (Li et al.,
2016; See et al., 2019), and the GPT2 model is a
state-of-the-art model for the response generation
task (Zhang et al., 2020; Zhao et al., 2020).

The basic task of response generation is to pre-
dict the next word given the past and current words
of the context and response, and to make the gen-
erated response as similar to the original response
as possible. The task can be described as follows.
Probability of response Y given context X is pre-
dicted as:

P (Y |X) =
∏n

t=1 P (yt|y1, . . . , yt−1, X), (1)

where X = x1, . . . , xm and Y = y1, . . . , yn is a
context-response pair.

3.1 LSTM Seq2Seq Model with Attention
We simplify an LSTM with attention unit as
LSTM ∗ since it is well introduced in previous
work (Li et al., 2016). We calculate the hidden
vector ht at step t as:

ht = LSTM ∗(ht−1, E(zt)), (2)

where ht−1 ∈ Rdim is the hidden vector at step
t − 1, dim is the dimension of hidden vectors,
and E(zt) is the word embedding for word zt ∈
(x1, . . . , xm, y1, . . . , yn−1). We apply dot multiple
in the attention mechanism when calculating the
context vector ct:

ct = H · (softmax(H> · ht))
where H ∈ Rd×m is the concatenation of hidden
vectors from the encoder. ct is input to the next step
t+1 in the decoder. Each token’s hidden vector ht
in the decoder is combined with ct through a linear
layer and an activation to predict the next token.

3.2 GPT-2
As for GPT-2, we follow the adaption of Wolf
et al. (2019). The transformer block of GPT-2 cap-
tures the relation of multiple words in one sentence,
which largely follows Vaswani et al. (2017). The
hidden vector to be input to the transformer block
is calculated as:

h0[t] = E(X,Y[1:t]) + (E0, E1) +Wp, (3)

where Y[1:t] is (y1, . . . , yt), E(X,Y[1:t]) is the sub-
word embedding for context X and response Y[1:t].
E0 and E1 are dialogue-state embeddings, which
tutor the model to distinguish between contexts and
responses. Wp is a pre-trained position embedding.
The probability of the subword to generate is then
calculated as:

h[t] = transformer_block(h0[t]) (4)

P (y)t+1 = softmax (E>(h[t])), (5)

where y ∈ V , and V stands for the sub-word vo-
cabulary. We simplify the structure of transformer
block as transformer_block . In the block, a mask
is filled in the attention matrix, which bans past
words from attending to future words. This en-
sures that the model follows the traditional lan-
guage modeling. The hidden vector of tth sub-word
is used to generate the probability distribution for
the vocabulary (P (y), y ∈ V ) for (t + 1)th sub-
word. E> means that the model uses the sub-word
embeddings in calculating sub-word probabilities
for generation (Press and Wolf, 2017).
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4 Proposed Methods

4.1 Interleaved Learning

Interleaving is a concept in cognitive psychology
proven to be efficient for learning (Kornell and
Bjork, 2008): intermingling learning material
of different topics helps students to gain better
learning results than learning the material topic
by topic. Previous work from machine learning
also shows that training order greatly influences
the performance (Bengio et al., 2009). When the
training is conducted on a simple concatenation of
multiple corpora, the model tends to concentrate
on the last corpus (Shi et al., 2015). To address this
issue, we propose interleaved learning as an alter-
native: each time we collect one context-response
pair from each of the corpora, and we randomly
shuffle them. For example, if there are 3 corpora
(a1, a2, ...), (b1, b2, ...), (c1, c2, ...) where ai, bi
and ci are context-response pairs, the resulting
mixed corpus might be (b1, a1, c1, c2, b2, a2, ...).
Interleaved learning guarantees that the combined
corpus is evenly distributed, which helps the model
learn from multiple corpora evenly.

4.2 Labeled Learning

We propose our labeled learning as follows: each
corpus is assigned a randomly initialized unique
embedding, and the conversational model learns
these embeddings together with conversations dur-
ing the training period. We denote these embed-
dings as “corpus embedding”, or Ec. A model
captures each corpus’s characteristics through the
corpus embedding and uses it to control the gener-
ated responses. To know which corpus embedding
to use, each context is labeled with which corpus
it comes from, and these labels are provided to
the model both in the training and generation pe-
riod. We propose an approach for each of our base
models for encoding corpus embeddings.

For the LSTM model, following Li et al. (2016),
we input the corpus embedding Ec into the first
layer of the decoder LSTM at every step, together
with the response words. Calculation of a hidden
vector ht in the decoder LSTM is then adapted to:

ht = LSTM ∗(ht−1, E(yt), Ec). (6)

The structure is illustrated in the dashed red rectan-
gle of Figure 1a.

For the GPT-2 model, our method is based on
Wolf et al. (2019). Instead of two kinds of dialogue-

state embeddings (context embedding E0 and re-
sponse embedding E1), we replace the response
embedding with corpus embeddings Ec. As a re-
sult, the model is aware of which corpus the re-
sponse belongs. Calculation of a hidden vector to
be input to the transformer block is adapted to:

h0[t] = E(X,Y[1:t]) + (E0, Ec) +Wp. (7)

The structure is illustrated in Figure 1b.

4.3 Multi-Task Labeled Learning
Labeled learning needs corpus labels for both train-
ing and generation processes. To avoid providing
labels in the generation process, we combine multi-
task learning with labeled learning on multiple cor-
pora. Here, the conversational model has to predict
by itself which corpus a context belongs to, which
is expected to result in worse performance, but less
information is required. In the encoder, we have a
classifier layer that uses the sum of hidden vectors
from the encoder (

∑
H) to predict the corpus of a

context. The loss of the classifier is calculated as:

Lc = −log
(
softmax

((∑
H
)
·W[c]

))
, (8)

where W[c] ∈ Rdim is the part from the classifier
layer for target corpus c. Lc is summed up with
the loss from the response generator. The predicted
corpus embedding is input into the decoder like
labeled learning (see Section 4.2). The simplified
structure is illustrated in Figure 1a.

4.4 Document-specific Frequency (DF)
We propose Domain-specific Frequency (DF) to
measure how important a word is with respect to a
different corpus under a collection of corpora. DF
is used for weighted learning and evaluation. It is
calculated as follows:

f(w)d = freq(w)d −minv{freq(v)d} (9)

df(w)d =

{
0 f(w)d = 0

f(w)d∑
d∈D f(w)d

f(w)d 6= 0
(10)

DF(w)d =
df(w)d

maxv{df(v)d}
, (11)

where freq(w)d is the relative frequency of a word
w in a corpus d, and D represents the set of all
corpora. It is easy to see from Equation 10 that
DF(w)d represents the importance of word w for
corpus d compared to other corpora. For a word
w that frequently appears in corpus d but seldom
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Which version ? [EOS] I use Ubuntu 16.04 .

I use Ubuntu 16.04 . [END]

Corpus Embedding

Corpus Classifier

Loss1 Loss2+

(a) Structure of multi-task labeled learning on LSTM model
Which Gversion ? [SEP] I Guse GUbuntu G16 .

Corpus EmbeddingContext Embedding

Position Embedding

+

+

04 .

(b) Corpus embeddings with sub-word embeddings on GPT-2

.

LSTM / GPT2

[EOS]?versionWhich 16.04UbuntuuseI

.16.04UbuntuuseI [END]

DFOSDB DFTwitter DFUbuntu DFPersonaChat

OSDB Twitter Ubuntu PersonaChat

.16.04UbuntuuseI [END]0.2

Loss
×

Backward

0.8 1.0 1.0 1.0 1.0

(c) Structure of weighted learning

Figure 1: Adapted models with labeled learning, multi-task labeled learning and weighted learning

in other corpora (e.g., “upgrade” from Ubuntu
corpus),

∑
d∈D f(w)d is close to f(w)d, making

DF(w)d approach 1. A word that frequently ap-
pears in all corpora (e.g., “I”, “you”) is punished,
resulting in a lower DF(w)d. A word that seldom
appears in corpus d but frequently appears in other
corpora (e.g., “music” seldom appears in Ubuntu
corpus, but is common in other corpora) has the
lowest DF(w)d. Words that appear minimal times
(e.g., once) in a corpus are ignored with Equation
9. Words that appear few times (e.g., twice or
three times) are not dealt with, yet they are not of
great influence in our experiments. We apply a nor-
malization in the final step (Equation 11) to make
DF(w)d of each corpus d range from 0 to 1.

We show DF(w)Ubuntu and DF(w)PersonaChat of
some words in Table 3. We also show the re-
sults of TF-IDF (log normalization variant), a com-
monly used word importance weight, as a com-
parison. As expected, for the corpus Ubuntu and
PersonaChat, most unique words w have very dif-
ferent DF(w)Ubuntu and DF(w)PersonaChat. Unique
words of each corpus get the highest values for
the corresponding corpus, like “upgrade” for the
Ubuntu corpus and “music” for the PersonaChat
corpus; these words receive the lowest values for
incorrect corpora, like “upgrade” for PersonaChat
and “music” for Ubuntu. The stress on unique
words makes DF more suitable for our task.

Weighted Learning with DF Weighted learning
weights the loss of the predication y′ for each tar-
get word w using DF(w)d. In the training period,
each context is labeled with the corpus d it belongs

Word TF-IDF(%) DF(%) αDF(α=100)

Ubuntu PersonaChat Ubuntu PersonaChat Ubuntu PersonaChat

i 100.0 62.6 20.8 42.1 2.6 7.3
to 64.6 32.8 26.9 24.9 3.8 3.1
it 83.2 21.7 38.5 14.5 5.1 2.1

laptop 5.4 0.2 89.8 4.5 76.0 1.0
upgrade 6.8 0.1 95.6 0.4 91.2 1.0

file 15.7 0.1 96.0 0.3 86.4 0
windows 12.2 0.1 97.1 0.1 86.3 1.0
ubuntu 27.5 0 99.9 0 99.5 0
teacher 0.1 2.2 0.7 77.8 1.0 53.5
music 1.5 7.6 4.8 82.9 1.2 49.1
travel 0.1 3.1 0.3 88.9 1.0 57.1
hobby 0.1 1.6 0.6 94.3 1.1 81.7
hiking 0 1.5 0 97.6 0 91.8

Table 3: Normalized TF-IDF (%), DF (%) and αDF of
some words for Ubuntu and PersonaChat (more exam-
ples on other corpora can be found in Section A)

to, so that the model can use the DF(w)d of the
corresponding corpus. Here DF is calculated only
on the training sets. In the generation step, corpus
labels are not provided, so DF is not used. The loss
is weighted as follows :

Lweighted = DF(w)d ·
(
−log

(
softmax (y′w)

))
,

(12)
where y′w represents the model’s predicted score
for the target word w. With the weighted loss, the
model concentrates on words that are important to
the corpus of the current context, and focuses less
on frequent words or words that are not important
to the current corpus. The structure is illustrated in
Figure 1c.

Evaluation with DF For the generated responses
to be relevant to a specific corpus, they have to

2108



be similar to that corpus, which includes using
important words of that corpus (e.g., responses
generated for the Ubuntu corpus should have more
technical words than other corpora). Thus, we
propose DF as an evaluation metric that shows to
what extent the generated responses use important
words of the corresponding corpus. We want to
decrease the influence of common words like “i”,
“to”, etc., and thus address the important words. So
we adopt exponential DF with α as the base (αDF):

αDF(w)d =

{
0 DF(w)d = 0

αDF(w)d DF(w)d 6= 0,
(13)

where α is a constant. αDF(w)d rescales DF(w)d
by exponent with α as a base. In our experiments,
we set α to be 100, which transforms the range
of the metric from (0, 1) to (0, 100). This makes
the difference between high and low αDF more
significant than DF and gives a 100-scale score. For
each corpus d ∈ D, we average αDF(w)d on word
w from the generated responses of each test set,
which gives us αDFd scores (d ∈ D) for each test
set. Ideally, the generated responses of a specific
corpus d should have a higher αDFd score and
lower αDFd score (d ∈ {d′ ∈ D | d′ 6= d}). For
example, generated responses of the Ubuntu test
set should have a higher αDFUbuntu score, while
a lower αDFUbuntu score (Ubuntu ∈ {d′ ∈ D |
d′ 6= Ubuntu}). αDFd scores for responses from
the original test sets are the standard scores.

We show αDF(w)Ubuntu and αDF(w)PersonaChat
(calculated purely on test set) in Table 3. As ex-
pected, αDF has a more significant difference be-
tween important words and common words.

Is DF a Legal Evaluation Metric? Although
DF is used for both weighted learning and eval-
uation, we see DF as a suitable evaluation metric
for our task and not biased in favor of weighted
learning due to: 1) A word receives multiple DF
values in the training process given the corpus that
a context belongs to; 2) in the generation process,
DF is never used. 3) In the evaluation process,
DF can be calculated purely on the test sets. Note
that since a word receives multiple DF values in
the training step, it is equivalently likely for the
model trained with weighted learning to be influ-
enced by DF weights of incorrect corpus. Above
all, in the evaluation step, if the trained model is
influenced more by DF weights from the correct
corpus, it already means that the model is good

at distinguishing which corpus a given context is
from, thus is suitable for our task.

5 Experiment Setup

5.1 Datasets
Data Collection We collected 4 commonly used
English corpora of different domains from the Par-
lAI platform (Miller et al., 2017): OpenSubtitles
corpus (OSDB)2 (Lison et al., 2018), Twitter cor-
pus3 (Miller et al., 2017), Ubuntu chatlogs cor-
pus (Lowe et al., 2015)4 , and PersonaChat cor-
pus (Zhang et al., 2018) from the NeurIPS 2018
ConvAI2 Challenge (Dinan et al., 2019). Each
corpus contains 250K context-response pairs, as
much as the size of the original PersonaChat used
in ConvAI2 competition. This gives us 1M context-
response pairs in total. The corpus for training is
a combination of these 4 corpora. For comparison,
we have a single corpus–PersonaChat–trained on
both base models. For testing, each of the 4 corpora
has a test set of 30K context-response pairs, which
is the same size of the test set of PersonaChat.

The OpenSubtitles corpus (OSDB) is a noisy
dataset of film subtitles. We removed films that
belonged to genres that usually had few conversa-
tions, such as musical and documentary films. We
regarded two neighboring sentences as a context-
response pair following Vinyals and Le (2015).
The Twitter corpus contains one-turn dialogues
extracted from Twitter. The original author has
already cleaned it, so we only removed special
symbols such as hashtags, Emojis, and @. The
Ubuntu corpus contains dialogues about solving
technical problems of Ubuntu. The PersonaChat
corpus contains dialogues between two workers
acting as specific personas; we focused on the di-
alogue part and ignored the persona part. This
corpus allows us to compare our base models with
state-of-the-art performance. These 4 corpora have
very different characteristics, confirmed by the im-
balanced performance of GPT-2 fine-tuned on a
single corpus (see Table 2).

5.2 Training and Decoding
We used Pytorch (Paszke et al., 2017) to implement
the LSTM Seq2Seq model with attention and the
pre-trained GPT-2 models. For GPT-2, we adapted

2http://www.opensubtitles.org/
3https://github.com/Marsan-Ma/chat_

corpus/
4https://github.com/rkadlec/

ubuntu-ranking-dataset-creator
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Test set

Model Corpus / Method OSDB Twitter Ubuntu PersonaChat Overall
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

LSTM

PersonaChat (single) 11.8 8.9 8.1 12.4 8.6 8.9 12.1 8.1 7.7 56.7 43.4 45.8 23.2 17.2 17.6
Concatenated 11.0 7.7 7.2 15.7 10.9 11.4 36.5 17.8 20.1 57.7 44.0 46.4 30.2 20.1 21.3
Interleaved 24.1 10.1 11.7 24.3 12.5 14.9 58.4 24.9 29.6 56.1 41.5 44.3 40.7 22.3 25.1
Labeled 23.9 10.1 11.3 24.5 13.2 15.5 61.6 26.5 31.6 56.4 43.0 45.4 41.6 23.2 26.0
Multi-task Labeled 23.2 9.6 11.1 23.2 12.3 14.5 56.4 23.8 28.3 53.2 40.6 42.7 39.0 21.6 24.2
Weighted 26.6 11.9 13.4 29.7 12.2 15.6 78.4 35.2 41.2 62.4 42.5 47.1 49.3 25.5 29.3

GPT-2

PersonaChat (single) 15.0 12.4 10.8 19.6 13.2 13.9 24.8 16.2 15.5 70.0 57.1 58.8 32.4 24.7 24.7
Concatenated 17.4 14.1 12.6 24.5 16.4 17.2 35.0 22.5 22.4 66.8 55.4 56.3 35.9 27.1 27.1
Interleaved 40.0 20.5 22.3 31.0 17.9 20.1 81.7 38.1 44.3 68.7 56.2 57.6 55.3 33.2 36.1
Labeled 38.6 19.9 21.6 31.4 19.4 21.1 84.2 38.4 45.0 70.7 57.2 59.0 56.2 33.7 36.7
Multi-task Labeled 38.4 19.8 21.4 31.2 18.6 20.6 80.9 37.8 43.8 68.0 56.0 57.3 54.6 33.0 35.8
Weighted 41.9 21.2 23.4 39.9 18.4 22.3 86.8 43.3 48.6 69.0 53.2 55.8 59.4 34.0 37.5

Table 4: Precision, recall and F1 of ROUGE-1 (‰) for baselines and proposed methods fine-tuned on 4 corpora
(stop words eliminated)

Test set

Model Corpus / Method

OSDB Twitter Ubuntu PersonaChat
OSDB PersonaChat Twitter PersonaChat Ubuntu PersonaChat PersonaChat

αDF Calculated From:

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

Test Set (Standard Score) 7.0 9.7 3.6 3.7 9.1 11.0 3.6 3.8 19.4 23.2 2.7 2.8 9.5 12.0

LSTM

PersonaChat (single) 2.9 3.4 9.2 9.9 2.8 3.4 8.6 9.2 2.7 3.1 8.6 9.1 11.9 12.6
Concatenated 2.9 3.3 7.6 8.6 3.6 4.3 8.0 8.7 7.6 7.7 5.6 6.0 12.5 13.6
Interleaved 3.9 4.1 5.0 5.3 4.7 4.9 4.1 4.5 11.8 11.3 3.7 4.0 11.5 12.5
Labeled 3.9 4.2 5.0 5.3 5.0 5.3 3.9 4.3 12.5 11.8 3.4 3.8 12.1 13.1
Multi-task Labeled 3.8 4.0 5.0 5.4 4.5 4.7 4.1 4.5 11.2 10.7 3.8 4.1 11.4 12.6
Weighted 5.6 6.3 4.1 4.5 9.9 10.1 3.8 4.3 27.7 25.4 2.7 3.0 17.7 18.3

GPT-2

PersonaChat (single) 2.8 3.2 10.5 11.1 2.9 3.3 9.5 9.8 4.1 4.6 8.3 8.4 12.9 13.7
Concatenated 3.1 3.6 8.8 9.4 3.3 3.9 8.2 8.7 6.5 7.1 7.0 7.4 12.1 13.0
Interleaved 4.9 5.8 4.8 5.0 4.6 5.1 4.4 4.7 15.7 16.0 3.1 3.4 12.1 12.9
Labeled 4.9 5.8 4.8 5.0 4.7 5.2 4.1 4.3 16.7 17.0 2.9 3.2 12.4 13.1
Multi-task Labeled 4.8 5.7 4.8 5.1 4.6 5.1 4.4 4.6 15.5 15.8 3.1 3.4 12.1 12.9
Weighted 6.0 7.5 4.1 4.4 8.1 8.8 3.7 4.1 25.7 24.4 2.4 2.6 16.0 17.1

Table 5: αDFd scores for generated responses from multiple corpora. The columns “train” indicate train-set-αDFd.
The columns “test” indicate test-set-αDFd.

our model from the implementation of the Hug-
gingFace team5. The LSTM model has 4 layers
and the dimension is 512. The training procedure
was with a batch size of 256, learning rate of 1.0,
dropout rate of 0.2, and gradient clip threshold of 5.
The vocabulary size is 50000. GPT-2 has 12 layers,
12 heads, and the dimension is 768, the same as the
pre-trained model. The training procedure was with
Adam and we adopted a similar setup as Wolf et al.
(2019): the batch size was 32, learning rate was
6× 10−5, β1 = 0.9, β2 = 0.999, L2 weight decay
set to 0.01, learning rate linearly decreased to zero
at the end. We followed these hyper-parameters
to ensure state-of-the-art performance for the base
models. We use the same hyper-parameters for
both base models and models with our proposed
methods, so the proposed methods work slightly

5https://huggingface.co/.

(but not much) worse than it should be. This is
to avoid the extra improvement caused by hyper-
parameters. We pre-trained the LSTM model on 3
large-scale corpora (OSDB, Twitter and Ubuntu)
with interleaved learning until converging. GPT-2
is already pre-trained, so we directly used it for fine-
tuning (details about pre-training convergence can
be found in Section B). For decoding, we adopted
greedy decoding for all the models to ensure an
equal condition.

5.3 Evaluation

For automatic metrics, to measure the relevance of
the generated responses, we eliminated punctuation
and stop words, and adopted Rouge-16 (precision,
recall, F1) as multi-grams become meaningless

6We used implementation from https://github.
com/google-research/google-research/
tree/master/rouge.
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without stop words. However, Rouge-1 compares
the generated responses with the golden ones, while
there is never a standard response for any context,
so in addition to Rouge, we use αDF score that
shows to what extent the generated responses use
important words of the corresponding corpus, as
stated in Section 4.4. Due to the limitation of au-
tomatic evaluation methods (Liu et al., 2016), we
also conduct an extensive human evaluation on the
relevance of generated responses to contexts (see
Section 6.1 for details).

6 Results

Our base models achieve perplexity scores of 28.9
(LSTM model) and 19.6 (GPT-2) on the test set of
the PersonaChat dataset from the ConvAI2 compe-
tition when fine-tuned with the single PersonaChat
corpus (more details can be found in Section C).
These results would likely advance the models to
the second round in the competition.

Table 4 shows that models trained with our pro-
posed methods gain better performance on Rouge
than baselines. Baselines concentrate on the last
trained corpus (PersonaChat), while with the pro-
posed methods, performance is more balanced on
multiple corpora. Weighted learning has the best
overall performance on all metrics, and it performs
especially well on the Ubuntu corpus, indicating
that it might be good at distinguishing the unique
technical words from the Ubuntu corpus. Labeled
learning is the second best with stable improvement
from interleaved learning, indicating that the cor-
pus embeddings function as expected. Multi-task
labeled learning has slightly worse performance
than interleaved learning, indicating that predict-
ing the corpus of a contexts is not easy, and wrong
predictions result in worse performance.

Table 5 shows αDFd scores for generated re-
sponses of each corpus. Full results can be found
in Section E. We use both αDFd calculated purely
on the train set (train-set-αDF) and αDFd calcu-
lated purely on the test set (test-set-αDF). The
black scores are scores for the corresponding cor-
pus (we expect high scores for these parts), while
the grey scores are scores for non-related corpus–
PersonaChat (we expect low scores for these parts).
Note that scores for different corpora are in differ-
ent scales. From the table, we can see that train-set-
DF scores and test-set-DF scores are similar, and
weighted learning always has the highest score, in-
dicating that weighted learning distinguishes well

which corpus a context comes from. Labeled learn-
ing is the second best, indicating that the learned
corpus embeddings help the model to use more im-
portant words of the corresponding corpus. Com-
pared to the concatenated corpus, the improvement
is at least 20%, while the decrease in PersonaChat
is just 9% at most.

6.1 Human Evaluation

We conducted a human evaluation on all GPT-2
models: base models and models adapted with
our proposed methods. We randomly picked 2400
responses: 400 different contexts evenly from 4
corpora with 6 responses generated by each of our
models. 3 judges7 are asked to pick the most and
the least relevant response(s) for the given context.
The most relevant response(s) are given score 3, the
least relevant response(s) are given score 1, and the
other(s) are given score 2. Table 6 shows the overall
scores of all GPT-2 based models. Table 7 shows
the p-value for the t-test conducted between every
two models. The overall scores of our proposed
methods are all highly significantly (p < 0.001)
higher than the concatenated models, especially
the weighted learning method.

6.2 Response Examples

The generated responses from better methods are
more relevant to the corresponding corpus, while
worse methods cannot distinguish contexts from
different corpora (e.g., they may answer any ques-
tions in a “PersonaChat” way). To show an intu-
ition of the difference among our proposed meth-
ods, we present some response examples generated
by GPT-2 in Section G.

6.3 Possible Limitations

Our proposed methods are meant to be able to work
in most models, which is why we choose the most
common conversational models as our base models.
However, there are many variants of conversational
models focusing on different aspects, such as inte-
grating knowledge, avoiding dull responses, keep-
ing the speech style, etc. We cannot ensure that our
methods work for all of these variant models. Also,
dialogues are always multi-turn, while we focus
on a simpler task: single-turn response generation.

7Similar to previous work like Zhang et al. (2020), we
have 3 judges. We have one random worker from https:
//www.mturk.com/worker, one bachelor student, and
one graduate student. An example of the mTurk interface can
be found in Section F.

2111

https://www.mturk.com/worker
https://www.mturk.com/worker


Model \ Corpus OSDB Twitter Ubuntu PersonaChat Overall
PersonaChat (single) 1.53 1.43 1.21 2.09 1.56
Concatenated 1.67 1.71 1.60 2.16 1.78
Interleaved 2.04 1.89 2.18 2.24 2.09
Labeled 2.10 2.10 2.32 2.24 2.19
Multi-task Labeled 2.05 1.98 2.11 2.24 2.10
Weighted 2.40 2.45 2.61 2.47 2.48

Table 6: Average scores of human evaluation for GPT-2 based models on each corpus

Model \Model PersonaChat Concatenated Interleaved Labeled Multi-Task Labeled Weighted
PersonaChat 1.00 \ \ \ \ \
Concatenated 2.54× 10−7∗∗ 1.00 \ \ \ \
Interleaved 4.71× 10−34∗∗ 2.09× 10−12∗∗ 1.00 \ \ \
Labeled 1.08× 10−46∗∗ 9.41× 10−21∗∗ 1.18× 10−2∗ 1.00 \ \
Multi-task Labeled 6.65× 10−35∗∗ 6.96× 10−13∗∗ 8.86× 10−1 1.17× 10 1.00 \
Weighted 1.65× 10−103∗∗ 2.86× 10−63∗∗ 6.54× 10−26∗∗ 1.59× 10−15∗∗ 2.01× 10−25∗∗ 1.00

Table 7: P-value for t-test on overall human evaluation scores of GPT-2 based models, ∗∗ p < 0.001

Furthermore, the methods are trained and evaluated
on English corpora. There can be a limitation on
applying the methods to other languages.

7 Conclusions

We have experimented with 4 methods–interleaved
learning (baseline), labeled learning, multi-task la-
beled learning, and weighted learning–to help com-
mon open-domain conversational systems generate
relevant responses for multiple corpora of differ-
ent domains. We adopted Rouge (precision, re-
call, F1) for auto evaluation. In addition, we used
DF to evaluate how well a model uses relevant
words for a corresponding corpus. We also did
an extensive human evaluation. Our results show
significant improvement in performance for our
proposed methods, especially weighted learning.
Future work of multi-turn response generation is
potential. We have focused on one-turn response
generation, while dialogue is naturally multi-turn
so further research is needed.
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A Comparison among TF-IDF, DF and αDF for 4 corpora on more example words

Word TF-IDF(%) DF(%) αDF(α=100)

OSDB Twitter Ubuntu PersonaChat OSDB Twitter Ubuntu PersonaChat OSDB Twitter Ubuntu PersonaChat
i 91.39 100.00 100.00 62.63 21.40 15.68 20.80 42.12 2.62 2.01 2.59 7.32
to 54.46 77.55 64.59 32.80 24.85 23.40 26.87 24.89 3.00 2.88 3.76 3.08
it 61.77 74.10 83.20 21.74 25.02 22.02 38.49 14.46 3.44 2.67 5.11 2.13

sword 0.64 0.17 0.01 0.08 68.37 13.74 0.26 17.63 63.29 1.37 1.00 1.15
forgive 2.41 0.48 0.16 0.06 75.35 14.37 5.44 4.84 50.96 1.58 1.19 1.05
hurry 5.21 0.52 0.09 0.08 88.39 6.67 1.48 3.45 63.53 1.32 1.15 1.04

darling 2.54 0.39 0.00 0.01 90.88 8.42 0.11 0.58 57.10 1.45 0 1.21
explain 1.27 0.00 0.00 0.11 91.33 0 0 8.67 94.14 0 0 1.06

tax 0.21 2.52 0.05 0.09 6.77 87.06 1.09 5.07 1.28 71.26 1.05 1.04
liberal 0.03 1.71 0.01 0.10 2.06 88.19 0.25 9.50 1.21 59.65 0 1.38
vote 0.41 6.08 0.10 0.11 6.07 90.68 0.78 2.47 1.12 80.22 1.02 1.09

trump 0.04 18.66 0.00 0.13 0.11 99.16 0.00 0.73 1.00 96.63 0 1.03
hillary 0.05 8.61 0.00 0.01 0.42 99.53 0 0.05 0 99.38 0 1.01
laptop 0.10 0.40 5.39 0.15 1.33 4.37 89.88 4.42 1.07 1.22 76.02 1.01

upgrade 0.03 0.47 6.85 0.03 0.24 3.75 95.63 0.37 1.01 1.06 91.24 1.03
file 0.64 0.55 15.65 0.05 2.29 1.44 96.02 0.26 1.11 1.04 86.36 0

windows 0.33 0.44 12.18 0.06 1.09 1.37 97.13 0.41 1.04 1.10 86.33 1.01
ubuntu 0.00 0.01 27.47 0.00 0 0.01 99.99 0 0 1.01 99.48 0
music 1.90 3.29 1.53 7.66 4.01 8.20 4.84 82.94 1.18 1.40 1.23 49.14
teacher 1.48 0.74 0.07 2.20 14.53 7.01 0.68 77.78 1.39 1.32 1.01 53.49
travel 0.42 0.91 0.05 3.07 3.91 6.89 0.28 88.92 1.27 1.36 1.01 57.15
hobby 0.10 0.27 0.04 1.56 1.94 3.03 0.57 94.46 1.13 1.00 1.09 81.71
hiking 0.03 0.09 0.00 1.52 0.85 1.45 0 97.70 0 1.09 0 91.76

Table 8: Normalized TF-IDF (%), DF (%) and αDF of more example words for 4 corpora

Example words are divided into five blocks. The first block has frequent words in all corpora, the
second block has unique words from OSDB, the third block has unique words from Twitter, the fourth
block has unique words from Ubuntu, and the fifth block has unique words from PersonaChat. The values
of the corresponding corpus are marked with different colors.

From this table, it is clear that the commonly used word importance weight, TF-IDF, is not suitable
for our task. This is due to the vast range of frequency, which leads to a relatively small penalty for IDF
(Inversed Document Frequency) over words with too large TF (Term Frequency).

B Convergence time of pre-training LSTM model on large-scale corpora
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Figure 2: Convergence time of pre-training LSTM on large-scale corpora

2116



In the pre-training period, it takes 21 epochs for the concatenated corpus to converge on the base
LSTM model, while only 12 epochs with interleaved learning, which is 43% shorter. When trained on the
concatenated corpus in the order of OSDB→ Twitter→ Ubuntu, it takes 20 epochs for the perplexity
on OSDB and Ubuntu to be balanced, while with interleaved learning, it takes less than one epoch.
For concatenated corpus, the performance of the Ubuntu corpus is sacrificed in order to balance the
performance of the two corpora, which results in worse overall performance.

C Results of automatic evaluation with stop words

Test set

Model Corpus / Method OSDB Twitter Ubuntu PersonaChat Overall
Perp BLEU F1 Perp BLEU F1 Perp BLEU F1 Perp BLEU F1 Perp BLEU F1

LSTM

PersonaChat (single) 109.8 4.8 6.5 191.9 5.4 6.3 116.9 4.8 6.8 28.9 13.1 15.0 47.0 7.0 8.7
Concatenated 57.0 4.8 6.3 111.4 5.9 6.1 50.0 5.1 6.8 27.8 13.2 15.1 36.8 7.2 8.6
Interleaved 41.3 3.7 6.7 89.3 6.0 7.6 43.1 5.1 8.7 27.9 12.8 15.0 34.3 6.9 9.5
Labeled 40.5 3.2 6.6 87.0 6.2 7.6 42.6 5.3 8.8 27.1 13.2 15.2 33.4 7.0 9.6
Multi-task Labeled 41.7 3.5 6.6 89.7 6.1 7.7 43.5 5.0 8.6 27.8 12.6 14.8 34.3 6.8 9.4
Weighted 46.1 3.6 6.6 102.5 4.6 6.7 49.4 3.8 6.6 32.8 11.4 15.0 39.9 5.8 8.7

GPT-2

PersonaChat (single) 478.8 4.9 6.7 159.6 5.5 6.7 264.7 5.1 7.7 19.6 14.1 16.2 44.7 7.3 9.3
Concatenated 392.8 5.0 6.9 110.7 5.8 7.0 199.2 5.8 8.5 19.0 13.9 16.0 40.1 7.6 9.6
Interleaved 26.6 4.3 7.4 54.8 5.8 7.4 28.1 5.7 9.2 19.2 14.0 16.1 23.7 7.4 10.0
Labeled 26.5 4.2 7.3 54.1 5.9 7.6 27.7 5.7 9.2 18.9 14.1 16.3 23.5 7.5 10.1
Multi-task Labeled 26.9 4.1 7.2 55.4 5.8 7.5 38.5 5.8 9.4 20.7 14.0 16.1 25.1 7.4 10.1
Weighted 29.6 4.3 7.5 64.1 5.1 7.4 44.1 4.1 7.0 23.4 13.0 15.7 28.4 6.6 9.4

Table 9: Perplexity, BLEU (%) and F1 (%) scores for baselines and proposed methods fine-tuned on 4 corpora
(with stop words). BLEU is from NLTK sentence BLEU

Models of labeled, multi-task labeled and weighted learning do not have the best hyper-parameters, but
the same hyper-parameters as the base models. Their perplexity is slightly worse than it should be.

The results of the single corpus PersonaChat trained with the LSTM model confirm our concern on a
small fine-tuning corpus. The LSTM model is pre-trained on OSDB, Twitter and Ubuntu; however, the
performance for the 3 corpora greatly decreases after fine-tuning.

The automatic evaluation with stop words is not good for measuring relevance, since stop words are
taken too much into account. See BLEU and F1 scores of PersonChat (single) and weighted learning as
an example. Models trained on PersonaChat (single) cannot answer Ubuntu technical questions at all, yet
they receive better scores than weighted learning. But once the stop words are removed, the scores of
weighted learning surplus PersonaChat (single) a lot.

D Additional Results of automatic evaluation without stop words

Test set

Model Corpus / Method OSDB Twitter Ubuntu PersonaChat Overall
BLEU ROUGE DF-F1 BLEU ROUGE DF-F1 BLEU ROUGE F1 BEU ROUGE DF-F1 BLEU ROUGE DF-F1

LSTM

PersonaChat (single) 5.2 8.1 6.2 5.7 8.9 5.0 4.5 7.7 4.8 34.2 45.8 44.6 12.4 17.6 15.2
Concatenated 4.5 7.2 5.6 7.4 11.4 8.8 11.6 20.1 17.4 34.6 46.4 44.2 14.5 21.3 19.0
Interleaved 6.5 11.7 9.9 8.6 14.9 12.6 17.1 29.6 28.4 32.4 44.3 43.2 16.1 25.1 23.5
Labeled 6.2 11.3 9.7 9.1 15.5 12.6 18.1 31.6 30.7 33.5 45.4 43.8 16.7 26.0 24.2
Multi-task Labeled 6.2 11.1 9.5 8.4 14.5 11.7 16.0 28.3 27.2 31.5 42.7 41.9 15.5 24.2 22.6
Weighted 7.6 13.4 12.2 7.6 15.6 18.7 24.2 41.2 44.1 33.2 47.1 46.9 18.2 29.3 30.5

GPT-2

PersonaChat (single) 7.1 10.8 9.2 8.7 13.9 10.5 8.8 15.5 12.2 45.0 58.8 56.8 17.4 24.7 22.2
Concatenated 8.4 12.6 11.0 10.8 17.2 13.7 13.4 22.4 23.3 43.0 56.3 55.7 18.9 27.1 25.9
Interleaved 14.0 22.3 21.3 12.2 20.1 19.3 25.8 44.3 48.3 44.2 57.6 58.0 24.0 36.1 36.7
Labeled 13.6 21.6 20.5 13.1 21.1 20.3 25.8 45.0 49.6 45.1 59.0 59.6 24.4 36.7 37.5
Multi-task Labeled 13.4 21.4 20.4 12.7 20.6 20.1 25.4 43.8 47.6 44.0 57.3 57.4 23.9 35.8 36.4
Weighted 14.5 23.4 23.4 11.9 22.3 25.2 29.2 48.6 52.5 42.4 55.8 57.6 24.5 37.5 39.7

Table 10: BLEU (‰), ROUGE (‰) and DF-F1 (‰) scores for baselines and proposed methods fine-tuned on 4
corpora (without stop words). DF-F1 is ROUGE F1 weighted by test-set αDF
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E Full results of αDF for generated responses from multiple corpora

Model Corpus / Method

Test set: OSDB
OSDB Twitter Ubuntu PersonaChat

αDF Calculated From:

Train Test Train Test Train Test Train Test

Test Set (Standard Score) 7.01 9.66 3.75 3.75 2.82 2.86 3.59 3.75

LSTM

PersonaChat (single) 2.92 3.40 2.40 2.82 2.27 2.51 9.18 9.91
Concatenated 2.92 3.35 2.49 2.94 2.41 2.71 7.65 8.55
Interleaved 3.88 4.13 2.45 2.54 2.89 2.87 4.98 5.31
Labeled 3.94 4.16 2.37 2.44 2.71 2.70 5.01 5.34
Multi-task Labeled 3.78 4.02 2.41 2.49 2.91 2.88 5.02 5.36
Weighted 5.60 6.29 2.65 2.84 2.89 2.84 4.14 4.47

GPT-2

PersonaChat (single) 2.76 3.15 2.30 2.66 2.24 2.51 10.53 11.09
Concatenated 3.07 3.59 2.52 2.96 2.30 2.55 8.75 9.35
Interleaved 4.86 5.78 2.63 2.67 2.69 2.66 4.77 5.04
Labeled 4.86 5.77 2.61 2.66 2.67 2.64 4.76 5.04
Multi-task Labeled 4.81 5.70 2.60 2.64 2.69 2.65 4.83 5.1
Weighted 6.02 7.46 2.71 2.83 2.47 2.48 4.12 4.38

(a) αDFd scores for generated responses from OSDB

Model Corpus / Method

Test set: Twitter
OSDB Twitter Ubuntu PersonaChat

αDF Calculated From:

Train Test Train Test Train Test Train Test

Test Set (Standard Score) 3.97 4.07 9.07 11.01 3.24 3.40 3.64 3.80

LSTM

PersonaChat (single) 2.79 3.21 2.78 3.36 2.35 2.59 8.60 9.18
Concatenated 2.62 3.12 3.55 4.31 2.30 2.71 7.97 8.69
Interleaved 3.28 3.68 4.66 4.95 3.11 3.34 4.11 4.51
Labeled 3.30 3.68 4.97 5.27 3.00 3.24 3.89 4.26
Multi-task Labeled 3.31 3.68 4.47 4.73 3.14 3.36 4.08 4.49
Weighted 3.10 3.62 9.92 10.10 2.79 3.01 3.79 4.30

GPT-2

PersonaChat (single) 2.74 3.04 2.87 3.33 2.45 2.66 9.47 9.77
Concatenated 2.87 3.28 3.32 3.94 2.41 2.65 8.21 8.68
Interleaved 3.42 3.67 4.59 5.08 3.05 3.13 4.39 4.68
Labeled 3.48 3.74 4.66 5.16 3.08 3.19 4.06 4.35
Multi-task Labeled 3.41 3.66 4.63 5.11 3.08 3.15 4.37 4.65
Weighted 3.58 4.01 8.13 8.84 2.59 2.79 3.68 4.07

(b) αDFd scores for generated responses from Twitter

Model Corpus / Method

Test set: Ubuntu
OSDB Twitter Ubuntu PersonaChat

αDF Calculated From:

Train Test Train Test Train Test Train Test

Test Set (Standard Score) 2.69 2.74 2.96 2.85 19.36 23.20 2.67 2.78

LSTM

PersonaChat (single) 2.71 3.28 2.41 2.89 2.74 3.06 8.55 9.09
Concatenated 2.61 2.89 2.27 2.53 7.60 7.74 5.59 5.99
Interleaved 2.91 3.19 2.30 2.36 11.78 11.27 3.70 4.01
Labeled 3.03 3.38 2.28 2.36 12.46 11.75 3.45 3.75
Multi-task Labeled 2.91 3.17 2.30 2.35 11.19 10.72 3.77 4.09
Weighted 2.16 2.84 2.05 2.16 27.73 25.42 2.68 3.01

GPT-2

PersonaChat (single) 2.60 2.85 2.31 2.64 4.12 4.64 8.27 8.42
Concatenated 2.67 3.03 2.45 2.82 6.54 7.10 7.04 7.37
Interleaved 2.73 3.05 2.22 2.37 15.67 16.02 3.08 3.41
Labeled 2.68 3.03 2.17 2.35 16.73 17.02 2.90 3.24
Multi-task Labeled 2.73 3.06 2.22 2.37 15.45 15.78 3.12 3.44
Weighted 2.26 2.56 2.16 2.28 25.73 24.42 2.37 2.60

(c) αDFd scores for generated responses from Ubuntu
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Model Corpus / Method

Test set: PersonaChat
OSDB Twitter Ubuntu PersonaChat

αDF Calculated From:

Train Test Train Test Train Test Train Test

Test Set (Standard Score) 3.32 3.23 3.18 3.04 2.67 2.69 9.45 12.00

LSTM

PersonaChat (single) 2.59 3.02 2.31 2.73 2.15 2.35 11.86 12.62
Concatenated 2.47 2.84 2.29 2.76 2.06 2.33 12.52 13.61
Interleaved 2.57 2.92 2.30 2.71 2.17 2.45 11.48 12.52
Labeled 2.51 2.88 2.27 2.68 2.08 2.36 12.06 13.11
Multi-task Labeled 2.55 2.91 2.29 2.74 2.15 2.43 11.45 12.59
Weighted 2.21 2.44 2.13 2.41 2.04 2.18 17.65 18.31

GPT-2

PersonaChat (single) 2.54 2.79 2.28 2.59 2.12 2.34 12.85 13.74
Concatenated 2.58 2.99 2.41 2.79 2.16 2.39 12.08 12.99
Interleaved 2.64 2.89 2.37 2.65 2.23 2.42 12.13 12.87
Labeled 2.57 2.84 2.32 2.62 2.16 2.37 12.37 13.10
Multi-task Labeled 2.65 2.90 2.37 2.65 2.22 2.42 12.14 12.86
Weighted 2.39 2.63 2.27 2.52 2.02 2.17 15.96 17.07

(d) αDFd scores for generated responses from PersonaChat

Table 11: Full results of αDFd scores for generated responses from multiple corpora

F Example of human evaluation system

Figure 3: Human evaluation system for Ubuntu contexts

G Examples of generated responses
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OSDB Context: You know the main reason parents kill kids?
PersonaChat (single): I am not sure. I am a vegan.
Concatenated: I know. I’ve a daughter that just turned 18.
Interleaved: Because they’re afraid of what they’re gonna do.
Labeled: Because they’re not going to be able to handle it.
Multi-Task Labeled: Because they’re afraid of what they’re
gonna do.
Weighted: Because they’re afraid of the consequences.

OSDB Context: The big banks will fail, triggering a domino
effect.
PersonaChat (single): I am not sure yet. I am sure they will
fail.
Concatenated: I’m not sure. I’m not sure what the big banks
are doing.
Interleaved: What?
Labeled: I’m not sure what you’re talking about.
Multi-Task Labeled:I’m not sure what you mean.
Weighted: What’s going on?

OSDB Context: Rigor mortis has yet to set in. His core body
temperature remains at 98 degrees. His skin color, lividity is
healthy.
PersonaChat (single):I’m not sure if I like him or not. I like
to eat meat.
Concatenated:That is good. I like to cook. I am a chef.
Interleaved: He is a very good doctor.
Labeled: He’s a good guy.
Multi-Task Labeled: He is a man of great character.
Weighted: He’s been in the hospital for two weeks.

Twitter Context: Hillary ran away from rain today. Trump is
back on stage minutes after assassination attempt.
PersonaChat (single): I’m not sure what that means.
Concatenated: That is so sad. I hope she gets better soon.
Interleaved: I’m so sorry. I’m so sorry.
Labeled: I’m so sorry.
Multi-Task Labeled: I’m not sure what happened to her.
Weighted: She’s a liar.

Twitter Context: It was gruesome & extremely rare to have
two witnesses. It was linked to epstein. Media didn’t report it.
PersonaChat (single): I’m sorry to hear that. I’m a nurse.
Concatenated: I’m not sure what that means. I’m a big fan of
the show.
Interleaved: I’m not sure what happened to the epstein case.
Labeled: I’m not sure what the link was, but it was a link to a
video.
Multi-Task Labeled: I’m not sure what happened to the ep-
stein case.
Weighted: The media is biased and biased.

Twitter Context: This is 100% true, but can we talk about
it tomorrow and make argentina the focus today? Something
needs to stick.
PersonaChat (single): Yes, I think so. I’m going to go to the
gym tomorrow.
Concatenated: I’m going to go see a movie.
Interleaved: I’m not sure what that’s. I’m not sure what that’s.
Labeled: I’m not sure what that means. I’m not sure what that
means.
Multi-Task Labeled: I’m not sure what you mean by that. I’m
not sure what you mean by that.
Weighted: I’m not sure if I can talk about it tomorrow.

Ubuntu Context: What are you going to do on the remote
system exactly?
PersonaChat (single): I am going to be a pilot. I am going
to fly planes.
Concatenated: I am going to go to the beach.
Interleaved: I’m going to install the latest version of
Ubuntu.
Labeled: I’m going to install a new kernel.
Multi-Task Labeled: I’m going to install the latest ver-
sion of Ubuntu.
Weighted: I’m trying to connect to the server.

Ubuntu Context: Know any mac people in here?
PersonaChat (single): No, I am not into them. I like to
eat them.
Concatenated: I do not. I’m a student.
Interleaved: I’m in the same boat.
Labeled: I’m not sure, I’m not sure if I can help you.
Multi-Task Labeled: I’m in the city. I’m in a lot of places.
Weighted: I don’t know, I just installed ubuntu on a laptop.

Ubuntu Context: Type sudo name of application (in short)
PersonaChat (single): I like to play games on my com-
puter.
Concatenated: I did not see that. I am a programmer.
Interleaved: I have a root shell, but I can’t login.
Labeled: I have a root shell.
Multi-Task Labeled: I don’t know what that is.
Weighted: It is Sudo apt-get install xubuntu-desktop.

PersonaChat Context: That must be hard. I like a beer
after driving my nissan pathfinder.
PersonaChat (single): I like to go to the movies. I have
been to a few.
Concatenated: I am a huge gamer, I play dungeons and
dragons on my computer.
Interleaved: I like to drive my nissan camry.
Labeled: I like to go to the movies with my friends.
Multi-Task Labeled: I like to drive my prius.
Weighted: I love beer too. I love to drink it while I am
driving.

PersonaChat Context: A food bank near my house. Do
you ever volunteer?
PersonaChat (single): I do, I love to volunteer at the soup
kitchen.
Concatenated: Yes I do. I love to help people.
Interleaved: I do. I have a lot of friends.
Labeled: I do. I am a volunteer at the local soup kitchen.
Multi-Task Labeled: I do. I love it. I volunteer at the
animal shelter.
Weighted: I do. I love volunteering at the food pantry.

PersonaChat Context: Yes! My son is in junior high and
I just started letting him watch them too.
PersonaChat (single): I am a mom of two boys. I have a
son.
Concatenated: I am a mom, I have three kids.
Interleaved: I love kids, I have a son who is in high school.
Labeled: I bet he is a good kid. I am a teacher.
Multi-Task Labeled: I am sorry to hear that. I am a
teacher.
Weighted: I bet you are a good mom.

Table 12: Responses generated from GPT-2 fine-tuned on 4 corpora with multiple methods
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MULTI-TURN RESPONSE GENERATION USING
SELF-CONTAINED DISTRACTIONS

Yujie Xing and Jon Atle Gulla

Norwegian University of Science and Technology
{yujie.xing, jon.atle.gulla}@ntnu.no

ABSTRACT

Despite the rapid progress of open-domain generation-based conversational agents, most deployed systems
treat dialogue contexts as single-turns, while systems dealing with multi-turn contexts are less studied.
There is a lack of a reliable metric for evaluating multi-turn modelling, as well as an effective solution for
improving it. In this paper, we focus on an essential component of multi-turn generation-based conversational
agents: context attention distribution, i.e. how systems distribute their attention on dialogue’s context.
For evaluation of this component, We introduce a novel attention-mechanism-based metric: DAS ratio. To
improve performance on this component, we propose an optimization strategy that employs self-contained
distractions. Our experiments on the Ubuntu chatlogs dataset show that models with comparable perplexity
can be distinguished by their ability on context attention distribution. Our proposed optimization strategy
improves both non-hierarchical and hierarchical models on the proposed metric by about 10% from baselines.

KEYWORDS

Natural Language Processing, Response Generation, Dialogue System, Conversational Agent, Multi-Turn
Dialogue System

1. INTRODUCTION

In recent years, generation-based conversational agents have shown a lot of progress, while multi-
turn generation-based conversational agents are still facing challenges. Most recent work ignores
multiturn modelling by considering a multi-turn context as a 1-turn context [1, 2]. Some works try
to deal with multi-turn modelling using modified attention mechanisms, hierarchical structures,
utterance tokens, etc. [3, 4, 5]. The main difference between multi-turn conversational agents and
regular (1-turn) conversational agents is that instead of dealing with an utterance in a context on
the word-level, multi-turn models deal with a dialogue on the utterance-level, so that models can
understand an utterance as a whole and focus on important utterances rather than important words.
An example of important/unimportant utterances existing in the same context is given by Table 1.

Table 1: An example of important utterances and unimportant utterances under the same context in
the Ubuntu chatlog dataset [6]. Unimportant utterances are marked in red.

User Utterances
Taru Haha sucker.
Kuja ?
Taru Anyways, you made the changes right?
Kuja Yes.

Taru Then from the terminal type: sudo apt-
get update
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Kuja I did.

In this example, the first two utterances (“Haha sucker.” and “?”) are unimportant utterances
that are irrelevant to the main topic of the context. Human dialogues naturally contain many of
these unimportant utterances. These utterances do not distract humans from understanding the
main idea of the context, since humans can easily ignore them and focus instead on important
utterances; however, a model usually lacks this capability and can be distracted by these utterances,
resulting in a lower performance in generating relevant responses to the main topic of a context.
Therefore, it is crucial that a multi-turn model can decide which utterances in the context are
important and which are unimportant, and distribute its attention accordingly. In this paper, we
define the research topic as context attention distribution, which denotes how much attention is
distributed respectively to important and unimportant utterances in a context. A model with a good
performance on context attention distribution should pay more attention to important utterances
and less attention to unimportant utterances.

Recent work lacks a measurement for the performance of multi-turn modelling. Common metrics
rely on general evaluation metrics such as BLEU [7], which measures the quality of generated
responses. These metrics cannot directly describe a model’s ability on dealing with multi-turn
contexts, since the quality of generated responses is influenced by many aspects. Better performance
in dealing with multi-turn context may result in better general performance; however, a better
general performance does not necessariy mean that the model has a better ability on dealing with
multi-turn contexts. Thus, as a supplementary to general evaluation metrics like BLEU, we propose
a metric that measures a conversational agent’s performance on context attention distribution,
which is specifically designed for evaluating a model’s performance on multi-turn modelling.

Since most multi-turn conversational agents have the attention mechanism and rely on it to distribute
attention to different utterances in a context, we propose distracting test as the evaluation method
to examine if a model pays more attention to the important utterances. The test adds unrelated
utterances as distractions to the context of each dialogue and compares the attention scores
of distracting utterances (i.e., unimportant utterances) and original utterances (i.e., important
utterances). The ratio of the average attention score of distracting utterances and original utterances
is defined as the distracting attention score ratio (DAS ratio). We use DAS ratio as the evaluation
metric for a model’s performance on context attention distribution. A model with good capability
on context attention distribution should have higher scores on original utterances and lower scores
on distracting utterances, thus a lower DAS ratio.

Furthermore, we propose a self-contained optimization strategy to improve a conversational
agent’s performance on context attention distribution. For each dialogue, we randomly pick some
utterances from the training corpus outside the current dialogue as self-contained distractions, and
insert them into the current dialogue with different levels of possibilities. The attention paid to
these distractions is minimized during the training process through multi-task learning. With this
optimization strategy, a model learns to distribute less attention to unimportant utterances and thus
more attention to important utterances.

In this paper, we examine the following research questions: 1) How do existing multi-turn modelling
structures perform on context attention distribution? 2) Can the proposed optimization strategy
improve a model’s performance on context attention distribution? 3) Which probability level is the
best for inserting distractions in the proposed optimization strategy?

Our contributions are as follows:

(1) We deal with a less studied problem: evaluating and improving context attention distribu-
tion for multi-turn conversational agents.

(2) We propose a novel evaluation metric for multi-turn conversational agents: DAS ratio.
It measures a model’s performance on context attention distribution, i.e. the capability of



distributing more attention to important utterances and less to unimportant ones.

(3) We propose an optimization strategy that minimizes the attention paid to self-contained
distractions during the training process, and thus makes the model try to pay less attention to
unimportant utterances. The strategy can easily be added and adapted to existing models.

Extensive experiments on 23 model variants and 9 distracting test sets show an overall improvement
in the performance on context attention distribution for the proposed strategy. We will share our
code for reproducibility.

Related work is introduced in Section 2. In Section 3, we introduce our base models and proposed
methods. We show our experiments settings in Section 4 and results in Section 5. Finally, we give
a conclusion in Section 6.

2. RELATED WORKS

Common evaluation metrics for conversational agents measure the similarity between the generated
responses and the gold responses. Liu et al. [8] summarizes commonly used metrics: word
overlap-based metrics (e.g. BLEU) and embedding-based metrics. Bruni et al. [9] propose
an adversarial evaluation method, which uses a classifier to distinguish human responses from
generated responses. Lowe et al. [10] propose a model that simulates human scoring for generated
responses. Zemlyanskiy et al. [11] examine the quality of generated responses in a different
direction: how much information the speakers exchange with each other. Recently, Li et al. [5]
propose a metric that evaluates the human-likeness of the generated response by measuring the gap
between the corresponding semantic influences. Different from the above, our proposed evaluation
metric is based on the attention mechanism and is intended to measure a model’s performance on
context attention distribution.

Most generation-based conversational agents apply simple concatenation for multi-turn conver-
sation modelling [2, 1], which regards a multi-turn context as a 1-turn utterance. Some works
try to model multi-turn conversations through the hierarchical structure: Serban et al. [3, 4] first
introduce the hierarchical structure to dialogue models. Tian et al. [12] evaluate different methods
for integrating context utterances in hierarchical structures. Zhang et al. [13] further evaluate the
effectiveness of static and dynamic attention mechanism. Gu et al. [14] apply a similar hierarchical
structure on Transformer, and propose masked utterance regression and distributed utterance order
ranking for the training objectives. Different from hierarchical models, Li et al. [5] encode each
utterance with a special token [C] and apply a flow module to train the model to predict the next
[C]; then they use semantic influence (the difference of the predicted and original tokens) to
support generation. In our paper, instead of modelling the relations of inter-context utterances
as [14] or the dialogue flow as [5], our optimization strategy improves multi-turn modelling by
distinguishing important/unimportant utterances directly on the attention mechanism.

3. METHODS

Our proposed evaluation metric and optimization strategy can work on attention mechanisms
including Transformers. In this paper, we choose an LSTM Seq2Seq model with attention mecha-
nism [15, 16, 17] as the base model, since most hierarchical structured multi-turn conversational
agents are based on LSTM [3, 4, 12, 13] while few are based on Transformers.

The basic task of generation-based conversational agents is to predict the next token given all the
past and current tokens from the context and response, and to make the predicted response as
similar to the original response as possible. Formally, the probability of response Y given context
X is predicted as:

P (Y |X) =
∏n

t=1 p(yt|y1, . . . , yt−1, X), (1)



where X = x1, . . . , xm and Y = y1, . . . , yn are a context-response pair.

3.1. LSTM Seq2Seq Model with Attention

We simplify an LSTM unit as LSTM , and we denote the attention version of an LSTM with an
asterisk (LSTM∗). They are well introduced in previous work [18]. We calculate the hidden
vector ht at step t as:

ht = LSTM∗(ht−1, E(zt), ct−1), (2)

where ht−1 ∈ Rdim is the hidden vector at step t-1, dim is the dimensionality of hidden vectors,
and E(zt) is the word embedding for token zt ∈ {x1, ..., xm, y1, ..., yn−1}. ct−1 is the context
vector at step t-1, and it is input to the next step t only in the decoder. Each ht and ct of the current
step t are combined through a linear layer and an activation to predict the next token.

3.2. Attention Mechanism & Utterance Integration (UI)

Utterance Integration LSTM

Hm

Well , can I move the drivers ? Ah not like that . I would advise … the diskI guess I … via USB .

History 1 History 2 Query Response

LSTM Encoder LSTM Decoder

would advise you … disk .

LOSS

…h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16 hm-1 hm-1 hm

H1 H2 H3
ℋ𝒞𝒞

Attention Loss (Static) Attention Loss (Dynamic)

ℋ

Attention Loss (Non-hier)

Figure 1: Structure of non-hierarchical, static and dynamic attention loss.

We examine both non-hierarchical and hierarchical structures. For hierarchical structures, following
[13], we develop two attention mechanisms: static and dynamic. Following [12], we develop
models that are both with and without utterance integration LSTM units.

For the non-hierarchical structured model, there are no hidden vectors for utterances. All hidden
vectors of tokens in the encoder are concatenated and used in the attention mechanism. Denoting
the concatenated vectorH = [h1, h2, ..., hm], we calculate the context vector ct for each decoding
step t as:

ct = H · (softmax(H> · ht)) . (3)

For the hierarchical models, we use the hidden vector of each utterance’s last token as the hidden
vector of the utterance, and we discard the hidden vectors for the other tokens. Thus, compared to
the non-hierarchical structured model, we have much fewer hidden vectors from the encoder.

The context vector of static attention mechanism is calculated based on the utterance-level concate-
nated vector and the hidden vector of the last utterance in the context. Denoting the hidden vector
of kth utterance as Hk, and the hidden vector of the last utterance in the context as Hq, we have
the context’s concatenated vector HC = [H1, H2, ...,Hq]. We calculate the context vector ct for



static attention mechanism as:

ct = HC · (softmax(H>C ·Hq)), (4)

where it is easy to see that the static context vector remains unchanged by the decoder.

The context vector of dynamic attention mechanism is calculated based on the utterance-level
concatenated vector and the hidden vector of each token in the decoding step. We calculate the
context vector ct for dynamic attention mechanism as:

ct = HC · (softmax(H>C · ht)) . (5)

Compared to the static attention mechanism, the context vector ct varies at each decoding step.

Finally, with the utterance integration LSTM unit, we calculate Hm from H1, H2, ... Hq:

Hm = LSTM(H1, H2, ...,Hq). (6)

For models with utterance integration (UI), Hm is input to the first step of the decoder, while for
models without UI, regular hm is input instead.

3.3. Distracting Test & Attention Score (AS)

We examine if a multi-turn conversational agent distributes more attention to important utterances
through the distracting test and attention scores.

In the distracting test, for each dialogue before the end of the context, we insert several utterances
that are irrelevant to the main idea of the dialogue as distractions. These utterances are named
distracting utterances, and they can be randomly picked utterances from the training corpus
(random), be formed by frequent words from the training corpus (frequent), or be formed by
rare words from the training corpus (rare). We compare the attention scores of the distracting
utterances with the attention scores of the original utterances. A well-performing model should
distribute less attention to the distracting utterances while more attention to the original utterances.
For an utterance Hk, the corresponding attention score AS(Hk) is calculated as:

AS(Hk) =



m

q
· meant

(∑
hi∈Hk

exp(h>i · ht)∑m
i=1 exp(h

>
i · ht)

)
Non-hierarchical

q · exp(H>k ·Hq)∑q
k=1 exp(H

>
k ·Hq)

Static attention

meant

(
q · exp(H>k · ht)∑q
k=1 exp(H

>
k · ht)

)
Dynamic attention

. (7)

hi denotes hidden vectors from the encoding steps and ht denotes hidden vectors from the decoding
steps. m is the number of tokens in a context, and q denotes the number of utterances in a context.
Note that for non-hierarchical models we multiply by an m in each AS(Hk) to avoid bias caused by
the total number of tokens in different contexts. Similarly for hierarchical models, we multiply by
a q in each AS(Hk) to avoid bias caused by the number of total utterances in different contexts. As
a result, for an utterance Hq, AS(Hq) will be 100% (or approximately 100% for non-hierarchical
models) if the model assigns Hq an about average attention score among all utterances.

We denote the last utterance in a context as Query and the rest of utterances in the context as
History. Since different models have different scalars on attention scores, we calculate the average
AS for all distracting utterances and all History in each dialogue, and use the ratio of them for



evaluation. This ratio is denoted as distracting attention score ratio (DAS ratio), which measures a
model’s ability on context attention distribution:

DAS ratio = meand∈D

(
mean(AS(HDistraction))

mean(AS(HHistory))

)
, (8)

where d means a single dialogue, and D denotes all dialogues in a test set. HDistraction denotes
distracting utterances, and HHistory denotes utterances in History.

3.4. Optimization with Self-Contained Distractions on Attention Mechanism

To train a conversational model to distribute more attention to important and less attention to
unimportant utterances, we propose the following optimization strategy: 1) For each dialogue,
we select some random utterances from other dialogues in the training corpus as self-contained
distractions. We decide whether to insert these distractions into the current dialogue or not
stochastically by a probability level. We denote the probability level as the training inserting
probability. The locations of inserting distractions are randomly decided, while the locations are
always before Query (the last utterance of the context). 2) We create a bitmask M to track whether
an utterance is original (0) or distracting (1). During the training period, the model uses the bitmask
to calculate the attention loss Ltattention, which is summed up with the loss from the response
generator. For each decoding step t, the attention loss is calculated as:

Ltattention =


MSE(softmax(H> · ht) ◦M, 0) Non-hierarchical
MSE(softmax(H>C ·Hq) ◦M, 0) Static attention
MSE(softmax(H>C · ht) ◦M, 0) Dynamic attention

(9)

where ◦ means Hadamard product, or elementwise multiplication. As shown in Equation (9),
our goal is to minimize the attention assigned to all the self-contained distractions. During the
distracting test, no bitmask is offered to the model. The illustration of attention loss on both
non-hierarchical and hierarchical models is shown in Figure 1.

4. EXPERIMENTS

In this section, we introduce the setups of the experiment.

4.1. Dataset

We use the Ubuntu chatlogs dataset [6] as the training and testing corpus, which contains dialogues
about solving technical problems of Ubuntu. We choose this dataset because the dialogues have
both technical topics and casual chats, meaning that it is easier to distinguish important/unimportant
utterances than datasets whose topics are consistent. We use about 0.48M dialogues for training,
20K dialogues for validation, and 10K dialogues for testing. These are the original settings of the
Ubuntu chatlogs dataset. We removed all single-turn dialogues.

4.2. Training

Our methods are built on an LSTM Seq2Seq model with attention mechanism. We used Pytorch
[19] for implementation. The LSTM model has 4 layers and the dimension is 512. The training
procedure was with a batch size of 256, a learning rate of 1.0, and a gradient clip threshold of 5.
The vocabulary size is 25000 and the dropout rate is 0.2. The learning rate is halved when the
perplexity stops dropping, and the training is stopped when the model converges.



4.3. Examined Models

We examine our proposed evaluation metric on 5 models: non-hierarchical LSTM (Non-hier), static
attention without utterance integration LSTM unit (Static), static attention with utterance integration
LSTM unit (StaticUI), dynamic attention without utterance integration LSTM unit (Dynamic), and
dynamic attention with utterance integration LSTM unit (DynamicUI). In addition, we examine
our proposed optimization strategy on these 5 models with 3 training inserting probabilities–0.5,
0.7, and 1.0. Models with a training inserting probability of 0 are regarded as baselines. For
comparison, we pick the best overall model and train the model with self-contained distractions
but without training on the attention loss (Non-atten-loss), i.e. the model does not know which
utterances are distractions. In total, we train and evaluate 23 model variants.

4.4. Evaluation

Table 2: Examples of distracting test sets. Distracting utterances are marked red.

Random: 0.5 Random: 0.7 Random: 1.0

History

\ Well, can I move the
drives? Yes.

Or kill all speedlink. Anyways, you made the
changes right?

Well, can I move the
drives?

Well, can I move the
drives? Ah not like that. Then from the terminal

type: sudo apt-get update.
Ah not like that. I did. Ah not like that.

Frequent: Begin Frequent: Middle Frequent: End

History

Why should I help you? Well, can I move the
drives?

Well, can I move the
drives?

I have my right. Why should I help you? Ah not like that.
Well, can I move the
drives? I have my right. Why should I help you?

Ah not like that. Ah not like that. I have my right.
Rare: Begin Rare: Middle Rare: End

History

Would you have lunch? Well, can I move the
drives?

Well, can I move the
drives?

I should have lunch. Would you have lunch? Ah not like that.
Well, can I move the
drives? I should have lunch. Would you have lunch?

Ah not like that. Ah not like that. I should have lunch.
Query I guess I could just get an enclosure and copy via USB.
Response I would advise you to get the disk.

For the distracting test, we set the number of distracting utterances for each dialogue to 2. We
chose 2 to make the distracting utterances a complete turn and to make the number of distracting
utterances the minimum, since dialogues from the corpus normally have only 4 to 8 utterances in
the contexts. We have 3 distracting test sets. 1) Random distracting test set: distracting utterances
in this test set are randomly picked from the training corpus (outside the current dialogue), and
they are randomly picked in every evaluation step, which means that there is no pre-prepared
random distracting test set. 2) Frequent distracting test set: distracting utterances in this test set are
formed by frequent words in the training corpus, but these utterances do not appear in the training
corpus. In our experiments, we use “why should I help you” and “I have my right” as examples of
distracting utterances with frequent words. 3) Rare distracting test set: distracting utterances in
this test set have words that are rare in the training corpus, and these utterances do not appear in
the training corpus. In our experiments, we use “would you have lunch?” and “I should have lunch”



as examples of distracting utterances with rare words.

In the distracting test, we insert distracting utterances into different locations. For 1) random, we
insert utterances to a random location before Query in each context. Similar to the optimization
strategy, we use different probability levels to decide whether a distracting utterance is to be
inserted or not. We denote these as testing inserting probability. In our experiments, we set the
probability levels to be 0.5, 0.7, and 1.0. We expect the model to perform stably on all different
probability levels. For 2) frequent and 3) rare, we have three kinds of inserting locations: at the
beginning of a context (marked as Begin), in the middle of the context (marked as Middle), and at
the end of the context (before Query and after History, marked as End). In total, we have 9 test sets
for evaluation. See Table 2 for the example of each test set.

5. RESULTS AND DISCUSSIONS

Table 3 illustrates the main results on DAS ratios. It shows the DAS ratios of 23 trained model
variants on 9 distracting test sets. Figure 2 shows the DAS ratios of 3 example model variants
(StaticUI with training inserting probability of 0.0 as the baseline, Non-atten-loss StaticUI with
training inserting probability of 0.7, and StaticUI with training inserting probability of 0.7) on 9
distracting test sets. Table 4, Table 5 and Table 6 show the detailed results on average Attention
Score (average AS) of distracting utterances and average AS of History.

In Table 3, we show the perplexity and History’s average AS of each model on the non-distracted
test set under the “Original” column. Since perplexity scores on the distracting test sets are similar,
we show the perplexity scores on the non-distracted test set only. We show the DAS ratios of each
model on each of the distracting test sets under the “DAS ratio for distracting test set” column. A
lower DAS ratio means that a model distributes less attention to distracting utterances (unimportant
utterances) and more attention to the original utterances in History (important utterances), from
which it can be inferred that the model has better performance on context attention distribution.
Both perplexity and DAS ratio are the lower, the better.

5.1. Perplexity and Average AS on Non-Distracted Test Set

Perplexity scores are shown in the “Perp.” column, under the “Original” column in Table 3.
Perplexity scores of the examined 23 models are similar; the Static models trained with our
proposed optimization strategy and a higher training inserting probability level achieves slightly
better performance than other models.

Average AS are shown in the “Avg.” column, under the “Original” column in Table 3. The average
AS of History tells about a model’s attention distribution for History and Query. A higher score
indicates that less attention is distributed to Query. Recall that AS of an utterance is 100% (or
approximately 100% for non-hierarchical models) if the utterance is paid about average attention
among the dialogue. Overall, the models distribute attention of lower than average to History,
especially for models with static attention (i.e. the Static model and StaticUI model), which
distribute more attention to Query than non-hierarchical models and models with dynamic attention.
This is apparent from the structure of static attention. We also show the results of a StaticUI
model without training on the attention loss (Non-atten-loss StaticUI model) as a comparison. The
StaticUI model trained with our optimization strategy distributes more attention to query than the
Non-atten-loss StaticUI model. This is because the optimization strategy decreases the model’s
attention distributed to distracting utterances in History, thus decreasing the overall attention
distributed to History.

5.2. Distracting Test: Random

Results of the random distracting test with different testing inserting probabilities (0.5, 0.7, and
1.0) are shown in the “Random” column in Table 3. Models with training inserting probabilities of



0.0 (shown in the row where “Prob” is 0.0) are baseline models to which our proposed optimization
strategy is not applied. In general, our proposed optimization strategy with training inserting
probabilities of 0.5 or 0.7 achieves better performance on DAS ratios (i.e. the models achieve
lower DAS ratios) on random distracting test sets of all 3 testing inserting probabilities. The
Static model and the DynamicUI model achieves the best performance with a training inserting
probability of 0.5, while the Non-hier model, the StaticUI model and the Dynamic model achieve
the best performance with a training inserting probability of 0.7. A training inserting probability
of 1.0 leads to worse performance. One reason is that it assumes there must be some distracting
utterances in a context, while that is not always the case.

Table 3: Results of perplexity (Perp.) and average AS of History (Avg.) on the original test set (%)
are shown in the “Original” column. We also show results of DAS ratios on 9 distracting test sets
and 23 model variants.
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Random_0.5 Random_0.7 Random_1.0 Freq_Begin Freq_Middle Freq_End Rare_Begin Rare_Middle Rare_End
Distracting Test Set

0.4

0.6

0.8

1.0

1.2

D
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 R
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o
Baseline (StaticUI model with training inserting probability of 0.0)
Non-atten-loss StaticUI model with training inserting probability of 0.7
StaticUI model with training inserting probability of 0.7

Figure 2: DAS ratios of 3 example model variants on 9 distracting test sets. The lower the DAS
ratio, the better the performance.

The StaticUI model with a training inserting probability of 0.7 achieves the best overall performance
on DAS ratio. As shown in Figure 2, on all the random distracting test sets (probabilities of 0.5,
0.7, and 1.0), the StaticUI model is better than the baseline StaticUI model and the Non-atten-loss
StaticUI model. The baseline model is not trained with any self-contained distractions (training
inserting probability is 0.0), and it gets the worst performance. The Non-atten-loss model is trained
with self-contained distractions (with a training inserting probability of 0.7) while not knowing
which utterances are distractions, and it achieves a better performance than the baseline. The
StaticUI model with a training inserting probability of 0.7 is trained to minimize the attention loss
of self-contained distractions and it achieves the best performance. Naturally since the optimization
strategy minimizes the attention loss of distractions, the StaticUI model distributes less attention
to History and more attention to Query (refer to the “Avg” column in Appendix 4 for more
details); nevertheless, a lower DAS ratio shows that the model distributes even less attention to the
distracting utterances compared to the original utterances in History.

Note that even if both our proposed strategy and the random distracting test use the same trick:
insert random distracting utterances among original utterances in History, the random utterances
inserted in the distracting test are different from those inserted in the training process, thus it is
difficult for the test to be biased in favor of models with our proposed strategy. It is apparent
that less attention is distributed to History, while DAS ratio calculates the ratio between the
distracting utterances and the original utterances in History, so it shows the attention distributed
to the distracting utterances regardless of the total attention distributed to History. Moreover, we
adopt three testing inserting probability levels to ensure stable evaluation results for each model.

5.3. Distracting Test: Frequent and Rare

Results of the frequent and the rare distracting test are shown in the “Frequent” and “Rare” columns
in Table 3. Different from the random distracting test, the inserting locations of these two tests are
decided manually. As a nature of LSTM model, all models distribute more attention to utterances
near Query and less attention to utterances far away from Query, as can be seen in Table 3 and
Figure 2 that DAS ratios are higher for End test set (near Query) and lower for Begin test set (far
away from Query). Since the results on Begin and End test sets are biased by the structure of
LSTM, we mainly analyze the results on Middle test sets.

For the Middle test sets of both the frequent and rare distracting test, the best models are still
those trained with our proposed optimization strategy. StaticUI models with training inserting
probabilities of 0.5 and 0.7 achieve the best performance (lowest DAS ratios) on the Frequent
Middle and Rare Middle test sets. The Non-atten-loss models can be better than the models trained
with a wrong training inserting probability. Telling from similar DAS ratios, the frequent distracting



test set is as difficult for the trained models to distinguish as the rare distracting test set, although
for humans, the rare distracting utterances are much easier to distinguish than the frequent ones.

Table 4: Results of perplexity (Perp.) and average AS of History (Avg.) on the original test set (%)
are shown in the “Original” column. Besides, we show the results on the random distracting test of:
DAS ratio, average AS of distracting utterances (DAS) (%), and average AS of original utterances
in History (Avg.) (%).
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Table 5: Results on the frequent distracting test of: DAS ratio, average AS of distracting utterances
(DAS) (%), average AS of original utterances in History (Avg.) (%), and AS of the first/last
utterance in History (%).
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Table 6: Results on the rare distracting test of: DAS ratio, average AS of distracting utterances
(DAS) (%), average AS of original utterances in History (Avg.) (%), and AS of the first/last
utterance in History (%).
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5.4. Detailed Results on the Distracting Tests

In addition to DAS ratio, Table 4 shows the average AS of distracting utterances and of original
utterances in History. Table 5 and Table 6 additionally show the AS of the first or last utterances in
History. Note again that an attention score of 100% for a utterance indicates that this utterance
receives an average attention score, e.g. for a dialogue containing 10 utterances, an attention score
of 100% indicates that the utterance receives 10% attention out of all.

From Table 4 it is clear that the average AS of the original utterances in History varies by model
variants. A higher average AS for History indicates a lower AS for Query. Some models distribute
most of the attention to Query while some models distribute the attention evenly to both History
and Query. Normally, Query contains more relevant information, so we expect a lower average
AS for History; however, the average AS for History is not the lower the better, since there are
still some utterances in History that are important for the context. A lower average AS for History
comes together with a lower average AS for distracting utterances (or a lower DAS), so DAS ratio
is better suited for evaluating a model’s capability on context attention distribution, since it takes
the average AS for original utterances in History into account. In Table 4, the models with the
lowest DAS ratio also have the lowest average AS for distracting utterances and original utterances,
while in Table 5 and Table 6, it is not always the case.

In Table 5 and Table 6, for the distracting test sets where distracting utterances are put in the
beginning/end of the context, we show AS for the first/last utterance in History to have a clearer
comparison. We can see in columns of Frequent: Begin and Rare: Begin that the distracting
utterances usually receive lower attention than the first utterance in History, while the other
original utterances in History receive more attention than the first utterance. This indicates a good
performance of the model variants. Utterances far away from Query are normally distributed lower
attention, so in a normal case, it is natural that the utterances that come after the first utterance
receive more attention; however, these distracting utterances receive less attention, regardless of the
fact that they are placed after the first utterances. It can thus be inferred that most model variants
can distinguish distracting utterances as unimportant and distribute less attention to them. Similarly,
the last utterances in History usually get more attention, while as the columns of Frequent: End and
Rare: End show, distracting utterances receive less attention compared to other original utterances
in History, regardless of that the distracting utterances are placed closer to Query.

5.5. Summary of Results

DAS ratio can distinguish conversational agents with similar perplexity on their ability of context
attention distribution. In general, models trained with our proposed optimization strategy focus
less on distracting utterances and more on original utterances in History. For most models, DAS
ratios decrease by about 10% when trained with our proposed strategy with a 0.5 or 0.7 probability
level. 0.7 is generally the best option for a training inserting probability.

6. CONCLUSIONS AND FUTURE WORKS

We have studied context attention distribution, an essential component of multi-turn modelling for
open-domain conversational agents. We have proposed an evaluation metric for context attention
distribution based on the distracting test: DAS ratio. We have also improved the performance of
context attention distribution for common multi-turn conversational agents through an optimiza-
tion strategy via reducing the attention loss of self-contained distracting utterances. Extensive
experiments show that our proposed strategy achieves improvements on most models, especially
with a training inserting probability level of 0.7. Future works can focus on adapting the proposed
evaluation metric and optimization strategy to transformer-based conversational agents.
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Abstract. The study of context-awareness in multi-turn generation-
based dialogue modeling is an important but relatively underexplored
topic. Prior research has employed hierarchical structures to enhance the
context-awareness of dialogue models. This paper aims to address this
issue by utilizing two extractive summarization techniques, namely the
PMI topic model and the ORACLE algorithm, to filter out unimportant
utterances within a given context. Our proposed approach is assessed
on both non-hierarchical and hierarchical models using the distracting
test, which evaluates the level of attention given to each utterance. Our
proposed methods gain significant improvement over the baselines in the
distracting test.

Keywords: Multi-Turn Response Generation · Conversational Agent ·
Summarization

1 Introduction

Although generation-based dialogue models have achieved much progress in
recent years, multi-turn dialogue models are still facing challenges. Recent works
deal with multi-turn using modified attention mechanisms and hierarchical struc-
tures. One focus of dealing with multi-turn is the ability of context-awareness
on a dialogue model, which requires a model to pay more attention to impor-
tant utterances while less attention to unimportant ones. An example of impor-
tant/unimportant utterances is given by Table 1.
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Table 1. An example of important utterances and unimportant utterances under the
same context in the Ubuntu chatlog dataset [9]. Unimportant utterances are marked
in red.

User Utterances

Taru Haha sucker.

Kuja ?

Taru Anyways, you made the changes right?

Kuja Yes.

Taru Then from the terminal type: sudo apt-get update

Kuja I did

In Table 1, the first two utterances (“Haha sucker.” and “?”) are unimportant
utterances that are irrelevant to the main topic of the context. A multi-turn dia-
logue model with good ability on context awareness should identify and ignore
these unimportant utterances and focus only on the important ones. Thus, we
propose that one way to improve the context awareness of a model is to fil-
ter out the unimportant utterances, which is a task similar to summarization:
given a reference and a source, an extractive summarization algorithm extracts
all utterances related to the reference and eliminate all others in the source. In
the case of dialogue models, we do not have a reference for the context; never-
theless, the last utterance in the context, i.e., the query, plays a crucial role in
generating the response. In most cases, responses aim to provide answers to the
query while utilizing other utterances in the context as the source for answering.
We denote all utterances in a context except for the last one as source. This
paper investigates improving context awareness for multi-turn dialogue models
by filtering out unimportant utterances from the source using extractive sum-
marization techniques with the query as the reference.

There are a few works that combine summarization with dialogue models.
One of the techniques used in these works is the topic model, where a keyword is
predicted from the query and the entire corpus to help a model generate detailed
responses. In our paper, we also use a PMI topic model to extract keywords
from the context, while instead of using the keywords to support the generation
task, we pass the keywords directly to the dialogue model. Additionally, we
explore the ORACLE algorithm, a widely-used algorithm for generating gold
labels for extractive summarization, to filter out utterances unrelated to query
before passing them to the dialogue model.

For evaluation, we use an evaluation method tailored for multi-turn dialogue
models. Since most multi-turn dialogue models have attention mechanisms and
they rely on the mechanism to assign different extents of focus to each utterance
in the context, we use the distracting test to measure if a model pays more
attention to the important utterances and less to the unimportant ones. The test
simply adds distracting utterances to each dialogue and compares the attention
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scores on these distracting (unimportant) utterances with the original (impor-
tant) utterances in the source, thus measures the ability of context awareness
for a dialogue model.

This paper is organized as follows. In Sect. 2, we introduce related works. In
Sect. 3 and Sect. 4, we introduce the model to be examined, the summarization
techniques to be integrated, and the evaluation metrics. In Sect. 5, we describe
our experiment settings, and we report the results in Sect. 6.

2 Related Work

Previous works try to improve context-awareness on dialogue modeling through
the hierarchical structure. [13,14] first introduce the hierarchical structure to
dialogue models. [17] evaluate different methods of integrating context utter-
ances in hierarchical structures, and [21] further evaluate the effectiveness of
static and dynamic attention mechanism. In our paper, we examine our context-
summarization module with both different methods of integrating context utter-
ances and two kinds of attention mechanisms.

A similar direction of combining summarization and multi-turn dialogue
modeling is the integration of topic models, though current works in this direc-
tion are all on single-turn dialogues. [6] uses a classifier to select the keyword
for a given query from a pre-generated keyword list. [10,20] use PMI to choose
a keyword for a given query from a big corpus. Similarly, [2,18] uses a topic
model to predict the keyword out from vocabulary words. In our paper, we also
examine if a topic model can improve the context-awareness of dialogue models.

As mentioned in [19], a typical way to construct labeled data for extractive
summarization is to set ROUGE. Most works including [5] construct gold label
sequences by greedily optimizing ROUGE-1, which is the algorithm ORACLE.
Further, although in this paper we stick to extractive summarization due to lack
of suitable conversational datasets for abstractive summarization, we expect the
very soon coming of this kind of dataset from [3].

3 Models to be Examined

We use an LSTM Seq2Seq model with attention [1,4,16] as the base model, since
it is a common model for conversational systems [7,12].

The basic task of conversational agents is to predict the next word given
all the past and current words of the context and response, and to make the
generated response as similar to the original response as possible. Formally, the
task can be described as follows. Probability of response Y given context X is
predicted as:

P (Y |X) =
∏n

t=1 p(yt|y1, . . . , yt−1,X), (1)

where X = x1, . . . , xm and Y = y1, . . . , yn are a context-response pair.
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3.1 LSTM Seq2Seq Model with Attention

We simplify an LSTM structure with attention mechanism as LSTM∗ since it is
well introduced in previous work [7]. We calculate the hidden vector ht at step
t as:

ht = LSTM∗(ht−1, ct, E(zt)), (2)

where ht−1 ∈ R
dim is the hidden vector at step t − 1, dim is the dimen-

sion of hidden vectors, and E(zt) is the word embedding for token zt ∈
{x1, ..., xm, y1, ..., yn−1}. The context vector ct is inputted only to the decoder
at step t.

3.2 Attention Mechanism and Utterance Integration

We examine both hierarchical and non-hierarchical structures. For hierarchi-
cal structures, following [21], we examine two attention mechanisms, namely
static and dynamic attention mechanisms. Following [17], we examine hierarchi-
cal models with or without utterance integration LSTM units.

For the non-hierarchical structured model, there are no utterance vec-
tors. Hidden vectors of all words in the encoder are concatenated and used
in the attention mechanism. Denoting the concatenated vector as H (H =
[h1, h2, ..., hm]), we calculate the context vector ct for each decoder step as

ct = H · (softmax(H� · ht−1)) . (3)

For the hierarchically structured models, we denote the last utterance of
the context as the query, and the other utterances as the source. At each step
where an utterance ends, we collect the hidden vector of its last word as the
hidden vector of the utterance, thus compared to the non-hierarchical structured
model, we have much fewer hidden vectors from the encoder. Denoting the hidden
vector of kth utterance as Hk, the hidden vector of the query as Hq, and the
concatenated vector of the source and the query as Hc (Hc = [H1,H2, ...,Hq]),
we calculate the context vector ct for static attention mechanism as

ct = Hc · (softmax(H�
c · Hq)) (4)

where it is easy to see that static attention does not change during steps in the
decoder. And we calculate ct for dynamic attention mechanism as

ct = Hc · (softmax(H�
c · ht−1)) . (5)

In the decoder, ct is input to the next step t, and each token’s hidden vector
ht−1 is combined with ct to predict the next token.

Finally, with the utterance integration LSTM unit, the hidden vector to be
put into the first step of the decoder is different from the regular hm; instead,
the vector is calculated by integrating H1, H2, ... Hq through a separate LSTM
unit.
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4 Proposed Methods

4.1 PMI-Context

The method PMI-context uses a Pointwise Mutual Information (PMI) to select
the k most relevant words in a source given a query. Given a word xc in a source,
the total PMI of xc given a query = xq1, ..., xql is calculated following [20]:

PMI(xq1, ..., xql, xc) ≈
l∑

i

PMI(xqi, xc) . (6)

The selected k keywords xc1, ..., xck and the query are combined through the
static attention mechanism described in Eq. (4) to calculate the context vector
ct. Note that here a query does not attend to itself, but only to the selected
keywords. The context vector ct, the selected k keywords, and the query are
then inputted into the LSTM unit as described in the following adapted version
of Eq. (2):

ht = LSTM∗(ht−1, ct, E(z′
t)) , (7)

where z′
t ∈ {xc1, ..., xck, xq1, ..., xql, y1, ..., yn−1}.

4.2 ORACLE-Context

The method ORACLE-context is based on an extractive summarization algo-
rithm named the ORACLE algorithm. It uses the ORACLE algorithm to extract
relevant utterances from the source by greedily optimizing ROUGE-1 using the
query as the summarization reference. The extracted k most relevant utterances
are then inputted into the LSTM unit as described in the following adapted
version of Eq. (2):

ht = LSTM∗(ht−1, ct, E(z′′
t )) , (8)

where z′′
t ∈ {x1

c1, x
1
c2, ..., x

k
c1, x

k
c2, ..., xq1, ..., xql, y1, ..., yn−1}, and Xi =

xi
c1, x

i
c2, ... (i ∈ {1, ..., k}) denotes for each of the extracted k most relevant

utterances.
This method intends to filter out irrelevant utterances from the source given

the query and delete the utterances from the inputs to the dialogue model, which
helps the model to pay attention correctly to the important utterances.

4.3 Evaluation

Since perplexity is considered not a good measure of how good a conversation
is [8], besides perplexity, we examine whether the model pays attention to the
correct utterance through a simple distracting test.

In the distracting test, for each dialogue, we insert several distracting utter-
ances into the dialogue. The distracting utterance can be anything that does
not belong to the original dialogue. Then we compare the attention scores of
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the distracting utterances with the attention scores of the original utterances. A
well-performing model should pay less attention to the distracting utterances but
more attention to the original utterances. For an utterance Hk in the context,
the score is calculated as

⎧
⎨

⎩

exp(H�
k ·Hq)∑

k exp(H�
k ·Hq)

Static attention

meant(
exp(H�

k ·ht)∑
k exp(H�

k ·ht)
) Dynamic attention

(9)

To avoid bias, we weigh the attention score with the utterance amount, or
the total word amount of source plus query divided by the word amount of
the utterance to be examined. That gives us 100% for any utterance that is
paid average attention among source plus query, i.e. 1

k attention for a total of k
utterances in source plus query.

5 Experiment Setup

5.1 Dataset

We use the Ubuntu chatlogs dataset [9], which contains dialogues about solving
technical problems of Ubuntu, as the training and testing corpus. We have about
0.48M dialogues for training, 20K dialogues for validation, and 10K dialogues
for testing. These are the original settings of the Ubuntu chatlogs dataset. We
removed all single-turn dialogues, since single-turns do not have contexts that
we need to study on. The last utterance in the context is treated as query, and
the other utterances are treated as source.

For the distracting test, we set the amount of distracting utterances for each
dialogue as 2. We have 3 distracting test datasets: 1) dataset distracted with
utterances containing frequent words, which are “why should I help you” and
“I have my right”; 2) dataset distracted with utterances containing rare words,
which are “would you have lunch?” and “I should have lunch”; 3) dataset dis-
tracted with utterances randomly picked from the training set.

5.2 Training

Our methods are built on a basic LSTM Seq2Seq model. We used Pytorch [11]
for implementation. The LSTM model has 4 layers and the dimension is 512.
The training procedure was with a batch size of 256, a learning rate of 1.0, and
a gradient clip threshold of 5. The vocabulary size is 25000 and the dropout rate
is 0.2.

5.3 Models to Be Examined

For the method PMI-context, we examine the maximum keyword amounts of
both 10-word level and 30-word level. For the method ORACLE-context, we
examine the maximum extracted utterance amounts of both 5-utterance level



484 Y. Xing and J. A. Gulla

and 10-utterance level. Also, we examine ORACLE-context on 5 model variants,
namely static attention with utterance integration LSTM unit, static attention
without utterance integration LSTM unit, dynamic attention with utterance
integration LSTM unit, and dynamic attention without utterance integration
LSTM unit. Among these variants, one is non-hierarchical structured, and the
other four are hierarchical structured.

6 Results

We show the perplexity and attention scores of the models to be examined. For
comparison, we also show scores of non-hierarchical model trained on either the
whole context (source and query) or only query. The results are shown in Table 2.

For the distracting test, besides the attention scores of the distracting utter-
ances, we also show the average attention scores of the source. A lower score
indicates that more attention is paid to the query instead of the source. In
addition, we calculate the ratio between the attention scores of the distracting
utterances and those of the original utterances in the source, to show how much
attention is paid to the distracting utterances compared to the source. A lower
ratio indicates that the model is less distracted by the distracting utterances.

Table 2 shows that the non-hierarchical model with the ORACLE-context
method of 10-utterance level has the best perplexity and the lowest attention
scores’ ratio for the frequent and rare distracting datasets, which indicates that
this model is the least distracted from frequent and rare distracting utterances.
Among the four kinds of hierarchical models, the variant of static attention
mechanism with utterance integration LSTM unit (Static+UttLSTM) gets the
best performance on the random distracting dataset, and most of the other
variants manage to exceed the non-hierarchical model on the random distracting
dataset, from which we can infer that the hierarchical models are less distracted
from random distracting utterances. PMI-context method of the 30-word level
also gains a good perplexity, but since perplexity is not a good method for
evaluating responses’ quality, more evaluation is needed.

It is easy to notice that while the perplexity scores of the ORACLE-context
models show marginal improvement over the baselines, they outperform the base-
lines in the distracting test, which is a better evaluation metric for the ability
of context-awareness. To assess the efficacy of the ORACLE algorithm, we fur-
ther investigated the filtered-out and extracted utterances. Results show that
approximately 79%, 84%, and 82% of the distracting utterances were filtered
out in each of the three distracting datasets, respectively. In contrast, the algo-
rithm extracted a considerable portion of the first and second utterances closest
to the query, which are typically regarded as important utterances in a source,
and these make up 30% and 43% of the total extracted utterances, respectively.
This means that the ORACLE algorithm does filter out unimportant utterances
to some extent.

It is surprising to see that the models have the worst performance for the
distracting dataset with rare utterances. It is obvious for humans to identify
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Table 2. Perplexity (Perp), attention score of distracting utterances (Distract, %),
attention score of average original utterances in the source (Avg., %), and their ratio
(ratio). The best attention scores of distracting utterances and the best ratios are
bolded.

(a) Results on the random distract testset

Method Model
Original Distract: random

Perp Avg. Perp Distract (ratio) Avg.

\ Non-hier (query only) 49.5 100 \ \
Non-hier 49.8 94.7 49.8 94.4 (0.99) 95.4

PMI
PMI-10 49.5 \ 49.5 \
PMI-30 47.8 \ 47.8 \

ORACLE-5

Non-hier 48.1 86.2 48.7 82.4 (0.94) 87.2

static 49.0 68.0 49.3 56.8 (0.81) 70.0

static+UttLSTM 51.3 52.8 51.6 41.2 (0.76) 54.1

dynamic 49.7 86.8 50.2 81.4 (0.93) 88.0

dynamic+UttLSTM 50.7 93.8 51.2 91.3 (0.97) 94.4

ORACLE-10

Non-hier 47.1 86.5 47.7 82.5 (0.94) 87.4

static 49.5 60.7 49.9 47.1 (0.75) 62.4

static+UttLSTM 47.7 54.1 48.0 43.5 (0.79) 55.3

dynamic 49.9 85.5 50.3 80.0 (0.92) 86.7

dynamic+UttLSTM 49.6 95.0 49.9 93.4 (0.98) 95.3

(b) Results on the frequent and rare distracting dataset

Method Model
Distract: frequent Distract: rare

Perp Distract (ratio) Avg. Perp Distract (ratio) Avg.

\ Non-hier (query only) \ \ \ \
Non-hier 49.7 94.3 (0.98) 95.8 49.8 94.4 (0.99) 95.5

PMI
PMI-10 49.5 \ 49.5 \
PMI-30 47.8 \ 47.8 \

ORACLE-5

Non-hier 48.3 74.8 (0.86) 86.9 48.4 78.1 (0.90) 86.3

static 49.1 65.1 (0.95) 68.7 49.2 63.0 (0.91) 69.3

static+UttLSTM 51.4 46.9 (0.88) 53.4 51.4 48.3 (0.90) 53.5

dynamic 49.9 79.3 (0.90) 88.3 50.0 83.0 (0.95) 87.5

dynamic+UttLSTM 50.8 89.3 (0.95) 94.6 50.9 94.3 (1.01) 93.0

ORACLE-10

Non-hier 47.3 69.9 (0.80) 87.3 47.3 74.3 (0.86) 86.8

static 49.7 51.0 (0.83) 61.7 49.7 55.3 (0.90) 61.5

static+UttLSTM 47.7 46.8 (0.86) 54.7 47.9 51.1 (0.95) 54.1

dynamic 50.1 79.3 (0.92) 86.4 50.1 87.9 (1.03) 85.0

dynamic+UttLSTM 49.7 91.1 (0.95) 95.9 49.8 94.6 (1.00) 94.3

“Would you have lunch?” and “I should have lunch” as distracting utterances,
while although the ORACLE algorithm only keeps 16% of these distracting
utterances, the model still cannot learn to pay less attention to them.
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7 Conclusions

We have integrated extractive summarization techniques with multi-turn dia-
logue models to improve their ability of context-awareness. The techniques that
we have examined are PMI topic model and ORACLE algorithm; we have
integrated them with both non-hierarchical and hierarchical dialogue models.
For evaluation, we have employed the distracting test to evaluate the context-
awareness of each model. With extractive summarization techniques integrated,
we find significant improvements in distracting tests for the multi-turn con-
versational agents. For future works, more summarization techniques can be
considered, and more evaluation metrics can be used.
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Abstract. In recent years, prompt-based tuning and instruction-based
tuning have emerged as popular approaches for natural language pro-
cessing. In this paper, we investigate the application of prompt and
instruction-based tuning approaches for response generation in conver-
sational question answering. We approach this task from both extrac-
tive and generative angles, where we adopt prompt-based tuning for the
extractive angle and instruction-based tuning for the generative angle.
Additionally, we utilize multi-task learning to integrate these two angles.
To evaluate the performance of our proposed approaches, we conduct
experiments on the GPT-2 model. The results show that the approaches
improve performance by 18% on F1 score over the baseline. We share
our codes and data for reproducibility. (https://github.com/yujie-xing/
Multi-Turn QA Prompt).

Keywords: Prompt · Instruction · Pre-Trained Language Model ·
Response Generation · Conversational Question Answering

1 Introduction

Conversational Question Answering (CQA) is a QA dialogue system that can
answer user questions based on a given document. CQA is an extension of tradi-
tional QA systems to a conversational setting and engages in multi-turn conver-
sation to satisfy a user’s information needs. According to the types of QA, CQA
is studied in two settings: extractive and generative. In the extractive setting,
the answer is marked as a span in the text paragraph, whereas in the generative
setting, i.e. response generation in CQA, the answer is free-form text generated
by autoregressively predicting tokens.

With the rapid development of language modeling techniques, a lot of pre-
trained language models have been successfully applied to extractive CQA [3,
20], generative CQA [7,27] and unified systems that solve various CQA tasks
through a single model [10,24]. Recently, Gekhman et al. [5] have conducted a
comprehensive robustness study of history modeling approaches for CQA and
propose a prompt-based history highlighting method to improve robustness while
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maintaining overall high performance. However, prompts are generally short and
do not generalize well to reformulations and new tasks.

Instruction tuning is an emergent paradigm where models are trained on a
variety of tasks with natural language instructions. Instructions of natural lan-
guage formats are easy for questioners to ask questions, and are proven to achieve
a good performance due to the nature of the language model [6]. To the best of
our knowledge, we are the first to apply instruction tuning for response gener-
ation on conversational question answering. Our paper proposes approaches for
enhancing the response generation of conversational question answering by inte-
grating prompt-based and instruction-based tuning. We adopt the prompt-based
tuning method introduced by Gekhman et al. [5] to improve from the extractive
angle on the multi-turn scenario. Additionally, we propose an instruction-based
tuning method to enhance from the generative angle, based on the work of Zhong
et al. [29] and Gupta et al. [6]. Furthermore, we investigate the integration of
these two angles through multi-task learning.

In our experiments, we verify the influence of prompt-based tuning,
instruction-based tuning, and multi-task learning for the task. We evaluate the
performance of various settings, including prompt-based tuning with or with-
out multi-task learning, prompt-based with or without instruction-based tuning,
and prompt-based tuning with both multi-task learning and instruction-based
tuning. We conduct the experiments on GPT-2 and evaluate the results on F1
score with 2 modes: the decoding mode and the evaluation mode. Additionally,
we assess the extractive question answering part of the settings with a GPT-2
fine-tuned on the extractive question answering task.

The results show that our prompt-based tuning together with other
approaches has improved the performance by about 18% on F1 score over the
baseline, and the instruction-based tuning and multi-task learning settings have
improved further at about 1% compared to pure prompt-based tuning approach.

The main contributions of this work are:

– To the best of our knowledge, we are the first to incorporate instruction tuning
in conversational question answering.

– We investigate tuning approaches based on prompt and instruction for
the response generation task on conversational question answering. The
approaches are simple and easy to be adapted to other models.

– We conduct comprehensive experiments on the influence of instruction-based
tuning, prompt-based tuning and multi-task learning for this task. The results
show that the best approach improves about 18% on F1 score than the base-
line.

The paper is organized as follows: we summarize related works in Sect. 2. We
define our task and introduce the approaches used in our research in Sect. 3. In
Sect. 4 we describe the setups of our experiments, and in Sect. 5 we present our
results. We conclude and describe future works in Sect. 6.
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2 Related Work

2.1 Conversational Question Answering with Prompts

In earlier times, recurrent neural networks (RNN) and attention variations were
used to model conversation histories of QA [21,30]. Modern approaches leverage
transformer-based pre-trained language models for QA by fine-tuning the models
on massive annotated data from downstream QA tasks [8,11]. Recently, some
works proposed to effectively adapt the pre-trained LMs to the downstream QA
with only a handful of annotated data [2,20]. For instance, Chada et al. [2]
proposed to cast QA as a text-generation problem by designing a prompt of a
concatenation of the question and a special mask token representing the answer
span. Similarly, Chen et al. [3] proposed to use Masked Language Model on
entities to enhance few-shot QA learning. However, none of the abovementioned
research works adopt instructions in prompt tuning for QA tasks. Considering
the various QA tasks, some works explore multi-task learning QA by jointly
training a single encoder to enhance the sharing of knowledge across tasks [4,22].
However, these works may suffer from poor scalability and flexibility when facing
new types of QA tasks due to the requirement of deploying distinct prediction
heads for different tasks.

2.2 Response Generation on Question Answering Task

Generative QA models [7,10,12,19] have shown remarkable performance, where
the goal is to generate answers by autoregressively predicting tokens. Generative
methods are more often used in open-domain [7,12,19,27] and unified settings
[10,24]. Roberts et al. [19] proposed to use large pre-trained generative models,
without using additional knowledge, for open-domain question answering. Lewis
et al. [12] introduced retrieval-augmented generative models for open-domain
question answering. Khashabi et al. [10] and Tafjord et al. [24] proposed to
learn various QA formats in a unified way to alleviate the manual effort of task-
specific design. Different from them, our work focuses on conversational answer
generation with passages from the given task and investigates the influence of
instruction tuning, prompt tuning and multi-task learning for conversational
QA.

2.3 Instruction Tuning

Instruction tuning is a paradigm where models are trained on a variety of
tasks with natural language instructions. Recent literature has been motivated
by building models that are generalizable across a variety of NLP tasks when
prompted with a few examples [1,13,14] or language definitions and constraints
[26,28] introduced natural language instructions to improve the performance of
LMs such as BART and GPT-3 for cross-task. Followed by this, FLAN [25] has
been proposed, which uses instructions to achieve generalization across unseen
tasks. Recently, Mishra et al. [9] have shown reframing instructional prompts can
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boost both few-shot and zero-shot model performance. The InstructGPT model
is proposed, which is fine-tuned with human feedback [15]. Puri et al. [18] intro-
duced instruction augmentation to improve model performance in task-specific,
multi-task and cross-task learning paradigms. Prasad et al. [17] introduced
Gradient-free Instructional Prompt Search (GrIPS) to improve task instructions
for large language models. Motivated by the effectiveness of instruction tuning,
in this work, we explore the potential application of instructional prompts for
conversational question-answering response generation.

3 Methodology

In this section, we first define the tasks of conversational question answering
and response generation, and we introduce how these tasks are realized under
GPT-2. After that, we explain the proposed multi-task learning, prompt tuning,
and instruction tuning in detail.

3.1 Conversational Question Answering

The task of conversational question answering is to predict the answer span
(start position, end position) in a passage for the given question and the previous
questions and answer spans. The question answering task can be transferred to
two classification tasks: one for the start position, and the other for the end
position. Given a question Q and a passage X, the tasks are to calculate the
probability of the t-th token in the passage X is the start position Pxt=start and
is the end position Pxt=end:

P (xt = start | Q,X) (1)
P (xt = end | Q,X), (2)

where Q = q1, . . . , qk, X = x1, . . . , xm are sequences of tokens.
The difference between the task of conversational question answering with

regular question answering is that there are conversation histories, i.e. multiple
turns of questions and answer spans.

The question answering task is dealt with the GPT-2 model as follows. First,
a hidden vector that is to be input to the transformer block is calculated as:

h0 = E(Q,X) + (E0, E1) + Wp, (3)

where E(Q,X) is the sub-word embedding for question Q and passage X. E0

and E1 are state embeddings, where E0 is assigned to the question, and E1

is assigned to the passage. Wp is a pre-trained position embedding. Then, the
probability of the subword t to be the start or end position is calculated as:

hX = transformer block(h0)[X] (4)
P (xt = start) = softmax (A · hX)[t] (5)
P (xt = end) = softmax (B · hX)[t], (6)
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where A ∈ R
1×dim(h) and B ∈ R

1×dim(h), hX denotes for slice of the passage X
part in the hidden vector, and [t] denotes for the t-th subword token in the pas-
sage X. We simplify the structure of the transformer block as transformer block .
In the block, a mask bans past words from attending to future words. Equation 5
and Eq. 6 transfer hX ∈ R

dim(h)×|X| into sequences of probabilities for each sub-
word token in X, where the probability of a subword t being the start position
or the end position can be obtained.

3.2 Response Generation

The task of response generation is to predict the next token given the past and
current tokens of the context and response, and to make the generated response
as similar to the original response as possible. In the scale of the conversational
question answering task, the response generation task can be described as follows.
Probability of answer Y given a question Q and a passage X is predicted as:

P (Y | Q,X) =
∏n

t=1 P (yt|y1, . . . , yt−1, Q,X), (7)

where Q = q1, . . . , qk, X = x1, . . . , xm and Y = y1, . . . , yn are sequences of
tokens. (Q,X,Y) is a question-passage-answer tuple.

The response generation task is dealt with the GPT-2 model as follows. First,
a hidden vector that is to be input to the transformer block is calculated as:

h0[t] = E(Q,X, Y[1:t]) + (E0, E0, E1) + Wp, (8)

where Y[1:t] is (y1, . . . , yt), E(Q,X, Y[1:t]) is the sub-word embedding for question
Q, passage X and answer Y[1:t]. E0 and E1 are state embeddings, where E0 is
assigned to the question and passage, and E1 is assigned to the answer. Wp

is a pre-trained position embedding. Then, the probability of the subword to
generate is calculated as:

h[t] = transformer block(h0[t]) (9)

P (y)t+1 = softmax (E�(h[t])), (10)

where y ∈ V , and V stands for the sub-word vocabulary. We simplify the struc-
ture of the transformer block as transformer block . The hidden vector of tth
sub-word is used to generate the probability distribution for the vocabulary
(P (y), y ∈ V ) for (t + 1)th sub-word. E� means that the model uses the sub-
word embeddings in calculating sub-word probabilities for generation.

3.3 Prompt-Based Tuning

Following Gekhman et al. [5], we add prompts to the passage for the conversa-
tional question answering task, where the prompts indicate the answers to the
previous questions. For any turn i, all the answer spans of the previous turns
(Sj , Aj) (j ∈ [1, . . . , i− 1]) are marked in the passage X with the prompts <j>.
Examples of prompt-based tuning can be found in the following Table 1:
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Table 1. An example of prompt-based tuning

Turn Question Text of
Answer Span

Prompted Passage

1 What color was Cotton? a little white
kitten named
Cotton

Once upon a time, in a barn
near a farm house, there lived a
little white kitten named
Cotton. Cotton lived high up...

2 Where did she live? in a barn near
a farm house,
there lived a
little white
kitten

Once upon a time, in a barn
near a farm house, there lived
<1> a little white kitten named
Cotton <1>. Cotton lived high
up...

3 Did she live alone? Cotton wasn’t
alone

Once upon a time, <2> in a
barn near a farm house, there
lived <1> a little white kitten
<2> named Cotton <1>.
Cotton lived high up...

Note that for any turn j that does not have an answer span, there is not a
prompt <j> for it.

3.4 Instruction-Based Tuning

Furthermore, following Zhong et al. [29] and Gupta et al. [6], we add instructions
to the inputs. We use two kinds of instructions: an instruction at the beginning
of the input, and several guidances among the sections that constitute the input.
The instruction at the beginning of the input is word-based, and it introduces
what the task is about. The guidances are word-based with symbols, such as
“[Instruction]:”, “[Question]:”, “[Passage]:” and “[Answer]:”, which separate each
section and clarify what each section is. We denote an instruction as a sequence of
tokens: I = I1, . . . , Ij , and guidances for each section as GSection 1, GSection 2, . . ..
The instruction and the guidances are inserted into the original input as follows:

[Ginstruction, I, Gquestion, Q,Gpassage,X,Ganswer, Y ], (11)

where Q is the question, X is the passage, and Y is the answer. Q, X and Y
are all sequences of tokens, and in Eq. 11 they are concatenated. We denote
XI = [Ginstruction, I, Gquestion, Q,Gpassage,X,Ganswer], then the hidden vector to
be input to the transformer block is calculated as:

h0[t] = E(XI , Y[1:t]) + (E0, E1) + Wp, (12)

3.5 Multi-task Learning

To fully leverage the extractive question answering task, we employ a multi-task
learning approach to integrate it with the response generation task. Specifically,
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we use the same hidden vector as described in Eq. 7 as input to the transformer
block, which is then used for calculating the probability distribution of the vocab-
ulary for the next token, as well as the probability of the start and end position
for each token in the passage. The multi-task learning approach optimizes both
answer span extraction and response generation simultaneously. The loss is then
integrated as:

LQA =
Lstart position + Lend position

2
(13)

L = LQA + Lresponse generation. (14)

4 Experimental Setup

4.1 Dataset

We employ the CoQA (Conversational Question Answering) dataset [21] for our
research. The CoQA dataset is a collection of conversational question answer-
ing instances spanning a broad range of domains, such as literature, news, and
Wikipedia articles. The dataset is conversational because it includes conversa-
tional histories, i.e., the previous turns in a conversation leading up to the current
question-answer pair. The answers in the dataset include both answer spans for
extractive question answering and human-written free-form answers for genera-
tive question answering.

4.2 Model and Tuning

In the experiments, we will evaluate 5 models:

(1) Response generation (baseline)
(2) Response generation with prompt-based tuning (prompt)
(3) Response generation with prompt-based tuning & instruction-based tuning

(w instruct)
(4) Response generation with prompt-based tuning & multi-task learning (w

multi-task)
(5) Response generation with prompt-based tuning & instruction-based tuning

& multi-task learning (w multi-task & w instruct)

We have excluded three other settings, namely response generation with
instruction-based tuning, response generation with multi-task learning, and
response generation with instruction-based tuning & multi-task learning, since
prompts are necessary indicators for multi-turns. Our task–the conversational
question answering–is based on multi-turns, so any model without prompt-based
tuning, other than the baseline, is considered not relevant to the task.

The instructions and prompts that we used in the prompt-based tuning and
instruction-based tuning are described in the following Table 2:
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Table 2. An example for prompt and instruction based tuning

Prompt-Based Tuning Instruction-Based Tuning

Instruction \ [Instruction]:
Answer the question based on the
given passage

Question Where did she live? [Question]:
Where did she live?

Passage Once upon a time, in a barn
near a farm house, there
lived <1> a little white
kitten named Cotton <1>.
Cotton lived high up...

[Passage]:
Once upon a time, in a barn near a
farm house, there lived a little white
kitten named Cotton. Cotton lived
high up...

Answer in a barn [Answer]:
in a barn

4.3 Training

Our implementation makes use of Pytorch [16] and the HuggingFace Transform-
ers1. We adopted GPT-2 basic2 which has 12 layers and 12 heads with a dimen-
sion of 768. The training procedure was with a batch size of 16, 10 epochs, a
learning rate of 3 · 10−5, a weight decay of 0.01, cross-entropy loss and AdamW.
The input sequences are 1024 tokens.

4.4 Evaluation

We evaluate the similarity between the human input answers and the gener-
ated answers using the F1 score. We compare the performance of five models,
namely the baseline, prompt, w instruct, w multi-task, and w multi-task &
w instruct, using the official dev dataset for evaluation. We compare the latter
4 models with the baseline and the latter 3 models with the prompt model. To
ensure consistency, we limit the maximum output length to 64 tokens. We use
two different evaluation modes, decoding mode and evaluation mode, to assess
the performance of the models.

In decoding mode, models are not provided with any information about the
previous turns and are required to use the predicted answer spans from the
previous turn as prompts for generating responses. Only models with multi-
task learning can generate answers under this mode. In contrast, the evaluation
mode provides the correct information on previous turns to the models. This
mode enables pure generation models to handle multi-turns with prompts, thus
making them more accurate in generating responses. We employ prompt-tuning
in the evaluation mode, whereby the correct information on the previous answers
is prompted in the same way as introduced in Sect. 3.3.
1 https://huggingface.co/.
2 https://huggingface.co/gpt2.

https://huggingface.co/
https://huggingface.co/gpt2
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By default, the evaluation mode generates better results than the decoding
mode, given the correct information on previous turns. We provide results for
both the evaluation mode and decoding mode to ensure a comprehensive evalu-
ation. In many real-life scenarios, we cannot assume that we have access to the
correct answer spans for previous questions, which makes evaluation using the
evaluation mode impractical. Therefore, by including decoding mode results, we
can provide a more realistic evaluation of our approach that reflects the real-life
scenarios.

We also evaluate the performance of the extractive QA part of the two models
with multi-task learning (w multi-task and w multi-task & w instruct) and
compare them with an GPT-2 model fine-tuned on extractive question answering
task. We measure the similarity between the predicted answer span text and the
original answer span text using the F1 score.

We show which mode is applied for each model in the following Table 3:

Table 3. Models and modes

Decoding Mode Evaluation Mode

baseline ✗ ✓

prompt ✗ ✓

w instruct ✗ ✓

w multi-task ✓ ✓

w multi-task & w instruct ✓ ✓

5 Results

5.1 Automatic Results

Table 4 and Table 5 summarize the response generation performance of five mod-
els w.r.t. F1 score and its improvements. Since only models with multi-task
learning can generate answers in the decoding mode, we use backslash ‘\’ to
denote this setting is not applicable to the first three models.

Table 4. F1 results for different models. Numbers in the brackets state F1 improve-
ments compared to the baseline under evaluation mode.

F1 (decoding mode) F1 (evaluation mode)

baseline \ 53.8

prompt \ 63.0 (+17.1)

w instruct \ 63.7 (+18.4)

w multi-task 61.6 (+14.4) 63.9 (+18.7)

w multi-task & w instruct 56.5 (+5.0) 57.8 (+7.4)
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Table 5. F1 improvement compared to prompt (evaluation mode)

F1 (decoding mode) F1 (evaluation mode)

w instruct \ +1.1

w multi-task −2.2 +1.4

w multi-task & w instruct −10.3 −8.2

From the results, we have the following observations:

1) As shown in all the tables, the performance of the evaluation mode is better
than decoding mode. This is because the evaluation mode can provide the
correct answer spans from previous turns to the models for prompt-tuning.

2) In Table 4, prompt-based tuning outperforms baseline by a large mar-
gin, demonstrating that prompt can encode valuable information about
the answers from previous conversation turns for model tuning. Besides,
instruction-based tuning can further improve the response generation perfor-
mance, which proves the usefulness of injecting task-specific guidance during
fine-tuning. Apart from that, compared with the “prompt” model and the
“w instruct” model, the “w multi-task” model achieves the best perfor-
mance, from which we can find the conversational question answering task
can significantly facilitate the response generation task.

3) The brackets of Table 4 show the F1 score improvements compared to the
baseline under evaluation mode. As expected, all the models have certain
performance improvements compared to the baseline. In particular, the “w
multi-task” model has the highest performance improvement, which is
18.7% and 14.4% in the evaluation and decoding modes, respectively.

4) Table 5 shows the F1 score improvement compared to the “prompt” model
(evaluation mode). We find that the performance of the “w multi-task”
model drops by 2.2% in the decoding mode, suggesting that answer prediction
errors from previous conversation turns can accumulate to have a large impact
on the response generation task. Another interesting observation is that the
performance of the “w multi-task & w instruct” model drops 10.3% and
8.2% in the decoding and evaluation modes, respectively. This is probably
because the optimization of the multi-task learning and instruction-based
tuning are conflicting with each other.

Table 6. F1 results and improvement for the extractive question answering part.
Answer span texts instead of human answers are used for evaluation.

F1 (decoding mode) F1 (evaluation mode)

GPT-2 fine-tuned on
extractive QA

63.9 (\) 64.7 (\)

w multi-task (QA part) 60.2 (−5.7) 65 (+0.4)

w multi-task & w instruct

(QA part)
64.9 (+1.6) 70.1 (+8.3)
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Table 6 reports the evaluation results of the extractive question answering
part of a GPT-2 model fine-tuned on extractive question answering task and
the two models with multi-task learning. Compared with the baseline (GPT-2
fine-tuned on extractive question answering), both multi-task learning models
can improve the performance of question answering task, which demonstrates
the effectiveness of prompt-based and instruction-based tuning and the boosting
effect of the response generation task on the question answering task. We can
also observe that the performance of the “w multi-task” model drops by 5.7%
in the decoding mode, which is due to the accumulated answer prediction errors
from previous turns.

5.2 Qualitative Results

Table 7. An example of the difference between extractive question answering and
generated answers

Question Gold Answer
Span Text

Human Extractive QA
Answer

Generated

Is it a
small
city?

the most
populated city in
the state of
Nevada

No is the 28th-most
populated city in
the United
States

No

Which
state is it
in?

Vegas, is the
28th-most
populated city in
the United
States, the most
populated city in
the state of
Nevada

Nevada is the 28th-most
populated city in
the United
States, the most
populated city in
the state of
Nevada

Nevada

What is
it famous
for?

The city bills
itself as The
Entertainment
Capital of the
World, and is
famous for its
mega casino
hotel

mega
casino
hotel

famous for its
mega casino
hotels and
associated
activities

gambling,
shopping, fine
dining,
entertainment,
and nightlife

Table 7 presents a comparative analysis between answer spans predicted by the
question answering module and generated answers. The first question demon-
strates that for yes/no questions, the generated answer provides a more direct
response, whereas the extractive QA answer only provides the information
required to answer the question without a simple yes or no. The second ques-
tion highlights that in cases where there is no direct answer in the passage, the
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generated answer provides a better response as it directly addresses the ques-
tion. However, the third question illustrates that in some cases, extractive QA
answers are superior, as the given answer is fully grounded in the passage. The
generated answer may be based on the passage and relevant to the question, but
not necessarily grounded in the passage.

Table 8. An example of answers generated by different models

Question Baseline prompt w instruct w

multi-task

w

multi-task

& w

instruct

What is it
famous for?

its the
largest city
within the
greater
Mojave
Desert

its real
things

its
gambling,
shopping,
fine dining,
entertain-
ment, and
nightlife

gambling,
shopping,
fine dining,
entertain-
ment, and
nightlife

a guitar
hotels and
associated
activities

Table 8 provides a comparative analysis of answers generated by different
models. The baseline model generates answers that are not related to the ques-
tion, while the “prompt” model generates answers that are related to the ques-
tion but not grounded in the passage. In contrast, the “w instruct” and “w
multi-task” models generate good quality answers that are grounded in the
passage. The “w multi-task & w instruct” model generates an answer that
is almost identical to the gold standard, however with a deviation in the form of
“guitar hotels” instead of “mega casino hotels”. Qualitatively, the “w instruct”
and “w multi-task” models can generate better and more robust answers com-
pared to the baseline and the “prompt” model.

6 Conclusion and Future Works

This study aimed to explore different tuning approaches for response genera-
tion in conversational question answering. Specifically, we experimented with
the effectiveness of prompt tuning, instruction tuning, and multi-task learning
on GPT-2, under both decoding mode and evaluation mode. The F1 results
demonstrated that prompt-based tuning outperformed the baseline, while mod-
els with instruction-based tuning and multi-task learning yielded slightly better
results than those with prompt-based tuning alone. In the future, we will explore
more multi-task learning algorithms and test instruction-based tuning on a larger
language model.
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